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Abstract

In this paper, a semi-analytical model is proposed to solve the diffraction prob-

lem from a cylinder with a moonpool. The cylinder and the moonpool can be

in arbitrary shapes. Linear potential flow theory and eigenfunction matching

method are adopted in the analytical model. After dividing the fluid domain

into three regions (i.e., the region beneath the cylinder; the inner region en-

closed by the cylinder; the exterior region outer the cylinder), diffracted spatial

potentials in each region can be expressed by a series of eigenfunctions. The

continuity conditions between adjacent regions together with a Fourier series

method combined with the eigenfunction matching method are employed to de-

termine the unknown coefficients in the expressions of diffracted potentials. The

well-known potential of incident waves and the obtained diffracted potentials are

then used to directly compute the wave excitation forces/moments acting on the

cylinder and the wave excitation volume flux. Analytical results of wave excita-

tion forces/moments and volume flux are compared with the numerical results

obtained by using a boundary element method numerical solver. Wave diffrac-

tion from the cases with different shapes of either cylinder hull or moonpool is

finally tested with the semi-analytical model.

∗Corresponding author. Email: liuyingyi@riam.kyushu-u.ac.jp
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1. Introduction

In drillships, construction vessels, some offshore floating platforms and off-

shore wave energy converters, there are vertical openings from deck to keel

through the hulls, which are the features known as ‘moonpools’ (see Fig. 1). It

has been proved that the existence of the moonpool could strongly influence the5

hydrodynamic forces and motion response of these offshore structures (Molin,

2001; Wei et al., 2011; Guo et al., 2017; Molin et al., 2018; Miquel et al., 2020).

Figure 1: Moonpools in offshore structures: (a) drill ship (Hammargren and Törnblom, 2012);

(b) dedicated ROV (Remotely Operated Underwater Vehicle) moonpool in a vessel (Laughlin,

2010); (c) floating platform used in offshore wind power (Dodd, 2015); (d) oscillating water

column (OWC) (Mavrakos and Konispoliatis, 2012)

To explore the exact interaction between the offshore structure consisting

of a moonpool and gravity waves, many analytical models have been developed

since 1970s. In 1970, Garrett (1970) presented an analytical model to consider10

the excitation of waves inside a bottomless harbor, in which the harbor was
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represented by a partially immersed hollow circular cylinder with the walls in-

finitely thin, enclosing a moonpool that takes over the entire cylinder. The

diffracted waves in the moonpool and outside the cylinder were both expanded

in Bessel functions and modified Bessel functions. A least-squares minimiza-15

tion method was then employed to determine the unknown coefficients in the

expressions of diffracted potentials. Following Garrett (1970), the diffraction

problem from a hollow cylindrical shell structure was investigated by Zhu and

Mitchell (2009), whereas a different and more direct method was employed to

solve the diffracted potentials. In preliminary design and parametric studies of20

offshore structures, estimating the wave loads is required. Analytical solutions

of the exciting sway force and pitch moment acting on the hollow cylindrical

shell structure, together with hydrodynamic coefficients, were given by Miloh

(1983), and they were found to compare favorably with some experimental re-

sults. Since the wall was assumed to be infinitely thin, the exciting heave force25

was not calculated. Later, such assumption was released by Mavrakos (1985),

who considered a circular cylinder with a circular moonpool with finite wall-

thickness, i.e., a ring-shaped structure. The excitation forces in translation and

rotation modes acting on the cylinder were all obtained by solving the wave

diffraction problem through the employment of the Galerkin method. The re-30

sults showed that, for long waves, the vertical force on the cylinder increased

with the increase of wall thickness. As an extension to this work, Mavrakos

(1988) adopted a similar analytical approach for evaluating the hydrodynamic

parameters, i.e., added mass and damping coefficients, of the same case. Addi-

tionally, the diffraction and radiation problems from a thick-walled cylindrical35

body consisting of a moonpool with the bottom of cylinder partially open were

analytically investigated by Zhou and Zhang (2013). The prediction of wave

motion inside the moonpool based on the potential theory is generally exag-

gerated at the resonance frequencies due to a lack of viscous dissipation. This

deviation can be eliminated by introducing the dissipation in some specified40

fluid domain, e.g., adding an additional term associated with the fluid viscosity

in the boundary conditions at the free surface of the moonpool (Chen et al.,
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2015); introducing an extra virtual dissipative disc at the moonpool entrance

(Liu et al., 2017).

As waves approach an oscillating water column (OWC) device, the water45

column enclosed by the chamber, i.e., the moonpool, will be excited to oscil-

late, driving the air inside the chamber flowing through the turbine and hence

generating electricity. Hence the excitation volume flux of the moonpool is

of great significance for evaluating the performance of the OWC device. Evans

and Porter (1997) presented a theoretical model for solving both wave diffraction50

and radiation of a thin-walled OWC and obtained the maximum absorbed power

when the volume flow rate across through the turbine can be optimized. An

OWC device with finite wall thickness was examined by Mavrakos and Konispo-

liatis (2012) employing an analytical method based on matched axisymmetric

eigenfunction expansions of the velocity potential. Completed hydrodynamic55

analysis, including the evaluation of the first-order wave excitation forces, the

airflow flux, the hydrodynamic parameters, and the maximum absorbed power,

can be achieved with their analytical model. More recently, the analytical model

for individual offshore OWC was extended to the hydrodynamic analysis of a

coast/breakwater integrated OWC and an array of OWCs along a straight coast60

(e.g. see Zheng et al., 2019a,b).

All these aforementioned research work are about a circular-shaped cylinder

with a circular moonpool. In practice, the moonpool or/and the offshore struc-

ture could be non-circular, e.g., the floating platform as shown in Fig. 1c is a

square cylinder with a square moonpool. To evaluate the free-surface response65

inside a square moonpool, Molin (2001) derived simple quasi-analytical approx-

imations based on the assumption of infinite water depth and infinite length

and beam of the offshore structures that contain the moonpools. More recently,

Molin et al. (2018) extended the theoretical model of Molin (2001) and proposed

a different approach which applied to the finite water depth and the offshore70

structure with limited horizontal dimensions. Simple formulae were also derived

based on so-called single-mode approximations to give the resonant frequencies.

However, in their model, the velocity potential at a fictitious outer cylinder was
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taken to be nil, which is a somewhat gross condition to ensure the connection

with the exterior domain.75

An obvious drawback of these analytical models as reviewed above is that

they can only be applied to an offshore structure with a moonpool in circu-

lar cross-section, or be approximately implemented for that with a rectangular

moonpool neglecting velocity potential in an exterior domain.

In this article, we consider a cylinder with a moonpool, in which both of80

them can be in arbitrary shapes. A semi-analytical model based on usual as-

sumptions of linearized wave-body interactions is proposed to solve the wave

diffraction problem. The fluid domain is divided into three regions: (a) the re-

gion beneath the cylinder; (b) the inner region enclosed by the cylinder, i.e., the

moonpool; (c) the exterior region outside the cylinder. Diffracted spatial po-85

tentials in each region can be expressed by a series of eigenfunctions. A Fourier

series method combined with the eigenfunction matching method is applied to

satisfy the continuity conditions between adjacent regions and to determine the

unknown coefficients in the expression of diffracted potentials. Wave excitation

forces/moments and wave excitation volume flux are then evaluated by using90

the incident and diffracted wave potentials. The semi-analytical model is then

employed to run a series of case studies.

The remainder of this paper is organized as follows. §2 presents a math-

ematical model for solving wave diffraction from a truncated cylinder with a

moonpool of an arbitrary cross-section. A comparison of the analytical results95

of a cosine shaped hollow cylinder with the numerical ones by using three dif-

ferent numerical solvers can be found in §3. Moreover, the case studies on wave

diffraction problem of a platform with different shapes of cross-section and a

square platform with different dimensions are carried out with the employment

of the semi-analytical model, the results and discussions of which are given in100

§3. Finally, conclusions are drawn in §4.
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2. Mathematical model

Figure 2 gives a definition sketch of a truncated cylinder with a moonpool of

an arbitrary cross-section. Both the Cartesian coordinate system (Oxyz) and

the cylindrical coordinate system (Orθz) are adopted, in which a point at the105

center of the moonpool locating on mean water level is used as their origin O.

The plane of z = 0 (i.e., the plane of Oxy) coincides with the still-water level

with the positive Oz axis pointing upwards. The cylinder is subjected to a train

of regular waves propagating in the direction of β relative to the position Ox axis

with an angular frequency ω and a small amplitude A. The immersion depth of110

the cylinder and the water depth are denoted as d and h, respectively. rin(θ)

and rout(θ) are the radius functions of the moonpool surface and the cylinder

outer surface, respectively.

Figure 2: Definition sketch: (a) plan view; (b). side view

The unit normals on vertical surfaces of the cylinder with a moonpool di-

rected towards far-field can be written as

~n =
1√

1 +
(
1
r
∂S
∂θ

) (~er +
1

r

∂S

∂θ
~eθ + 0~ez

)

=
1√

1 +
(
1
r
∂S
∂θ

) [(cos θ − 1

r

∂S

∂θ
sin θ

)
~i+

(
sin θ +

1

r

∂S

∂θ
cos θ

)
~j + 0~k

]
,

(1)

where(~er, ~eθ, ~ez) and (~i,~j,~k) are the unit basis vectors in the Orθz and Oxyz
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systems, respectively; S represents Sout and Sin, which are expressed as

Sout = r − rout(θ), (2)

and

Sin = r − rin(θ), (3)

respectively.

For small wave conditions, the usual inviscid incompressible linearized water

wave theory may be in operation and a time factor of e−iωt is suppressed so that

the fluid motion can be described by the velocity potential Φ = <[φ(x, y, z)e−iωt],

where φ can be further decomposed as φ = φI + φD, in which

φI = − igA

ω

cosh[k0(z + h)]

cosh(k0h)

∞∑
m=−∞

ime−imβJm(k0r)e
imθ, (4)

is the undisturbed incident wave potential with Jm the Bessel function of the

mth order, g the gravity acceleration, k0 the wave number satisfying ω2 =

gk0 tanh(k0h), and φD is a solution of the governing equations

∂2φD
∂x2

+
∂2φD
∂y2

+
∂2φD
∂z2

= 0, in the fluid (5)

with
∂φD
∂z
− ω2

g
φD = 0, on z = 0 and r > rout, r < rin, (6)

∂φD
∂z

= 0, on z = −h, (7)

∂φD
∂z

= −∂φI
∂z

, on z = −d and rin < r < rout, (8)

∂φD
∂n

= −∂φI
∂n

, on − d < z < 0 and r = rout, r = rin, (9)

and √
k0r

(
∂φD
∂r
− ik0φD

)
= 0, on r →∞. (10)

7



2.1. Expressions of the diffracted velocity potentials115

As shown in Fig. 2b, the fluid domain is divided into three regions, (a)

Region 1, i.e., the domain beneath the cylinder; (b) Region 2, i.e., the moonpool

region; and (c) Region 3, i.e., the remainder extending towards infinite distance

horizontally.

The diffracted velocity potential in Region 1 (i.e., the domain beneath the

cylinder), φD,1, may be expressed as

φD,1(r, θ, z) = −φI+
∞∑

m=−∞

[
Em,0 +

∞∑
l=1

(Am,lIm(βlr) +Bm,lKm(βlr)) cos[βl(z + h)]

]
eimθ,

(11)

where

βl =
lπ

h− d
, l = 0, 1, 2, · · · , (12)

Em,0 =

Am,0 +Bm,0 ln(r), m = 0

Am,0r
|m| +Bm,0r

−|m|, m 6= 0

, (13)

Am,l and Bm,l are the unknown coefficients to be determined, Im and Km120

represent the modified Bessel functions of the first kind and the second kind,

respectively, of the mth order.

An approximate expression of the diffracted velocity potential in Region 2

(i.e., the moonpool region), φD,2, may be written as

φD,2(r, θ, z) =

∞∑
m=−∞

[
Cm,0Jm(k0r)

Z0(z)

Z0(0)
+

∞∑
l=1

Cm,lIm(klr)
Zl(z)

Zl(0)

]
eimθ, (14)

where Z0(z) = N
−1/2
0 cosh[k0(z+h)], and Zl(z) = N

−1/2
l cos[kl(z+h)], in which

N0 = 1
2

[
1 + sinh(2k0h)

2k0h

]
and Nl = 1

2

[
1 + sin(2klh)

2klh

]
; kl for l = 1, 2, 3, · · · are the

roots of

ω2 = −klg tan(klh), l = 1, 2, 3, · · · ; (15)

and Cm,l are the unknown coefficients to be determined.
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The diffracted velocity potential in Region 3 (i.e., the region extending to-

wards infinite distance horizontally), φD,3, may be expressed as

φD,3(r, θ, z) =

∞∑
m=−∞

[
Dm,0Hm(k0r)

Z0(z)

Z0(0)
+

∞∑
l=1

Dm,lKm(klr)
Zl(z)

Zl(0)

]
eimθ,

(16)

approximately, where Hm is the Hankel function of the first kind of the mth

order and Dm,l are the unknown coefficients to be determined.125

2.2. Solution of the unknown coefficients

The velocity potentials as given in Eqs. (11), (14) and (16) satisfy the

governing equation and boundary conditions as listed in Eqs. (5)-(8) and (10).

Eq. (9) and the continuity of pressure and the radial velocity at the interfaces

between the adjacent regions can be merged into

φD,2
∣∣
Sin=0

= φD,1
∣∣
Sin=0

, −h < z < −d, (17)

φD,3
∣∣
Sout=0

= φD,1
∣∣
Sout=0

, −h < z < −d, (18)

(
r2(θ)

∂φD,2
∂r

+
∂Sin
∂θ

∂φD,2
∂θ

) ∣∣∣∣
Sin=0

=


−
(
r2(θ)∂φI∂r + ∂Sin

∂θ
∂φI
∂θ

) ∣∣∣∣
Sin=0

, −d < z < 0(
r2(θ)

∂φD,1
∂r + ∂Sin

∂θ
∂φD,1
∂θ

) ∣∣∣∣
Sin=0

, −h < z < −d
,

(19)

(
r2(θ)

∂φD,3
∂r

+
∂Sin
∂θ

∂φD,3
∂θ

) ∣∣∣∣
Sout=0

=


−
(
r2(θ)∂φI∂r + ∂Sin

∂θ
∂φI
∂θ

) ∣∣∣∣
Sout=0

, −d < z < 0(
r2(θ)

∂φD,1
∂r + ∂Sout

∂θ
∂φD,1
∂θ

) ∣∣∣∣
Sout=0

, −h < z < −d
,

(20)

which should also be satisfied and employed to determine the unknown coeffi-

cients Am,l, Bm,l, Cm,l and Dm,l. Details are given in Appendix A.
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2.3. Expressions of the wave excitation forces/moments and volume flux

Once the wave diffracted velocity is known, the hydrodynamic pressure in130

the flow domain can be estimated by the linearized Bernoulli equation, and the

wave excitation forces/moments acting on the truncated cylinder can be further

evaluated by integrating the hydrodynamic pressure over the wetted surface of

the cylinder. These quantities are listed as follows:

(1) Wave excitation force in x direction F
(1)
e

F (1)
e = −iωρ

∫ 2π

0

∫ 0

−d

{[(
r cos θ − ∂Sout

∂θ
sin θ

)
(φI + φD,3)

] ∣∣∣∣
Sout=0

−
[(
r cos θ − ∂Sin

∂θ
sin θ

)
(φI + φD,2)

] ∣∣∣∣
Sin=0

}
dzdθ

(21)

(2) Wave excitation force in y direction F
(2)
e

F (2)
e = −iωρ

∫ 2π

0

∫ 0

−d

{[(
r sin θ +

∂Sout
∂θ

cos θ

)
(φI + φD,3)

] ∣∣∣∣
Sout=0

−
[(
r sin θ +

∂Sin
∂θ

cos θ

)
(φI + φD,2)

] ∣∣∣∣
Sin=0

}
dzdθ

(22)

(3) Wave excitation force in z direction F
(3)
e

F (3)
e = iωρ

∫ 2π

0

∫ rout

rin

(φI + φD,1)
∣∣
z=−drdrdθ. (23)

(4) Wave excitation moment about x axis at the rotation center, i.e., (r, z) =

(0, z0), of the cylinder F
(4)
e

F (4)
e = iωρ

∫ 2π

0

∫ 0

−d

[(
r sin θ +

∂Sout
∂θ

cos θ

)
(φI + φD,3)

] ∣∣∣∣
Sout=0

(z − z0)dzdθ

−iωρ

∫ 2π

0

∫ 0

−d

[(
r sin θ +

∂Sin
∂θ

cos θ

)
(φI + φD,2)

] ∣∣∣∣
Sin=0

(z − z0)dzdθ

+iωρ

∫ 2π

0

∫ rout

rin

(φI + φD,1)
∣∣
z=−dr

2 sin θdrdθ

(24)
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(5) Wave excitation moment about y axis at the rotation center, i.e., (r, z) =

(0, z0), of the cylinder F
(5)
e

F (5)
e = −iωρ

∫ 2π

0

∫ 0

−d

[(
r cos θ − ∂Sout

∂θ
sin θ

)
(φI + φD,3)

] ∣∣∣∣
Sout=0

(z − z0)dzdθ

+iωρ

∫ 2π

0

∫ 0

−d

[(
r cos θ − ∂Sin

∂θ
sin θ

)
(φI + φD,2)

] ∣∣∣∣
Sin=0

(z − z0)dzdθ

−iωρ

∫ 2π

0

∫ rout

rin

(φI + φD,1)
∣∣
z=−dr

2 cos θdrdθ.

(25)

(6) Wave excitation moment about z axis at the rotation center, i.e., (r, z) =

(0, z0), of the cylinder F
(6)
e

F (6)
e = −iωρ

∫ 2π

0

∫ 0

−d

[
r∂Sout
∂θ

(φI + φD,3)

] ∣∣∣∣
Sout=0

dzdθ

+iωρ

∫ 2π

0

∫ 0

−d

[
r∂Sin
∂θ

(φI + φD,2)

] ∣∣∣∣
Sin=0

dzdθ

(26)

(7) Wave excitation volume flux F
(0)
e , which is of interest for evaluating the

performance of an OWC device (e.g., see Evans and Porter, 1995; Zheng et al.,

2019a)

F (0)
e =

∫ 2π

0

∫ rin

0

∂(φI + φD,2)

∂z

∣∣∣∣
z=0

rdrdθ =
ω2

g

∫ 2π

0

∫ rin

0

(φI + φD,2)
∣∣
z=0

rdrdθ

(27)

3. Results and discussions135

The wave excitation forces/moments and volume flux may be normalized as

follows:

F̄j =


ω|F (j)|

e

ghA , for j = 0

|F (j)|
e

ρgh2A , for j = 1, 2, 3

|F (j)|
e

ρgh3A , for j = 4, 5, 6

(28)

ϕj = argF (j)
e , (29)

where F̄j and ϕj denote the non-dimensional amplitude and phase, respectively.
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3.1. Comparison of semi-analytical results with numerical results

Boundary Element Methods (BEM) solvers, e.g., the commercial solvers,

WAMIT and ANSYS-AQWA, and the open-source solver, NEMOH and HAMS,

have been widely used to solve the hydrodynamic problems of a large variety of140

marine structures (e.g., see Bozzi et al., 2013; Zheng and Zhang, 2017; Miquel

et al., 2017; Liu, 2019). A comparison of the present semi-analytical results

with the BEM-based numerical results provides a manner to validate the present

model.

We take the truncated cylinder with a moonpool of cosine-function-shaped

cross section (see Fig. 3),

rin
d

= 0.5 + 0.1 cos[3(θ + π)], (30)

rout
d

= 1 + 0.1 cos(3θ), (31)

with h = 2 m, d/h = 0.5 and β = 30◦ as an example to demonstrate the145

performance of the present semi-analytical model and make a comparison with

the numerical results by WAMIT.

A convergence analysis was carried out before doing any case studies. The

semi-analytical model was coded with Fortran and run in a laptop with In-

tel(R) Core(TM) i7-8550U CPU @ 1.80GHz 1.99 GHz, 8.00 GB RAM and a150

64-bit operating system. Figures 4 and 5 illustrate the impact of the angular

and vertical truncated cutoffs (i.e. in terms of M and L), respectively, on the

wave excitation forces and moments. The corresponding CPU time required

for solving wave diffraction problem per wave frequency are plotted in Fig. 6.

As expected, the more truncated angular and vertical terms of the infinite se-155

ries are, the more CPU time is required to solve the wave diffraction problem.

Hereinafter, M = 12 and L = 8 are adopted to obtain converged results.

Figures 7, 8 and 9 present the comparison results of the translation and

rotation modes of wave excitation forces acting on the cylinder and also the

wave excitation volume flux of the moonpool. An excellent agreement of the160

12



Figure 3: Computational mesh employed in the numerical solvers with the wetted surface

marked in blue colour.

present analytical results with the numerical results of WAMIT is achieved in

the computed range of wave frequencies. This gives confidence of the present

semi-analytical model in solving water wave scattering problem of a truncated

cylinder with a moonpool of arbitrary cross-section.

3.2. Case studies of an elliptic platform with different eccentricities165

The validated model is applied to solve the wave diffraction problem of a

platform with elliptic shapes (see Fig. 10).

The radius function of the platform outer surface is expressed as

rout(θ) =
1√

cos2 θ
a21

+ sin2 θ
a22

, (32)

where a1 and a2 represent the width and height parameters, which are called

the semi-major and semi-minor axes, respectively. The radius function of the

moonpool surface is rin(θ) = 2
3rout(θ).170

Figure 11 shows the wave excitation forces/moments acting on the ellip-

tic platforms with different eccentricities for β = 30◦, d/h = 0.5, a1a2 = d2,

a2/a1 = 0.5, 0.8, 1.0, 1.25 and 2.0.
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Figure 4: Impact of the angular cut-offs (i.e., in terms of M) on wave excitation

forces/moments, h = 2 m, d/h = 0.5, β = 30◦ and L = 8: (a) F̄1; (b) F̄2; (x) F̄3; (s)

F̄4; (e) F̄5; (f) F̄6.

14



Figure 5: Impact of the vertical cut-offs (i.e., in terms of L) on wave excitation forces/moments,

h = 2 m, d/h = 0.5, β = 30◦ and M = 12: (a) F̄1; (b) F̄2; (x) F̄3; (s) F̄4; (e) F̄5; (f) F̄6.
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Figure 6: CPU time required per wave frequency: (a) variation with M for L = 8; (b) variation

with L for M = 12.

In the computed range of wave conditions, F̄1 − kh exhibits a single peak

curve for a2/a1 = 1.25 and 2.0. Whereas for a2/a1 = 0.5, 0.8 and 1.0, apart175

from the main peak, sharp changes of the F̄1−kh curve are observed at kh = 4.0,

4.9 and 5.5, respectively. These sharp changes are excited due to the sloshing

motion of water in the moonpool. As a2/a1 increases from 0.5 to 2.0, the main

peak of the F̄1 − kh curve rises. Similar contrasts are also seen in F̄5 − kh (see

Fig. 11e). For the F̄2 − kh curves, sharp changes due to the sloshing motion180

of water in the moonpool are observed at the same wave conditions, i.e., kh =

4.0, 4.9 and 5.5, as seen for the F̄1− kh curves. Nevertheless, those three sharp

changes correspond to a2/a1 = 2.0, 1.25 and 1.0, respectively. The peak value

of of F̄2 decreases with the increase of a2/a1. Similar variations are also seen

in F̄4 − kh (see Fig. 11d). The wave frequencies where the sharp changes of185

the F̄3− kh curves happen are found to be independent of the change of a2/a1.

For the remaining computed wave conditions, the heave wave excitation force

acting on the platform with a2/a1 = 0.5 is smaller than those for the other four

examined cases with different values of a2/a1. As expected, F̄6 = 0 is obtained

all over the computed range of wave conditions for a2/a1=1.0. For kh < 2.0,190

the yaw wave excitation moment acting on the platforms with a2/a1= 0.5 and
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Figure 7: Comparison of present semi-analytical results with numerical results in terms of

normalized excitation forces of the translation modes in the frequency domain as a function

of kh with h = 2 m, d/h = 0.5 and β = 30◦: (a) F̄1; (b) ϕ1; (c) F̄2; (d) ϕ2; (e) F̄3; (f) ϕ3.
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Figure 8: Comparison of present semi-analytical results with numerical results in terms of

normalized excitation forces of the rotate modes in the frequency domain as a function of kh

with h = 2 m, d/h = 0.5 and β = 30◦: (a) F̄4; (b) ϕ4; (c) F̄5; (d) ϕ5; (e) F̄6; (f) ϕ6.
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Figure 9: Comparison of present semi-analytical results with numerical results in terms of

normalized excitation volume flux in the frequency domain as a function of kh with h = 2 m,

d/h = 0.5 and β = 30◦: (a) F̄0; (b) ϕ0.

Figure 10: Schematic of the elliptic platform.
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Figure 11: Effect of the elliptic eccentricities on wave excitation forces/moments: (a) F̄1; (b)

F̄2; (c) F̄3; (d) F̄4; (e) F̄5; (f) F̄6 for β = 30◦, d/h = 0.5, a1a2 = d2.
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Figure 12: Effect of the elliptic eccentricities on wave excitation volume flux for β = 30◦,

d/h = 0.5, a1a2 = d2.

2.0 are almost the same. As kh increases from 2.0, the two F̄6 − kh curves

separate from one another. Similar contrasts are also seen in the two cases with

a2/a1= 0.8 and 1.25. For kh > 3.0, the yaw wave excitation moment acting on

the platform with a2/a1 = 2.0 is the largest among the five examined cases.195

The results of the frequency response of the wave excitation volume flux are

given in Fig. 12. The F̄0 − kh curve is found to be insensitive to the change of

a2/a1.

3.3. Case studies of a square platform with different outer hull widths

The semi-analytical model is also applied to a floating foundation for a wind200

turbine, which is a square float fitted with a square moonpool (see Fig. 1c).

The foundation with a depth of 11 m floats at an offshore site of 55 m water

depth, with 7 m immersed in the water. The widths of the outer hull and

the moonpool are denoted as Dout and Din, respectively. Assuming the mass

is uniformly distributed all over the floating foundation, the center of gravity205

is 1.5 m below the mean water level, which is used as the reference point to

evaluate the moments hereafter. The area of the square ring is assumed fixed

(i.e., D2
out − D2

in ≡ 1296 m2), therefore Din will increase/decrease with the
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Figure 13: Approximation of the square by Eq. (33) with different terms retained, i.e.,

p = 0, 1, 2, · · · , P with P = 1, 2, 5, 10.

increase/decrease of Dout. Extremely, the moonpool disappears when the outer

hull width Dout = 36 m.210

To avoid singularity induced by a sharp edge, the square may be expanded

into a series of Fourier terms in the present semi-analytical model. For a square

with the width of Dout, the corresponding radius function can be expressed as

rout(θ) =
Dout

2

∞∑
p=0

Rp cos(4pθ), (33)

where the values of Rp for p = 0, 1, · · · , 10 are listed in Table 1.

Table 1: Values of Rp for p = 0, 1, 2, · · · , 10

p 0 1 2 3 4 5 6 7 8 9 10

Rp 1.122 -0.157 0.049 -0.024 0.014 -0.009 0.006 -0.005 0.004 -0.003 0.002

The shapes given by the Eq. (33) with different truncated terms retained215

in the series (the terms with p ≤ P are kept) are plotted in Fig. 13. The

approximation of the square cross-section with P = 10 is found to be reasonably

good, and it is adopted hereinafter to represent the exact square cross-section.
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Figure 14 presents frequency response of wave excitation forces/moments

for different outer hull width in terms of Dout/h. For a solid platform (i.e.,220

Dout/h = 36/55), there is no sharp change of the frequency response of any

wave excitation component. As Dout/h increases, a square moonpool appears

in the center of the platform and its dimension becomes larger and larger. Due

to the existence of the moonpool, sharp changes of the frequency response of

wave excitation forces/moments are observed and the larger the moonpool, the225

smaller kh where the main sharp change occurs. The main peaks of the rotation

components of the excitation force as shown in Figs. 14d-14f become higher with

the increase of Dout/h.

The wave excitation volume flux results as given in Fig. 15 demonstrate that

as the dimension of the moonpool increases, the peak of the frequency response230

of F̄0 shifts towards low frequencies and meanwhile, both the bandwidth and

peak height become larger. This result may be of interest to the design of a

floating OWC device.

4. Discussions

It is well known that Eq. (16) is valid outside a circular cylinder encom-235

passing the outer waterline, of radius Ro = max{rout(θ)}. For the remaining

sub-regions of Region 3, i.e., rout(θ) < r(θ) < Ro, strictly speaking, apart

from the Hm and Km associated terms as shown in Eq. (16), the Jm and Im

related terms should also be considered. Likewise Eq. (14) is valid inside a

circular cylinder contained inside the moonpool, of radius Ri = min{rin(θ)}.240

In a similar way, strictly more complicated expressions are required for the re-

maining sub-regions of Region 1. However, this will make the semi-analytical

model much more complicated due to more unknown coefficients to be solved

and more continuity conditions at the interfaces between the sub-regions and

the corresponding outside/inside circular-shaped region.245

In this paper, for the sake of simplicity, Eqs. (16) and (14) are employed

to approximately express the velocity potential all over Regions 3 and 1, re-
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Figure 14: Effect of the outer hull width of a square hollow platform on wave excitation

forces/moments: (a) F̄1; (b) F̄2; (c) F̄3; (d) F̄4; (e) F̄5; (f) F̄6.
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Figure 15: Effect of the outer hull width of a square hollow platform on wave excitation

volume flux, F̄0.

spectively. The excellent agreement of the present results with the numerical

ones gives confidence of the present semi-analytical model in solving water wave

scattering problem of a truncated cylinder with a moonpool of arbitrary cross-250

section, such as the cylinders with a cosine-function-shaped cross section and an

elliptic cross section. Nevertheless, when the shape of the cross section is rather

different from a circular shape, the present model may not be able to solve the

wave diffraction accurately for some specified wave frequencies.

5. Conclusions255

A semi–analytical model is developed based on the linear potential flow the-

ory to solve wave diffraction problem of a truncated cylinder with a moonpool of

an arbitrary cross-section. The radius function associated terms are expressed

as a Fourier series and an eigenfunction matching method is employed to deter-

mine the unknown coefficients in the velocity potentials.260

The proposed semi–analytical model can be used to run benchmark tests

and help validate numerical models. The results obtained by using WAMIT are

found in remarkable agreement with the analytical results.
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The semi-analytical model is adopted to examine the wave diffraction prob-

lems of an elliptic platform with different eccentricities and a square platform265

with different outer hull widths. For the elliptic platform with a fixed cross

section area, the wave volume flux and also the wave frequencies where the

sharp changes of the frequency response of the heave excitation force happen

are found to be insensitive to the change of eccentricities. For a square platform

with the area of cross-section fixed, the larger the moonpool, the smaller wave270

frequencies where the main sharp change of the frequency response of wave exci-

tation forces/moments occurs. The peak of the frequency response of the wave

excitation volume flux can be enlarged in terms of both bandwidth and height

by using a larger moonpool.

Our attention is restricted to the wave diffraction problem of a stationary275

truncated cylinder with a moonpool. When the cylinder is free-floating, and/or

the moonpool works as an OWC chamber to capture wave power, for which air

pressure oscillation inside the chamber (i.e., above the moonpool) exists, the

wave radiation problem appears as a result of the cylinder’s oscillation and/or

the internal air pressure oscillation. The semi-analytical model proposed in this280

paper can be easily extended to solve the wave radiation problem (e.g., see

Zheng et al., 2019a, 2020a).

The present model is developed based on the usual assumptions of linearized

wave-body interactions; hence the nonlinear and viscous effects are neglected.

In contrast, these effects should be considered in order to achieve more realis-285

tic predictions of the wave excitation/moment acting on the cylinder and the

wave motion inside the moonpool, especially for extreme and/or resonant wave

conditions.
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Appendix A. Integral equations of the diffraction problem

By multiplying Eqs. (17) and (18) with cos[βζ(z + h)]e−iτθ/(h − d) and

integrating over the range 0 < θ < 2π, −h < z < −d, multiplying Eqs. (19)

and (20) with Zζ(z)e
−iτθ/h and integrating over the range 0 < θ < 2π, −h <

z < 0, we get for any integer ζ and τ , four algebraic systems for the unknown

coefficients Am,l, Bm,l, Cm,l and Dm,l:

−
∞∑

m=−∞
Λ1,A
m,τ,ζAm,ζ −

∞∑
m=−∞

Λ1,B
m,τ,ζBm,ζ +

∞∑
m=−∞

∞∑
l=0

Cm,lLl,ζΛ
1,C
m,τ,l

=
igA

ω
L0,ζ

∞∑
m=−∞

ime−imβfJ,inm,0,τ−m,

(A.1)

−
∞∑

m=−∞
Λ2,A
m,τ,ζAm,ζ −

∞∑
m=−∞

Λ2,B
m,τ,ζBm,ζ +

∞∑
m=−∞

∞∑
l=0

Dm,lLl,ζΛ
2,D
m,τ,l

=
igA

ω
L0,ζ

∞∑
m=−∞

ime−imβfJ,outm,0,τ−m,

(A.2)

−h− d
h

Zζ(0)

∞∑
m=−∞

∞∑
l=0

(
Am,lΛ

3,A
m,τ,l +Bm,lΛ

3,B
m,τ,l

)
Lζ,l

+

∞∑
m=−∞

Cm,ζΛ
3,C
m,τ,ζ =

igA

ω

δ0,ζ
Z0(0)

∞∑
m=−∞

ime−imβfJ
′,in

m,0,τ−m,

(A.3)

and

−h− d
h

Zζ(0)

∞∑
m=−∞

∞∑
l=0

(
Am,lΛ

4,A
m,τ,l +Bm,lΛ

4,B
m,τ,l

)
Lζ,l

+

∞∑
m=−∞

Dm,ζΛ
4,D
m,τ,ζ =

igA

ω

δ0,ζ
Z0(0)

∞∑
m=−∞

ime−imβfJ
′,out

m,0,τ−m,

(A.4)

where

Ll,ζ =
1

h− d

∫ −d
−h

Zl(z) cos[βζ(z + h)]

Zl(0)
dz

=


(−1)ζ(h−d)k0 sinh[k0(h−d)]
[(h−d)2k20+ζ2π2] cosh(k0h)

, l = 0; ζ = 0, 1, 2, · · ·
(−1)ζ(h−d)kl sin[kl(h−d)]
[(h−d)2k2l−ζ2π2] cos(klh)

l = 1, 2, 3, · · · ; ζ = 0, 1, 2, · · ·

, (A.5)
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Λ1,A
m,τ,ζ =

f
RA,in
m,0,τ−m, ζ = 0

1
2 f̃

I,in
m,ζ,τ−m, ζ = 1, 2, 3, · · ·

, (A.6)

Λ1,B
m,τ,ζ =

f
RB,in
m,0,τ−m, ζ = 0

1
2 f̃

K,in
m,ζ,τ−m, ζ = 1, 2, 3, · · ·

, (A.7)

Λ1,C
m,τ,ζ =

f
J,in
m,0,τ−m, ζ = 0

f Im,ζ,τ−m, ζ = 1, 2, 3, · · ·
, (A.8)

Λ2,A
m,τ,ζ =

f
RA,out
m,0,τ−m, ζ = 0

1
2 f̃

I,out
m,ζ,τ−m, ζ = 1, 2, 3, · · ·

, (A.9)

Λ2,B
m,τ,ζ =

f
RB,out
m,0,τ−m, ζ = 0

1
2 f̃

K,out
m,ζ,τ−m, ζ = 1, 2, 3, · · ·

, (A.10)

Λ2,D
m,τ,l =

f
H
m,0,τ−m, l = 0

fKm,l,τ−m, l = 1, 2, 3, · · ·
, (A.11)

Λ3,A
m,τ,l =

f̃
RA,in
m,0,τ−m, l = 0

f̃ I
′,in
m,l,τ−m, l = 1, 2, 3, · · ·

, (A.12)

Λ3,B
m,τ,l =

f̃
RB,in
m,0,τ−m, l = 0

f̃K
′,in

m,l,τ−m, l = 1, 2, 3, · · ·
, (A.13)

Λ3,C
m,τ,ζ =

f
J′,in
m,0,τ−m/Z0(0), ζ = 0

f I
′

m,ζ,τ−m/Zζ(0), ζ = 1, 2, 3, · · ·
, (A.14)

Λ4,A
m,τ,l =

f̃
RA,out
m,0,τ−m, l = 0

f̃ I
′,out
m,l,τ−m, l = 1, 2, 3, · · ·

, (A.15)

Λ4,B
m,τ,l =

f̃
RB,out
m,0,τ−m, l = 0

f̃K
′,out

m,l,τ−m, l = 1, 2, 3, · · ·
, (A.16)
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Λ4,D
m,τ,ζ =

f
H′

m,0,τ−m/Z0(0), ζ = 0

fK
′

m,ζ,τ−m/Zζ(0), ζ = 1, 2, 3, · · ·
, (A.17)

in which the right-hand side terms of Eqs. (A.7)-(A.17) are the Fourier co-295

efficients derived from the θ-dependent functions that are associated with rin

and rout, and the detailed calculation and derivation process are given in Ap-

pendix B. The infinite series are truncated by choosing m = −M, · · · ,M and

l = 0, 1, · · · , L. In the present studies, M = 12 and L = 8 are taken to obtain

converged results.300

Appendix B. Expressions of the Fourier coefficients derived from the

θ dependent functions

The θ dependent functions may be written as a series of Fourier coefficients

Jm(k0r)
∣∣
Sχ=0

=

∞∑
q=−∞

fJ,χm,0,qe
iqθ, (B.1)

(
r2k0J

′
m(k0r) + imJm(k0r)

∂Sχ
∂θ

) ∣∣∣∣
Sχ=0

=

∞∑
q=−∞

fJ
′,χ

m,0,qe
iqθ, (B.2)

Hm(k0r)
∣∣
Sout=0

=

∞∑
q=−∞

fHm,0,qe
iqθ, (B.3)

(
r2k0H

′
m(k0r) + imHm(k0r)

∂Sout
∂θ

) ∣∣∣∣
Sout=0

=

∞∑
q=−∞

fH
′

m,0,qe
iqθ, (B.4)

Km(klr)
∣∣
Sout=0

=

∞∑
q=−∞

fKm,l,qe
iqθ, (B.5)

(
r2klK

′
m(klr) + imKm(klr)

∂Sout
∂θ

) ∣∣∣∣
Sout=0

=

∞∑
q=−∞

fK
′

m,l,qe
iqθ, (B.6)
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Im(klr)
∣∣
Sin=0

=

∞∑
q=−∞

f Im,l,qe
iqθ, (B.7)

(
r2klI

′
m(klr) + imIm(klr)

∂Sin
∂θ

) ∣∣∣∣
Sin=0

=

∞∑
q=−∞

f I
′

m,l,qe
iqθ, (B.8)

Im(βlr)
∣∣
Sχ=0

=

∞∑
q=−∞

f̃ I,χm,l,qe
iqθ, (B.9)

(
r2βlI

′
m(βlr) + imIm(βlr)

∂Sχ
∂θ

) ∣∣∣∣
Sχ=0

=

∞∑
q=−∞

f̃ I
′,χ
m,l,qe

iqθ, (B.10)

Km(βlr)
∣∣
Sχ=0

=

∞∑
q=−∞

f̃K,χm,l,qe
iqθ, (B.11)

(
r2βlK

′
m(βlr) + imKm(βlr)

∂Sχ
∂θ

) ∣∣∣∣
Sχ=0

=

∞∑
q=−∞

f̃K
′,χ

m,l,qe
iqθ, (B.12)

r|m|
∣∣
Sχ=0

=

∞∑
q=−∞

fRA,χm,0,q eiqθ, (B.13)

(
|m|r|m|+1 + imr|m|

∂Sχ
∂θ

) ∣∣∣∣
Sχ=0

=

∞∑
q=−∞

f̃RA,χm,0,q eiqθ, (B.14)

∞∑
q=−∞

fRB,χm,0,q eiqθ =

ln(r)|Sχ=0, m = 0

r−|m||Sχ=0, m 6= 0

, (B.15)

∞∑
q=−∞

f̃RB,χm,0,q eiqθ =


(
r + im ln(r)

∂Sχ
∂θ

) ∣∣
Sχ=0

, m = 0

−|m|r1−|m| + imr−|m|
∂Sχ
∂θ

∣∣
Sχ=0

, m 6= 0

, (B.16)

where χ represents in and out. The Fourier coefficients in the summation terms

of the above equations can be evaluated from (Zheng et al., 2019c, 2020b)

Um,l,q =
1

2π

∫ π

−π
Vm,l(θ)e

−iqθdθ (B.17)

where Um,l,q represent the Fourier coefficients and Vm,l(θ) denotes the θ depen-

dent items as given on the non-summation side of Eqs. (B.1)-(B.16).
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