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Environmental Significance Statement

Dietary exposure to copper sulphate compared to a copper oxide nanomaterial in rainbow 

trout: Bioaccumulation with minimal physiological effects.

David Boyle, Nathaniel, J. Clark, Benjamin P. Eynon & Richard D. Handy

Understanding the dietary bioaccumulation potential of engineered nanomaterials (ENMs) in 

fish is an important aspect of environmental risk assessment. Trout fed diets containing excess 

copper sulphate or copper oxide nanomaterial for 28 days showed no effects on growth, plasma 

ions or organ histology, despite some total copper accumulation in the internal organs. The 

animals managed the exposure with some loss of the antioxidant, glutathione, and some 

metallothionein induction; and showed clearance of copper from the organs in the post-

exposure phase. A digestibility assay showed that copper from both forms of exposure was 

bioaccessible. Crucially, the bioaccumulation hazard from the nano form was similar to the 

metal salt, implying the existing metals risk assessment would be protective of the nano form.
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Abstract

The dietary bioaccumulation potential of engineered nanomaterials (ENMs) remains poorly 

understood. The aim of the current study was to assess the dietary bioaccumulation of copper 

from copper oxide (CuO) ENMs or dissolved copper (CuSO4) exposure in fish. Animals were 

fed a nominal diet of 750 mg kg-1 Cu in the respective forms for 4 weeks, then fed the control 

diet for a further 2 weeks in a depuration phase. Fish were sampled at weeks 2, 4 and 6 for total 

Cu analysis. Samples were also taken at week 4 for plasma ions, biochemistry and histology. 

An in chemico digestibility assay simulating the gut lumen showed the total Cu could be 

leached (i.e., was bioaccessible) from both diets. Fish from all treatments showed normal 

growth and survival, and with healthy histology of gills, intestines and liver. At the end of the 

4 week exposure, both Cu materials caused an elevated tissue total Cu concentration with the 

highest in the mid intestine, hind intestine and liver. For example, the week 4 liver total Cu 

concentrations were 82 ± 7, 259 ± 19 and 281 ± 17 µg g-1 in the control, CuSO4 and CuO ENM 

treatments, respectively, with no significant differences between the Cu exposures. Compared 

to the controls, both forms of Cu caused induction of MT in the hind intestine, as well as some 

depletion of total GSH in the liver. In the post-exposure phase, there was evidence of 

depuration of total Cu from the mid and hind intestine, also the carcass, but not the brain or 

kidney. The liver also maintained similar total Cu concentrations, in keeping with this organ 

as a central compartment for Cu excretion. There was limited evidence of nanomaterial-specific 

effects. Overall, the CuO ENMs showed similar patterns of bioaccumulation as CuSO4, with 

negligible physiology effects.
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1. Introduction

Bioaccumulation potential and toxicity are key considerations in the environmental risk 

assessment of contaminants in the aquatic environment.1 For poorly soluble contaminants, such 

as engineered nanomaterials (ENMs), exposure of aquatic animals via the diet is considered 

more relevant to hazard assessment than aqueous exposure.2 This is because the majority of 

ENMs released into the aquatic environment will settle out of the water column. Exposure to 

ENMs may then occur through the food chain via predation of benthic organisms. In addition, 

it is challenging to maintain dispersions of ENMs in waterborne toxicity tests with fish,3, 4 and 

this has increased interest in using dietary exposure methods instead for ENMs (e.g., 2, 5, 6). 

Copper (Cu) is an essential trace metal and dietary Cu requirements in freshwater fish 

such as rainbow trout (Oncorhynchus mykiss) are in the region of ~3 mg kg-1 body weight day-1, 

and aquaculture feeds routinely contain ~10 mg kg-1 of Cu.7 At concentrations considerably 

higher than this, Cu has been shown to accumulate in internal tissues and sometimes cause 

toxicity.8, 9 The threshold for the effects of dietary Cu on growth and survival is about 750 mg 

kg-1 of Cu in the food, or slightly more, depending on the ration size and species of fish 

(reviews,7, 10). At high dietary inclusion rates, CuSO4 have been shown to affect ion 

homeostasis, cause oxidative stress, and pathologies at sites of Cu accumulation in trout.8, 9 At 

dietary concentrations of 750 mg kg-1 of Cu or less as CuSO4, trout show good maintenance of 

body system homeostasis, and compensate for the cost of exposure by adjusting the 

bioenergetics of swimming behaviours.11, 12 Only a few studies have considered dietary 

exposure to Cu ENMs, but total Cu concentrations in tissues have been shown to increase in 

tissues during dietary exposures.13, 14 However, the form(s) of the bioavailable fraction of Cu 

ENMs in fish tissue are unclear.

The uptake of dissolved Cu at the intestine is well characterised in fish. At the apical 

membrane of the enterocytes, transport of the Cu ion is via high-affinity Cu uptake proteins 
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(likely the CTR family and DMT1 proteins) with the rate limiting step in Cu assimilation being 

the ATP-dependent vesicular export of Cu into the blood.15-17 As such, dietary exposures to 

excess dissolved Cu are characterised by retention of Cu in the intestinal tissues in fish.8, 18 The 

uptake mechanisms for Cu ENMs in the gut of fish remains to be established. Recently, we 

demonstrated negligible tissue accumulation of total Cu from CuO ENMs using an ex vivo gut 

sac technique in rainbow trout with a simple physiological saline; CuO ENMs were associated 

with the mucosa, and unlike dissolved Cu, did not transfer to the blood compartment.19 While 

CuO ENMs were dispersed in the simple physiological saline, the lack of uptake was 

unexpected, and further experiments in the same study explored the addition of amino acids 

that would be present in the chime in vivo. By adding the amino acid, cysteine, Cu was shown 

to accumulate in the blood compartment of the gut sacs. This was likely caused by increased 

dissolution of the CuO ENMs in the gut lumen in the presence of cysteine, and transport of Cu-

cysteine into the tissue via dissolved Cu uptake pathways.19 Together, these data supported the 

hypothesis that intact nanoscale particulates of Cu are too large for uptake on solute 

transporters [see discussion Handy et al.20; as demonstrated for silver (Ag) ENMs 21], but also 

demonstrate that the chemical composition of gut lumen can drive the transformations of 

metallic ENMs and subsequent total Cu uptake.19

Notably, the bioaccumulation potential of the CuSO4 and CuO ENMs in fish has been 

shown using the ex vivo gut sac technique.19 In as little as 4 hours, total Cu from both materials 

accumulated in the mucosa of the gastrointestinal tract of rainbow trout, with the highest 

concentrations in the mid and hind intestines.19 To investigate this further, the present study 

investigates the bioaccumulation of CuSO4 and CuO ENMs in juvenile rainbow trout exposed 

via the diet for 28 days. It also remains unclear whether newly accumulated material can be 

excreted; therefore, following the exposure period, fish were depurated on the control diet for 

a further 2 weeks (total 6 weeks) to assess alterations in tissue Cu concentrations. It is also 

Page 5 of 35 Environmental Science: Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

E
nv

ir
on

m
en

ta
lS

ci
en

ce
:N

an
o

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
Ju

ne
 2

02
1.

 D
ow

nl
oa

de
d 

on
 7

/1
/2

02
1 

8:
56

:4
5 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D1EN00379H

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D1EN00379H


5

important to link any total Cu accumulation to biological effects; CuSO4 exposure has a well 

understood aetiology, with the liver as the central organ for metabolism/detoxification, and 

molecular interactions with reduced glutathione (GSH) and metallothionein (MT). However, 

the handling process remains unknown for the nano form and so measurements of these 

biomarkers as well as histological structure of the intestine and liver are made at the end of the 

exposure. To aid data interpretation, an in chemico digestibility assay was also used to help 

understand the bioaccessible fraction from the feed in conditions analogous to those found in 

the gastrointestinal tract.

2. Methods

2.1 Experimental design

Juvenile rainbow trout weighing approximately 10 g were obtained from a commercial 

fish farm, Exmoor Fisheries (Somerset, UK). Upon arrival at the University of Plymouth, trout 

were kept together in a single tank with flowing dechlorinated Plymouth tap water for a period 

of two weeks to monitor the health of fish. Fish were fed daily with non-supplemented 

commercial fish feed (Aller Futura, EX, Kaliningrad, Russia). After the quarantine period, fish 

were graded and then randomly allocated to nine glass tanks in a flow through system (70 L; 3 

tanks per treatment; 32 fish per tank). The total biomass in each tank ranged from 290 – 310 g 

(mean ± SD = 299.6 ± 7.2 g). Tanks were randomly allocated to treatments (control, CuSO4 or 

CuO ENMs) by drawing lots (n = 3 tanks per treatment; no significant difference in tank 

weights between treatments, one-way ANOVA, p = 0.473). Fish were left overnight before the 

exposures commenced.

The dietary exposure was conducted following the essence of the Organisation for 

Economic Development and Cooperation (OECD) test guideline, TG 305,1 but with a 

triplicated study design and additional measurements. Fish were fed one of three diets for 28 
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days: a control diet (no added Cu), or 750 µg g-1 Cu as CuSO4 or CuO ENMs. Following this, 

a 14 day depuration period occurred where all treatments were fed the control diet. The total 

duration of the experiment was 42 days. Fish were fed a 2% body weight ration per day 

whereby the amount of food was altered each week based on the tank biomass. The ration was 

carefully fed at approximately 09:00, 13:00 and 17:00 each day and observed to ensure the 

food was eaten immediately to minimise contact time of the diet with water and any leaching 

of Cu from the diet into the water. There were no residual food pellets in the water after each 

feed. Faecal matter in the tanks was removed by careful siphoning after each feed.

The water chemistry was monitored in tanks throughout the experiment. Tanks were 

fed continuously with Plymouth tap water with a water turnover rate of (mean ± SD): 0.52 ± 

0.12 L min-1 to minimise build-up of ammonia in tanks (there was no significant difference in 

water turnover between treatments, one-way ANOVA, p = 0.919). The measured 

concentrations of total ammonia [NH3] in tanks were 13.9 ± 5.2, 14.7 ± 5.6, and 13.8 ± 4.9 µM 

in control, CuSO4 and CuO ENM tanks, respectively. The water was pH 6.92 - 7.30, 

temperature was 17 ± 1 °C, dissolved oxygen was > 100% saturation throughout the experiment 

and the ionic composition of the water, based on weekly measurements using inductively 

coupled optical emission spectrometry (ICP-OES, Varian 725-ES, Agilent Technologies Inc.), 

were (in mM): Ca2+, 0.41 ± 0.10; K+, 0.06 ± 0.04; Mg2+, 0.09 ± 0.05; Na+, 0.58 ± 0.23. 

Concentrations of Cu were also measured in tank water for the duration of the experiment (see 

section 2.4). The aquatics facility had a set 12 h light and 12 h dark photoperiod.

Fish from the experimental tanks were sampled at days 14 and 28 during the exposure 

phase and at the end of the depuration phase on clean food (day 42) for trace metal analysis 

(see section 2.4). Samples for tissue biochemistry and histology were also taken at day 28 (see 

sections 2.5 and 2.6, respectively). In order to facilitate dissection and to ensure animal welfare 

during handling, fish were not fed on the morning of the sampling days. This allowed for 

Page 7 of 35 Environmental Science: Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

E
nv

ir
on

m
en

ta
lS

ci
en

ce
:N

an
o

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
Ju

ne
 2

02
1.

 D
ow

nl
oa

de
d 

on
 7

/1
/2

02
1 

8:
56

:4
5 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D1EN00379H

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D1EN00379H


7

evacuation of the gut after the final feed the previous day, ~15 h earlier. To achieve a daily 

ration of 2% body weight day-1 throughout the experiment, the half daily ration not fed on 

sampling days was given to fish on the subsequent days. All procedures with live fish were 

conducted in accordance with ethical approvals from the Home Office, UK, under the Animals 

(Scientific Procedures) Act 1986 and in compliance with the EU directive 2010/63/EU.

2.2 Nanomaterial characterisation and diet formulation

Copper oxide ENMs were provided in dry powder form by PlasmaChem GmbH 

(Berlin, Germany), a partner in the Sustainable Nanotechnologies Project (SUN) which was 

funded by the EU 7th Framework Programme. The characterisation of the same batch of this 

material has been reported elsewhere.19, 22, 23 Briefly, the primary particle sizes of CuO ENMs 

have been calculated from electron micrographs and were (mean ± SD, n = 100): 18.2 ± 5.6 

nm. 23 These CuO ENMs show little dissolution in either ultrapure water or Plymouth tap water 

(< 0.1 % Cu on a total mass basis after 1 h, 23). 

The diet used throughout the study was the same as used by Clark et al.6 The diet was 

a commercial fish food (Aller Futura, EX, Kaliningrad, Russia), with a pellet size of 1.5 mm. 

The intact food pellets were supplemented with CuSO4 or CuO ENMs that was allowed to soak 

into the pellets and this was then sealed with a topcoat of 10% porcine gelatine (Sigma-Aldrich, 

UK). A nominal concentration of 750 µg g-1 Cu (as CuSO4 or CuO ENMs) in the diets was 

chosen based on previous studies of dissolved Cu in trout that have shown tissue Cu 

accumulation.12, 24 To prepare the diets, a stock suspension of the CuO ENMs of 1.064 g 100 

mL-1  was prepared first in ultrapure H2O (18.2 M, ELGA, UK) in an acid-washed volumetric 

flask and dispersed in an ultrasonic bath for 1 h (50/60 Hz, 35 Watts, FB15048, Fisherbrand) 

before spiking the diets. Nanoparticle tracking analysis has demonstrated this approach gives 

good dispersions of CuO ENMs, with typical aggregate sizes of around 110 nm depending on 
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concentration and water pH.19, 23 In any event, the dispersion effort was mainly to make a 

uniform sample that could be added to the food, and would not reflect the aggregation state in 

the final food matrix. A stock solution of CuSO4 was prepared in the same manner but was not 

sonicated. The diets were prepared in a single batch by adding a total volume of 100 mL of 

either CuO ENMs or CuSO4 directly to 1 kg of diet and gently mixing the diet with a 

commercial food mixer for five mins (Model XKM810, Kenwood, UK). The diet was then 

coated with a solution of 10 g of gelatine in 100 mL of ultrapure water at 60 °C (per kg-1 diet) 

and mixed into the diet for several additional mins. Control diets were supplemented with 

ultrapure water in place of the Cu material and prepared as above. All diets were dried 

overnight at 40 °C to remove excess water and then stored at 4 °C until fed to fish. Total Cu 

concentrations of the diets were measured by inductively coupled plasma mass spectrometry 

(ICP-MS, Thermo Electron Corporation X-Series II quadrupole, see section 2.4). Copper was 

homogeneously distributed in the exposure diets and were close to the nominal 750 µg Cu g-1 

with 9.5 ± 0.3, 685.6 ± 41.5 and 713.3 ± 33.6 µg g-1 dry weight (means ± SD, n = 5) in the 

control, CuSO4 and CuO ENMs treatments, respectively. There was no significant difference 

between the Cu concentrations in the two exposure diets (Student’s t-test, p = 0.28). 

An in chemico digestibility assay was used to aid data interpretation over the form of 

Cu in the gut lumen of trout. Two compartments of gastrointestinal tract at different pH values 

were simulated with artificial solutions: the stomach (0.1 M HCl, 0.9% NaCl, pH 2) and the 

intestine (0.9% NaCl, pH 7.8). 1 g samples of the experimental diets (n = 3 per treatment) were 

ground in a ceramic mortar and added to 20 mL of the artificial solutions. Samples were placed 

on a tube roller (Denley Spiramix 5 Tube Roller Mixer) for 1 h. Afterwards, the samples were 

centrifuged at 6000 × g for 10 mins and the Cu concentration measured in the supernatant by 

ICP-MS (see section 2.4).
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2.3 Tissue collections and blood sampling

Blood sampling and dissection followed Clark et al.6 At days 14, 28 and 42, fish (n = 3 

per tank, n = 9 per treatment) were anaesthetised in buffered (NaHCO3, pH 7.0) MS222, pithed 

to destroy the brain and whole blood removed from the caudal vein into heparinised syringes 

(Li salt, 1 mg mL-1). The whole blood was then centrifuged, and the plasma removed and stored 

at -20 °C until analysed for Na+ and K+ concentrations by flame photometry (Sherwood Model 

420 Flame Photometer). The fish were then dissected for metal analysis.

Concentrations of Cu in tissues were measured at days 14, 28 and 42 of the experiment. 

Concentrations of other elements were measured in tissues on day 28, i.e. only at the end of the 

exposure period. Care was taken to avoid cross-contamination between tissues and also 

between fish. Tissues were dissected and weighed into tubes in the following order: gill, brain, 

liver (after gall bladder removal), kidney, with the mid- and hind-intestine being dissected last 

to avoid cross contamination between feed/faeces in the intestine and other tissues. The mid 

and hind intestine were rinsed in ultrapure water and blotted dry to remove residual feed/faeces 

before wet weight determination. Tissues and carcasses were freeze dried (Lablyo freeze dryer) 

for 24 h and stored at room temperature for metal analysis (see section 2.4). Measurements 

based on tissue dry weight were preferred to eliminate possible artefacts associated with 

osmotic stress (altered tissue moisture content) during metal exposure.

2.4 Metal analysis

Concentrations of Cu and other elements were measured in acidified water samples 

[few drops analytical grade (primer plus, Fisher UK) HNO3; see section 2.1], diets and samples 

from an in chemico digestibility assay (section 2.2), and tissues sampled from fish (section 2.3). 

Sub-samples (n = 5) of the diets of approximately 0.1 g were digested in 1 mL HNO3 at 60 oC 

for 4 h in clean 15 mL Falcon tubes in a water bath. Samples from the digestibility assays were 
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collected as described in section 2.2. Freeze dried tissues were weighed and similarly digested 

at 60 oC in nitric acid for 4 h. The volume of nitric acid used was 1 mL for livers and 0.5 mL 

for all other tissues. Due to their greater mass, the freeze dried carcasses were macerated with 

a stick blender and sub-samples of approximately 0.5 g were digested in 2 mL acid. Samples 

of a reference material (DORM-3) with known concentrations of Cu were also digested as 

above to verify the efficacy of the digestion protocol and accuracy of the instrument 

measurements. With every analysis, procedural blanks, acid-only samples, were analysed to 

check for leaching from the test tubes or other incidental contamination from the reagents (not 

observed, blanks remained below the limit of detection of the instrument). Following digestion, 

samples were diluted to volume with indium (In) and iridium (Ir) spiked ultrapure water (for 

use as internal standards). Due to the high background Cu concentrations in livers of trout an 

additional dilution was performed. Samples from the digestibility assays were also diluted with 

internal standards prior to Cu measurements. Measured Cu concentrations were compared to 

matrix matched standards (Fisher, UK) using ICP-MS. Other elements in the tissue digests 

were measured using ICP-OES. 

2.5 Tissue biochemistry

Selected tissues were analysed at day 28 for concentrations of proteins, total glutathione 

(total GSH) and MT, that are involved in Cu metabolism. Following dissection, tissues were 

snap frozen in liquid nitrogen and stored at -80 oC until required for analysis. For GSH analysis, 

tissues were homogenised (Cat X520D with a T6 shaft, medium speed, Bennett & Co., Weston-

Super-Mare) in ice cold sucrose buffer (in mM: 300 sucrose, 0.1 EDTA, 20 HEPES, pH 7.8). 

After centrifugation (13,200 rpm, 2 mins) GSH was quantified in supernatant and in buffer 

with final assay concentrations of (in mM): 76.5 phosphate buffer (pH 7.5), 3.8 EDTA, 0.6 

DNTB, 0.2 NADPH and 0.12 U mL−1 glutathione reductase. Data were normalized to the total 
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protein concentration in the supernatant measured with the Pierce BCA Protein Assay Kit 

according to the manufacturer’s instructions (ThermoFisher Scientific, UK).

Concentrations of MT in liver, kidney, mid- and hind-intestines were analysed 

according to Scheuhammer and Cherian.25 Tissues were homogenised in five volumes of 0.25 

M sucrose solution. Homogenates were centrifuged at 13,000 rpm for 2 mins and 100 µL of 

the supernatant (50 µL of liver) was diluted to 800 µL with glycine buffer (0.5 M, pH 8.5). 500 

µL of AgNO3 (185.4 µM in glycine buffer) was then added and samples were incubated at 

room temperature for 5 mins to allow the Ag+ to displace other metal ions bound to MT. To 

remove unbound Ag+ from samples, 100 µL horse haemolysate (Sigma-Aldrich, UK) was 

added, the samples were boiled for 1.5 mins, centrifuged at 1200 × g and the supernatant 

removed to a second tube. This step was repeated once more and then the supernatant was spun 

at 15000 × g for 15 mins. The final supernatant was diluted with ultrapure water and the Ag 

concentrations in samples were measured with ICP-MS and compared to matrix matched 

element standards (Fisher, UK). The concentrations of MT in samples were expressed per unit 

mass of tissue and were calculated by multiplying the measured mass of Ag by 3.55.

2.6 Histology

Fish were sampled at day 28 for histological examination and processed using methods 

described in Al-Bairuty et al.26 Animals were randomly selected (n = 2 per tank/ n = 6 per 

treatment), humanely killed and the second gill arch, mid intestine, hind intestine and liver 

collected into 10% buffered formal saline for at least one week for fixation. Tissues were 

processed using an automated tissue processor (Leica TP1020 semi-enclosed benchtop) where 

samples were taken from the formal saline into industrial methylated spirit (50-100%), 

followed by clearing using Histolene and then taken to wax. Tissues were then embedded in 

wax blocks (Leica EG 1150H), sectioned at 6 µm intervals (Leica RM2235 microtome) and 
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sections dried overnight. Mallory’s trichrome was used to stain the gills. Liver, mid- and hind-

intestinal morphology was viewed by staining sections with haematoxylin and eosin and using 

a Leica microscope (DMD108) with a built in camera. 

2.7 Data handling and statistical analysis

To assess growth performance in each tank, the average body weight of the fish in each tank 

was calculated each week as the total biomass (g) / number of fish per tank. Data analysis was 

performed in SigmaPlot v. 14.0, Systat Software Inc.). Data were checked for outliers using 

Grubb’s test, after which data were tested for normality (Shapiro-Wilk test) and equality of 

variances (Brown-Forsythe test) and if not normally distributed were log10 transformed prior to 

statistical analysis. If data transformation failed, data were analysed using appropriate non-

parametric statistical tests on untransformed data. There were 3 tanks per treatment and Cu 

accumulation and other endpoints of exposures to CuSO4 and CuO ENMs were assessed by 

pooling n = 3 fish from each replicate tank to give n = 9 fish per treatment, overall. To confirm 

the validity of this approach, tank effects were assessed in replicate tanks within each treatment 

by comparing growth performance and Cu accumulation in tissues. Analyses indicated that 

there were no significant differences in these metrics between replicate tanks and pooling fish 

for further analyses was a justified statistical approach. Statistical differences were assessed 

using either a one-way ANCOVA (growth and cumulative feed intake) or one-way or two-way 

ANOVA with Holm-Sidak test a posteriori, or, were data were not normally distributed and 

transformation failed, by Kruskal-Wallis followed by Dunn’s test to identify differences 

between treatments. Data are presented as means ± standard error (SEM) except where stated.

3. Results

3.1 Growth, food intake and mortality of rainbow trout
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Rainbow trout grew steadily throughout the experiment, from an initial mass of approximately 

9.5 g to approximately 23 g after 42 days (Fig. 1). Growth was highly comparable between 

replicate tanks in each treatment (one-way ANCOVAs, p > 0.05) and there were also no 

statistically significant differences in growth over time between the treatments (one-way 

ANCOVA, p = 0.564). Fish in all treatments consumed all food of a ration of 2% body mass 

day-1 and there were no treatment dependent differences in cumulative food intake during the 

experiment (one-way ANCOVA, p = 0.890; Fig. 1). Over the course of the study there was a 

total loss of 18 fish, with all of these fish lost in the first 11 days of the experiment as fish 

hierarchies were established. Of these, the majority were euthanized due to injuries caused 

through aggressive acts of other fish e.g. fin damage. Losses occurred in all treatments and 

were not related to Cu exposure.

3.2 In chemico digestibility assay

The in chemico digestibility assay was used to inform on labile or dissolved fractions of Cu in 

the experimental diets. Copper was released from all diets but there were significant differences 

between diets and between pH 2.0 and pH 7.8 (two-way ANOVA, p < 0.001; Fig. 2). Copper 

release from control diets was low and equated to < 1 % of total Cu at both pH 2.0 and pH 7.8. 

In comparison, Cu release from diets spiked with either CuSO4 or CuO ENMs was greater both 

in mass concentration measured in the supernatant and also as a percentage of total Cu in the 

diets. At pH 2.0, release of Cu from diets containing CuSO4 or CuO ENMs was not 

significantly different and was 202 ± 20 and 246 ± 34 µg total Cu g-1 (30 ± 3 and 35 ± 5 %), 

respectively. In contrast, at pH 7.8, there was significantly greater release of Cu from diets 

containing CuSO4 than CuO ENMs and was 127.8 ± 10.3 and 1.5 ± 0.2 µg total Cu g-1 (18.65 

± 1.50 and 0.21 ± 0.03 %), respectively.
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3.3 Metal analyses in water and tissues

Concentrations of total Cu were measured in water in the tanks throughout the experiment and 

the samples were gathered at intervals throughout the day, including immediately after feeding 

and before faeces were siphoned from tanks. Measured Cu concentrations were 0.2 ± 0.1 µg 

L-1 (n = 18) in control tanks but were significantly higher but still low in tanks fed CuSO4, 3.3 

± 0.5 µg L-1 or CuO ENMs, 3.5 ± 0.4 µg L-1.

During the 28 day exposure, trout fed CuSO4 and CuO ENMs showed significant 

increases in concentrations of Cu compared to controls in all tissues examined (one-way 

ANOVAs or Kruskal-Wallis tests, p < 0.05; Table 1). With the exception of the kidney at day 

28, there were no significant differences in Cu accumulation between the Cu treatments. 

Overall, the increases in Cu concentrations were highest in the mid and hind intestines, 

consistent with exposure via the diet, and also in the liver, which is the central tissue for metal 

metabolism. Smaller but significant increases were evident in the kidney, gill, brain and the 

remaining carcass. In all tissues except the liver, which showed significant increases in Cu 

accumulation between days 14 and 28 days, there were no further increases in Cu accumulation 

after the first 14 days of exposure.

After the 14 day depuration phase (day 42 of the experiment), Cu concentrations in the 

mid and hind intestine, gill and carcass had decreased to control levels (one-way ANOVAs or 

Kruskal-Wallis tests, p > 0.05; Table 1).  The same trend was not evident in other tissues. In 

the kidney and especially the liver and brain, Cu concentrations were elevated compared to 

controls and there was no change compared to day 28 of the exposure.

Concentrations of Na+ and K+ were measured in blood plasma at days 14, 28 and 42 of 

the experiment (Table 2) and in tissues at day 28 of the exposure. Blood plasma ion 

concentrations showed some deviations during the experiment but these appeared to be 

unrelated to treatment. There were also few significant effects of the Cu exposures on tissue 
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Na+ and K+ concentrations, with the exception of the hind intestine and the kidney. In the 

kidney, concentrations of Na+ were significantly decreased in fish treated with CuSO4 or CuO 

ENMs but there was no nano-effect (Kruskal-Wallis test, p = 0.004). Measured Na+ 

concentrations were 248 ± 14, 194 ± 10 and 197 ± 6 µmol g-1 in fish fed control, CuSO4 and 

CuO ENMs. In the hind intestine, concentrations of both Na+ and K+ were decreased by both 

Cu treatments compared to controls and there was also a small nano-effect with K+ significantly 

lower in the hind intestine of fish fed CuO ENMs compared to CuSO4 (one-way ANOVAs, p 

< 0.05). Concentrations of Na+ in the hind intestine were 107 ± 8, 72 ± 4 and 70 ± 5 µmol g-1 

in fish fed control, CuSO4 and CuO ENMs. Concentrations of K+ were 265 ± 10, 213 ± 11 and 

182 ± 10 µmol g-1 in fish fed control, CuSO4 and CuO ENMs.

3.4 Tissue biochemistry

There were treatment related effects of dietary Cu exposure on concentrations of both GSH 

and MT, but only in some tissues (Fig. 3). In trout fed either CuSO4 or CuO ENMs, total GSH 

was significantly lower in the hind intestine compared to control fish, but there was no 

significant difference between the Cu treatments (one-way ANOVA, p < 0.001). This pattern 

of effects was also evident in the liver where exposure to either CuSO4 or CuO ENMs caused 

significantly lower total GSH concentrations compared to controls (one-way ANOVA, p < 

0.001) and total GSH was depleted by approximately 40%. In all other tissues examined (mid-

intestine, kidney, gill or brains), there were no significant effects of the Cu exposures on total 

GSH concentrations in trout. Exposure to Cu also affected concentrations of MT, but only in 

the hind intestine. Compared to controls, concentrations of MT were significantly elevated in 

hind intestine of fish fed CuSO4 and CuO ENMs (one-way ANOVA, p < 0.001). However, 

there was no difference in MT concentrations between fish fed CuSO4 and CuO ENMs.
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3.4 Histological examination

All the organs examined showed normal histology with no evidence of Cu-dependent 

pathology or loss of anatomical integrity (Fig. 4). The gut barrier remained intact with no 

evidence of oedema, erosion, atrophy or hyperplasia of the mucous epithelium or the 

underlying muscularis (Fig. 4A-C). The gills showed normal, healthy, histology in all 

treatments, without any Cu-dependent oedema of the secondary lamellae, hyperplasia of the 

gill epithelium, lamellar fusion, aneurisms or congestion of the vasculature (Fig. 4D-F). The 

livers showed normal sinusoids and parenchyma, with no evidence of Cu-dependent fatty 

change or lipidosis in any treatment (Fig. 4H-J). There was no evidence of peri-venule bleeding 

or reactive hyperplasia in the liver tissue. One fish from the CuSO4 treatment showed foci of 

vacuole formation in one area of the liver, but this was without fatty change or hyperplasia in 

the surrounding parenchyma (i.e., likely a random artefact), and not observed in any of the 

other fish.

4. Discussion

This study shows that fish will consume a diet containing CuSO4 or CuO ENMs, with total Cu 

transferring to the organs, predominantly the mid intestine, hind intestine and liver. Both of the 

Cu exposures resulted in tissue total Cu burdens significantly elevated compared to the 

controls, with no significant differences between the Cu forms at any time point in any organ, 

except a transient elevation in the kidney of fish in the CuO ENM exposure. The presence of 

either Cu form in the diet did not impact the growth of the fish, plasma ions or histological 

integrity. However, both Cu exposures depleted the hind intestine total GSH, as well as 

increasing its MT expression at the end of the exposure. In the post-exposure phase where all 

fish were fed the control diet, depuration of total Cu was observed, where most of the elevated 
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tissue concentrations returned to those similar to the controls. The exception to this was the 

liver in both the Cu treatments, which remained markedly elevated, and consistent with the 

organs role in Cu metabolism and excretion. The brain and kidney also did not completely clear 

the total Cu to control levels. 

4.1. Dietary exposure and total Cu accumulation

Fish are known to consume diets contaminated with additional Cu as CuSO4 (e.g., trout 11, 24; 

tilapia 27; African catfish 9). The threshold for dietary effects on growth and survival is above 

750 mg Cu kg-1 food for juvenile trout, with exposures as high as 2000 mg kg-1 often causing 

little mortality.7 In the present study, a background incidence of mortality was observed (18 

fish in total, ~2% per treatment), and these were distributed randomly throughout the 

treatments, including the controls (no added Cu), and therefore could not be attributed to the 

presence of CuSO4 or CuO ENMs in the diets. There was some detectable Cu in the aquarium 

water, but this was at a trace level (< 3 µg l-1), and the total Cu concentrations in the gill 

remained low (Table 1). There was also no evidence of pathology in the gills, which is typically 

associated with waterborne CuSO4 or Cu ENM exposures (e.g., Al-Bairuty et al.28). Taken 

together, these observations confirm dietary, rather than waterborne, exposure in the present 

study.

Copper is an essential nutrient for fish, and as expected, there was a detectable 

background of total Cu present in the control tissues (Table 1). The control values for Cu 

ranging from around 3-11 µg g-1 dw in most organs, and around 100 dw µg g-1 dw in the liver 

(Table 1), being consistent with previous reports (e.g., 26, 29). The dietary exposure to the CuSO4 

resulted in significant elevations of the mid intestine, hind intestine and liver in keeping with 

the route of exposure, and some small increases in the kidney and brain (Table 1), which is 

broadly similar to other reports for dietary copper exposure in trout.11, 24, 29 For instance, 
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following a five week exposure to around 1 g Cu kg-1 food as CuSO4, the liver total Cu 

concentration reached 224 µg g-1 (~3.5 µmol g-1) compared to 52 µg g-1 (~0.8 µmol g-1) in 

controls for juvenile trout.24 The liver of fish exposed to dietary CuSO4 showed a similar trend 

in the present study, with livers from exposed fish reaching concentrations roughly three times 

those of the controls (Table 1). This is in keeping with the notion of the liver being a central 

compartment in Cu metabolism.30

There is less data on the dietary exposure CuO ENMs in fish. In the present study, the 

target organs and accumulation of total Cu from the dietary CuO exposure was the same as that 

for CuSO4, although the kidney accumulated more total Cu from the exposure to the nano form 

(Table 1). There have been only a few other studies on dietary exposure to Cu ENMs or CuO 

ENMs in fish (sea bream 13; Russian sturgeon 14; snow trout 31); and these studies can be 

regarded as preliminary because the material characterisation was often not reported and/or 

metal salt controls were not included in the study designs. Nonetheless, at least one study 

showed that fish fed diets containing Cu ENMs show elevated total Cu in the carcass and the 

liver compared to unexposed controls,14 in keeping with the findings here.  In terms of 

accumulation in different regions of the gut (Table 1), the hind intestine total Cu concentration 

were higher than the mid intestine, indicating the former is the site of accumulation from CuO 

ENM exposures. This is generally consistent with finding that the distal regions of the gut are 

involved in the uptake of metal (form unknown) from exposures to ENMs in trout (TiO2, 32; 

Ag, 6).

A crucial question for hazard assessment is whether the hazard from nano forms of Cu 

are different from the metal salt. The present study shows there were no significant differences 

between the total Cu concentrations in the organs following exposure to the CuSO4 or CuO 

ENM treatments, except for the kidney which had a higher total Cu concentration in the latter 

(Table 1). Similarities in organ concentrations of total Cu were found in red sea bream fed 
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equal mass concentrations (4 mg kg-1) of CuSO4 or CuO ENMs. After 60 days of exposure, 

there was no significant difference in the total Cu concentration of the muscle, liver or gills.13 

There appear to be no other reports of Cu accumulation in the brain or kidney following dietary 

exposure to Cu ENMs. Both Cu treatments caused increases in total Cu in the brain, but there 

was no additional elevation in total Cu associated with the nano form (Table 1). Nonetheless, 

with the brain as a target organ for Cu from CuO ENM exposures, the neurological deficits 

observed with excess dietary Cu salts, such as changes in circadian rhythms,12 could also be a 

similar concern for the nano form. For the kidney, more total Cu was accumulated in the 

exposure to the nano form, perhaps suggesting some additional hazard over the metal salt for 

this organ. The elevated total Cu might arise from melanomacrophage activity trapping 

particulate Cu in the parenchyma as observed in aqueous exposures to Cu ENMs in trout.28 

However, Cu excretion via the urine is usually minimal in trout, with the liver being the main 

excretory organ,30 and with normal plasma ions (Table 2), it suggests that renal function was 

not lost. 

However, any bioaccumulation hazard might be transient since the intestines and the 

carcass showed decreases in total Cu concentrations back to control levels in the post-exposure 

phase (Table 1), in keeping with dissolved Cu being an essential nutrient that is homeostatically 

controlled. Notably, total Cu from the CuO ENM exposure was also eliminated by the 

intestines (Table 1). Copper uptake and excretion is regulated by vesicular trafficking systems 

involving Cu-ATPase(s) that load Cu into the Golgi apparatus with subsequent vesicle 

formation.15, 33 Increased turnover of the Cu trafficking in the gut epithelial cells by this 

mechanism might contribute to an apparent excretion of total Cu from the intestines. However, 

more likely, the normal process of sloughing of the intestinal epithelial cells would contribute 

to the decrease in total Cu in the intestines in the post-exposure phase. In contrast to the 

intestines and carcass, neither the liver, kidney nor brain showed decreases of total Cu in the 
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post-exposure phase, regardless of the type of Cu exposure (Table 1). While there was no 

difference between CuSO4 and CuO ENMs in that regard, it highlights that the clearance of Cu 

from some organs is usually slower than uptake, as expected.27 For the kidney, as outlined 

above, the melanomacrophage activity might prolong the apparent retention of Cu in the organ. 

In the case of the brain, Cu concentrations increased in the post-exposure phase following 

exposure to CuSO4, but not for CuO ENMs (Table 1). Some redistribution of the Cu body 

burden is expected post-exposure.27 However, fluxes of metals across the blood brain barrier 

of fishes is poorly understood, although retention of Cu by metal binding ligands such as 

melatonin is probable.30 Whether or not intact CuO particles are taken up by the brain of fishes 

and retained requires investigation.

4.2 Digestibility and bioaccessible fractions in vivo

The almost identical accumulation of total metal from either dietary CuO ENM or CuSO4 

exposures (Table 1) argues that the bioaccessibility of the nano form should be similar to that 

of CuSO4. One theoretical argument is that the CuO ENMs simply dissolve in the gut lumen, 

so that ultimately, both exposures are to dissolved metals. The in chemico digestibility assay at 

pH 2 (i.e., stomach pH of a carnivorous fish) showed an equal amount of total Cu was released 

from the diet (Fig. 2), indicating similar bioaccessibility of CuO ENMs and CuSO4. Similarly, 

in our previous gut sac studies, when the CuO ENMs (same batch as used here) were incubated 

in gut physiological saline at pH 2 to mimic behaviour in the stomach, 94% of the CuO ENMs 

became dissolved after 4 h with a dissolution rate of 1.4 mg h-1;19 and with gastric emptying at 

the temperature and ration used likely to take more than 24 h,34 in the stomach at least, the 

animals would be exposed to dissolved metal regardless of the original form. Albeit with a 

small fraction of the original CuO ENMs remaining. However, there is likely another 

transformation(s) further along in the gut lumen. Boyle et al.19 argued that Cu would be 
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predominantly complexed with carbonate [68.15% CuCO3 (aq) and 29.38% Cu(CO3)2
2−] with 

only 0.71% as Cu2+ in the gut lumen at neutral pH values. The high ionic strength of the gut 

saline would also promote the formation of agglomerates, with precipitation of particulates 

observed at pH 7.8.19 It is therefore very likely that secondary Cu particles would form in the 

intestine and any existing CuO ENMs would aggregate onto the gut surface. The exposure in 

the intestine might therefore be to a mix of particulate and dissolved species of copper.

The total Cu from the CuO diet was much less digestible than that of CuSO4 in the 

simulated intestine region, as measured by the appearance of total Cu in the supernatant at pH 

7.8 (Fig. 2). However, this apparent lower bioaccessibility of the nano form in the intestinal 

lumen conditions could be offset by other factors in vivo.  For example, the dissolution of the 

CuO ENMs at circumneutral pH was accelerated by the presence of essential amino acids in 

the diet, cysteine and histidine.19 Thus overall, in vivo, the total metal accumulated from either 

CuO ENMs and CuSO4 are similar (Table 1). Interestingly, the gut sac studies of Boyle et al. 

19 also showed that the initial rates of total Cu uptake to the serosal compartment was slower 

for CuO ENMs compared to CuSO4. In the same study on gut sacs, the dissolution of the ENMs 

was also influenced by amino acids in the gut lumen. Clearly, the particle transformations in 

the gut lumen in the presence of complex mixtures of electrolytes, amino acids, gut enzymes 

and other colloids, and how this influences the uptake rate, requires further investigation. 

Transformations are also possible in the internal organs, since trout fed excess Cu as metal 

salts, show metal granules in the liver.35

4.3. Growth and sub-lethal biochemical effects

Fish are well-known for ingesting metal-contaminated food and will continue to eat food 

containing more than 2000 mg Cu kg-1 dw.7, 10 In the present study, the presence of nominally 

750 mg kg-1 had no effect on cumulative food intake or growth, throughout the experiment. 
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Notably, there was also no statistical difference in growth (Fig. 1), food intake, or Cu 

accumulation with the triplicates of each treatments, suggesting that the single replicate 

(pseudoreplication) approach for the regulatory use of the dietary TG 305 method is sufficient 

with respect to the use of animals (3Rs). Also the one concentration approach can minimise the 

number of animals tested,36 and was used here.  The lack of effect of dietary CuSO4 on growth 

at the inclusion levels (Fig. 1) was expected and consistent with previous reports on trout (e.g., 

24, 37). In the case of the diet containing CuO ENMs, growth and cumulative food intake were 

also unaffected (Fig. 1). In other studies, the Cu ENM inclusions in the diets of red sea bream 

were low (2-8 mg kg-1), and perhaps unsurprisingly, did not alter growth or nutritional 

performance.13 Russian sturgeon fed CuO ENMs at an inclusion of 16.25 mg kg-1 showed 

normal weight gain compared to unexposed controls. For other ENMs, Clark et al.6 showed 

that trout fed diets containing Ag ENMs at 100 mg Ag kg-1 of food, also had no effect on food 

intake or growth. Fish fed up to 1000 mg kg-1 of Zn as ZnO ENMs, also showed normal body 

weight compared to unexposed controls.5 Taken together, so far, this suggest fish may be 

nutritionally tolerant of diets containing metallic ENMs in a similar way to that of dissolved 

metals.

Copper is an oxidising metal that also binds to –SH groups and so there are concerns 

for oxidative stress during exposures to dissolved Cu.9 In this regard, fish have biochemical 

defences; including the total GSH pool and MT (Fig. 3). The total GSH pool is a first line of 

defence against oxidative stress, with the reduced form of GSH as the anti-oxidant, although it 

is also a Cu carrier in the cytoplasm. The total GSH was unaffected in the gill, kidney and brain 

(Fig. 3A). The highest tissue total Cu concentrations in the present study were the hind intestine 

and the liver, in keeping with the route of exposure, and the two tissues showed some decreases 

in total GSH (~40% in the liver, Fig. 3A). However, the pool was not depleted and there was 

no evidence of inflammation or oxidative damage in the organ histology (Fig. 4), indicating 
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that the fish were moderating the effects of the exposure. Crucially, there were no differences 

in the total GSH response between the CuSO4 and the CuO ENMs exposures (Fig. 3), so no 

additional hazard from the nano form. El Basuini et al. 13 also found that exposure to either 4 

mg kg-1 dietary Cu as CuSO4 or Cu ENMs increased reactive oxygen metabolites in the blood 

plasma compared to unexposed controls, but there was no material-type effect. Wang et al. 14 

made similar observations for total antioxidant capacity in the livers of Russian sturgeon.

There were no effects on the MT concentrations in the organs, except for some 

induction of MT in the hind intestine compared to unexposed controls for both the CuSO4 and 

CuO ENM treatments (Fig. 3B). Again, there was no difference between the latter, implying 

no additional hazard from the nano form. The increase in MT is consistent with its role as a 

metal chelator, and in the hind intestine where higher total Cu concentrations were observed 

(Table 1). Some MT induction is expected in the intestine and liver of trout during dietary 

exposure to CuSO4.11 In the present study, the latter organ showed no exposure-dependent 

increases in MT, perhaps because the liver also has the ability to chelate Cu in copper-sulphur 

rich particles,35 or a sufficient threshold of intracellular dissolved Cu was not reached in the 

liver cells. Regardless, it is curious that CuO ENMs also induce MT, albeit only in the hind 

intestine (Fig. 3B). This implies that some dissolved Cu is generated inside the intestinal tissue 

by dissolution of the particles, or from uptake of dissolved Cu via particle dissolution in the 

lumen. This aspect that requires further investigation, but at least one study showed increased 

expression of the genes for the epithelial Cu channel, Ctr1, and Cu-ATPase in Caco-2 cells 

during exposures to CuO materials.38

During aqueous exposures, dissolved Cu interferes with osmoregulation and Na+ 

homeostasis via the gill.39 This is not observed in dietary exposures to CuSO4, because the gills 

are not directly exposed to dissolved Cu and so plasma electrolytes are largely unaffected.11 

Similarly, in the present study, there were no effects of either CuSO4 or CuO ENM exposures 
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on plasma ions (Table 2). There were some transient decreases on Na+ and/or K+ in the kidney 

and hind intestine, but these are likely not of physiological importance because electrolyte 

homeostasis of the plasma was maintained. Similar observation were made for dietary Ag and 

Ag ENMs in trout.6 So it seems that, like CuSO4, dietary exposure to the nano form of Cu is 

not an osmoregulatory hazard to trout.

4.3. Conclusions and perspective on environmental risk assessment 

This study demonstrates that trout will ingest diets containing CuO ENMs with subsequent 

accumulation of total Cu in the internal organs. This raises a trophic transfer concern for the 

nano form of the metal. However, the bioaccumulation of total Cu was similar in fish fed diets 

containing CuSO4 or CuO ENMs at the concentration and conditions used here. Both 

treatments also showed evidence of post-exposure reductions in the Cu concentrations in the 

intestines and carcass, but not in the liver, kidney and brain. Again, the pattern was broadly 

similar in both CuSO4 and CuO ENM treatments, with the exception of the kidney. 

Consequently, existing biomagnification factors (BMFs), considerations for uptake and 

excretion, and weight of evidence used in metals risk assessments for dissolved Cu may also 

be protective of the CuO ENMs used here. More studies on different sizes, shapes, and 

compositions of Cu-containing ENMs would be needed to build a consensus on whether the 

existing dissolved Cu risk assessment could be applied to all nano forms of Cu. With respect 

to toxicity, there were no effects on growth, survival, histology or plasma ions. There was some 

evidence of partial total GSH depletion in the liver and MT induction in the gut, but this was 

in the context of maintaining normal growth and health of the animals. Taken together, the 

dose used here might therefore be applied in context of estimating oral probable no effect 

concentration (PNECoral) in a Registration, Evaluation, Authorisation and Restriction of 

Chemicals (REACH) risk assessment for both the dissolved and the nano form.
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Finally, a tiered approach to bioaccumulation testing has been proposed,2 with an ‘in 

vitro’ tier applying the gut sac technique19 in combination with the in chemico digestibility 

assay used here. The digestibility assay showed that both forms were bioaccessible at stomach 

pH, less so for the CuO EMNs at the neutral pH of the intestine (i.e., CuSO4 ≥ CuO ENMs). 

The gut sac study on the same material used here19 showed marginally less total Cu 

accumulation in the muscularis from the nano form (i.e., CuSO4 > CuO ENMs). Both those 

data would predict that the dietary hazard of the nano form is not greater than the metal salt. 

This is indeed the case, with total Cu bioaccumulation in vivo being largely the same in the 

present study (i.e., CuSO4 = CuO ENMs). This tiered approach has also been applied to Ag 

ENMs, where the metal salt is also protective of the nano forms (AgNO3 = Ag ENMs > Ag2S 

ENMs, 6, 21). Together, with the data here, this adds to the weight of evidence in support of a 

tiered approach to bioaccumulation testing that also seeks to minimise the use of vertebrate 

animals in vivo.2 
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Table 1. Concentrations of total Cu in tissues (µg g-1 dry weight) of rainbow trout following 14 

and 28 days of exposure to 750 µg g-1 diet of CuSO4 or CuO ENMs and following a further 14 

day period of depuration at 42 days of the experiment.

Tissue 14 days (exposure) 28 days (exposure) 42 days (depuration)
Mid Intestine
Control 5.52 ± 0.77Aa 6.03 ± 0.60Aa 6.58 ± 0.99Aa

CuSO4 29.84 ± 2.76Ab 32.12 ± 7.36Ab 8.09 ± 0.97Ba

CuO ENMs 27.09 ± 6.93Ab 28.48 ± 6.06Ab 6.70 ± 0.65Ba

Hind intestine
Control 9.10 ± 1.25Aa 11.00 ± 0.92Aa 16.67 ± 1.99Aa

CuSO4 210.75 ± 28.03Ab 226.77 ± 28.32Ab 12.87 ± 1.17Ba

CuO ENMs 140.42 ± 34.06Ab 200.15 ± 16.18Ab 9.08 ± 0.73Ba

Liver
Control 87.38 ± 10.43Aa 82.01 ± 6.97Aa 102.62 ± 13.48Aa

CuSO4 170.98 ± 11.15Ab 259.30 ± 19.22Bb 236.25 ± 19.37Bb

CuO ENMs 184.65 ± 7.33Ab 281.14 ± 16.73Bb 255.71 ± 21.84Bb

Kidney
Control 5.55 ± 0.42Aa 4.51 ± 0.24Aa 5.35 ± 1.07Aa

CuSO4 10.65 ± 1.39Ab 7.21 ± 1.04Ab 8.23 ± 1.86Ab

CuO ENMs 9.15 ± 0.98Ab 12.01 ± 1.99Ac 7.54 ± 0.71Aab

Gill
Control 4.08 ± 0.40Aa 3.88 ± 0.15Aa 3.77 ± 0.16Aa

CuSO4 7.83 ± 1.16Ab 5.39 ± 0.43Aab 4.61 ± 0.30Aa

CuO ENMs 6.27 ± 0.37Aab 8.36 ± 0.52Ab 3.64 ± 0.08Ba

Brain
Control 4.48 ± 0.23Aa 4.18 ± 0.20Aa 4.94 ± 0.19Aa

CuSO4 5.66 ± 0.34Ab 5.35 ± 0.26Ab 7.14 ± 0.28Bb

CuO ENMs 5.45 ± 0.31Ab 5.98 ± 0.25ABb 6.62 ± 0.33Bb

Carcass
Control 1.31 ± 0.12Aa 0.99 ± 0.04Aa 1.34 ± 0.10Aa

CuSO4 3.38 ± 0.73ABab 3.39 ± 0.27Ab 1.37 ± 0.07Ba

CuO ENMs 3.83 ± 0.19Ab 2.78 ± 0.51Ab 1.53 ± 0.04Aa

Data are means ± SEM (n = 8/9 samples). Different uppercase letters indicate significant 
differences between time-points within treatment; different lowercase letters indicate 
significant differences between treatments within time-point (one-way ANOVA or Kruskal-
Wallis, p < 0.05).
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Table 2. Concentrations of Na+ and K+ (mmol L-1) in blood plasma of rainbow trout exposed 

to CuSO4 and CuO ENMs for 28 days and after a further 14 day period of depuration at 42 

days of the experiment.

Treatment Day 14 Day 28 Day 42
Na+ Control 160.4 ± 1.2 145.7 ± 2.6 157.6 ± 6.1

CuSO4 149.8 ± 2.7 138.7 ± 2.2 142.7 ± 3.3
CuO ENMs 148.5 ± 5.1 139.1 ± 2.8 149.2 ± 2.0

K+ Control 1.93 ± 0.51 1.10 ± 0.17 1.46 ± 0.23
CuSO4 2.74 ± 0.69 1.98 ± 0.35 1.43 ± 0.33
CuO ENMs 1.87 ± 0.32 1.48 ± 0.26 1.38 ± 0.31

Data are means ± SEM of n = 4-9 samples. There were no treatment or time related effects of 
dietary Cu exposure on plasma Na+ or K+ concentrations (Kruskal-Wallis tests, p > 0.05).
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Fig. 1. Mean mass (A) and total cumulative food intake (B) of rainbow trout fed a control diet 

(no added Cu, 9.5 µg Cu g-1) or diets containing nominal concentrations of 750 µg g-1 of Cu as 

CuSO4 or CuO ENMs for 28 days, then followed by a further 14 days on control diets. Data 

are means ± S.E.M., n = 3 experimental tanks. There were no statistically significant 

differences between treatment groups (one-way ANCOVAs, p > 0.05).
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Fig. 2. In chemico digestion of experimental diets. The NaCl leachable (pH 7.8) and dilute acid 

leachable (pH 2.0) fractions of 1 g of control diets (no added Cu, 9.5 µg Cu g-1) or diets 

containing nominal concentrations of 750 µg g-1 of Cu as CuSO4 or CuO ENMs. Data are 

means ± S.E.M., n = 3 replicates. Different upper case letters indicate significant differences 

between diets; different lowercase letters indicate significant differences between pH 7.8 and 

pH 2.0 (two-way ANOVA, p < 0.05). 
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Fig. 3. Concentrations of A) total glutathione (nmol mg-1 protein), and B) metallothionein (ng 

mg-1 protein) in tissues of trout fed control or diets containing nominal concentrations of 750 

µg g-1 of Cu as CuSO4 or CuO ENMs for 28 days. Data are means ± S.E.M., n = 9 replicates. 

Different lowercase letters indicate significant differences between treatments (one-way 

ANOVAs, p < 0.05).
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Fig. 4. Morphology of mid intestine (A-C), gill (D-F) and liver (G-I) of trout fed control (A, 

D, G) or diets containing nominal concentrations of 750 µg g-1 of Cu as CuSO4 (B, E, H) or 

CuO ENMs (C, F, I) for 28 days. The mid intestines and livers were stained with haematoxylin 

and eosin; gills were stained with Mallory’s trichrome. The scale bar is 100 µm. All the organs 

showed normal histology.
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