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Abstract

Emotional body language synthesis for humanoid robots
Asimina Marmpena

In the next decade, societies will witness a rise in service robots deployed in social
environments, such as schools, homes, or shops, where they will operate as assistants, public
relation agents, or companions. People are expected to willingly engage and collaborate
with these robots to accomplish positive outcomes. To facilitate collaboration, robots need to
comply with the behavioural and social norms used by humans in their daily interactions.
One such behavioural norm is the expression of emotion through body language.

Previous work on emotional body language synthesis for humanoid robots has been
mainly focused on hand-coded design methods, often employing features extracted from
human body language. However, the hand-coded design is cumbersome and results in a
limited number of expressions with low variability. This limitation can be at the expense
of user engagement since the robotic behaviours will appear repetitive and predictable,
especially in long-term interaction. Furthermore, design approaches strictly based on human
emotional body language might not transfer effectively on robots because of their simpler
morphology. Finally, most previous work is using six or fewer basic emotion categories in
the design and the evaluation phase of emotional expressions. This approach might result in
lossy compression of the granularity in emotion expression.

The current thesis presents a methodology for developing a complete framework of
emotional body language generation for a humanoid robot, intending to address these three
limitations. Our starting point is a small set of animations designed by professional animators
with the robot morphology in mind. We conducted an initial user study to acquire reliable
dimensional labels of valence and arousal for each animation. In the next step, we used
the motion sequences from these animations to train a Variational Autoencoder, a deep
learning model, to generate numerous new animations in an unsupervised setting. Finally, we
extended the model to condition the generative process with valence and arousal attributes,
and we conducted a user study to evaluate the interpretability of the animations in terms of
valence, arousal, and dominance. The results indicate moderate to strong interpretability.
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Chapter 1

Introduction

1.1 Social robotics

According to the International Federation of Robotics (IRF) report published in 20181, from
2019 through 2021 service robots market is anticipated to grow significantly. In particular,
1.67 million robots are expected to be sold for education and research, 10.7 million for
entertainment, and 34,400 for elderly and handicap assistance. Regarding the last category,
the report maintains that although the market share is currently small, a substantial increase
can occur within the next 20 years, by an average of 29% per year to a value of around
US$126 million in 2022. According to the same report, another rapidly growing category
of service robots is public relation robots and robot assistants, used in hotels, museums,
restaurants, shops, etc., to assist, guide, provide information, monitor guests, visitors, or
clients. The sales of public relation robots could reach 93,350 units from 2019 to 2021.

Evidently, more and more service robots will get deployed in social environments like
homes, schools, healthcare and commercial facilities. Consequently, their ability to interact
with humans in a social way is becoming increasingly crucial [34]. Social robots must com-
municate with humans in an interpersonal manner, engage humans as partners, collaborate
or coordinate with them to accomplish positive outcomes [35] in education, therapy and
healthcare, retail trade, accommodation and food services, and so forth.

The preceding facts constitute compelling reasons and key drivers for the emergence and
progress of a relatively new field of research, social robotics. According to Bartneck et al.
[17]:

1https://ifr.org/post/market-for-professional-and-domestic-service-robots-booms-in-2018
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“A social robot is an autonomous or semi-autonomous robot that interacts and
communicates with humans by following the behavioural norms expected by the
people with whom the robot is intended to interact.”

This definition excludes non-embodied agents such as screen characters and avatars. It
requires some degree of autonomy, in the sense that if a human completely teleoperates a
robot, then it is merely seen as an extension of a human and not as a social agent. Furthermore,
it sets human-robot interaction (HRI) and communication as a precondition, excluding robots
that only interact with other robots. Most importantly, for a robot to qualify as social, it must
be equipped with the ability to perceive, understand and mimic aspects of human behaviour,
as well as societal and cultural norms and values.

Fong et al. [73] identify the following characteristics for socially interactive robots:

• express and/or perceive emotions;

• communicate with high-level dialogue;

• learn/recognize models of other agents;

• establish/maintain social relationships;

• use natural cues (gaze, gestures, etc.);

• exhibit distinctive personality and character;

• may learn/develop social competencies.

It appears from this list of characteristics that the ability to sense emotional states and
mimic emotional expressions is an essential feature for a socially interactive robot.

1.2 Affective robotics and computing

Affective robotics is an emerging subfield of social robotics. It mainly investigates how to
enhance social robots with artificial emotional intelligence and how humans perceive such
robots. It also examines ethical issues that emerge when such abilities become more and
more sophisticated. Affective robotics largely overlaps with affective computing, a branch of
computer science pioneered by Rosalind Picard [184] which extends the study of artificial
emotional intelligence to non-embodied agents and machines. Affective computing is a
scientific and engineering endeavour focusing on affect detection and generation. The field
seeks to equip machines with the ability to recognise emotions from human affect signals
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(e.g., facial expressions, body gestures, speech or neurophysiological signals) and adapt their
behaviours appropriately according to such signals. In a few words, affective computing
aims to build machines with artificial emotional intelligence that can simulate empathy.

According to Fong et al. [73], artificial emotions in social robotics are essential for
several reasons. Firstly, they can render the robot as a believable character. In the context of
social robotics, believability is related to the literary term “suspension of disbelief”, i.e., to
intentionally and rationally suspend judgement concerning the implausibility of an artefact.
Believability is indispensable for engaging users in long-term interaction with artificial agents
[18], and appropriate displays of robotic affect can drastically augment it [137]. Another
use of artificial emotion expression is to indicate a robot’s internal state, goals or intentions.
For instance, MacLennan et al. [147] suggested that a robot could trigger the expression
of fear as a feature of a self-protection mechanism. In a similar vein, Lim and Okuno
proposed two gut feeling states, flourishing and distress, tied to a robot’s physical state:
flourishing corresponding to full battery and CPU/motor temperatures within working limits,
and distress corresponding to a near-empty battery or hot motors [142]. A third use proposed
by Fong et al. [73] employs emotions as a control mechanism, i.e., to determine precedence
among different behaviours, planning, learning and adaptation in complex environments.
Consequently, although emotion expression for a robot might appear as a redundant signal
compared to a more fundamental response, it might be a crucial feature in particular use-
cases. In naturalistic social HRI, robotic expression of emotion can render the robot as more
believable and likeable and the interaction as more enjoyable [172, 136, 197] and engaging.

Emotion expression can also enhance human-computer interaction (HCI) with other
artificial agents such as Embodied Conversational Agents (ECAs). ECAs [47] are animated
screen characters, usually of human-like embodiment, designed to interact with human
users through dialogue and nonverbal behaviours. Such agents’ nonverbal behaviours can
exploit various modalities, such as facial expression, eye gaze, speech intonation, and body
language. Essentially, ECAs are computer interfaces that can improve user satisfaction and
engagement since they enable a more naturalistic face-to-face interaction with a computer
system [76]. ECAs can be deployed in several application scenarios, such as computer games,
education, computer-assisted therapy and customer service. Social presence is by definition
a core objective in designing compelling ECAs, and in accomplishing it, nonverbal affective
communication is equally essential to verbal skills [47, 177, 77].

Arbib and Fellous [4] distinguish two aspects of emotion: the internal aspect, in which
emotion facilitates the organization of behaviour (action selection, attention, and learning),
and the external aspect, in which emotion acts as a means of communication and social
integration. They note that in animals, these aspects are developed through a co-evolving
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process. Although such a process is of great interest to affective robotics, another approach is
working independently on either the internal or the external aspect of emotion, and potentially
integrate the outcomes in a higher level of abstraction.

1.3 Emotional body language

The human cognition has evolved to frequently scan other humans to detect nonverbal signals
that will update our expectations regarding other people’s emotions, feelings, and moods.
Such a process can be conscious, under the focus of attention, or operating in the background,
perceived subconsciously. Combined with the tendency to attribute anthropomorphic traits
to non-human agents [95, 57, 127], this innate human behaviour can explain why robots
endowed with the ability to display nonverbal affective signals can be more appealing.
Emotional expression can increase a robot’s believability and improve engagement and
collaboration in human-robot interaction [100].

Nonverbal affective signals in humans include facial expression, body gestures, deictic
gestures, eye gaze direction, non-linguistic sounds, speech features, etc. Facial expression
is by far the most widely studied nonverbal signal of affect in psychology literature, with
affective bodily expression lagging far behind [116]. Nevertheless, bodily affect constitutes a
powerful communication channel of great importance for conveying and perceiving emotion
among humans [123, 229].

According to Fast [71], body movement and posture comprise the most primitive be-
havioural channel for humans to express emotion, and compared to facial expression, it can
reveal more about the actual affective state [5, 42, 71, 111]. In terms of trustworthiness, a
bodily expression can reflect a person’s affect state more reliably, even when it is contradicted
by facial expression and verbal communication [5]. Gestures and body postures evoke more
trust [56], and they are less susceptible to social editing compared to facial expression, since
people are more aware, and thus more in control, of their facial expression [67]. Furthermore,
studies have shown that changes in a communicator’s body orientation, posture configuration,
proxemics, etc. can influence the overall likeability, interest, and openness between indi-
viduals [5, 42, 163, 111]. Bodily expression of emotion has also been found more effective
than facial expression in discriminating between intense positive and negative emotions [6].
Finally, conveying emotion through the body has an additional practical advantage because
the communicator’s affect state is more easily visible from a distance [61, 221].

Consequently, it is anticipated that the integration of appropriate emotional body language
(EBL) as a robotic behaviour during human-robot interaction can enhance the user experience
and make it more engaging. Evidence from studies in HRI indicates that bodily expressions of
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affect can draw human’s attention [197] and they are essential in naturalistic social interaction
for robots that lack expressive faces (appearance-constrained) [26]. Furthermore, emotion or
personality expressiveness can make the interaction more enjoyable [136, 172]. Robots with
the ability to mimic emotional expressions with their body language could be deployed in
various human-robot interaction settings and applications, be it human-robot collaboation
tasks, robot-assisted therapy with kids or elderly, education, entertainment, public relation,
etc.

1.4 The affective loop framework

The affective loop [106] framework is a contextual abstraction initially proposed for the
design of affective interaction systems and later adapted for emotion modelling in affective
robotics by Paiva et al. [180]. In the initial framework, the affective loop is described as
an experience between a user and a system which can influence and be influenced by the
user. This process involves certain experiential qualities that arise through interaction, and
it can be accomplished by building the system with the ability to mirror physical, cultural
or social features of human embodied experiences while, at the same time, leaving enough
room for users to interpret the system’s response through their own lens of emotion, as active
co-constructors of meaning [106].

In Fig. 1.1, we present the affective loop flow as proposed for robotic emotion model-
ing by Paiva et al. [180]. The robot detects human affect, possibly via facial expression,
speech features, sentiment analysis, and other affect recognition channels. Subsequently,
this information is used for generating the robot’s emotional behaviour, which influences
the user, elicits an updated state of human affect, and then a new cycle begins. Robot’s
emotional behaviour generation comprises three modules: emotion synthesis, emotion adap-
tation, and emotion expression. In our interpretation, these three successive modules can
be implemented as independent modules, which only exchange information through some
common data representation, or could overlap to some degree. For the emotion synthesis
module, several emotional architectures have been proposed, some inspired by psychological
or neurobiological models of emotion, and some completely data-driven ones (for references
see [180, 192, 143, 142, 207, 167]). The emotion adaptation module is described as a mech-
anism for empathy. It takes into account user personalisation to adjust the output of the
emotion synthesis module. Finally, the adapted or personalised synthetic emotion is passed
to the emotion expression module to display the appropriate robotic behaviour.

Paiva et al. [180] distinguish three important purposes or roles that must be served in
affective human-robot interaction:
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Fig. 1.1 The affective loop experience in human-robot interaction. Image recreated from the
original in Paiva et al. [180].

1. Give the illusion of life, i.e., the robot’s affective response should be believable to
increase its social presence.

2. Augment engagement in a social interaction context.

3. Augment social presence in the long-term, by way of adaptive and personalised
behaviours.

1.5 Scope, objectives and structure

This section will attempt to pinpoint our contribution concerning the general context presented
above. Our work is primarily inspired by the affective loop schema for affective human-robot
interaction. The assumptions we apply in our approach is that the user affect detection, and
the three modules of emotion behaviour generation (emotion synthesis, emotion adaptation,
and emotion expression) can be implemented independently and communicate through a
common numerical representation of emotion as their input and output.

We decided to assume the independent development of each module because each
functionality (i.e., detection, synthesis, adaptation and expression) is highly complicated
on its own, intertwined with many different theories, possible models, and architectures,
and thus, to develop the whole framework at once would require to consider too many
parameters simultaneously. Such an approach would demand an enormous effort, and what is
more, evaluating such a convoluted system could be very challenging because each module’s
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contribution might not be straightforward to assess. Based on these reasons, we decided to
follow a modular approach.

Furthermore, we presume the availability of the emotion detection system, as well as
the emotion synthesis and adaptation architectures, and we focus on the development of an
emotion expression module. We assume the use of an emotion detection system that analyses
several channels of human affect and outputs the classification result in the preferred emotion
representation. This result is passed to the emotion synthesis and adaptation architecture,
which subsequently outputs the synthesised emotion class of the robot, in the preferential
emotion representation, adapted to the situation and the user’s personality. Our goal is to
build a framework that uses this output to generate the robot’s emotional behaviour. Ideally,
each module outputs a numerical representation of emotion and passes it to the next module,
which modifies it according to its functionality. At the final step, this quantity is passed as
input to the emotion expression module, which utilises it to generate the robot’s behaviour.
Regarding the emotion detection module, we assume the adoption of a commercial service,
such as Affectiva2. For emotion synthesis and adaptation, a solution that could be adapted is
the SIRE model [142]. For an overview of multimodal methods for emotion detection and
emotion synthesis, the interested reader can access [150] and [180] respectively.

Furthermore, we constrain the scope of our proposed emotion expression module to
nonverbal affect, or as we call it more often hereafter emotional body language (EBL), which
constitutes our principal research interest. As we discussed in Section 1.3, there are several
important modalities for EBL expression, but depending on the robotic platform, not all of
them might be available. The robot we worked with for this project is Pepper, a humanoid
robot created by SoftBank Robotics3. Pepper has a static facial expression; thus, we exclude
this channel from our framework. The selected EBL modalities for Pepper in the scope of this
project included body posture, motion, eye LEDs, and non-linguistic sounds. We excluded
locomotion, ear and shoulder LEDs, and tablet display to reduce complexity, although these
modalities are also available for Pepper. In particular, for non-linguistic sounds, although
we included this channel in our preliminary analysis, we did not incorporate it in the EBL
generation phase, because it would involve audio synthesis and generation techniques, which
fall outside of the scope of this project since they are highly complicated tasks that would
need to be tackled separately.

The work we present here focuses on the external aspect of emotion, i.e., emotion as
a means of communication and social integration as discussed in Section 1.2, aiming into
primarily enhancing the believability of a robot as a social agent in human-robot interaction.

2The Affectiva webpage: https://www.affectiva.com/
3The Pepper robot webpage: https://www.softbankrobotics.com/emea/en/pepper
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The proposed framework can also be used for indicating internal states of the robot if these
states are mapped to instances of the dimensional representation of affect. For example,
battery levels could be scaled and passed to the EBL module as affect parameters, thus the
outgoing expression would reflect the internal state of the battery, similarly to the work
suggested by Lim et al. [142].

In Chapter 2, we discuss the predominant emotion representations and theories, along
with their limitations. Subsequently, we present our choice, which is the dimensional model
of core affect. The model is defined by two dimensions, valence (ranging from pleasure to
displeasure) and arousal (ranging from activation to deactivation), and the values they take
are numerical and continuous. We outline the reasons for our decision.

In Chapter 3, we review different approaches for robotic EBL synthesis. We focus
primarily on humanoid robots, but we also discuss methods and evidence from studies
on non-humanoids or embodied conversational agents. Literature review in this field is
somewhat challenging to organise and present due to variations concerning the emotion
representation models, the robot modalities and characteristics, the source of EBL used as a
prototype, etc. Until recently, there were three main approaches for robotic EBL generation:
1) Direct human imitation with computer vision techniques using human EBL tracking,
2) Feature-based design, with human EBL observation, analysis and annotation to extract
features and transfer them to the robot, and 3) Creative design, that is, conceiving and
configuring key postures, and subsequently interpolate them as in graphical animation (pose-
to-pose animation). We give examples from previous studies for all these approaches, and
we discuss the challenges and the limitations in each case. Then, we present a more recent
approach for robotic EBL synthesis driven by the progress and the enormous influence we
witness in the field of artificial neural networks and deep learning. Our proposed framework
follows this approach.

In Chapter 4, we present our initial experiment, which was designed to evaluate a set
of robotic EBL animations created for Pepper by professional animators with the creative
pose-to-pose method. We used this set of high-quality animations (context-free, nonverbal,
dynamic expressions of emotion) because we assumed they could be of high believability and
could serve as training examples for our generative algorithms. We conducted a user study
(N = 20), in which participants evaluated the animations in terms of valence and arousal, the
two dimensions of our selected emotion representation. We applied a reliability analysis on
the collected ratings to aggregate the individual ratings into a single affect label of valence
and arousal for each animation. Furthermore, we analysed the results to derive insights on
human perception of robotic emotion expression.
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Chapter 5 presents the deep generative model adopted for our proposed framework: the
Variational Autoencoder (VAE). It is a probabilistic network that learns to reconstruct its
input, and in doing so, it also learns a latent low-dimensional distribution that can be sampled
after training to generate new data similar to the training examples. We begin with a brief
discussion about deep generative modelling, and we continue with the standard autoenconder
network, which, although not a generative model, bears similarities with the VAE architecture.
The VAE framework is then described in detail as a directed probabilistic graphical model,
and subsequently, from a deep learning point of view. Finally, we outline several challenges
related to VAE training.

Chapter 6 presents our second experiment, the first application of the VAE framework for
the generation of robotic EBL. As we noted before, early research in robotic EBL synthesis
was mainly focused on hand-coded methods, e.g., pose-to-pose animation. This approach
can result in high-quality animations, but since it is cumbersome and costly to design them,
the animations are limited in number and granularity. This can be a drawback when we
want long-term engagement on the user’s side because the robot expressions will eventually
appear repetitive and predictable. Drawing inspiration from deep learning methods, we
propose to use a Variational Autoencoder network which is trained with a small set of EBL
animations, created with the pose-to-pose method for Pepper (the ones we labelled in our
first experiment presented in Chapter 4). In the sampling phase, we can generate numerous
new animations, with many fine-grained variations. The generated animations are infused
with salient features captured from the high-quality training examples, but they also contain
emerging features. Furthermore, we explore the latent space of the model with a geometric
approach, and we propose a feature that can potentially model the arousal dimension of
emotion. The limitations and proposed next steps are outlined in the conclusions.

In Chapter 7, we tie everything together. We extend our EBL generation framework using
a Conditional Variational Autoencoder (CVAE) for the generation of animations of targeted
valence and arousal. This is accomplished by the generative process’s explicit conditioning
with the valence labels collected in the first experiment (Chapter 4), and implicit conditioning
of the sampling with the radius feature proposed in our second experiment (Chapter 6).

In Chapter 8, we present the implementation of a new user study (N = 20) to evaluate
the interpretability of the generated animations with respect to the valence and arousal
conditioning.

Finally, in Chapter 9, we discuss the conclusions and limitations of this thesis’s entire
work. We also refer to some studies or applications that used parts of our work, and we
briefly discuss some ethical considerations that could potentially arise from the deployment
of robots using emotional body language.
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In summary, based on studies that indicate the importance of affective body language
in human communication [123, 229, 163], and evidence suggesting that its integration in
robot behaviour can draw human attention [197], enhance user experience [172] and improve
collaboration in HRI [137], our goal is to provide a pipeline for the automatic generation of
robotic EBL expressions. Robots with the ability to mimic emotional expressions could be
employed in various human-robot interaction settings and applications, be it human-robot
collaboration tasks, robot-assisted therapy with kids or elderly, education, entertainment,
public relation, etc. Previous approaches for EBL synthesis were primarily focused on
hand-coded methods, which only produce a small number of animations, and thus limit
the expressivity and believability of the robot in the long-term. Furthermore, many of
the previous approaches use human EBL as a prototype and thus produce animations of a
human-centric style of EBL, which may not be exaggerated enough to render the robot as a
believable character (the illusion of life principle). Given that, we aimed to propose a data-
driven, end-to-end alternative to hand-coded methods, a deep generative model that learns
essential features from a small animation set originally designed with the robot morphology
and the illusion of life principles in mind. Our work does not seek to be dismissive of
hand-coded methods, on the contrary, we use their results as successful examples to train
our network so that it learns from their features and create numerous new animations that
will appear realistic and lifelike. Finally, although our work has been focused on humanoid
robots, the methodology we propose could also be applied to other artificial agents such as
non-humanoids or ECAs as long as there is an available set of animations in the form of joint
angles per frame.

1.6 Contribution

The contributions of this thesis are the following:

1. We have compiled and labelled a set of 36 robotic EBL animations. These animations
were originally hand-designed by expert animators for a Pepper robot. The labels,
valence and arousal, are continuous interval values in [0,1]. They are based on the
dimensional representation of core affect, and they were aggregated from the ratings
collected from the evaluations of 20 participants, after ensuring intra- and inter-rater
reliability was high (Chapter 4).

2. In an exploratory analysis we examined how confidence in assessing valence in robotic
EBL might be different than arousal (Chapter 4).
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3. We designed and implemented an unsupervised pipeline using the VAE framework
to generate new robotic EBL animations. The VAE was trained with the 36 robotic
EBL animations, without the labels, and learned a latent representation which can be
sampled, interpolated and decoded into new robotic EBL animations (Chapter 6).

4. In an exploratory study, we examined the latent space of the VAE, and we proposed a
methodology to sample it systematically. We used this methodology to detect possible
geometric features that could modulate the valence or arousal weight of the generated
animations, and we derived the hypothesis that the radius of the latent space might be
a candidate to modulate arousal (Chapter 6).

5. We extended the VAE-based pipeline so that it can generate robotic EBL of targeted
valence and arousal content. The conditioning was accomplished by using the radius
of the latent space to modulate arousal, while for valence we modified the network into
a Conditional Variational Autoencoder (CVAE) which is trained and sampled with the
valence labels (Chapter 7).

6. We conducted a user study with 20 participants to evaluate the interpretability of the
valence and arousal conditioning of the CVAE-generated robotic EBL animations. Fur-
thermore, we examined if participants perceived the generated and the hand-designed
animations differently in terms of anthropomorphism and animacy (Chapter 8).

7. We released a set of robotic EBL animations that contains the 36 hand-designed
animations we used for training the VAE and CVAE. We have recorded the data
directly from a physical Pepper robot executing the animations. The set contains values
for the 17 joints and 16 eye LEDs of a Pepper robot, as well as the valence and arousal
labels4.

The author of this thesis is exclusively responsible for writing this manuscript, the publications
mentioned in the Author’s Declaration and the code for implementing the algorithms, running
the experiments, analysing the data (whenever other packages have been used, they are
explicitly mentioned in the Software sections of each chapter). The second user study
described in Chapter 8, was conducted by Fernando Garcia, but the experimental design, the
implementation of the interface, and the data analysis have been exclusively produced by the
author of this thesis. The use of plural first-person pronouns in this manuscript reflects the
appreciation to several people who offered their ideas, advice and feedback (please refer to
the Acknowledgements section).

4REBL-Pepper Dataset: https://github.com/minamar/rebl-pepper-data
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Chapter 2

Emotion representation

2.1 Introduction

This chapter will present the emotion representation approach we adopted for our experi-
ments and technical implementations. More specifically, this choice applies to the labelling,
annotation and interpretation of robotic EBL animation concerning our user studies. It is also
a fundamental component in implementing the deep learning framework for the automatic
generation of robotic EBL, which we will present in Chapters 6 and 7.

Several emotion representations have emerged from prominent psychology theories and
models of emotion, but after many years of research, there is no consensus on which approach
is the most appropriate to explain and model emotions. This problem arises mainly from the
fact that we cannot measure emotions directly and objectively. We can only use introspection
or outward expression evaluation to analyse them, which are both highly subjective methods,
and thus emotion is ill-defined [135].

The rest of this chapter is divided into two sections. In the first section, we discuss the
categorical and the dimensional representation of emotion, their respective psychological
emotion theories and limitations. At the end of this section, we also discuss the appraisal
models of emotion briefly. In the second section, we explain our decision to adopt the
dimensional approach.

2.2 Emotion representation paradigms

There are three representations of emotion classification and modelling prevailing in affective
computing and social robotics. The categorical representation, which is based on the discrete
basic emotions theories and the locationist approach, the dimensional representation, backed
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up by the dimensional models of emotion and the psychological constructionist approach,
and the appraisal theory of emotion, in which emotions arise from individual evaluations
applied on events under the light of a person’s personal beliefs, desires and intentions.

2.2.1 Categorical representation of emotion

According to the categorical representation, to classify different affect states, we can use a
few categories corresponding to basic emotions. The categorical approach is based on the
theory of discrete basic emotions which posits that there is a core set of distinct emotion
categories, the basic emotions, each corresponding to distinct brain locations or patterns of
brain activity (hence it is also called locationist approach), each manifesting with a specific
feeling and physiological pattern [187]. These primary emotion modules are considered as
biologically basic in the sense that they cannot be segregated further in simpler building
blocks. Still, they can be combined to give rise to higher complexity emotions, and perhaps
even exhibit mechanisms of emergent properties [181]. Proponents of the theory of the basic
emotions uphold the universality of this multimodular emotion system which they postulate is
shared within the human species, and even with some other primates [66, 181]. Furthermore,
they maintain that basic emotions are principally prewired responses to different stimuli, an
“affect program” written by the evolutionary process through natural selection, which can be
somewhat influenced epigenetically by learning.

In his pioneering work, Paul Ekman, one of the most prominent advocates of the theory
of basic emotions, sought to demonstrate the existence of a facial affect program that is
innate and cross-cultural, and when activated by some elicited primary emotion, it triggers
specific and universally common facial muscular movements [65]. This triggering of facial
expressions is largely involuntary, although it can be controlled at some extend by learned
habits (display rules), resulting in some visual changes on the distinct pattern of the facial
expression. In an attempt to further systematising this theory, Ekman and Friesen published
in 1978 their Facial Action Coding System (FACS), a method that can be used to describe
and measure facial movement based on an anatomical analysis of facial action [68]. In
a similar vein, coding schemes have been proposed to describe the bodily expression of
emotion [56, 102, 103].

Besides being very influential, the theories of discrete basic emotions have also been
criticised on various grounds. As we explained before, a locationist account of the brain basis
of emotion postulates that every primary or basic emotion is localised to a specific brain locale
or anatomic network. Lisa Feldman Barrett challenges this notion by scrutinising findings
from two meta-analyses of emotion neuroimaging studies which fail to provide reliable and
robust evidence of unambiguous localisation of basic emotions in the human brain, while in
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some cases, the same brain areas are found to be activated by different basic emotion stimuli
[10, 13]. Lindquist et al. [144] in their meta-analytic review of the human neuroimaging
literature on emotion, conclude similarly that the evidence for the consistent and specific
localisation of basic emotions in brain regions are not sufficient enough not to be considered
incidental. They find more likely the presence of a highly complex interplay between
brain regions and anatomical networks, detectable in both emotional and non-emotional
experiences (e.g., language, executive control, action simulation), and thus non-specific to
emotion.

Barrett in [10] also challenges the hypothesis according to which each basic emotion
manifests with a specific physiological, behavioural or facial response, and these responses
are correlated. She maintains that the evidence reveals a lack of response coherence within
each emotion category, and dismisses the assumption that one modality can be used as a
proxy for all the others.

Furthermore, Barrett rejects the notion of emotion-specific bodily response whether this
is voice, facial expression, or body posture because those channels do not necessarily display
information about the person’s emotional state, e.g., people can feel happy without smiling.
Most importantly, the emotion-specific bodily response assumption is also objected on the
grounds of universality, a principal claim in Ekman’s theory, lack of which would point
to lack of emotion-specific and consistent physiological or facial response. Gendron et al.
[81] support this objection with a study comparing emotion perception of facial expression
between participants from the US and the Himba ethnic group, a sample from a remote
cultural context with limited exposure to Western culture. The findings support the view that
people from different cultures have different notions of emotional expressions, even when
linguistically relative emotion terms exist in their languages.

Finally, Barrett’s criticism also points towards methodological problems. For example,
in Ekman’s emotion recognition tasks, the perceivers of emotional facial expressions are
forced to select a label from a small list of basic emotions, something that is thought to inflate
agreement.

Currently, the categorical paradigm has been the most widely adopted in the field of
affective computing [90]. Several different lists of basic emotions have been proposed,
but arguably the most frequently used one in emotion recognition tasks is Ekman’s list of
six basic emotions: anger, disgust, fear, happiness, sadness and surprise. However, there
is growing concern about the limitations of categorical models on account of the loss of
information associated with the effort to classify rich emotional states of high complexity
with a handful of emotion categories [90]. These labels can be potentially very restrictive for
automatic emotion perception or modelling in artificial agents or even induce stereotypical
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and biased judgements, perhaps with implications if we consider sensitive applications related
to security, mental health etc.

2.2.2 Dimensional representation of emotion

The dimensional models define the affect states according to one or more dimensions, with
pleasure and intensity being the most common choices. The psychological constructionist
account of emotion influences dimensional models according to which, emotions are psycho-
logical events, and they emerge from basic psychological operations which are not specific
to emotion [144]. Emotions do not have a particular fingerprint, e.g., smile when happy, but
they are constructed on the spot by general-purpose brain networks and functions responsible
for multiple cognitive processes.

According to the theory of constructed emotion [12]:

In every waking moment, your brain uses past experience, organised as concepts,
to guide your actions and give your sensations meaning. When the concepts
involved are emotion concepts, your brain constructs instances of emotion.

Constructionists argue that emotions are created by the mind out of our sensory input,
bodily sensations, situational information, and prior experience [144]. They are not just
involuntary reactions to the world, because humans are not just passive receivers of sensory
information from the world [12]. To the contrary, we actively construct our emotions in
the same way we create meaning out of sensory input and prior experience. In particular,
the sensory input and bodily sensations and their neurophysiological correlates, define the
core affect [196, 195], i.e., the most elementary affective feelings of hedonic pleasure or
displeasure with some degree of activation or deactivation.

Core affect can be perceived consciously, is always present, but it does not need to be
directed at or attributed to something. It can be experienced as a free-floating mood, simply
feeling good or bad, aroused or relaxed. But when it becomes directed (attributed to some
cause) [195], or when it is categorized as a situated conceptualization given a physical
context or a context-specific memory [11], then it becomes part of a prototypical emotional
episode. The prototypical emotional episode is the full-blown emotion, which encapsulates
core-affect but also involves more complicated cognitive functions related to directionality
(attribution) or situated conceptualisation (making meaning based on context).

The circumplex model of emotion [196, 195] represents core affect on a two-dimensional
space defined by the valence dimension ranging on a continuum from pleasure to displeasure
on the horizontal axis, and the dimension of arousal ranging from activation to deactivation
on the vertical axis. Russel and Barrett [196] suggest that these two affective dimensions
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may be sufficient to capture the core affect, which becomes a full-blown emotion when it
is assessed within a situational framework. This representation allows us to depict each
emotion (its core affect component to be precise) as a data point on this 2D space, which is
visually intuitive and readily informative, and makes clear how different emotions are not
independent, but instead, they are variations of the same two variables. Furthermore, this
representation does not suffer from possible linguistic biases because valence and arousal
are related to more basic psychological processes and not beliefs about emotion words or
categories, which increases the validity of self-reports [11].

From a neurophysiological perspective, valence and arousal have been found in fMRI
studies to correlate with activation of different brain circuits during emotional responses,
which supports the validity of a two-dimensional view of the organisation of emotions [2].
However, as we have discussed so far, by definition, core affect can only be considered as
less or equal to the full-blown emotion. Hence, a well-known criticism of the circumplex
model of emotion is that the two affective dimensions of valence and arousal are insufficient
for the differentiation between emotions that share common core affect, e.g., fear and anger
both have negative valence and high arousal.

Several attempts have opted to solve this drawback by suggesting additional dimensions
to improve the disentanglement of emotions with similar core affect. One of the most widely
used third dimensions is dominance, which is also called potency, agency or control, and
is described as the feeling of being in control, being able to influence one’s environment.
Mehrabian and Russell [164] initially proposed dominance in the PAD model, which uses
three dimensions to represent emotions: Pleasure, Arousal and Dominance. It has been
endorsed by multiple researchers as a third additional dimension to solve the problem of
disentangling emotions with similar core affect, and evidence from neuroimaging studies
seem to give some support although not conclusive [109].

Other dimensions have also been proposed. Davidson and Irwin [60] suggested approach-
avoidance (or approach-withdrawal) as fundamental motivational states that give rise to
emotional reactions and an organism tendency to approach or avoid a stimulus. However,
some researchers consider that valence might be correlated with this dimension since positive
valence is associated with approach motivation and negative valence with withdrawal [93].
Fontaine et al. [74] claim that to sufficiently represent similarities and differences in the
meaning of emotion words, four dimensions are required, and they suggest the following ones
in order of importance: evaluation-pleasantness, potency-control, activation-arousal, and
unpredictability. Appraisals of novelty and unpredictability characterise the last dimension.

These arguments highlight several researchers’ agreement on the need for additional
dimensions to describe full-blown emotions, but clearly, there is no consensus on which ones
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to employ. In any case, the optimal number of extra dimensions depends on the research
questions and goals.

2.2.3 Appraisal models of emotion

In the core of the appraisal theory of emotions lies the person-environment relationship [133].
Emotions are the results of subjective evaluations (appraisals) of external stimuli (events)
filtered by the internal state (goals and beliefs) of the subject experiencing them [179, 200].
Events elicit emotion episodes bounded in time, i.e., they have a clear onset and a less distinct
offset. Appraisals are applied continuously, in recurrent and hierarchical cycles, resulting
in appropriate action tendencies that serve adaptive functions. They are cognitive but not
necessarily conscious.

According to appraisal theorists, particular emotions are linked to specific appraisals, but
the same event can trigger multiple appraisals. Thus, an event is considered as less definitive
compared to the appraisals triggered by it. The full-blown emotion has several components:
elicitation processes, physiological signature, motivation, motor responses, and subjective
feeling [199].

Computational appraisal models focus on the appraisal as the primary process, and they
encode elaborate mechanisms to derive the appraisal variables. Appraisal variables are
associated with individual judgements used by the artificial agent to generate an emotional
response. On the other hand, the emotion itself is modelled in a far simpler way, often just
with a label or intensity, which is derived from the appraisal variables with if-then-rules [87].

Appraisal theories have been very influential and broadly used in affective computing,
mainly in models investigating the impact of emotion in cognitive and behavioural processes.
One of the criticisms on the appraisal theories questions the assumption that cognitive
processes always precede the affective reactions. Arguably, these two processes could also
occur in reverse order, and what is more, emotions could also be triggered by hormones, i.e.,
factors that have nothing to do with judgements and cognition [195].

2.3 Emotion representation in our work

The appraisal theories propose a cognitive framework to model emotion. In this model,
signals received by the environment and contextual information are processed by an agent’s
system of beliefs, intentions and desires, to produce an emotion, the emergence of which
triggers a behavioural or cognitive response, often related to decision-making. Our objective
is to use emotion representation as a given descriptor of the outward, context-free robotic
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expression of affect, merely as a label to be used for the automatic generation of robotic EBL.
Therefore, the agent in our work is not equipped with a context processing component or
with mental attitudes (i.e., beliefs, intentions or desires) which would enable the formation
of appraisals to trigger an emotion label, because the latter is a given in the framework we
propose. Our robotic EBL generation framework could perhaps be used as a component of
an appraisal model. Still, using an overly cognitive architecture to represent emotion as a
descriptor label in our framework would add considerable complexity which would outweigh
the advantages.

As far as the two other representations, the categorical and the dimensional model,
significant efforts have been made to compare their benefits and limitations, [101, 55, 36, 171].
Nonetheless, the question of how to select an appropriate model for a given problem remains
open. In our present study, we decided to adopt the dimensional representation and the
circumplex model of emotion. Although this approach is not general enough to model the
full-blown emotion, it can provide a fair representation of non-directional core affect, a valid
low-dimensional component of the full-blown emotion [145].

Low dimensionality was a key factor for our choice for two reasons. First, we want to
gradually scale our representation’s complexity, starting from the more straightforward set of
components, i.e., valence and arousal, evaluate it and then add more complexity. Second,
since we will use self-reports in user studies, we want to keep the participants’ workload
as low as possible to retain their motivation for several trials. Therefore, although we are
focusing on valence and arousal for the technical part of the work presented in this thesis
(Chapters 4, 6 and 7), in our final user study presented in Chapter 8, we also include the
dimension of dominance, as a third evaluation component. This is an exploratory step
towards collecting additional information on how humans perceive robotic EBL, hoping
that this information can provide suggestions for future work on extending our emotional
representation to involve another dimension.

Another decisive factor for our choice to work with a dimensional model is that it permits
us to describe an emotion using continuous numerical values. Since our objective is to
work with deep neural networks to synthesise robotic EBL, using labels or features that are
numerical and continuous is mathematically convenient. With categorical strings as labels, we
would have to use encodings (e.g., one-hot encoded or dummy encoded vectors) since most
machine learning algorithms take numerical values as input. This is a credible solution, but of
higher computational complexity because the vector representation size grows with the size
of the word corpus, and it is also very sparse (a single 1-element and a lot of zeroes) which
makes the computation more costly and slow. Additionally, thinking of future applications in
which robot emotion expression is coupled with multimodal emotion recognition, working
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in a continuous and highly discretised space would be more intuitive and convenient from
an engineering point of view, since fusing or averaging numerical features from different
modalities is more straightforward compared to fusing emotion words.

Besides the technical advantages of working directly with continuous numeric features in
deep neural networks, we wanted to avoid working with categorical emotion words because
of possible linguistic bias arising from individual differences in the semantic interpretation
of the emotion words during the labelling phase. Furthermore, if we had decided to proceed
with the categorical representation, another challenge would have been choosing the emotion
words list. The most obvious choice would have been Ekman’s six basic emotions, since
adding more words would significantly increase the participants’ workload. However, the
shorter the list is, the more likely the participants are to select labels that do not necessarily
reflect their beliefs due to the forced-choice response format [194].

To conclude, we are convinced that following a dimensional approach will benefit our
project, both in the EBL labelling phase, and the technical implementation phase. In the first
phase, we will be able to derive affect labels of valence and arousal in a continuous and highly
discretised space; thus, these labels will be potentially more effective in capturing different
subtle variations of the emotional state than categorical tags that aggregate many expressions
in a small number of categories. In terms of the technical implementation phase, where we
aim to build a deep learning framework for generating new emotional robotic expressions,
this approach will reduce complexity and improve stability. Furthermore, training a network
with higher sensitivity and variability labels has more potential to inject these properties in
the output and generate expressions of fine-grained differentiation. Summarising, we will
use a dimensional approach for our core affect representation, with the affective dimensions
of valence and arousal.
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Chapter 3

Related work in robotic EBL synthesis

3.1 Introduction

Affective body expressions are essential for conveying and perceiving emotion among humans
[123] and human-robot interaction. In particular, for humanoid robots with constrained facial
expression, other channels such as body posture, LEDs and sounds can be used to express
affect. The problem of designing bodily expressions of emotions in humanoid robots has
attracted much attention in recent years, and several efforts have been made to design effective
expressions and test their impact on humans. However, it is difficult to juxtapose different
efforts due to differences in the design principles adopted, the robot’s level of embodiment,
the modalities involved in the expressions, the static or dynamic nature of the expressions,
the emotion representation model, and the evaluation methodology. Early research in this
direction can be summarised in three main approaches: 1) Direct human imitation, 2) Feature-
based design, and 3) Creative design. In this chapter, we will outline and discuss previous
work following each approach. In some cases, researchers might choose to infuse aspects
from one approach to another. A fourth approach using deep learning has appeared very
recently, and we discuss it last since it is the one we will also follow in our work. Our
literature review is focused predominantly on work which reports user studies evaluating
emotion recognition or impact instead of other measures. Our review is focused mainly on
humanoid robots. However, we also discuss selected work on non-humanoids and embodied
conversational agents. For a broader systematic review on robotic animation techniques
that includes additional robotic designs, evaluation metrics and expression channels, the
interested reader is directed to Schulz et al. [201].
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3.2 Direct human imitation

In the first approach, the robot joints are configured to match the human joints in a single
posture or motion setting. To accomplish this, computer vision techniques, markers, or
sensors are employed to track key joints positions in human body motion, and then map them
to the robot joint space manually by observation [124, 21], or by way of a transfer function
[158]. Regarding the second method, although it has an advantage as an end-to-end process,
constructing useful transfer functions can be very challenging. There are no studies so far
applying it specifically for robotic EBL synthesis to the best of our knowledge.

Beck et al. [19, 21] designed six poses to convey the six basic emotions on a Nao
robot. For each pose, the robot joints were configured to match by observation a human
posture extracted as a key pose from motion-capture data. These data were recorded from
a professional actor’s performance of the corresponding emotion. The number of poses
was further augmented by changing Nao’s head position for each pose (looking up, down,
straight). In their user study with a physical Nao robot, participants correctly identified Nao’s
key poses at better than chance levels. In the same experiment, valence, arousal and stance
were also rated by the participants on a 10-point Likert scale, and it was found that the head
position had an effect on these ratings for all basic emotions except fear.

3.3 Feature-based design

A prominent approach in robotic EBL design is to use features extracted from human EBL.
Such features can be found in studies coding patterns of movement or posture from recordings
of actors performing emotional expressions [58, 165, 56, 222, 224], computer-generated
mannequin figures [53], or human motion capture data [122]. These studies provide lists of
validated features, such as body orientation, the symmetry of limbs, joint positions, force,
and velocity, which can be employed to design robotic EBL expressions.

Häring et al. [105] designed a set of multimodal (body motion, sound and eye LEDs
colour) animations for a Nao robot, to express anger, fear, sadness and joy. In the case
of body motion, they wanted to approximate human behaviour using Coulson’s [53] static
postures and de Meijer’s [165] gross body movements features. Regarding the sounds, the
choice was of human or animal-like acoustic expressions that are “commonly related” to
human emotions as the authors reckon (e.g., crying for sadness). Eye LEDs colours were
selected similarly (e.g., red for anger). All three modalities were tested separately. The
evaluation was dimensional, including pleasure, arousal and dominance (the PAD model
[164]). The results did not show any significant effect resulting from the eye LED colour
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modality, and only half of the sounds used were categorised appropriately. However, all the
body movements were rated in the right octant of the PAD model except sadness which was
rated with positive arousal.

Embgen et al. [69] designed EBL animations for a Daryl robot to express three basic
emotions (happiness, sadness, fear) and three secondary ones (curiosity, embarrassment,
disappointment). Their design principles for the body configurations were based on proposed
features from Darwin [58], Wallbott [222], and Gunes and Piccardi [89]. For the colour of
the chest LED plate, they were inspired by idiomatic references to colours (e.g., “feeling
blue”). Regarding their user study, they reported that participants could identify the emotions
from the EBL displayed on a physical Daryl and distinguish between the somewhat similar
emotions sadness and disappointment.

Erden [70] designed EBL postures for a Nao robot based on Coulson’s [53] static postures.
Their designed postures aimed to express three emotions: anger, sadness, and happiness. In
their user study, participants were presented with photos of the Nao postures. The report that
anger was recognized with 45%, happiness with 72.5%, and sadness with 62.5% after .

Destephe et al. [62] extracted features from motion capture data recorded from two actors
who improvised on emotional straight walking. The emotion categories used were sadness,
happiness, anger, fear and neutral. For each category, there were also four categories of
intensity: low, intermediate, high, and exaggerated. The extracted features included step
height, step length, velocity, cadence, head pitch, shoulder pitch and waist pitch. The features
were subsequently adjusted to fit the WABIAN-2R humanoid robot’s kinematic structure, and
the walking patterns were displayed on the virtual robot. The evaluation was conducted with
the recorded videos of the virtual robot. The authors report a high recognition rate for the
emotions (72.32% average for all emotions, fear was the highest). The intensity recognition
rate was not as high (33.63% average for all intensities, intermediate intensity was the
highest), but they found that it modulates the emotion recognition rate (higher intensity
results to higher emotion recognition rate).

Tsiourti et al. [214] designed emotional animations for a Pepper robot and a Hobbit
robot to test the interpretability of three basic emotions (happy, sad and surprised). The
robotic animations for Pepper were created by selecting expressive postures from Thomas
and Johnston [79], configuring the joints of the robot to match postures proposed by Coulson
et al. [53] for each emotion and subsequently using features such as velocity and amplitude
proposed in Kleinsmith et al. [122] to derive robotic animations from the postures. The
evaluation was conducted on videos of the recorded robot. Happiness was recognized more
accurately, while sadness and surprise were poorly recognized from body motion alone.
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McColl and Nezat [159] used features from [222, 165] to design EBL for the humanoid
Brian 2.0. The emotions that sought to convey were sadness, elated joy, anger, interest, fear,
surprise, boredom and happiness. The expressions involved the upper body of the robot. The
evaluation was conducted on videos. Sadness and surprise had the highest recognition rate
(> 80%), while fear and happiness had the lowest recognition rate (< 30%).

An interesting paradigm following the feature-based approach is inspired by the Laban
Motion framework [131], based on kinesiology, anatomy, and psychological analysis of
human motion. Often, researchers use only a subset of the framework, the Laban Effort
System, which provides four motion parameters: space, weight, time, and flow. These
parameters have been used to handcraft features and generate locomotion trajectories that
express affect in non-humanoid robots with low degrees of freedom [125, 203, 3, 176, 211],
with promising results in terms of readability by humans. For example, Sharma et al. [203]
employed motion capture to record human emotional motion, which they subsequently
decoded into space, weight, time, and flow values with the help of a Laban-trained artist.
Then, they used the values to configure a set of flying patterns for a Parrot AR.Drone. For
the evaluation, the physical robot executed the flight patterns. The participants were asked
to assign rates of valence and arousal. The researchers found that space and time were
significant predictors of valence, while all four Laban parameters could predict arousal with
statistical significance. Takahashi et al. [211] designed head and arms motions to convey
the six basic emotions for a teddy bear robot using the Laban principles. Their evaluation
showed that although fear and disgust had a low recognition rate, the rest of the emotions
were well recognised. The Laban Motion framework has also been used to design EBL for
humanoids [157, 156, 155, 175, 174]. Masuda et al. [157] used Laban features (space, time,
weight, inclination, height, area) to modify three basic movements for the humanoid robot
HFR to express emotion. Their evaluation shows successful rates of recognition for some of
the modulated movements. Concerning the emotions, sadness appeared to have the highest
modulating effect.

Another interesting approach is to decode human voice features into robot motion. The
SIRE model [142] was proposed for generating robot expressions of happiness, sadness,
anger and fear, based on four features: speed, intensity, regularity and extent. These features
were extracted from human expressions, in particular vocal expressions. The model was
evaluated on a Nao robot using the dimensional PAD model, and the results showed successful
recognition of happiness and sadness. The SIRE model was also adapted in another study to
produce expressions of emotions on a Nao robot that would offer movie recommendations
[191]. This Nao was found preferable and more persuasive than a Nao without emotional
expression.
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Feature-based design can also be inspired by animal models instead of human EBL, an
approach which can be potentially more effective with pet-like or animal-like robots [166].
Lakatos et al. [132] looked into the effects of robotic EBL inspired by functionally analogous
dog behaviours. They used a MogiRobi robot, a dog-like mechanical robot which moves on
a wheeled base and can move its head, ears, and a rear-antenna. They modelled the emotions
of fear and joy. The assessment showed that participants recognised the happiness expression
very well, but fear was less clearly perceived, and often mistaken as indifference or not
an emotion. Animal-like features for robot expression have also been tested with Probo
[198], an elephant-like robot, and even a non-animal robot head, EDDIE, [130]. However,
both studies have mainly focused on emotion modelling based on facial expression. Other
interesting studies on emotion modelling for animal-like robots include the seal-robot Paro
[204, 220], the dog-robot AIBO [212], the cat-robot NeCoRo [140]. Although these studies
have not directly evaluated emotion recognition and interpretability, they provide some
indirect evaluation by testing the effects of using these emotionally expressive robots on
robot-assisted therapy.

3.4 Creative design

Another influential approach emerges from applying the artistic principles and practices
used in graphc animation to generate robot expressions of emotion. The animator conceives
several expressive key postures with a creative approach and the robot morphology in mind,
configures the robot according to these postures, and then applies the inbetweening process,
i.e., creates the intermediary postures so that the sequence appears continuous and smooth.
This is the pose-to-pose animation technique. This procedure is robot-centric and often
influenced by Disney’s twelve basic principles of animation [79], producing very lifelike
expressions. In some studies, puppeteers [139, 213] or random participants [230, 108]
are enlisted to configure robot EBL postures or sequences of postures according to their
subjective perception.

Monceaux et al. [169] describe their methodology of creating a big library of dynamic
multimodal emotion expressions as an iterative process involving imitation from direct
observation, and abstraction of key positions to adjust them to the Nao robot morphology.
The key postures were inbetweened with interpolation to produce a robotic animation (pose-
to-pose animation).

Ribeiro and Paiva [188] adapted Disney’s twelve basic principles of animation [79] for
an EMYS head robot to express the six basic emotions, on three different intensities. Their

25



Related work in robotic EBL synthesis

user study evaluation found that anger, sadness and fear were very well recognized, surprise
and joy were fairly recognized, but disgust was poorly identified for low intensity.

The principles of animation have also been used to design affect expression for non-
humanoid robots. A fascinating example is the affect display designed by Yohanan and
MacLean [231] for the Haptic Creature, an animal-like robot. Their methodology followed a
pose-to-pose design of motions for the robots ears, lungs and purr. The goal was to create
nine different expressions as a combination of three valence levels (negative, neutral, and
positive), and three levels of arousal (high, medium, and low). The evaluation showed the
design was effective in conveying arousal but ambiguous in the communication of valence.

3.5 Deep learning approaches

Lately, there have been some efforts to create body language using deep learning frameworks.
Yoon et al. [232] implemented a co-speech gesture generation framework that uses an encoder-
decoder network to produce mappings from sequences of words to sequences of a NAO robot
poses. Their network is trained with human gesture and speech data. In the affective robotics
field, Suguitan et al. [210] proposed the use of CycleGANs to generate affective robotic
movements after training them with human EBL. They trained three different networks to
generate animations expressing happiness, sadness, and anger for a Blossom robot with four
degrees-of-freedom. They evaluated their model with a clustering inspection of the principal
components of 13 different features extracted from their generated robot movements, and
they report the intended emotions are fairly discernible between the three classes.

3.6 EBL synthesis in Embodied Conversational Agents

Generation of nonverbal emotional responses has attracted much attention in the area of
Embodied Conversational Agents (ECAs) too. Nonetheless, since ECAs can have animated
faces that allow elaborate expressions, facial display of emotion has been more widely
exploited. In contrast, EBL has been approached in a more restricted way, predominantly as
a co-verbal gesturing function that aims to accompany and be synchronised with speech [47].

In designing expressive motions for ECAs, a common approach is to begin with human
motion data captured in conversational settings and then proceed with either a rule-based
or data-driven generative strategy [78]. Rule-based generation exploits knowledge from
psychology literature and perceptual studies to derive mappings from emotional states to
facial expressions and body configurations, an approach similar to the feature-based design
in robotic EBL described in Section 3.3. Data-driven generation uses corpora containing
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segments of recorded human motion coupled with semantic information, similar to the direct
imitation approach used in robotics EBL described in Section 3.2. The second strategy has
an advantage: it allows for more sophisticated personality and stylistic effects to be injected
in the overall motion, since the corpora can include a great variety of motions, as opposed to
rule-based approaches that tend to average out individual differences [78]. Following, we
will briefly discuss some research projects following one of these approaches, or often, a
mixture of both. However, our discussion will not cover the evaluation of these ECA projects,
since their evaluation is not targeted on assessing aspects of EBL, but follows a more holistic
perspective with measures such as conversational smarts, smoothness of interaction and
language skills. The interested reader is referred to the cited bibliography and a survey
discussing several ECAs evaluation studies [76].

Justine Cassell with her pioneering work on ECAs [47] introduced the rule-based ap-
proach for the autonomous generation of verbal and nonverbal conversational behaviours
in Rea architecture [46, 44, 45]. Rea is an ECA that acts as a real estate salesperson inter-
acting with users and showing them around virtual houses. Rea’s body language involves
head nodding, hand gestures, facial expressions and other nonverbal communicative be-
haviours, mapped to communicative functions such as conversation initiation or termination,
turn-taking, and salutation.

In the GRETA ECA system [183], the model of nonverbal behaviours has been influenced
by psychology studies on human body language. From a large set of parameters proposed
in perceptual studies [222, 223], a subset of six were selected and implemented in GRETA
[94, 183, 27]. The six expressive parameters are: spatial extent, temporal extent, power,
fluidity, repetition, and overall activation. Spatial extent corresponds to the amplitude of a
motion signal, while the temporal extent is related to movement speed. Power corresponds to
motion acceleration, and fluidity defines how smooth the transition between two successive
movements is. Repetition refers to the number of times a movement is replayed, and overall
activation defines quantitatively the overall amount of movements injected in a behaviour. The
six expressive parameters have also been used to develop distinctive agents, each endowed
with an individual personality baseline [149].

Following the data-driven approach, MAX [22], an agent powered by the WASABI
appraisal model aims to directly map emotional states to specific gestures, instead of using
expressive parameters to modulate motion. WASABI generates an emotional state which is
subsequently mapped to a discrete emotion using the PAD space [164], and this mapping
is used to select an appropriate movement from a predefined corpus of high-level abstract
descriptions of the gestures.
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Another data-driven approach example is the Physical Focus model [154, 86] which uses
annotated motion capture segments to design EBL for virtual humans. The architecture uses
the virtual agent’s emotional state as input to a finite-state machine that determines a focus
mode corresponding to a subset of nonverbal behaviours. The architecture uses four focus
modes (strong body focus, body focus, transitional, and communicative) to group behaviours.
For example, body focus mode represents self-focused attention that takes a distance from
the conversation and is triggered by emotional states such as guilt or depression. In body
focus mode, the behaviours involve gaze aversion, self-soothing or self-punitive gestures and
minimal communicative gestures.

EMOTE (Expressive MOTion Engine) [7, 49, 233], is a 3D character animation system
that uses the effort and shape components of the Laban Effort System to synthesise arm
and torso movements. The idea of EMOTE is to apply the effort and shape parameters to
underlying movements which were initially defined independently as pairs of time-frame
and pose. The underlying movements can be of various origins, e.g., procedural generation
or motion-capture transfer. By applying the effort and shape parameters, the final motions
can become more natural and expressive.

3.7 Discussion on previous approaches

Previous research has been mainly focused on hand-coded methods for robotic EBL design.
Hand-coded methods can be tedious and expensive, resulting in limited expressions, charac-
terised by less granularity in their expressivity. Consequently, the expressions might appear
repetitive and predictable, which might be disengaging in long-term human-robot interaction.
Deep learning approaches seek to address this problem.

Another concern regarding the previous approaches is the common practice to use a
human-like style of motion for the expression of a robot. Even if the emotion is recognisable,
the robot expression might not be engaging enough in long-term interaction. As we discussed
in Chapter 1, the illusion of life effect is essential in human-robot interaction if we want
people to perceive robots as believable agents and engage with them [73, 137]. In our opinion,
the believability effect is weakened when a highly complex signal, the human motion, is
reduced to fit a significantly simpler robotic morphology. Scaling down the human motion
range or excluding joints to match the robot’s motion range may be practically simple, but it
might miss important information or keep redundant and trivial information with a negative
impact on the lifelikeness of the robot character. Similarly, automatic direct imitation methods
suffer from a similar challenge [170]. Finding a good transfer function to transform the
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robot’s kinematics can be very challenging, even for androids with close similarity to the
human body.

On the other hand, creative design methods involve human EBL only as an abstract source
of inspiration for the animator, without posing strict constraints on the creative process [169].
In fact, the creative process could also be informed by other abstract sources, e.g., animal
expression, graphical animation characters, arts or even subjective concepts. Combined with
methodological principals such as Disney’s twelve basic principles of animation [79] adapted
to a specific robot morphology, as Ribeiro and Paiva [188] proposed, the robotic animations
produced can be of high quality and very expressive.

3.8 Addressing the limitations

Our main objective is to propose an end-to-end method for the automatic generation of
numerous new animations, which will appear smooth, natural and realistic, and exhibit
increased granularity. To achieve that, we follow the deep learning approach, and more
specifically, we use a generative model, the Variational Autoencoder.

As a starting point, we use a set of animations selected from Softbank Robotics animation
library for the Pepper robot. Professional animators have created these animations to convey
emotions, using the creative approach; after several expressive postures are conceived, the
robot is configured accordingly, as a puppet or via the simulator, and the joints’ angles are
recorded. Subsequently, the postures are interpolated to get the intermediate states. With
this choice, we wanted to take advantage of the professional animators’ expertise to create a
baseline set of advanced expressivity, smoothness and natural motion. This set can be used to
train Variational Autoencoders, and we expect that the generated animations will be infused
with the qualities of the hand-coded animations.

Lastly, another way in which we aim to differentiate from the majority of previous studies
is in terms of the emotion representation, both in the labelling phase of the robotic EBL
animations and the evaluation. We have already discussed in detail (Section 2.3) our choice
to adopt the dimensional model of affect, with which we can avoid possible confounds related
to forced-choice categorical emotion evaluation. Furthermore, our dimensional labels will be
used as a discriminative marker and an integral component of the generative process.

In summary, the present thesis addresses the previous limitations as follows:

• We propose a deep learning methodology to achieve the automatic generation of an
unlimited number of new robotic EBL animations, which are smooth, realistic and of
fine granularity.
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• Instead of using features extracted from human motion, we adopt a robot-centric
motion philosophy in which we train the deep learning framework with a small
animation set designed with the robot morphology and lifelikeness in mind.

• We fully adopt the dimensional representation of emotion in the labelling, learning
and evaluation phases of our pipeline to benefit from the increased granularity it offers.
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Chapter 4

Valence and arousal labels for robotic
EBL animations

4.1 Introduction

The studies we presented in Chapter 3 are very informative for advancing robotic EBL
synthesis because they propose and evaluate features and design principles regarding their
impact on emotion readability. However, most of the studies focus on the categorical approach
using the model of basic emotions, both in the design and evaluation phases. This is, of
course, a legitimate choice since the debate between different representations of emotion is
still open. Nevertheless, we believe that further study of the dimensional approach can also
contribute to knowledge.

On the other hand, even in the case of studies using the dimensional models of affect at
the evaluation phase, the evaluation is applied with coarse classes defined by a combination
of two or three levels from each dimension (e.g., +/- Pleasure, +/- Arousal, +/- Dominance
in [105]). The work presented in this chapter aims to take advantage of the properties of
the dimensional model of affect, which due to its continuous-space representation facilitates
granularity and fine-grained differentiation in the evaluation phase, even between expressions
that only slightly vary. Essentially, our first study aims to define a reliably labelled set of
robotic EBL animations, which can be used as the ground truth in user studies examining
the impact of robotic emotional behaviours, or for designating outgoing robot behaviours in
social HRI applications. Moreover, our labelled animations can be used as training examples
for deep learning models, which is our ultimate goal in the overall project.

More specifically, we conducted an initial experiment to collect labels and knowledge
that can help us to structure an emotion expression module. We used a set of high-quality
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animations (context-free, nonverbal, dynamic expressions of emotion), designed by expert
animators for the Pepper humanoid robot to convey emotions. We had them assessed in terms
of valence and arousal in a user study (N = 20). The results provided us with insights into
the human perception of robotic emotion expression. After performing a reliability analysis,
we derived the affect labels of valence and arousal, in a continuous two-dimensional space
for each animation.

To the best of our knowledge, this is the first effort to assign such labels to emotional
body language animations for a humanoid robot, at least in terms of the reliability analysis
and the increased discretization of the affect space. Robotic application developers could
potentially use such a dataset to select outgoing emotional expressions based on continuous
input signals, as a training set for deep learning models, or even as a ground truth from
researchers that would like to study different setups related to human perception of robotic
emotion expression. The dataset is released for other researchers to use it1.

The rest of this chapter is organized as follows: the first section describes the user study
set up, the participants, the robot platform, the animations, the interface used to collect data,
and the experimental procedure. The second section outlines the reliability analysis and the
results. The work we present in this chapter is published in [152].

4.2 Methods and materials

4.2.1 Participants

The study included 20 volunteers, 9 women and 11 men with a mean age of 23.6 years
and a standard deviation of 4.09. The youngest participant was 19 and the oldest 35. The
participants were mainly students at the University of Plymouth, UK. Nine participants
were British, and the rest were European nationals studying in the UK. The participants had
minimal or no experience with the Pepper robot. The experimental protocol was granted
ethical approval by the University of Plymouth, Faculty of Science and Engineering Research
Ethics Committee, and written informed consent was obtained from all participants before
the study. The participants were reimbursed £5 for their time.

1REBL-Pepper Dataset: https://github.com/minamar/rebl-pepper-data
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4.2.2 Robot platform and hardware

For this study, we used a physical Pepper robot, a humanoid created by SoftBank Robotics.
Pepper is 120 cm tall, weighs 28 kg, and it has 20 degrees of freedom, including a head, two
arms and a wheeled base. The operating system running on the robot was NAOqi 2.5.

4.2.3 EBL animation set

The set of emotional expressions used for this study consisted of 36 animations designed by
SoftBank Robotics animators. Each animation has a different duration (from 1.96 to 10.36 s,
mean = 4.39 s), and consists of body motion without locomotion. Some animations involved
additional interactive modalities, i.e., eye LEDs colour patterns, non-linguistic sounds, or
both. Essentially, each animation is a set of key body postures (frames) with their timestamps,
and then intermediary frames are generated with interpolation. The interpolated frames are
executed with a speed of 25 frames per second on the physical robot, but depending on the
number of keyframes, each animation appears to have different speed. For a more detailed
description of the animations, please refer to Appendix A, Table A.1, which presents the
categorical tag of each animation assigned by the animators during the designing phase, a
short description of the movements that comprise each animation, the duration in seconds, the
speed calculated as total frames divided by keyframes, and the different modalities (motion,
sound, LEDs).

Table 4.1 Nine classes of affect formed by 3x3 combinations of valence-arousal levels

Valence
Negative Neutral Positive

A
ro

us
al Excited Negative/Excited Neutral/Excited Positive/Excited

Calm Negative/Calm Neutral/Calm Positive/Calm

Tired Negative/Tired Neutral/Tired Positive/Tired

The selection was made from the broader animation libraries for Pepper. We aimed to
obtain a good spread of the animations across the affect space defined by valence and arousal.
We predefined nine different classes of valence/arousal combinations presented in Table
4.1, and we selected four animations for each class. The selection was conducted based
on the observation of the animations by the authors and a professional animator involved
in the creative process of designing emotion animations for Pepper, i.e., researchers highly
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accustomed to robot’s motion and an expert in the expression of emotions with animations
for the particular platform. Although we aimed to have a good representation for each class,
the selection has been subjective, and the pre-assignment in the nine classes is not considered
ground truth. Maximizing the affect space coverage with our pre-assignment has been a
desirable property, and we look into how the preassigned classes match the final ratings.
However, the final ratings provided by the participants were validated independently of the
categorical tags.

4.2.4 Ratings interface

After carefully considering the available options for collecting valence and arousal ratings,
we decided to use the Affective Slider [25], a modern digital tool that has been validated as a
reliable mechanism for the quick measurement of valence and arousal. The Affective Slider
enables the collection of ratings using continuous scales with customizable discretization.
This study used scales from 0 to 1, with a step of 0.01, resulting in a resolution of 100 points.
Furthermore, the Affective Slider is an intuitive interface that does not require significant
training.

For our experiment, we replicated the tool based on the design guidelines recommended
by its authors. We integrated it into the experimental interface along with a play button
for the participants to control the robot, and a submit button to indicate that they finished
configuring the sliders. The interface is presented in Fig. 4.1.

Fig. 4.1 The adapted Affective Slider interface for collecting valence and arousal ratings.
Note that the valence slider is labeled as "Pleasure", to convey the concept of valence in a
more intuitive manner for the participants.
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Fig. 4.2 The experimental setup.

4.2.5 Questionnaires

We administered the PANAS affect measuring questionnaire [225] ahead of the subject’s
interaction with the robot to indicate the subject’s positive and negative mood at the time of
the experiment. Furthermore, two 5-point Likert scales (from 1 = "Not confident at all" to 5
= "Very confident") were presented for the participants to indicate their level of confidence
in their arousal and valence assessment after watching and evaluating each animation.

4.2.6 Experimental procedure

Instructions and training

Initially, the participants were provided with an information sheet and asked to give their
written consent if they have no objections. After registering their demographic data (age, sex
and nationality), they were seated in front of the robot at a distance of two meters with the
touchscreen right in front of them. This setup is shown in Fig. 4.2.

The participants’ first task was to complete the PANAS affect measuring questionnaire
presented on the touch screen. Consequently, the experimenter gave a brief explanation of
the main task. Participants were told that they had to rate the robot’s emotional expression in
terms of valence, referred to as "pleasure" during the experimental procedure, and arousal.
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Valence was defined as "how positive, neutral or negative the robot’s expression was" and
arousal as "how excited, calm or tired the robot appeared". The participants’ responses were
solicited by the question "How does the robot feel?". After this introduction, the participants
went through a training session of three trials during which the experimenter was interacting
with them to make sure they fully understood the task and the concepts of valence and
arousal.

Main session

During the experiment’s main session, the participants were presented with our adapted
Affective Slider interface at each trial. First, they would click on the play button for the robot
to perform the animation, and then submit their ratings. The participants were told that they
could replay the animation if they needed to. When the participants clicked the submit button,
the sliders would be removed, and two Likert scale questions would appear requesting them
to indicate how confident they had been in their valence and arousal assessments. When these
questions had been answered, the next trial would begin. The main session consisted of 39
trials; 36 original animations plus three repetitions. The order of the original animations was
randomized for each participant to avoid order effects, and the first three animations were
repeated at the end of each participant’s session to evaluate intra-rater consistency. Moreover,
the two Affective Sliders were presented in different order between trials. Between trials, the
robot resumed its initial, neutral, motionless standing posture, with eye LEDs switched off,
so that participants could perceive the onset and offset of the animation.

4.2.7 Software

For the execution of the robotic animations with the real Pepper robot we used NAOqi
2.5 SDK2. The participant’s interface for controlling the robot and collecting the data was
written in Python 2 (NAOqi is not migrated to Python 3) with Django v1.11.103. For data
preprocessing, wrangling and visualization, we used Python 3 and packages such as NumPy
[178], SciPy [219], pandas [162], Matplotlib [104]. The statistical analysis of the collected
data was carried out in R [186, 117, 80, 217].

2NAOqi 2.5: http://doc.aldebaran.com/2-5/home_pepper.html
3Django web framework: https://www.djangoproject.com/
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4.3 Results

4.3.1 Affect questionnaire

The momentary affect scores from the PANAS questionnaire administered to the participants
before the experiment were within the expected range [225], so following analysis did not
exclude any of the participants. Positive affect mean was 31.75 (SD = 6.27) and Negative
affect mean was 12.75 (SD = 3.16).

4.3.2 Descriptive statistics

The descriptive statistics by gender are presented in Table 4.2. An independent sample t-test
did not reveal any statistically significant gender differences (valence: t(18) =−0.62, p =

.53, arousal: t(18) =−0.68, p = .49).

Table 4.2 Descriptive statistics by gender. Ratings range from 0 to 1 with 100 points
resolution.

Dimension Gender Mean SD Min Max

A
ro

us
al Women 0.60 0.29 0 1

Men 0.61 0.27 0 1
Group 0.61 0.28 0 1

V
al

en
ce Women 0.49 0.28 0 1

Men 0.49 0.24 0 1
Group 0.49 0.26 0 1

4.3.3 Exploratory analysis

In terms of the initial pre-assignment of the animations in nine different classes of va-
lence/arousal, we plotted the means and the standard deviations of the collected ratings per
class in Fig. 4.3, and the detailed descriptive statistics are presented in Table 4.3.

Since the animations in each class were subjectively selected as described in Section 4.2.3,
there is no ground truth for the class centres (mean ratings per class). Interestingly, the figure
shows that the class centres appear in the order expected according to the pre-assignment
(see Table 4.1 for the order). However, almost half of the class centres are not spread out in
the affect space as expected with the pre-assignment. For example, all the Tired class centres
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Fig. 4.3 Mean ratings and standard deviations of valence and arousal per pre-assigned affect
class. The 2D space is divided into 9 classes as described in Table 4.1.

Table 4.3 Descriptive statistics by affect class of valence/arousal levels combinations.

Valence Arousal
Animation Class (V/A) Mean SD Mean SD

Negative/Excited 0.27 0.26 0.83 0.19
Negative/Calm 0.28 0.19 0.48 0.28
Negative/Tired 0.38 0.21 0.40 0.26
Neutral/Excited 0.52 0.20 0.80 0.17
Neutral/Calm 0.52 0.19 0.54 0.21
Neutral/Tired 0.50 0.23 0.45 0.27
Positive/Excited 0.73 0.23 0.82 0.13
Positive/Calm 0.68 0.20 0.66 0.21
Positive/Tired 0.56 0.18 0.47 0.26

are pushed to the Calm subspace for arousal, and to the Neutral subspace for valence. The
rest of the class centres appear in the expected levels of the affect space. It appears that the
animations preassigned as of low arousal were in average perceived as of medium arousal
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and their valence as neutral. For a visualization of the descriptive statistics of each animation
in each class, see the boxplots in Fig. 4.4.
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Fig. 4.4 Boxplots of the ratings collected from the whole group of participants (N = 20) per
preassigned class of affect (9 classes with 4 animations each). The classes are labelled as
combinations of valence and arousal levels. Individual animations are referenced with the
original categorical tag assigned by the animators during the creation phase.

Fig. 4.5 shows all the ratings plotted in the valence-arousal space. The sparsity of data
points in the low arousal subspace is more pronounced in the high valence area. Moreover,
an accumulation of ratings can be observed in the area of neutral valence (valence = 0.5).
More specifically, 98 ratings out of 720 in total are accumulated at valence equal to 0.5. This
is not the case for arousal (only 33 ratings out of 720 were found at 0.5). For both variables
equal to 0.5 (origin of the space), only 10 out of 720 ratings were found. To better understand
this effect, we plotted the kernel density estimates (KDE) for the ratings concerning the five
different levels of raters’ confidence in Fig. 4.6.

The KDEs in the valence graph in Fig. 4.6 show a peak at 0.5 (neutral valence) for the
ratings submitted with low confidence, i.e., from 1 to 3 ("not confident at all" to "somewhat
confident"). This trend appears stronger for male raters in confidence levels 1 and 3, and

39



Valence and arousal labels for robotic EBL animations

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Valence

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ro

us
al

Valence and arousal ratings

Animation Class
Positive/Excited
Positive/Calm
Positive/Tired
Neutral/Excited
Neutral/Calm
Neutral/Tired
Negative/Excited
Negative/Calm
Negative/Tired

Fig. 4.5 Valence and arousal ratings from all animations and raters colour-coded according
to the pre-assigned animation class.
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Fig. 4.6 Kernel density estimates of the ratings with respect to the raters’ confidence level (0:
"not confident at all" to 5: "very confident").
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female raters in confidence level 2. This trends could mean that when participants are not
confident in their interpretation, they tend to resort in a neutral appraisal of valence.

The peak at 0.5 is not as prominent in the KDE graphs of arousal (Fig. 4.6), at least not
above the lowest level of confidence. Furthermore, the arousal KDEs appear to be more
negatively skewed than valence KDEs for all confidence levels. This trend might imply that
the polarization we noticed before, with the sparse ratings in the low arousal subspace, is
not related to difficulties in interpreting the animations (lack of confidence in judgement).
Instead, it supports the possibility that participants indeed perceived fewer animations as of
low arousal. Moreover, for both dimensions, the more extreme the ratings are, the higher the
confidence in the judgement, both for male and female participants. Finally, we examined
for statistical differences in raters’ confidence levels between valence and arousal. A one-
sided Wilcoxon Signed Rank Test showed that raters’ confidence in the arousal ratings was
significantly higher than the confidence in the valence ratings (z = −1.90, p = .03). This
result could indicate that valence is harder to estimate than arousal.

4.3.4 Intra-rater reliability

To test intra-rater consistency, we repeated the presentation of the first three animations at
the end of the main session, and we measured the intra-rater mean squared error (MSE) and
the intraclass correlation.

Intra-rater reliability results

The average MSE across 20 participants was 5.26% (SD = 5.96, 50th percentile = 2.87,
95th percentile = 14.13) for arousal, and 3.97% (SD = 4.42, 50th percentile = 2.91, 95th
percentile = 10.24) for valence. Hence, MSE was less than 25% in all cases and less than
15% in 95% of the cases.

The intraclass correlation coefficient (ICC) for intra-rater reliability was estimated as a
2-way mixed-effects model with the definition of absolute agreement since we are testing a
paired group. The formula for the estimation is the following:

ICC(2,k) =
MSR −MSE

MSR +
MSC−MSE

n

(4.1)

where k denotes the number of repeated samples, MSR is the mean square for rows, MSE is
the mean square for error, MSC is the mean square for columns, and n is the number of items
tested [126].
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The result was ICC = 0.77 with 95% confidence interval 0.67 < ICC < 0.84, and
F(119,119) = 4.41, which is interpreted as a moderate to good reliability. We discuss
more details about the interpretation of the ICC coefficients in the next section.

4.3.5 Inter-rater reliability

To assess the inter-rater reliability, we used intraclass correlation, one of the most widely-used
statistics for assessing ratings reliability [206, 161], applicable to ratings of interval type. For
fully crossed design, i.e., each item (animation) was rated by all the participants, ICC can
provide a good estimation of the reliability with adequate control of systematic bias between
the raters [92].

The selection of the appropriate ICC form depends on three parameters; the model, the
type and the definition of ICC [126]. The model we have chosen is the two-way random
effects model since we randomly selected our raters from a larger population, and we want
to be able to generalize the results to a larger population with similar characteristics. The
type of ICC is the mean of the ratings since we will use the aggregated ratings. Finally,
the definition of the ICC form is that of consistency (instead of agreement) since we are
not interested in the absolute agreement between the raters, but on how well do the ratings
correlate in an additive manner. The formula is given in Eq. 4.2 and is defined for consistency
instead of agreement:

ICC(3,k) =
MSR −MSE

MSR
(4.2)

where k denotes the number of the raters, MSR is the mean square for rows and MSE is the
mean square for error [126].

The ICC estimates we present in the results section were calculated using the function
icc (parameters: "twoway", "consistency", "average") from the irr package [80] of R [186].
Finally, for the interpretation of the results we are following Koo et al. [126]: poor for values
< 0.5, moderate for values between 0.5 and 0.75, good for values between 0.75 and 0.9,
and excellent for values > 0.9. The evaluation thresholds are applied to the 95% confidence
intervals and not the ICC value itself.

Inter-rater reliability results

The resulting ICCs (Table 4.4) for the whole group of the participants are in a high range for
both valence and arousal indicating high consistency and that raters perceived the core-affect
expressed by the animations similarly. We also estimated the ICC for males and females, as
well as with respect to the confidence in participants’ judgements, by taking the ratings of
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Table 4.4 Intraclass correlation coefficients of inter-rater reliability

Intraclass 95% Confidence Interval F Test With True Value 0
Correlation Lower Bound Upper Bound Value df1 df2

V
al

en
ce

Group 0.95 0.93 0.97 21.2 35 665
Female 0.91 0.86 0.95 11.1 35 280
Male 0.92 0.87 0.95 12 35 350
Low Conf. 0.81 0.58 0.94 5.19 9 171
High Conf. 0.98 0.95 0.99 47 9 171

A
ro

us
al

Group 0.95 0.92 0.97 18.7 35 665
Female 0.91 0.85 0.95 10.7 35 280
Male 0.89 0.83 0.94 8.96 35 350
Low Conf. 0.85 0.67 0.96 6.68 9 171
High Conf. 0.97 0.94 0.99 35.3 9 171

the 10 highest in confidence and 10 lowest in confidence animations. In the case of the lower
confidence ratings, ICC is lower, indicating lower consistency among raters compared to that
of higher confidence, but still in an acceptable range.

The Feldt test [72, 128] for statistical inference between the ICC coefficients for female
and male participants did not reveal any statistical differences (valence: F(1,18) = 0.03, p =

.88, arousal: F(1,18) = 0.08, p = .75). Applying the same test for paired samples revealed
significant differences between ICC coefficients for low and high confidence in the ratings
(valence: t(18) = 17.26, p < .001, arousal: t(18) = 9.38, p = .001). The results for the
Feldt test were obtained with R [186], and the cocron package [63].

4.3.6 Final labels of valence and arousal

Supported from the inter-rater reliability results, we derived the final set of the aggregated
annotations by taking the mean across raters for each animation. The final annotations are
plotted in the valence-arousal space in Fig 4.7, along with the original tags of the animations
(assigned by the animators during the creation phase) and colour-coded according to the
preassigned class. Detailed statistics and raters’ confidence levels for the final annotation set
can be found in Appendix A, Table A.2. A video depicting the animations and the derived
labels of valence and arousal is available online4.

4Animation set video: https://youtu.be/Zo-K0uczhKc
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Fig. 4.7 The final set of valence and arousal labels derived from the means across raters.
They are plotted with the original categorical tags of the animations (given by the animators
in the creation phase) and colour-coded according to our pre-assigned classes.
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4.4 Discussion and conclusion

The work presented in this chapter used a set of pre-designed, nonverbal animations created
with the pose-to-pose method for the Pepper robot to simulate EBL. Our objective was to
annotate the animations with continuous interval, dimensional affect labels of valence and
arousal. To validate the collected ratings we tested the inter-rater reliability with the intraclass
correlation (applied across subjects per animation) which was found in an excellent range
(ICC > 0.90) for both valence and arousal. This result indicates very high consistency among
raters and shows that each animation is perceived similarly by the participants.

The intra-rater MSE was below 23.8% for all participants and below 14.13% for 95%
of the participants. Intra-rater ICC was found moderate to good, indicating an acceptable
within-rater consistency. The final set of aggregated labels for each animation was derived
from the mean across all participants. The means are plotted in Fig. 4.7, and the complete
descriptive statistics are given in Appendix A, Table A.2.

We also aimed to explore trends in the ratings. We found that when the level of confidence
in the judgment was low for valence, the participants tended to evaluate the expression as
neutral. We then examined statistical differences in raters’ confidence level between valence
and arousal and found that the latter was significantly higher, which might indicate that
valence was harder to rate. This observation appears in agreement with other evidence
indicating that arousal is more easily perceived from bodily expressions than valence [123],
while facial expression appears as a more stable visual modality for valence recognition
[88]. Furthermore, previous work suggests that context has a significant influence on how
humans perceive valence [14], and in the present experiment the animations were presented
in a context-free setup. Under the light of this evidence, the fact that the animations were
displayed: 1) on a robot with constrained facial expression, and 2) in a context-free setup,
could explain why participants find it harder to evaluate valence.

For the arousal ratings, we observed that the lower arousal subspace was more sparsely
covered compared to the medium- and high-arousal subspaces, especially in the higher-
valence subspace (Positive/Tired). This trend could be related to the subjective pre-assignment
of the animations in the nine classes; it might be the case that the pre-assignment did not
succeed to cover the affect space fully. Another possibility could be that the perception of
arousal differs between the group who conducted the pre-assignment (two researchers and
an animator highly accustomed to the robot) and the participants who had minimal or no
experience with Pepper. In the second case, a question that arises is whether the novelty
effect contributes to inflated arousal ratings. Finally, a different explanation could be that this
trend might indicate the challenges related to designing animations that map to this subspace
of low arousal and high valence.
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4.4.1 Limitations

With regards to the limitations of this work, the choice of the two-dimensional model of
emotion might be considered as too limited since it has been shown that subtle variations
between certain emotions that share common core affect, e.g., fear and anger, might not be
captured in less than four dimensions [74]. Nevertheless, core affect is still considered valid
as a low dimensional structure representing aspects of the full-blown emotional space [196].
In our future work, we would like to explore how additional dimensions, like dominance and
unpredictability, contribute to enabling user discrimination of emotional expressions.

Another limitation is that we did not systematize and balance the animation set in terms of
the interactive modalities; motion, eye LEDs and sound. Nevertheless, with this experiment,
it was not our intention to examine how different combinations of modalities impact emotion
perception. This is a very interesting question, but our present work treated each animation
in a holistic manner.

Finally, the present study only involved one robotic platform, the Pepper robot, and
consequently, the observations might not transfer to other robots with a different design,
level of embodiment or expressive capabilities. Emotion expression with body language
is inherently dependent on the embodiment level, and the design, especially the more
complex the expressions are, and the particular characteristics of Pepper might have evoked
impressions that would be different in another platform. This is a native challenge in studying
the perception of emotion expression in HRI, and comparison between different approaches
appears challenging as we discussed in Chapter 3. Moreover, the animations we used are
designed for the particular platform by professional animators, and their structure cannot be
translated and adapted for other robots automatically. Although our work can not directly
generalize to other platforms, hopefully, it could potentially serve as a case study from which
other researchers could shape hypotheses to test with different robots.

4.4.2 Next steps

With the completion of our first study, two different future directions emerged. The first direc-
tion, continues on the same path of the current study, exploring how people perceive robotic
EBL. A dominant concern would be how the perception is affected by contextual stimulus
alongside the robotic expressions. Would valence and arousal ratings differ significantly
when participants are presented with the same animations as a response to congruent or
incongruent contextual information? Another research question in this path is the perception
of dominance and how it correlates with valence and arousal.
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4.4 Discussion and conclusion

Although we find these research questions essential for a deeper understanding of how hu-
mans perceive robotic EBL, our main interest lies in the second direction, which concerns the
EBL synthesis. The next steps in our project focus on deep learning methods to accomplish
robotic EBL synthesis. More specifically, we decided to use the Variational Autoencoder
(VAE) framework [120], a powerful generative model. In the next chapter, we will provide
a detailed description of the framework, and in Chapter 6 we will present our first applied
study in which we train the VAE with the animation set we labelled in the present study.
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Chapter 5

Generative modelling and the variational
autoencoder framework

5.1 Introduction

Deep learning algorithms can be broadly divided into two approaches: discriminative mod-
elling and generative modelling. The former has been the driving force behind most advances
in basic and applied deep learning research during the last two decades. Essentially, it is
synonymous to supervised learning classification task, where a deep network learns a func-
tion that maps an input to a label, or in probabilistic terms, the model learns to estimate the
probability of a label y given an observation xxx. A significant breakthrough in discriminative
modelling occurred in the 1990s with convolutional neural networks (CNNs) [134] for image
classification. The successful performance of CNNs, especially after the AlexNet [129]
surpassed human performance in image classification in the ImageNet challenge in 2012,
paved the way for the dramatic increase of the interest we are currently witnessing in deep
neural networks.

On the other hand, the theoretical breakthroughs that allowed for deep generative mod-
elling applications occurred more recently, with Variational Autoencoders (VAE) [120] in
2013, Generative Adversarial Networks (GAN) [85], and autoregressive models such as
PixelRNN [216] in 2016. The area has attracted significant attention since, with a lot of
theoretical and applied research dedicated to advancing the field. In generative modelling, the
goal is to learn the underlying distribution of the observed data, i.e., to learn the probability
of observing xxx, without the necessity of labels y. Learning this probability allows us to
sample the distribution and generate new realistic synthetic samples similar to the original
data. This is very useful in applications where many simulations are necessary to train for
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instance a reinforcement learning agent, or in creative applications, such image synthesis,
image denoising, image inpainting, image super-resolution, prediction of future frames in
video, text and speech generation, on-demand generated art.

The rapidly increasing interest in generative modelling is also fuelled by the current
availability of a huge amount of unlabelled data which cannot be used in supervised learning.
Furthermore, the advances in generative models bring new hope for a more sophisticated
form of artificial intelligence, in which machines perceive the underlying essence of the
data, instead of just using their statistical properties to classify them. This is a core concept
in representation learning, [23], where the aim is to identify and disentangle the hidden
explanatory factors of the data, and thus obtain compact and informative data representations
(latent representations) which can subsequently be used in downstream tasks.

The three generative model approaches have different advantages and limitations. Briefly,
the VAEs are very stable during training, straightforward to evaluate (with log-likelihood),
but they tend to generate samples that discard high-frequency details (e.g., blurry images).
On the other hand, GANs generate very sharp samples, but there is no exact way to evaluate
them except by visualising the generated samples. Furthermore, they are notorious for their
unstable training dynamics, and they require many training data. Autoregressive models have
stable training dynamics and can be evaluated with log-likelihood. However, they are slower
to train because each sample is fed element by element to the network, and they do not learn
directly latent representations of the data that could be useful in representation learning.

In this work, we have chosen the VAE model to generate robotic emotional body language.
The VAE has been a very influential approach. It is a very efficient and elegant probabilistic
model that can be trained to code the data into latent representations, which are more
compact, informative and possibly disentangled. In fact, in terms of learning informative
and disentangled latent representations, the VAE shows robust results [234]. Although our
primary goal is to generate realistic samples, the representation learning perspective is a
desirable property for our future work.

Furthermore, the VAE model is more stable to train with a small training set of examples,
and since we do not generate images but essentially body postures, our results are not affected
by the lack of sharpness. One could argue that a sequential model from the autoregressive
paradigm could better fit our goals since body language animations are essentially sequences
of postures. However, although the VAE input is not processed sequentially (we will see that
we train with shuffled postures), the latent space is constrained so that we can sample and
interpolate the samples producing a very smooth sequence of postures.

The rest of this chapter can be summarised as follows: we begin with a description
of standard and regularised autoencoders which are simpler non-generative models whose
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similarities and differences with the VAEs can pave the way for a deeper understanding of
the more complicated VAE model and its great value. Next, we present the VAE framework
from the probabilistic graphical model point of view, the derivation of its learning objective,
and a smart modification that allows optimising the objective with stochastic gradient descent.
We finish this chapter with the deep learning perspective of the VAE model and some related
challenges and solutions.

5.2 Autoencoders

We will begin with a brief discussion of the standard autoencoder, a type of artificial neural
network which preceded the VAE and it is used for dimensionality reduction. The autoencoder
is not a generative model, but since there are some similarities with the VAE in the structure,
it can be useful to understand its more straightforward theory and then proceed with the VAE
theory. It is not easy to track the first appearance of the autoencoders in literature due to
the gradual formation of the concept, which was often expressed with different terminology
(for instance auto-associative multilayer perceptrons [32, 8]), before advancing at the current
state [99].

An autoencoder consists of two sub-networks, the encoder and the decoder, which can
be implemented with any class of feedforward neural networks. It is trained holistically
with the usual techniques that apply to feedforward models, i.e., gradient descent with
backpropagation. The training set consists of sample vectors xxx, each a collection of one or
more variables of interest, either continuous or discrete. Multi-dimensional variables are
flattened first and then concatenated with the rest. The input vector xxx passes through the
encoder which consists of one or more layers of progressively smaller dimensionality; thus
the output, which is called encoding zzz, is a compact representation of lower dimensionality
compared to the input xxx. Subsequently, the encoding zzz passes through the decoder network
layers, which are progressively wider, until a final layer with the size of the original input.
The final layer thus reconstructs the dimensionality of xxx and outputs x̃xx. To learn an effective
encoding of the data, the whole network is trained with a loss function (Mean Square Error or
cross-entropy) that penalises the difference between the original input xxx and the reconstructed
output x̃xx. Technically, the autoencoder learns to copy the input to the output. However, the
bottleneck (the low dimensional middle layer between the encoder and the decoder) learns a
compressed representation as a byproduct of the main copy task.

The autoencoder works well as a dimensionality reduction technique, and it can be used
for extracting features to train other networks. As a matter of fact, an autoencoder with linear
activation functions would learn the same features as the Principal Component Analysis
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(PCA) algorithm, the oldest and most widely used method for discovering the maximal
variance directions in high-dimensional data [97]. Nevertheless, an autoencoder network
with nonlinear activation functions is more powerful compared to PCA.

5.2.1 Regularized autoencoders

Although autoencoders perform well in the compression task, they are limited in two im-
portant aspects. First, the compressed latent representation is not necessarily guaranteed to
preserve all the essential information in the original input. The network may be learning
sub-optimal encodings of the input, which do not represent the underlying factors of variation
in the data, but they allow a good reconstruction. In other words, the model is prone to
overfitting the training set instead of learning useful generalisations. This happens because
there is no constraint imposed on the learned representation, and the network only trains
on how to produce a good reconstruction. A second limitation arising from this is that the
autoencoder cannot be used as a generative model. Since the latent space is not constrained,
sampling from it would lead to noisy output whenever we sample from a subspace that was
not included in the training.

There have been several architectures proposed to tackle these sort of limitations by
applying different terms of regularisation in the loss functions. Essentially, the loss function
is modified to involve additional constraints such as robustness to noise or masked inputs,
the sparsity of the latent layer, or the smallness of the derivative of the representation. These
constraints aim in incentivising the model to learn more useful representations of the input
data than just salient features that allow a good reconstruction. We will briefly present three
models using regularisation to improve the overfitting problem of the autoencoder. For a
more detailed account of these models, we refer the interested readers to [84] and the citations
provided in the following discussion.

Denoising autoencoders [218] are fed with a corrupted version of xxx (noise is added or
some dimensions are masked with zeros), but are trained to recover the original input. The
loss function is defined as in the standard autoencoder, penalising the difference between
the original and the reconstructed, but the network only encodes and decodes the corrupted
version of the original data. This design tackles to some extent the problem of overfitting on
particular dimensions of the input data distribution and can also be seen as a kind of dropout
since a fixed proportion of randomly chosen dimensions of the input are replaced with zeros.

Sparse autoencoders have an additional regularisation term in their loss function, the
sparsity penalty, which constrains the latent representation and prevents overfitting. This is
achieved by obliging each latent unit to be inactive most of the time, and hence only a subset
of the latent units are active at each time step, turning the latent representation into a sparse
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one. In k-Sparse Autoencoder [148] the sparsity penalty is implemented so that only k units
with the highest activation values are kept, while the rest are zeroed out.

Contractive autoencoders [189] apply a constraint on the latent representation by pe-
nalising its sensitivity to the input perturbations. Small changes in the input should not be
encoded far apart from each other in the latent space. That is accomplished by an extra term
on the loss function, besides the reconstruction error, which penalises large derivatives of the
encoder’s output. Intuitively, this means that the model is encouraged to learn a latent space
in which similar inputs have similar encodings, or, in other words, a neighbourhood of input
datapoints is contracted to a smaller output neighbourhood. Although this contraction effect
permits the formation of some structure in the latent space (instead of randomly scattered
encodings in the standard autoencoder), this structure is local, that is, only the perturbations
of an input datapoint are encoded in a contracted neighbourhood, while two different inputs
can be very far apart from each other.

Although these three models enhance the autoencoder architecture with the ability to learn
more useful features instead of just being an efficient copy machine, additional constraints
must be imposed to be able to obtain a generative model. This brings us to the Variational
Autoencoder framework.

5.3 Variational autoencoders

The goal of the Variational Autoencoder (VAE) [120, 110, 121], architecture is to learn a
probability distribution p∗(xxx) that represents the unknown underlying process that generates
the observed data. Subsequently, this distribution can be sampled to synthesise purely
novel content, that is, new, previously unseen data similar to the original. This cannot be
accomplished with a standard autoencoder, a deterministic model that always encodes and
reconstructs its input in an identical way, essentially performing a memorisation task. Instead,
the VAE achieves the reconstruction task by way of a stochastic process deeply rooted in the
theory of Bayesian networks.

5.3.1 The probabilistic graphical model representation

Bayesian networks define a class of probabilistic graphical models, a branch of machine
learning that uses probability distributions to model real-world events and make useful
predictions about them. This is a powerful and elegant approach in problem-solving since
probability distributions capture the inherent uncertainty involved in many real-world phe-
nomena. Bayesian networks can effectively describe a set of variables and their conditional
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dependencies with directed acyclic graphs (DAGs). This graphical representation is a natural
and effective way to highlight causality relationships. In DAGs, the vertices correspond
to the problem space variables, and the directed edges represent the various dependencies
among them. The graph is acyclic because there are not any edges directed from a child node
towards a parent node. Next, we will use the probabilistic graphical model representation to
describe the two main processes of the VAE framework: the generative and the inference
process.

5.3.2 The generative process

The generative process of the VAE can be represented with a directed latent-variable proba-
bilistic graphical model. This is essentially a probabilistic DAG that involves latent variables,
typically denoted by zzz, in addition to the observed ones, denoted by xxx. Latent variables are
unobserved variables that are not included in the dataset explicitly; instead, they are hidden
in the data, and they have to be inferred by the model. This graphical model representation is
shown in the schematic of Fig. 5.1, where N is the number of the observed datapoints xxx and
each of them depends to a local latent zzz. The node θ denotes the parameters of the model
which are going to be learned. It lies outside the plate notation because θ is global to the
model, that is, all xxx datapoints depend on it as the direction of the edge implies. Intuitively,
the latent variables zzz contain information about the hidden structure of p∗(xxx), the actual
probability distribution that generates the observed data, and the parameters θ weigh this
information to generate samples successfully.

x

z

N

θ

Fig. 5.1 The generative process pθ (xxx | zzz) of the VAE as a directed probabilistic graphical
model.

More concretely, the graphical model expresses a joint distribution whose factorization
describes the generative process:

pθ (xxx,zzz) = pθ (zzz)pθ (xxx | zzz) (5.1)
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The distribution pθ (zzz) is called the prior distribution since it does not depend to any
other variable (unconditional). According to Eq. 5.1, we first sample a latent datapoint zzz
from pθ (zzz), and then we use it to condition the generation of xxx. The conditional distribution
pθ (xxx | zzz) is the likelihood.

5.3.3 The inference process

The above formulation describes the generative process represented by the probabilistic
graphical model, but an inference process is also necessary to derive optimal values of the
latent variables. The inference process is depicted as a graphical model in Fig. 5.2). The
inference process aims to ensure that the latent space of the model encompasses all the
meaningful information that will enable the generation of faithful samples. In other words,
we want to obtain latent variables zzz that maximise the likelihood of generating the xxx samples
in our training set.

x

z

N

θ

Fig. 5.2 The inference process pθ (zzz | xxx) of the VAE as a directed probabilistic graphical
model.

The inference process can be achieved by calculating a posterior distribution pθ (zzz | xxx),
which can be written according to the Bayes rule as follows:

pθ (zzz | xxx) =
pθ (zzz)pθ (xxx | zzz)

pθ (xxx)
. (5.2)

There are two requirements for solving this equation: 1) to define the prior distribution
pθ (zzz), in the sense of deciding what kind of hidden attributes of the data should be captured
by the latent variables zzz, and 2) to compute the quantity in the denominator, pθ (xxx), which
is called the model evidence or marginal likelihood of the data. The first requirement is
straightforward, and there is no need to explicitly define what information should each
dimension of zzz capture, or describe any dependencies between the zzz dimensions [64]. This is
because the VAE framework avoids strong prior assumptions, and instead, it draws samples
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of zzz from a simple distribution. The usual choice for the prior pθ (zzz) is a centered isotropic
multivariate Gaussian:

pθ (zzz) = N (zzz;000, III), (5.3)

where the mean is a vector of zeroes, the covariance matrix is the identity matrix III, and
since the distribution is fixed, θ is empty, i.e., the prior lacks parameters. We will see later
that the implementation of the generative process with a multilayer neural network, which
is a powerful function approximator, is efficient for mapping the normally distributed zzz to
informative latent structure that allows for faithful reconstruction.

The second requirement, computing the model evidence pθ (xxx) in the denominator of
Eq. 5.2, is more complicated. By using the law of total probability, the evidence can be
written in relation to zzz as follows:

pθ (xxx) =
∫

pθ (zzz)pθ (xxx | zzz)dzzz. (5.4)

Evaluating 5.4 requires to integrate over a very large number of zzz, and since there is no
analytic solution to do this, the computation of the posterior is considered intractable (it
cannot be evaluated or differentiated). The VAE framework addresses this issue by using
the Auto-Encoding Variational Bayes (AEVB) algorithm [120] to approximate the posterior
distribution pθ (zzz | xxx).

5.3.4 The learning objective

AEVB emerges from variational inference methods [28], in which an inference problem
is approached as an optimization problem, and instead of estimating a complex probability
distribution, such as the true posterior pθ (zzz | xxx), we approximate it with a simpler, known
probability density which is tractable. Note at this point that another prevalent method for
approximating posterior densities is the Markov Chain Monte Carlo (MCMC) sampling, but
compared to variational inference, MCMC tends to be less fast and easy to scale to large
data.

In variational inference, we first define a family of tractable distributions Q over the latent
variables zzz. Then we optimize for finding a family member q ∈ Q (more accurately, finding
the parameters of the q distribution, the variational parameters), that is the most similar to
the true posterior. This approximate posterior is introduced in the VAE framework with a
parametric inference model qφ (zzz | xxx), where φ denotes the variational parameters which we
need to optimize so that qφ (zzz | xxx)≈ pθ (zzz | xxx). In figure 5.3 we depict both the inference and
the generative process in one probabilistic graphical model.
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Fig. 5.3 The full VAE model as a directed probabilistic graphical model. The inference
process flow is shown with dashed lines, while the generative process with solid lines.

The similarity between the approximate and the true posterior distribution is measured
with the Kullback-Leibler divergence DKL, a metric from the field of information theory,
which estimates the disparity between two distributions [113]. The measure is asymmetric,
i.e., DKL(q ∥ p) ̸= DKL(p ∥ q), non-negative, and it equals zero when the distributions are
the same. Therefore, for the optimization problem of finding a good q approximation, KL
divergence needs to be minimized, i.e., the lower the KL divergence, the higher the similarity
between the two distributions:

q∗φ (zzz | xxx) = argmin
q(z|x)∈Q

DKL(qφ (zzz | xxx) ∥ pθ (zzz | xxx)). (5.5)

Finding q∗ ensures finding the best approximation within the Q family of distributions.
The degree of complexity characterizing the selected Q family determines the complexity of
the optimization problem. Theoretically, any family can be used, but in practice, a common
choice to simplify the optimization is to use the multivariate Gaussian with mean µµµ and a
diagonal covariance matrix, that is, a scalar variance multiplied by an identity matrix:

qφ (zzz | xxx) = N (zzz; µµµ,σσσ2III). (5.6)

The DKL between the approximate posterior and the true posterior is given by the
following formula:

DKL(qφ (zzz | xxx) ∥ pθ (zzz | xxx)) = Ezzz∼qφ (zzz|xxx)[logqφ (zzz | xxx)− log pθ (zzz | xxx)], (5.7)

where the expectation is taken with respect to all zzz drawn from qφ (zzz | xxx). Note that in the
expectation of the right-hand side, zzz denotes instances of the random variable, while zzz in
DKL of the left-hand side denotes the random variable generally. The expectation subscript
zzz ∼ qφ (zzz | xxx) is removed from the following equations to avoid clutter. In the next step,
Bayes’ rule is applied on the true posterior pθ (zzz | xxx) of the right-hand side:
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DKL(qφ (zzz | xxx) ∥ pθ (zzz | xxx)) = E[logqφ (zzz | xxx)− log pθ (xxx | zzz)− log pθ (zzz)]+ log pθ (xxx), (5.8)

where the term log pθ (xxx) is taken out of the expectation because it does not depend on zzz over
which the expectation is taken. Next, by negating both sides, rearranging the terms and using
the property of linearity of expectation, we obtain the following:

log pθ (xxx)−DKL(qφ (zzz | xxx) ∥ pθ (zzz | xxx)) = E[log pθ (xxx | zzz)]−E[logqφ (zzz | xxx)− log pθ (zzz)],
(5.9)

where the second expectation on the right-hand side is equal to DKL between the approximate
posterior and the prior, and thus, can be rewritten as follows:

log pθ (xxx)−DKL(qφ (zzz | xxx) ∥ pθ (zzz | xxx)) = E[log pθ (xxx | zzz)]−DKL[qφ (zzz | xxx) ∥ pθ (zzz)]. (5.10)

At this point, we notice that the intractable marginal likelihood (the evidence) is once
again involved in log pθ (xxx). However, this time, by rearranging the terms, we can derive
a variational lower bound for the marginal log-likelihood, also called the evidence lower
bound (ELBO), which is tractable and therefore, it can be optimized via stochastic gradient
descent:

log pθ (xxx) = Ezzz∼qφ (zzz|xxx)[log pθ (xxx | zzz)]−DKL[qφ (zzz | xxx) ∥ pθ (zzz)]︸ ︷︷ ︸
ELBO

+DKL(qφ (zzz | xxx) ∥ pθ (zzz | xxx)).

(5.11)
As we mentioned before, Kullback-Leibler divergence is always non-negative, therefore,

the last term on the right-hand side, DKL(qφ (zzz | xxx) ∥ pθ (zzz | xxx)) will always be greater or
equal to zero. This property turns the ELBO part of the equation into a lower bound for the
marginal log-likelihood log pθ (xxx):

log pθ (xxx)≥ ELBO

≥ Ezzz∼qφ (zzz|xxx)[log pθ (xxx | zzz)]−DKL[qφ (zzz | xxx) ∥ pθ (zzz)].
(5.12)

Hence, maximising the ELBO with respect to the parameters θ and φ accomplishes our
optimisation goal by enforcing two things simultaneously. First, the marginal log-likelihood
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log pθ (xxx) is maximised, which means that we obtain a better fit of the data, or equivalently, the
model stands better chances to generate the data. Second, we minimise the KL divergence of
the approximate posterior from the true posterior, thus we approximate q∗ (this becomes clear
when we move the ELBO term on the left-hand side of the Eq. 5.11). There is another way
to derive the ELBO objective [112] through Jensen’s inequality, but we preferred the above
derivation presented in [120, 64], as more intuitive about the VAE framework components.

Finally, by negating the ELBO objective we derive a loss function which can be minimized
to learn the parameters θ and φ :

Lθ ,φ (xxx) =−Ezzz∼qφ (zzz|xxx)[log pθ (xxx | zzz)]︸ ︷︷ ︸
reconstruction error

+DKL[qφ (zzz | xxx) ∥ pθ (zzz)]︸ ︷︷ ︸
regularization term

. (5.13)

In the loss function equation, the reconstruction error is the negative expected log-
likelihood, and it encourages latent zzz values that the generative model can use to reconstruct
faithfully the given xxx. On its own, this term is, in fact, equivalent to the standard autoencoder
loss function, which as we discussed before is, in essence, a copy machine. It is the
regularization term in 5.13 (also called variational loss), that makes the VAE a powerful
generative model that learns useful data representations. The regularisation term in the
VAE objective encourages the inference model to learn zzz values that are close to the prior
distribution, and this way it applies a constraint on the latent variables’ space, resulting in a
continuous manifold from which we can sample and generate new realistic samples.

5.3.5 Optimization with stochastic gradient descent

So far, we discussed how the AEVB algorithm is using variational inference and the evidence
lower bound (ELBO) to deal with the intractable posterior. Furthermore, we presented how
the learning objective is defined for the joint optimisation of the inference and generative
components of the VAE. Next, we will see how this objective can be optimised (that is, how
to maximise the ELBO or equivalently minimise the loss function 5.13), with a gradient
estimator. The optimisation entails some challenges, and we will see how the AEVB
algorithm provides a very elegant solution to address them.

Optimizing the loss function of Eq. 5.13 requires taking its gradient with respect to the
generative model parameters θ and the variational parameters φ of the inference model:

∇θ ,φLθ ,φ (x) =−∇θ ,φ Ezzz∼qφ (zzz|xxx)[log pθ (xxx | zzz)]+∇θ ,φ DKL[qφ (zzz | xxx) ∥ pθ (zzz)]. (5.14)
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Solving the gradient of the variational loss (second term, 5.14 right-hand side) analytically
is straightforward when a) we let the prior to be a centered isotropic multivariate Gaussian
pθ (zzz) = N (zzz;000, III), and b) we assume a Gaussian form for the true posterior so that we can
set the approximate posterior to belong in a Q family of multivariate Gaussian distributions
with diagonal covariance matrix, i.e., qφ (zzz | xxx) = N (zzz; µµµ,σσσ∈III). In this case, there is no
dependency on the gradient parameters θ and φ , thus, a closed form of the variational loss
exists [120]:

DKL
(
qφ (zzz | xxx) ∥ p(zzz)

)
= DKL

(
N (µµµ,σσσ2III)) ∥ N (000, III)

)
=−1

2

J

∑
j=1

(1+ log(σ j
2)−µ j

2 −σ j
2),

(5.15)

where J is the dimensionality of zzz.
However, things are not so simple with the gradient of the reconstruction loss (first term,

5.14 right-hand side), because the negative expected log-likelihood must be estimated with
Monte Carlo sampling. Although, a simple Monte Carlo estimator exists with respect to the
generative parameters θ , the same is not true with respect to the variational parameters φ .
The problem with the latter is that we can not move the gradient inside the expectation like
this:

∇φ Ez∼qφ (z|x)[log pθ (xxx | zzz)] = Ez∼qφ (z|x)[∇φ log pθ (xxx | zzz)], (5.16)

because the gradient would be taken with respect to the same parameters as the expectation,
i.e., the variational parameters φ , and this issue prevents us from obtaining a Monte-Carlo
estimation. A score function estimator can solve the problem of placing the gradient inside
the expectation in the following way:

∇φ Ez∼qφ (z|x)[log pθ (xxx | zzz)] = Ez∼qφ (z|x)[log pθ (xxx | zzz)∇φ logqφ (zzz | xxx)], (5.17)

but although this estimator can be differentiated, it is known to suffer from high variance,
which makes optimization hard to converge.

The reparameterization trick

The AEVB algorithm’s key contribution is the introduction of an alternative estimator which
is obtained with a very simple but extremely powerful trick, the reparameterization trick. The
basic idea is to retain the form of the low-variance gradient estimator in Eq. 5.16 by avoiding
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the dependence of the expectation on the q distribution and the variational parameters
φ , so that Monte Carlo estimation is possible. It is accomplished by transforming the
random variable zzz, which is drawn from qφ (zzz | xxx), into a deterministic variable zzz = gφ (εεε,xxx),
where εεε is an auxiliary variable, essentially random noise, which is sampled from a simple
distribution p(εεε) like the standard normal N (000,111), and g(.) is a deterministic, invertible
and differentiable, vector-valued function with parameters φ that is mapping εεε to a more
complex distribution. This allows us to rewrite Eq. 5.16 so that the estimator is differentiable
since the parameters of the gradient are not the same with the parameters of the expectation:

∇φ Ez∼qφ (z|x)[log pθ (xxx | zzz)] = ∇φ Eε∼p(ε)[log pθ (xxx | gφ (εεε,xxx))]

= Eε∼p(ε)[∇φ log pθ (xxx | gφ (εεε,xxx))].
(5.18)

The reparameterization trick can be applied only if the latent variables are continuous.
This holds because continuous distributions have a sampling property that allows them to be
simulated using samples which are drawn from a simpler distribution (independent of the
parameters of the initial distribution), and subsequently transformed through a deterministic
path g(.) [168]. In the case of a Gaussian approximate posterior (as we have assumed with the
VAE), the transformation can be of the form zzz = gφ (εεε,xxx) = µµµ +σσσ ⊙ εεε , where εεε ∼ N (000, III),
and ⊙ indicates the element-wise product operator. By taking the analytic form of the
variational loss in Eq. 5.15, and applying the reparameterization trick on the reconstruction
loss, the resulting estimator for a datapoint xxx(i) is the following:

Lθ ,φ (xxx(i))≃
1
L

L

∑
l=1

log pθ (xxx(i) | zzz(i,l))+
1
2

J

∑
j=1

(
1+ log((σ (i)

j )2)− (µ
(i)
j )2 − (σ

(i)
j )2

)
,

(5.19)

where J is the dimensionality of zzz, L is the number of Monte Carlo samples, zzz(i,l) = µµµ(i)+

σσσ (i)⊙ εεε(l), and εεε(l) ∼ N (000, III). Kingma and Welling [120] refer to this generic estimator as
the Stochastic Gradient Variational Bayes (SGVB) estimator, since the resulting gradients
can be adapted with stochastic optimization methods such as stochastic gradient descent
(SGD).

Finally, in terms of implementation, the reconstruction error in Eq. 5.19 is based on
the logarithm of the generative model pθ (xxx | zzz) which can be implemented either as a
Gaussian (for real-valued output) or as a Bernoulli model (for categorical output). In
practice, this means that it can be computed with the Mean Squared Error (MSE) or the
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cross-entropy metric, respectively, to measure the difference between the original input and
the reconstructed output.

5.3.6 Deep learning perspective

The AEVB algorithm with the SGVB estimator of Eq. 5.19 allows for efficient computation
of gradients using backpropagation. Thus, we can use deep neural networks to parameterise
and compute the conditional probabilities of the inference and generative models. The
inference model qφ (zzz | xxx) is parameterized with an encoder network, whose weights and
biases are included in the variational parameters φ . A second network with weights and
biases included in the generative parameters θ , the decoder network, is used to parameterize
the generative model pθ (xxx | zzz). In Fig. 5.4, we present a schematic of the components and
the computational flow of the variational autoencoder.

qφ(z|x)
Encoder

pθ(x|z)
Decoderμ

σ
*

+

ε~N(0,I)

zx x~

Fig. 5.4 The computational flow of the Variational Autoencoder.

The computational flow in the VAE is the following: during training, at each time step,
a sample xxx(i) ∈ RK of the training dataset is fed to the encoder network which outputs the
parameters of a multivariate Gaussian distribution µµµ(i) ∈ RJ and σσσ (i) ∈ RJ , with J ≪ K.
Next, the latent encoding zzz ∈ RJ is obtained with the help of the reparameterization trick, by
multiplying each element of the σσσ (i) vector with the respective element of a vector εεε ∈ RJ

drawn from N (000, III), and adding the product to µµµ(i). Then, the latent variable zzz is fed to the
decoder network, which outputs the reconstruction x̃xx ∈ RK . The reconstruction error and the
variational loss are computed, and their gradient is passed with backpropagation to update
the weights. After training the VAE, we can remove the encoder network, and only use the
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decoder for generating new data. We accomplish this by sampling values zzz ∼ N (000, III) and
feed them directly to the decoder without any reparameterization.

Any neural network architecture can be used to implement the encoder and the decoder of
the VAE, and the choice depends on the type of data and the application. The deep learning
implementation of the VAE framework can fit a broad range of nonlinear functions and it
can scale-up to involve a huge number of parameters and datapoints since we can make
parameter updates using small minibatches or even single datapoints. More concretely, for a
dataset XXX with N datapoints, the minibatch version of the SGVB estimator can be constructed
as Lθ ,φ (XXXM) = N

M ∑
M
i=1 Lθ ,φ (xxx(i)), where the minibatch XXXM = {xxx(i)}M

i=1 is a subset of M
random datapoints from the complete dataset XXX of N datapoints.

The stochastic power of the VAE

The structure of the inference and generative model implemented with neural networks is,
in essence, an autoencoder, but as we have already mentioned the big difference between
a VAE and a standard autoencoder is in the optimisation objective. Standard autoencoders
optimisation is based on the reconstruction error, but the fact that they lack a regulariser
prevents them from learning meaningful representations of the data [23]. In contrast, this
regulariser is the variational loss in the SGVB estimator used by the VAE. Furthermore, the
VAE bottleneck defines a stochastic latent space which can be used, after training, to draw
samples which can be used to generate new data. In the standard autoencoder, the bottleneck
is just a compression layer with deterministic output, and it cannot be sampled stochastically.

5.3.7 Posterior collapse

A well-documented problem arising in the training of VAEs is the posterior collapse. That is
when the model instead of learning meaningful latent features from the input, learns to ignore
the latent variables resulting in a posterior distribution that collapses to the prior (usually
selected to be an uninformative prior, e.g., a unit Gaussian). More concretely, posterior
collapse indicates that the training is trapped in a trivial local optimum where qφ (zzz | xxx)≃ p(zzz)
for all xxx. Empirically, the problem can be detected during training when the variational loss
DKL[qφ (zzz | xxx) ∥ pθ (zzz) becomes almost zero.

A lot of recent efforts to understand and alleviate the problem have been reported. Many
of these efforts focus on modifications of the ELBO objective by controlling the impact
of the KL divergence term DKL[qφ (zzz | xxx) ∥ pθ (zzz)]. Bowman et al. [33] proposed the KL
cost annealing approach, in which they multiply the variational loss with a variable weight
that increases progressively from 0 to 1 during training. Intuitively, they begin with a
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standard autoencoder, since only the reconstruction error matters at the beginning, and they
progressively change to a VAE. This approach is meant to force the model to learn encodings
which enable a faithful reconstruction and then gradually smooth out the latent space by
using the prior constraint. Unfortunately, it appears that in practice the KL annealing is not
sufficient after the weight exceeds a certain value, and as it approaches a value equal to 1, the
posterior collapses again.

Higgins et al. [96, 43] propose the β -VAE modification of the objective in which they
rescale the KL divergence term with a fixed β coefficient which is treated as a hyperparameter.
The coefficient is derived as a Lagrangian multiplier and the larger it is, the stronger the
pressure on the approximate posterior qφ (zzz | xxx) to match the prior pθ (zzz). This work focuses
mainly on learning disentangled latent representations, i.e., underlying factors that affect
the disjoint properties of the data representation [23]. The authors postulate that this can be
encouraged with β > 1, but in practice, although the β coefficient allows for better control of
how much of a constraint we want to impose on the latent distribution, choices of β ≫ 1 often
come with a cost on the reconstruction fidelity since there is a tradeoff between reconstruction
and variational loss.

Alemi et al. [1], examined this tradeoff between the reconstruction accuracy and the latent
space compression from an information theory point of view, by deriving rate-distortion
curves based on the mutual information between the observed data xxx and the latent values zzz.
Their experiments demonstrate the tradeoff and show that the posterior collapse occurs in
architectures that use a powerful decoder. They propose a straightforward solution, namely
to reduce the KL divergence β coefficient to β < 1.

Powerful decoders—as in the case where an expressive autoregressive network is used to
implement the decoder—have received much attention as a potential cause of the posterior
collapse problem. The phenomenon appears to be prevalent in these implementations, and
often weakening the decoder’s capacity has been proposed as a solution [48]. Nevertheless, it
has been shown recently by Lucas et al. [146] that posterior collapse may occur even without
powerful decoders when testing simple linear VAEs.

Posterior collapse causes and solutions attract much interest since this optimisation
challenge is a limitation for using more expressive VAEs, especially in representation
learning.
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Chapter 6

Generating robotic EBL with a
Variational Autoencoder

6.1 Introduction

This chapter describes the design and implementation of a Variational Autoencoder (VAE)
for the generation of robotic Emotional Body Language (EBL) animations. The model is
trained with a small dataset of EBL animations and learns a latent representation of postures
which can be sampled and interpolated to generate new previously unseen EBL animations.
Furthermore, we conduct an exploratory analysis, the aim of which is to gain insight into the
properties of the latent space and the model’s capacity to generate many different variations
of robotic EBL. The study described in this chapter was published in [153].

The chapter is organised as follows. The first section describes the animation set and the
preprocessing of the data to create a training set, the VAE model implementation in terms of
architecture and training parameters, the sampling methodologies and the software we used.
In the second section, we present and discuss the results of the exploratory analysis, and in
the third and final section, we draw our conclusions and discuss the limitations of this study
and the next steps.

6.2 Methods and materials

This section presents the dataset, the VAE implementation, and the methodologies we used
to sample the model and generate animations.
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6.2.1 Dataset

We begin with a description of the animation set and how it was preprocessed to be used in
the VAE training.

EBL animation set

In the following experiment, we trained a VAE model with 36 robotic animations selected
and evaluated during our first experiment described in Chapter 4. Initially, the animations in-
corporated information from three modalities: motion, eye LEDs colours, and non-linguistic
sounds. For this experiment, we removed all the information except motion. Consequently,
each animation is a non-fixed length sequence of keyframes, each describing a posture
configuration along with the timestamp indicating when the posture must be reached. During
execution, the keyframes are interpolated with cubic Bezier interpolation applied locally at
each joint, to get the angles for the intermediary frames, a method called inbetweening in
graphical animation. More concretely, a keyframe is represented with a vector of 17 real
values describing the angles of Pepper’s 17 joints (Fig. 6.1) in radians and one value for
the timestamp in seconds indicating when the particular configuration of angles should be
reached. We did not include any information about the emotional content described either by
categorical or dimensional tags (valence and arousal) since the experiment will follow an
unsupervised learning approach based exclusively on the motor content.

Fig. 6.1 The angles of the 17 joints of the Pepper robot define a posture. The current
configuration is the StandInit posture.
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Preprocessing

The animations’ keyframe representation described above is the original one used for the
design of the animations and their execution through the robot’s NAOqi operating system.
However, for the VAE training, we had to obtain a data representation that is more efficient
for deep learning. We needed to maximise the training set samples’ size and keep their
content as succinct as possible, without unnecessary information. We figured out that the
best way to achieve this is to use a constant sampling rate for capturing the intermediary
postures. This approach also allows us to remove the dimension of the timestamp since it
would be redundant.

To obtain this transformation of the dataset, we had the animations executed by the real
robot, and we used the NAOqi built-in function ALMotionProxy::getAngles to record the
positions of the angles with a sampling rate of 20 frames per second. Before the recording,
we made a small modification in the keyframe representation by adding an extra keyframe
describing the StandInit posture (see posture in Fig. 6.1) at the beginning and the end of
each animation (whenever it was missing), to obtain a clear onset and offset of an animation.
In total, the initial keyframe representation dataset contained 697 keyframes, and with
up-sampling, we obtained 4696 posture frames, i.e., vectors of joints’ angles.

The next issue that concerned us in preparing the training set was related to the prevalence
of possible body orientation bias. For example, if many postures assume a right-side
orientation, the training could be heavily biased, and the network might not learn enough
postures with left side orientation. Asymmetries in facial expression [31] or head motion [75]
have been associated with the lateralisation of emotion processing in the brain, and similarly
this could be the case with body posture. There are two main hypotheses proposed: the
Right-Hemisphere Hypothesis, which supports the dominance of the right half of the brain is
uniquely specialised in emotion, either positive or negative [30], and the Valence-Specific
Hypothesis, which posits that the right hemisphere is specialised in negative emotions and
the left hemisphere in positive emotions [59]. However, there are also studies supporting
that the two hypotheses are not always mutually exclusive [185, 118]. We decided to assume
that the interpretation of the bodily expression of emotion is independent of left or right side
orientation with respect to the body’s vertical axis. This assumption allowed us to augment
the dataset by having every posture mirrored from left to right or the opposite. Nevertheless,
we avoided any mirroring with respect to the horizontal axis, e.g., changing upward motion
to downward or vice versa, since such movements are often found to correlate with emotional
expression in studies of bodily affect [56, 53]. More specifically, to create a mirrored posture
we swapped the values of the entire chain of arm joints between the left and right arm, i.e.,
shoulder pitch and roll, elbow roll and yaw, wrist yaw, hand. For the arm’s roll and yaw
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joints, we had to invert the signs of their values because the ranges of these joints had inverse
signs between left and right. Furthermore, we also mirrored the head yaw and hip roll joints
since they are also moving rightward and leftward with respect to the body’s vertical axis.
For this mirroring, only the signs needed to be inverted. After the mirroring augmentation,
the size of the training set increased from 4696 to 9392 posture frames.

The last step in the preprocessing pipeline was the data normalisation. The ranges of
plausible joint values differ among the joints; thus, we rescaled all the values in [0, 1] with
Min-Max Normalization. We shuffled the frame samples and used 80% for the training, and
the rest for the validation.

6.2.2 The VAE network implementation

This section describes the VAE model implementation in terms of network architecture,
training parameters and configuration.

Architecture

For the implementation of the encoder and the decoder of the robotic EBL generation VAE,
we used two Multilayer Perceptrons (MLP) of equal capacity. Each has three dense layers
with 128, 512, and 128 units, but the decoder MLP has an additional dense layer after
the output, serving as a reconstruction layer, with 17 units to match the input dimensions
(Fig. 6.2).

An MLP is a feedforward neural network with several fully connected layers. The MLP
was a simple and adequate choice for the problem since the input has only 17 dimensions. A
Convolutional Neural Network (CNN), which is more efficient for high dimensional pixel
spaces in image classification, would be an unnecessarily more complicated choice. Also, it
could be argued that a better alternative might have been to use a recurrent neural network
(RNN) since it can capture sequence dynamics. However, recall that we train our VAE with
shuffled postures instead of sequences and that the VAE’s objective aims to learn a continuous
latent manifold that can be interpolated and generate trajectories that appear sequential and
smooth; thus, we can achieve the sequential output even with the MLPs.

Although the choice of dense layers with 128 to 512 units might not appear particularly
lightweight, it was decided after several experiments in which we tested implementations
with less or lighter layers and unequal capacities between the encoder and the decoder. The
selected setup was reasonably fast to train on a CPU with 6 multiprocessors (approximately
20 minutes to complete training), stable and it converged to low reconstruction and validation
error.
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Fig. 6.2 The architecture of the robotic EBL generation VAE. The orthogonal blocks represent
network layers with their numbers indicating the units of each layer. At each step, a posture
is fed as an input vector xxx of 17 values, and it is reconstructed in the output x̃xx.

For the latent layer, we decided to use a strong bottleneck of 3 dimensions. We also
tested higher dimensions, but we did not notice any improvement in the reconstruction and
validation error. The latent layer infers the parameters of a multivariate Gaussian distribution
(a 3D Gaussian in our case), so it consists of two sub-layers, one for the latent mean and one
for the latent standard deviation (Gaussian parameters µ and σ ), with 3 units each (Fig. 6.2).
The output of these layer is used along with a 3D sample εεε ∼ N (000, III) to produce a latent
3D vector zzz which is then fed to the decoder (reparameterisation trick).

We used a layer of rectified linear activation functions (ReLU) after each hidden layer,
while linear activations followed the output layers. The decoder’s reconstruction layer uses
a sigmoid function to rescale the output in the range [0,1]. After each hidden layer, we
use a dropout layer, which randomly sets half of the units to zero [98]. At first glance, this
choice might appear redundant since the VAE already uses a regulariser in its loss function
(the variational loss), but in practice, the dropout appears useful because it decreases the
computational cost without making training less effective. Finally, we trained for 200 epochs.
The architecture specifications are summarized in Table 6.1.

Training parameters and configuration

The training parameters are summarised in Table 6.2. The network weights were initialised
with a Xavier uniform initialiser [82], i.e., each unit’s initial weight was sampled from a
uniform distribution with limits normalised by the sum of its input and output units. For the
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Table 6.1 Robotic EBL VAE architecture specifications

Encoder Decoder

Input R17 R3

Reconstruction NA R17 (sigmoid)
Hidden layers 3 FC layers
Hidden units 128, 512, 128
Hidden activation ReLU
Output activation Linear

Table 6.2 Robotic EBL VAE training parameters

Training parameters

Xavier initialization
Dropout

Adam, lr = 1e−4
β = 0.001

Batch size: 32
Epochs: 200

optimisation, we used an Adam optimiser [119] with a learning rate equal to 1e-4. We used
the Mean Squared Error (MSE) between the original frame and the reconstructed output to
compute the reconstruction error. The variational loss was computed in the analytic form
(Eq. 5.15). We sum the two losses for each input sample and we average across minibatches
of size equal to 32.

The most challenging hyperparameter to tune was the β coefficient of the variational loss.
With a β = 0 the model is reduced to a standard autoencoder, which can compress the input
through the 3D latent space, and reconstruct it faithfully, but since it is a non-probabilistic
network it can not be a generative model. In the original VAE framework, there is no scaling
of the variational loss (β = 1), while in the β -VAE network [96] it is proposed to use β > 1
for better disentanglement of the latent factors underlying the data distribution. We tested
both alternatives for β , but in both cases, we obtained poor results because of posterior
collapse. The latent space was completely shrunken to the unit Gaussian prior and was
ignored by the decoder who was unable to reconstruct the input. We found that the problem
could be alleviated by decreasing β below 1, and we empirically ended it up assigning
β = 0.001.
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6.2.3 Sampling the latent space

The sampling process is applied directly to the 3D latent space by drawing samples from a
3D Gaussian. Subsequently, the samples can be interpolated to produce a latent 3D trajectory
that defines a latent animation. At this point, it is important to note that the latent space,
besides encoding the configuration of postures, also captures the temporal dynamics that
define the transitions between postures. We will now briefly overview different interpolation
methods that can be used. We will also describe the method we followed to sample latent
trajectories in a systematic way to examine what their properties are and how they decode
into the robot’s joint space.

Interpolation methods

Since we want to be able to generate animations in the 17D joint space, we need to sample
latent trajectories instead of just individual latent datapoints. This can be accomplished by
applying interpolation between the sampled latent datapoints. Interpolation or inbetweening
methods are well studied and widely applied in computer animation for filling in the interme-
diary frames between keyframes [91]. As we have already mentioned in the description of
our original animation set, the training set animations were created with pose-to-pose design
of the keyframes and then cubic Bezier interpolation was applied locally at each joint, to
derive the intermediary postures. The main difference with the latent space interpolation is
that it is applied globally instead of individually at each joint, since all the joints information
are compressed into three latent dimensions.

Different interpolation techniques can be used, and here we examine three of them to
find out how they affect the decoding of the latent trajectories. The first one is the linear
interpolation (Lerp), which is very simple to understand and apply, and is the most common
choice for sampling generative models. The Lerp interpolation produces a straight line
connecting the endpoints. The distance between successive intermediary points on this
straight line is equal. For more than two datapoints, the pieces of the linear interpolates
are connected. However, although it results in a continuous trajectory, this trajectory is not
smooth.

The second interpolation technique we examined is the spherical linear interpolation
(Slerp) [205]. In Slerp, the segments connecting the endpoints are curved lines. The
intermediary points are non-equidistant, with more points accumulating near the endpoints,
and less toward the segment’s middle. This creates a slow-in and slow-out effect from one
endpoint to another. As is the case with the Lerp interpolation, the overall trajectory is not
smooth, since the derivative is discontinuous at the connection points between segments.
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White et. al [226] suggest Slerp as a more appropriate method for sampling latent interpolants,
because it accounts for the curving shape of the latent space, and is less prone to traverse
blind spots, that is, latent space locations far away from the prior.

Finally, we examined B-splines interpolation [15], which allows to smoothly join together
adjacent segments to produce an overall smooth curve. More specifically, we used a cubic
spline interpolation with a natural boundary condition, which applies low-degree polynomials
piece-wise for every segment, and enforces zero second derivatives at the endpoints, resulting
in less oscillations compared to polynomial interpolation, with enough stiffness around the
endpoints that ensure a more natural transition.

In summary, we will examine how the decoded latent trajectories are affected by the
interpolation method used. We will apply three different interpolation algorithms: 1) Linear
interpolation (Lerp), 2) spherical linear interpolation (Slerp), and 3) B-spline interpolation.
Lerp produces continuous but not smooth trajectories, comprised of straight lines with
equidistant points. Slerp produces continuous but not smooth trajectories, comprised of
curved lines which accumulate more points at their ends. B-splines produce continuous and
smooth trajectories.

Spherical grids

The methods we discussed so far for sampling latent trajectories, pertain to random sampling
of latent datapoints and then interpolate them to create a latent trajectory. It would be more
informative to use a more systematic way to sample latent trajectories and examine how they
decode into the 17D joint space. We are particularly interested in exploring the granularity
potency of the latent space, and examining if there are properties that we can use to generate
more targeted animations in terms of their emotional interpretability.

Since we used a 3D Gaussian prior to constrain the latent variables during training, the
latent space distribution can be visualised as a spherical ball. Thus we can use topological
features of the sphere, such as the radius, to extract trajectories systematically and explore
the properties of the latent representation and their impact in the decoding process. Based on
this motivation we conceptualised the idea of projecting spherical grids on the latent space
and then interpolate along their longitudes to derive latent interpolants (Fig. 6.3).

We defined spherical grids of different radiuses ranging from 0.5 to 10, for 10 different
values. For each grid we defined 10 longitudes which are spread equidistantly on the sphere.
Each longitude contained 20 points, which were interpolated with Slerp of 10 steps at each
segment to produce latent trajectories of 200 frames. Furthermore, each grid was rotated in
three different ways, so that the axis was parallel to one of the three latent dimensions LD1,
LD2, and LD3. In total, for the 3 latent dimensions, the 10 radius values, and 10 longitudes,
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Fig. 6.3 Three spherical grids with their axes parallel to the latent dimension LD2 and
radiuses ranging from 1 (blue) to 3 (green).

we got 300 latent trajectories of 200 frames each. As an example, in Fig. 6.3 we plotted 3
such grids, with radiuses equal to 1, 2, and 3, with their axes parallel to LD2. Each of these
grids has 10 longitudes and every longitude defines a latent trajectory of 200 latent postures
which can be decoded into an animation.

6.2.4 Generating animations

For the generation of new animations we fed the 3D latent trajectories to the decoder network,
sample by sample, and obtained a 17D trajectory of postures, to execute as an animation with
the NAOqi built-in functions.

6.2.5 Software

For recording and executing robotic animations with the real Pepper robot we used NAOqi
2.5 SDK1. For the robot simulations we used the Choregraphe Suite2. The code for the
VAE model was adapted from the TFModelLib collection of neural networks3. For the
implementation of B-splines we used Splipy4. The code for Slerp interpolation was taken
from the Plat repository5. The rest of the code for the data preprocessing, sampling, spherical
grids, visualizations, etc. was written in Python 3 with packages such as NumPy [178], SciPy
[219], pandas [162], scikit-learn [182], Matplotlib [104].

1NAOqi 2.5: http://doc.aldebaran.com/2-5/home_pepper.html
2Choregraphe Suite 2.5: http://doc.aldebaran.com/2-5/software/choregraphe/index.html
3TFModelLib repository: https://github.com/nhemion/tfmodellib
4Splipy v1.3.1: https://sintefmath.github.io/Splipy/
5Plat repository https://github.com/dribnet/plat
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6.3 Results

In this section we present the training results and the exploratory analysis we conducted
regarding the sampling and interpolation of the latent space. We investigate the trajectories
of the generate animations in terms of their variability. We derive a hypothesis on how we
can use the 3D latent space’s geometrical features to condition the generation of animations
with the arousal component.

6.3.1 Training performance

The VAE was trained for 200 epochs, and it converged to a training error equal to 0.007, and
validation error 0.0071 (see Fig. 6.4). At test, the reconstruction error was 0.0028, and the
variational loss was 4.2175 (without the β scaling). In Fig.6.5 we visualise all the postures
of the dataset encoded in the 3D latent space, colour-coded according to the animation they
represent. Each datapoint is an encoded posture. It can be seen that the VAE learned a tight
latent space that spreads similarly in every dimension, resembling a 3D Gaussian with a
mean of zero. Now, sampling from a 3D Gaussian—even from areas that have not been
encoded during training—, interpolating the samples and decoding the latent trajectories will
generate new, realistic postures with high probability .

Fig. 6.4 The training and validation set errors. Reconstruction and variational losses are
presented for the validation set.
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Fig. 6.5 The training set animations encoded in the latent space after training the VAE
network for 200 epochs. The colour code represents different animations. The latent space is
defined by three latent dimensions: LD1, LD2, and LD3.

6.3.2 The effects of different interpolation methods

To explore how the three different latent space interpolation methods affect the generated
animations we created a small animation of six frames in the 17D joint space, by randomly
selecting four posture frames from the dataset, and adding a frame of the StandInit posture
at the beginning and the end. Then, we encoded the six frames in the latent space and we
interpolated them with 100 evaluation points per segment for Lerp and Slerp interpolation,
and 500 points for B-spline globally, deriving three latent interpolants of 500 datapoints each.
The latent interpolants are plotted in Fig. 6.6. They all begin and end with the latent encoding
of the StandInit posture, and they all pass through the four intermediary postures. For Lerp
and B-spline the trajectories are curved, but B-spline is the only one that is completely
smooth even at the connecting points.

To examine the interpolation method’s effects in the joint space, we decoded the three
latent interpolants with the VAE decoder into the 17D joint space. To visualise and compare
the three animations, we averaged each of them across the 17 joints. The averaged trajectories
are presented in Fig. 6.7, where we compare them against a fourth trajectory (black dashed
line). This trajectory represents an animation with the same six keyframes interpolated
directly in the 17D joints space with the NAOqi Bezier interpolation method, similarly to the
process used by the animators who created the original animations.

It can be seen in Fig. 6.7 that the decoded VAE trajectories share a common trend with
the NAOqi trajectory, but they exhibit far more complexity. The NAOqi interpolation is
applied locally at each joint, without taking into account the trajectories of the other joints.
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Fig. 6.6 Different latent interpolation methods for the same sequence of postures. StandInit is
the initial standing posture of the robot. All interpolants are passing through the key postures,
but they follow different trajectories in doing so.
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Fig. 6.7 Three animations decoded from the latent interpolants of Fig. 6.6 and averaged
across joints, compared to the Naoqi interpolation applied directly in the joint space (black).
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In contrast, the VAE generated animations originate from a global interpolation over the
latent encodings. Thus, it encompasses information from all the joints and their interactions.
Furthermore, the variation apparent in the VAE generated trajectories can be explained by the
fact that the latent space interpolation traverses areas which encode many different postures,
not just the keyframes used to construct this 6 frame sequence, causing many fine-grained
variations to be injected in the generated features.

Finally, by comparing the VAE generated trajectories to the different latent space inter-
polation methods, we observe that Lerp and Slerp overlap a lot, while the B-spline exhibits
a delay, possibly because it is not applied piece-wise. Although it passes through the six
keyframes, it does not use the same number of evaluation points per segment, so keyframes
appear shifted. In the following analysis we will be using Slerp interpolation.

6.3.3 The animations generated from the spherical grids trajectories

Instead of random sampling, we used the spherical grids templates described in Section
6.2.3 to systematically generate 300 animations. We present these animations in Fig. 6.8 as
single trajectories, after averaging each over the 17 joints, so each trajectory in a block is
an animation. Each of the three horizontal panels contains the trajectories of the animations
generated from spherical grids with their axes parallel to one latent dimension (LD1 to LD3).
The ten blocks in each panel represent the 10 longitudes of a spherical grid. The colour of
the trajectories in a block indicates the different radiuses used to scale the spherical grids.
For example, the black trajectory in the left topmost block represents an animation decoded
from a spherical grid’s first longitude with a radius equal to 0.5 and axis parallel to LD1.
The visualisation of the 300 animations demonstrates the latent space’s potential concerning
the granularity of the encodings. Furthermore, the visualisation highlights the topological
properties that can be exploited to generate animations of a targeted emotional content.

Granularity in the generated animations

Fig. 6.8 shows that every trajectory is different from the rest. This exhibits the latent space’s
potential to generate numerous different animations, even when it is trained with just 36
animations. We can observe the variation between the blocks corresponding to different
longitude lines, the variation with respect to the radius scaling, and the variation with respect
to the spherical grids’ axis orientation. The variation occurs within each latent dimension,
as well as between different latent dimensions. This sample of 300 generated animations
demonstrates the granularity that is inherent in the latent space. Even by just reversing the
frames’ sequence, we can double the variations while keeping the smoothness and sequential
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Fig. 6.8 Decoded interpolations in the joint space, averaged across joints. Each of the three
panels represents the animations that were decoded from the longitudes of spherical grids
projected on the latent space with their axes along one latent dimension (LD1-LD3). For
each latent dimension, the spherical grids were scaled with radiuses ranging from 0.5 to 10,
producing ten animations for each longitude. The plots demonstrate the granularity of the
animations sampled from the latent space of the VAE model and the fact that the motion is
amplified as we move further away from the core of the latent space. We suggest that the
later feature can be used to model the arousal dimension of emotion.

characteristics. It becomes apparent that the robotic EBL VAE can generate numerous
animations of different content very easily.

The amplitude of motion is modulated by the radius

Another observation that becomes apparent by inspecting Fig. 6.8, is the increase of the
trajectories’ amplitude with respect to the radius scaling. This effect is related to the latent
topology and it indicates that we can sample subtle emotional expressions near the core
of the latent space, while as we move outward by increasing the radius, we can sample
latent trajectories that will decode into expressions of heightened activation. Therefore, we
could potentially use this progressive alteration of the amplitude encoded in the latent space
topology to manipulate the arousal dimension of emotion in the generated animations.

It should be noted that this result is not possible—or at least it would not produce a smooth
effect—if we would just manually scale the joints values. Such manipulation applied directly
and globally at the joints space would require extremely cumbersome tuning, otherwise,
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A

A) LD = 2, long = 1, radius = 0.5

B) LD = 2, long = 1, radius = 3

C) LD = 2, long = 1, radius = 6

D) LD = 3, long = 1, radius = 3

E) LD = 2, long = 1, radius = 10

F) LD = 2, long = 1, radius = 3, reversed

G) LD = 2, long = 2, radius = 6

H) LD = 1, long = 1, radius = 3

Fig. 6.9 Simulation of selected generated animations. The abbreviations are LD = latent
dimension and long = longitude line. A: Very subtle motion is sampled from the core of
the latent space. B-C: Moving outward from the core, the motion has higher activation.
D: A different animation is obtained when rotating the spherical grid axis to another latent
dimension (compared to B). E: Sampling out of the limits of the learned latent space causes
unnatural motion artifacts. F: Reversing animation B gives a different expression. G:
Adjacent longitudes decode into a different animation (in comparison with C). H: Changing
the grid axis to another latent dimension generates different animation (in comparison with
B and D).

it would induce artifacts in the smoothness of the motion and result in unnatural postures,
because of the dependencies between different joints and the different ranges of values they
can take. Consequently, we believe that with our trained VAE model we have obtained a
feature for smooth manipulation of the motion amplitude. This feature is remarkably easy to
control and appears promising for modifying the arousal content of an animation. It can be
configured by changing the radius of the spherical grid template, or the standard deviation of
a 3D Gaussian distribution in random sampling.

6.3.4 Display on the robot simulator

In Fig. 6.9 we demonstrate the outlined effects by displaying the generated animations on
the Choregraphe Suite robot simulator for Pepper. By comparing sequences A, B, C and E,
it becomes apparent how the radius of sampling can modulate the expression’s amplitude.
These four sequences were decoded from the same latent longitude of spherical grids with
axes parallel to LD2. The only difference between them is the radius of the grids. Starting
with a radius equal to 0.5 in A, the motion is very subtle and the robot appears almost as
not moving. Then as we increase the radius to 3 for sequence B, and 6 for sequence C the
motion becomes progressively more activated.
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For sequence E, the radius is equal to 10, and it can be noticed that some unnatural
joints configurations become apparent, e.g., the elbows are bent backwards. This is because
sampling at this radius exceeds the limits of the learned latent space. Recall that we trained
the VAE with a variational loss that forces the latent distribution to resemble a unit 3D
Gaussian prior, spreading spherically within a unit around a zero mean. However, this loss
did not converge to zero, thus the learned distribution is not identical to the prior and has
a higher spread. As shown in the latent space visualisation 6.5, this spread is at least equal
to 3 for the encoded dataset. So we have a pretty good idea about the limits of the latent
space, and by testing a bit higher radiuses than 3, we easily detect them and avoid generating
animations with such artifacts. In our VAE model, we detected this limit effortlessly after a
couple of tests at 7 units, so by restricting the radius or the standard deviation below 7, we
can be sure that we will be generating realistic animations.

The variation with respect to the latent longitudes is demonstrated by comparing se-
quences G and C; adjacent longitude lines from the same grid, i.e., same radius and ori-
entation, decode into different animations. Similarly, the comparison of sequences D and
H pinpoints the variation due to the rotation of the spherical grids’ axes when the radius
and longitude line remain the same. Finally, sequence F in comparison with sequence B
illustrates another variation that can be obtained by just reversing the sequence’s frames.

6.3.5 Display on the real robot

Finally, we tested the generated animations on a real Pepper robot to examine how they
are executed in real-world conditions. A video with the physical robot executing several
generated animations with the properties outlined above is available online6. It can be noticed
that many of the animations presented in the video, which are generated from spherical grids
with the same orientation with respect to the latent dimension, they appear to finish abruptly
and in the same or very similar posture. These effects are because latent longitudes end up at
the same latent encoding located at the spherical grid’s pole. This point encodes a posture at
which we arrive smoothly, but since we do not continue to interpolate, the motion appears to
be halted abruptly. We discuss this further in the following section.

6.4 Discussion and conclusion

This chapter presented the implementation and application of a VAE model for the automatic
generation of synthetic robotic EBL animations. The network is trained with a small set

6VAE generated animation set video: https://youtu.be/sdsp05rqcJA
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of high-quality robotic animations of emotional content and can generate numerous new
variations that appear realistic and expressive. We propose this approach as an alternative
to hand-coded, pose-to-pose animation techniques which are cumbersome to design and
thus limited in number and variations. The VAE generated animations can be of great value
in social and affective robotics applications where we need a lot of different animations
with fine-grained variations to sustain a robot’s ‘illusion of life’ in long-term human-robot
interaction. Such an effect cannot be accomplished with small animation sets since the
expressions will become repetitive and predictable after a point.

Furthermore, we conducted an exploratory analysis to better understand the properties
of the latent space of the model and their impact on the decoded animations. Interestingly,
we discovered that the motion amplitude in the generated animations can be modulated by
the radius or the standard deviation of the sampling applied to the spherical latent space.
Assuming that the amplitude of motion can be an aspect of heightened activation, we suggest
that this feature can be potentially used to model the arousal dimension of the emotional
content in the generated animations. This hypothesis remains to be tested further in a user
study.

6.4.1 Limitations and next steps

This first attempt to generate animations for Pepper with a VAE has been quite conducive
to better understand robotic EBL synthesis, but it also revealed several shortcomings that
we need to address in the next steps. The most important limitation lies in the fact that the
proposed model can not generate animations of prespecified emotional content. Although,
we ensure that the generated animations will encompass some emotional trait—given that
we trained the VAE with examples of EBL—, we can not control the generative process to
output emotions of specific valence and arousal. A socially responsive robot needs not only
to express emotion but also to express the appropriate emotion with respect to the situation.
Therefore we need to be able to condition the generative process to specific valence and
arousal values. As reported previously, we have a potential candidate feature to condition
the generated animation in terms of arousal, but a solution is also necessary for valence
conditioning. To address this crucial requirement, in the next chapter we will introduce the
Conditional Variational Autoencoder (CVAE), a slightly modified version of the VAE that
allows us to condition the generated output with some given label.

The second important limitation of the present work is the lack of human evaluation of the
generated animations. We trained a model with EBL animations, and technically, the model
converged and learned these features. However, to ensure that the generated animations are
interpreted as involving emotional traits, a user study is indispensable. We avoid conducting
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a user study at this stage, because we wanted to complete the conditioning requirement first
and then collect evaluations on the interpretability of the valence and arousal conditioning.

A technical shortcoming that we want to address in our next effort is the abrupt ending at
the same posture when using the spherical grids longitudes to interpolate the latent space.
We would like to be able to systematically sample latent trajectories, but in such a way so
that they have a smooth and clear onset and offset.

Finally, the original animations contained more information than just the motion se-
quences, e.g., eye LEDs patterns. In the next steps, we attempt to take advantage of this
information to enhance the robot’s expressivity.
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Chapter 7

Generating robotic EBL of targeted
valence and arousal

7.1 Introduction

In this chapter, we outline our efforts to address the previously mentioned limitations(Section
6.4.1) and obtain a complete pipleline that generates targeted emotion animations by condi-
tioning the process with specific valence and arousal values. The proposed pipeline also aims
to improve the generated animations’ expressiveness by adding a second modality besides
motion, and in particular, the eye LEDs colour sequences. Part of the work presented here is
published in [151]. The full dataset we used for training the CVAE is available1.

The chapter is organized as follows: The first section describes the theoretical aspects
of the Conditional Variational Autoencoder which is the model we will apply. Afterwards,
we outline the methodologies we used for restructuring the training set, implementing and
sampling the model.

7.2 The Conditional Variational Autoencoder

The VAE is a very powerful generative model but in its standard form it does not allow any
control on the generation process in terms of enforcing specific attributes on the output. This
means that after we have trained the model, the output can be of many different classes. Con-
trolling the generative process so that the decoded output matches some given attribute can
be very important in certain applications. The Conditional Variational Autoencoder (CVAE)
[208], an extension of the VAE framework [120, 110, 121], is trained to maximize a lower

1REBL-Pepper Dataset: https://github.com/minamar/rebl-pepper-data
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bound on a conditional data log-likelihood, and therefore it learns to make a discriminative
prediction additionally to reconstructing the input. More concretely for a datapoint xxx and an
auxiliary variable ccc that holds a ground-truth label or an attribute, the ELBO from Eq. 5.10 is
modified as follows:

log pθ (xxx | ccc)−DKL[qφ (zzz | xxx,ccc) ∥ pθ (zzz | xxx,ccc)] =E[log pθ (xxx | zzz,ccc)]−DKL[qφ (zzz | xxx,ccc) ∥ pθ (zzz)]
(7.1)

where the expectation is taken over all z ∼ qφ (zzz | xxx,ccc). The new objective is thus to maximize
the data likelihood conditioned on ccc. It should be noted that ccc can be discrete or continuous.
The loss function to be minimized is the following:

Lθ ,φ (xxx,ccc) =−Ez∼qφ (zzz|xxx,ccc)[log pθ (xxx | zzz,ccc)]︸ ︷︷ ︸
reconstruction error

+DKL[qφ (zzz | xxx,ccc) ∥ pθ (zzz)]︸ ︷︷ ︸
regularization term

. (7.2)

The modified CVAE loss function conditions the generative process on a given label or
attribute ccc. During training, at each step, we concatenate input xxx and label ccc, and we feed them
as one vector to the encoder. After the latent values are sampled and the reparameterization
trick is applied, the latent variable zzz is concatenated with ccc again and the vector is fed to
the decoder. Fig. 7.1, illustrates the structure and computational flow of the CVAE. After
training, when we want to generate an output with label ccc, we sample a zzz from the prior as
we did with VAE, we concatenate it with ccc, and we pass it through the decoder.

7.3 Methods and materials

In this section we will describe our implementation of the CVAE framework for robotic EBL
generation.

7.3.1 Dataset

We begin with the description of the animation set and its preprocessing.

EBL animation set augmented with eye LEDs modality

This study used the same animation set of the 36 robotic animations, which was initially
selected and evaluated with the procedures described in Chapter 4. For this instance of
the animation set, we kept two modalities: the motion sequences and the eye LEDs colour
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Fig. 7.1 The structure of the CVAE. Compared to the standard VAE, there is an additional
input ccc (green block) that holds a label or an attribute on which we want to condition the
generative process. It is concatenated with both input xxx, and the latent zzz.

sequences. The additional modality of the eyes is expected to add more expressiveness to
the generated animations. Pepper has two eyes with 8 LEDs each (Fig. 7.2). Each LED is
described by 3 values representing an RGB colour. Thus, in total, we have 48 values within
a range of [0,1]. As explained in Section 6.2.1, the motion modality comprises keyframes
that use 17 values to define the joints’ angles of a posture, and the animation is obtained by
inbetweening these keyframes with interpolation applied locally at every joint. However,
the LEDs representation is different in that their values can be set at any frame along with a
duration. Thus, no interpolation is applied. They remain the same until they are manually
modified again, or the duration period is over.

Furthermore, we used the valence annotations, collected previously in the study described
in Chapter 4. The valence annotations are 36 ratings in the range [0,1], one for each animation.
In the present study, we use them as attributes to condition the CVAE to generate animations
of specific valence.

Preprocessing

The preprocessing pipeline is very similar to the one described in Section 6.2.1, with some
small modifications to account for the additional LED modality. We had the animations exe-
cuted by the robot and we recorded both the joints’ angles and the LEDs values concurrently.
This time we used a sampling rate of 25 frames per second, slightly higher than before to
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Fig. 7.2 Eye LEDs for Pepper. The robot has 8 LEDs around each eye.

increase our training data given that our input vectors are now larger, with 17 elements for
the joints and 48 elements for the LEDs, a total of 65 elements. The StandInit posture was
added at the beginning and the end of each animation before the recording to mark a clear
onset and offset of the expression.

Next, we doubled the frames by applying the mirroring process described in detail in
Section 6.2.1. After this augmentation, we acquired 10148 frames. Regarding the valence
attribute, we repeated the valence rating related to each animation for all the frames belonging
to it. Therefore, each training example consists of 66 elements: 17 for the joints’ angles
describing the posture, 48 for the eye LEDs state, and one value indicating the valence rating
of the animation to which the frame belongs.

Finally, we rescaled the joints’ values in [0,1] with Min-Max normalization. The scaling
was unnecessary for the rest of the values (LEDs or valence rating) since their range was
already [0,1]. The dataset was shuffled again, and 80% was used for training, and the rest
was preserved for the validation.

7.3.2 The CVAE network implementation

Our CVAE implementation is very similar to the VAE implementation described in Section
6.2.2, with a few alterations to permit the conditioning on the valence attribute, and the extra
input data describing the eye LEDs state. We changed the input dimensions from 17 to
66 to include the LEDs state and the valence attribute. The decoder input dimension was
also increased by one to match the size of 3D latent zzz concatenated with the scalar valence
attribute. We used MLPs as before but this time we increased the encoder’s capacity by one
extra fully-connected hidden layer with 512 units. This was decided after several empirical
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tests that showed that this configuration was more efficient for the enlarged input and to
avoid posterior collapse. Table 7.1 summarizes the architecture characteristics of the CVAE
implementation.

Table 7.1 Robotic EBL CVAE architecture specifications

Encoder Decoder

Input R66 R4

Reconstruction NA R66 (sigmoid)
Hidden layers 4 FC layers 3 FC layers
Hidden units 128, 512, 512, 128 128, 512, 128
Hidden activation ReLU
Output activation Linear

Training parameters and configuration

All training parameters were the same as in Section 6.2.2, except the mini-batch size and
the training epochs. We doubled the mini-batch size from 32 to 64 since we found out
empirically that this way the model would converge faster without impact on the loss for the
particular configuration. We trained for 250 epochs. The training parameters are summarized
in Table 7.2.

7.3.3 Conditional sampling of the latent space

To decide our sampling methodology, we took into consideration two requirements. The
first one is to test the hypothesis proposed in Section 6.3.3, according to which, the latent
space topology can be exploited to model the arousal dimension of emotion, by controlling
the radius of the sampling, which modulates the amplitude and variability of the generated

Table 7.2 Robotic EBL CVAE training parameters

Training parameters

Xavier initialization
Dropout

Adam, lr = 1e−4
β = 0.001

Batch size: 64
Epochs: 250
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animation. To sample trajectories with different radius systematically, we can use the
spherical grids template from Section 6.2.3, but we need to address a shortcoming discussed
in the previous chapter. Recall that when we sampled along the longitudes of a spherical grid,
the decoded animations appeared to begin and end abruptly, and always with the same posture.
This was because all the longitudes end at the same point, the grid’s pole, and in larger grids,
this point is far away from the centre. Solving this issue is our second requirement.

To address these two requirements, we decided to change the spherical grid topology to a
torus grid. More specifically, we used the topology of a horn torus (see Fig. 7.3), which is a
torus without a hole, with all the circles forming its tube touching each other at the centre of
the 3D latent space where LD1 = LD2 = LD3 = 0. In this approach, we sample the latent
trajectories along the 8 colourful circles presented in Fig. 7.3. The advantage is that although
all the trajectories begin and end at the same point, this point is now the core of the latent
space and it decodes into the StandInit posture, the most neutral and symmetric posture. This
way, we obtain a clear onset and offset of the animation and we still keep the radius feature
with which we will modulate the arousal dimension of the generated animations.

Fig. 7.3 One of the torus grids we used for sampling latent trajectories. The particular one is
of radius equal to 3, it has its axis in parallel with the latent dimension LD3, and its center
is in the core of the latent space where LD1 = LD2 = LD3 = 0. The latent trajectories are
sampled along the colored longitude lines.
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Arousal conditioning

To condition the generated animations on the arousal as hypothesized to be modulated by the
radius of the latent space, we defined three levels of arousal as low, medium, and high, which
were obtained by sampling the 3D latent space with a radius of 3, 4, and 5 respectively.

More concretely we sampled 8 circular latent trajectories from torus grids rotated in three
ways (so that the central axis is parallel to one of three latent dimensions), and radiuses of 3,
4 and 5 (for example, Fig. 7.3 illustrates 8 circular trajectories from a torus grid of radius
equal to 3, and its central axis in parallel with LD3). The radius is defined as the distance
from the centre of the latent space to the torus surface’s outer point; as if the whole torus is
enclosed in a sphere with the same centre. 20 points defined each latent circle. Subsequently,
the 20 points of each latent trajectory were interpolated with B-spline interpolation of 15,
20, 25 steps per segment for radius 3, 4, and 5 respectively. We gradually increased the
interpolation steps along the segments’ size to keep a similar distance between the final
points within its trajectory. In total, we derived 72 latent trajectories.

Valence conditioning

To condition the generative process with the valence attribute, we concatenated each of the
72 interpolants with 3 different values representing levels of valence: 0 for negative, 0.5
for neutral, and 1 for positive. Thus we obtain 216 sequences that we can pass through the
decoder of the CVAE to get the final animations. Essentially, the valence conditioning is
achieved via the CVAE model structure, while the arousal conditioning is accomplished with
the sampling method applied to the latent space.

7.3.4 Software

For recording and executing robotic animations with the real Pepper robot we used NAOqi
2.5 SDK2. For the robot simulations we used the Choregraphe Suite3. The code for the
CVAE model was adapted from the TFModelLib collection of neural networks4. For the
implementation of B-splines we used Splipy5. The rest of the code for the CVAE implemen-
tation (data preprocessing, sampling, torus grids, etc.) was written in Python 3 with packages
such as NumPy [178], SciPy [219], pandas [162], scikit-learn [182], Matplotlib [104].

2NAOqi 2.5: http://doc.aldebaran.com/2-5/home_pepper.html
3Choregraphe Suite 2.5: http://doc.aldebaran.com/2-5/software/choregraphe/index.html
4TFModelLib repository: https://github.com/nhemion/tfmodellib
5Splipy v1.3.1: https://sintefmath.github.io/Splipy/
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7.4 Conclusion

In this chapter, we presented a Conditional Variational Autoencoder implementation for the
generation of multi-modal robotic EBL of targeted valence and arousal for a Pepper robot.
In this implementation, we tried to address all the limitations described in Section 6.4.1.
Similarly to the previous implementation presented in Chapter 6, the network is trained
with a small set of robotic EBL animations, but this time, besides the motion sequences, we
included sequences of eye LEDs colours to obtain more expressive animations. Importantly,
we aimed to contribute towards generating animations of targeted emotion, by conditioning
the generation process with valence labels and a sampling feature that models arousal.
Valence labels are used to explicitly condition the CVAE network, while arousal conditioning
is achieved by sampling the spherical latent space with different radiuses following our
hypothesis formed in Chapter 6. According to this hypothesis, trajectories sampled from
near the core of the latent space are decoded into animations of lower activation, and as
we move the sampling outwards, the activation becomes higher. Moreover, we modified
the sampling strategy by using torus grids instead of spherical grids so that the generated
animations exhibit a clear onset and offset with respect to the robot’s StandInit posture, which
is encoded in the centre of the latent space. A video with the physical robot executing several
CVAE generated animations is available online6.

6CVAE generated animation set video: https://youtu.be/wmLT8FARSk0
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Chapter 8

Evaluation study of the CVAE model

8.1 Introduction

The objective of the work presented in this chapter is to evaluate the interpretability of the
generated animations. We designed and conducted a user study for this purpose. Part of the
work presented here is published in [151].

The first research question is whether the valence and arousal ratings given by participants
who watched the animations on a physical Pepper robot are affected by the valence and
arousal conditioning we used to generate the animations. To answer this question we tested
the following two hypotheses:

• H1: Valence ratings for animations generated with negative valence conditioning will
be lower than those of animations generated with neutral or positive valence condition-
ing. Valence ratings for animations generated with neutral valence conditioning will
be lower than those of animations generated with positive.

• H2: Arousal ratings for animations generated with low arousal conditioning will be
lower than those of animations generated with medium or high arousal conditioning.
Arousal ratings for animations generated with medium arousal conditioning will be
lower than those of animations generated with high.

The second research question is whether participants will perceive the generated anima-
tions’ anthropomorphism differently from the original animations. In this aspect, we tested
the following hypothesis:

• H3: The perception of the robot’s anthropomorphism is not significantly different
between the designed and the generated animations.
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The chapter is organized as follows: The first section describes the design and implemen-
tation of the user study and the statistical methods we used for the data analysis. In the last
section, we present and discuss the results obtained from our statistical analyses.

8.2 Methods and materials

In this section we will present the design and implementation of the user study we conducted
to evaluate the interpretability of the generated animations, and we will outline the statistical
methodology used for the analysis of the collected data.

8.2.1 Experimental design

We begin with the description of the user study design. The study used a physical Pepper
robot and aimed to evaluate the interpretability of the CVAE generated animations with
respect to the valence and arousal conditioning.

Participants

A total of 20 volunteers were recruited for this study (9 female and 11 male). The mean
age was 26.4 years (SD = 5.36, min = 21, max = 44). All participants were employees of
SoftBank Robotics, Europe, of various professional roles, e.g., engineers, administrative staff,
marketing, etc. They self-reported their experience with the robot’s animation capabilities
on a scale ranging from 0 (no experience at all) to 10 (extremely familiar). The mean
self-reported experience was equal to 6.35 (SD = 1.81, min = 3, max = 9). The experiment
was carried out at the company’s premises in Paris, France. The experimental protocol was
granted ethical approval by the University of Plymouth, Faculty of Science and Engineering
Research Ethics Committee.

Regarding the sample size, although it is admittedly small, we considered the high
reliability obtained in our first study (Chapter 4), where we followed a very similar design with
N = 20, and we decided to proceed. In any case, the study we present in this chapter is merely
an effort to demonstrate the existence of effects related to the conditioning methodology,
and we do not maintain that they necessarily reflect on the broader population. In the next
sections, we will examine the results in terms of statistical power and further discuss the
sample size.
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Procedure

The experimenter briefly explained that this experiment aimed to evaluate a set of body
language animations displayed by Pepper. This would require observing the robot placed
in front of the participant’s seat, approximately 2.5 meters away, and reply to the questions
appearing on a screen right in front of the participant. The participants were also told that
the entire session would take approximately half an hour, but if at any point they felt tired or
unwilling to continue it would be perfectly fine to stop. After the Consent Form was signed,
the session would commence. After the session was concluded, the experimenter debriefed
the participant by explaining that the collected data would be analyzed to evaluate the
presented animations’ emotional component. A short unstructured interview was conducted
in which participants were asked to comment on their experience.

Stimulus, interface, and questionnaires

The stimuli used for this experiment were animations displayed on the real Pepper robot.
We had two kinds of animations: designed animations, designed by professional animators
with the pose-to-pose method, and generated animations, generated with the CVAE and the
sampling method we described before.

The session was split into three parts, which we will describe in detail in the following
paragraphs. The interface was implemented as a web site running on a local server. The
participant would use a play button to give the command for the robot to execute an animation,
and afterwards, she would insert her responses in different fields that we will describe in this
subsection. In Appendix B, we present screenshots of the interface.

Part A consisted of two trials, in which participants watched the robot executing 9 con-
catenated designed animations, and 9 concatenated generated animations. The animations
were randomly selected in each group from the respective broader libraries of designed
and generated animations. The two trials appeared in randomized order. After each trial,
participants had to fill in a questionnaire comprised of two scales, anthropomorphism and ani-
macy, selected from the Godspeed Questionnaire Series (GQS) [16]. Anthropomorphism is a
measure of how humanlike the robot appears to be. The scale comprises five 5-point semantic
differentials (Fake/Natural, Machinelike/Humanlike, Unconscious/Conscious, Artificial/Life-
like, and Moving rigidly/Moving elegantly). Animacy is a measure of how lifelike the robot’s
expression appears. The scale comprises six 5-point semantic differentials (Dead/Alive, Stag-
nant/Lively, Mechanical/Organic, Artificial/Lifelike, Inert/Interactive, Apathetic/Responsive).
This part aimed to compare the designed animations to the generated ones in terms of the
anthropomorphism and animacy degree people attribute to the robot.
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Fig. 8.1 The view we used to collect valence, arousal and dominance ratings. The partici-
pant clicks on the play button and watches the real robot executing a generated animation.
Subsequently, the user clicks on the three sliders to enter the perceived valence, arousal and
dominance scores. The concept is heavily based on the Affective Slider [25].

Part B, used only generated animations, since the goal was to have them evaluated
in terms of the dimensional emotion interpretation, and more specifically the dimensions
of valence, arousal and dominance. This part consisted of 18 randomized trials. In each
trial, a single generated animation was displayed on the robot when the participant clicked
on a digital play button. After the animation was over, the participant would enter her
valence, arousal and dominance ratings on three different sliders. This view of the interface
is illustrated with a screenshot in Fig. 8.1. It can be seen in the figure that the sliders are
titled with the two extremes of each measured emotion dimension: for valence the title is
Displeased - Pleased, for arousal Inactive - Active, and for dominance Submissive - Dominant.
We selected this verbal description as more intuitive to the participants.

The interface uses visual aids to illustrate the extremes more intuitively. This view’s
whole idea is based on the Affective Slider [25], a digital scale for the self-assessment of
emotion. In our first study, presented in Chapter 4, we used the Affective Slider according
to the authors’ guidelines; however, in the current study, we have adapted it with several
modifications, which we will outline below. The first modification is the addition of a third
slider to measure dominance, while the Affective Slider had only two sliders, for valence and
arousal. Second, we removed the intensity cue under each slider, otherwise, the participants
would have to scroll up and down the web page, since fitting all three sliders along with
their intensity cues was not possible. Third, we slightly modified the emoticons based on
feedback we received after our first experiment (Chapter 4). The original emoticon related to
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the Pleased extreme of valence had a very wide open mouth smile, which could confound the
valence measure with a heightened arousal interpretation. We wanted to adapt the smile in a
more minimal shape that would be perceived as positive, but not as excited, so we used the
inverted mouth line of the Displeased emoticon. Also, we had the mouth expressions in the
two Inactive - Active emoticons completely removed, for similar reasons, aiming into keeping
a minimal representation for arousal without potential valence confounds arising from the
shape of the mouth. Finally, we added two icons to represent the extremes of the Submissive
- Dominant scale, which we picked based on their minimal design. For a comparison of
the two versions, please see Fig. 4.1, where the Affective Slider guidelines were faithfully
adapted.

Back to the experimental procedure, the participants were told that they can click the
play button to watch the animation a second time if they need to. This was deemed necessary
in case the participant’s attention was distracted. After watching the animation they could
click anywhere on the sliders to enter their ratings. Each slider was constructed with a range
in [0,1] and 100 points of discretization. When the participant had finished configuring the
sliders according to her impression, she would click on the submit button. This would lead
to a second view, in the same trial, which contained two 5-point Likert scales and the play
button again.

The objective of the two Likert scales in the second view aimed at collecting data that
would enable us to obtain: 1) an exploratory estimation on how effective are the different
conditions and levels of the generated animations in inducing participants’ attention, and
2) a secondary evaluation (manipulation check) on whether the generated animations are
interpreted as emotional concerning the levels of the conditioning. The two declarations
on the Likert scales were “The robot’s behaviour draws my attention” and “The robot’s
expression was emotional”. The responses for each of the declarations were: Strongly
disagree, Disagree, Neither agree nor disagree, Agree, Strongly agree. The participant could
watch the animation once more if necessary to recall it under the new set of questions. The
attention related Likert scale is adopted from [83], a study that proposes nine single-metric
dimensions to evaluate the believability of an artificial agent. The authors of this study,
propose a Likert scale with the template phrase, “<X>’s behaviour draws my attention.”
as a quantifiable metric of the visual impact dimension of believability. Using this metric
isolated by the rest of dimensions, we can no longer measure believability, but we can
obtain a quantification of the visual impact. Although the validity of the measure cannot be
guaranteed, we believe that the result can be used as an indicative exploratory measure, that
remains to be tested further in a future full-fledged believability analysis. We constructed the
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second Likert scale to obtain a secondary, more direct and general assessment on whether
participants perceived a generated animation as an emotional expression.

The 18 generated animations used in Part B were selected randomly from the broader
library of generated animations, obtained as we described in Section 7.3.3. We aimed to have
2 animations for each combination of valence and arousal levels. The levels of valence were
negative, neutral, and positive, and they were obtained by conditioning the CVAE with a
valence attribute of 0, 0.5 and 1 respectively, as described in Section 7.3.3. Arousal levels
were defined as low, medium, and high, and they were obtained by sampling the 3D latent
space with a radius of 3, 4, and 5 respectively.

Part C was the same as Part A in terms of structure, but different groups of designed and
generated animations were used, to minimize the chances of confounds due to the choice
of animations. Furthermore, the generated animations used in Part A and C, were excluded
from the library before choosing animations for Part B.

The instructions given by the experimenters included demonstrations on how to use the
digital play button and the sliders. Specifically for Part B, the task was solicited with the
question ‘How does the robot feel?’, as in our first experiment described in Chapter 4. A
practice period of 3 trials preceded it so that the participants could get accustomed to using
the sliders and the emotion dimension concepts. In general, when deciding on the number of
trials and the length of questionnaires, our main concern was to keep participants’ workload
as low as possible so that they could retain their concentration and motivation. From pilots
conducted before our first study, we had concluded that the whole session should not be
longer than half an hour.

8.2.2 Methods for the statistical analysis

Valence, arousal and dominance ratings

This analysis aims to explore how the CVAE conditioning and sampling affected the ratings of
valence, arousal and dominance assigned by the participants. Our two independent variables
are the following: 1) v_cond with levels negative, neutral, and positive representing the
valence conditioning of the CVAE generative process using an attribute c equal to 0, 0.5, and
1 respectively, and 2) a_cond with levels low, medium, and high representing the arousal
sampling of the CVAE’s latent space using a radius r equal to 3, 4, and 5 respectively. We
summarize them in Table 8.1.

We have three dependent variables, valence, arousal and dominance, which are based on
the corresponding slider ratings given by the participants. However, since we had multiple
responses from a participant on the same level of the independent variables (e.g., a participant
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Table 8.1 Independent variables, their levels and CVAE equivalent parameters.

IV Levels CVAE parameter

v_cond
negative c = 0
neutral c = 0.5
positive c = 1

a_cond
low r = 3
medium r = 4
high r = 5

Note: The independent variables (IV) used in the analyses of the valence, arousal and dominance
ratings are named v_cond for valence conditioning, and a_cond for arousal conditioning. The second
column presents the levels of each independent variable. The third column maps each level to the
equivalent CVAE parameter: c stands for the valence conditioning and r for the radius sampling.

rated 6 animations with v_cond = neutral), we aggregated the ratings for each participant
within each level of the two independent variables v_cond and a_cond. The aggregation was
based on the mean within each level.

The main research question is whether the valence and arousal ratings given by the
participants are affected by the valence and arousal conditioning we used to generate the
animations. Specifically, we had two hypotheses:

• H1: Valence ratings for animations generated with v_cond = negative will be lower
than those of animations generated with v_cond = neutral or v_cond = positive.
Valence ratings for animations generated with v_cond = neutral will be lower than
those of animations generated with v_cond = positive.

• H2: Arousal ratings for animations generated with a_cond = low will be lower than
those of animations generated with a_cond = medium or a_cond = high. Arousal
ratings for animations generated with a_cond = medium will be lower than those of
animations generated with a_cond = high.

Furthermore, following an exploratory analysis, we also examined whether v_cond had an
effect on the arousal or dominance ratings, and similarly, if a_cond had an effect on valence or
dominance ratings. Since the experimental design was within-subjects, i.e., each participant
evaluated animations in each level of the independent variables, we used repeated-measures
one-way analysis of variance (ANOVA). The test was decided to be one-way (with a single
independent variable at a time) because the data aggregation applied on each independent
variable’s levels could not be applied concurrently for both independent variables without
inflating the number of appearances of each animation and inserting multiple NaNs. In
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Table 8.2 Dependent and independent variables used in the ANOVA analyses

DV IV
(aggregated response) (CVAE conditioning)

valence
v_cond
a_cond

arousal
v_cond
a_cond

dominance
v_cond
a_cond

Note: The dependent variables (DV) are essentially the aggregated ratings over each level of the
independent variable (IV) and each participant. Each row defines the DV and IV of each of the six
ANOVAs

total, we applied 6 such tests, with the combinations of dependent and independent variables
summarized in Table 8.2.

It should be noted that although a multivariate analysis of variance (MANOVA) including
all dependent variables could also be a reasonable choice, this was not deemed necessary
since the 6 relationships we examine are conceptually distinct, thus we can use separate
ANOVAs. Next, for those relationships that were found significant, we conducted post hoc
comparisons between the levels of the independent variables with paired samples t-tests. The
p values were adjusted with Bonferroni correction for multiple comparisons error.

Before proceeding with the tests, we checked whether the necessary ANOVA assump-
tions hold. We checked for outliers using boxplot methods. The normality assumption
was tested with the Shapiro-Wilk test and visual inspection of the QQ plots within each
independent variable level. The assumption of sphericity was checked with Mauchly’s test
and Greenhouse-Geisser sphericity correction was applied when the assumption was violated.

Comparison of designed and generated animations

This analysis aims to compare generated animations to designed ones with regard to the
perception of anthropomorphism attributed to the robot that executes them. Furthermore, it
examines for possible effects arising from a pretest-posttest experimental design—Part A (pre)
and Part C (post) as described in Section 8.2.1—, where the scores on anthropomorphism
are collected before and after the main session (Part B), to determine if the perception of
anthropomorphism is altered after becoming more familiar with the robot’s EBL. Finally, the
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present analysis tested for gender effects regarding the anthropomorphism attributed to the
robot.

Recall from Section 8.2.1 that the participants watched a set of 9 concatenated designed
animations and another set of 9 concatenated generated animations during Part A of the
session, and they had to respond on two scales, Anthropomorphism and Animacy, for each
set. This process was repeated with different sets of animations during Part C. Our main
hypothesis for this analysis is the following:

H3: The perception of the robot’s anthropomorphism as measured by the two scales,
Anthropomorphism and Animacy, is not significantly different between the designed and the
generated animations, either in the pretest trials (Part A) or the posttest trials (Part C).

Initially, we computed Cronbach’s alpha to estimate the internal consistency of each
scale’s responses as a measure of reliability, based on which we could decide whether
we would collapse the items of each scale to one response per participant and per scale
using a measure of central tendency. The decision was based on a threshold α > 0.7
which is widely accepted to indicate acceptable internal consistency. Given that result, we
proceeded with taking the median of each scale’s items and each participant, i.e., one score
for Anthropomorphism and another one for Animacy for each participant. Since Likert scales
provide ordinal data, the mean is not considered a valid parameter to aggregate their items,
and similarly, parametric tests cannot be applied due to the normality assumption, thus we
used ordered logistic regression [141] to model the effects. For pairwise differences of the
estimated marginal means, the p values of the contrasts were corrected with Tukey’s multiple
comparisons adjustment.

We fitted 3 models for each scale. The first one aimed to predict the Likert scores using
the group of the animation set (designed_pre, generated_pre, designed_post, generated_post)
as a predictor, and to examine if there are differences between the generated and the designed
animations, either in the pretest phase or the posttest, according to H3. For the second
model, we used as a predictor only two groups (pre, post), each containing both designed and
generated animations, to explore if there are pretest-posttest differences. The third model
aimed to examine potential gender differences affecting the scores. Finally, we applied a
likelihood ratio test to each model to test if the proportional odds assumption of the ordered
logistic regression holds. This is a crucial assumption for ordinal regression analyses, and it
asserts that the independent variables have the same effect on the odds irrespective of the
splits between each pair of levels of the ordinal outcome variable. The null hypothesis of the
test upholds the proportionality of the odds, thus for the assumption to be justifiable, it must
not be rejected.
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Attention and emotional content

This analysis examines the effect of the CVAE conditioning variables v_cond (levels Negative,
Neutral, Positive) and a_cond (levels Low, Medium, High) on the 5-point Likert scores of
Attention (“The robot’s behaviour draws my attention”) and Emotion (“The robot’s expression
was emotional”). For each Likert item, we fit an ordered logistic regression model and
checked for pairwise differences with Tukey’s adjustment of p values. The proportional odds
assumption is checked again with likelihood ratio tests. This analysis has been added in our
experimental design

8.2.3 Software

For executing robotic animations with the real Pepper robot we used NAOqi 2.5 SDK1. The
interface for the user study data collection was written in Python 2 (NAOqi is not migrated to
Python 3) with Django v1.11.102. The statistical analysis of the collected data was carried
out in R [186, 227, 117, 217, 50, 138, 228, 37].

8.3 Results

8.3.1 Valence, arousal and dominance ratings

Initially, in Table 8.3, we present the descriptive statistics of the aggregated ratings (valence,
arousal, and dominance), with respect to the levels of the explanatory variables v_cond and
a_cond. Only two extreme outliers were detected, one in the relationship where v_cond is
used to predict arousal, and a second one where a_cond is used to predict valence. Since these
relationships are not substantial for our main hypotheses and we only have an exploratory
interest in them, we decided to proceed. All three dependent variables—valence, arousal
and dominance—were found normally distributed at each level of v_cond as assessed by
Shapiro-Wilk’s test (p > 0.05). The same was true for arousal and dominance with respect
to the levels of a_cond, but valence was found to violate the assumption for the a_cond
level medium (p = 0.029). Again, taking into account that it is not in our main hypothesis
to predict valence ratings with the arousal conditioning of the CVAE, this violation of the
normality assumption was not of concern. Furthermore, one-way ANOVA is considered a
robust test against the normality assumption.

1NAOqi 2.5: http://doc.aldebaran.com/2-5/home_pepper.html
2Django web framework: https://www.djangoproject.com/
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Table 8.3 Summary statistics for valence, arousal and dominance ratings

Aggregated ratings v_cond level Mean SD a_cond level Mean SD

valence
Negative 0.46 0.12 Low 0.47 0.1
Neutral 0.54 0.09 Medium 0.54 0.11
Positive 0.57 0.12 High 0.55 0.13

arousal
Negative 0.55 0.12 Low 0.5 0.12
Neutral 0.55 0.12 Medium 0.55 0.12
Positive 0.58 0.11 High 0.63 0.14

dominance
Negative 0.4 0.12 Low 0.42 0.11
Neutral 0.46 0.1 Medium 0.44 0.09
Positive 0.52 0.13 High 0.52 0.12

Table 8.4 One-way repeated measures ANOVA tests for valence conditioning (v_cond)

DV F(df) η2
g p VoA

valence F(2,38) = 13.5 0.16 < 0.001∗∗∗

arousal F(2,38) = 1 0.01 0.38 outliers
dominance F(2,38) = 12.6 0.16 < 0.001∗∗∗

First, we will discuss the results for the tests in which we used the valence conditioning
of the CVAE (v_cond), to predict valence, arousal and dominance ratings. The results of
the one-way repeated-measures ANOVAs revealed a significant effect of v_cond on the
aggregated valence ratings (F(2,38) = 13.5, p < 0.001, η2

g = 0.16) and on the aggregated
dominance ratings (F(2,38) = 12.6, p < 0.001, η2

g = 0.16). No significant effect was
detected on arousal. We summarize the results in Table 8.4, along with the violations of
assumption (VoA).

With regard to the arousal conditioning of the CVAE (a_cond), the one-way repeated-
measures ANOVAs detected significant effects on the aggregated valence ratings (F(2,38) =
6.47, p = 0.004, η2

g = 0.09), the aggregated arousal ratings (F(1.5,28.42) = 10.19, p =

0.001, η2
g = 0.15, with Greenhouse-Geisser correction for the degrees of freedom due

to sphericity assumption violation), and the aggregated dominance ratings (F(2,38) =
16.159, p < 0.0001, η2

g = 0.166). The results are summarized in Table 8.5, along with the
violations of assumption (VoA).

For both valence and dominance, and v_cond as a predictor, the generalized eta-square
(η2

g = 0.16) implies a Cohens’s f equal to 0.44, while for arousal and dominance, and a_cond
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Table 8.5 One-way repeated measures ANOVA tests for arousal conditioning (a_cond)

DV F(df) η2
g p VoA

valence F(2,38) = 6.47 0.09 0.004∗∗ outliers, normality
arousal F(1.5,28.42) = 10.19 0.15 0.001∗∗∗ sphericity
dominance F(2,38) = 16.16 0.17 < 0.001∗∗∗∗

Note: DV = Dependent Variable, F(df) = F statistic and degrees of freedom of numerator and
denominator, η2

g = generalized eta-squared, p = p values, VoA = violation of assumptions. Degrees of
freedom and p values are corrected when sphericity assumption is violated.

as a predictor, the generalized eta-square values (η2
g = 0.15 and η2

g = 0.17 respectively)
imply a Cohens’s f > 0.42. All these effect sizes are considered large [52] and the statistical
power for our small sample size (N = 20) is greater than 0.81.

In terms of pairwise differences between the levels of the independent variables, we
conducted post hoc tests excluding the relationships for which ANOVAs did not reveal
significant effects (arousal with v_cond as a predictor), and also those for which the normality
assumption was violated (valence with a_cond as a predictor). All post hoc test results are
summarized in Table 8.6.

For the effect of v_cond on valence ratings (Fig. 8.2A), paired samples t-tests with
Bonferroni correction revealed statistically significant differences for Negative-Neutral (t =
−3.65, p = 0.005) and Negative-Positive (t =−4.47, p < 0.001). Thus, the results partially
support the hypothesis H1, in that animations generated with negative valence conditioning
are assigned with lower valence ratings compared to animations generated with neutral or
positive valence conditioning.

For the effect of a_cond on the arousal ratings (Fig. 8.2B), paired samples t-tests with Bon-
ferroni correction detected statistically significant differences for Low-High (t =−3.62, p =

0.005) and Medium-High (t =−2.88, p = 0.029). For Low-Medium a statistically signif-
icant difference was detected (t =−2.27, p = 0.01), but it did not survive the Bonferroni
adjustment. Thus, the results partially support the hypothesis H2, in that animations gener-
ated with high arousal conditioning are assigned with higher arousal ratings compared to
animations generated with low or medium arousal conditioning.

Furthermore, we conducted post hoc tests to examine the pairwise differences in the
levels of v_cond and a_cond regarding their effect on the aggregated dominance ratings.
For v_cond, statistically significant differences were detected for Negative-Positive (t =
−4.69, p < 0.001) and Neutral-Positive (t =−3.46, p = 0.008) (Fig. 8.3A). For a_cond,
statistically significant differences were detected for Low-High (t =−4.37, p < 0.001) and
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Table 8.6 Post hoc tests for valence, arousal and dominance ratings

DV IV Group 1 Group 2 t(df) p p (adjusted)

valence v_cond
Negative Neutral t(19) =−3.65 0.002 0.005∗∗

Negative Positive t(19) =−4.47 < 0.001 < 0.001∗∗∗

Neutral Positive t(19) =−1.63 0.12 0.36

dominance v_cond
Negative Neutral t(19) =−2.06 0.05 0.16
Negative Positive t(19) =−4.69 < 0.001 < 0.001∗∗∗

Neutral Positive t(19) =−3.46 0.003 0.008∗∗

arousal a_cond
Low Medium t(19) =−2.27 0.04 0.11
Low High t(19) =−3.62 0.002 0.005∗∗

Medium High t(19) =−2.88 0.01 0.029∗

dominance a_cond
Low Medium t(19) =−0.89 0.381 1
Low High t(19) =−4.37 < 0.001 < 0.001∗∗∗

Medium High t(19) =−5.24 < 0.001 < 0.001∗∗∗

Note: DV = Dependent Variable, IV = Independent Variable, t(df) = t statistic and degrees of freedom,
p = p values, p (adjusted) = p values with Bonferroni correction.
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Fig. 8.2 Post hoc t-tests with Bonferroni adjustment for multiple comparisons. A) Differences
among the valence conditioning levels with respect to the participants’ aggregated ratings of
valence. B) Differences among the arousal conditioning levels with respect to the participants’
aggregated ratings of arousal. The graph was originally published in [151]
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Fig. 8.3 Post hoc t-tests with Bonferroni adjustment for multiple comparisons. A) Differences
among the valence conditioning levels with respect to the participants’ aggregated ratings
of dominance. B) Differences among the arousal conditioning levels with respect to the
participants’ aggregated ratings of dominance.

Medium-High (t = −5.24, p < 0.001) (Fig. 8.3B). These results suggest that the CVAE
conditioning with v_cond and a_cond can potentially influence how people perceive the level
of dominance in the robot’s expression, with positive valence or high arousal conditioning
making the robot to appear more dominant in terms of the simulated emotion.

8.3.2 Comparison of designed and generated animations

We begin the presentation of the results with the descriptive statistics presented as bar plots
in Fig. 8.4 and as heat maps in Fig. 8.5 for the Anthropomorphism and Animacy scores. The
responses are from 1 to 5 (with 5 indicating that the participant attributes a higher degree
of Anthropomorphism or Animacy to the robot), and the percentages represent the portion
of participants in each response. The basic contrast is designed vs generated animations
presented in the pretest phase (Part A of the session) and then again in the posttest phase
(Part C).

For each scale (Anthropomorphism and Animacy), the internal consistency was tested
with Cronbach’s alpha and was found above our chosen threshold α > 0.7 (Table 8.7). Thus,
we proceeded with collapsing each scale’s semantic differentials (5 items for Anthropomor-
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animations in pretest and posttest phase.
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phism and 6 for Animacy) in one score per participant and per group, by taking the median
value.

Table 8.7 Cronbach’s alpha for Anthropomorphism and Animacy scales

Animacy Anthropomorphism

designed_pre 0.92 0.89
generated_pre 0.86 0.88
designed_post 0.92 0.92
generated_pre 0.85 0.87

In terms of the hypothesis H3 testing with ordered logistic regression, none of the
groups (designed_pre, generated_pre, designed_post, generated_post) was found to have a
statistically significant effect for Anthropomorphism or Animacy (results are summarized
in Table 8.8). This result supports our hypothesis that participants do not attribute different
Anthropomorphism or Animacy levels to the designed animations compared to the generated
ones, either in the pretest or posttest phase. In Fig. 8.6, we plot the probabilities derived from
the predictions of the two ordered logit models of Anthropomorphism and Animacy scores
for each group of animations.

Table 8.8 Ordered logistic regression results for Anthropomorphism and Animacy

DV IV Coef. SE t p 95% CI

Anthropomorphism
generated_pre -0.20 0.58 -0.35 0.730 (-1.34, 0.93)
designed_post 0.57 0.58 0.98 0.328 (-0.57, 1.73)
generated_post 0.46 0.57 0.81 0.420 (-0.66, 1.60)

Animacy
generated_pre 0.38 0.67 0.57 0.572 (-0.94, 1.71)
designed_post 1.15 0.66 1.75 0.080 (-0.13, 2.46)
generated_post 0.81 0.69 1.18 0.240 -0.54, 2.19)

Anthropomorphism posttest 0.61 0.41 1.49 0.135 (-0.19, 1.42)
Animacy posttest 0.83 0.49 1.69 0.091 (-0.12, 1.81)
Anthropomorphism Male -0.86 0.42 -2.06 0.039∗ (-1.69, -0.05)
Animacy Male -0.45 0.49 -0.92 0.359 (-1.42, 0.5)

Note: DV = Dependent Variable, IV = Independent Variable, Coef. = Coefficient of ordered logistic
regression model, SE = Standard Error, t = t statistic, p = p value, CI = Confidence Interval.

The two models of ordered logistic regression for Anthropomorphism and Animacy with
all the pretest and all the posttest animations as a two-level predictor revealed some trends
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Fig. 8.6 Anthropomorphism and Animacy scores for designed vs generated animations. The
pre and post suffixes indicate the evaluation that was conducted during Part A and Part C of
the experimental session respectively. No pairwise significant differences were detected.

for Animacy (Fig. 8.7B), but no significant effects were detected for either scale, suggesting
that the interval in between the two evaluations did not impact significantly the perception of
Anthropomorphism and Animacy. The detailed results are presented in Table 8.8.
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Fig. 8.7 Anthropomorphism and Animacy scores for all the animations evaluated in Part
A and Part C. A slight increase in the posttest phase, is not confirmed with statistically
significant results in pairwise comparisons.

Finally, regarding the two models that tested for gender effects, female participants gave
higher scores than male (p = 0.039) on the Anthropomorphism scale, but no statistically
significant differences were detected for Animacy (p = 0.35). The predictions’ probabilities
are plotted in Fig. 8.8 and the detailed results are included in Table 8.8.
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Fig. 8.8 Anthropomorphism and Animacy scores between male and female participants.
Female participants gave significantly higher Anthropomorphism ratings.

The likelihood ratio tests checking for violations of the proportional odds assumption
did not obtain statistically significant p values for any of the six models (Table 8.9), thus the
assumption was considered tenable.

Table 8.9 Proportional odds assumption tests for Anthropomorphism and Animacy

DV IV LRT p(> χ2)

Anthropomorphism
designed vs generated 11.49 0.24
pretest vs posttest 2.91 0.41
gender 1.94 0.58

Animacy
designed vs generated 7.59 0.58
pretest vs posttest 1.93 0.59
gender 6.75 0.08

Note: DV = Dependent Variable, IV = Independent Variable, LRT = Likelihood Ratio Test, p(> χ2)

= p value based on the asymptotic chi-square distribution of the likelihood ratio statistic under the
null hypothesis

8.3.3 Attention and emotional content

The descriptive statistics of the Attention and Emotion Likert scales with respect to the
valence and arousal conditioning levels are presented in Fig. 8.9 as bar plots and Fig. 8.10 as
heat maps with the exact percentage for each response. The two ordered logistic regression
models that predicted the Attention Likert scores (“The robot’s behaviour draws my atten-
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Fig. 8.9 Bar plots for Attention and Emotion Likert scores with respect to the valence
(Negative, Neutral, Positive) and arousal (Low, Medium, High) conditioning levels.
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Fig. 8.10 Heat maps for Attention and Emotion Likert scores with respect to the valence and
arousal conditioning levels.

tion”) with the valence and arousal conditioning of the CVAE as a predictor respectively,
detected statistically significant effects. The results are summarised in Table 8.10.

Post hoc tests on the levels of the valence conditioning (v_cond) determined that the
contrast Negative-Neutral was statistically significant (z = 2.77, p = 0.02), suggesting that
animations generated with negative valence conditioning might attract more attention from
participants compared to animations generated with neutral valence. This result is illustrated
in Fig. 8.11A, where we present the probabilities of predictions obtained by the model. In
the same figure, we observe that the same appears to be true for animations generated with
positive conditioning, however, this difference (Neutral-Positive) did not survive the Tukey
adjustment of the p value. The results are summarized in Table 8.11.

Post hoc tests with Tukey’s p value adjustment for the arousal conditioning (a_cond)
revealed statistically significant differences for the contrasts Low-High (z = −5.33, p <
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Table 8.10 Ordered logistic regression results for Attention and Emotion

DV IV Coef. SE t p 95% CI

Attention
v_cond:Neutral -0.11 0.17 -0.64 0.52 (-0.44, 0.22)
v_cond:Negative 0.48 0.17 2.85 < 0.001∗∗∗ (0.15, 0.81)

Attention
a_cond:Medium 0.95 0.18 5.33 < 0.001∗∗∗ (0.60, 1.30)
a_cond:High 0.29 0.17 1.73 0.08 (-0.04, 0.62)

Emotion
v_cond:Neutral -0.36 0.17 -2.10 0.04∗ (-0.69, -0.02)
v_cond:Negative 0.74 0.17 4.39 < 0.001∗∗∗ (0.41, 1.07)

Emotion
a_cond:Medium 0.63 0.17 3.71 < 0.001∗∗∗ (0.30, 0.97)
a_cond:High 0.19 0.17 1.18 0.24 (-0.13, 0.52)

Note: DV = Dependent Variable, IV = Independent Variable, Coef. = Coefficient of ordered logistic
regression model, SE = Standard Error, t = t statistic, p = p value, CI = Confidence Interval.

Table 8.11 Post hoc tests for Attention and Emotion

DV IV Group 1 Group 2 z p (adjusted)

Attention v_cond
Negative Neutral 2.77 0.02∗

Negative Positive 0.64 0.8
Neutral Positive -2.16 0.08

Attention a_cond
Low Medium -1.34 0.37
Low High -5.33 < .001∗∗∗

Medium High -4.17 < .001∗∗∗

Emotion v_cond
Negative Neutral 4.75 < .001∗∗∗

Negative Positive 2.1 0.09
Neutral Positive -2.81 0.01∗∗

Emotion a_cond
Low Medium -0.89 0.64
Low High -3.71 < .001∗∗∗

Medium High -2.85 0.01∗∗

Note: DV = Dependent Variable, IV = Independent Variable, z = z statistic, p (adjusted) = p value
with Tukey correction
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Fig. 8.11 Attention scores (“The robot’s behavior draws my attention”) for different levels of
valence (A) and arousal (B) conditioning. A) Pairwise comparisons revealed significantly
higher scores for negative conditioning compared to neutral. B) Pairwise comparisons
revealed significantly higher scores for high arousal conditioning compared to both medium
and low.

0.001) and Medium-High (z = −4.17, p < 0.001). The result suggests that potentially
animations sampled with larger radius from the latent space tend to draw participants’
attention more. The differences are presented in the model’s predictions in Fig. 8.11B and
the results are summarized in Table 8.11.

The two ordered logistic regression models predicting the Emotion Likert scores (“The
robot’s expression is emotional”) with the valence and arousal conditioning of the CVAE as
a predictor respectively, detected statistically significant effects. The results are summarised
in Table 8.10. Post hoc tests with Tukey’s p value adjustment on the levels of the valence
conditioning (v_cond) obtained statistically significant results for the contrasts Negative-
Neutral (z = 4.75, p < 0.001) and Neutral-Positive (z = −2.81, p = 0.01). The results
imply (Fig. 8.12A) that animations generated with negative or positive valence conditioning
are perceived more as emotional than those generated with neutral valence conditioning. In
the figure, a similar trend can perhaps be noted for Positive vs Negative, but this difference
did not remain significant after the correction for multiple comparisons. The summary of the
results is presented in Table 8.11.

For a_cond (arousal conditioning), statistically significant differences were detected for
the contrasts Low-High (z =−3.71, p < 0.001) and Medium-High (z =−2.85, p = 0.01).
This result suggests that animations sampled with a larger radius are perceived as more
emotional. See also Fig. 8.12B, and Table8.11 for a summary of the results.
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Fig. 8.12 Emotion scores (“The robot’s expression is emotional”) for different levels of
valence (A) and arousal (B) conditioning. A) Pairwise comparisons revealed significantly
higher scores for negative and positive conditioning compared to neutral. B) Pairwise
comparisons revealed significantly higher scores for high arousal conditioning compared to
both medium and low.

Regarding the proportional odds assumption, the likelihood ratio tests of the model terms
produced p values greater than 0.05 for all four models, thus the null hypothesis cannot be
rejected and the assumption is tenable. The results of the tests are summarized in Table 8.12.

Table 8.12 Proportional odds assumption tests for Attention and Emotion

DV IV LRT p(> χ2)

Attention
v_cond 2.83 0.83
a_cond 4.15 0.66

Emotion
v_cond 5.04 0.54
a_cond 5.67 0.46

Note: DV = Dependent Variable, IV = Independent Variable, LRT = Likelihood Ratio Test, p(> χ2)

= p value based on the asymptotic chi-square distribution of the likelihood ratio statistic under the
null hypothesis

8.4 Conclusion

In this chapter, we presented the implementation of a user study with 20 participants designed
to evaluate the interpretability of the generated animations and explore how they compare
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with the hand-coded animations in terms of their Anthropomorphism and Animacy attribution.
The conclusions are summarized as follows:

1. The participants assigned higher valence ratings to animations that were generated
with positive valence conditioning compared to those generated with negative (Table
8.6). The same was true for animations generated with neutral compared to animations
generated with negative. However, between positive and neutral the difference was not
statistically significant.

2. The participants assigned higher arousal ratings to animations that were generated with
high arousal conditioning compared to those generated with medium, or low (Table
8.6). However, the difference was not statistically significant between medium and
low.

3. Although we did not implement any conditioning for the dominance dimension of
emotion, participants’ responses show that animations generated with a positive valence
or high arousal, are interpreted as of higher dominance compared to neutral and
negative valence or medium and low arousal respectively (Table 8.6).

4. The participants did not perceive differently neither the Anthropomorphism nor the
Animacy attributed to the robot between the designed (hand-coded pose-to-pose)
animations and the CVAE generated ones.

5. The participants did not perceive differently the Anthropomorphism or the Animacy
attributed to the robot at the beginning of the session compared to the end. Some
interesting trends show a slight increase though, especially for Animacy (Table 8.8).

6. Female participants assigned higher scores of Anthropomorphism to the robot’s EBL
(Table 8.8).

7. The CVAE conditioning had some statistically significant effects on the degree partic-
ipants felt that the robot draws their attention. Negative valence conditioning draws
more attention than neutral, and high arousal conditioning draws more attention than
low or medium (Table 8.10).

8. Also the CVAE conditioning had some statistically significant effects on how strongly
the participants classify robot’s EBL as emotion. Negative or positive valence condi-
tioning appears more as an emotional expression compared to neutral. High arousal
conditioning is interpreted more as emotional than low or medium (Table 8.10).
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In conclusion, the evidence from this study support the idea of using a CVAE to synthesize
robotic animations of targeted valence. Also, our hypothesis of using the latent space radius
as a sampling feature that modulates the arousal perception of the generated animations
appears justifiable by the results. Furthermore, the generated animations do not appear to be
less appealing than the designed animations in terms of Anthropomorphism and Animacy.
Finally, our exploratory analysis brings some insights regarding the impact of the robot’s
behaviour on the user’s attention (presumably an aspect of believability). Animations of more
extreme valence levels, or high arousal, seem to draw more attention, and certainly, this is an
intuitive result that supports the impact of the conditioning on users’ perception. Similarly,
these animations are more strongly classified as emotional. A video with the physical robot
executing several CVAE generated animations is available online3.

8.4.1 Limitations and next steps

Regarding our main hypotheses H1 and H2, our analyses failed to obtain significant p values
for the differences between positive and neutral valence conditioning, as well as medium
and low arousal conditioning (Fig. 8.2). At first glance, the weak differentiation between
neutral-positive levels of valence and low-medium levels of arousal, could be considered
as result of the admittedly small sample size (N = 20). However, the tests’ effect size and
statistical power suggest that the sample size of the test is probably adequate.

In an attempt to explain the lack of statistical significance for the particular pairs, we
deliberated on the composition of the training set animations. The problem was possibly
caused due to an imbalance in the animation set arising from the insufficient representation
of positive valence and low arousal animations. Looking back to our first study in Chapter 4,
in particular Fig. 4.7 where we present the collected valence and arousal ratings, one notices
that participants did not perceive many animations as of very positive valence and very low
arousal at the same time. Overall, our framework’s inability to generate animations with
strong differentiation between neutral and positive valence or low and medium arousal could
be explained by the fact that the network was not trained with enough examples from these
two categories. Thus, future implementations would be advisable to curate the training set
more carefully by collecting more labelled animations of positive valence and low arousal.

Nevertheless, it must be noted that previous studies using a NAO and a Robovie [20, 173]
also report limitations in creating EBL expressions that are interpreted as of low arousal
and high valence. Hence, it might be the case that this affect subspace is inherently difficult
to represent, at least for robots with the particular degrees-of-freedom (≤ 25), or perhaps

3CVAE generated animation set video: https://youtu.be/wmLT8FARSk0
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emotional states from this affect subspace can be more successfully conveyed through other
modalities, such as facial expression.
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Chapter 9

Epilogue

9.1 Overall conclusions

We have presented three studies aiming to define a complete methodology for robotic
emotional body language (EBL) synthesis. The project was motivated by studying the
strengths and weaknesses found in previous work. More specifically, we sought to propose a
methodology that addresses three issues in the synthesis of engaging robotic EBL. These
drawbacks are the following:

• Hand-coded design (either feature-based or creative) can only produce a limited number
of expressions. As a result, the robot’s behaviour might appear predictable, repetitive
and monotonous, thus, not compelling or engaging enough, especially in long-term
HRI.

• The direct use of human EBL as a prototype for robotic EBL design, might not be
sufficient to provide the robot with the illusion of life, that is, to render it as a believable
character. Humans often use subtle ways to express emotions with body language, and
they possess more channels of expression and degrees of freedom compared to robots.

• Categorical models of basic emotions, either used in the design phase or the evaluation
phase, might be more biased since they collapse granularity and variability in just a
few classes of emotions.

To address these issues and develop our alternative methodology, we adopted the follow-
ing viewpoints:

• Driven by recent advancements in deep learning and particularly the field of generative
models, we trained a Variational Autoencoder (VAE) with a small group of robotic
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EBL animations to generate numerous new ones. The generated robotic animations
appear realistic and smooth. They capture many aspects from the training examples,
but they also incorporate a lot of emerging variation. This way, we can equip a robot
with countless expressions and ensure that its emotional expression is not repetitive.

• Instead of using human EBL as a prototype, we selected our training examples from
a robotic animation library of hand-coded animations, created with the pose-to-pose
method used in graphical animation design. This process follows a creative approach,
in which the animators conceive expressive postures, directly adapted to the robot
morphology. Human EBL is only used as a source of abstract inspiration. Furthermore,
this approach is heavily influenced by the illusion of life principles used in graphic
animation, e.g., exaggeration, to render a character more appealing. This way, we
ensure that the robot’s emotional expression will be lifelike, believable and engaging.

• We committed to the dimensional model of core affect as the primary emotion rep-
resentation used in the labelling, the VAE training and sampling, and the evaluation
phase. The representation was implemented with valence and arousal dimensions and a
range from 0 to 1 with 100 steps of discretization, to ensure that even subtle variations
are captured efficiently, both in and the synthesis and the evaluation.

In the first study (Chapter 4), we curated a small set of hand-coded robotic EBL anima-
tions created by professional animators for a Pepper robot, and we had twenty participants to
watch them on a real Pepper and evaluate them in terms of valence and arousal. We applied
a reliability analysis on the collected ratings, and we aggregated them to derive valence
and arousal labels. The labelled animations can be used as a training set. In an exploratory
analysis of the ratings, we found that valence is more challenging to judge than arousal
and that participants tend to judge valence as neutral when they were not confident in their
judgement.

In the second study (Chapter 6), we used the motion sequences of the animation set
to train a VAE. We studied both the model’s latent space and the generated trajectories to
understand the model’s capacities. The trajectories of the generated animations demonstrated
the variation which can be accomplished with the model. Furthermore, we devised a
method to systematically sample the spherical latent space of the model with spherical
grids. This method enabled us to discern a geometrical feature which can potentially model
the arousal dimension of emotion. More specifically, the radius of sampling the spherical
latent space affects the amplitude and variability of the generated animations. Small radius,
that is, sampling near the core of the latent space, results in generated animations of low
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amplitude and variability, while larger radius produces animations of heightened amplitude
and variability.

In the third study (Chapters 7 and 8), we aimed to put everything together. The final
framework was based on a Conditional Variational Autoencoder (CVAE) to condition the
generative process with valence labels collected in the first study. Furthermore, the radius
feature for modelling arousal was used for sampling the latent space of the model. We also
used the eye LEDs sequences as an additional modality to train the network and generate
more expressive animations. We generated a set of 18 animations with three levels of valence
conditioning (Negative, Neutral, Positive) and three levels of arousal conditioning (Low,
Medium, High).

We conducted a user experiment with 20 participants who watched the generated anima-
tions and evaluated them in terms of valence, arousal and dominance. The participants gave
higher valence ratings to animations generated with neutral or positive valence conditioning
compared to those generated with negative. The participants also assigned higher arousal
ratings to animations generated with high arousal conditioning compared to those generated
with medium or low. Furthermore, we found that the animation generated with a positive
valence or high arousal conditioning were rated as of higher dominance.

We also examined the robot’s impact in attracting participants’ attention when it per-
formed the generated animations. We used this question as a measure of believability. We
found that animations generated with negative valence draw more attention than those gener-
ated with neutral valence. Also, animations generated with high arousal conditioning draw
more attention than those generated with medium or low. A second question was whether the
participants interpreted the generated animations as emotional. Animations generated with
negative or positive valence conditioning were found as more emotional. The same was true
for animations generated with high arousal conditioning.

The user study also examined how participants evaluated the Anthropomorphism and
Animacy of the generated animations compared to designed animations. No significant
differences were detected. Regardless of the condition (generated or designed), we found that
female participants rated the animations higher in terms of Anthropomorphism compared to
male participants.

Taken together, these findings highlight that our proposed methodology is useful in
generating animations of recognizable valence and arousal with some limitations that we will
discuss in the next section. Furthermore, the results show that the dominance dimension in
robotic EBL can be modelled, to some extent, with valence and arousal. Finally, our findings
imply that perhaps we can use extreme values for valence conditioning (negative or positive)
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or high arousal conditioning to draw user’s attention and boost the perception of an emotional
response, which appears rather intuitive of course.

9.2 Limitations

Our final CVAE framework did not succeed to generate animations with a clear distinction
between neutral and positive valence, or low and medium arousal. We believe that this
is related to the training set in which the animations labelled with positive valence and
low arousal were underrepresented. This issue was quite striking from our first study.
Nevertheless, we proceeded with the data we had to develop a proof of concept methodology
and evaluate its effectiveness and its robustness to the limitations arising from the choice
of the training set examples. The user study results highlight the importance of a balanced
training set to generate animations with distinguishable features in every level of dimensional
core affect.

A weakness concerning the final study is that we did not systematically examine the
possibility of conditioning the CVAE explicitly with the available arousal labels, as we did
with the valence labels. Instead, we modelled arousal by using the radius of sampling the
latent space. Although we considered the alternative conditioning with both valence and
arousal labels, we decided to proceed with the implicit conditioning using the radius, since
it provides a less supervised model. However, a more systematic comparison of the two
methods would be useful.

Finally, regarding the results of the final user study, since most participants had a medium
to high familiarity with the robot’s patterns of motion, the conclusions might conceivably be
different for novel users. Ideally, we would have liked to control this factor better and test for
such effects too.

9.3 Future directions

Besides addressing the preceding limitations, future work could also extend the framework
by implementing the generated animations’ dominance conditioning. It would be useful to
find a way to condition dominance since that would allow us to distinguish EBL with similar
core affect, e.g., fear and anger. Furthermore, adding the modality of sound in training could
further increase the animations’ expressivity. Audio clips with non-linguistic sounds are
already available for the animations used in the training set, and there could be different
methods to encompass it, either by concatenating the audio representation with the rest of the
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input or by training a completely separate model and use a late fusion of generated motion,
eye LEDs and sound.

The above directions aim to improve the EBL synthesis, which is essentially the emotion
expression module in the context of the affective loop framework (see Fig. 1.1). However,
it is essential to bridge the emotion expression with an emotion synthesis and an emotion
adaptation module, both of which will consider the user’s affective state. Thus, another
critical direction is exploring emotion recognition systems, emotion synthesis, and adaptation
architectures that can be used along with the present EBL synthesis to provide robots with
adapted and personalized emotional behaviour.

9.4 Applications

In this section, we would like to highlight three applications that used our work. Ruocco
et al. [193] used the valence and arousal ratings derived in our first study (Chapter 4) to
select animations for a Nao robot used as a distraction to keep anxiety levels low in children
during vaccination. They found that the anxiety levels were reduced for children in the
two groups treated with the distraction strategy, compared to the third group, in which
the robot did not exhibit any mood-based animation. Similarly, our valence and arousal
ratings were used by Rossi et al. [190] to select animations for a Pepper robot with the
task to give movie recommendations. The study compares the effect of using coherent and
incoherent combinations of robotic EBL and movie genres. For example, the drama genre
is associated with negative valence and low arousal in the coherent condition, while in the
incoherent condition, it is associated with positive valence and high arousal animations. The
authors were interested in finding how the robot’s behaviour affects participant’s emotion,
engagement and attention, which were measured automatically from the facial expression
with Affectiva’s Machine Learning algorithm [160]. The authors found that measures of joy,
smiling and engagement were significantly higher for female participants when presented
with the incoherent EBL, suggesting that mismatching the context and robot expression might
have an amusing and engaging result for females. However, in the case of recommending
movies in the Comedy genre, incoherent robot expressions using animations of negative
valence had resulted in significantly higher sadness measured by Affectiva’s facial expression
algorithm, suggesting that in this setup, the participant’s mood was potentially overridden by
the robot’s expression.

Finally, in a proposed application scenario for the APRIL (Applications of Personal
Robotics for Interaction and Learning) Innovative Training Network1, a personalized robot

1APRIL ITN: https://www.fose1.plymouth.ac.uk/socem/crns/april/

121

https://www.fose1.plymouth.ac.uk/socem/crns/april/


Epilogue

narrator with adapted emotional body language was developed, integrating work on multi-
modal open-set person identification by Irfan et al. [107] and our Conditional Variational
Autoencoder for generated robotic EBL [151] described in Chapter 7.

More specifically, in this demonstration, Pepper identifies the users, retrieves their profiles
(e.g., age, interests) and narrates personalized content with emotional body language adapted
to their profiles and the content’s valence and arousal. For the emotion adaptation part, the
user’s age profile and the content’s genre was used to select the robotic EBL. The strategy
was to use neutral valence and low arousal for adults listening to a science news extract, while
for a child user listening to a fairy tale, the entire spectrum of valence and arousal levels were
used. In particular, for the fairy tale narration, we were based on previous work from Yves
Bestgen [24], in which participants used valence scores to annotate sentences in four texts,
among which, the fairy tale we used (“The Little Match Girl” by Hans Christian Andersen).
To adapt the robotic EBL to the fairy tale narration, we initially timed each sentence while
Pepper narrated it. Then we used the sentence’s valence annotation from Bestgen, to select
the valence level for our generated expressions. The timing was used to select the radius of
sampling. A video of the demonstration is available online2.

9.5 A note on ethical considerations

A paramount concern related to emotional behaviour synthesis is about the potential ethical
implications of deploying robots with persuasive affective personalities. Perhaps these
technologies are currently not sophisticated enough to alarm society, but it is crucial to
anticipate and examine such implications before technology arrives at a more mature stage.
Furthermore, even if the current affective robots are not persuasive enough as emotional
agents for a typical adult, the same might not be the case with children, especially young
ones, or other vulnerable groups.

Khan et al. [114] explored how ninety children interacted socially with the humanoid
robot Robovie. The children were of ages 9, 12 and 15. The study reports that 80% of the
children believed that the robot was intelligent, and 60% concluded that it had feelings. The
authors also examined the morality attributed to the robot. They had the children play the
“I Spy” game with the robot when an experimenter interrupted and announced to Robovie
that it had to go into a storage closet. The robot protested saying it was not fair, that it was
not given enough chances, that its feelings were hurt, and that the closet was dark and scary.
According to 88% of the children, the robot was treated unfairly, while 54% thought it was
not right to put the robot in the closet. Also, 81% of the children said they felt like they

2Personalized robot narrator with adapted emotional body language: https://youtu.be/fBIIn0PQGSA
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wanted to comfort Robovie when the robot is sad. Overall, the children conceptualized the
robot as a mental, social, and partly moral entity, although these results were less robust for
the children in age 15.

In the same study, the authors distinguish two design stances and discuss the related
ethical concerns. In the first, robotic behaviours are designed to appear as having human
qualities, such as affect expression and moral standing. However, since robots can not
possess such qualities, from a philosophical point of view, this design stance might involve
a form of intentional emotional deception [51]. Furthermore, children or vulnerable adults
might develop emotional attachment towards the robot companion. This could be a problem
if such attachment causes a child to seek less of human companionship [215], or if the
adults, in the child’s environment, tend to sidestep their responsibilities because the robot
companion fulfils the gap [54]. On the other hand, robotic behaviours that do not entail some
moral or emotional agency, essentially a robot that allows being treated like a machine or an
object accepting commands, might evoke carryover effects between mistreating robots and
mistreating people [114].

Older persons comprise another sensitive group we have to consider when designing
affective human-robot interaction applications. Robot companions endowed with affect
recognition or expression skills could be useful in robot-assisted interventions for older
adults suffering from emotional distress or cognitive impairments. In this context, several
studies have shown positive effects arising from affective robot companions in therapeutic
interventions. For example, dementia patients have shown increased communication scores
[212] after interacting with a Sony AIBO robotic dog. In studies using the same robot in
long term care facilities, the findings indicate improvement in well-being [115]. Decrease
of loneliness and stress have even been reported at levels similar to those accomplished by
interacting with real pet-animals [9]. Nevertheless, several ethical issues have been identified.
A significant concern is that robot companions might be progressively accepted as adequate
replacements for human love and attention, providing carers with a justification to leave
an older person alone for longer intervals [202]. Considering potential attachment that can
arise from such interactions, another ethical concern is the lack of authenticity in these
relationships and the fact that they essentially presuppose a form of deception, encouraging
a false perception of the world [209] (see also [202] on the risk of infantilization of older
adults).

Affective robot companions designed to evoke emotional attachment by using deception
or systematic delusion might comprise a form of unethical technology [29, 39–41, 202, 209].
In contrast to the intentional suspension of disbelief, which enables humans to temporarily
accept a false reality to experience emotions and enjoy fictional artefacts, systematic de-
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ception that encourages adults with cognitive impairments or children to form emotional
relationships with companion robots can be problematic. This ethical perspective is captured
in the principles of robotics which were adopted in 2010 by the British Engineering and
Physical Sciences Research Council (EPSRC)3, in an attempt to regulate robot ethics at an
early stage of development of this critical technology. More specifically, the fourth principle
addresses these ethical concerns in a succinct way:

Legal formulation: Robots are manufactured artefacts. They should not be
designed in a deceptive way to exploit vulnerable users; instead their machine
nature should be transparent.

General audience formulation: Robots are manufactured artefacts: the illusion
of emotions and intent should not be used to exploit vulnerable users.

In the related commentary, the contributors of the principles of robotics [29] acknowledge
the tradeoff between enhancing an affective robot’s persuasiveness to fulfil the role of a
companion, and the risk arising from using this persuasiveness to exploit people who might
feel emotionally attached to their robot companions. Transparency seems to be the most
promising tool we have to resolve this tradeoff, and in line with it, the commentary concludes
that “although it is permissible and even sometimes desirable for a robot to sometimes give
the impression of real intelligence, anyone who owns or interacts with a robot should be able
to find out what it really is and perhaps what it was really manufactured to do.”

Joanna Bryson, a contributor of the EPSRC principles of robotics, has been a long-time
advocate for the importance of transparency in designing, manufacturing and advertising
companion robots [38–41]. She urges roboticists to use explicit ways to emphasize the
mechanical nature of robots and to avoid creating robots that would predispose people to
assign a human-like status to them [38]. Bryson warns that deceptive design and marketing
obscuring that a robot companion is essentially a machine, can cause vulnerable persons to
over-identify with it and perceive it as an animate being or a moral agent [39]. In such cases,
even if making a robot suffer is not technically plausible, vulnerable persons might feel the
opposite is true, or they might even feel inclined to save a robot from a dangerous situation
putting their own lives at risk. Furthermore, persons who perceive a robot as animate might
develop an urge to sacrifice valuable resources, money or time, to address possible artificial
needs, which in some cases might have been designed purposefully to exploit susceptible
humans.

3EPSRC Principles of robotics https://epsrc.ukri.org/research/ourportfolio/themes/engineering/
activities/principlesofrobotics/
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Despite the challenges, Sharkey and Sharkey suggest that it is still feasible to deploy
robot companions in older persons’ lives ethically by introducing them as social facilitators
to induce interactions with other people [202]. An older person could be given a robot and
be asked to talk about it, show it to other people, and essentially use it as a medium for
human-human interaction.

In conclusion, this note on ethical considerations about the design and the use cases of
affective robotics aims to acknowledge the potential social risks and support the necessity of
further experiments investigating possible vulnerabilities that can be used to exploit humans.
A growing body of interdisciplinary studies gradually provides informative insights on
issues of ethics. So far, it seems that even when affective robotic expressions are deemed
as necessary in some application scenarios, we can still use transparency in several levels,
e.g., design and marketing, to emphasize the mechanical nature of a robot. Also, for
companion robots used by vulnerable individuals, psychological supervision could be crucial
to determine whether the user intentionally suspends her disbelief to enjoy the illusion of
life effect or is getting carried away to perceive the robot as animate. Hopefully, as society
gets more familiar with and educated on the true nature and potential of such technologies,
people would be less susceptible to personify their robots. Nevertheless, policies such as the
fourth principle of EPSRC using legal formulation to create an early framework of guidance
for both users and roboticists, are definitely in the right direction. Hopefully, such initiatives
will keep involving as knowledge is progressing.
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Appendix A

Hand-designed animations

In this Appendix, we provide supplementary material for the study we presented in Chapter
4. More specifically, in Table A.1 we list the 36 hand-coded animations and their properties,
and in Table A.2 we list these animations with their valence and arousal labels.

Table A.1 Hand-designed animations: properties and informal descriptions. Note: Tag =
animation category assigned by the animators, Duration in seconds, Speed = total frames
divided by key frames, Modality is coded as M = Motion, L = LEDs, S = Sound.

Tag Description Duration Speed Modality

Happy_4 Slightly raises both hands, elbows
bent, head nods up and down

2.4 6.67 ML

Interested_2 Bends right elbow and brings hand
near waist, while left hand raises
near mouth. Head raises looking up-
ward and on the left

2.56 2.34 MLS

Joy_1 Both hands in front of the torso, el-
bows bent, then open wide, head
looks upward

2.8 3.93 M

Loving_01 Both hands brought behind the body,
torso bends to right and then to the
left

4.36 6.65 ML

Confident_1 Bends both elbows slightly while
nodding head up and down

4.96 3.83 ML

Continued on next page
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Hand-designed animations

Table A.1 – continued from previous page

Tag Description Duration Speed Modality

Heat_1 Looks downward, hands a bit open,
bends torso slightly forward

4.68 1.92 M

Optimistic_1 Slightly nodding and then looks up-
ward to the left

6.6 2.58 ML

Peaceful_1 Bends both elbows and raises hands
slightly up and then down. Head
moves downward and then up re-
spectively.

3.44 2.62 ML

Content_01 Head looks up, torso bends right and
left, hands open and close repeatedly

2.44 14.34 ML

Excited_01 Elbows bent, hands raise in front
midway and move slightly up and
down repeatedly, while head slightly
nodding

2.24 16.07 M

Happy_01 Swings left and right, with hands on
the sides and head nodding up and
down

3.48 6.61 M

Joyful_01 Swings left and right, while moving
arms up and down in front

3.56 8.99 M

Angry_3 Turns head to the right and brings
left hand further away from body to
the left

2.32 4.31 MS

Frustrated_1 Turns head to the right, nods right
and left, hands brought in front,
slightly bent

3.08 4.22 MLS

Hot_1 Head nods right and left 1.96 2.04 M

SadReaction_01 Moves torso back, then forward to
the right, head nods left and right

2.88 9.38 M

Continued on next page
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Table A.1 – continued from previous page

Tag Description Duration Speed Modality

Angry_4 Moves backward, raises left hand up
and shakes it while head is looking
up

2.68 7.84 MS

Fear_1 Arms raise slightly in front, head
looks up, then right and left

4.4 5.23 MLS

Fearful_1 Both hands raise in front of the head,
left hand higher

6.52 3.68 ML

Sad_01 Hands raise slightly in front with el-
bows bent, shakes head right and left
and downward on the right direction

3.88 7.47 ML

Bored_01 Right hand is brought in front of the
mouth and slightly moves back and
forth

3.68 4.08 ML

Disappointed_1 Torso moves forward and slightly
downward, while head nods right
and left

2.88 3.82 ML

Lonely_1 A slight movement of hands and
head up and then downward. Hands
on the sides

7.04 2.98 ML

Shocked_1 Hands and head move slightly up
and then downward. Hands in front

4.2 3.33 ML

AskForAttention_3 Brings right hand in front of the
mouth, and then down while looking
right

4.24 2.59 MLS

Chill_01 Slightly nodding and swinging left
and right

6.72 3.57 M

Puzzled_1 Brings right hand in front of the
mouth and left hand on waist. Head
to the left

4 2.75 ML

Continued on next page
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Hand-designed animations

Table A.1 – continued from previous page

Tag Description Duration Speed Modality

Relaxation_2 Raises both hands midways in front
with elbows bent and looks up

6.56 2.44 ML

Curious_01 Bends torso forward left and then
right, hands open on the sides

2.68 2.24 M

SurprisedBig_01 Hands open on the sides, looks up 2.52 9.13 ML

Surprised_01 Slightly raises hands and looks up 3.08 3.57 M

Surprised_1 Raises both hands midway in front
with elbows bent, looks around

4.88 4.92 M

Alienated_1 Torso slightly bent forward, head up,
arms hanging

10.36 1.93 M

Hesitation_1 Repeatedly looks up to the left and
down to the right, while right hand
raises and falls again

9.04 2.32 MLS

Innocent_1 Hands meet in front of the torso and
head looks left and right upward

7.68 2.47 ML

Stretch_2 Hands open on the sides, torso bends
backward and head looks up

7.28 2.61 M

Table A.2 The final affect labels. Mean across 20 raters for valence and arousal, with the
averaged confidence rates in judgment (C_Mean), as well as the original categorical tags of
the animations and the pre-assigned classes of valence/arousal levels combinations (Neg =
Negative, Neu = Neutral, Pos = Positive, Tir= Tired, Cal = Calm, Exc = Excited).Valence and
arousal ratings range from 0 to 1, with 100 points resolution, while confidence rates where
collected with 5-point Likert scales.

Animation Arousal Valence

Tag Class Mean(SD) C_Mean(SD) Mean(SD) C_Mean(SD)

Happy_4 Pos/Cal 0.69(0.15) 3.95(0.76) 0.73(0.19) 3.85(1.14)

Interested_2 Pos/Cal 0.79(0.10) 4.15(0.49) 0.78(0.18) 4.10(0.79)

Continued on next page
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Table A.2 – continued from previous page

Animation Arousal Valence

Tag Class Mean(SD) C_Mean(SD) Mean(SD) C_Mean(SD)

Joy_1 Pos/Cal 0.55(0.20) 3.50(1.15) 0.65(0.15) 3.35(1.18)

Loving_01 Pos/Cal 0.63(0.26) 3.45(1.23) 0.57(0.22) 3.00(1.08)

Confident_1 Pos/Tir 0.67(0.18) 3.55(0.76) 0.70(0.15) 3.60(0.75)

Heat_1 Pos/Tir 0.33(0.22) 3.60(0.60) 0.41(0.14) 3.65(0.81)

Optimistic_1 Pos/Tir 0.49(0.24) 3.70(0.66) 0.62(0.16) 3.30(1.08)

Peaceful_1 Pos/Tir 0.40(0.25) 3.45(1.32) 0.51(0.12) 2.90(1.07)

Content_01 Pos/Exc 0.85(0.14) 4.05(0.94) 0.71(0.23) 3.45(1.10)

Exc_01 Pos/Exc 0.81(0.16) 4.15(0.67) 0.71(0.27) 3.70(1.22)

Happy_01 Pos/Exc 0.82(0.12) 4.30(0.73) 0.86(0.12) 4.65(0.49)

Joyful_01 Pos/Exc 0.80(0.13) 3.85(0.99) 0.64(0.25) 3.75(0.97)

Angry_3 Neg/Cal 0.63(0.23) 3.90(0.55) 0.40(0.20) 3.40(0.88)

Frustrated_1 Neg/Cal 0.61(0.23) 3.25(0.97) 0.20(0.17) 4.00(0.79)

Hot_1 Neg/Cal 0.35(0.20) 3.45(1.00) 0.32(0.18) 3.75(0.72)

SadReaction_01 Neg/Cal 0.32(0.29) 3.90(0.97) 0.19(0.15) 4.05(0.83)

Angry_4 Neg/Exc 0.78(0.25) 4.05(1.00) 0.19(0.22) 3.65(1.42)

Fear_1 Neg/Exc 0.89(0.17) 4.15(0.75) 0.43(0.32) 3.50(1.10)

Fearful_1 Neg/Exc 0.90(0.11) 4.40(0.60) 0.14(0.16) 4.20(0.89)

Sad_01 Neg/Exc 0.75(0.17) 3.80(0.83) 0.33(0.22) 3.55(0.89)

Bored_01 Neg/Tir 0.48(0.31) 3.65(1.09) 0.49(0.13) 2.90(1.12)

Disappointed_1 Neg/Tir 0.37(0.19) 3.40(0.94) 0.21(0.14) 4.10(0.72)

Lonely_1 Neg/Tir 0.28(0.23) 3.65(0.81) 0.28(0.19) 3.70(1.17)

Shocked_1 Neg/Tir 0.48(0.28) 3.70(0.80) 0.56(0.17) 2.85(0.93)

AskForAttention_3 Neu/Cal 0.49(0.25) 3.45(0.89) 0.38(0.22) 3.45(0.94)

Chill_01 Neu/Cal 0.56(0.18) 3.65(0.88) 0.64(0.18) 3.70(0.80)

Puzzled_1 Neu/Cal 0.60(0.19) 3.80(0.62) 0.49(0.12) 3.20(0.83)

Relaxation_2 Neu/Cal 0.50(0.22) 3.15(1.14) 0.56(0.15) 2.60(1.27)

Continued on next page
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Hand-designed animations

Table A.2 – continued from previous page

Animation Arousal Valence

Tag Class Mean(SD) C_Mean(SD) Mean(SD) C_Mean(SD)

Curious_01 Neu/Exc 0.89(0.13) 4.25(0.79) 0.62(0.17) 3.50(1.15)

SurprisedBig_01 Neu/Exc 0.82(0.16) 4.00(0.73) 0.40(0.19) 3.15(0.93)

Surprised_01 Neu/Exc 0.78(0.19) 4.00(0.79) 0.46(0.22) 3.20(1.11)

Surprised_1 Neu/Exc 0.71(0.15) 3.45(0.94)) 0.60(0.15) 3.25(1.02)

Alienated_1 Neu/Tir 0.20(0.24) 4.05(0.60)) 0.41(0.16) 3.05(1.05)

Hesitation_1 Neu/Tir 0.70(0.16) 3.55(1.00)) 0.32(0.22) 3.15(1.09)

Innocent_1 Neu/Tir 0.52(0.21) 4.05(0.39)) 0.69(0.15) 3.50(0.89)

Stretch_2 Neu/Tir 0.40(0.21) 3.40(1.05)) 0.60(0.18) 3.10(0.97)
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Appendix B

Experimental interface

In this Appendix, we present three views from the participant’s interface used in the experi-
ment described in Chapter 7.
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Experimental interface

Fig. B.1 The web interface used for Part A and C of the experimental session described in
Chapter 7. It contains a play button with which the participant activates the robot to display
a set of concatenated animations. Subsequently, the participant submits her scores on two
scales of Godspeed Questionnaire [16], Anthropomorphism and Animacy.
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Fig. B.2 The first view of Part B of the experimental session described in Chapter 7. This
play button activates the robot to display a single generated animation. Then, the participant
submits her valence, arousal and dominance scores on the sliders. The range of each slider is
from 0 to 1 with 100 steps.

Fig. B.3 The second view of Part B of the experimental session described in Chapter 7. The
play button allows the user to replay the animation she evaluated in the first view. Then, the
participant submits her scores on the Likert scales.
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