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1.  INTRODUCTION

Diverse and sustainable populations of marine
organisms are key for the continued provision of
marine ecosystem services, i.e. the ‘direct and in -
direct benefits people obtain from [marine] ecosys-
tems’ (Beaumont et al. 2007, p. 254), and importantly
for food biosecurity (Palumbi et al. 2009). However,
food biosecurity appears threatened by environmen-
tal stress and future climate change (Ekstrom et al.

2015, Lloret et al. 2016, Kibria et al. 2017, Lemasson
et al. 2019). Commercially important fisheries such
as cod (Koenigstein et al. 2018), scallops (Cooley
et al. 2015, Richards et al. 2015), and prawns
(Richards et al. 2015) display reduced recruitment
success, altered growth, and declines in harvests
under ocean acidification and warming (OAW) sce-
narios. The sustainability of the shellfish industry,
and that of molluscs in particular, which constituted
in excess of 15% of global aquaculture production
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16.8°C and warm: 20°C) and atmospheric pCO2 (ambient [~400], ~750, and ~1000 ppm) condi-
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~1000 ppm pCO2. This suggests greater resistance to mechanical predation toward the mid-21st

century, but greater susceptibility toward the end of the century. For both species, individuals
with more somatic tissue held an ecological advantage against predators; consequently, smaller
oysters may be favoured by predators under OAW. By affecting fitness and predation resistance,
OAW may be expected to induce shifts in predator−prey interactions and reshape assemblage
structure due to species and size selection, which may consequently modify oyster reef function-
ing. This could in turn have implications for the provision of associated ecosystem services.
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in 2018 (FAO data: www.fao.org/ fishery/ statistics/
global-aquaculture-production), are of particular con-
cern under future OAW scenarios (Cooley et al. 2012,
Gazeau et al. 2013, Parker et al. 2013, Froehlich et
al. 2018).

OAW can alter the fitness of molluscs, including
changes in physiology and shell properties, and alter
energy budgets (Spalding et al. 2017). Increased res-
piration rates (Ong et al. 2017, Lemasson et al. 2018),
decreased feeding rates (Vargas et al. 2015,
Clements & Darrow 2018, Sadler et al. 2018), and
reduced condition (Ong et al. 2017, Lemasson et al.
2019) are evident and indicative of environmentally
induced stress. Important calcification and miner-
alogical processes may also undergo crucial changes
in functioning (Li et al. 2015, Fitzer et al. 2016,
Duquette et al. 2017, Leung et al. 2017a, Knights et
al. 2020), and as a consequence, shells can be less
dense (Chatzinikolaou et al. 2017), lighter (Lagos et
al. 2016), thinner (Lagos et al. 2016), and weaker (e.g.
Li et al. 2015, Speights et al. 2017, Meng et al. 2018,
Wright et al. 2018, Barclay et al. 2019, Zhao et al.
2020). It is predicted that these individual fitness
consequences will have important implications for
the stability and resilience of impacted populations
as a result of changes in the strength of population-
regulating mechanisms and community interac-
tions, particularly in the case of ecosystem engineers
(McCann 2000, Gribben et al. 2009, 2013).

Predation is a well-recognised top-down driver of
population dynamics in the marine environment
(Myers et al. 2007, Peckarsky et al. 2008), the strength
of which can change when exposed to multiple envi-
ronmental stressors such as OAW. The extent to
which changes occur, as well as their effects on pop-
ulation and community dynamics, are not well under-
stood, but a number of negative consequences of
OAW have been shown. In addition to the alterations
in shell properties mentioned above which would
alter predator−prey dynamics, these negative conse-
quences include changes in the responses of prey to
predator olfactory cues (Jellison et al. 2016, Froehlich
& Lord 2020, but see Clements et al. 2021), altered
predator consumption rates (Harvey & Moore 2017,
Sampaio et al. 2017, Sadler et al. 2018, Wright et al.
2018), the induction of important non-consumptive
effects on prey (Lord et al. 2017), or changes in
behavioural prey defences (Clements & Comeau
2019). Individually or collectively, these changes point
toward significant alterations to community dynam-
ics and highlight a particular concern that assessing
the physiological effects of OAW on a target species
(e.g. a commercially valuable prey species) may

alone be insufficient to accurately predict sustain-
ability outcomes for the future.

There are a number of predators of commercially
important bivalves with a wide range of predation
strategies. Mechanical approaches are common: for
instance, gastropods drill holes into the shell, starfish
pry open the 2 valves and tear the muscles responsi-
ble for valve closure (Lavoie 1956, Reimer & Teden-
gren 1996), crabs and other durophagous predators
crush the shell (Menzel & Nichy 1958, Elner 1978;
although some species of crabs such as Carcinus
maenas can also pry the valves open, Sanchez-
Salazar et al. 1987), and some birds are known to also
target the hinge (Butler & Kirbyson 1979). The ability
of individuals to resist predation is crucial for survival
and long-term population maintenance (Knights et
al. 2012). Bivalve resistance to predation is closely
linked to their ability to build robust protective shells
(therefore linked to shell metrics such as size, thick-
ness, and strength) as well as strong adductor muscle
to control their gaping behaviour, affecting predator
handling time (Boulding 1984, Reimer & Tedengren
1996, Beadman et al. 2003, López et al. 2010).

Oysters are among the bivalve molluscs at risk
from OAW (Lemasson et al. 2017). Amongst the
numerous factors contributing to the decline in oyster
populations globally (Beck et al. 2011) — overfishing,
disease, cold winter conditions, low recruitment
rates, and competitors — predation plays an impor-
tant role (O’Connor et al. 2008, Knights et al. 2012).
Predators of the native European flat oyster Ostrea
edulis in the UK include molluscs such as Ocenebra
erinacea and Urosalpinx cinerea (Woolmer et al.
2011, Sawusdee 2015), crab species including Can-
cer pagurus, Carcinus maenas, and Necora puber
(Mascaró & Seed 2001, Shelmerdine & Leslie 2009),
and starfish (e.g. Asteria rubens, Solaster papposus)
(Hancock 1955, 1958, Woolmer et al. 2011). The
introduced Pacific oyster Magallana gigas (formerly
Crassostrea gigas) has similar predators to O. edulis,
with additional potential predation by the whelk
Buccinum undatum and species of birds (Cadée
2001). Any negative effects of OAW on traits of oys-
ters that reduce predation risk (i.e. adductor muscle
strength, shell properties, gaping behaviour) may
alter predator−prey interactions and reshape reef
structure and functioning.

Here, we tested the effects of OAW on aspects of
oyster fitness and morphology linked with predation
resistance, comparing a native (O. edulis) and a non-
native (M. gigas) species of oyster. Both species are of
high economic value in the UK (Herbert et al. 2012),
and the basis of a major UK shellfish fishery valued at
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~US $10.3 million in 2018 (www.fao.org/ fishery/
statistics/ global- aquaculture-production). Changes in
ad ductor muscle strength and shell fracture strength
were evaluated under simulated warming and acidi-
fication scenarios over a 12 wk period, and linked to
changes in physiological (condition indices, tissue
weight) and morphological (muscle diameter and
area, shell density, shell thickness, shell weight)
traits. We had 3 hypotheses: (1) OAW scenarios
would negatively impact on the fitness and morpho-
logical properties of oysters valuable to predation
resistance (condition index, muscle diameter and
area, tissue weight, shell density and thickness),
which in turn would affect the (2) adductor muscle
strength and (3) shell fracture strength of oysters,
linked to 2 distinct mechanical predation strategies
(prying and crushing, respectively).

2.  MATERIALS AND METHODS

2.1.  Sample collection

Adult Pacific oysters (length: 79.5 ± 5.9 mm;
weight: 45.1 ± 8.5 g; n = 48; mean ± SD) and Euro-
pean flat oysters (length: 70.3 ± 5.5 mm; weight: 41.4
± 19.5 g; n = 48) were wild-collected from a low-inter-
tidal site in Plymouth Sound (50° 23’ 29.95” N,
4° 13’ 16.77” W), UK, in August and November 2016,
respectively. Organisms were brought back to the
Marine Biology and Ecology Research Centre at the
University of Plymouth within 1 h of collection and
kept in large stock tanks (200 l) under ambient labo-
ratory conditions for 2 wk. These conditions con-
sisted of a temperature of ~16.5°C, salinity of 32−33,
and atmospheric pressure of ~400 ppm pCO2, during
which oysters were fed ad libitum with a mixed algal
diet (Shellfish Diet 1800, Reed Mariculture).

2.2.  Experimental design and set-up, treatments,
and measurements of seawater parameters

2.2.1.  OAW experimental treatments

Both species of oyster were exposed to 6 OAW sce-
narios: 3 levels of atmospheric pCO2 (ambient [~400],
~750, ~1000 ppm) and 2 seawater temperatures (con-
trol: 16.8°C, warm: 20°C) in an orthogonal design.
These scenarios, previously used and presented by
Lemasson et al. (2018), simulate current and future
OAW scenarios predicted for the UK. The 2 tempera-
ture treatments selected reflected maximum current

sea surface temperature (SST; 16.8°C), and predicted
SST for the end of the century (20°C, corresponding to
the predicted increase by 3−4°C along the southwest-
ern coast of the UK; UKCP09 data, Hadley Centre for
Climate Prediction and Research 2014). The atmos-
pheric pCO2 levels chosen were based on IPCC sce-
nario (re presentative concentration pathway [RCP]
8.5) for mid- and end-century (IPCC 2013). However,
while organisms living in coastal and estuarine habi-
tats experience localized variability in environmental
conditions which may be amplified by future OAW,
the predictions tested here do not take this into ac-
count. The experiment was run sequentially grouped
by species due to the capacity of the OAW system to
accommodate the number of replicate tanks used. We
set up 48 experimental tanks (3 l capacity each, n = 8
per OAW scenario) for each run of the experiment
(Fig. A1 in the Appendix). A single oyster was placed
in each tank and exposed to the treatment conditions
for 12 wk (for each species n = 8 oysters per treat-
ment). Throughout the 12 wk duration of the experi-
ment, oysters were fed daily with a mixed algal diet
(Shellfish Diet 1800, Reed Mariculture) to obtain a
concentration of approximately 108 cells l−1 within the
experimental tank. Tanks were gently brushed and
siphoned 3 times a week, removing no more than
20% of the volume, and left to slowly refill with the in-
coming equilibrated seawater.

2.2.2.  Experimental design and mesocosm set-up

The OAW mesocosm system used during the exper-
iment is the one presented by Lemasson et al. (2018),
which is a modified version of the one de scribed by
Calosi et al. (2013). Briefly, each treatment consisted
of an 80 l header tank of seawater, supplied from ei-
ther a 16.5°C or a 20°C sump, and aerated with either
the ambient air pipe (pCO2 ~400 ppm) or one of the 2
CO2-enriched air pipes (pCO2 ~750 or ~1000 ppm). A
submersible pump (Hydor Koralia Nano 900) was used
in all header tanks to achieve sufficient mixing. CO2

gas mixes were obtained by slowly releasing CO2

into 2 Büchner flasks using multistage CO2 regulators
(EN ISO 7291; Gas Control Equipment), where it
mixed with ambient air, achieving 2 different levels of
pCO2 As such, the 3 atmospheric CO2 levels varied in
a similar manner throughout the experiment following
natural variations in CO2 in the ambient air, and
therefore in cluded natural daily variation, which is
considered critical in climate change experimental
studies (Reum et al. 2016, Humphreys 2017). A CO2

analyser (LI-820; LI-COR) was used to record CO2 lev-
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els in the 2 CO2-enriched pipes as well as in the ambi-
ent air pipe to monitor for the control treatments.
From the header tanks, seawater was gravity-fed at
a constant rate of ~60 ml min−1 to each of the 8 cor -
responding replicate tanks (3 l transparent sealed
containers). These replicate tanks were held within
4 holding trays (300 l tray−1). Each sump supplied
seawater to 2 of the holding trays, effectively creating
water baths which maintained the replicate tanks at
the desired temperature. Each tray held 4 replicates
of each CO2 level. Excess seawater overflowed from
the holding trays back into their corresponding
sump, where it was filtered, aerated, and recirculated
to the corresponding header tanks and trays using a
submersible pump (1262; EHEIM). On a daily basis,
seawater and/or deionized water was added and re-
placed in the system to maintain stable salinity levels.
In elevated temperature treatments, aquarium heaters
(50 W aquarium heater; EHEIM Jager) were placed in
header tanks and holding trays to increase the sea -
water to 20°C.

2.2.3.  Measurements of seawater parameters

Temperature, salinity, and pH were measured daily
in all replicate tanks (Table 1; and see Figs. S1−S4
at www.int-res.com/ articles/ suppl/ m665 p087 _ supp.
pdf). A handheld refractometer was used to measure
salinity (D&D The Aquarium Solution). A digital
thermometer was used to measure temperature (TL;
Fisher Scientific). Following calibration with NIST
traceable buffers, pH was measured using a micro-
electrode (InLab® Expert Pro-ISM; Mettler-Toledo)

coupled to a pH meter (S400 SevenExcellence™;
Mettler-Toledo); pH in the header tanks was also
monitored (data not shown). Total alkalinity (AT)
measurements were conducted once weekly on
125 ml water samples in triplicate for each treatment
directly from the header tanks. Prior validation was
performed to ensure that the replicate tanks had con-
sistently the same AT as each other and as the header
tank. Water samples were directly analysed for AT

by automatic Gran titration (Titralab AT1000© Hach
Company) within 15 min of being sampled. Partial
pressure of carbon dioxide (pCO2) in seawater and
saturation states of calcite and aragonite (ΩCa and
ΩAr) were calculated at the end of the experiment
using CO2 SYS (Pierrot et al. 2006), employing con-
stants from Mehrbach et al. (1973) re fitted to the NBS
pH scale by Dickson & Millero (1987) and the KSO4

dissociation constant from Dickson (1990) (Table 1).

2.3.  Adductor muscle strength, shell strength, and
morphometry measurements

2.3.1.  Adductor muscle and shell strengths

All oysters survived the 12 wk exposure duration,
after which each oyster was removed from its tank,
dried, gently scrubbed of epibionts, and a stainless
steel hook glued a few centimetres from the edge
of the right valve with EPAFD low-viscosity epoxy
resin mixed with rapid hardener (Reactive Resins, EP
Resins). The left valve was glued with the same epoxy
resin/hardener combination onto a 150 × 150 mm
metal plate. Adductor muscle strength was deter-
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Treatment Salinity Temp. AT pH pCO2 sw ΩCa ΩAr
(pCO2 atm × Temperature) (°C) (µmol kg−1 SW) (µatm)

Magallana gigas
Ambient × Control 32.9 ± 2.2 17.0 ± 0.2 2680.4 ± 446.0 7.94 ± 0.08 587.1 ± 116.0 4.0 ± 1.0 2.6 ± 0.6
750 ppm × Control 32.7 ± 2.3 17.0 ± 0.2 2659.7 ± 448.2 7.82 ± 0.05 797.6 ± 157.5 3.1 ± 0.6 2.0 ± 0.4
1000 ppm × Control 32.9 ± 2.2 16.9 ± 0.1 2647.5 ± 466.9 7.68 ± 0.05 1127.1 ± 189.4 2.3 ± 0.6 1.5 ± 0.4
Ambient × Warm 32.7 ± 2.4 20.7 ± 0.2 2848.0 ± 508.9 7.97 ± 0.04 629.7 ± 95.0 4.8 ± 1.2 3.1 ± 0.8
750 ppm × Warm 33.8 ± 2.0 21.8 ± 0.6 2860.0 ± 515.7 7.87 ± 0.03 835.3 ± 140.5 4.1 ± 0.9 2.6 ± 0.6
1000 ppm × Warm 33.9 ± 1.9 20.5 ± 0.1 2850.4 ± 528.1 7.72 ± 0.05 1177.0 ± 130.9 3.0 ± 1.0 1.9 ± 0.6

Ostrea edulis
Ambient × Control 33.0 ± 1.8 16.7 ± 0.6 1683.1 ± 144.7 7.96 ± 0.05 492.4 ± 68.7 2.0 ± 0.3 1.3 ± 0.2
750 ppm × Control 33.1 ± 1.6 16.7 ± 0.6 1670.3 ± 150.7 7.86 ± 0.07 626.7 ± 79.3 1.6 ± 0.3 1.0 ± 0.2
1000 ppm × Control 33.3 ± 1.7 16.7 ± 0.6 1665.3 ± 146.7 7.77 ± 0.10 818.5 ± 140.4 1.3 ± 0.4 0.8 ± 0.2
Ambient × Warm 33.6 ± 2.2 19.8 ± 0.8 1978.3 ± 154.7 8.04 ± 0.08 464.8 ± 59.3 3.1 ± 0.6 2.0 ± 0.4
750 ppm × Warm 33.4 ± 2.1 20.3 ± 1.2 1981.4 ± 140.3 7.92 ± 0.06 731.2 ± 84.4 2.3 ± 0.4 1.5 ± 0.3
1000 ppm × Warm 33.5 ± 2.1 19.8 ± 0.9 1979.6 ± 143.3 7.84 ± 0.06 864.3 ± 104.6 1.9 ± 0.3 1.2 ± 0.2

Table 1. Seawater chemistry for Magallana gigas and Ostrea edulis. Data shown are means ± SD values. ppm: parts per mil-
lion; ΩCa: saturation state of calcite; ΩAr: saturation state of aragonite; atm: atmosphere; SW: seawater; AT: total alkalinity
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mined by applying a vertical pulling (extensive) force
to the right valve, using a force transducer (Instron
Testing System) connected to the hook of the oyster
(Fig. 1a). The metal plate glued to the lower valve of
the oyster was securely held in place onto the base of
the force transducer using clamps, to obtain an immo-
bile base and allow accurate measurement of the ver-
tical force exerted. The force profile for each oyster
was recorded (Fig. 1b), along with corresponding vi-
sual observations. This profile corresponds to the ex-
tensive force exerted over time (recorded every 0.1 s;
extension rate: 0.08 mm s−1). Three data points were
extracted from the force profile: (1) the initial resist-
ance (in N s−1) of the oyster against the pulling pres-

sure, defined as the initial slope of the force curve
from onset of the pulling force to the first opening of
the valves (Point 1 in Fig. 1b); (2) the force necessary
for the valves to start opening (Point 2 in Fig. 1b); (3)
the maximum force applied before the onset of
muscle rupture (Point 3 in Fig. 1b).

The shell strength of the left valve of each individ-
ual oyster was determined using a vertical compres-
sive force applied to the shell using a force trans-
ducer (Instron Testing System). The left valve of each
oyster shell was placed directly underneath the cell
load (Fig. 1c) and the force profile for each oyster was
recorded, along with corresponding visual observa-
tions. This profile corresponds to the compressive
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Fig. 1. (a) Experimental set-up for oyster adductor muscle strength assessment. A: Instron cell load; B: hook (glued to C: oyster);
D: clamps; E: metal plate. (b) Schematic of a typical curve for the extensive force exerted on the adductor muscle of oysters
over time. 1: Initial resistance against the pulling pressure (recorded in N s−1, corresponding to the slope of the curve from onset
of pulling force to the first opening of the valve [data point 2]). 2: Force necessary for the valves to start opening. 3. Maximum
force applied before the onset of muscle rupture. (c) Experimental set-up for oyster shell strength assessment. A: Instron cell
load; B: oyster; C: fixed metal base. (d) Schematic of a typical curve for the compressive force exerted on the shell of oysters. 

Arrows: Minor cracks which did not lead to shell fracture. 4: Major crack which led to shell fracture (shown in inset)
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force exerted over time (recorded every 0.1 s; com-
pression rate: 0.08 mm s−1). For each oyster, the force
required to break the valve in half was recorded
(Point 4 in Fig. 1d).

2.3.2.  Morphometrics

Following the adductor muscle strength tests and
before the shell strength tests, the fresh tissue weight
and shell length of each oyster was measured using a
digital scale (Fisher Scientific Precision series PP5413,
precision 0.001 g) and digital callipers (Mitutoya;
precision 0.01 mm), respectively. The inside of each
valve was then photographed using a digital camera
(Pentax OptioLS465) and the diameter and surface
area of the adductor muscle were calculated using
image analysis software (ImageJ) (Fig. A2). Shell and
soft tissue were then dried at 105°C for 24 h or until a
constant mass was achieved. The condition index
(CI) was then calculated using the following equa-
tion after Knights (2012):

(1)

For each valve (left and right), shell density was
quantified using the buoyant weight method de -
scribed by Denton & Gilpin-Brown (1961), using the
following equation:

(2)

where d is the density of the shell valve, d liq is the
density of the liquid used for immersion, w is the dry
weight of the shell valve in grams, and y is the buoy-
ant weight of the shell valve in grams.

Following tests of shell strength, the thickness of
the left valve of each individual was measured using
digital callipers (Mitutoya; precision 0.01 mm) at 3
random points along the fracture line.

2.4.  Statistical analyses

All data were analysed using the public domain
R (R version 4.0.2, R Core Team 2020). Differences
were considered significant if p < 0.05. Due to natural
variations in the chemistry of the seawater used dur-
ing the experiments and the partial pressure of ambi-
ent air used, the treatments applied to each species
were not consistent (Table 1), and therefore species
were not formally compared, and data were analysed
separately.

2.4.1.  Adductor muscle and shell strengths

Data were analysed using 3-factor analysis of co -
variance (ANCOVA), with ‘pCO2’ and ‘Temperature’
as fixed factors. The covariate was selected by com-
paring multiple models, with a different biometric for
each model, using residual sum of squares. After
determination of which biometric (muscle diameter,
muscle surface area, CI, shell thickness, shell length,
shell weight, and tissue dry mass) was the best suited
predictor for each of the response variables, tissue
dry mass (g) was selected as the continuous covariate
in the model analysing the adductor muscle strength,
and shell weight (g) as the continuous covariate in
the model analysing the shell strength. Diagnostics
plots were used to visually assess model assumptions
that the residuals were unbiased and homoscedastic.
Where significant differences were present, post-hoc
multiple comparisons (‘multcomp’ package) were per-
formed to determine which treatment levels differed.

2.4.2.  Morphometrics

Differences in muscle diameter and area, CI, and
shell thickness between treatments were assessed us-
ing a linear mixed-effect model (function ‘lme’ in the
‘lme4’ package) with ‘pCO2’ and ‘Temperature’ as
fixed factors and including ‘individual’ as a random
factor. Differences in shell density were assessed us-
ing ‘lme’ with the fixed factors ‘pCO2’, ‘Temperature’,
and ‘Valve’ (left or right) nested in the random variable
‘individual’. Data were log-transformed to en sure
homogeneity of residual variance. Where significant
differences were identified, post-hoc Tukey pairwise
comparisons were performed to identify where treat-
ment combinations differed (function ‘lsmeans’ in the
‘emmeans’ package). The relationships between mus-
cle diameter and muscle surface area were assessed
using linear regressions, and differences in regression
parameters between ANOVA (single factor) were used
to test the significance of the relationship.

3.  RESULTS

3.1.  Muscle strength

3.1.1.  Initial resisting force

There was considerable variation between individ-
uals within treatments in their capacity to resist
mechanical opening (Fig. 2a,b). This variation led to

liqd w
d

w y
= ×

−

CI
dry tissue weight
dry shell weight

100= ×
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no statistically significant differences between treat-
ments, yet there were clear and marked differences
in the mean initial resistance depending on tempera-
ture and pCO2 (Fig. 2a,b, Table S1). In both oyster
species, under ambient and 1000 ppm pCO2, initial
resistance reduced under elevated temperatures by
8.6−28.3% (9−29 N s–1) compared to controlled tem-
perature, and the Newton forces were largely similar
within temperature between these pCO2 treatments.
In contrast, under 750 ppm, elevated temperatures
led to a marked increase of 59.2−81.4% (27−36 N s–1)
in the mean initial resistance (Fig. 2a,b).

3.1.2.  Force necessary to open the valves

There were marked differences in the force re quired
to open the valves depending on species. In Magallana
gigas, pCO2 and tissue dry weight, but not tempera-
ture, affected the force required to open the valves
(Fig. 2c, Table S1). An 11−35% increase in force was
required to open oysters exposed to elevated pCO2

treatments, increasing from ~37.8 ± 4.2 N (mean ± SE)
at ambient pCO2, to ~42.0 ± 6.0 and ~50.8 ± 4.5 N at
~750 and ~1000 ppm, respectively. ANCOVA results
indicated a positive relationship be tween biomass and
opening force, but only under ~750 ppm. In Ostrea
edulis, there was no statistically significant effect of
temperature, pCO2, or biomass on the re quired open-
ing force (all individuals opened under ~36.4 ± 3.9 N
extensive force), although, as in M. gigas, results were
highly variable between individuals (Fig. 2d). Never-
theless, some patterns are ap parent. O. edulis reared
under ambient pCO2 and control temperature condi-
tions required less force (~16 N) to open the valves
than those reared under all other scenarios. Increasing
pCO2 also appeared to increase the force necessary to
open their valves, rising from 24.8 ± 7.5 N under ambi-
ent pCO2 to ~38.7 ± 14.8 and ~43.3 ± 13.1 N at ~750
and ~1000 ppm, respectively.

3.1.3.  Force required to induce muscle tear

Temperature and pCO2 affected the force required
to induce muscle tear in M. gigas but not O. edulis.
Post-hoc tests revealed that under ~750 ppm pCO2, the
force required to induce muscle tear was 18.8% (~17
N) lower under control temperature and 23.5% higher
(~21 N) in warm temperatures in comparison to all
other pCO2 treatments that were not different from
one another. In O. edulis, but not M. gigas, there was a
positive relationship between the force required to tear

muscle fibres and tissue dry weight, which increased
by 43.4 N g−1 of tissue dry weight (Fig. 2e–h, Table S1).

3.2.  Shell strength

A combination of temperature and pCO2 affected
the shell strength of M. gigas (Table S2), with a
marked reduction in shell strength with elevated
pCO2 at the control temperature. Shells reared
under ambient pCO2 withstood a compressive force
of ~619 N, but this strength was reduced by between
36 and 44% after exposure to ~750 ppm (~390 N) and
~1000 ppm (~342 N) pCO2, respectively (Fig. 3a).
Rearing at warm temperatures reduced the mean
strength of M. gigas shells by over 40% (from ~619 to
~367 N), but changes in pCO2 had no effect. Under
ambient pCO2, increased shell mass led to increased
shell strength, but this relationship was negated
under elevated pCO2 conditions (Fig. 3b). In con-
trast, change in temperature and pCO2 had no effect
on the strength of O. edulis shells, although heavier
shells exhibited increased shell strength, increasing
by 15.8 N g−1 of shell dry weight (Table S2, Fig. 3c,d).

Despite not being formally compared, there were
notable differences in the strength of O. edulis shells
compared to those of M. gigas. On average, O. edulis
shells were ~69.1% stronger (~300.5 N stronger)
than those of M. gigas.

3.3.  Morphometrics

For both M. gigas and O. edulis, muscle diameter
and area were positively correlated (Fig. A3e,f), but
neither were affected by Temperature, pCO2, or
their interaction (Table S3, Fig. A3a–d).

A combination of temperature and pCO2 statisti-
cally significantly affected the CI of M. gigas (p <
0.05; Table S3, Fig. 4a). Statistically, post-hoc tests
were unable to differentiate between treatment com-
binations due to natural variations, yet clear trends
were apparent. Under control temperatures, a posi-
tive trend between CI and pCO2 was apparent; this
trend appeared to reverse under warm conditions.
Within pCO2, at ambient 400 ppm, increased temper-
ature led to a 19.5% increase in condition, whereas
under 750 and 1000 ppm, elevated temperatures
led to a reduction in condition by 11.6 and 18.1%,
respectively. In O. edulis, there was no effect of any
OAW scenarios on condition (Table S3, Fig. 4b).

Shell density was dependent on which valve was
examined in both species (Table S3). Left valves were
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approximately 8.5 and 9.7% more dense than the
right valves in both M. gigas and O. edulis, respec-
tively (Fig. 4c,d).

The shells of O. edulis were ~53% thicker (~1.2 mm
thicker) than those of M. gigas (Fig. 4e,f). Higher
temperature increased the thickness of O. edulis
shells by ~20% (~0.63 mm thicker) in comparison to
ambient temperatures, but this effect was not statisti-
cally significant (F1,39 = 3.359, p = 0.075; Table S3), an
effect not manifested in the shells of M. gigas. Sur-
prisingly, elevated pCO2 had no effect on shell thick-
ness in either species.

4.  DISCUSSION

Ongoing climate change causing OAW poses a
threat to oyster reefs, with a probable decline in the

provision of ecosystem services predicted for the
future (Lemasson et al. 2017). As predation is an
important factor shaping oyster populations (O’Con-
nor et al. 2008, Knights et al. 2012), the ability of oys-
ters to retain traits valuable in predation resistance in
the future may be decisive for population maintenance.
Responses to OAW were highly variable within the
same species; nevertheless, clear differences in
response are shown, in which functional traits of
Ostrea edulis were relatively unimpacted by the
OAW scenarios despite the more challenging seawa-
ter chemistry (low AT, ΩCa, and ΩAr; Table 1),
whereas several of the same traits in Magallana gigas
were negatively impacted by exposure to OAW.

Being able to control valve closing has an impor-
tant survival value for bivalves as a means of protec-
tion against harmful environmental stressors and
against predators (Reimer & Tedengren 1996). It is
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also essential for vital functions such as feeding,
respiring, and eliminating waste (Robson et al. 2007).
The natural state of oysters is open and gaping, due
to the mechanical spring-like effect of the ligament
connecting the 2 valves (Kurita et al. 2016), although
oysters (and other bivalves) can control the opening
and closing of the valves by contracting their adduc-
tor muscle (Galtsoff 1964, Kurita et al. 2016). If the
valves are forced apart by predators, the muscle
fibres will eventually tear from the centre (Galtsoff
1964), leading to loss of a key protective function.

To our knowledge, no studies to date have looked
into the effects of OAW on the strength of the adduc-
tor muscle in bivalves. Because of the emerging evi-
dence that the physiology of organisms, particularly
calcifiers, can be impacted by OAW, we predicted
that OAW would affect muscle fitness traits (pry
resistance; opening force and muscle tear) and this
was evident in M. gigas. Under elevated pCO2, indi-
viduals required an 11 to 35% increase in force to be
opened irrespective of temperature, and a 23.5%
increase in the force required for their muscle to tear
(at 750 ppm) when combined with elevated tempera-
ture. In marked contrast, the amount of force re -

quired to open the valves and tear the muscle of O.
edulis was unaffected by OAW, likely because its
muscle integrity (diameter and CI) was not affected
by the conditions, either positively or negatively. For
both species, our results appear in contrast with that
of Zhao et al. (2020) for the thick shell mussel Mytilus
coruscus under ocean acidification (OA) conditions
alone, where they reported reduced adductor muscle
strength at pH 7.8 and pH 7.4. It should be noted,
however, that the authors did not directly measure
muscle strength, but rather correlated it to adductor
muscle diameter. Their results should therefore be
interpreted with caution, as we show here for M. gigas
that muscle strength is not always directly related to
muscle diameter.

For both M. gigas and O. edulis, bigger individuals
(i.e. those with higher tissue weight) were able to
sustain stronger extensive force on their adductor
muscle, likely by having more robust muscle fibres.
The action of the adductor muscle is predominantly
fuelled by soft-tissue glycogen in oysters (Galtsoff
1964); therefore, bigger individuals would possess
more glycogen to allocate to muscle build-up. M.
gigas has a higher glycogen (carbohydrate) content
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than O. edulis, and here OAW may be enhancing the
use of this biochemical in M. gigas into building a
stronger (but not necessarily bigger) adductor mus-
cle. Possessing the ability to build a stronger muscle,
able to resist more important pulling forces from
predators, may confer an ecological advantage to M.
gigas over O. edulis in the future.

Shells constitute the first line of defence of oysters
to external threats, and therefore to possess a strong
shell is to hold a fitness advantage (Currey & Hughes
1982). The production of shell material is biologically
controlled and energetically expensive, but modulated
by changes in environmental conditions (Gazeau et
al. 2013). The burgeoning evidence from OA studies
have shown that molluscan shell calcification is par-
ticularly vulnerable to increases in pCO2 and de -
creases in seawater pH (Gazeau et al. 2013, Byrne &
Fitzer 2019, but see Knights et al. 2020). Previously
observed changes to the mineralogy and structural
integrity of shells (Fitzer et al. 2016, Duquette et al.
2017, Knights et al. 2020), and reductions in shell
metrics (Lagos et al. 2016, Chatzinikolaou et al. 2017,
Wright et al. 2018, Zhao et al. 2020), are likely to
negatively affect their protective function.

We predicted reduced shell strength under OAW;
this was apparent in M. gigas but not O. edulis. The
literature is similarly conflicted, reporting mixed or
no effect of OAW on shell strength of molluscs in
some instances (Duquette et al. 2017, Babarro et al.
2018, Clements et al. 2018), and marked reductions
in others (Welladsen et al. 2010, Li et al. 2015,
Speights et al. 2017, Wright et al. 2018, Barclay et al.
2019, Zhao et al. 2020). Differences between species
may be attributed to differences in the biomineralisa-
tion process and use of different calcium carbonate
polymorphs (Gazeau et al. 2013). Recent studies have
shown that the crystal matrices and the orientation of
individual crystals that make up those matrices can
be modified under OAW (e.g. Li et al. 2015, Fitzer et
al. 2016, Knights et al. 2020), which could hold impli-
cations for the mechanical integrity of the shell and
its protective function (Li et al. 2015). For instance,
changes in shell crystallography as well as mineral
plasticity may also affect rates of shell dissolution
and shell strength (Duquette et al. 2017, Leung et al.
2017a, Barclay et al. 2019, 2020, Chadwick et al.
2019). Changes in crystallographic structure were
not assessed here, and although no changes in shell
thickness and density were recorded, it is likely that
M. gigas allocated energy towards tissue production
and maintenance of its adductor muscle, at the detri-
ment of calcification. Similarly to M. gigas in this
study, Mytilus edulis was shown to reallocate energy

from shell strength to maintenance under OAW
(Mackenzie et al. 2014). For both O. edulis and M.
gigas, individuals with heavier shells were more
resistant to crushing forces, but this advantage dis-
appeared for M. gigas under elevated pCO2, sug-
gesting that building a heavier shell may not confer
an ecological advantage to M. gigas in the future.
Note that scrubbing off epibionts from shells is a
common practice, and it was assumed in this study
that this process did not significantly affect the shell
integrity or strength.

Weakened shells represent a reduction in fitness
that may put oysters at greater risk of predation, for
example, by shortening the prey-handling time from
current predators or allowing new species to crush
shells that were previously stronger than they could
manage (Beadman et al. 2003). For instance, a poten-
tial predator with crushing force limited to 400 N
would not have the capacity to crush the shells of
M. gigas or O. edulis under control temperature
and ambient pCO2 conditions, but under future
OAW conditions, this predator has in theory suffi-
cient crushing force to predate on M. gigas. Such
alteration in predator−prey interactions could then
induce important community and ecosystem-level
destabilization (Kroeker et al. 2014).

Despite differences in muscle and shell strengths,
there were no changes in the CI, muscle diameter,
shell thickness, or density, i.e. traits indicative of an
organism’s physiological status and overall health, in
either M. gigas or O. edulis under OAW scenarios.
Several studies have shown negative effects of OAW
on traits such as CI, especially in molluscs that are
known to be effective at reallocating energetic in -
vestment between biological processes (e.g. somatic
growth, calcification; Mackenzie et al. 2014, Ong et
al. 2017, Lemasson et al. 2018, 2019). The absence of
changes in these traits over the course of this experi-
ment suggests that both oyster species had sufficient
energetic resources available to maintain the range
of biological functions (reproductive development and
metabolism) under future OAW conditions. Assess-
ment of shell growth under single stressor conditions
(OA or ocean warming [OW]), however, revealed
thickening of O. edulis shells under OW, indicating
increased investment in shell calcification driven by
higher temperatures, but counteracted by increased
shell dissolution as a result of OA. Molluscs are well
known to be capable of rapid energy reallocation to
different functions in response to changing environ-
mental conditions (e.g. Reimer & Tedengren 1996,
Leonard et al. 1999, Beadman et al. 2003, Lagos et al.
2016, Chatzinikolaou et al. 2017), and the results

97
A

ut
ho

r c
op

y



Mar Ecol Prog Ser 665: 87–102, 2021

here suggest differential approaches to energy allo-
cation to biological functions in these 2 species. In
contrast, the increased growth of O. edulis suggests a
‘decision’ to increase calcification rates under OW,
thereby likely enhancing protection, but the capacity
to do so is curtailed under OA.

5.  CONCLUSION

The 2 oysters had contrasting responses in terms of
muscle strength and shell strength. There were no
physiological and morphological effects of OAW on
Ostrea edulis, with the exception of thicker shells,
and consequently its adductor muscle and shell
strength remained unimpacted. Despite a lack of
physiological and morphological effects, the adduc-
tor muscle of Magallana gigas appeared stronger
and more difficult to tear, particularly for bigger indi-
viduals, but the shell was weaker. As a consequence,
it is likely that in the future M. gigas may see its
susceptibility to predators change, becoming more
resistant to valve-pulling predators, such as starfish,
but more vulnerable to durophagous (shell-crushing)
predators, such as crabs. Unlike M. gigas, O. edulis
might retain the same level of predation resistance as
it currently possesses. Reduction in predation pres-
sure on O. edulis could potentially occur indirectly
through M. gigas selection by predators. However,
considering that M. gigas is an exotic species in the
UK, whether natural enemies would target it is un -
certain (enemy release hypothesis: Keane & Crawley
2002, Colautti et al. 2004). For both species, oysters
with more somatic tissue hold an ecological advan-
tage when it comes to predator resistance. Under
OAW, smaller oysters with a weaker adductor muscle
may be favoured by predators due to a reduced
handling time enabling optimised foraging and max-
imised energy usage. However, the findings of this
study do not take into account the likely effects of
OAW on predators (Landes & Zimmer 2012, Kroeker
et al. 2014, Manríquez et al. 2020), which may also
affect the level of predation pressure exerted on
oysters (Wright et al. 2018).

These changes in fitness have the potential to
induce shifts in predator−prey interactions (Harvey &
Moore 2017, Sadler et al. 2018, Wright et al. 2018),
reshape assemblage structure due to species and size
selection (Gooding & Harley 2015, Leung et al. 2017b,
Lord et al. 2017, Babarro et al. 2018), and consequently
may induce important cascading modifications in the
functioning of oyster reefs and the delivery of associ-
ated marine ecosystem services. In particular, to

secure viable future production, the oyster aquacul-
ture sector might need to adapt its culture and har-
vest practices, as well as species selection, according
to predicted susceptibility in order to lower predation
risks and optimise oyster survival. It is apparent that
responses to OAW are highly species-specific, and
further studies investigating alterations to predator−
prey and community-level interactions are necessary
to better understand the ecosystem-level implications,
and inform aquaculture practices.
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Fig. A1. Experimental design used to maintain adult oysters under ocean acidification and warming (OAW) scenarios. Eight
replicate tanks were used per OAW scenario, each containing an individual oyster of the same species (n = 48 oysters per species). 

The experiment was run twice, sequentially for each species

Fig. A2. Diameter (red) and area
(yellow) of the adductor muscle of
Magallana gigas measured using

ImageJ software
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Fig. A3. Variations (mean ± SE) in the (a,b) diameter and (c,d) area of the adductor muscle of oysters under temperature and
pCO2 scenarios. Light grey: control temperature (16.8°C); dark grey: warm temperature (20°C). (e,f) For both oyster species,
muscle diameter and area were positively correlated. Magallana gigas: y = 1.6x − 0.9, R2 = 0.38, p < 0.001; Ostrea edulis: y = 1.3x

− 0.8, R2 = 0.62, p < 0.001
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