
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

2000

COMPONENT TECHNOLOGIES AND

THEIR IMPACT UPON SOFTWARE

DEVELOPMENT

PHIPPEN, ANDREW DAVID

http://hdl.handle.net/10026.1/1723

http://dx.doi.org/10.24382/3291

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

COMPONENT T E C H N O L O G I E S AND T H E I R IMPACT UPON
SOFTWARE DEVELOPMENT

by

ANDREW DAVID PHIPPEN

B.Sa(Hons)

A thesis submitted to the University of Plymouth
in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Computing

Faculty of Technology

November 2000

90 0454371 0

UNIVERSITY OF PLYMOUTH
Item No.

Date - 1 MAR 2001 T
Class No. ~r o o s - . i P H T
Contl.No.

1 UBRARYSenVICES

I)

R E F E R E N C E ONLY

LIBRARY STORE

Abstract

Abstract

Component Technologies and Their Impact upon Software
Development

Andrew David Phippen

Software development is beset with problems relating to development productivity, resulting in
projects delivered late and over budget. While the term software engineering was first introduced
in the late sixties, its current state reflects no other engineering discipline. Component-orientation
has been proposed as a technique to address the problems o f development productivity and much
industrial literature extols the benefits o f a component-oriented approach to software
development.

This research programme assesses the use o f component technologies within industrial software
development. From this assessment, consideration is given to how organisations can best adopt
such techniques. Initial work focuses upon the nature o f component-orientation, drawing f rom the
considerable body o f industrial literature in the area. Conventional wisdom regarding component-
orientation is identified f rom the review. Academic literature relevant to the research programme
focuses upon knowledge regarding the assessment o f soft\vare technologies and models for the
adoption o f emergent technologies. The method pays particular attention to literature concerning
practitioner focussed research, in particular case studies. The application o f the case study method
is demonstrated.

The study o f two industrial software development projects enables an examination o f specific
propositions related to the effect o f using component technologies. Each case study is presented,
and the impact o f component-orientation is each case is demonstrated. Theories regarding the
impact o f component technologies upon software development are drawn from case study results.
These theories are validated through a survey o f practitioners. This enabled further examination
o f experience in component-based development and also understanding how developers learn
about the techniques.

A strategy for the transfer o f research findings into organisational knowledge focuses upon the
packaging o f previous experience in the use o f component-orientation in such a way that it was
usable by other developers. This strategy returns to adoption theories in light o f the research
findings and identifies a pattern-based approach as the most suitable for the research aims. A
pattern language, placed in the context o f the research programme, is developed f rom this
strategy.

Research demonstrates that component-orientation undoubtedly does affect the development
process, and it is necessary to challenge conventional wisdom regarding their use. While
component-orientation provides the mechanisms for increased productivity in software
development, these benefits cannot be exploited without a sound knowledge base around the
domain.

Page i i i

Contents

Table of Contents

A B S T R A C T Ill

T A B L E O F C O N T E N T S IV

T A B L E O F F I G U R E S XII

A C K N O W L E D G E M E N T S XV

1. INTRODUCTION AND O V E R V I E W 1

1.1 Introduction I

1.2 Aims and Objectives of the Research 2

1.3 Thesis Structure 4

2, C O M P O N E N T B A S E D S O F T W A R E D E V E L O P M E N T - AN O V E R V I E W . . . 8

2.1 No Silver Bullets 10

2.2 Construction from Parts 11

2.3 Components and Component Standards 13

2.4 Defining Components and Component Standards 14

2.4.1 Scripting Components 16

2.4.2 Examples of Component Standards 17

2.5 Component-oriented Development - Why Now? 24

Page iv

Contents

2.5.1 Technological Evolution 24

2.5.2 Management Appeal 28

2.5.3 Market Forces 32

2.6 The Philosophy of Component Orientation 36

2.7 Chapter Summary 37

3. A S S E S S I N G AND A D O P T I N G S O F T W A R E T E C H N O L O G I E S 38

3.1 How Can We Assess a New Technology? 39

3.1.1 Defining Empirical Software Engineering 40

3.1.2 Techniques for Empirical Study 42

3.1.3 Criticism of Software Engineering Research 47

3.1.4 Software Process Research 53

3.2 Adopting Software Technologies 62

3.2.1 Diffusion of Innovations 64

3.2.2 Network Externalities 73

3.2.3 Organisational Learning 77

3.3 Summary 85

4. A C A S E S T U D Y B A S E D A P P R O A C H T O T H E A S S E S S M E N T O F

C O M P O N E N T T E C H N O L O G I E S 86

4.1 A Review of Case Study Research 90

4.1.1 The Research Design 91

4.1.2 Types of Case Study Designs 91

4.1.3 Data Collection 92

4.1.4 Data analysis 93

Page V

Contents

4.2 Relating the Case Study Approach with the Research Method 95

4.2.1 Defining the Research Approach in terms of Case Study Research 97

4.2.2 Data collection techniques 98

4.2.3 Data analysis techniques 99

4.2.4 Case Study Reporting 100

4.2.5 External Validity and Reliability in the Research Method 101

4.3 Summary 103

5. S O F T W A R E C O M P O N E N T S IN T H E T E L E C O M M U N I C A T I O N S DOMAIN

104

5.1 An Overview of the DOLMEN Project 104

5.1.1 DOLMEN Organisation Structure 107

5.1.2 The Use of Component Technologies in DOLMEN 110

5.2 The D O L M E N Case Study 112

5.2.1 Case Study Defmition 112

5.2.2 Case Study Propositions 113

5.2.3 Case Study Role 113

5.2.4 Analysis approach 114

5.2.5 Case Study Review 116

5.3 The D O L M E N Software Development Process 117

5.4 The DOLMEN Component Platform 121

5.5 Case Study Analysis 124

5.5.1 Development Review 125

5.5.2 Trial Review 129

5.5.3 Reviewing the Results and Goals of DOLMEN 134

Page vi

Contents

5.5.4 DOLMEN as a Component-oriented Software Project 134

5.5.5 Learning from the DOLMEN Experiences 139

5.6 Consideration of Findings Against Case Propositions 145

5.6. i Proposition 1 145

5.6.2 Proposition 2 146

5.6.3 Proposition 3 146

5.6.4 Proposition 4 147

5.7 Chapter Summary 147

6. T H E U S E O F C O M P O N E N T S IN T H E N E T W O R K M A N A G E M E N T

DOMAIN 149

6.1 An Overview of Netscient Ltd 149

6.1.1 Netscient Organisational Structure 150

6. i .2 Product vs. Domain Orientation 151

6.2 The Netscient Case Study 153

6.3 Case Study Definition 153

6.3.1 Case Study Propositions 154

6.3.2 Case Study Role 154

6.3.3 Analysis approach i 55

6.3.4 Case Study Review 156

6.4 The Netscient Software Development Process 157

6.4.1 Netscient Domain Modelling 161

6.5 The Netscient Software Platform 167

6.6 Case Study Analysis 174

Page vii

Contents

6.6.1 In-house Personality Management 174

6.6.2 Development Review 179

6.6.3 Issues Arising fi-om the Use of Component Technologies 183

6.7 Consideration of Findings Against Case Propositions 187

6.7.1 Proposition 1 187

6.7.2 Proposition 2 189

6.7.3 Proposition 3 189

6.7.4 Proposition 4 190

6.7.5 Proposition 5 191

6.8 Summary 191

7, P R A C T I T I O N E R S U R V E Y 194

7.1 Survey Approach 195

7.2 Survey Construction 196

7.2.1 Question Construction 197

7.3 Survey Response198

7.4 Survey Analysis 199

7.4.1 Regarding your use of component technologies - establishing respondent type 199

7.4.2 Regarding your learning of component technologies - establishing learning approaches and

common problems 208

7.4.3 Regarding component technologies and the software development process 215

7.5 Implications of Survey Results on Case Study Findings 234

7.5.1 Case personnel responses 234

7.5.2 Comparison of Responses Against Case Study Propositions 236

Page viii

Contents

7.6 Chapter summary 238

8. A D O P T I N G AND USING C O M P O N E N T T E C H N O L O G I E S 240

8.1 Developing Case Study and Survey Results 241

8.2 A Reference Model for Component Platforms 242

8.2.1 Component Platforms 242

8.2.2 A Reference Model for Component Platforms 242

8.2.3 Current Standard Component Platforms 248

8.2.4 An Alternative Viewpoint - Visual Basic 3 254

8.2.5 Applications of a Reference Model for Component Platforms 255

8.3 Developing the Organisational Learning (OL) Perspective 256

8.3.1 The Organisational Learning Process 257

8.4 Approaches to Adoption 261

8.4.1 Standards/Guidelines 261

8.4.2 Transfer Packages 262

8.5 Pattern Approaches 265

8.5.1 Examples of Patterns 267

8.5.2 Consideration of Patterns from an OL Perspective 271

8.6 Conclusions: An Overall Strategy for Results Development 272

8.6.1 Refinement Based upon Industrial Feedback 273

8.6.2 Package Structure 275

8.7 Summary 276

Page ix

Contents

9. A S T R A T E G Y F O R T H E S H A R I N G O F E X P E R I E N C E IN T H E A D O P T I O N
AND U S E O F C O M P O N E N T T E C H N O L O G I E S 278

9.1 A Transition Package for the Adoption and Use of Component Technologies 278

9.1.1 Target Audience 279

9.2 Context 279

9.2.1 Reference Model for Component Platforms 280

9.2.2 Case Study Points of Reference 280

9.2.3 Survey Points of Reference 287

9.3 Language 287

9.3.1 Pattern template 288

9.3.2 Pattern Relationships 288

9.3.3 Patterns for the adoption and use of component technologies 290

9.4 Summary 330

10. C O N C L U S I O N 331

10.1 Research Achievements 332

10.2 Research Limitations 334

10.3 Future Work 335

10.4 Technology Review 336

11. R E F E R E N C E S 338

A. D O L M E N B R O C H U R E 352

Page X

Contents

B. D O L M E N E V I D E N C E E X A M P L E S 357

C . N E T S C I E N T E V I D E N C E E X A M P L E S 366

D. C O M P O N E N T S U R V E Y 376

E . S U R V E Y R E S P O N D E N T S 380

G . P A P E R S AND P R E S E N T A T I O N S 382

Page xi

Figures

Table of Figures

Figure 3-1 - The Relationship between ESE, models and research questions 41

Figure 3-2 - Factors affecting product quality 54

Figure 3-3 - The Process Improvement Process 55

Figure 3-4 - The I D E A L Model 56

Figure 3-5 - Level o f adoption based upon type o f adopter 66

Figure 4-1 - Roadmap o f Research 89

Figure 4-2 - Basic types o f designs for case studies 92

Figure 4-3 - The process o f developing theory from case studies 102

Figure 5-1 - A n Illustration o f an Integrated Services Environment 105

Figure 5-2 - D O L M E N Workpackage Structure 108

Figure 5-3 - D O L M E N Trial Set-up 110

Figure 5-4 - The D O L M E N Software Development Process 117

Figure 5-5 - D O L M E N Component Platform 122

Figure 5-6 - A sample MSC showing component interfaces and interactions between them (taken

f rom [59]) 127

Figure 6-1 - Netscient Organisational Structure 150

Figure 6-2 - The Netscient Software Development Process 158

Figure 6-3 - The Core Network Planning and Design Process 163

Figure 6-4 - Definit ion o f Netscient Domain Functionality 167

Figure 6-5 - The Netscient Software Platform 169

Figure 6-6 - Netscient In-house Application Structure 174

Figure 6-7 - Netscient Personality Browser 176

Figure 6-8 - Netscient Personality Extractor 176

Figure 6-9 - Typical complex information structures in D O L M E N 185

Page xii

Figures

Figure 7-1 - Component technologies used 201

Figure 7-2 - C O M & CORBA related experience among respondents 202

Figure 7-3 - Experience classification o f respondents 203

Figure 7-4 - Use o f components in different project types 204

Figure 7-5 - Use o f component in vertical sectors 205

Figure 7-6 - Determining an experience rating 207

Figure 7-7 - Distribution o f experience ratings among respondents 208

Figure 7-8 - Learning about component technologies 209

Figure 7-9 - Problems when learning about component technologies 210

Figure 7-10- Problems when learning component technologies 210

Figure 7-11 - Was the literature usefiil when learning 212

Figure 7-12 - Would it be useftil to learn f rom the experience o f others 213

Figure 7-13 - Was integration straightforward? 215

Figure 7-14 - Component-orientation makes software [easier, harder, neither easier or harder]?

216

Figure 7-15 - Willingness to use component technologies 219

Figure 7-16 - Comparison o f component use with opinion regarding component d i f f icu l ty 220

Figure 7-17- Component technologies can be easily adopted 222

Figure 7-18- Ease o f adoption vs. integration problems 223

Figure 7-19- Component technologies can be adopted independent o f organisation issues 224

Figure 7-20 - Comparing agreement with question 18 against use o f technology 225

Figure 7-21 - Project management is unaffected by component technologies 226

Figure 7-22 - Component orientation makes software reuse easy 227

Figure 7-23 - Ease o f reuse compared to technology experience 228

Figure 7-24 - Component orientation should focus on software reuse 229

Page xiii

Figures

Figure 7-25 - Using Component Technologies is Straightforward 230

Figure 7-26 - Component orientation encourages design 231

Figure 7-27 - Component based development makes system deployment easier 231

Figure 7-28 - Ease o f deployment against technologies used 232

Figure 7-29 - Component orientation makes system maintenance easier 233

Figure 8-1 - Original Component Architecture Reference Model taken from [68] 244

Figure 8-2- Reference Model o f a Component Platform 244

Figure 8-3 - Mapping the O M A to the Component Platform Reference Model 249

Figure 8-4 - Mapping the Windows D N A to the Component Platform Reference Model 251

Figure 9-1 The component platform used in Case Study A 282

Figure 9-2 -The development process used in Case Study A 283

Figure 9-3 - The software platform used in Case Study B 285

Figure 9-4 -The development process used in Case Study B 286

Figure 9-5 - Pattern relationships 289

Page xiv

A chwwiedgements

Acknowledgements
M y thanks go to:

Chris, Steve & Peter - thanks for the supervision!

A l l at the NRG, probably the most entertaining off ice in the world.

M y parents, for their constant support.

Ruth, for putting up with years o f academic temperament.

And Matt, Charlie, D i , Mel , Bags, Vron, Bev, Jo, Andy, Chris and anyone else that keep me

supplied with entertaining email throughout the wri t ing o f this thesis!

Page XV

Declartion

DECLARATION

At no time during the registration for the degree o f Doctor o f Philosophy has the author been

registered for any other University award.

This study was financed with funding from the EU ACTS project D O L M E N , a studentship f rom

the School o f Computing, and industrial funding from Netscient Ltd.

Relevant conferences and D O L M E N project meetings were regularly attended (at which work

was frequently presented) and a number o f external establishments were visited for consultation

purposes. Details o f publications and presentations carried out during the research programme

can be found in the appendices.

Page xvi

Introduction

This chapter introduces the concept of component-orientation, demonstrates the origins for the

research programme and defines the aims and objectives. A discussion of thesis structure is

inchided to introduce the reader to the various aspects covered throughout the text.

1. Introduction and Overview

1,1 Introduction

The ideal of component-based development is that application development becomes
an assembly process, built on substantial reuse of standard components. !n theory,
more than 95% of an application can be based on reused software. [87].

Component-based techniques represent an area considered state of the art in software

development. Numerous industrial sources [87, 28, 36,38] extol the virtues of a component-based

development, and propose it as the technique that wi l l enable software engineering to become a

true industrial process.

The concept behind component-based development is straightforward - a software component

represents an encapsulated piece of functionality that is reused at a binary level. This means that

the reuse of each software component is implementation independent - one of the primary

differences between component-orientation and other software reuse techniques. The evolution of

software systems through component-orientation moves software development from engineering

from first principles toward the systems assembly with reusable components. Theoretically, this

should result in large increases in development productivity, as a greatly reduced amount of the

system has to be written with original code.

This assembly technique reflects the industrial process in other engineering disciplines. There are

often quoted comparisons between software engineering and, for example, electronic engineering.

Page 1

Introduction

Cox [41] highlighted the fact that, while the electronic engineer will achieve their requirements

through the design and assembly of the electronic system using existing components, the software

engineer wi l l craft a system by creating new elements. This is equivalent to an electronic engineer

starting from basic binary switches for any digital electronic system.

It is argued [42], that until software reuse becomes the standard technique for implementation,

and the focus of development moves from programming to design, software development cannot

be considered an engineering discipline. Previous software reuse techniques (for example,

modular programming, object-orientation) have all been proposed as ways to increase

development productivity, but have all fallen short of widespread adoption.

1.2 Aims and Objectives of the Research

This research programme aims to review the nature of software development and the concept of

component-orientation, and to assess the impact of component technologies upon the software

development field. In assessing the effect of component-orientation upon software development,

it was intended that results would provide evidence for their potential, and also highlight areas of

possible difficulty. As a development of these results, guidance could be provided for the future

use of such techniques.

In the Joint IEEE Computer Society/ACM Software Engineering Body of Knowledge

(SWEBOK) project, the publication of their report in Stoneman version 0.5 [35] stated in the area

related to software infrastructure that:

Using components affects both methods and tools but the extent of this effect is
currently difficult to quantify.

Page 2

Introduction

An interesting development of this point can be seen in the most recent version of the report

[152], where (he concept of component integration has been removed. The reason given for this

removal was:

The editorial team concluded that while there was a strong industrial need for this
type of knowledge [component infrastructure], there is not yet sujficient consensus
on what portion of it is generally accepted, (pp. E-2)

Thus, the SWEBOK project, tasked with defining a core body of understanding for software

engineering, has identified a need for the sharing of knowledge based upon component

orientation, but has found it difficult to specify the nature of the knowledge required. This is very

relevant to the research reported here, in which an important issue was to identify how best to

assess component orientation and how to develop the result from that assessment into a usable

form. This research project has identified specific areas for the reinforcement of knowledge in the

area of component orientation, addressing the issue identified by the SWEBOK reports.

While the overall goal was to assess the impact of component technologies upon sofhvare

development, several preliminary objectives were needed lo place it in context. Specifically, the

research programme sought to:

1. review the problems of sof\ware development, in particular, development productivity,

drawing comment from leading texts in the area and examining the emergence of component-

orientation as a development technique;

2. review literature in the area of software technology assessment and adoption, focusing upon

empirical software engineering, software process improvement and theories of adoption as

background research to guide the research in this programme;

Introduction

3. gain practical experience in the use of component technologies within real world software

projects, in order to assess the effect of component-orientation on software practice.

4. formulate theories in the use of component technologies, drawing from practitioner focused

research, and considering the theories against popular beliefs regarding component

orientation;

5. validate those theories through testing against practitioner experience;

6. review techniques for the transfer of software technologies into practice, in order to

determine the most suitable approach for transferring experience from case studies;

7. formulate methods, based upon the above review and the findings of the research programme,

to aid practitioners in adopting component techniques into their development approaches.

In achieving these objectives, the research programme would advances the state of the art in

software development by providing novel contributions in terms of:

1. empirical evaluation of component-orientation in real world contexts, the outcome of the

assessment being theories in the use of component technologies;

2. validation of these theories against the experiences of component practitioners;

3. formulation of methods to aid in the sharing of experience in the use of component

technologies involving:

• a reference model for component platforms;

• the specification of an appropriately structured pattern language.

1.3 Thesis Structure

Chapter 2 examines component-orientation by tracing its origins in software reuse through to the

standards and services that make up present day component technologies, and considers the

Page 4

introduction

overall philosophy in the context of the universal software-engineering problem of development

productivity.

Chapter 3 describes the aims of the research programme and reviews literature relevant to these

aims. Initial consideration is made of research into the assessment of software technologies, both

independently and as pari of software process improvement techniques. Literature relating to the

adoption of software technologies is reviewed, focusing in particular upon theories of technology

adoption.

Based upon this literature review, Chapter 4 defines the research method for the programme. It

further considers literature relating to the use of case study methods for the assessment of

software technologies, and its application to the research programme, validity & reliability. The

chapter concludes by defining and discussing the role of a practitioner survey to strengthen the

external validity of results.

The next two chapters describe case studies used to assess the impact of component-orientation in

industrial software, and have similar structures. The projects are introduced, and their aims and

the role component technologies played in achieving them are discussed. The case study method

in each project is described, defining case propositions, sources of evidence and data analysis

techniques. Each case study's distinctive approach to component technology is reviewed, and

issues regarding the use of component technologies identified. These issues serve as the basis for

findings against case study propositions. This leads to a more detailed review of the achievements

in each case, and considers the impact of component technologies upon the outcome. Conclusions

are drawn regarding the use of component technologies in general.

Pages

Introduction

The two case studies feature very different approaches to the adoption and use of component

technologies. DOLMEN (chapter 5) was a product-oriented project within the

telecommunications domain. In DOLMEN, a lot was assumed of the component-oriented

approach, which was not borne out in reality. The Netscient project (chapter 6) took a more

considered approach in applying component technologies, and was, in many ways, more

successful.

Chapter 7 concludes the data collection aspect of the research programme by considering the

theories developed from the case studies against a practitioner survey. This aspect of the research

programme enabled the comparison of findings from case studies against the experiences of other

leading edge software developers. This enabled a distinction to be made between exceptional

phenomena and common experience from the studies. The survey also helped clarify the nature of

the guidance practitioners need, and how it might best be presented.

Chapter 8 presents a strategy, based on the research findings to aid in future learning about, and

adoption of, component-orientation. As a direct outcome from case study research and survey

results, a reference model for component platforms that is used both as a means of comparison

and a learning tool within the research programme is defined. The chapter continues by returning

to adoption theories, identifying key concepts in the learning of new technologies. It goes on to

consider existing approaches to technology transfer and determines the suitability of these

approaches against both theory and the type of results from the research programme. A pattern

approach is identified as the most suitable vehicle, and the chapter ends by considering the

strategy for development using such a technique.

Page 6

Introduction

Chapter 9 describes a "transition package" that defines both a context and language for the

learning of component-orientation. The context element uses the reference model of component

platforms as a way of providing a technology independent view of component-based development

and also as a means of comparing case study evidence. The context element also defines the

nature of evidence that contributes to the pattern language by describing both case studies and

also the practitioner survey. The context element thus strengthens the transferability of the pattern

language. The remainder of the chapter defines the pattern language element, including

specification of a pattern template and an illustration of pattern relationships. The patterns

themselves are presented as problem/solutions pairs, reinforced with anecdotal evidence from the

research programme.

Chapter 10 reviews the research method and discusses the main achievements of the programme.

It also discusses limitations of the research to date and suggests possible future directions for the

work. The concluding remarks return to the impact of component technologies upon software

development in general.

The thesis also includes a number of appendices containing data to support the discussion in the

chapters described above.

Finally, this thesis acknowledges the fast moving state of the field it assesses. As such, the

component technologies discussed herein represent only a snapshot of the state of the field, from

1995-1999. More recent developments are not covered, as these could not be empirically assessed

within the research programme.

Page 7

Component Based Software Development - An Overview

This chapter is the first of three that considers bodies of knowledge relevant to areas within the

research programme. The concept of component-orientation is discussed in greater detail. The

material is intended to introduce the reader to issues in component-based development and

discusses current thinking related to the component-orientation. The lack of academic literature

is noted. The chapter also draws together a lot of discussion from industrial literature in

determining the "philosophy" of component orientation, a concept against which assessment

findings are compared. It should also be noted that this chapter is not intended to be a

compressive review of all technologies within the component-oriented field. The emphasis is on

those technologies used in the case stitdies.

2. Component Based Software Development - An Overview

This chapter examines the nature of component-based sofhvare development, the technological

focus for this research programme. The review considers the background of component-

orientation before discussing its underlying philosophy and its development. It is very much

centred on industrial literature, as it is essentially from the industrial domain that the technology

has emerged. While its origins can be traced to the 1968 NATO conference on Sofhvare

Engineering [108], it has been industrial innovation that has placed it at the forefront of software

development.

There have been three great revolutions in computing technology during the last 50
years: the stored-program computer, high-level langitages and component-level
programming. Although working programtners are well aware of the last revolution,
it seems to have escaped the notice of most everybody else....The revolution has
already happened, and in the academic community, nobody came.

The above quotation is taken from a recent paper by Maurer [98], highlighting the lack of

academic research in the area. While some research within the wider domain of Commercial Of f

The Shelf (COTS) research has embraced component technology (in particular work at the

Page%

Component Based Software Development - An Overview

Software Engineering Institute on Component Based Software Development & COTS Integration

[65]), it is generally agreed that component-orientation is an industrially based innovation.

However, before considering the specifics of component-orientation, we should consider its

origins within the field of software reuse and development productivity. The following quotations

illustrate the underlying problems in software engineering:

There is, a widening gap between ambitions and achievements in software
engineering. The gap appears in several ditnensions: behveen promises to users and
performance achieved by software, between what seems to be ultimately possible
and what is achievable now and between estimates of software costs and
expenditures. The gap is arising at a time when the consequences of software failure
in all its aspects are becoming increasingly serious. [108]

The average software development project overshoots its schedule by half; larger
projects generally do worse. And three-quarters of all large systems are "operating
failures " that either do not function as intended or are not used at all. [62]

Although the message is the same, there is actually almost 30 years between the first, taken from

the 1968 NATO Conference on Software Engineering, and the second from an article in the

Scientific American in 1994. Both are essentially referring to the often-quoted software crisis, the

software industry's continual failure to meet software demand with quality software, on time and

in budget. This issue is actually a compound of a number of different problems, which together

make up the overall predicament [62]:

1. software demand always exceeds software supply - currently the productivity of software

developers cannot keep pace with the demands on their services;

2. software project management generally falls short on cost and time estimates;

3. software quality is sometimes less than adequate.

Page 9

Component Based Software Development - An Overview

2.1 No Silver Bullets

As the software crisis was first identified during the 1968 NATO Conference of Sofhvare

Engineering [108], it might be hoped that the sofhvare engineers would have addressed the

relevant issues. However, as the above quotations demonstrate, the same criticisms levelled at

software development over thirty years ago can still be applied. In this time there have been

numerous development techniques and improvements in information technology. However, there

has also been a marked increase in the demand for software and the domains in which it is used.

While development productivity has undoubtedly been greatly improved as a result of new

development techniques and technologies, the increase has not matched the expansion in demand

for software. In his seminal paper '*No Silver Bullets: Essence and Accident in Sofhvare

Engineering", Fred Brooks [25] stated that there had been no software development technology

that had introduced an order of magnitude change in developer productivity - a necessary

increment i f productivity will ever meet demand. I f one considers the improvements in

development technology that have occurred (for example, procedural programming and object

oriented programming) it seems that they are simply techniques for improved implementation or

coding - what Brooks refers to as solutions to accidental issues in software.

This differentiation between accidental and essential change in sofhvare development is the

underlying message from Brooks' paper. Brooks talks about the essence of creating software

being ihe actual crafting of a conceptual construct into software form. I f we look at how we

essentially develop software - determine requirements, design, then implement, it is true to say

that new techniques have caused no significant change in this approach.

Page 10

Component Based Software Development - An Overview

Perhaps a central problem in the development of new ways in which to write software is that we

are loo focused on the actual software development aspect of the problem. The assumption is that

software development is too slow / unreliable / etc. - that we must increase the speed at which we

write software. As a result, we end up with better ways to do the same thing, which is, inherently,

the wrong thing to do. There will never be an order of magnitude change in the productivity of

software development i f all we are doing is reinventing the same technique. Developers are losing

sight of why software is developed - what is the soft\vare tr>'ing to achieve? What we must

realise is that software is a ser\'ice industry. It can only exist within another environment. This

point is illustrated well by Grady Booch, in [23];

Banks are in the business of managing assets; software is just a business tool for
responding to those needs. Libraries are in the business of facilitating access to
information: software is just a means to that end. Manufacturing companies are in
the business of creating hard goods from raw materials; software is a kind of soft
goods that makes that process more efficient and hence tnore profitable.

Soft^vare enables the deliver)' of information to a given user in a given way - software systems

can be seen as processes that take, transform and present to the user, fulfilling their specific

information requirements.

As already mentioned, the problem with the majority of "new technologies" is that what they

provide is better ways to do the same thing. The focus should not be on implementation issues,

but on how to model the business problems into software form.

2.2 Construction from Parts

In the follow up paper to "No Silver Bullets", Brooks [26] suggests that software reuse potentially

offers a way to greatly improve developer productivity, stating that the best way to attack the

method of building soft\vare is to not build at all. The concept of software reuse has been around

for as long as SQft\vare engineering itself The central idea is that much of what is coded into

Page 11

Component Based Software Development - An Overview

software is similar each time. Therefore, instead of re-coding identical functionalit>', it would be

far more sensible to reuse parts of software that have already been written. Cox [41] likens the

recent state of the software industr>' to more of a crafting ethic, where each piece of software is

individually created from scratch. In the same way that a craftsman would, for example, build a

new table from core raw materials (wood), craft each piece of the table and then put it together,

the software developer crafts a new application. Starting with the raw materials (source code),

each aspect of the application is crafted before being integrated to making the application.

Cox argues that in order to achieve any major developments in software development

productivit>' this craft ethic has to be changed. He views large-scale software reuse as the

industrial revolution of the software world - finally moving from craft to industry. Object-

orientation (00) , when it first emerged, was held up as the development technolog>' that would

enable this shift. Object-oriented programming languages, such as Smalltalk and C-H- provided

the programming constructs to build software with objects and classes. Object-oriented analysis

and design techniques (for example. Object Modelling Technique [135]) provided similar

techniques for the modelling of a system in an object-oriented form. Using these techniques, it

was predicted that object-orientation would be an enabling technology in sofhvare reuse.

0 0 has now been a mainstream technology for ten years, and developers still face the similar

productivit>' and management problems. We could conclude from this fact that 0 0 has not

fulfilled its potential. However, while it could be said that object-orientation has not achieved its

full potential as a reuse technolog>', it has, through its development, been influential as an

underlying technique for technologies such as visual programming and object frameworks. These

object technologies (rather than specific object-orientation) undoubtedly enable far great

developer productivit>'.

Page 12

Component Based Software De\>elopment -An Overview

Component-orientation can be seen as a progression of object technolog>' - embracing the idea of

building software from components while anempting to avoid the pitfalls of pure object-

orientation.

2.3 Components and Component Standards

Component-orientation and reuse can be considered to be the foundation of any mature

engineering practice. However, the vast majority of software projects still have ver>' linle reuse.

The concept of achieving requirements through the construction of pre-existing, or third party

components seems to go against the ethos of the sofhvare development, which instinctively seems

to be of the opinion " i f you didn't write it, don't use it".

The often-quoted origin of component sofhvare comes from a paper presented at the 1968 NATO

conference on soft^vare engineering by Mclllroy [100]. This means that, as concepts, sofhvare

engineering and software components are of the same age. In his paper, Mclllroy put forward the

concept of a softAvare component as a library of routines that can be reused in sofhvare

applications through a standard interface. While this definition differs somewhat from what we

would now consider a software component to be (see section 2.4), two issues were introduced

that are still highly germane. In particular:

1. The component market place: The component marketplace extends the traditional model of

purchasing sofhvare, which centres around the application as a single unit of sale, to

incorporate components developed by a third party. The component market place is still seen

by some (for example, Chappell [37]) as an essential part of the move to componeni-

Page 13

Component Based Software De\-elopment - An Overview

orientation - it enables developers to focus on their own domains and purchase third party

components for other aspects of the application they are developing.

2. Standard ways to interface with components: While Mclllroy identified this need in 1968,

the sort of standards to which he refers have only started to be available to the developer in

the past five years. A standard way of interfacing components is essential for the component

marketplace. Completely independent developers can write components to the same standard

and be sure that their components will be able to interact.

The following section discusses component standards in more detail.

2.4 Defining Components and Component Standards

There is no agreement about the formal definition of the term software component (see, for

example, [26], [21], [37], [34]). However, we can identify common aspects from these

definitions:

• It is a packaged piece of soft^vare, reusable in binar>' form independent of language or

platform: The central aim of a component-oriented approach to software development is to

provide reuse at a binary level, not source code like previous development technologies (such

as object-orientation). Total interoperabilit>' independent of language and platform through

binary reuse can be considered the Utopian aim of a software component. Case study

experience (see chapters 5 and 6) has demonstrated that this aim is still not fully realised.

• It exposes functionality and properties via interfaces: The concept of interfaces is

essential to the software component, as it is via interfaces that the component can be reused

independent of language and platform. The interface provides a separation of defined

functionality and actual implementation. The component client (i.e. the piece of code that

calls component functionalit>') need only have access to a component's interfaces to be able

Page 14

Component Based Software Development - An Overview

to exploit the functionalit>' behind the interface. The component standard (see below) maps

the call from the interface to the functional implementation.

It defines methods, properties and events: Methods and properties map to the concepts of

behaviour and state in object-oriented systems [22]. However, properties can extend the

concept of siaie from the 0 0 definition. Within an 0 0 class, instance variables are defined to

indicate the state of an object, using simple values. As a component's properties are exposed

through an interface, they do not have to map to simple values as they can be used to

dynamically realise slate based on functional parameters. For example, a banking component

that exposes a property called balance could map that property to a simple variable that holds

a given balance. However, it could also map to some functionality to calculate the balance

dynamically from other values, or from interfacing with a database.

Events enable a component to communicate occurrences that could affect its external

environment asynchronously, in a similar way to the event driven mechanisms that manage

most windows systems. To use the banking example again, i f a withdrawal made an account

overdrawn, the component could fire an overdrawn event, which enables other system

components to deal with this occurrence in an appropriate way.

It is written to an interaction standard: The component standard provides a set of rules for

the structuring and interaction of software components.

• Component structure - or the component model. This defines a standard way for the

component to be structured, such that developers, using development environments and

containers, can access and use the component. Generally, a true component model

structures the component in properties, methods and events, as described above.

• Exposing functionality and structure - dealt with using interfaces, also discussed

above.

Page 15

Component Based Software De\'elopment ~ An Oven'iew

• Component containers - In order to be of any use the component requires a runtime

environment in which to exist. The runtime environment, or container, provides a context

where components can be assembled and used. The containers could be applications (for

example, Internet Explorer) or parts of an application (for example, a compound

document comprising a Word text and an Excel spreadsheet). It is the role of the standard

10 define how the components are contained (for example, what interfaces a container

expects a component to expose).

• Component location and interaction - the standard should also define how components

are located and the protocols for interaction between them. This removes any need for

low-level code in a component client to deal with component location or network

communication. Al l that the client requires is a component reference that the standard can

use to locate the component.

2.4.1 Scripting Components

A final aspect of componentware, whose importance has been demonstrated throughout this

research programme, but is generally not included in the definitions of a software component, is

that the component should be scriptable. One of the major arguments for the use of components

in organisational sofhvare development process is that they provide a high level of reuse. The

development of componentware - software constructed with components - with programming

languages (i.e. C-H-, Java, Pascal, etc.) is effective, but generally still requires knowledge of the

component standard. It is the use of very high-level languages (scripting languages) - Visual

Basic for Applications (VBA), JScript, etc. - which provides the most effective means of rapidly

constructing a complex application from reusable parts. Therefore, without a scriptable element to

the component / component standard, it could be argued that the reuse potential for a component

is not as high as it could be. To demonstrate the difference in complexity between programming

Page 16

Componeni Based Software Development -An Overview

and scripting languages, the following are code fragments for the calling of a function on a COM

class, firstly using C-H-, and then using VBA:

C++

d e f i n e CLSID_TESTSERVER 17CDF24E-8862-11D2-8A8C-
0060972FB3BF

HRESULT h r ;
I T e s t * m _ p T e s t I n t e r f a c e ;

h r = C o C r e a t e l n s t a n c e (C L S I D _ T E S T S E R V E R ,
NULL,
CLSCTX_INPROC_SERVER,
I I D _ I T e s t ,
(P P V O I D) & m _ p T e s t I n t e r f a c e) ;

i f (S U C E E D E D (h r)) {
h r = m _ p T e s t I n t e r f a c e - > T e s t F u n c t i o n 0 ;
i f (S U C E E D E D { h r)) {

}

}

VBA

S e t m y O b j e c t = C r e a t e O b j e c t (" T e s t d l l . T e s t S e r v e r ")
m y O b j e c t . T e s t F u n c t i o n

2.4.2 Examples of Component Standards

This section provides examples of component standards, it is intended as an introduction to each

standard and discusses their differences, problems with use and future directions. It does not

provide a comprehensive definition of the features of each standard - readers are referred to the

numerous technical texts referenced below for more detail about each.

Page 17

Component BasedSofnvare Development - An Overview

2.4.2.1 Microsoft COM/DCOM

Microsoft's Component Object Model (COM) [134] is currently the dominant component

architecture, mainly because it resides in Microsoft's flagship operating systems and it is the

foundation for all of the Microsoft application technologies (such as OLE and ActiveX).

Distributed COM (DOOM) [64] extends the basic COM functionalit>' to incorporate a transparent

network distribution mechanism into the architecture.

A common criticism levelled at the COM approach to component soft\vare is its complexity. The

COM standard defines various application ser\'ices (for example automation (see belou'),

compound documents, drag and drop, ActiveX controls, etc.) which use the COM standard as a

platform. Each service specifies a number of interfaces that a component must implement in order

to comply with the standard. This process is made more complex by the fact that some interfaces

have to inherit from other standard interfaces in order to function in the correct way.

Microsoft acknowledges the complexity of the COM standard [34] but much is hidden from the

developer through development environments. While development in an environment such as

Visual C++ still requires that the developer is fairly knowledgeable about the COM standard,

using Visual Basic (versions 5 or 6) isolates virtually all of the COM functionality from the

developer.

The complexity of writing components in COM was further reduced with the introduction of

Microsoft Transaction Server (MTS) [85]. While its name suggests a relationship to database

transaction control, what it actually provides is a framework for the development of serx'er

components so that a developer can focus on implementing the business logic required in the

ser\'er. Using MTS, all low-level component functionalit>' required to cope with ser\'er side

Page 18

Component BasedSofiware Dev elopment - An Overview

processing is managed. To use the spell checker example, the client sends the server the word it

wants to verify, the ser\'er then looks up the word in a dictionary, advises whether the spelling is

correct, and i f not, suggests alternatives. However, i f a number of clients were all wishing to use

the serx'cr at the same time, several problems arise. Firstly, each client requires an instance of the

ser\'er to use. Then, ever>' instance requires a connection to the dictionar\' resource, which could

be a local file, or could be on a database. One can see that even with this simple e.vample, a small

number of clients would place a significant load on the server, and require the developer to

incorporate scaling code (i.e. resource pooling, threading, etc.) into it. However, developing the

ser\'er component within the MTS relieves the user of these problems. The code for the MTS

ser\'er is essentially the same as a standard COM component (with a few calls using the MTS

API), with all threading, resource pooling, security, etc. dealt with by the MTS framework. The

MTS framework is, arguably, the most important piece of component technology to be introduced

by Microsoft, as it provides such an effective wrapper around the COM standard.

As a final comment, a further extension to the COM architecture, COM+ [88], is included in the

Windows 2000 platform. COM+ further extend the MTS model for components (i.e. write a

single user component which can automatically be scaled to enterprise level), essentially

providing another wrapper around COM. The COM+ "wrapper" provides functionality for such

components services as asynchronous messaging, in-memory databases, self-describing

components and attribute-based development (i.e. embedding simple notes in code which are

used by the environment to configure the component at runtime - for example, whether it requires

transactions, what levels of security it requires, etc.).

Page 19

Component Based Software Development - An Overview

2.4.2.2 CORBA

CORBA (Common Object Request Broker Architecture) is an architectural specification by the

Object Management Group (OMG) - a consortium comprising over 800 members. Its motivation

was primarily to provide a standard for the distribution of objects over heterogeneous networks.

Essentially, via a process of committee-based review, the OMG developed and released the

CORBA standard. The first version was released in 1992 and following a major review, it now

exists as version 2 [109]. A second major review should result in the CORBA 3 standard being

released sometime in 2000'. The OMG states that CORBA's strength lies in the functionality

defined to allow the distribution of object solutions, and in its platform and language

independence.

Unlike COM, CORBA exists solely as a specification, it is up to vendors (for example, Sun, lona,

Visigenic) to provide ORB implementations based on the specification. In theory this makes

CORBA entirely independent of language or platform. The CORBA specification provides

language mappings - directions for how a given language will implement a CORBA interface and

the functionality required to realise that interface as an object. Vendors then work with tlie

standards and mappings to develop implementations for whatever platform they wish. However,

in reality the standard/implementation separation has led to many problems. While the theory of

providing a standard is sound (i.e. everyone works to the same standard, therefore everything

works together), the reality is that ambiguity in the standard has resulted in different CORBA

implementations being unable to interoperate. This problem is compounded by vendors

introducing new features, external to the CORBA standard, into their products Therefore, what

the lime of wriiing (September 2000) the CORBA 3 specification had not been publicly released by the OMG.

Page 20

Component BasedSofiware Development - An Ch'erview

developers end up with is a choice of implementations based around, but not on, the CORBA

standard.

As an attempt to address this problem, the OMG introduced the concept of inter-ORB protocols

in version 2 of the CORBA specification. The most common inter-ORB protocol is MOP (Internet

Inter-ORB interoperability Protocol) that enables interoperabilit>' over Internet network protocols.

However, this interoperabilit>' standard was, once again, a paper standard with no core

implementation. Therefore, a similar problem to that encountered with standard implementations

can occur with HOP implementations. A controversial report by Ovum [132] discussed this issue

in greater depth, concluding that pure CORBA products were of little use as they provided only

funciionalit>' for a standard with no chance of interoperability with other implementation. The

report stated that it would be the CORBA-based products, such as lona Orbix and Inprise

Visibroker that would be more successful, as long as an enterprise stayed with a single

implementation. Certainly, developing objects using a single CORBA implementation, for

example, Orbix, does provide good potential for object reuse at an enterprise level.

The development of CORBA systems is, generally, not as complex as developing pure COM

components. Arguably, there is no componeni model (see the discussion at the beginning of

section 2.4) on which to work. While the approach to exposing functionality is no different to

COM (i.e. through interfaces), there are no standard interfaces for the developer to implement.

The CORBA developer simply specifies an interface in the OMG Interface Definition Language

(see [109]), implements the methods within a ser\'er class, and then binds the class to the interface

in a server process. The choice of development language is still important for development

productivit>', as the language mappings add a layer of complexity to the core language. Therefore,

writing CORBA objects in C++ is more complex than writing standard C++ objects. The

Page 2 \

Component Based Softyvare Development - An Ch'erview

implementation also requires a good knowledge of the mapping itself, and the workings of the

CORBA standard.

Another problem in the development of CORBA systems is the lack of development environment

support. As a base standard, Microsoft COM is far more complex than CORBA. However,

Microsoft wraps the complexit>' of the core COM implementation into its development products.

Certain CORBA implementations (for example, the Inprise products that use the Visibroker

technologies - see www.inprise.com/visibroker) do have inbuilt support. However, for the

majority of ORB implementations, especially in the UNIX environment, the developer has to rely

on text editors and command line tools to write the interface definitions, compile the interface

definitions, write the server implementation and write the server process. Therefore, the reduction

in complexitN' of the standard is offset by the complexity of the actual development process in

implementing a CORBA object.

Other weaknesses of CORBA arise from the lack of a full component model:

• there is no standard way of implementing events in a CORBA object. However, events are

supponed in CORBA using the Event Service [110];

• the packaging of objects is restrictive - at present, in order to distribute CORBA objects, one

has to provide a process (i.e. an executable application) which holds instances of the bound

objects. This process has to be executed in order that clients can gain access to the ser\'er

objects;

• there is no specification for CORBA object containers in the standard;

• CORBA objects are not scriptable - a Request for Proposals (RFP) by the OMG for a

scripting model, resulted in a few attempts at making CORBA objects scriplable, for example

[40]. However, due to the lack of standard in these scripting approaches, none have been

Page 22

Component Based Software De\>elopment ~ An Overview

adopted by any mainstream component containers (e.g. Visual Basic, Internet Explorer, etc.).

The closest CORBA implementations have to scriptability is HOP support in applications

such as Netscape Navigator and Lotus Notes.

It is proposed that the CORBA 3 standard will provide a component model for CORBA objects

[I I I] , as well as a scripting model and pass-by-value features that should enable the simple

passing of complex information structures. These new facilities with make CORBA a more

complete component standard. However, as this research programme aims to empirically evaluate

CORBA 2 and DCOM technologies only (as a result of the nature of the case studies), the

CORBA 3 standard is not explicitly addressed in this thesis.

2.4.2.3 Sun JavaBeans

JavaBeans is a Java API produced by Sun which allows developers to write components based on

an extended version of Java (incorporated in standard APIs in Java 1.1 and extended in Java 2

[94]). The JavaBeans API does not provide any in-built support for component distribution, but

there is a growing trend to write distributed JavaBeans applications using CORBA. Additionally,

another API included from JDK 1.1 is the Java Remote Method Invocation (RMI), which enables

Java specific distributed communications. Finally, it is also possible (though slightly

idiosyncratic) to distribute JavaBeans using DCOM.

While the JavaBeans standard provided core functionality to make Java classes into components,

it lacked a great deal of the richness and power of CORBA or DCOM. More recently it has been

adopted as the foundation component model for Enterprise JavaBeans (EJB) [154]. The original

intention of EJB was to join Java and CORBA into a comprehensive standard for distributed,

enterprise component-oriented system. However, as the standards developed, and as the

Page 23

Component Based Sofnvare Development - An Overview

requirement for further componentisation in the CORBA 3 standard became apparent, it seemed

logical to develop EJB concepts away from Java specifics to be used within the CORBA 3

standard. It is envisaged that the future of EJB is as the Java mapping for the CORBA 3 standard

[74] and also as an element of the Java 2 Enterprise Environment [151]

2.5 Component-oriented Development - Why Now?

it has already been mentioned that the concept of component-oriented software development has

existed for almost thirt>' years. However, significant interest in component-oriented systems has

come about only in the last five years. This raises the question as to what aspects of the current

software environment have enabled component software to finally move from theory into

practice.

In the following we consider three pre-requisites of an effective environment for component-

oriented software:

• Technological evolution;

• Management appeal;

• Markets.

2.5.1 Technological Evolution

Chappell [37] argues that the blossoming of component-orientation must be attributed to the

evolution of both the software environment and development technologies. He defines eight key

areas of technological growth.

1. "Accepfance of a standard component model" - this is certainly a crucial point in the

technological drive to use component-oriented techniques. Without a standard by which to

Page 24

Component Based So/nvare Development - An Overview

write and construct components, the developer would have no way to interact with other

components. With the emergence of standards, a developer knows that as long as their

components adhere to that standard, any other component based on the standard should be

interoperable, no matter how it was written.

"A large third-party component market is in place" - A criticism of the object-oriented

approach is that in order to benefit from the reuse potential, it is first necessar>' to write a

framework of objects for the organisational need. While some third party frameworks exist

and are used successfully (e.g. Microsoft MFC), they still suffer from unclear interfacing and

interoperability issues, and therefore have limited reuse potential (for example, in order to use

MFC efficiently, one is tied to using Visual C++). With a truly effective standard, consumers

can shop around for components that match their needs knowing that the imported building

blocks can be integrated with their custom software. This opens the way for small software

houses to specialise in marketing specialised components rather than trying to compete at the

application level with large organisations. As discussed in section 2.3 the component

marketplace was one of the major themes in Mclllroy^s seminal paper. However, it is only

with the advent of effective component standards, almost thirty years after Mclllroy's

observations, that a component marketplace is being realised.

"The types of component available are rapidly expanding" - while the impetus for

Microsoft's drive in the component field was, arguably, down to the unexpected success of

visual (GUI) controls, both of the major forces in componeni technology development

(Microsoft and the OMG) are focussing more on vertical encapsulation. This should result in

the development of component suites for specific industries (e.g. healthcare, finance,

telecommunications, etc.). Additionally, there are many componeni software houses starting

up with domain-specific knowledge, enabling them to compete on a far smaller scale than i f

they were in the applications market. This progression in the development o f third party.

Page 25

Component Based Software Development - An Overview

domain-Specific components provide application developers with many more possibilities for

component reuse.

4. "Components are moving off the desktop and beginning to play an important role in creating

server applications" - while the desktop (client-side) offers great reuse potential for GUI

components, the move away from stand-alone applications means that a lot of the

functionalit>' of an application will exist on the server. The term business objects [113] is

often used to describe this sort of component - a component that encapsulates a business

eniit>' in a non-application specific way. The reuse potential for business objects is extremely

high and that potential can be increased even further with a component-based approach, as

interfacing to the component is straightforward.

5. "Components are a key part of web-based applications" - web applications, due to the

diverse, distributed environment in which they exist, tend toward implementation

independent technologies based around agreed standards. The integration with component

standards that already communicate using the same network protocols as the web (TCP/IP)

enables a huge amount of functionality to be accessed via a standard web browser.

Additionally, some web browsers already exist as component containers (for example,

Internet Explorer) so developers can guarantee client-side functionality through wrapping in a

component standard.

Chappell's final three points all related to developers and developer productivity, namely:

6. "It has now become significantly easier to create components ";

7. "A critical mass of component-based developers exists ";

8. "Powerful tools have become available for designing and testing component-based

applications ".

Page 26

Component Based Soft^vare De\'elopment ~ An Overview

While the points made are all valid, they are, perhaps, a little optimistic. It is certainly easier to

create components with today's development environment than early development approaches. C

and C-^ were the primary ways to develop "first-generation" components (i.e. early CORBA,

VBX, OCX, etc.) with, especially for CORBA, ver>' little in the way of development

environment. Newer environments (Visual Studio 6, Inprise Visibroker technologies, lona's

Orbix RAD product [75]) integrate the component standard effectively into the development

environment and provide productivity tools for the writing of components.

The fact that it is now possible to develop components in the developer's "language of choice",

rather than being tied to C or C++, aids in the productivity of component and component

container production. At the very least, the fact that components can be developed in numerous

different languages and environments means that the potential number of component developers

is considerably higher.

Component configuration and distribution are two areas where the tools are still lacking. A large

proportion of time spent implementing a component system will be in the configuration of the

components in their environment (registering, distributing, configuring security, etc.). It is this

deployment phase where knowledge about the workings of the component standard is more

important than in the development phase. For example, an Orbix-developed CORBA object

requires the construction of a server process that will be the "container" for the class. The

developer then has to deploy the server in such a way that the ORB will know which server to

start i f a client request for the given object is required. This is either carried out using tools

provided as part o f the Orbix distribution or using an implementation of the CORBA Naming

Service [110]. Only then is the developed object available to other clients in the distributed

environment.

Page 27

Component BasedSoft^vare Development - An Overview

A truly effective component development environment would make this entire process, from

development to deployment, transparent.

2.5.2 Management Appeal

As Slated above, technological evolution is certainly not the only reason that component-based

software development is currently gaining momentum, both as a hyped technolog>' and as a

realistic way of developing software. As a software technology, component-orientation can be

marketed to appeal to software managers, who are, essentially, the people that need to be

convinced i f a new development technology is to be adopted.

The greatest pressure on software managers is to deliver quality software on time and on budget.

In order to achieve this, software managers are constantly looking for ways to:

• improve development productivity;

• increase the reliability of software;

• reduce maintenance overheads.

The following discusses the ways in which component-based development addresses each of

these areas:

Development productivity - A primary argument for the use of component-based development

is that software components, by their nature, can be effectively and easily reused in any number

of container applications. Software reuse has long been regarded as one of the most effective

ways to improve software productivity [82]. Previous attempts at technologies for reuse (modular

Page 28

Component Based Software Development - An Overview

programming, object-orientation, etc.) have suffered due to problems with the way the provision

for reuse is achieved. However, it should be acknowledged that, once again, it is only

implementation that this aspect of component-orientation addresses - conventional wisdom (see

section 2.6) does not consider reuse in other activities such as design.

Increased rellabilit>' - Firstly, the component technologies can provide a lot of the infrastructure

(communication, security, etc.) need in distributed, enterprise away from the developer.

Therefore, developers can focus on the implementation of a business problem. Use can also be

made of components that have already been implemented and tested. Both greatly reduce the

amount of new, untested code that needs to be developed for a new system.

Reduced maintenance - As a component-oriented application is constructed of parts, all of

which are maintainable separately, the potential for a more flexible approach to maintenance

increases. In the case of a component containing a bug, the bug can be fixed and the new version

of the component can be plugged into the application without the rest of the application being

affected.

Additionally to these traditional software management problems, the volatility and variability of

the current and future sofhvare environment has placed a far greater demand on software houses

to be rapidly reactive and flexible in their development approaches. The following identifies

emerging areas to which software houses will have to adapt, and discusses the attraction and

demand for each:

Heterogeneity - coupled with the demand for distributed processing, heterogeneity in a

distributed system is an important development in the software environment. To use the WWW

Page 29

Component Based Software Development - An Overview

as an example, when a user is browsing a web site, they are not aware of the nature of the server

platform. To take another example, consider the telecommunications networking domain. In this

domain the vast majority of low level work (i.e. interfacing management systems to the

communications hardware) is carried out on UNIX systems as they tend to perform better at low

level tasks than the equivalent PC environments. However, UNIX is notoriously complex for

human-computer interaction. Even with user interface additions, invariably the user requires a

good knowledge of the operating system in order to use the system effectively. A more desirable

system would be to keep the low-level communications aspects of the systems on UNIX

platforms and provide user interfaces to the systems on the more familiar, and user friendly,

Windows-based PC environments.

Scalabilit>' - the concept of scaling a component system has already been discussed above (see

section 2.4.2.1). Consider an application developed as either a stand-alone or simple client/server

system as a demonstration prototype to refine user requirements. Once requirements are agreed,

the system needs to be scaled to meet the demands of a huge multi-user system across an

enterprise. Ideally, the prototype system could be scaled to accommodate these changes rapidly

(the core functionality being the same). In reality, this invariably means a complete rewrite and

the protot>'pe would not be able to cope with the demands of a large-scale distributed system.

A component-based approach introduces a great deal of flexibility in addressing all of the above

problems. With respect to heterogeneity, this is something implicit in component-orientation. A

component client needs only the interface definition and reference to be able to call services from

a given server component. The client neither has, nor needs, an awareness of the server

implementation (in terms of both platform and development language). Heterogeneity is a driving

force behind the CORBA standard - a reason for producing a standard rather than an

Page 30

Component Based Sofhvare Development - An Overview

implementation was thai vendors could implement for whatever platforms they wished. Certainly,

CORBA implementations exist for all major UNIX implementations, Windows platforms and a

few embedded and mainframe systems. Therefore, it is entirely possible to build distributed

systems in a heterogeneous environment with CORBA, exploiting the platform benefits at each

node of the system. As mentioned above, DOOM, as a component standard implicitly supports

heterogeneity. However, at the current lime, UNIX implementations of DCOM are limited

(although Software AG's EntireX technology [143] has developed DCOM implementations for a

number of UNIX platforms).

Scalability is not addressed directly by each of the core standards. However, additional services

are beginning to deal with these issues. The COM/DCOM standard is greatly enhanced for this

purpose with the MTS product, which essentially removes the vast majority of scaling issues

from the developer. COM+ is intended to develop these services further, to eventually make it as

easy to deliver enterprise applications as it is to deliver workgroup applications. [88]

For the CORBA standard, a number of services exist to deal with scalability (e.g., transaction

control, security, events and messaging). As with everything CORBA-related, it is up to the

CORBA implementation vendors to realise these services into products.

The above demonstrates the appeal of component-oriented systems to software managers. Not

only do they help in achieving the traditional tasks o f the software manager, they also enable an

organisation to be highly dynamic in meeting the demands for more complex and flexible

software.

Page2\

Component Based Soft^vare De\'eiopment - An Overview

2.5.3 Market Forces

The final aspect of influence over the drive toward component-oriented development is the often-

overlooked aspect of market pressures exerted by the people that produce the standards.

Consider the following: software developers require development tools in order to make the

mundane aspects of their task as straightfonvard as possible. They have to purchase these tools

from a vendor. Hence, development environment vendors have a lot of power in infiuencing the

way in which we develop software. While we may feel that we have a free choice in our selection

of development products, we work in a highly volatile industry where certain skills can count for

considerable earning potential. Therefore, we are drawn to the technologies most desirable by

organisations and recruitment agencies. For example, a few years ago Borland and Microsoft

battled for the dominant C++ development environment for Windows. Initially the main conflict

was between which was the better object framework, OWL or MFC, and which had better

"visual" capabilities. However, the eventual dominance of MFC and Visual C++ had little to do

with the products and more to do with the greater strength Microsoft had at marketing the product

and, therefore, creating demand for MFCA^isual C++ skills. As these skills became desirable,

developers felt obliged to use the product in order to be more employable. We can view this as an

example of a way in which the way we develop software was essentially dictated to us by a

corporation.

In the component field, there are two dominant forces influencing the directions in which

component-orientation could be taken:

I . Microsoft, whose technologies include OLE, MTS, COM+, etc. (although all are based on

COM/DCOM)

Page 32

Component Based Software Development - An Overview

2. The Ami-Microsoft Lobby (CORBA, JavaBeans, Enterprise JavaBeans, etc.), composed of

companies such as Netscape, Sun, lona, etc.

It can be argued that the first major impact of component-based technology occurred with the

advent of Microsoft's VBX controls [46] for Visual Basic. VBX (Visual Basic extensions)

controls provided developers with an SDK to write their own visual controls (specifying

properties and events and implementing behaviour based on an event model), which could be

plugged into Visual Basic's development environment and used in the same way as any of the

standard controls. While the VBX model itself was limited (it was 16 bit, the component model

was incomplete, there was a single C-based SDK) the interest they generated caused Microsoft to

push for a more stable model based on their OLE technologies. The eventual outcome of this

momentum was the standardisation on COM as an underlying technology for all of application

communication mechanisms (DDE, OLE, OCXs, etc.). Microsoft claims that this convergence

was the result of fifteen years development of technologies to realise that standard [96].

Microsoft currently holds the larger market share in the component marketplace. Any user

working on 32 bit Windows platforms is unavoidably using components as virtually every

Microsoft product released is component-oriented (the most widely used example being the

Office suite, which has been component-based since the Office '95 release). The two most recent

releases of the Visual Studio suite have been progressively more component-oriented. One can

imagine further releases providing even more component support. Consideration should be given

as to what Microsoft's motives are for virtually forcing users and developers down a component-

oriented route. Admittedly, component-orientation promotes good software reuse and

maintenance practices. It also vastly increases the potential for third-party reuse and rapid

application development.

Page 33

Component Based Software Development -An Overview

Microsoft currently stands on the verge of a monopoly in the PC market. They hold nearly 90%

of the desktop market [146]. However, they are very much tied to the Intel/PC world, as there are

few ports of their operating systems to other hardware platforms. Therefore, there is still a large

section of the IT world that is not dominated by Microsoft (particularly the server side).

Explosions in distributed computing - in particular the Internet, but also using distributed

architectures - have meant that there is even less need for servers to be the same type as desktop

clients. While tr>'ing to compete on an operating system level would require the porting of huge

amounts of code to a different hardware type, an alternative could be to work above the operating

system. One of the benefits of writing component-oriented software is that the developer writes to

the component standard, not the operating system. It is the component standard that interacts with

the operating system to resolve the low-levei requirements. Therefore, i f Microsoft can move

developers onto using their component standard, they can further expand regardless of operating

system, and therefore hardware platform. As DCOM is also a published standard, they can also

rely on other vendors to develop ports for different platforms (for example, Software-AG).

We can view the CORBA faction as having a lot of drive from the desire to compete with

Microsoft. While CORBA originates from the need for a world-wide standard for distributed

object communication, the competition against Microsoft seems to have caused a deviation from

the original vision, resulting in a group which reacts to Microsoft's directions, rather than pushing

forward with independent technologies. This is illustrated by the following quote;

Microsoft is Just a company, not a force of nature. Its not the biggest company in the
world, not ibe richest, not even the biggest seller of packaged software (that's IBM).
We reel at the mere thought, but Microsoft can be dislodged from its place at the
centre of the software universe. How? [163]

Page 34

Component Based Software Development - An Overview

Consider also the following from the CORBA faction (taken from a press release regarding the

Enterprise JavaBeans specification):

Theories are circulating about the merger of key specifications for application
components, which would help prevent Microsoft taking control of the object
development market...

... Keith Jaeger, head of international product development at tool company Synon,
said he expected CORBA and EJB to merge as early as the end of 1998, to prevent
the industry splintering into two camps and handing the market to Microsoft. [39]

While EJB originated from the need to provide an effective distribution standard with the

JavaBeans component model (merging with CORBA), the published specification seems to draw

greatly from the MTS model for component development, both essentially being ways to develop

component-based, transaction-oriented applications. A comparison of the two [137], demonstrates

these similarities. Admittedly, as a Microsoft white paper, the demonstration is biased toward

Microsoft, but it does provide a few salient points.

The majority of marketing to encourage an organisation to adopt component-oriented techniques

focuses on the potential benefits: component-orientation is an effective way of achieving large-

scale reuse, it provides numerous ways of easing the development process, and makes the

management and maintenance of sofhvare projects more straightforward. However, we have to

consider what the people who market these technologies have to gain. By controlling the

dominant architecture, an organisation can bypass the battle for supremacy with operating

systems and ensure that their products and technologies are used across numerous platforms.

Therefore, we must conclude that market forces play a large role in developing the ways in which

software is written. Even with a technology that is potentially advantageous to developers, i f its

vendors do not see any market potential for its use, it is unlikely that it wil l move into the

mainstream.

Page 35

Component Based Software Development - An Overview

2.6 The Philosophy of Component Orientation

From the above discussion, we can see a very positive view of component-orientation. However,

we must also be aware that this view is drawn from industrial literature. In drawing together this

discussion, we can identify a number of common beliefs regarding componenl-orieniation. As

these beliefs influence both the propositions for case study research and survey construction (see

chapter 4), they are drawn together in this section as a core philosophy of component-orientation.

1. Component-orientation increases development productivity through software reuse.

2. Component-orientation enables cross-platform and cross-language interoperability

3. Component-orientation will reduce maintenance costs and increase reliability

4. Component development Is made possible through component standards

5. Component-orientation provides functionality to aid in the distribution and scalability of

applications

Finally, an aspect that has not be addressed in the above discussion, but one that could be

considered part of conventional wisdom about component-orientation, relates to the adoption of

component orientation. A common point in discussion of adoption (for example, see [33], [38],

[28], [37]) is that adoption has to be comprehensive across an organisation - it is not possible to

gain the benefits of component-orientation i f it is used as a simple development technique without

strategic considerations. Two separate issues can be drawn from discussion. Firstly, organisations

should embrace a reuse culture that is enabled by component technologies. This can be seen to be

influenced by the wider domain of software reuse where, it is argued, success can only result

from systematic software reuse strategies embraced by the whole organisation [82]. The second

issue to be drawn from this discussion is the replacing of existing development tools with

Page 36

Component Based Software Development - An Overview

component technologies. In this case, the belief is that component-orientation has to be used as

the single development technique in order for its use to be successful - it cannot be mixed with

other development technologies. Therefore, two aspects of the philosophy of component-

orientation are:

6. In order to be successful, component-orientation should drive an organisational reuse culture.

7. In order to be successful, component-orientation should replace existing development

techniques.

2.7 Chapter Summary

While as a concept component-orientation has existed for a long time, it is only recently that

some of the aspects discussed in the seminal paper on the topic are becoming realisable. The

advent of component standards provides developers with common platforms on which to

development reusable sofhvare components. Component standards provide core functionality for

the structuring and interoperation of software components. The two main standards are Microsoft

COM and OMG CORBA. The emergence of these standards can be seen as a step toward large

scale software reuse, as well as a number of forces within the software industry, they provide a

foundation on which to build a component-oriented software environment.

Page 37

Assessing and Adopting Sofhvare Technologies

This chapter focuses upon literature relevant to the research aims, putting forward arguments for

the chosen direction in this project. The review is divided into two distinct areas - the

assessment of sofnvare technologies and theories of technology adoption. These considerations

strongly influence the research approach - each area provides a foundation on which to draw

when considering the research approach in this project and also the development of results

following experimentation. As such, work discussed in this chapter is returned to throughout the

thesis.

3. Assessing and Adopting Software Technologies

As defined in section 1.2, the overall aim of the programme of research was:

• to review the nature of sofhvare development and the concept of component-orientation,

and to assess the impact of component technologies upon the sofhvare development field.

Research should provide evidence of their impact, and develop guidance for the future

use of such techniques.

This raises the obvious questions:

1. How can we assess the affect the new technology has upon the development process?

2. How are new technologies adopted by organisations?

In this chapter, literature on both the assessment of soft\vare technologies and technology

adoption is reviewed.

Page3S

Assessing and Adopting Software Technologies

3.1 How Can We Assess a New Technology?

Understanding methods for the assessment of a new software technology is vital in order that

component orientation is effectively examined and realistic conclusions are drawn. The process

of assessment enables us to get a good understanding of the effectiveness of a new technology,

but more importantly, it allows practitioners to make more informed decisions on what

technologies should be adopted into mainstream software development.

However, this assessment is never a straightfonvard task. There are many references in the

literature to the difficulty of this experimentation within the field (for example [8], [9], [107]).

The term empirical software engineering [9] refers to the building of knov/ledge from

observation, formulating theories and experimentation in order to understand aspects of the

discipline. From this field that we can draw knowledge related to the evaluation of software

techniques and technologies through theorising and experimentation. Victor Basili, one of the

most widely cited researchers in the field, argues that the underlying paradigm of software

engineering should draw from the empirical nature of other disciplines, such as physics and

medicine [9]. He also differentiates between the roles of the researcher and the practitioner in

software engineering:

The role of the researcher is to build models of and understand the nature of
processes, products, and the relationship between the two in the context of the
system in which they live. The practitioner's role is to build "improved" systems,
using the knowledge available and to provide feedback.

This statement identifies an explicit relationship between the researcher and practitioner, and its

active nature - research should not be carried out in isolation from the practitioner, and the

practitioner should learn from research.

Page 39

Assessing and Adopting Sofnvare Technologies

Within the same paper, Basili acknowledges that the field is in a ver>' primitive stage of

development. We should not only consider data collection and analysis, but also the method of

investigation. Basili and Lanubile [8] further consider problems with experimentation in software

engineering. Due to the nature of software engineering it is not possible to directly draw from

other scientific disciplines - software development will not continually produce the same product

for assessment, as with manufacturing. Developed software cannot therefore be measured against

replicated data points to statistically test hypotheses. The technologies and theories in software

engineering tend to be human based, so the variability of human performance can also affect the

experimental process.

The credibility of research in software engineering is also considered, in particular the internal,

external and construct validity of the experimentation. Internal validity refers to the causal

relationships in the study, such that a condition can be seen to lead on to other conditions, rather

than relationships between such effects being spurious. External validit>' relates to the extent to

which the experiment's findings can be generalised. Finally, construct validity relates to the

selection of measurements that correctly reflect the research questions. It is against such

evaluation criteria that an experiment or study should be considered in order to assess the

credibility of fmdings.

3.1.1 Defining Empi r ica l Software Engineer ing

Figure 3-1, taken from [9], defines the nature of empirical software engineering and the elements

that wi l l comprise a study based on that paradigm. The important aspects to note from the figure

are the relationships between the elements in the domain. In essence, the figure is relating the

Page 40

Assessing and Adopting Sofnvare Technologies

software-engineering context (the world) to theory, models and research questions. A theory is

generated from observing the "world" and attempting to describe a phenomenon. A model is an

expression of the theory - the model will enable aspects of the theory to be tested. The research

questions are used to guide the investigation of the theory by forming hypotheses to test. The

nature of the hypotheses also guides the research design, the most suitable techniques being

chosen based upon the hypothesised statements.

Wotid

Theory

Models

Research
questions Hypotheses

Research
design

Research
results

Figure 3-1 - The Relationship between E S E , models and research questions

It is acknowledged that while Figure 3-1 defines the "perfect" study, in the reality of a sofhvare

engineering study, factors already mentioned (lack of data points, human factors, complexity) can

affect the study's completeness [8]. However, an incomplete research model can still be used for

effective research, as long as the researchers are aware of the problems with the model, and report

on these flaws in any research conclusions. Conclusions from a project should be verifiable by

Page4\

Assessing and Adopting Software Technologies

Others, and providing others with an awareness of potential flaws enables greater understanding

of them.

A final comment drawing conclusions from an empirical study also comes from [8]. Basili and

Lanubile state that drawing general conclusions is difficult due to the contextual nature o f an

experiment or study. This issue is important when developing the results of a research study, and

is one that we will return to later in this thesis (see chapters 7 and 8).

3.1.2 T e c h n i q u e s for Empir ica l Study

One of the seminal papers for empirical sofhvare engineering came from Basili et. al. [12]. In this

paper, the authors defined a framework for experimentation within software engineering. This

was one of the first to propose a more rigorous structure to research in the field, moving away

from the informal nature of previous experiments. The framework defined categories that applied

to phases within the experimentation process (definition, planning, operation and interpretation).

It aimed to formalise researcher's thinking when carrying out experimentation, so they would

define both purpose and object of study before commencing assessment.

However, while that paper focused upon techniques for experimental research, numerous

techniques have emerged from the field for the evaluation of software technologies. Zelkowitz &

Wallace [167] examined experimental models of the validation of software technologies from a

different viewpoint, grouping techniques into three broad categories:

• Observational: Collects relevant data from a project as it develops

• Historical: Collects data from projects that have already been carried out.

Page 42

Assessing and Adopting Soft^vare Technologies

• Controlled: The classical model of experimental design from other scientific disciplines

- multiple instances are carried out in a controlled environment to replicate and provide

validity for results.

Within each category, Zelkowitz & Wallace define a number of methods, discussed below.

3.1.2.1 Observational Methods

Project monitoring: The simple process of collecting data from a project as it develops. A

passive model that takes whatever data is generated by the project, it does not relate to any

research questions, but can be used to establish baselines, such as those in the Quality

Improvement Paradigm (see section 3.1.4.1).

Case study: A more guided approach to data collection from a live project, the acquisition

strategy is guided by research questions and goals. Therefore, the data is relevant to specific

research areas, which are defined before the project starts. The strength of this method is that it

occurs on a live project so criticisms often levelled at soft\vare engineering research (see section

3.1.3) do not apply.

Assertion: A study where the researchers are also the practitioners. This type of study can be

flawed due to bias, where the researchers can guide their practice to reflect their hypotheses.

There is, however, value in researcher/practitioner approaches in a large industrial context, where

the researcher does not have control over the project - in this case the research could be

considered a case study.

Page 43

Assessing and Adopting Sofnvare Technologies

Field study: Comparing the data collected from a number of projects simultaneously in order to

try to achieve replication. A problem with this approach is that the context of each individual

project may affect the data's generalisability. However, it is a good technique to try to

demonstrate the replication of phenomena.

3.1.2.2 Historical methods

Literature search: Reviewing previous studies of a particular phenomenon. This approach can

be used to confirm an existing hypothesis or to enhance data collected from a project by

comparing it to previously published data.

Legacy data: Again, the use of previously collected data, although in this case from project

documentation, rather than published findings.

Lessons learned: Often produced following an industrial project, these reflect on what occurred

during the project, so that others can learn from the mistakes.

Static analysis: Researchers obtain information on a completed product. This can be likened to

legacy data, but whereas legacy data examines the whole development process, static analysis

focuses only on the end product.

3.1.2.3 Controlled methods

Replicated: An evaluation is carried out in an experimental setting (i.e. a laboratory rather than

in an industrial project), where researchers try to replicate the experiment while changing one of

the control variables (for example, changing programming language for each experiment). This

controlled variation of variables enables a greater degree of statistical accuracy than is possible

with case studies.

Page 44

Assessing and Adopting Software Technologies

Synthetic: Due to the expensive nature of "real world" experiments, a lot of experimentation is

carried out in a scaled down, "synthetic" environment. This can be beneficial to strengthen

statistical accuracy within a timescale, but can be hampered by lack of industrial accuracy.

Dynamic analysis: As with static analysis, this method focuses upon the end product rather than

the development method, but the product is dynamically analysed, for example, through the use

of debug statements within the product code. I f similar techniques are used on a number of

products, comparative data can be drawn for assessment.

Simulation: Related to dynamic analysis, the end product is executed in a simulated setting in

order to test its performance and behaviour. Again, this is a useful technique to gain greater

statistical accuracy (reflected in the controlled nature of the execution environment). However, it

also suffers due to lack of real world context.

As well as defining these different techniques, the authors also commented on the strengths and

weaknesses of each approach. These are reproduced in Table 3-1:

Page 45

Assessing and Adopting Software Technologies

Validation method Strength Weakness

Project monitoring Provides baseline for future;
inexpensive

No specific goals

Case study Can constrain one factor at
low cost^

Poor controls for later
replication

Assertion Serves as a basis for future
experiments

Insufficient validation

Field study Inexpensive form of
replication

Treatments differ across
projects

Literature search Large available database;
inexpensive

Selection bias; treatments
differ

Legacy data Combines multiple studies;
inexpensive

Cannot constrain factors;
data limited

Lessons learned Determine trends;
inexpensive

No quantitative data; cannot
constrain factors

Static analysis Can be automated; applies to
toots

Not related to development
method

Replicated Can control factors for all
treatments

Very expensive; Hawthorne
effect^

Synthetic Can control individual factors;
moderate cost

Scaling up; interactions
among multiple factors

Dynamic analysis Can be automated; applies to
tools

Not related to development
method

Simulation Can be automated; applies to
tools; evaluation in a safe
environment

Data may not represent
reality; not related to
development method

Table 3-1 - Methods for sofhware engineering research

^ A case study enables the examination of an aspect of software development in context without the additional expense

of. for example, setting up laboratory experiments

^ The Hauihome effect relates to the phenomenon of workers within a study carrying out their tasks with greater

conscieniiousness than ihey would in their general day to day work due to the assumption that they will be under

greater management scrutiny [89]

Page 46

Assessing and Adopting Software Technologies

One type of assessment of briefly touched upon in the Zelkowilz and Wallace paper, but dealt

with in more detail in other literature, is feature analysis. This is a term that can be applied to a

number of different techniques, all aimed at focusing upon an aspect of a software product. While

Zelkowitz and Wallace's static and dynamic analysis could be likened to feature analysis,

Kitchenham [89] addresses it in far greater detail in a series of articles reporting on the UK

DESMET project for the evaluation of software tools and techniques. Feature analysis identifies a

user requirement and maps the requirement onto features a product should possess. This is the

most common method of evaluation in popular personal computer press. For example, a group of

word processors wil l be compared against such features as ease of use, formatting capabilities,

and integration with other office applications, etc.

Feature analysis is also referred to in an earlier paper by Brown & Wallnau, from the Software

Engineering Institute [27], who propose a framework for evaluating software technology based

upon it. The framework develops a reference model for a given domain, and then maps of a

chosen technique or technology to the reference model, based upon features identified in the

reference model. While this model is interesting in its use of a feature oriented view of

technology evaluation, it is also interesting to note the use of reference models as a tool for

understanding common aspects of a domain. We will return to the role of reference models later

in the thesis.

3.1.3 Cr i t ic ism of Software Engineer ing R e s e a r c h

The above reviews methods for the evaluation of software engineering tools and techniques in

order to help in considering the effect of component-orientation upon software development

practice. However, it should be noted that there has been criticism of software engineering

Page 47

Assessing and Adopting Sofnvare Technologies

research in the past. The following section reviews such criticisms to shed light on the choice of

research method for the present programme.

Criticism is often levelled at the fact that while there is a great deal of software engineering

research carried out, veo' linle seems to transfer into software practice. Sommer\Mlle [144]

discussed this problem at length with regard to software process research - an area of

considerable research effort but little impact upon software practice. Returning to the introductory

comment at the start of section 3.1, the main goal of experimentation should be to provide

practitioners with the sort of knowledge that will enable them to make informed decisions

regarding the selection and adoption of new technologies.

The main criticism of software engineering research from industr>' practitioners comes from the

lack of industr>' involvement. A group of publications from 1993/94 focus upon this issue. An

argument from Ports [121] relates to the model of software engineering research he referred to as

"research then transfer". In this model, die researcher carried out work in isolation from industry

until such time that they felt their research needed validation through practice. This process can

take years of experimentation and refinement until there is some industrial involvement. The

problems of transfer were further compounded due to the assumption that it would happen

automatically at the end of the experiments. There was little concern with understanding how the

technology could be transferred once it had been developed.

Potts argued that as software engineering practice began to mature, softAvare engineering research

should move away from "pure" scientific research, such as the continual development of new

languages and techniques, toward looking at ways to understand the strengths and weaknesses of

Page 48

Assessing and Adopting Sofnvare Technologies

existing approaches. A maturing industry is less willing to constantly change practices, and is

more concerned with getting the best out of what they use.

This change in the pattern of research is referred by Potts as the "industr>'-as-laboratory"

approach, where problems are identified through the close involvement of industry. The problem

can then be developed in an industrial context in order to analyse, create and evaluate possible

solutions. N A S A ' s Software Engineering Lab (S E L , see section 3.1.4.1) is identified as the

pioneer in the indusiry-as-Iaboratory approach. Basili [9] goes so far as to state that the software

engineering researcher's laboratory can only exist where practitioners build software systems.

A similar argument is put forward by Fenton, Glass & Pfleeger [51] when considering the

effectiveness of software engineering research and its transfer into practice. Again, they question

why so little software engineering research is taken up by industry, and they question the validity

of "intuitive" research, where the effectiveness of a technique is considered through the

experience and analytical qualities of the researcher, not empirical evidence. They present five

questions that they feel should be, but rarely are, asked about any claim arising from sofbvare

engineering research:

Is it based on empirical evaluation and data?

Was the experiment designed carefully?

Is it based on a toy or real situation?

Were the measurements used appropriate to the goals of the experiment?

Was the experiment run for a long enough time?

Page 49

Assessing and Adopting So/nvare Technologies

In agreement with Potts, they state that evaluative research must involve realistic subjects and

realistic projects if it to be of use to software engineering practitioners. They too hold up the S E L

approach as the "best practice" in this type of software engineering research.

A slightly different angle in approaching the same questions came from Glass [63]. His paper,

extremely critical of software engineering research, took the perspective of being written in the

Aiture (2020) and examining the approaches used by software engineering research in the late 20*''

century. In examining approaches to research. Glass claimed that the vast majority of

experimentation with new techniques was carried out using what he referred to as "advocacy

research":

1. Conceive an idea

2. Analyse the idea

3. Advocate the idea

In Glass' vision of the future, he saw the practitioner-focussed approach that dominated software-

engineering research as also coming from the S E L mode. In this future research approach, he saw

three benefits:

• Software practice and research work together to carry out ideas and address problems in a

practical setting

• Good research results make it into practice

• Bad research ideas are discarded quickly.

While the practice of empirical software engineering grew throughout the nineties, driven on in

part from the S E L approach, some still argue that software-engineering research is still too set in

Page 50

Assessing and Adopting Software Technologies

scientific principles. In a paper from 1999 on empirical software engineering, Pfleeger [120]

discussed the limitations of absolutes in the evaluation of new technologies and techniques, and

the problems with total reliance on measurement and experimentation as the sole means of

assessment. This centres on the cause and effect assumption in some software engineering

research - you do something, and an expected effect occurs. Pfleeger argues that software

engineering is more stochastic in its outcomes - there is a probability distribution of an effect

occurring, based upon the social and/or organisational context in which is occurs. Therefore, the

goal of research should not be to determine the absolute effect in all cases, but to understand the

likelihood that, under certain conditions, a particular technique will lead to improved software.

In considering methods to achieve such understanding, consideration is given to the current

practice of developing a theory, building evidence to support the theory, and then replicating

studies to support the theory. Two problems exist with this approach:

1. the time taken to carry out the replication

2. the changing nature of the development technique being assessed can result in a wasted study

This second point is an important one in considering the nature of software development

technologies. Industry vendors generally drive newer technologies, such as object and component

techniques. These vendors will continually review and refine their "products". Therefore, in

assessing such technologies, it is important to be aware of their potential volatility. A replicated

study may conclusively prove a theory, but will suffer i f findings come too lale to be of use to

industry. In addressing this problem, Pfleeger considers a sequential approach to research,

comparing this to an iterative software development approach. However, whereas a developer

would analyse, design, develop and iterate, the research would study, theorise, and iterate. Using

an example from social sciences, the author considers research assessing the effectiveness of a

Page5\

Assessing and Adopting Software Technologies

new reading technique. The technique would be defined and then tried out on a test group. The

technique would be evaluated based upon the findings from the first study, refined, and iterated

with another test group. In this way, the research technique would be being refined based upon

interim findings.

In this and also a later co-written paper [119] the author also considers the issue of evidence in

validating theories. Consideration should be made to the nature of the audience for evidence, and

also its criticalit>', rather than assuming absolute proof is needed in all cases. Returning to the

divide benveen researchers and practitioners, we can consider evidence prepared for the academic

community to be the same as that prepared for industry. In a study carried out by Zelkowitz et. al

[169], the question of the value of a research method was posed to both researchers and

practitioners. The findings were that each study group had a preference for methods that reflected

their own experiences - researchers preferred controlled experiments, while practitioners

preferred case and field studies.

The implications are far reaching - researchers have to ask themselves why they are studying a

particular technique or technology? Is it to promote further academic research, or it is to aid

industr>' in the adoption of new techniques? If it is the latter, than the validity of controlled,

laboratory experimentation should be questioned, especially if practitioners are more likely to

value the results of a case study.

Therefore, in considering a study or evaluation, Pfieeger & Menezes [119] argue that it should

not be just the assessed innovation that comes under scrutiny, but also the evidence produced by

the study. To assess the body of evidence from a study, they define the following approach:

1. look at the innovation's previous uses

Page 52

Assessing and Adopting Software Technologies

2. compare old ways with new ways

3. determine (using case studies, sur\'eys, experiments, feature analysis and other techniques)

whether the evidence is conflicting, consistent and objective.

However, a final note from this paper returns to the argument by Pons related to the assumed

transfer of an innovation following study. The authors agree that an understanding of how

innovations are adopted is important on top of effective evaluation. They also refer to the support

infrastructure that can be provided by training materials, tools, written materials, etc. This point is

considered in more detail in chapter 8.

3.1.4 Software Process Research

In determining methods for the evaluation of software technologies, consideration must also be

given to software process research, in particular process improvement efforts. While the above

discussion touches upon the most explicit techniques within the field for technology assessment -

the work of the Software Engineering Laborator>', in particular the Qualit>' Improvement

Paradigm (QIP), the following places such methods in the context of software process research.

Sommerville [145] provides a model that defines the contributing factors to product quality. This

model is illustrated in Figure 3-2. The primar>' concern for this research programme is the

development techno!og>' aspect of the model - if suitable technologies can be used effectively to

their strengths, this will greatly contribute to the qualit>' of the end product. However, process

qualit)' is also an important factor and, as discussed below, there is a relationship between

technology assessment and process quality that some process improvement efforts have attempted

to address.

Page 53

Assessing and Adopting Sofnvare Technologies

Development
technology

Process quality Product
Quality

People quality

Cost, time and
schedule

Figure 3-2 - Factors affecting product quality

The general area of software process research is, according to the Software Engineering Body of

Knowledge (S W E B O K) knowledge area (ICA) of Software Engineering Process [49], broken into

four themes:

1. Process definition

2. Process assessment

3. Process improvement

4. Process support

Process definition and process support aim to define the sofhvare development process. Aspects

such as process models and modelling techniques [45] can be covered in these themes. The K A

defmes a number of possible reasons for process definition and support, such as facilitating

human understanding and communication, supporting process improvement and supporting

process management. It states that the level of definition will depend upon this need. To illustrate

this point, the level of process definition in the two case studies presented in the research

Page 54

Assessing and Adopting So/tyvare Technologies

programme (see chapters 5 and 6) is high, as they are there solely to help facilitate understanding

related to the assessment of component technologies within the cases. The use of the process

definitions in the case studies is discussed further in section 4.2. However, if such a process

definition were to be used as the foundation for a process improvement programme within an

organisation, such a definition would be far more detailed.

h is the areas of process assessment and improvement that are our main focus for this

examination, as this is the domain in which the S E L work lies. While the general term for such

approaches is generally referred to wholly as software process improvement, there are aspects of

both assessment and improvement within such an approach. Figure 3-3 illustrates the "process

improvement process", as defined by Sommerville [145].

Analyse
process

1

Process
model

Introduce process
change

Identtfy
W improvements

Tune process
changes

Tram
engineers

Process
change plan

Trainmg
plan

Feedback on
improvements

Revised
process model

Figure 3-3 - The Process Improvement Process

This reflects the Software Engineering Institute's (SEI) Initiating, Diagnosing, Establish, Acting

and Leveraging (I D E A L) model [99], which is intended to provide guidance for organisations in

the planning and implementation of a process improvement programme. Figure 3-4, taken from

[141] illustrates the I D E A L model.

Page 55

Assessing and Adopting Softw are Technologies

Learning

Acting

Initiating

Diagnosing

Establishing

Figure 3-4 - The IDEAL Model

Both the mode! described by Sommerxilie and also the I D E A L model demonstrate the cyclical

nature of the process improvement process, and also a distinction between methods of process

assessment before improvement can be carried out.

The most well known approach to software process assessment comes from the S E L s Capability

Maturitv Model (CMM) [73]. The model provides a process assessment that enables the

classification of a software process into one of five different levels:

1. Initial - an organisation that does not have any effective management procedures or

project plans and no formal process model.

2. Repeatable - an organisation does have management procedures and project plans, but

no formal process model.

Page 56

Assessing and Adopting Software Technologies

3. Defined - an organisation has management procedures and project plans, plus a process

model that can be used as the foundation for process improvement

4. Managed - As with level 3, but the organisation also has an effective straieg>' for the

collection of quantitative data to feed into process improvements

5. Optimizing - An organisation that is committed to constant process improvement.

Process improvement is an integral part of organisational strategy.

The definition of levels of assessment was extended in a revision to the C M M [116] to include

key process areas, which an organisation would have to have in place to be assessed at a given

level.

While the C M M is the dominant process assessment technique in the USA, a European funded

project called Bootstrap [90] attempted to develop a similar approach to European software

practices. Bootstrap developed upon the assessment approach of the C M M , taking a similar

approach to the C M M , but also integrating some issues from the ISO 9000-3 [77] to develop the

method for assessment and classification of an organisation's software practices. The Bootstrap

method defines a reference framework that describes typical software development practices that

is used as a model for comparison when assessing an organisation's practices.

Both the C M M and Bootstrap have an underlying commitment of enabling the effective

introduction of new technologies, the belief being that without effective methods and practice,

effective technology adoption is not possible. Throughout the C M M level, reference is made to

expected levels of technology measurement, from ad hoc data collection at level I , through

qualitative data collection and sharing at level 3 to quantitative assessment, proactive evaluation

and use in process improvement programmes at level 5. A level 5 key process area, defined in

Page 57

Assessing and Adopting Software Technologies

C M M 1.1, is technology change management. Similarly, the Bootstrap method defines, as part of

its reference model for typical development practices, a technology grouping [150]. This

technology grouping defines the need for technology management - specifically methods for

evaluating the relevance of new technologies, supporting the introduction and placement of the

technologies, and managing technology integration"*.

While such models are sometimes referred to as process improvement methods, what they

actually provide is model of what the sofhvare process for an organisation should look like, and

assess an actual process based upon this model [24]. The improvement aspects for the method are

left to the discretion of the organisation. Two explicit approaches to software process

improvement are discussed below. Additionally, there has been work in applying the C M M

approach to process improvement [117] that provides a set of guidelines addressing the level 5

key process area of technology change management. The approach advocates the establishing of a

technology management group, whose role is to introduce and evaluate new technologies and to

manage technology change. It encourages an aggressive approach to the identification of new

technologies and the piloting of evaluative projects to assess them. This aspect of process

improvement very much addresses an approach to the evaluation of sofhvare technologies that is

related to an organisational approach to process improvement. Its evaluative approach can be

compared in some ways to the QIP approach (see section 3.1.4.1) in that it focuses upon the

* From the SEI viewpoint a differenl initiative is in place for the transfer of technologies, the Transition Enabling

Program, that defines a transition package [SI] thai provides organisations with a knowledge base for the use of a

given technology. This is a technique we shall return to when considering the development of research results.

Page 58

Assessing and Adopting Software Technologies

quantitative measurement of technologies, and uses this measurement to aid in the adoption

process.

Assessment approaches discussed above have contributed toward an international effort to define

a set of standards for process improvement - the ISO S P I C E project [47]. The S P I C E (Software

Process improvement and Capability Assessment) project had three principle goals [148]:

• to develop a working draft for a standard for software process assessment;

• to conduct industry trials of the emerging standard;

• to promote the technology transfer of software process assessment into the industry

world-wide.

The outcome of this project has been the development of I S O / I E C 15504, a multi-part standard

for process assessment and improvement. These standards can be divided into two distinct areas -

those that are prescriptive (or normative) which define practice that must be adhered to for an

organisation to claim it is I S O / I E C 15504 compliant, and informative aspects, which provides

guidance for certain aspects of process improvement. Normative aspects relate to:

• a reference model for processes and process capability;

• performing process assessment;

whereas informative aspects are:

• concepts and introductory guide;

• guide to performing assessment;

• an assessment model and indicator guidance;

• guidelines to qualification of assessors;

Page 59

Assessing and Adopting Software Technologies

• guide for use in process improvement;

• guide for use in determining supplier process capability;

• vocabular)'.

When considered against our own requirements in examining approaches to the assessment and

transfer of new technologies, the S P I C E standards do not provide explicit detail for a specific

approach. While the management of technology is discussed throughout various aspects of the

standards, no explicit reference is made to techniques for technology assessment. In particular,

this is evident in the guidelines for technology assessment when using S P I C E for process

improvement. There is nothing that is directly comparable to the key process area of technology

management from Paulk et. al.*s [117] approach with the C M M - the informative guide to process

improvement using S P I C E [147] makes no explicit reference to technolog>' assessment.

Finally, in our review of sofhvare process assessment and improvement approaches, we return to

the Sofhvare Engineering Laboratory (S E L) method. This approach to process improvement

defines a specific method, and provides a view of technology assessment and adoption. We have

already briefly considered this approach as it is often referred to in software engineering research

literature. The following discusses the approach in more detail.

3.1.4.1 The Software Engineering Laboratory Approach to Evaluation and Improvement

As can be seen from the above discussion, there are differing viewpoints in assessing software

technologies. The research viewpoint focuses upon techniques for assessment and models for

research. The process-oriented view focuses initially upon software development practice and

considers technology assessment and transfer to be possible only in a controlled sofhvare

development process. The S E L approach, however, is consistently held up as a good model for

Page 60

Assessing and Adopting Software Technologies

software engineering research, and also held in high esteem within the soft^vare process

communit>'. While as a whole it appears to be a process assessment and improvement model, it

defines techniques for both the evaluation of technologies and also the communication of

experience related to the technolog>'. As such, it is something that we will return to throughout

this thesis. In this section its role as a technique for iechnolog>' assessment is considered.

The S E L model is often referred to as the Quality Improvement Paradigm (QIP). It is a vehicle

for continuous development process improvement using iterative assessment and transfer of both

process and development technologies based upon measurable experiences with the new

techniques.

The phases of the Quality Improvement Paradigm (QIP) are defined in [7] as:

1. Characterise the project and its environment

2. Set quantifiable goals for successful project performance and improvement

3. Choose the appropriate process models, supporting methods, and tools for the project

4. Execute the processes, construct the products, collection and validate the prescribed data, and

analyse the data to provide real time feedback for corrective action.

5. Analyse the data to evaluate current practices, determine problems, record findings, and make

recommendations for future process improvements.

6. Package the experience in the form of updates and refined models, and save the knowledge

gained from this and earlier projects in an experience base for future projects.

The S E L approach has been applied to both process techniques such as the Cleanroom

methodology, and also to development techniques such as object-orientation (for example, see

[10] and [168]). In terms of the evaluation of a software technology we focus upon phases 1-4 of

Page 6 \

Assessing and Adopting Software Technologies

the model. The packaging and sharing of experience (the Experience Factory [11]) is of concern

in considering the adoption of a technology, and is addressed later in this thesis (see chapter 8).

The evaluation of a given technique or technology hinges on the quantitative evaluation of a

product based upon clearly defined measures. In delennining the parameters for this evaluation, a

Goal/Question/Melric approach is used. This is defined in [7] as a measurement model on three

levels:

• Conceptual level (goal): Goals are defined for a technique or technology (termed an object),

relative to the environment in which it is to operate.

" Operational level (question): A number of questions related to the object are defined in

order to achieve a specific goal.

" Quantitative level (metric): A set of metrics, associated with questions in order to answer

them in a quantitative way. This, in turn, relates quantitative measure to the goals of the

assessment of the object.

Through the definition of these values, the experimenter has measurable goals for the assessment

of the object.

As an assessment technique for software technologies, the major benefit of the QIP approach is

that it is carried out within software practice. It provides a model for the collection of data from a

live project that enables the evaluation of a new technique without imposing on the project

execution. It can be argued that it is this focus upon the practitioner environment that has resulted

in so much positive evaluation of the S E L approach.

3.2 Adopting Software Technologies

The following section addresses the question:

Page 62

Assessing and Adopting Software Technologies

Mow does an organisation adopt a new software technology?

In doing so, the first consideration has to be why there needs lo be an understanding of the

process of adoption within an organisation. Returning the Potts' critique of sofhvare engineering

research [121], he refers to the nature of the transfer of a lot of research findings into practice -

there is an assumption that research will transfer with no consideration of how this will be done.

The experimentation and results form only the initial evaluation of, for example, a soft^vare

technology - it aims lo determine the benefits and potential problems with its use. The research

can only be valuable if it helps an organisation's decision to adopt a technology, and, once

undertaken, how it is used.

From the viewpoint of the research programme, the case study approach results in theories of the

use of component technologies within the development process. These theories are tested against

a practitioner survey to identify common problems with the adoption and use of these

technologies. The resulting material provides the foundation to a body of experience in the use of

component technologies that can be shared with practitioners in order that they have a greater

awareness of possible problems that could affect their component-oriented development effort.

Therefore, it is important lo consider how to best present that experience to the practitioner. By

examining theories of technology adoption, the aim is to understand how an organisation goes

about adopting new technologies, and how it develops organisational knowledge regarding them.

While the majority of literature focuses upon Diffusion of Innovations (in particular) and also

Network Effects, recent work also looks at the fiaws in these approaches and the contribution

Organisational Learning can play in ensuring an effective adoption of a new technology [18, 5].

Page 63

Assessing and Adopting Software Technologies

The following addresses these classical models and considers their suitabilit>' to the needs of this

research project.

3.2.1 Diffusion of Innovations

The theory for the Diffusion of Innovations comes from work by Everett Rogers [133]. Rogers

proposed that the way in which a new technology is adopted into the mainstream follows a model

influenced by understanding, information, communication and social structure. This model has

four main elements:

1. Innovation

2. Communication

3. Adoption

4. Social system

3.2.1.1 Innovation

An innovation is an idea, practice or object that is to be perceived to be new by the innovation

consumers. It has a number of characteristics that can affect its adoption:

• Relative advantage: the degree to which an innovation improves on the idea is supercedes.

• Compatibility: the degree to which an innovation is perceived to be consistent with existing

practice, values or needs.

• Complexlt>': the degree to which it is considered difficult to understand and use.

• Trialabilit^': the degree to which it can be experimented with in order to assess its

effectiveness.

• Observability: the degree to which the results of the innovation are visible to others.

Page 64

Assessing and Adopting Software Technologies

3.2.1.2 Communication

The communication process between innovators and adopters is crucial in the diffusion of an

innovation, as it is via communication channels that knowledge can be transferred, putting

adopters in a position to make an informed decision regarding the innovation. Rogers defines two

kinds of information within the communication process:

• Hard information: information relating directly to the innovation, such as how it works,

how it should be used, etc.

• Soft information: information relating to the innovation's cost, potential benefits, evaluation

factors, etc.

While the hard information provides adopters with facts relating to the technology it is primarily

soft information that influences the adoption decision.

The communication channels themselves also have different effects upon the diffusion of

innovation. Again, two types of communication channel are defined:

• Mass media - such as television, radio and advertising, communicating initial information

about the innovation to many potential adopters

• Interpersonal - which aid in the persuasion of the adopter to take up a technology arise

between adopters and consultants, vendors, etc.

A final factor that affects the communication process is what Rogers calls the "nature of fit"

between innovators and adopters. Put more simply - do the innovators and adopters speak the

same language? This can be essential, as understanding is crucial in the communication of

information regarding the innovation. In a homophillious relationship, where innovators and

Page 65

Assessing and Adopting Software Technologies

adopters share commonality in beliefs, education, social status, technical expertise, etc., the

likelihood of adoption is higher than in a heterophillious relationship.

3.2.1.3 Adoption

The adoption process can be divided into five activities:

• Knowledge: the activity of obtaining information about the innovation, related closely with

the communication process, in particular mass media communication and hard information.

• Persuasion: where the diffuser attempts to influence the decision of the adopter, based again

on the communication process, but involving a greater degree of interpersonal

communication and soft information.

• Decision: obtaining evaluative (soft) information regarding the innovation, and the first time

the intention to accept or reject the information may emerge.

• Implementation: i f the adopter decided to adopt the innovation, the activity of implementing

and testing the innovation in the adopter's own environment.

• Confirmation: a decision to accept and further integrate, or to reject, the innovation based

upon the implementation.

The adoption process can depend upon the nature of the adopter. Rogers defines a bell curve of

adoption based upon the type of adopter. Figure 3-5, taken from [133], illustrates this curve.

Early E.irly
M a j o n K M . i i i i r i t \

l i itu*vatufs

Figure 3-5 - Level of adoption based upon type of adopter

Page 66

Assessing and Adopting Software Technologies

• Innovators: Adventurous, networked with other innovators, understanding complex technical

knowledge, the ability to cope with uncertaint>'

• Early adopters: Respected within the industr>', with strong opinion leaders (see below)

• Early majorit) ': Long period of deliberation before adoption decision, interaction with peers,

seldom hold positions of opinion leaders

• Late majority: adoption may result from economic or social necessity due to the diffusion

effect

• Laggards: point of reference is the past, suspicious of opinion leaders and change agents (see

below), few resources.

3.2.1.4 Social System

The social system is the environment in which the diffusion process takes place. Rogers defines 5

aspects of the social system that can affect the diffusion process;

• Social structure: how individuals within the social system communicate. This affects the

way that information is communicated through the system.

• Social norms: the behaviour patterns for systems members. Social norms define the

boundaries of acceptable behaviour within a social system. Rigid norms may hinder

innovation diffusion, as people may not feel able to comment on the validity of an

innovation.

• Change agents and opinion leaders:

• Change agent: a proactive individual who influences innovation decisions.

• Opinion leader: A respected, innovative member of the social system who

influences other people's opinions.

Page 67

Assessing and Adopting Software Technologies

These are critical roles in diffusion as their attitudes can greatly affect the adoption of

an innovation

• Adoption decisions: The way decisions regarding adoption are carried out. It may occur

at an individual, group, or authority level, and can profoundly affect the nature of the

adoption:

• Individual (or optional-adoption): a single person decides, independently of others

within the social system. However, the individual may be influenced by social norms.

Individual decisions allow for a rapid decision process, but can cause group

resentment.

• Group (or collective-adoption): a consensus of group opinion is used to decide on

the adoption. This is the healthiest approach for the social system as everyone whom

the adoption will affect is involved. Participant involvement in change is an essential

aspect of change management [4]. This approach also allows for the most rapid

diffusion, as it is likely to have the least resistance

• Authority (or authority-adoption): A few key people make the decision regarding

the adoption. This may or may not be fast, depending upon the level of acceptance

among others within the social system.

3.2.1.5 The Influence of Innovation Diffusion upon Software Engineering

While a lot of literature refers to Rogers' model in passing (for example Fowler & Patrick [56]

and Zelkowitz [168]) very few provide a detailed consideration the implications of the model on

software engineering technology transfer. Raghavan & Chand [125] in their summary of earlier

work, identify nine key points:

Page 68

Assessing and Adopting Sofnvare Technologies

1. Diffusion is a process by which an innovation is communicated through certain channels,

over time, and among members of a social system

2. The perceived attributes of an innovation have strong implications for the success of failure

of its diffusion

3. Diffusion is accompanied by change, so effective change management is critical for

successful diffusion

4. Diffusion occurs in a social context, so factors like social structure, culture and norms can

facilitate or impede diffusion.

5. Diffusion requires effective communication, so the selection of communication channels and

the match between participants are important factors in promoting diffusion

6. Innovation adoption decisions are influenced by both rational and irrational factors

7. People differ in their propensity to adopt innovations. Based on the propensity, one can group

people in categories (early majority, late majority, etc.). These categories also reflect the

relative order in which these people wi l l adopt innovations

8. Innovation adoption decision processes may be carried out individual, collectively, or by

authorities. The level at which the adoption decisions are made have significant implications

for diffusion

9. Change agents and opinion leaders acts as catalysts during diffusion. Their attitudes toward

the innovation can largely determine the success or failure of the diffusion.

They suggest that the diffusion of innovations approach is relevant to software engineering

technology transfer two ways:

• As a Descriptive Model - to be used as a theoretical foundation for conducting empirical

studies to enhance understanding of software engineering innovations, addressing questions

such as:

Page 69

Assessing and Adopting Software Technologies

• Are software engineering innovations diffusing as fast as they can?

• I f not, what are the key problems slowing the diffusion down?

" As a Prescriptive Model - By refining general guidelines from Rogers' model in the context

of software engineering. They identified a number of problems within the software-

engineering context that would need to be addressed i f the model were to be effective:

• The abstract nature of software engineering innovations means that they are prone to

misunderstanding

• There is a need for the active involvement of researchers and innovators in the adoption

process - implying a need for greater collaboration between software engineering

researchers and practitioners

• A need to be able to deal with the complexity of the social system - whereas other

domains have literature relating to their management, there is no such body of knowledge

within software engineering. Additionally, most software engineering professionals rarely

have management training, which compounds the problems of control and change within

their social system

• The availability of information for software engineering innovations - while there is

generally hard information available relating to facts about the innovation, there is little

soft information that could aid the diffusion process.

To overcome these obstacles, they suggest the following:

• The adaptation of innovations diffusion literature to the software engineering domain

• The software engineering research community should become more involved in

communicating innovation to practitioners

Page 70

Assessing and Adopting Software Technologies

• Software engineering education should look at introducing both management and diffusion

techniques into the development of new sofhvare engineering professionals.

It is interesting to note, while this paper was published in 1989, there is little evidence of these

suggestions being addressed. Pfleeger & Menezes [119], highlighted this once more in a far later

publication.

A paper from a business studies perspective came from Fichman & Kemerer in 1993 [52]. In this

paper the authors examine the nature of software engineering innovations and produced a model

to predict take up. The model used diffusion of innovations theory as a foundation, but criticised

this view for considering adoption only from an organisational viewpoint. They argued that the

view of the wider community also plays a part in the acceptance or rejection of an innovation.

They stated that the community viewpoint is crucial in software engineering as benefits of

adoption depend upon the number of current and future adopters (i.e. a technology will not be

adopted by an organisation i f others are not also adopting).

Therefore, their work looked at the economics of adoption - specifically, the economics of

technology standards -focusing upon increasing returns on adoption. Increasing returns on

adoption slates that the benefits of adoption depend upon the size of the community of other

(past, present and future) adopters.

The authors identified three issues that were particularly applicable to software engineering:

• Learning by using - benefits increase as experience grows

• Network externalities - immediate benefits of use are a direct function of the number of

current adopters (see section 3.2.2)

Page 11

Assessing and Adopting Software Technologies

• Technology interrelatedness - a large base of compatible products is needed to make the

technology worthwhile as a whole.

In developing these ideas, the concept of a critical mass is inU-oduced. This critical mass is

needed so that the technology can achieve mainstream acceptance. I f this critical mass is not

achieved, the wider community wil l not adopt the technology. Economists have identified four

factors that affect the potential to achieve critical mass:

• Prior technology drag - a significant installed based of prior technology can hamper

acceptance of innovations

• Irreversibility of investments - i f the adoption of the technology requires substantial

investment in training, products, etc. acceptance can be adversely affected

• Sponsorship - an entity (person, organisation or consortium) existing to guide the

development of the technology can increase adopter confidence and aid adoption.

• Expectations - the expectation that the innovation wil l be adopted can also aid in its

adoption.

The conclusion we can draw from this paper is that the diffusion of innovations model may not

provide the complete solution for software engineering innovations adoption, but it certainly

provides a good foundation on which to consider models for adoption.

The very recent paper of Pfleeger & Menezes's [119], again looked at the influence of the

diffusion of innovations model. It also stated that following Raghavan & Chand's paper of 1989,

there had been little consideration of innovation in software engineering literature. The focus o f

this paper was different in that it attempted to determine the types of evidence needed to be

Page 72

Assessing and Adopting Software Technologies

produced by software engineering innovators in order to convince practitioners to adopt their

innovations. This evidence can be analogised to the soft information referred to in Rogers' model.

This is the information used by the adopters to aid the decision process.

The impetus for this understanding came from earlier work in software technolog>' diffusion by

Redwine & Riddle [127], which suggested that a new technology needs to mature for 15 to 20

years before it is stable enough to be used by the mainstream. This maturation is not reflected in

modem software engineering practice. For example, the Java language is only a few years old,

but has been adopted by a considerable proportion of software engineering practitioners.

Therefore, tliere is a need to understand the ways in which new software engineering technologies

are presented to and adopted by practitioners, even i f they cannot be considered mature. Like

Raghavan & Chand [125], the authors wanted to consider work in other domains that could help

in this understanding. Rogers' model for the diffusion of innovations provided the necessary

foundation. The thrust of this argument is that research provides evidence to aid in the difflision

of an innovation. Conclusions drawn state that while it is difficult to understand how different

technologies suit different situations, learning work in other areas enables the building of

knowledge understanding the nature of innovation diffusion. This should influence how

innovators and researchers present evidence relating to the innovation, enabling practitioners to

make more confident decisions regarding adoption.

3.2.2 Network Externalities

While the concept of network externalities is touched upon in the paper by Fichman & Kemerer

[52], it is worth further investigating this economic theory as it is often attributed to high

technology markets (for example, Katz & Shapiro [86] and Bhattercherjee & Gerlach[l 8]). Katz

and Shapiro [86], two leading authors in the area, examined the influence of network externalities

Page 73

Assessing and Adopting Software Technologies

Upon technology adoption. In the paper the authors analyse technolog>' adoption in industries

where network externalities are significant. The authors defrne netAvork externalities as the

benefit that a customer can derive from the use of goods based upon the number of other

consumers purchasing compatible items. Put another way, the size of the network of consumers

of similar and compatible products is in proportion to the benefits of ownership on the product.

The classic network externality example of the telephone is used to illustrate this point - the more

people that own a telephone, the more valuable it becomes to a given owner. I f only a few people

in the world owned a telephone, it would be of little value because there would be only limited

communication potential. However, as a huge proportion o f the world's population owns the

telephone, it is extremely valuable as a communications device.

Additionally, the role of standards in relation to network externalities is discussed. The presence

of standards can help to extend a network, and therefore can add value to an item, due to the

compatibility that a standard provides. The example the authors give is that of PC hardware,

where common interfaces, defined as standards, allow any number of hardware manufacturers to

produce peripheral devices that they know will work with any PC. This is an important point to

consider with the take-up of component-orientation, whose theory has existed for almost thirty

years (coming from Mclllroy's early paper [100]), but where industry interest was not

forthcoming until standards were emerging (as discussed in section 2.5 and also identified by

Chappell [37]).

A more recent article that helps in our understanding of why people adopt certain technologies

comes from Liebowitz and Margolis [95], in which they further define network externalities, or

network effects as they prefer. They refer to the phenomenon as network effects because, they

argue, it is only external to the network if market participants fail to internalise these effects upon

Page 74

Assessing and Adopting Software Technologies

the network. Put another way, the effects are only external until they are influencing the product

network. The authors again discuss the influence of network effects on high technology industry,

arguing that they undoubtedly have a great effect upon the adoption of such products and discuss

the role of standards in enhancing network effects. They identify two types of network effect:

• Direct: the effect is directly related to the number of users of a product

• Indirect: the effect is "market mediated" - complementary goods are more readily available

so the adoption of the product is more desirable

While the paper acknowledges the influence of network effects upon the adoption on new

products, it is also careful to point out the possibility of too much reliance upon them. A number

of restrictions are discussed, but one that is most relevant to this research programme is that

network effects assume a homogeneous market place - where only a single technology can

prevail. This is obviously not always the case - there are many instances where technologies, that

could be considered incompatible, co-exist as each suits a subset of users. The classic example

here is that of PCs and Apple Macs - while the PC market is stronger, there is still a market for

Macs. While the two could be considered part of the same network, they manage to co-exist

within it.

This point also highlights another assumption in the theory of network effects - that all

consumers have the same compatibility needs. That is, all users within a network wish to

interoperate with everyone else. In reality, compatibility may be required on a much smaller

scale - perhaps even on an organisational or inter-personal level. Certainly compatibility is not

required outside of vertical industries and supply chains. In these cases, the network effects are

nowhere near as influential as one might first assume. Liebowitz and Margolis illustrate this in

Page 75

Assessing and Adopting Softyvare Technologies

relation to the Microsoft antitrust lawsuit, in which network effects were cited as an argument to

demonstrate the anti-competitive practices of the company. This issue is developed in the paper,

but also in far greater detail in [96]. They conclude that when considering network effects as the

sole theoo', o"^ can certainly view Microsoft's practices as anti-competitive, but when one

considered the variety of user needs, and also the possibility o f heterogeneity within the market

place, the argument is not as strong.

In further developing the concepts of network effects, Liebowitz and Margolis raise an issue that

is very important to this research programme, and one which wil l be returned to in far greater

detail in chapter 8. In considering the influence of network effects upon an emerging or

developing technology, the importance of effects comes not only from ownership of the product,

but from the body of knowledge about it. A large network of owners is not of itself sufficient to

influence the adoption choice, as, without the backup of a body of knowledge and experience,

ownership is useless because the potential of the technology cannot be exploited. As network

experience and confidence grows, the expected payoff for a new adopter becomes higher, and the

greater the likelihood of adoption.

Considered as a whole, these influential papers raise some important issues:

1. Direct and indirect network effects have influence upon the likelihood of a technology being

adopted

2. Standards further strengthen network effects by enhancing the potential for compatibility

3. Emerging technological adoption cannot be explained solely with effects relating to

ownership. A body of knowledge and network experience are important factors in influencing

adoptions.

Page 76

Assessing and Adopting Softw>are Technologies

However, the work of Liebowitz and Margolis warns against overreliance on a single theor>'.

Further fiaws in both the theories of network effects, and also the diffusion of innovation are

discussed in more detail below, where we consider the influence of organisational learning upon

technology adoption.

3.2.3 Organisational Learning

Organisational learning is grounded in the psychological theory of how organisations, as a

collective, learn. Bhattercherjee & Gerlach [18] define it as:

The process of acquiring hiowledge, expertise and insights about complex innovations
and institutionalizing this wisdom by modifying organizational roles, processes
structures, routines, strategies, technologies, beliefs and values as needed

In their review of the literature on organisational learning, Landes, Schneider & Houdek [93]

stated that common principles were the capturing, storing and reusing of experiences or

knowledge within an organisation. It is particularly useful when considering techniques for

technology adoption as it helps us understand not only the adoption process but also how the

organisation's knowledge grows following the adoption. It also tends to be critical of

business/economic theories of adoption in that these only consider how the technology gets into

the organisation, not what the organisation can do with it once it has been adopted.

Attewell [5] is particularly critical of business approaches, in particular diffusion of innovations.

The focus of the criticism is that they mistakenly focus upon influence and communication as the

main drivers for technology adoption, not knowledge and understanding. Other criticisms levelled

at these approaches include:

Page 77

Assessing and Adopting Software Technologies

• The emphasis upon the demand for an innovation, assuming that ever>'one has the same

abilities and opportunities to adopt

• The number of assumptions made by diffusion theory (smooth take up, rationalistic

adoption process'). He argues that in the case of complex new technologies, take up is

never linear, and can occur at multiple levels.

In reviewing previous organisational learning literature, Attewell discusses the relevance of

context, and its influence upon adoption choice. Drawing from work by Eveland & Tomatzky

[50], he enumerates five elements of context:

1. The nature of the technology

2. User characteristics

3. Deployer characteristics

4. Boundaries within and between deployers and users

5. Characteristics of communications and transaction mechanisms

In the case of high technology, diffusion is more difficult if:

1. The scientific base is complex or abstract

2. The technology is fragile (in the sense that it does not work consistently)

3. It requires handholding (aid & advice) to adopters

4. It is 'lumpy' (affects large sections of the organisation)

The adoption process iiself is not complex - once the company has selected the innovation its adoption will be

straightforward and successful. The criticism being that diffusion of innovations only considers adoption to the point

where an organisation decides to use an innovation, not its evolution through the organisation.

Page 78

Assessing and Adopting Software Technologies

5. It is not easily productised

All of these aspects can be relevant to leading edge development technologies, such as,

component-orientation. Similarly to the discussion above, comparing component-orientation to

Kemermer & Fichman's models for adoption, we can consider the technology against these

criteria:

1. Component-orientation is certainly complex, requiring an understanding of new concepts

and the application of concept to technology implementation (chapter 7 illustrates

practitioner opinion regarding this complexity).

2. Current implementations (of both CORBA and DCOM) are often criticised as not being

complete in their representation of the standard (for example, see [132] and chapters 5

and 6)

3. The need for the sharing of experience in the use of component technologies is something

to which we return later in this thesis (see chapters 7 and 8).

4. Another common point of discussion among industry literature related to component-

orientation is that it is not something that can be adopted independently of wider

organisational considerations

5. Referring back to point 2, component products (standards implementation, services, etc.)

are complex and expensive.

Returning to the reliance on information transfer in classical diffusion theories, Attewell

distinguishes between the types of information communicated between deployer and adopter in

the adoption process:

• Signalling - communication about the existence and potential benefits of a technology.

Using mass-media communication technologies this information is easily transferred.

Page 79

Assessing and Adopting Software Technologies

• Know-how / knowledge - learning information or the communication and development

of knowledge regarding the technology. This information places a far greater demand

upon both the deployer and adopter.

While this differentiation of information can be compared to Rogers' hard and sof\ information

[133], the distinction between knowledge transfer and development is important within

organisational learning, whereas diffusion o f innovations deals solely with knowledge transfer.

The traditional view centres on the transfer of knowledge from a "knowledge supplier" (for

example a vendor, a research organisation, a university/industry link, etc.) to the adopting

organisation. This view does not consider how the knowledge is propagated throughout the

organisation once it has been transferred. Taken to extremities, it would mean that once the

adopter has acquired a few relevant papers, they wil l be able to exploit the potential of the new

technology. In essence, the communication of knowledge is being reduced to signalling.

Attewell identifies studies demonstrating that, in reality, the knowledge required to exploit the

potential of a new technology has to be developed within the organisation. This is a far slower

process based on the development of experience in the technology's use. Additionally, in order to

build effective knowledge regarding a technology, they need to build upon existing knowledge.

This goes against the assumption identified above that any adopter has the same potential for

adoption.

The spreading of knowledge within the organisation comes from individual learning that is then

propagated throughout the organisation to become institutionalised. It is only with this

institutionalisation that knowledge can be considered part of the organisational memory. This

Page 80

Assessing and Adopting Software Technologies

process is described in the of work by Crossan, Lane and White [43] on the development of a

framework for organisational learning, which will be relumed to later in this section.

Bhattercherjee & Gerlach [18] also criticise traditional diffusion theories. Their paper Is o f

particular interest to the research programme as it considers the application of organisational

learning to the adoption of object-orientated technologies (OOT). In considering the adoption of

OOT, the authors stale thai

.^a^company's adoption behaviour derives from its ability to understand and use

The important issue here is the understanding o f a technology before being able to successfully

adopt it. The authors argue that an effective model of adoption derives from both external and

internal influences, and also the organisation's ability to learn from these influences. They argue

that, with a complex technology such as OOT, there are increasing returns as knowledge and

experience both internally and externally develops. The question remains how internal knowledge

can be institutionalised and whether external experiences and knowledge can be institutionalised.

The authors see organisational learning as a means to achieve these goals.

Crossan, Lane & White [43] address the same question in the development of their 41 framework

for organisational learning. While the focus of their work differs from the needs identified by

Bhattercherjee & Gerlach, and also this research programme, the framework provides a very good

foundation in considering the adoption of an emerging technology. For this reason, it is described

in some detail below, and is returned to later in the thesis (see chapter 8).

PageZ\

Assessing and Adopting Software Technologies

3.2.3.1 The 41 Framework

The focus of work for the 41 framework is concerned with the phenomenon of strategic renewal,

the underlying aim of an organisation being continuously learning. It is based upon 4 key

premises, and a core proposition:

• Premise 1: Organisational learning involves a tension bet\veen assimilating new learning

(exploration) and using what has been learned (exploitation)

• Premise 2: Organisational learning is multi level: individual, group and organisational

• Premise 3: The three levels of organisational learning are linked to the social and

psychological processes of intuiting, interpreting, integrating and institutionalising

• Premise 4: Cognition affects action (and vice versa).

• Proposition: The 4I's are related in feed-forward and feedback processes across the

levels.

There are two points that require elaboration from this definition. Firstly, it is in keeping with

what has already been discussed regarding the development of knowledge within an organisation.

It also refers to the construction of knowledge from previous experience. The statement

"Cognition affects action (and vice versa)" refers to the influence of doing upon the

understanding of a concept. Understanding guides what will be carried out, but also what is

carried out wil l inform what needs to be learned. The concept of "learning by doing" has been

discussed above and is also focus of conslructivist learning [115].

Page 82

Assessing and Adopting Software Technologies

The core proposition speaks of feeding forward and feeding back wiihin the learning process. The

feeding forward of knowledge is obvious in the transference of learning from individuals to

groups to organisations. Feeding back, however, relates to how the changes in organisational

practice (resulting from the institutionalisation of knowledge) affect people at a group and

individual level.

Table 3-2, a complete version of which can be seen in [43], defines the 41 framework across the

levels of the organisation. U identifies the four processes involved in the organisational learning,

and the levels at which they occur.

Level Process
Individual Intuiting

Interpreting

Group Integrating

Organisation Institutionalising

occur Table 3-2 - Processes in organisational learning and the levels at which they

Intuiting is a preconscious recognition of a pattern and/or possibilities inherent in a personal

stream of experience. In other words, intuition is based upon the individual being able to relate a

new concept to previous experience, and from that experience, be able to derive some form of

recognition from the new concept. Therefore, an individual can get a "feel" for something they

have not directly experienced, but they can relate to.

Page 83

Assessing and Adopting Software Technologies

Interpreting develops the intuitive elements of the concept into a more conscious understanding.

This progression develops the individual's cognitive maps .̂ This interpretation takes place within

a domain - in general the workplace - and the context of that domain is crucial in the

development of the interpretative process. As language is crucial to interpretation, the context on

the domain will guide the language being developed. This language is crucial to the

organisational learning process, as it is through this developed language that the individual wi l l

be able to communicate the new concept to the group level - integrating the knowledge.

Integrating can be defined as the collective action to evolve a shared understanding of the new

concept. The primary inputs into integration are conversation and shared practice. As

conversation plays such a key role in the integration process, the development of a correct

language is crucial. It is essential that the individual's interpretative process has developed the

language in a way that others within the group can relate to. The language wil l further be

developed through the integration process, developing an "organisational language" relating to

the new concepts.

Finally, institutionalisation can occur with group understanding and language relating to the new

concepts. The group understanding can be used to develop and modify organisational practice to

reflect the new knowledge. It is only with this development that the organisation can be

considered to be knowledgeable in the new concept.

The concept ihat in order to assimilate knowledge one must link it to existing knowledge structures is oRen refen-ed to

as a -cognitive map" [6]

Page 84

Assessing and Adopting Sofhvare Technologies

In summary, organisational learning is useful in considering technology adoption, as it helps in

understanding how knowledge regarding an innovation is transferred throughout an organisation

once the decision the adopt a technology has been taken. This complements and reinforces

existing theories that only consider innovations transfer up to the point of adoption.

3.3 Summary

The above has reviewed research regarding the evaluation of software technologies, in particular

the field of empirical software engineering, and also examined work in the use of theories of

adoption for innovations. This provides a theoretical foundation for addressing the two issues

identified at the start of the chapter, and each will be returned to throughout the thesis in

developing a strategy for assessing component technologies and disseminating results.

Page 85

A Case Study Based Approach to the Assessment of Component Technologies

As the focus of research is in nvo real world software projects, this final literature review chapter
considers the case study approach, and the problems faced in using it. An understanding of both
the strengths and weahiesses of such an approach provides the context for the method used in
this research programme.

4. A Case Study Based Approach to the Assessment of

Component Technologies

The choice of research method in this programme was constrained by the senings in which the

work could be carried out. As the work was funded from two industrial projects, the focus of

research work had to exist within the industrial setting. Thus, the research programme centred on

work with component-oriented technologies within these two industrial software development

projects. Under the circumstances, case study provides the most natural approach to the research.

However, this practical constraint can also be seen as advantageous in terms of literature from the

viewpoint of both assessment (see section 3.1) and adoption (see section 3.2). The discussion

regarding empirical software engineering and available techniques has highlighted problems in

the transfer to industry of research results from laboratory experiments. Criticism has identified

practitioner mistrust with such approaches, as they do not have their foundations in the "real

world". As the development of results in this research programme aimed to share the experiences

and findings of the project in order to develop better practice in the development of software from

components, it seems sensible to base the technology assessment within a practitioner oriented

context. The scale afforded in these cases would be impossible to replicate within an artificial

situation. Also, the programme cannot be considered a process improvement project, as aspects

such as measurement and definition of process were beyond the control of the author. However,

contributions from that area, in particular the Quality Improvement Paradigm [11], provided good

Page 86

A Case Study Based Approach to the Assessment of Component Technologies

background when considering the approach to the development of results from the assessment of
component technologies.

In considering the research programme from the adoption perspective, component technologies

are still very new. I f we refer back to Redwine & Riddle's [127] comment regarding the time

taken for an innovation to reach maturity (i.e. fifteen to twenty years) we can consider component

technologies to still be very immature. Again, such immaturity can benefit from a case study

based approach. A lot o f literature (for example, Yin [166] or Benbasat, Goldstien & Meand [16])

focuses upon research where the relationship between phenomenon and context are not clearly

defined.

From this discussion we can conclude that while the choice of research method was restricted, the

nature of the technology to be assessed means that a case study approach is an effective one. In

order to discuss the nature of the case studies within the research method context, it is necessary

to define them. A brief overview of each is therefore included here, greater detail is provided in

chapters 5 and 6.

Case study 1: DOLMEN - A pan-european consortium of telecommunications service providers

and software houses that developed an Integrated Service Environment (ISE) to incorporate fixed

and mobile telecommunications technologies into a common telecommunications platform. The

use of component technologies aimed to simplify the development process and provide a librar>'

of reusable telecommunications components for future work.

Page 87

A Case Study Based Approach to the Assessment of Component Technologies

Case Study 2: Netscient - A neUvork management independent software vendor (ISV) in their
first year of business, wishing to incorporate component technologies into their development
processes to improve productivity and promote a reuse culture within the organisation.

In each case the use of component technologies was considered based upon different forms of

evidence and initial conclusions for each case were drawn. As the case studies were carried out

sequentially some findings from case study 1 were fed into case study 2 in order to test them in a

different context.

The cases provided a good opportunity to study component-oriented techniques within sofHvare

development projects. However, case study findings are often difficult to generalise. Therefore,

while the second case study provided some opportunity to test initial findings, further validation

was sought through a practitioner survey, in which a questionnaire was constructed based upon

case study findings and presented to other practitioners with component technology experience.

This provided a good opportunity to test the theories developed from the case studies, and also to

guide the development of results in a more practitioner focused way. The survey construction,

delivery and findings are presented in chapter 7. Figure 4-1 provides an illustration of the

research approach as a whole.

Page 88

A Case Study Based Approach to the Assessment of Component Technologies

Research
Objectives

Literature review

Technology
assessment

(empirical software
engineering)

Research method devehpment

Innovations
adoption,

education and use

Reference models
in software
engineering

Results and developmeiit

Case study approaches
to software assessment

Case study propositions

Data collection and analysis

^
Valid

DOLMEN
case study

Validation

Netscient
case study

Case
theories

Conclusions

Practitioner
sun/ey

tion

Component
technology
reference

model

Organisational learning
and sharing experience

"Experience
pattems" in
component
technology

The Impact of Component Technologies upon Software Development

Figure 4-1 - Roadmap of Research

Page 89

A Case Study Based Approach to the Assessment of Component Technologies

4.1 A Review of Case Study Research

Case study research is an approach that arose within the social sciences. The most commonly

cited work in this area comes from Robert Yin [165].

A technical definition of the case study by Yin is stated as:

"An empirical inquiry that

investigates a contemporary phenomenon within its real life context, especially
when

the boundaries betw>een phenomenon and context are not clearly evident. " (pp.
15)

And stales that the case study inquiry

copes with the technically distinctive situation in which there wi l l be many more

variables of interest than data points, and as one result

relies on multiple sources of evidence, with data needing to converge in a

triangulating fashion, and as another result

benefits from the prior development of theoretical propositions to guide data

collection and analysis.

The case study approach is an all-encompassing method - it defines both data collection and

analysis strategies (see sections 4.1.3 and 4.1.4). it also, however, relies on clear aims and

propositions prior to its execution in order (o extract the correct data from the data set (i.e. the

case itselO- The following reviews the major elements of the case study research approach.

Page 90

A Case Study Based Approach to the Assessment of Component Technologies

4.1.1 The Research Design

The research design, stated colloquially by Yin, is

"an action plan for getting from here to there, where here may be a set of initial
questions, and there is some set of conclusions. " (pp 19)

It defines the boundaries of the investigation, so evidence can be focussed upon addressing

research questions. Five components are defined:

• A study's questions - Yin suggests that case studies are most suited when the nature of

questions related to "how" and "why".

• A study's propositions - the propositions of a study allow focus within the study questions

• Its unit(s) of analysis - the most crucial aspect of the case study method, as it relates to the

problem of defining what the case is. In general, the unit of analysis is developed from the

way the initial questions are defined

" The logic linking the data to the propositions - how the collected data (see section 4.1.3) is

analysed to relate back to the research questions

" The criteria for interpreting the findings - how this analysis is developed into results and

conclusions.

4.1.2 Types of Case Study Designs

Taken from [166], Figure 4-2 depicts the four basic types of case study design. The difference

between single- and multiple-case designs should be clear, but the difference between holistic and

embedded cases merits further clarification. A holistic design focuses upon a single unit of

analysis, for example assessing the effect of a given procedure upon an organisation. The holistic

view would only examine the impact upon the organisation as a whole. Embedded cases have

Page 9 \

A Case Study Based Approach to the Assessment of Component Technologies

further subunits within the overall unit of analysis, enabling analysis of particular aspects of the
unit. To use the above example, embedded units within the organisation could be individual
departments.

Single case Multiple cases

Holistic
(single unit of Type 1 Type 2

analysis)

Embedded
Type 3 (multiple units Type 3 Type 4

of analysis

Figure 4-2 - Basic types of designs for case studies

4.1.3 Data Collection

Six types of evidence are defined as suitable in the case study approach:

1. Documentation - this can take many forms - letters, memos, other communication (for

example, email), project reports, administrative documents, etc. and is useful to clarify

information and motive, develop inferences, prompt further investigation, etc.

2. Archival records - similar in use and style to documentation, but is generally more formal

and exact (for example, project deliverables).

3. Interviews - a way of focusing on exacts within the case, they can also help in further

investigation of points that have arisen from other sources of evidence.

Page 92

A Case Study Based Approach to the Assessment of Component Technologies

4. Direct obser\'ation - executed by case study workers "on site", direct observation does not
affect the case as it is being carried out but reflects upon practices, behaviours, etc.

5. Participant observation - a more active form of observation, when the observer assumes a

role within the case and participates in the events being studied. Participation provides

unparalleled opportunity to access "insider" information about the case.

6. Physical artefacts - a form of physical evidence that can be collected and studied away from

the case site.

Data collection should follow 3 principles:

1. Use multiple sources - enabling a convergence of lines of enquiry or, triangulation, so that

conclusions can be drawn from a number of different sources and are, therefore, more

reliable.

2. Create a case study database - in order to organise and document the data collected. In a

long case study with considerable amounts of evidence, it would be very easy to lose track of

evidence being collected unless it is done so in an organised way.

3. Maintain a chain of evidence - in order to increase the reliability of the evidence, and so

that external reviewer can follow inferences made by investigators.

4.1.4 Data analysis

General analytical strategies focus upon either following the case's theoretical propositions - the

statements at the beginning of the study upon which the research questions are developed - or

through it structuring in a case description - a framework upon which the case can be organised.

Within the analytical strategy, it is necessary to use specific analytical techniques. Yin defines

Page 93

A Case Study Based Approach to the Assessment of Component Technologies

two modes of anal>nical technique - dominant modes that deal with internal and external validity,
and lesser modes that generally have to be used in conjunction with a dominant analytical mode.

4.1.4.1 Dominant modes of analysis

Pattern matching - comparing empirical pattems (i.e. those drawn from the case) with predicted

ones. By defining a predicted pattern based upon variables within the case before the case is

carried out, some measurement can be made regarding the outcomes of the case based upon these

predictions.

Explanation building - analysing the case study by building an explanation about the case,

identifying causal effect that relate to elements of the case.

Time series analysis - examining changes in case study variables over time to demonstrate

conditions one or several outcomes.

Program logic models - a combination of pattern matching and time series analysis to build a

chain of events over time, therefore demonstrating the outcome of the case based upon the causal

relationships between the events over time.

4.1.4.2 Lesser modes of analysis

Analysing embedded units - applying a technique pertinent to the embedded unit of analysis

whose conclusions can then feed into the propositions for the whole case

Making repeated observations - carrying out a similar set of observations at varying times, to

identify commonly occurring events, etc.

Making a case survey - in the event of several case studies a surveying of all studies to assess

case outcomes based on standard measurements.

Page 94

A Case Study Based Approach to the Assessment of Component Technologies

4.1.4.3 Assessing the Quality of the Research Design

Finally, consideration needs to be made regarding the effectiveness of the case study - essentially

the qualit>' of the study and its results. Yin defines validity measures similar to those defined by

Basiii et. al [12]. However, he also defines an additional measure of research design quality -

reliabilit>'. Yin's definition [166] for all four measures are defined below:

Construct validit>': establishing correct operational measures for the concepts being studied

Internal validity: establishing a causal relationship, whereby certain conditions are shown to

lead to other conditions, as distinguished from spurious relationships.

External validity: establishing the extent to which a study's findings can be generalised

Reliability: demonstrating that the operations of a study - such as the data collection procedures

- can be repeated, with the same results.

4.2 Relating ttie Case Study Approach with the Research Method

While the case study approach comes from a social science background, its use in the study of

phenomena with the field of IT is growing, sometimes implicitly [53], but also explicitly [16,

107, 92]. An early paper on the subject by Benbasat et. al. [16] suggested that idiographic

research (understanding a phenomena in context) rather than nomothetic methods (laboratory

research) was preferable in the information systems field. They stated that case study approaches

were particularly preferable where research is at an early stage or when practitioner experience

within context would provide important findings. They provide three reasons why information

systems research can benefit from case study research strategies:

I . The systems can be studied in their natural setting and theories can be generated from

practice

Page 95

A Case Study Based Approach to the Assessment of Component Technologies

2. The case study allows the research to ask "how" and "why" about the processes taking place
- leading to understanding of the nature and complexity o f the study topic

3. A case study is appropriate where an area has had few previous studies carried out.

The study by Murphy, Walker and Baniassad [107], comparing the use of case study and

experimental techniques to assess emerging software development technologies, considered the

case study approach suitable when the broad effects o f the impact of the technology were of

primary interest and when identifying and addressing usability issues.

The closest in approach to the method in this research programme is work published by Kunda

and Brooks [92]. In this research, the authors examine the socio-technical effects of using

component-based development. The research is of particular interest as it demonstrates good case

study practice in a similar area, but with different case study propositions, and with a different

case study protocol. Also, in an area such as component-oriented development, where the

majority of literature is industrial in nature, it also provides a compatible study to compare case

studies from this research programme.

In relating the case study approach to this research programme, in terms of the definition of a case

study from section 4.1, we have both a contemporary phenomenon within the field of software

engineering - the emerging technology of component-oriented development - and a context for

this phenomenon - the development process within which the technologies are used.

In considering the value of a case study approach to the field when considering the reasons for

case study research put forward by Benbasat el. al. [16], all three reasons can be seen to be

appropriate in the aims of this research programme.

Page 96

A Case Study Based Approach io the Assessment of Component Technologies

4.2.1 Defining the R e s e a r c h Approach in terms of C a s e Study R e s e a r c h

The definition of the arms and objectives of the research as stated in section 1.2 clearly identify

our core unit of analysis - the software development process. However, within that unit of

analysis, we also wished to consider the effect of the technologies upon individual activities

within the development process - these activities (analysis, design, etc.) become the embedded

units of analysis within the research design.

While at first we may consider the research design to be that of type 4 from Figure 4-2, it is

actually, two separate single case studies investigating the same phenomena. Each case has a

similar aim, i.e. to investigate the effect of component technologies upon the underlying

development process, and in each case similar data collection techniques were used. However, the

difference in the context of each case meant that the studies were not directly comparable or

differing in a controlled, predictable way. Therefore, they cannot be considered part of the same

"study". This difference in context can, however, be exploited - by using the two cases as

individual case studies, we can define different propositions for each in order to develop our

understanding of the implications of using component technology. Therefore, while each case

study is exploratory in nature and addresses similar aims, the case propositions allow a focus of

these overall aims in each case:

4.2.1.1 General Case Propositions

• Adopting and using component technologies in software development processes wil l

affect process activities

• An awareness of the issues involved in the adoption and use of component technologies

can ease their integration

Page 97

A Case Study Based Approach lo the Assessment of Component Technologies

4.2.1.2 DOLMEN Case Propositions

• Componem technologies ease ihe development, integration and deployment of distributed

systems

• Uncontrolled adoption and use of component technologies can have a negative affect

upon a development project

4.2.1.3 Netsclent Case Propositions

• A domain-oriented approach to component development provides a greater degree of

reuse than a product oriented view.

• Similar issues with component-orientation occur when using different technologies from

the same field (i.e. Microsoft based, rather than OMG based technologies)

• Issues in the DOLMEN case study can be avoided through greater knowledge of the

technologies involved

4.2.2 Data col lect ion techn iques

Of the six types of evidence discussed in section 4.1.3, five were used to varying degrees within

the case studies of this research programme. While each case study (see chapters 5 and 6) provide

a detailed definition of sources of evidence, general types, in relation to those defined by Yin

[166], are listed below:

Archival records - project deliverables, specifications, etc.

Documentalion - internal reports, emails, memos, design documentation, etc.

Page 98

A Case Study Based Approach to the Assessment of Component Technologies

Direct observation - used in assessing the effect of management aspects of the development
process

Participant observation - from within participative roles in each case (see the discussion o f

roles within the cases below).

Interview - either in person, or through telephone or email conversation with key personnel in

each case.

Of these types, the final three (direct observation, participant observation, and interview) were the

main sources of evidences, supported through the other two. In order to differentiate between the

different types of evidence collected, it is important to define the author's role within the

execution o f each case -each case study chapter provides a detailed description of the

participative role. It should also be noted that in each of the studies, the author played two roles,

one as an observer and one as a participant.

4.2.3 Data a n a l y s i s techniques

The general strategy for data analysis was to base it against both the general and case

propositions. These propositions provided a qualitative measure against which the case findings

could be measured. The predictions from the propositions could either be demonstrated or

rejected based upon the evidence collected. In addition to this pattern matching technique,

embedded unit analysis also enabled a focus of attention upon the individual activities within the

development process. For each embedded unit, case propositions could be tested against the

evidence collected.

Page 99

A Case Study Based Approach to the Assessment of Component Technologies

4.2.4 C a s e Study Reporting

Finally, the reporting o f each case is structured based upon a definition of aspects of each case,

followed by a review of software development identifying issues arising from the use of

component technologies. Each case follows a similar structure, discussed at a study specific level

in the relevant chapters, but presented in general terms below:

I . A Definition of the Software Development Process - The unit of analysis in each case, the

development process is defined at a high level. It is important to understand that the use of

the technology occurred within a development process, which could have an affect on the

application of the component techniques. The definition is used as a point of reference in the

assessment of the technology.

2. A Definition of the Component Platform - defining the choice of component technologies

(and other software technologies) used in the case, again as a point of reference when

considering case study outcomes. The model used to define the component platform is each

case is defined in section 8.2.

3. Case Study Analysis - identifying issues arising from the development of software using

component technologies. Consideration is made toward all development activities, and issues

for analysis are identified.

4. Case Study Results - developing the analysis into a presentation of case study results,

testing case study issues against case propositions in order to develop theories in the adoption

and use of component technologies.

Page 100

A Case Study Based Approach to the Assessment of Component Technologies

4.2.5 External Validity and Reliability in the R e s e a r c h Method

When considering the quality of the research method, we focus mainly upon external validity and

reliability. Construct validity is demonstrated through the definition of propositions and

strengthened through multiple sources of evidence. Internal validity relates to causal

relationships, and is therefore not an issue in these cases. However, external validity and

reliability are both crucial in assessing this research approach - it is expected that the case study

results will be used by other projects when attempting to use component technologies. Therefore,

it is important to address the issue o f generalisation from the case findings. Just because events

occurred within the case studies, can we assume they wil l happen in other cases?

sense. It is, however, worth noting the difference in generalisation in the statistical and analytical

In a more traditional approach to gaining evidence relating to a phenomenon, generally through

surveying techniques, the experimenters are attempting to state that i f something occurs in a

sample, it is a given that it wi l l be proportionally reflected (generalised) in the wider universe.

This is, of course, not possible from a single case study, where evidence wil l generally not be

quantifiable. However, an analytical generalisation does enable the application of the findings to

the development of a theory that can be tested through further case study or other analytical

approaches. The concept of developing theories from case study research is dealt with explicitly

by Eisenhardt [48]. Figure 4-3 is developed from that paper, and illustrated the process of

developing theory from case study research.

Page 101

A Case Study Based Approach to the Assessment of Component Technologies

Getting started
Define research
questions ^

Selecting cases Crafting
instruments and

Getting started
Define research
questions w • protocols

Entering the
field

Analysing data Shaping
hypothesis

Enfolding
literature
Both conflicting
and similar

Reaching
closure

Figure 4-3 - The process of developing theory from case studies

Basil & Lanubile [8] define a theory as "a possible explanation of some phenomenon". This issue

is dealt with in two ways within this research programme. Both case studies develop theories in

the affect of component-orientation upon software development. In each case events that occurred

through the use of component technologies are explained based upon evidence from the case

itself. Theories developed from the first case study are initially tested against the second case

study. Indeed, one of the case propositions for the Netscient case study is:

• Issues in the DOLMEN case study can be avoided through greater knowledge of the

technologies involved.

However, additional theories are also developed from the second case study. Therefore, the

practitioner survey carried out following the case studies tests theories developed from both case

studies, to focus upon generalisable findings, and to guide further explanation regarding theories.

Page 102

A Case Study Based Approach to the Assessment of Component Technologies

The issue of reliability is also important in the development of results from the case studies.

Could a future investigator draw similar conclusions from the evidence presented in the case

studies and are the conclusions free from error or bias? The issue of bias is addressed through

backing up opinion presented with further evidence, either from observation or from evidence

obtained from other case participants. The database of case evidence and use of multiple sources

of evidence also aids in the reliability of the cases.

4.3 Summary

This research programme aimed to investigate the effect of component technologies upon the

software development process and, through this investigation, implement techniques to aid in the

good practice of component-oriented software development. This chapter has detailed the

research method used in collecting, analysis and developing data. The primary research approach

is through the examination of the adoption and use of the techniques in two cases - the approach

can be associated with the case study research method, as defined by Robert Yin [166].

Additionally, a further survey of the field strengthens the validity of the case findings. The

approach applied to specific case instances is discussed in chapters 5 and 6, and the survey

approach and findings are discussed in chapter 7.

Page 103

Softyvare Components in the Telecommunications Domain

The next three chapters describe the data coHection, analysis and initial results presentation from

the research programtne. This chapter, the first of the three, details the first case study, using a

CORBA approach within the telecommunications domain. Drawing frotn previous chapters

discussing technology assessment and case study approaches, the study is guided by case

propositions based upon research aims. Discussion of the research method in this case is

included to guide the reader in understanding the results that come frotn the study,

5. Software Components in the Telecommunications Domain

5.1 An Overview of the DOLMEN Project

The European Commission funded project DOLMEN (Service Machine Development for an

Open Long-term Mobile and Fixed Net\vork Environment) was a telecommunications

architecture project in the ACTS (Advanced Communications, Technologies and Services)

programme. The project, which ran from 1995 to 1999, was based in Integrated Services

Engineering, following a growing trend in telecommunications (for example, the international

Telecommunications Information Networking Architecture (TINA) standard [156]) to move away

from the traditional approach of hardware controlled switching systems to a more flexible

software controllable telecommunication network, across heterogeneous technologies and multi-

provider environments. The aim was to develop work from Intelligent Networks (IN) [1] and

Telecommunications Management Net^vo^ks (TMN) [126] based around the idea of providing

multiple services over the same network. This is achieved through the isolation of the

manageinent network from the actual network hardware using a software controllable

infrastructure for the control and management of services on top of the network. This provides the

service developer with a standard platform upon which to create services, without having to

worry about how to control the underlying hardware. The hardware control is taken care of by the

software platform.

Page 104

Software Components in the Telecommunications Domain

This in turn places a requirement on the architecture for the Distributed Processing Environment

(DPE). which provides a platform upon which to implement the Service Architecture and enables

distribution over many computers (know as Service Nodes). Figure 5-1 illustrates this concept.

ApollcatJons/Scrvlccs

DPE 'surface

DPE
bottom •PE

bottom

NCCE NCCE

hard.-:
ware

NCCE: Native Computing and Communications Environment
DPE: Distributed Processing Environment

Figure 5-1 - An Illustration of an Integrated Services Environment

This is taken from a DOLMEN deliverable [30] and, therefore, the terminology is very

telecommunications centric. Each "leg" of the diagram represents a computer, or service node,

within the service environment, responsible for the control of a given piece of hardware. The

NCCE (Native Computing and Communications Environment) can be viewed as the Service

Node's operating system / network operating system, and the DPE 'bottom' is the particular

installed distributed processing software (for example, an implementation of CORBA or DCOM),

which provides location, access and operating system transparency. Then, a client object makes a

call without knowing where the server is located, how it is accessed or on what platform it

executes - that is all resolved by the DPE [78]. Therefore, we can view the DPE as a whole - the

DPE 'surface'. Finally, it is the DPE surface that enables applications to write to any component

within the ISE environment (the upper layers of Figure 5-1) without having to worry about the

Page 105

Software Components in the Telecommunications Domain

location of that component. In reality this is resolved by the distributed processing software on

the node, plus distributed processing middleware.

The aims of DOLMEN were defined by the project [158] as

... to develop, validate and promote a Service Architecture that encompasses the
needs for services providing mobility across mixed mobile and fixed environments.
This architecture has been called Open Service Architecture for design and
provision of communications services and applications over an integrated fixed and
Mobile communications environment - OSAM. Its foundations are to be found in
RACE OSA Architecture (a legacy framework) and TINA. The focus has been on
extending TINA with architectural support for mobility. In particular this has meant:

• To extend TINA to explicitly encompass personal and terminal mobility.

• To develop a set of OSAM-conformant Service Components.

o To demonstrate OSAM in the DOLMEN Final Trial, by using: (a) an existing
mobile technology (GSM data service) cmd forthcoming mobile technology
(VMTSf, and (b) two applications (Audio Call Service and Hypermedia
Information Browsing) to exercise the OSAM Service Machine.

0 To promote OSAM within and outside the ACTS Programme, in particular
towards global fora addressed by TINA-C, in co-operation with their Core Team.

The development and demonstration was realised through the specification of layers of sofHvare

modules, or components, to achieve service requirements. These requirements ranged from

application functionality, through session management, service management and communication

management to the lowest level of hardware control. Each component had a role in the

environment, or (to use a DOLMEN term) Service Machine, and was able to communicate with

other components in the architecture to carry out its function. For example, i f an audio

conferencing application required a high capacity communication link it would state its intentions

^ D O L M E N used radio-access emulated by wireless L A N as U M T S radio access systems were not available before the

I-inal Trial.

Page 106

Software Components in the Telecommunications Domain

to session control components. The session controllers, in lum, would know how to invoke this

using communication control components. These would then break the overall request into parts

of the connection, and ask those components that controlled that particular piece of the network to

make the necessary connections. Finally, it would fall to hardware control components to set up

the hardware in the appropriate way. The outcome would be communicated back up through the

architecture to the application, enabling it to use the communications link.

5.1.1 D O L M E N Organisat ion Structure

A pan-European consortium undertook the DOLMEN project, each bringing specific skills. The

twelve partners included:

• Telco operators;

• Manufacturers;

• Value added ser\'ice providers;

• R & D institutes;

• Universities.

A more detailed overview of the DOLMEN project structure can be found in appendix A.

Partner personnel were divided into project workgroups and within the workgroups,

workpackages. Each workpackage was responsible for a given aspect of the project development.

Figure 5-2 illustrates the workgroup and workpackage structure:

Page 107

Software Components in the Telecommunications Domain

DOLMEN
A (Architecture) M (Service Machine) T (Trials)

^ ©
(A S) ® ©

Z (Management and Quality) ©
I—I Workpackage
'—' Group

O Workpackage

AP Mobility and Personal Communications Aspects
A S Service Architecture
MC Service Machine Components
MP Service Machine Platfomi
MN Network Integration
TA Application Development for Trials
TR Demonstration and Assessment
ZM Project Management

Figure 5-2 - DOLMEN Workpackage Structure

The following briefly defines each element:

Workgroup A: Responsible for the definition of the DOLMEN architecture, broken into:

Workpackage AP: which was tasked with the mobility and personal communication

aspects of the architecture (e.g. integration of mobile technologies) [160,161]

Workpackage AS: which had the overall responsibility for the definition of the

DOLMEN service architecture.

Workgroup M : Responsible for the development of the DOLMEN Service Machine, which

deinonstrated the architecture, broken into:

Workpackage MC: which was responsible for the specification and development of the

ser\'ice machine components

Workpackage MP: which was responsible for the specification and development of the

Service Machine platform - the customised CORBA platform that integrated two ORB

Page 108

Software Components in the Telecommunications Domain

products with some custom functionality to enable faster pan-mobile neuvork object

interaction.

Workpackage M N : which was responsible for network integration - the task of

integrating the DOLMEN service components to specific network technologies through

the development of resource adapters.

Workgroup T : Responsible for trial execution, broken into:

Workpackage T A : which developed the trail applications to demonstration the Service

Machine functionality.

Workpackage TR: which dealt with the development of the trial hardware and software

configuration and the integration of all developed DOLMEN software (from MC, MN,

MP and TA) into the trial environment.

Workgroup Z; Responsible for project management, consisting of a single workpackage (ZM).

As DOLMEN aimed to demonstrate aspects of a Europe wide telecommunications architecture, it

was necessary to have an international aspect for the trial. Therefore, the trial configuration was

split between two national host sites, one in the UK (provided by Orange Personal

Communication Services) and one in Finland (provided by Telecom Finland). Each national host

site provided a mobile and broadband network technology on which to demonstrate the

DOLMEN architecture (Wireless LAN and ATM in Finland and GSM and ATM in the UK).

Figure 5-3 provides a simplistic illustration of the trial organisational viewpoint.

Page 109

Software Components in the Telecommunications Domain

Applications

Mobile network
technology

(wireless LAN)

Broadband
network

technology
(ATM)

Finnish National Host

Applications

Mobile network
technology

(GSM)

Broadband
network

technology
(ATM)

UK National Host

Figure 5-3 -DOLMEN Trial Set-up

5.1.2 T h e U s e of Component Technolog ies in D O L M E N

In general, the model for an Integrated Services Environment is highly distributed. The hardware

in a broadband telecommunications network can be distributed across a wide geographical area.

In order that software can interface with the hardware to cany out user requests for network

connections, it is necessary for the software at the lowest level of the environment to reside in the

same geographical location as the hardware. A distributed software standard is therefore

necessary to communicate user requests from the application level to the hardware control

components. A feasibility study of distributed software platforms was conducted by workpackage

MP [129] at the start at the project to assess the suitability of such for the DOLMEN project. The

study assessed three different standards (DCE [112], ANSA [66] and CORBA). At the time of

the study (1996), DCOM was not considered an option because it was still an immature product

and it was only available on Windows platforms. As the overwhelming majority of

telecommunications management systems use UNIX, it was not feasible to use a Microsoft

Page 110

Sofnvare Components in the Telecommunications Domain

platform. The study concluded that CORBA was the most suited to DOLMEN'S needs for the

following reasons:

• it supported the majority of ser\'ice machine criteria defined by the project (distribution,

object-based, etc.);

• it was being taken up by the industrial community;

• a large number of CORBA compliant products were available;

• mobility requirements would be met easily using interoperability protocols [114];

• developing CORBA compliant components would enable integration with other ACTS

projects in the same area (ReTINA [128], VITAL[I62]);

• some CORBA implementations were available for Linux - the chosen operating system for

some aspects of the DOLMEN project. As all products were CORBA 2 compliant,

interoperability between different operating system implementations would be

straightforward.

Once the decision to use CORBA was taken, the majority of sofhvare development toward the

DOLMEN trials centred on the design and implementation of CORBA components and clients.

The MP workpackage also developed some low-level enhancements to CORBA implementations

to improve interoperability between ORBs.

As part of the study, work was also carried out to assess the potential of design techniques for

both static and dynamic modelling of the service machine, to aid in the efficient development and

integration of software components necessary for the DOLMEN service machine. The study

concluded that the use of Structured Definition Language (SDL) [81] and Message Sequencing

Charts (MSCs) [80], both standards from the International Telecommunication Union (ITU),

Page 111

Software Components in the Telecommunications Domain

would aid the dynamic modelling of the system. Another study, by workpackage MC [14],

concluded that the use of OMG-IDL (hopefully a 'given' in a CORBA project) and Object

Modelling Technique (OMT) [135] would be useful in the specification of components.

5.2 The DOLMEN Case Study

While the project goals can be used as an indication of the relative success in the use of

component based software development, it is important to differentiate between project goals and

case study goals. The case study goals aim to assess the effect that the choice of component

orientation as the chosen development approach had in the project. Therefore, while a lot of the

aims of the project do not complement this assessment, there are a number of aspects that make it

invaluable:

• it was a large, distributed software project using CORBA as the core software interaction

standard;

• it was intending to develop a component suite which could be reused in other projects;

• it was attempting to develop a component-oriented system within a specific vertical domain

(telecommunications / ISE).

5.2.1 C a s e Study Definition

Chapter 4 has discussed the general approach to the case study and the research methods used.

This section examines issues specific to the DOLMEN case study. Firstly, it reviews case study

propositions before elaborating upon the analysis approach, discussing strategy and types of

evidence used. Finally, it defines the structure for the case study report, which makes up the

remainder of this chapter.

Page\\2

Software Components in the Telecommunications Domain

5.2.2 Case Study Propositions

The propositions for the DOLMEN case study comprise both general case propositions and also

DOLMEN specific propositions, defined in section 4.2.1, and repeated below:

• Adopting and using component technologies in software development processes will affect

process activities

• An awareness of the issues involved in the adoption and use of component technologies can

ease their integration

• Component technologies ease the development, integration and deployment of distributed

systems

• Uncontrolled adoption and use of component technologies can have a negative affect upon a

development project

5.2.3 Case Study Role

Partial funding for this research programme came from the DOLMEN consortium. This funding

was on the understanding that the researcher had a role as developed within the project. This

development role provided the opportunity for participant observation within the project. The role

centred on two development tasks, initial with workpackage MN (see Figure 5-2) and then in

workpackage TA. In each case the research had a peer level relationship with other developers

within the workpackage, and reported to the workpackage-leader. The workpackage-leader

assigned tasks to different developers and was in control of the direction of work within the

workpackage. The researcher's two main tasks in the project were analyse work relating the

DOLMEN architecture to mobile network technologies, and developing an audio conferencing

application that used the architecture.

Page 113

Software Components in the Telecommunications Domain

The developer role was valuable in collecting evidence relating to the adoption and use of these

techniques in the various activities within the development process. As well as direct experience

of the technologies, by being involved in development teams, the author gained access to other

development personnel in order to obtain informal evidence (informal emails, ad-hoc discussion,

phone conversations, etc.) relating to their experiences. As these experiences sometimes went

against the official opinion (and therefore, the documented one) offered by project management

relating to the success or otherwise of these techniques, this access was invaluable. Evidence

regarding project management issues was collected through direct observation, archival records,

documentation and interview.

5.2.4 Analysis approach

The genera! analytical approach for the case study is to drive case study findings from case

propositions. In terms of analytical technique, the case study focuses upon "explanation building"

- trying to determine the reasons for outcomes. However, as the case study was exploratory,

rather than explanatory in nature (see Yin [166]), the aim is to use data collected to develop

theories for further examination, not to develop complete conclusions to the effect of component

technologies upon the development process.

Type of evidence are defined below:

• Participant observation - in a role o f software analyst/developer within the project,

participant observation provided an invaluable insight into the effects of using component

technologies within the DOLMEN development process. Evidence from participant

observation was generally written up as annotations to documentation (in the case of project

meetings, reaction to internal papers, etc.) or in a simple field notes format in the event of

development experiences.

Page 114

Software Components in the Telecommunications Domain

Direct obscr\'ation - evidence was collected in a similar way as participant observation,

which generally came from project management issues or development with which

participation was not possible. In this case, personnel that were involved in an incident were

generally approach either in person or via email to clarify events.

Inleniew with project personnel - in order to clarify issues or to get some in depth

information on a particular aspect of project development (for example, the interview with

the project technical leader). Two types of interview were used:

• In person - face-to-face interview allowed for a semi-structured discussion of a

particular aspect of the project

• Via email - to pursue matters when it was not possible to talk with the project worker in

person.

Documentation - provided archival records of incidents, ideas, project decision and

milestones. Numerous types of documentation were available:

• Project deliverables - formal documents that represented project milestones. These were

of limited use, but did provide documentary evidence of definitive statements and policy

within the project.

• Internal working papers - the project generated a large amount of internal papers that

were used to communicate ideas among project members. These tended to be less formal

than project deliverables and focused on a specific detail within the project (for example,

a choice of development tool, a specification of a given component, etc.).

• Meeting notes - meetings were generally minuted, but personal notes were also kept.

This provided opportunity to review the decision making process within the project and

also served as a recall aid for participant observation

PageWS

Software Components in the Telecommunications Domain

• Project email - such as announcements, requests, etc. These were also used as recall aids

for participant and direct observation

Examples of evidence used in the analysis of this case study are included in appendix B.

5.2.5 Case Study Review

1. The DOLMEN Sofbvare Development Process - reviewing the DOLMEN software

development process, a point of reference when assessing the effect component technologies

had upon software development in the project.

2. The DOLMEN Component Platform - defining the choice of component technologies)

used in the DOLMEN project as their platform for software development. This serves as a

term of reference for considering case study outcomes.

3. Case Study Analysis - identifying issues arising from both the development and trial aspects

of the project and analysing the issues identified. Consideration is made to possible causes for

each issue, based upon case study evidence.

4. Case Study Results - developing the issues identified from the development and trial review

for consideration against case study propositions.

PageWe

Software Components in the Telecommunications Domain

5.3 The DOLMEN Software Development Process

Figure 5-4 illustrates the model for the DOLMEN software development process.

Architectural Specification / Technology Reviews

Application Devblopment (WPTA)

•
Application Req.

Specification

Application Interface
(IDL) Specification

Application Functional
Specification (part SDL)

Application
Implementation

Application Testing

Component Development (WPMC,

Component Req.
Specification

Component Interface
Specification (lOL)

Component Functional
Specification (SDL)

Component
Implementation

Component Testing

DPE Developmt ? It (WPMP)

OPE Req. Specification

D P E Interface (IDL) /
Functional Specification

D P E Implementation

DPE Testing

Integratio n Testing

Architectural Trialing

Figure 5-4 - The DOLMEN Software Development Process

Each aspect of the process is described below.

Architectural Specification: As the primary goal of the DOLMEN project was the definition

and demonstration of an integrated services environment, the specification of the environment

Page 117

Software Components in the Telecommunication Domain

was considered appropriate before the actual software development commenced. While

architectural specification was ongoing, parallel activities assessed the feasibilit>' of software

techniques and technologies, as described above.

Core Development Areas: Software development fell into three main areas:

Application development: In order to assess the service machine, it was necessary to

develop applications, or services, which would make use of the environment. Two

applications were chosen: hypermedia information browsing (i.e. WWW browsing using

an ISE rather than the TCP/TP standard) and two-way audio communication. Each

exercised different aspects of the service machine. Information browsing used service-

specific session management and some stream communication (for the downloading of

data types requiring high capacity) while the audio application explored the more real

time aspects of the architecture (stream handover, real time data communication, etc.).

Component development: In DOLMEN, the entities that interact to achieve service

machine requirements are termed components [158], but these are not software

components as generally understood (while each can be considered similar in that they

constitute an element of a system, DOLMEN components are defined in an

architecturally specific way). The mapping from a DOLMEN component to software

objects using CORBA was generally one to many, i.e., a co-operating group of CORBA

components constitute a DOLMEN component.

DPE Development: The decision to use CORBA and the question of interoperability

between CORBA implementations has already been discussed. Essentially, this issue

Page\\%

Software Components in the Telecommunications Domain

concerned mobile and fixed aspects of the service machine. On the mobile side the

platform was Linux and Chorus CoolORB, while on the fixed side Solaris and lona Orbix

were used. Therefore, it became necessary to use an inter-ORB interoperability protocol

[109] to communicate between CORBA implementations. The commonly used Internet

Inier-ORB Protocol (HOP) was considered too capacity intensive to be viable on a

mobile communications link and, therefore, it was decided to develop a lightweight

protocol (Lightweight Inter-ORB Protocol (LW-IOP) [129]) and CORBA services (for

example, a federated naming service) which were usable by both ORB implementations.

Thus, the DPE involved enhancement of CORBA products on both the mobile and fixed

side to meet service machine requirements.

Core Development Phases: Within each development area, several development phases were

recognised, along conventional lines:

Requirement specification: an assessment of the required functionality, developing

architectural requirements toward a realisable technical solution. The majority of

requirement specification involved the internal publication of requirements documents

for peer group review, and developing the requirements documents into specification

deliverables ([123,31,32,160,161,59])

Interface specification: developing the requirements specification into a static model to

specify public functions and properties using OMT (in some cases) and OMG-IDL to

formally specify the interfaces for each DOLMEN component. The publication of

interfaces was considered the core definition of functionality between components in the

Page 119

Software Components in the Telecommunications Domain

system - component clients (in most cases these were other DOLMEN components) used

the defined interfaces to compile client calls into the developing code.

Functional specincation: The dynamic modelling of the system was intended to make

the actual implementation stage as straightforward as possible. By using modelling

techniques the intention was to ensure all interactions between components were

identified and specified before implementation. The modelling of behaviour between

components was carried out by building functional models in SDL, which could be run

through using design tools to identify problems with current models, until such lime that

all inter-component communication could be executed as a complete model. The SDL

tools were also used to produce MSCs for various scenarios between components (for

example, setting up an access session, requesting a stream connection between two

parties, etc.). The publication of MSCs and some SDL models [31.32] provided a

specification of functional behaviour for the DOLMEN components. In the case of the

DPE, SDL was not used. However, MSCs were generated by hand to identify interactions

between components.

Implementation: Implementation transferred interface and functional specifications into

CORBA components. For the majority of implementation C-H- was used, but Java was

employed in some parts of the information browsing application.

Testing: Following implementation, local testing was intended to ensure component

implementations were fully functional and bug free before integration testing.

Page 120

Software Components in the Telecommunications Domain

Integration testing: Incorporated the developed applications, components and DPE into the

DOLMEN ser\'ice environment. As trialing was to take place between national host sites in the

UK and Finland, integration was carried out at these locations.

Architectural trialing: Following integration, trialing carried out assessment of the functionality

and performance of the DOLMEN architecture based on scenarios developed for the trial (for

example, local interactions, international interactions, mobile aspects, etc.) [69]. The final

conclusions of the trialing could then be used to both validate the architecture and influence

future work in the area.

5.4 The DOLMEN Component Platform

The combination of component standards and services used in DOLMEN is shown in Figure 5-5.

The salient features are as follows:

The Component Standard: The chosen component standard for the DOLMEN project was

CORBA. The DOLMEN ORB as a whole comprised both Chorus CoolORB and lona Orbix

implementations; CoolORB in mobile domains and Orbix in fixed domains. Interoperability

between CoolORB and Orbix was resolved using the Lightweight Inter-ORB protocol

implemented in the bridging service, described below.

Page 121

Software Components in the Telecommunications Domain

Layer 3

Audio Conferencing Information Browsing

CORBA Processes

Access session components

Service session components

Communications session components

Connectivity session components

Resource adapters

Custom CORBA Platform

CORBA Implementations Inter-ORB Bridge CORBA Implementations

Location register
Orbix

Location register
Orbix

Global Naming Service

CoolOrb OrbixNames CoolOrb Naming

Layer 2 \

Layer 1

Figure 5-5 - DOLMEN Component Platform

Component services: The services supported within the DOLMEN component platform are

provided to primarily enable the transparent integration of mobile and fixed ORBs. Three services

are defined:

Naming service: The Global Naming Service (GNS) is the only one that can be

considered a standard CORBA service. It enables a component within the platform to

obtain the name of any object, whether it resides in a fixed or mobile domain. This is

Page 122

Software Components in the Telecommunications Domain

achieved by integrating CoolORB and Orbix clients, via a GNSClient API, to the

OrbixNames naming service.

Location register: This enables the ORB to keep track of the location of components in

the platform. This is necessary because mobility adds the potential for components to

roam different IP addresses, the mechanism that is generally used by a CORBA ORB to

locate objects.

Inter-ORB Bridge: The bridging o f the different ORBs across low capacity mobile links

has already been discussed. It is the role of the bridge to implement the functionality that

takes ORB requests, converts them into lightweight form (LW-IOP), transmits them, and

unpacks and translates the call on the other side of the bridge.

Components: The DOLMEN components themselves provide the functionality of the DOLMEN

service architecture, performing various roles to achieve the setting up and use of sessions within

the service architecture. They are briefly described here and presented in detail in [31,32]

Resource adapters: take the interconnection requests and interface with network

hardware to transform these requests into actual connections.

Connectivity' session components: resolve the specific interconnections that are required

10 achieve the whole connection. The connectivity session resolves the sub network

connections that are required to achieve the end to end connection requested by the

communication session.

Page 123

Software Components in the Telecommunications Domain

Communication session components: take service session requests and interpret the

requests into a form that can be passed onto connectivity session components to achieve

the requested connection. The communication session is responsible for end to end

connectivity in achieving the required service.

Ser\'ice session components: provide the service specific functionalit>' within the

architecture (i.e. information browsing or audio conferencing functionality). The service

session establishes a user requirement for a specific facility offered by the DOLMEN

architecture.

Access session components: Enable a user login to the service architecture, selection of

service sessions, and management of roaming users [160,161]. The access session

establishes a connection between a caller (user) and the DOLMEN Service Architecture.

Applications: Finally, the component clients for the DOLMEN component platform are end

applications that exploit the service environment.

5.5 Case Study Analysis

On a project that introduced novel concepts in several areas, it was probably inevitable that some

problems would arise when carrying out the software development. As it turned out, the entire

process, from requirements definition onwards, was beset with problems which, when

compounded, led to the project constantly battling schedules and struggling to meet defined

goals.

Page 124

Software Components in the Telecommunications Domain

5.5.1 Development Review

A common experience with software projects is that problems encountered early on in the

development process can impact greatly on later phases. This was certainly the case in the

DOLMEN project. The following reviews problems at each phase of the development process,

from requirements definition through to implementation and testing.

5.5.1.1 Interface Definition Issues

Interface definition provided the first milestone in the specification of the system. The publication

of interfaces was intended to enable client developers to compile calls to a server component

without having possession of the component itself As the component standard hides

implementation details from users, having the interface should be enough to ensure that a client

component wil l function properly with a server when they are integrated. Essentially the interface

definition defines a contract between client developer (the service user) and server developer (the

service provider). Therefore, in order that an interface definition be used effectively by client

developers, one of the following must hold: either, the definition is frozen at publication, or, in

the event of a change being required, it is properly documented and communicated to alt

development personnel.

In the case of DOLMEN, problems with interface definition emerged in a number of ways:

1. Immature interfaces were published as full definitions.

2. Dependent interface definitions (i.e. those included in other components, such structured

t>'pes, enumerated types, etc.) were published and then modified and released as new

versions.

3. Interfaces were revised and republished without communicating changes to client developers.

4. Various client developers used different versions of the same interface.

Page 125

Software Components in the Telecommunications Domain

This had two obvious and serious consequences: client developer productivity was adversely

affected, and the resulting software contained incompatibilities. This second failure was

compounded by the rigidity of the development model (i.e. linear with no scheduling for iteration

in the development process) which made it inevitable that problems would not become apparent

until the implementation phase of the project.

5.5.1.2 Dynamic Modelling Issues

The intention of dynamic modelling of the system was to identify and test all inter-component

interactions before implementation. The model developed in SDL certainly provided an effective

demonstration of the DOLMEN component interactions from which MSCs could be

demonstrated for all of the trial scenarios. However, problems in the use of such a technique

became evident when attempting to map from specification to implementation.

SDL had its origins in the specification of embedded hardware systems, where the components

can be modelled before being manufactured. However, in DOLMEN the aim was to develop a

software system using component-oriented techniques to meet an architectural specification. The

problem arose because DOLMEN components did not always map tidily onto a CORBA object.

In most cases, a number of CORBA objects made up a single DOLMEN component. Therefore,

while the SDL model aided greatly in observing the workings of the DOLMEN architecture and

the interactions between DOLMEN components, it was not directly relevant to the construction of

the system from implemented CORBA objects. Automatically generated MSCs (such as Figure

5-6) had to be greatly modified, or discarded altogether and produced by hand to enable the

component developers to identify interactions between developed objects. The figure is included

solely to demonstrate the nature of an MSC; the technical detail presented within it is

unimportant. However, to briefly explain the structure, the chart demonstrates an interaction

Page 126

Software Components in the Telecommunications Domain

between four interfaces (not components) within the service architecture. Arrows between

interfaces represent function calls upon the interfaces and returns from them.

TLA TH C t r l channel

1. Invoked operation in TLA Comrot
S«tupNFEP(ComD, BiaiaWiBiiSute joureeOoa.

souruTra^ uiLQtu. tinkTranc)

1. A]toc«eNFEPpiuJimmSni4wHga>Qc«. soroTraJac. UnkOoa. HBkAsicJ

4, A I t a « l e M u « C l i « n n e q i n i U a t A a n i S u i c , w t | ^

MureeTrafBc, sinkOos. slnhTrenk^

7. leportNFEPPtrantNFEF

6. ABoc«eTNCtianneIReply(NFEP|

S. InvoUig an opersilon
inTCSM;
AsMdaie[Conel3tbn_U.NFEP)

11. regisier_NFEP_rBtuin[NFER

10. reotaer_NFEP(NFEPl

inttiilAamSuto. loufcsOos. MurcaTnfC,

U. iTtum
INFEP. NFEPIR]

6. Albc*eUliXCh«nnel_reiumleftIDjUUJl

9, feotjtof^NFEPlNFEP]

ElnkOos. tinkTramcI

12. reBigef_NFEP_fetufn|NFEP. InaialAflmSjatt.

aoureeOos. sourMTrKIit, ibikOcs. »inkTrin«jl

Tfib b Bon© oftfy tfino TLA
o to t t t od tn t fw moDCeremtnal

Figure 5-6 - A sample MSG showing component Interfaces and interactions between

them (taken from [59])

Once implementation-oriented MSCs were generated they were of great use to developers.

However, as with interface definition, their utility was restricted by poor version control and poor

communication regarding change.

5.5.1.3 Implementation Issues

Continually changing interface definitions and MSCs had an equally disruptive affect upon

implementation. Private communication between developers of immediately dependent

components (e.g. application and access session components, application and service session

Page 127

Software Components in the Telecommiinicatiofis Domain

components) enabled the resolution of inter-component communication at the sub-system level.

Once interface definition and MSCs had been agreed between the two parties, developers could

work in virtual isolation knowing that the dependent components were working to the same

specifications. However, communication of changes outside the immediate group was typically in

the form of technical reports, with some email announcement as to the availability of the

documentation. With no central point of communication, it is hardly surprising that during

integration testing change information did not always reach beyond the immediate group, as

became more and more apparent as testing progressed.

The majority of problems with implementation were a consequence of earlier development

phases, there were also two issues intrinsic to the implementation phase. These were problems

with multiple interfaces, and problems with CORBA implementations.

The concept of multiple interfaces implemented by the same component class is found in both the

software (e.g. the COM standard, Java, etc.) and telecommunications (e.g. TINA) domains. In

DOLMEN, there was therefore an assumption that the chosen component implementation would

support multiple interface definition. However, they are not in fact part of the CORBA 2

standard, and are accordingly not included in all CORBA products. As implementation

approached it became apparent that while the CoolORB implementation provided the

functionality to bind multiple interfaces to a single CORBA object, this was not true of Orbix.

The situation was resolved through a project partner providing a mechanism that enabled such

functionality in Orbix. However, it was another unforeseen issue that contributed to development

problems.

Page 128

Software Components in the Telecommunications Domain

It was also assumed that any ORB interoperability problems would be beUveen implementation

(i.e CoolOrb and Orbix). These were resolved as planned, by the development of a lightweight

DPE that dealt with all inler-ORB communication. However, problems also arose in other areas,

in particular between difTerent language implementations of the same ORB (e.g. Orbix C++ and

Orbix Java). This did not become apparent until the integration phase.

5.5.1.4 Testing Issues

Local testing was the final free-standing phase of each strand of development. It was included, as

usual, to ensure that integration testing would be as straightforward as possible. However, many

cases an isolated component offered little functionality - it was the collaboration with other

components that provided the processing for a particular event (for example, a user login). In

such cases local testing phase was of limited value. In reality, many developers:

• implemented their own dummy server objects and may or may not have used the same

interface definitions as the actual implementation; and/or

• claimed a component had been fully tested when it would have be better to have said that it

was tested as well as could be expected without dependent objects being available.

5.5.2 Trial Review

In this section we review a number of issues arising during integration testing and trialing. It was

within this period that the majority of implementation problems came to light. Therefore, the

process was by no means as straightforward as anticipated by the management team.

5.5.2.1 Integration Issues

The integration phase was where major problems with version control of both interface definition

and functional specification became apparent. The resulting incompatibilities inevitably resulted

Page 129

Software Components in the Telecommunications Domain

in changes in implemeniaiion, which impacted greatly on development schedules. The

management team had allocated what seemed a reasonable amount of time (four months) for

integration, and scheduled a number of integration workshops within that framework. However^

the majority' of workshop time was spent discovering problems that effectively halted any further

integration testing until specifications could be agreed and re-implementation carried out. This it

soon became apparent that integration would take far longer than estimated. As it turned out, it

was not until the proposed final workshop before trialing that a full functional and interface

specification review was carried out to produce definitive versions of the component interfaces,

and complete MSCs for all trial scenarios.

Another problem that greatly hampered integration was delay in the delivery of components upon

which others were dependent. For example, in one DOLMEN trial application, two elements o f

core functionality were required to establish an access session (i.e. logging on to the service

machine) and then a service session (i.e. requesting service machine functionality for either an

audio communication session or an information browsing session). Application developers were

completely dependent on the necessary components being available in order to establish an access

session and test service session functionality. Late delivery of such components resulted in a lot

of wasted time in integration workshops. While, in hindsight, it seems obvious to identify such

dependencies and develop schedules based on them, it was another problem that was not

anticipated early on in the project.

A final issue relating to integration was problems with version compatibilities between the

software environments in which components were developed and those in which they had to be

integrated. This was most apparent when migrating the DPE to the trial environment. While DPE

development and testing went smoothly, installation on the trial environment at the UK national

Page 130

Software Components in the Telecommunications Domain

host site produced a failure on one of the constituent components. Comparison of operating

system and ORB versions between DPE development platform and the trial environment showed

they were exactly the same. The problem was finally traced to a minor version difference between

compilers that resulted in a difference in compilation. Similar problems occurred with other

components, which would compile with no problems on developer's own systems, but not at the

national host site.

5.5.2.2 Deployment Issues

The deployment exercise was again assumed to be a straightfonvard process, as it followed on

from integration that should have identified and resolved all problems with the software.

However, the assumption that component standards and tools will necessarily enable easy

deployment may not be correct, as demonstrated in this case study.

In fact, in DOLMEN, deployment took twice as long as anticipated, and was still identifying

problems with both the developed software and also the deployment environment. For example,

the laptops chosen as mobile clients were found to be unable to cope with the load placed on them

by the DOLMEN architecture, which required them to execute a number of multi-threaded

processes all requiring system resources at the same time.

The deployment phase was also hampered by the fact that the same problems identified during

integration testing were still being resolved. This meant that, for some scenarios, deployment

was the first time they could be tested.

5.5.2.3 Triafing Issues

The final phase of the software-oriented aspects of the project was the architectural trial. In actual

fact, problems throughout the development process had threatened the potential for a trial of any

Page 131

Software Components in the Telecommunications Domain

kind. However, eventually the trial scenarios were executed, albeit, over schedule by a marked

period. Salient features of the final trial report [70] were are follows:

The trial was broken into four areas, local trialing at national host sites (UK and Finland),

simulated international trialing in Finland, and real international trialing between the UK and

Finland over a dedicated broadband connection.

Results were broken down into an evaluation of functionality and an evaluation of performance.

In terms of functionality, the following was concluded:

1. Local Finnish trials: In general the trial scenarios were executed effectively and repeatedly

2. Local UK trials: Due to problems interfacing with the UK mobile technology (GSM) and

also problems with the developed software specific to the UK host site, trials had to be

executed a great many times to obtain satisfactory results from all aspects of the service

environment

3. Simulated international trialing: Due to problems in preparing the real international trial in

time, a fallback position of carrying out the international scenarios at the Finnish national

host site was adopted. International aspects of the trial were successfully demonstrated in this

environment.

4. International t r ial : Problems with the availability of international communications

equipment seriously affected the real international trialing. While low capacity signalling

between the two sites was possible, the actual communication of data between the two sites,

which required far greater capacity, was not possible. However, successful signalling

between the two sites did demonstrate some international aspects of the service environment.

Page 132

Software Components in the Telecommunications Domain

Performance evaluation was intended to assess the efficiency of the ser\'ice environment and

therefore the defined functionality of the DOLMEN architecture. Measurements were taken from

the trials in the simulated international environment by adding logging capability to each

component, via a macro that wrote a time and date stamp when any function was called. By

examining the log files, timings for service machine functionality (for example, login, user

registration, connection set up, etc.) could be calculated. For the information browsing application

a comparison of the DOLMEN architecture against conventional web technologies should have

been possible. A first year trial was run to characterise the performance of a traditional Internet

architecture and also a mediated Internet architecture [123]. However, the measurements were not

run to the same scenarios as the DOLMEN trials, so no useful conclusions could be drawn. In the

case of the audio application no measurements for a comparable conferencing application were

available.

While the actual performance measurements provide little information in the absence of a

meaningful comparison, they do demonstrate the speed at which a component-based application

can operate. In general, it was slower than might have been expected. For example, login took 1.5

seconds, while establishing an information browsing session was 28 seconds. While low capacity

network connections can wreck distributed system timings, it does also appear that a contributing

factor to the delays could be attributed to additional complexity of a component-based approach.

It is also interesting to note that measurements on different operating systems ORBs showed

significant differences for similar functionality. This presumably demonstrates performance

discrepancies between ORB implementations themselves, and also in how effectively the ORBs

interact with the operating system.

Page 133

Software Components in the Telecommunications Domain

5.5.3 Reviewing the Results and Goals of DOLMEN

The DOLMEN project received high praise from both peers and EC auditors. It was judged to

have achieved both the trial and overall goals.

However, our concern is to examine the use of components in a large-scale software project and

to assess the impact a component approach had on management and development techniques.

Against these criteria, DOLMEN provides much food for thought. Hopefully, analysis of the

many problems encountered may be useful to those working on similar projects in the future.

In following section we review the problems within the DOLMEN software development process

and their resolution, consider which of them were either reduced or accentuated due to the

component-based approach, and draws conclusions against the propositions defined in section

4.2.1.

5.5.4 DOLMEN as a Component-oriented Software Project

During the final stage of the DOLMEN development process, between integration testing and

trial execution - a time when it was becoming increasingly apparent that there were major

problems with the development of the trial software - the project manager published an internal

report [157]. It discussed the chain of events leading up to the "trial crisis" and put forward

reasons why this crisis may have occurred. These were as follows:

/ . coDiplexity of the software under development,

2. instability of the CORBA run-time products when explored in their extreme
features, as done in DOLMEN,

3. lack of adherence to Project-recomtnended sofr\vare practices by some
developers,

4. lack of mutual understanding between some developers of "neighbouring "
modules.

Page 134

Software Components in the Telecommunications Domain

5. definitely late delivery of some modules, which prevented testing in due
time. "

The following considers each of these points:

1. It is true that the software under development was complex. However, it was by no means on

the extreme leading edge of software development - essentially the project combined well

established telecommunications techniques (management interfaces to hardware) with new-

ideas (integrated environments to access said interfaces). The chosen implementation

technique (CORBA), while relatively new, was based on a standard which had matured over

a number of years, and was chosen to ease the development task, not complicate it.

2. The issue with CORBA implementations has been highlighted in industrial research (for

example, see [132]) and certainly did not help in the development of the DOLMEN software.

However, it was exacerbated by lateness in identifying these problems, during an integration

phase, which made little provision for unexpected, time-consuming problems.

3. Project recommended software practices were introduced during implementation in an

attempt to combat problems with software integration. For example, a software quality

manager role was established as a single point o f contact for the submission of software, and

standards were established for documenting items delivered. However, by this time, while the

majority of developers were attempting to adhere to project practices, they were under a great

deal of pressure to deliver whatever had been developed in whatever form was available.

Therefore, even with the best of intentions, it was very difficult to adhere to newly introduced

practices.

4. The lack of inter-developer communication was discussed in earlier sections, and was

certainly a major problem, resulting in problems throughout the development process.

Page 135

Software Components in the Telecommunications Domain

5. Late delivery of software has also been highlighted as a factor hampering integration testing.

However, here again, it was not until the integration phase that the issue was flagged, and by

that time it was loo late to employ countermeasures to combat the problem.

It would seem that the problems did not lie wholly in the technologies chosen for the project, or

the requirements on the developed software, but in the management and selected process

approach for development. The following are identified as the most problematic areas:

• Rigid development process: The rigidity of the development process, as illustrated in Figure

5-4, undoubtedly hampered the development of the software. The software was based on new

technologies and unclear requirements - i f the software was intended to validate the

architecture, that architecture could hardly constitute an effective requirements definition.

The project would have benefited greatly from systematic iteration and review at all phases of

the development.

As well as the rigidity of approach, development also suffered due to the tight schedules for

each phase. Effectively, while DOLMEN was a three and a half year project, implementation

did not start until the final year (i.e. X\vo and a half years into the project). This meant that

implementation, testing, integration and deployment all had to take place within 12 months.

The r^velve months before implementation were spent on static and dynamic modelling, the

effectiveness of which came seriously into question when the intended outputs of these

phases (fixed IDLs and MSCs) did not emerge. A more effective approach would have been

10 incorporate a number of design/implemeniation/integralion/review iterations over two

years.

Page 136

Softyvare Components in the Telecommunications Domain

A final criticism of the chosen development approach is in the area of testing. Testing of

individual components achieved very little, and wasted time that could have been better

employed on integration testing and deployment

Lack of inter-developer and management-developer communication: As we have seen,

this point was acknowledged within the project and was certainly the source of many

problems. The practice of dissemination of changes by the publication of reports announced

via personal emails proved ineffective. Often, only some of the people concerned received

notification. In other cases requirements were changed following management discussion,

and again, these were not effectively communicated. Formal communication procedures (for

example, via a single point of contact) for the release and modification of sofhvare

documentation would have eliminated most of these problems.

Weak version control: As evident in interface definitions, MSG specifications and

implementations, the version control at all stages was virtually non-existent, resulting in

different developers using different versions of the same thing (and because of poor

communication, not being aware of any difference). I f nothing else, the DOLMEN project

highlights the need for version control at all stages of development (from requirements to

implementation), not just at implementation.

Lack of understanding of the requirements and the technologies involved: There was

undoubtedly a lack of understanding of both the software requirements as a whole and also of

the technologies used for implementation (i.e. a component approach). This was particularly

apparent in:

Page 137

Software Components in the Telecommunications Domain

• SDL modelling: The SDL approach used to identify inter-component interactions

provided an effective simulation of the DOLMEN components, but a lack of

understanding of the mapping between DOLMEN components and CORBA objects

meant that the resulting model was of little direct help in the implementation of the

software objects.

• Inter-object dependencies: The later phases of development suffered because

developers were awaiting delivery of objects required to test their own objects. The

identification of dependencies could and should have been a part of the requirement

definition. Scheduling could have been more object specific and most of the problems

could have been avoided.

• Deployment: The assumption that the component architecture would simplify

deployment demonstrates a lack o f understanding of its strengths and weaknesses. While

component platforms provide the mechanisms to deploy distributed architectures,

detailed knowledge of both these mechanisms and of project specifics are required for the

deployment to be effective.

• Mistaken assumptions: Finally, the project suffered from a number of mistaken assumptions

regarding aspects of implementation. This was particularly damaging because resultant

problems were mostly not discovered until the integration and deployment stages, when there

was too little time for contingency. For example, the discovery that the mobile terminals were

not capable of hosting a large number of CORBA objects was not made until software was

delivered, installed and about to be deployed. Again, the interoperability between C-H- and

Java versions of Orbix was also not discovered until integration. A more basic assumption

was that using CORBA would make for swift software development. Consequently, the

development schedule, for a project of this complexity, was extremely tight.

Page 138

Software Components in the Telecommunications Domain

5.5.5 Learning from the DOLMEN Experiences

The following considers what the DOLMEN experience tells us about the management and

development of future component-oriented projects.

5.5.5.1 Management Issues

• Linear development models are not appropriate for projects with significant novel aspects.

The use of iteration and review is essential to refine requirements, designs and

implementation.

* Change management is an essential part of a large-scale project. In the case of component-

based projects, control of an interface definition is absolutely essential.

Component dependencies should be identified at requirement definition and their impact

upon the development schedule given due consideration. The components on which others

are dependent should be scheduled ahead of those that offer no services to others.

Formation of inter-dependent sub-groups of developers can be useful, but only i f group

findings are effectively communicated to the rest of the project team. This hierarchical

approach came into being in DOLMEN informally in a number of areas, such as application

and service session component development, communication and connectivity session

developers and access and service session developers. However, in DOLMEN, change

communication outside of these groups tended to be ineffective.

Page 139

Software Components in the Telecommunications Domain

Version control is essential for the software under development, and also for all development

tools and operating systems involved.

5.5.5.2 Development Issues

• Interface definition provides the means of defining contracts between component server and

component client developers. However, some form of functional specification is also required

to clarify understanding of the functionality provided by the component. The use of MSCs,

coupled with the use of interface definition, enabled clear understanding of the expectations

of a given DOLMEN object, enabling parallel development.

• Techniques for defining inter-component interfaces and behaviour can be very valuable.

Message Sequencing Charts were used to great effect in the DOLMEN project.

• SDL was too far removed from implementation to be of benefit. However, a greater

understanding of the mapping beUveen architecture and implementation may result in a more

effective use of SDL for some domains.

New technologies, such as sofhvare components, should be carefully assessed to see i f they

offer real advantages in meeting project requirements. Experience with DOLMEN was that:

1. Component systems place a heavy load on hardware and software resources and are

potentially slower to execute than "traditional" systems.

2. Old hardware may not be enough to cope with the additional load a component approach

may place upon it.

3. Component standards do not necessarily guarantee "common" component functionality.

Page MO

Software Components in the Telecommunications Domain

4. Compatibility testing should start long before implementation.

• Technology trialing at the feasibility stage is a good way to assess the functionality offered

by a component architecture and the hardware and soft\vare platform on which the system

will operate. It should be carried out as early as possible to ensure enough time is available

to resolve problems.

• Testing software components in isolation is of limited value in the development of

component-based systems with high levels of inter-dependency. It is virtually impossible to

test functionality without dependent components. Communication between components is

central to functionality and, therefore, it is necessary to test in an integrated environment to

ensure correct behaviour.

• Deployment is an essential part of a component development process and is by no means a

simple procedure. Component standards and tools, at the current time, offer little in the way

of help. Effective deployment also requires detailed understanding of both the application and

the component architecture.

5.5.5.3 The Impact of Component Techniques on DOLMEN

As a final part of the analysis of the DOLMEN experiences, we focus specifically on the use and

impact of component technologies.

The component platform (see section 5.4) proved very effective in removing the need for low

level programming to distribute the software platform, and also provided a great deal of

developer support, via component services, for the complex mechanisms of mobile

communication. Therefore, the greatest improvement in productivity was at a low level. While

Page 141

Software Components in the Telecommunications Domain

this is not explicitly shown within the DOLMEN development process (the distributed

environment was largely an assumed aspect), it is important to highlight it. Without the

component architecture the software development task would certainly not have been achievable

within the required time-scale.

However, as previous discussion illustrates, component technologies do not solve problems in the

management of the software development process. Many of the issues in the DOLMEN project

are common to all software projects when things start to go wrong. It is important to understand

which were common software problems, which were specific to a component approach, and

which were made worse by choosing a component approach. This understanding can aid in the

adoption of component techniques in future software projects.

• Late software delivery: This is certainly not an issue peculiar to component-oriented

projects; late delivery is one of the central themes of the sofhvare crisis [122]. However, one

should consider whether a component-based approach adds complexity to the development,

and therefore may impact on development time. While the development of sofhvare

components, particularly when using a language such as C-H- for implementation, does add

some complexity compared to, for example, an 0 0 project, the functionality encapsulated in

the component architecture should offset this. Whether the overall effect is positive or

negative depends on the nature of the project. In the case of DOLMEN, where a lot of low

level functionality was encapsulated into the component architecture, it could be argued that

the balance was achieved.

However, DOLMEN also suffered as it had no components from similar projects that could

be reused. Within the ACTS framework there were other projects (for example, VITAL and

Page 142

Software Components in the Telecommunications Domain

ReTINA) that were also developing TINA-based soft\vare components. As one o f

DOLMEN'S roles was the examination of integrating mobile technologies into TINA

environments, it was assumed that the primary focus of DOLMEN'S development would be

implementing mobile functionality. However, with no software provided from the other

projects, all components for the DOLMEN architecture had to be developed "in-house". In

theory, we could see a component approach benefiting the development productivity i f other

components had been available from other projects - i f they were all developed to the same

standard they would be compatible. However, DOLMEN demonstrated the problems with

interoperability between CORBA objects. It is therefore uncertain how much benefit would

have resulted from component reuse in this context.

Poor version control: Version control is another topic not specific to component-oriented

development. It is important in any large-scale development process where developer teams

may be working on the same design or code. However, it could be argued that a component

approach does introduce another aspect requiring very tight version control that is specific to

component-orientation - interface definition. While interface definition can be seen as a way

of defining functionality, and is therefore not very different to other development approaches,

the nature of definition and the use of the interface for client development means that change

to an interface may cause more problems than change to, for example, a static object model.

If anything, then, component-orientation increases the requirement for effective version

control.

Ineffective functional design: At best we can see the ineffective functional design using

SDL in the DOLMEN project as an experiment whose results were less useful than

anticipated. At worst, we can view it as a failed technique that wasted six months of

Page 143

Software Components in the Telecommunications Domain

developer time. As SDL has been used effectively in non component-oriented projects within

the telecommunications domain, do we conclude that the failure was a consequence of

component-oriented per se? Previous discussion has highlighted the difference between

DOLMEN components and implemented objects and argues that this is possibly a reason why

the SDL phase was of so little use. Thus, it is probably more realistic to conclude that SDL is

not a suitable technique for component-oriented development, unless the mapping from

architecture to implementation is simple, i.e., more or less one-to-one.

Problematic integration: This is certainly not specific to component-oriented approaches.

Indeed, in theory, the use of interfaces as contracts between client and server developers

should reduce integration to simple component assembly. However, in DOLMEN the number

of inter-component dependencies actually increased the problems of integration, especially

when compounded with poor version control. Further discussion regarding the level of inter-

component dependencies is included below. However, the problem was perhaps specific to

the way DOLMEN implemented a component approach rather than something likely to

surface in all such projects.

Problematic deployment: There has already been discussion regarding the impact of a

component approach on the deployment of a software system. Component-orientation

certainly adds complexity to deployment unless the deployers are knowledgeable in both the

component technologies and the organisation specific software.

Page 144

Software Components in the Telecommunications Domain

5.6 Consideration of Findings Against Case Propositions

5.6.1 Proposition 1

Adopt ing and using component technologies in sofbvare development processes w i l l

affect process activities

This proposition is confirmed based upon numerous issues identified in the case review. In the

DOLMEN project, the effect is generally to make the activity more complex. In particular, areas

where component technologies are supposed, according the industry literature [33], to be most

powerful - integration and deployment - have been greatly affected. Additionally, design

activities were affected as previous techniques provided unsuitable for use with component

technologies. Implementation activities were also affected due to problems with the chosen

technologies.

However, while we can state that component technologies undoubtedly affect development

activities, we should consider whether the problems that occurred with their use were as a direct

result of component-orientation itself, or whether the rigidity of development approach was also a

contributing factor. In an iterative model, such as Boehm's Spiral Model [19], development

activities are placed in an loop that includes risk analysis and reviews. With iteration and risk

analysis, could we expect problems that were unexpected in this case to have been identified and

contingency measures are put in place? While it is not possible to re-run the case study with a

different process approach, this consideration arising from this proposition identifies a need that

could be further investigated in subsequent study.

Page 145

Software Components in the Telecommunications Domain

5.6.2 Proposition 2

A n awareness o f the issues involved in the adoption and use o f component

technologies can ease their integration

The inverse of this proposition can be tested in this case study, as there was an assumption at the

start of the project that component-orientation would solve a lot of development problems and

that there was no need for special consideration of component based issues. The outcomes of this

assumption can be seen throughout the project where unexpected problems have arisen. For

example, the issue of interoperability between CORBA implementations has been documented to

some extent in industrial literature. With an awareness of this issue, the project management

could have ensured the use o f common CORBA implementations across the project or, at least,

run compatibility tests with implementations prior to integration testing.

Therefore, we can state that a lack of awareness of the issues involved in the adoption and use of

component technologies can cause problems with their integration. Subsequent study can test the

proposition in a positive way.

5,6.3 Proposition 3

Component technologies ease the development, integration and deployment o f

distr ibuted systems

This proposition can be considered complementary to the first proposition in its statement of

affect upon development activities. We can certainly consider the negative affect o f component

technologies upon development activities within this case study to conflict somewhat with the

proposition. However, we should consider the issue of distribution in the proposition - did the

component technologies contribute to a more effective development approach within a distributed

environment? As discussed in section 5.5.5.3, one of the greatest gains in productivity that came

Page 146

Software Components in the Telecommunications Domain

from the project was the distributed processing environment that let developers implement their

component from a location independent viewpoint. Therefore, we can conclude that component

technologies did contribute to easing the development of a distributed system. However, this

benefit must be offset against the problems of deployment and integration that may have been as

a result of the component technologies or, at least, as a result of a lack of knowledge in their use.

Therefore, we must consider the proposition to be tested but inconclusive and, again, an issue that

should promote further study.

5.6.4 Proposition 4

Uncontrolled adoption and use o f component technologies can have a negative affect

upon a development project

This proposition can be considered complementary to second proposition relating to the

awareness of issues involved in using component-orientation. We can consider the adoption and

use of component technologies to be uncontrolled in the DOLMEN case. While the review of

available distributed platforms did serve as some kind of technology assessment, albeit centred

wholly around literature review, there was no transfer strategy that followed this evaluation. The

issues identified above certainly illustrate aspects of negativity that have resulted from the

uncontrolled transfer. Once again, the degree of negativity may have a contribution from the

development approach and would benefit from further study. However, we can state that in this

case, the proposition has been demonstrated to be true.

5.7 Chapter Summary

The DOLMEN case study provides a large scale industrial example of the use o f a specific

component technology to address a software requirement in a specific domain. Additionally, it

Page 147

Soflware Components in the Telecommunications Domain

has been very effective in highlighting problems with the use of new software technologies in a

development project.

We cannot consider conclusions from this case study to be indicative of all use of component

technologies within development projects. As discussed in chapter 4, it is hard to generalise from

a single case study: it is difficult to identify common issues and those that are as a result of

uncontrolled factors within the case study. However, by considering case findings against case

propositions, we are able to develop theories regarding their use that can be tested in subsequent

study.

The following chapter presents the second case study in the research programme - related to the

use of component technologies within an Independent Software Vendor specialising in network

management solutions. The use of two case studies allows the examination of component

technologies in two separate contexts. This second case provides an opportunity to test general

case propositions in a different context, to test theory developed from propositions in the first

case study, and also to test new propositions. All of these can contribute further to the

development of theories regarding the adoption and use of component technologies while

increasing external validity of findings.

Page 148

The Use of Components in the Network Management Domain

This chapter presents the second case study, and is similar in structure the first. Wliile this case

study is quite different, a comparison of the effects of component-orientation in each case enables

a focus of theories in the adoption and use of component technologies.

6, The Use of Components in the Network Management Domain

6.1 An Overview of Netscient Ltd.

Netscient Ltd. is a SME specialising in the development of network planning and design systems

for communications service operators and providers. It was formed from the planning team of

AT&T Unisource in 1998, applying knowledge developed planning and designing company

specific networks to the wider network management domain. Their motivation for becoming an

Independent Software Vendor (ISV) was the realisation that the planning and design process is

essentially the same whatever the details of the particular network under consideration.

The case study follows Netscient software development practice in its first year of trading. It

provides an important contribution to the present research as, for an ISV, the start up and

development of a software infrastructure is crucial in delivering products on time and on budget

(to meet company schedules and to please backers). The use of a number of techniques, including

components, did result in the successful delivery and enabled this SME to compete with far larger

software houses in the production of quality software.

This chapter reviews the Netscient organisational structure, and the domain in which it exists,

before focussing on the company's approach to developing software. This includes domain

analysis, choice and use o f software technologies in the development process and the nature of

ihe software development process itself. Use of the technologies within Netscient is illustrated by

discussion of in-house systems for the management of network equipment personalities (see

Page 149

The Use of Components in the Network Management Domain

section 6.4.1.3). The case study centres on this aspect, as this was the area that had made most use

of component technologies. However, the other uses of component technologies within the

organisation are also discussed where appropriate.

6.1.1 Netscient Organisational Structure

Directors

Management

Departments

Research and
Development

Managing
Director

Development Marketing

IT
Director

Managing
Director Director

Contractors

Figure 6-1 - Netscient Organisational Structure

As one would expect with an SME, the Netscient organisation structure is fairly simple. While

there are formal distinctions between directors, management and department personnel,

communication between layers is relatively informal - directors are as likely to communicate

directly to department personnel as managers. Additionally, Netscient deal with both associates

and contractors. Contractors provide specialist knowledge in order to perform tasks within the

development process, which are beyond the skills of the core development team. Associates work

in a consultancy capacity advising on direction, and introducing new skills and techniques to the

organisation. The case study was made possible via such a position: while Netscient served as a

Page 150

The Use of Components in the Network Management Domain

case Study in the use of component technologies, as an organisation they received consultancy

regarding the use of leading edge software techniques.

6.1.2 Product vs . Domain Orientation

An early decision by the directors of Neiscient was to take on a software development strateg)'

from a domain oriented viewpoint. The following briefly differentiates between a product- and

domain-oriented view to introduce the topic in the context of this case study.

• Product-oriented: Requirements and objects are identified on the basis of what is required

for a specific product. Requirement analysis results in the identification of objects that

interact to provide application functionality. Object definition develops the behaviour and

data specific to those defined classes.

This approach is illustrated well in the DOLMEN project. The initial requirements definition

for the project was architectural, defining the DOLMEN product - the DOLMEN Service

Architecture [158], Following overall architectural definition, the focus moved toward the

objects required to achieve the architectural functionality. This object definition drew from

other projects (Research and development in Advanced Communications technologies in

Europe (RACE) projects [124], TfNA) that also addressed service architecture functionality.

Component definition provided a catalogue of components that would be developed to

achieve the DOLMEN Service Architecture functionality. However, while one of the initial

aims of DOLMEN was to produce a set of TFNA-compliant reusable components, the defined

DOLMEN components were focussed solely on implementing the DOLMEN product.

Therefore, there was little reuse potential for the components outside of the DOLMEN

environment. Admittedly, the components would be reusable in architectures based on the

Page 151

The Use of Components in the Network Management Domain

one defined by DOLMEN, but even integration into another TINA compliant environment

would be a complex task.

The main advantage of a product-oriented approach is that it requires far less planning and

analysis than domain-orientation. The drawback is that, as demonstrated by DOLMEN, the

reuse potential for the objects and components is low.

Domain-orientation: In a domain-oriented approach, initial analysis is not based around the

required functionality of a product, but focuses on what processes and actors exist within the

organisational domain. The theory is that software developed for domains (whether they are

horizontal or vertical) use similar components through different applications. Such domain

encapsulation is well illustrated by office suites (e.g. Microsoft Office, Lotus SmartSuite). At

a coarse level of granularity, all provide the same components (word processing, information

organiser, spreadsheet, and databases). At a finer level, similar functionality is required

within the applications themselves. For example, word processing, organisers and even

spreadsheet applications require spell checking. Graphing and data presentation is required in

spreadsheet and databases - the embedding of such functionality inside a word processor is

also desirable. The Microsoft Office suite is perhaps the most effective example of this

domain orientation. Through each progressive release of the suite, more and more

functionality has been encapsulated in common components and accessed via the COM

standard.

A domain-oriented approaches primary drawback is the time it takes to cany out analysis and

development work. It also requires a great deal of domain knowledge and experience in order

that it be successful. The theoretical advantage of a domain-oriented approach is that the

Page 152

The Use of Components in the Network Management Domain

reuse potential is far higher than a product-oriented approach. It was hoped that the Netscient

case study would help confirm or disprove this contention.

6.2 The Netscient Case Study

The Netscieni study was the second case used in the assessment of the effect of component

technologies upon sofhvare development. It provided a different context to examine the ways in

which component technologies could be used, specific differences being:

• A different vertical domain, but one that was not so far removed from DOLMEN as to be

entirely incomparable (for proposition 4 - see section 4.2.1.3);

" A domain, rather than, product focussed approach to development;

• A more cautious directorial view of component-orientation - it was not regarded from the

outset as the technique for software development;

• Use of a different set of component technologies - Microsoft COM-based technologies

rather than CORBA-based.

new Therefore, the case could help in identifying common issues in the adoption and use of these

techniques. It should be reiterated that the Netscient case study does not complement the

DOLMEN case study as part of a multiple case study approach with matching propositions. It is a

single case study assessing the effect of component technologies upon software development, its

propositions guided somewhat by the theories developed from the DOLMEN case.

6.3 Case Study Definition

Chapter 4 has discussed the general approach to the case study and the research methods used.

This section examines issues specific to the Netscient case, based upon the discussion above

regarding the value of the study. Firstly, it reviews case study propositions before elaborating

Page 153

The Use of Components in the Network Management Domain

upon the analysis approach, discussing strategy and types of evidence used. Finally, it defines the

structure for the case study report, which makes up the remainder of this chapter.

6.3.1 Case Study Propositions

The propositions for the Netscient case study comprises both general case propositions and

Netscient specific propositions, defined in section 4.2.1.3, and repeated below:

1. Adopting and using component technologies in software development processes wil l

affect process activities

2. An awareness of the issues involved in the adoption and use of component technologies

can ease their integration

3. A domain-oriented approach to component development provides a greater degree of

reuse than a product oriented view.

4. Similar issues with component-orientation occur when using different technologies from

the same field (i.e. Microsoft based, rather than OMG based technologies)

5. Issues in the DOLMEN case study can be avoided through greater knowledge of the

technologies involved

6.3.2 C a s e Study Role

As with the DOLMEN case, the author played a participative role within the study as a result of

funding for the research programme coming from the Netscient organisation. Again, this role was

at a development level, in this case focusing upon the development of in-house systems

(discussed in section 6.6.1). Development of the in-house system was carried out by three

developers in all, reporting back to the IT director for development strategy.

The development role enabled access to developers on a peer level with the benefits that brought

to data collection, and provided the opportunity for participant observation within the case

Page 154

The Use of Components in the Network Management Domain

context. Additionally, an associate role with in the organisation provided the opportunity to

provide directors with opinion regarding technological issues (for example, the suitability of a

certain development tool or technique). This associate role provided the opportunity to feed in

"lessons learned" from DOLMEN in an advisory capacity. The directors could then have a more

informed decision in iheir selection of technologies, enabling the testing of the proposition that

questions whether an awareness of issues in component-orientation mean a more effective use of

them. The role did not, however, have any contribution to strategic direction or have any direct

control over the specific approaches chosen by the directors or in the management of any of the

development projects. In this role, the effect of component-orientation was assessed through

direct observation backed up with documentary evidence and interview.

6.3.3 Analysis approach

The analytical approach was similar to that of the DOLMEN case study (see section 5.2.4) - it

centring on explanation building and the development of theories in the adoption and use of

component-orientation. Evidence types were also similar to those of DOLMEN:

• Participant observation - in a role of analyst/developer for in-house systems, hands-on

experience with the use of component technologies could be obtained. Additionally, liaison

with the product development team leader provided the opportunity to informally discuss

issues related to the development technologies.

• Direct observation - evidence was collected in a similar way as participant observation,

which generally came from project management and strategic issues, or from aspects of

development in which participation was not possible.

Page 155

The Use of Components in the Network Management Domain

" Interview with project personnel - in person, via email, and also through telephone

conversation.

• Documeatation - while no formal deliverable documents were specified in the Neiscient

case, several types of documentation were available

• Internal working papers

• Meeting notes

" Project email

Examples of evidence used in the analysis of this case study are included in appendix C.

6.3.4 Case Study Review

1. The Netscient Software Development Process - reviewing the Netscient software

development process, a point of reference when assessing the effect component technologies

had upon software development in the project.

2. The Netscient Soft^vare Platform - defining the mix of software technologies used within

Netscient as their platform for software development. This is a useful point o f reference in

understanding the case outcomes.

3. Case Study Analysis - identifying issues arising from the development o f software within

Netscient, focussing upon in-house systems, and analysing the issues identified.

Consideration is made to possible causes for each issue based upon case study evidence, and

also consideration of the issues against case propositions.

4. Case Study Results - developing the issues identified from the development review against

case study propositions. The results in this case also consider unexpected outcomes that have

emerged from analysis of the use of component technologies in this case.

Page 156

The Use of Components in the Network Management Domain

6.4 The Netscient Software Development Process

In general, the Nelscient development process was less rigid than that o f DOLMEN (see section

5.3). In considering the development process, two aspects are the most important:

• Design standards: Discussion of organisational structure emphasised the distributed nature

of Netscient development. Activities often progressed in parallel, so that developers, or

developers and contractors, were working from the same designs on different aspects of an

application or on different applications. Therefore, as in DOLMEN, design standards and

application interfaces were central to specify object models, etc., that could be clearly

understood by different developers. For object and component models, the Universal

Modelling Language (UML) [58] was used. At this early stage, the only application interfaces

were for the communication of personality details between in-house and product applications.

X M L Document Type Definitions (DTDs) provided a straightforward method of specifying

them.

• Ongoing review: Throughout design and development, review and iteration were effective in

ensuring that everyone was still working toward the same goals, and requirement definitions

were being met. Directors' experience of the domain was extremely useful as they could act

as reviewers with a good understanding of what the user would expect. In the event that a .

review phase resulted in alterations to design or interfaces, design updates were

communicated to all personnel for review and integration into the development process.

Figure 6-2 illustrates the development process:

Page 157

The Use of Components in the Network Management Domain

Domain modelling

Core requirement def.

Initial framework
design

I
Additional requirement def.

Initial component
design

Select third party
products

Inter application interface definition

Product development In house development

Design

Develop &
integrate

Review

Develop &
integrate

Review

Test Test

Release Integrate

Major version review

Figure 6-2 - The Netscient Software Development Process

Most of the activities in Figure 6-2 have been discussed already:

• Domain modelling: See section 6.4.1

Page 158

The Use of Components in the Network Management Domain

• Core requirements definition: Basically two major tasks. Firstly, defining requirements

from the net\vork planning and design business process - to be implemented in Netscient's

object framework - and secondly, defining requirements for personality administration - to be

implemented as an in-house system

• Additional requirements definition: These were summarised in Figure 6-4.

• Initial framework design: Production of an initial object hierarchy to encapsulate core

business activities.

o Initial component design: Production of component diagrams for the definition of in-house

components

• Select third party products: Determine which third party products will meet additional

requirements

• Inter-application interface definition: Define information interfaces between personality

systems and product software

• Product development: The process of developing software product applications..

• In-house development: The process of developing the personality management

infrastructure (see section 6.4.1.3).

Page 159

The Use of Components in the Network Management Domain

• Design: As overall design impacts on both in-house and product software, the design phase

spans both processes.

• Develop and integrate: The development of domain components (either object framework or

personality component classes), followed by applications incorporating them along with

third-party components.

• Review: At set points in the development (completion of class definitions, implementation of

core functionality, database interfacing, etc.) reviews assessed the course of the development

and determined whether any modification to design and direction were necessary.

• Testing: Standard testing to assess functionality against requirements. Test findings

sometimes resulted in a feedback to the development activity.

• Release/integrate: In the case of product software, a version release was carried out

following full testing. For the in-house personality system, integration into work practices

followed testing.

• Major version review: Following release and integration, major reviews took place to assess

next version functionality, lessons learned from the previous version release, additional

requirements, etc. These then fed back to the domain model, restarting the whole

development process.

Page 160

The Use of Components in the Network Management Domain

6.4.1 Netscient Domain Modelling

Netscienl adopied the domain-oriented approach for product sofhvare and in-house applications.

The following discusses the method used by the organisation in identifying their domain and

defining domain objects.

6.4.1.1 Core Requirement Analysis

The start of the domain modelling process was to consider the nature of the domain in which the

company exists - namely network planning and design. The requirements analysis must identify

core business processes, and the objects required to perform the necessary transformations in

those processes. Such modelling requires a high degree of understanding of the domain, and it is

significant that the directors of Netscient had more the thirty years relevant experience between

them.

6,4.1.1.1 Process Analysis

The greatest pressure for communication network providers is meeting customer requirements for

greater capacity, better quality of service or more connections. In order to meet these needs,

managers must be able to assess the feasibility of a change on the network, plan how it can be

carried out, and then implement it. The network may be highly distributed geographically, made

up of numerous sub-networks comprising different equipment and management interfaces any

change many affect a large and heterogeneous set of equipment. Therefore it is essential all

changes are thoroughly considered and effectively planned before execution.

In the deployment of new networks, the problem for managers is much the same - how best to

design the network to get maximum efficiency out of the equipment while fulfilling customer

Page 161

The Use of Components in the Network Management Domain

requirements for connections and capacity. Again, careful planning and design (and perhaps

simulation) are required to make the implementation phase as straightforward as possible.

6.4.1.1.2 Process Definition

The core business process for network managers is transforming customer requirements into

network changes. There are three primary activities within this process:

• Planning: Formulating a long term view, anticipating the state of the network 6 to 12 months

ahead of detailed design, based on current network growth, customer requirements, etc.

• Design / scheduling: Transforming high level requirements from the long-term view into the

appropriate network infrastructure. Mapping high level requirements to specific equipment

interconnections, and determining optimum routes, etc. for such connections. Design should

also determine the order in which the implementation will take place - when dealing with live

networks, it is not possible to take the whole network down for several hours while engineers

implement network changes.

• Deployment/delivery: Network implementation and support wi l l make changes based on

scheduling information.

Another important activity, namely control and administration, drives the continual process

iteration. The live network is analysed for performance, traffic profiles, capacity, etc., and this

information is fed back into planning, where estimates of greatest loads, optimum routes, etc. help

determine the future composition of the network.

Page 162

The Use of Components in the Network Management Domain

The cyclical nature of network management core process is illustrated in Figure 6-3, taken from

Netscienl's website (http://www.netscieni.com).

COIMTROL DESfGN

D E L I V E

Figure 6-3 - The Core Network Planning and Design Process

m

6.4.1.1.3 Additional Functional Requirements

Alongside core processes for network management, additional functionality is required i

network management applications. These areas were identified as:

• Geographical Information Systems (GIS): By their nature many networks are distributed

over large geographical areas. Therefore, the most effective way of visualising current and

future designs is through the overlaying of network plans onto geographical maps - the sort

of functionality provided by GIS applications.

Page 163

The Use of Components in the Network Management Domain

• Scheduling / report generation: The means to convert a network plan into a project and

within that project to identify tasks within the overall schedule. Additionally, functionality is

needed to manage customer orders and map them onto projects. Finally, there is a

requirement to extract information from the planning and design system into clear, well-

presented reports.

• Graphing / diagramming: Scheduling implies a requirement for workflow diagrams, project

management charts, etc., In addition, diagramming functionality is also important for the

visualisation of the network, by means of structured diagrams, etc.

6.4.1.2 System Object Analysis

Following process identification and market analysis, the domain model was developed to

identify the objects within the system that are transformed and affected by the information

throughout the business process.

To take a simple example, a customer of a cable company places a request to have a connection

to their house. A member of sales staff takes the customer request and generates an order to

introduce it into the system - the order formally defines the customer request. The order is then

put into the management system. The manager determines whether a new physical connection is

required and i f so, where on the switch this connection can be made (card, port, etc.). Once

planned, the system generates scheduling information for the project, identifying jobs that wi l l

need to be carried out in order to implement the change.

Even from this simple example, four sets of objects can be identified:

• Net^vork equipment: Switches, nodes, cards, etc.

Page 164

The Use of Components in the Net\K'ork Management Domain

• NetAvork connections: Trunks, circuits, virtual circuits, etc.

• Project objects: Projects, orders and jobs.

• Human interfaces: Customers, sales staff, managers, etc.

Of these object groups, all but the last fall inside the system. The human interfaces determine the

system boundary as they act on the system, but exist outside of it. These are not modelled as part

of the system, but are users of the applications developed within the Netscient domain.

6.4.1.3 In-house Requirements

Domain analysis was also undertaken for in-house functions, which would affect Netscient's own

ability to provide effective software solutions. The main focus of this work was the definition and

administration of network equipment personalities.

The concept of neUvork personalities is a novel aspect of the approach used by Netscient in

producing vendor-independent software systems. When considering the behaviour of a given

piece of network equipment (for example a switch), while the base behaviour is always much the

same (it comprises shelves which hold cards that provide the switch's ftinctionality, power

supply, means of connection, etc.,) there are also vendor specific aspects to each piece of

equipment. These can be as simple as what sorts of cards are allowed in a shelf or more complex,

such as software versions between compatible cards. It is to accommodate these differences that

the majority of network management systems are vendor specific.

The view taken by Netscient is that most of what can be done with planning and design systems is

generic - the manager assesses connections between switches, tests the feasibility of introducing

a new connection to a switch, moves connections, determines optimum routes, etc. Therefore, i f it

were possible to lake account of vendor specific characteristics outside the core applications, the

Page 165

The Use of Components in the Network Management Domain

potential for reuse would be greatly increased. The necessary representation of a piece of

equipment (or a connection or a project object) is referred to as an equipment personality.

Therefore, any customer, from any customer group, can use the company's software to model

their network knowing that vendor specific limitations and behaviour would be handled via

network personalities, supplied by Netscient to match their particular equipment. I f a customer

introduces new equipment, Netscient's support services can provide personalities for the new

equipment that "plugs in" to the installed planning and design systems.

In-house requirements centred around the definition, storage and distribution of these equipment

personalities. There was also a need for a flexible common interface between personalities and

product software, such that new personalities could be dynamically added to the planning systems

without having to release new system versions.

6.4.1.4 Definition of Domain Functionality

Figure 6-4 illustrates the functionality required in the Netscient domain. It shows core network

planning and design functionality, together with the various additional areas of functionality

which were described above.

Page 166

The Use of Components in the Network Management Domain

generation)

Scheduling

Equipment
I personalities

Network design and
planning -i

Business processes
\

Objects

Diagramming

Information
modeling /
Interfacing

Database
I interfacing

Figure 6-4 - Definition of Netscient Domain Functionality

6.5 The Netscient Software Platform

As with the DOLMEN project, component technologies were seen as an enabling technology.

However, Netscient did not use components in all of its sofhvare development. It was noted very

early in requirements definition that component technology was still a relatively unstable area -

new standards and products were continually emerging and the major component vendors'

primary aim seemed to be arguing why their approach was better than that of their competitors.

Moreover, it was felt that component approaches brought a level of complexity that could not be

justified for some aspects of development.

The main area in which component techniques were used are:

Page 167

The Use of Components in the Network Management Domain

• In-house systems: Described in more detail in section 6,6.1, the in-house systems were used

to address the administrative problems of managing vendor equipment in a generic way.

However, as the development only affected internal processes, it was also used as an area to

assess the use of component technologies without impacting upon development schedules.

• Interfacing with third party functionality: Domain modelling had identified a number of

different areas of functionality required to enable the most effective planning and design

solutions. As an SME it was considered far more appropriate to concentrate their own

development efforts on encapsulating their core domain and buy in components that provide

functionality for auxiliary domains.

• Product customisation: A service intended to be offered by Netscient additionally to its

software products is the development of customer specific solutions, further integrating

Nelscient applications into the overall customer network management structure (for example,

directly interfacing planning systems to management systems in order to automate some

management functions). Component standards provide common interfaces between systems

and, therefore, a component-oriented approach was considered appropriate for this area. Note

that as product customisation is a feature that Netscient plans to introduce as a service in the

future, it does not feature in the current Netscient Sofhvare Platform (see below).

The remaining aspects of system were defined using other, more mature technologies - primarily

object-oriented techniques. Thus, for example, the internal representation of core equipment

makes use of an object framework rather than component classes.

Page 168

The Use of Components in the Network Management Domain

The resultant Netscient Software Platform accordingly features component technologies, object

frameworks and information interfaces (see description below):

Layer 3

Product applications In house applications

COM DLL/EXE

Personality extraction

Personality Integration

a>
XML Integration

Diagramming

GIS

Visual BasicA/BA

Object frameworks -
MFC
Domain specific

XML Type Definitions

Layer 2

Layer 1

• C O M
OLE DB

OLE Automation

MTS

Figure 6-5 - The Netscient Software Platform

As with DOLMEN, the platform relates to the reference model for component platforms (

section 8.2). However, it is also divided into three technology areas:

see

• Object frameworks: Object frameworks use object-oriented techniques to encapsulate the

functionality of a given domain into an object hierarchy, from which application specific

behaviour can then be inherited.

Page 169

The Use of Components in the Network Management Domain

• Component technologies: Those aspects of the software architecture based around

component standards and services.

• XML technologies: Used to pass information (equipment personalities) between in-house

and product software in a standard way, enabling information extracted from in-house

administrative applications to be dynamically loaded into product software. This aspect is

discussed in far greater detail in section 6.6.3.2.

Some salient points concerning the various levels of the architecture are as follows:

• Standards:

• Component technologies

DCOM: As all developed sofhvare is for Windows platforms, DCOM was adopted

as the core component technology.

• Information interfaces

XML: Information interfaces required a standard for the structuring of information.

While database formats (e.g. storing as an Access or Oracle database) would have

been possible, this would place a reliance on the use of a RDBMS for distributing

personality information. While this is entirely feasible, it would add unwanted

complexity to the applications. A more elegant approach is provided by X M L [164].

Using XML, an application needs only incorporate a parser to be able to handle

Page 170

The Use of Components in the Nehvork Management Domain

Structured information, regardless of the underlying network technology and the

location of the data.

• Ser\'ices:

• Component technologies^

MTS: Currently, MTS is used in-house to manage the communication bet\veen

administrative clients and the database backend that holds the personality information

(see section 6.6.1). This serves to demonstrate and prove functionality without having

to impact upon software products. I f this test goes well, Netscient expect to use MTS

as the vehicle to develop more distributed Internet based products.

OLE Automation: The exploitation of third party products is another area in which

component technologies are used. OLE automation is currently used to interface

Netscient products with Seagate Crystal Reports, in order to add reporting

functionality to the applications.

O L E Database: OLE DB is a service based on COM to provide uniform interfaces

to diverse information sources (for example, email, groupware, RDBMS, object

databases). The concept is similar to ODBC in which storage technology vendors

develop their own interface implementations to enable a client to access each storage

medium. Currently OLE DB is used to interface Nelscient applications to RDBMS

A discussion of the COM technologies used in this section can be found in [36]

Page 171

The Use of Components in the Network Management Domain

backends. In the longer term, using OLE DB should result in less effort in integrating

other information resources.

Netscient Components:

• Object frameworks

Netscient framework: The objects that encapsulate the Netscient domain (see

section 6.4.1) in C++.

Microsoft Foundation Classes (MFC): The standard Microsoft C++ library for

developing Windows applications [83]

• Component technologies

CIS: CIS functionality is achieved through the use of an ActiveX control developed

by GeoConcept (see www.geoconcept.com) who also provide the associated

geographic database.

Diagramming: Another third party component - Laselle Technologies AddFlow

ActiveX control (http://www.laselle.com') - enables diagramming functionality to be

incorporated into Netscient applications.

Database access: As a lot of RDBMS vendors do not yet support OLE-DB, it was

necessary to incorporate some ODBC data access into the architecture to enable

Page 172

The Use of Components in the Network Management Domain

"traditional" database interfacing. Microsoft's ActiveX Data Objects library is used

to this purpose.

X M L integration: Product software needs X M L parsing functionality to handle

structured inter application information. The Microsoft Internet Explorer 4 X M L

parser provided this.

Personality administration: Locally written to interface with the equipment

personality database backend (see section 6.6.1), and also obtain information

regarding personality types, etc.

Personality extraction: The Netscient software provides the functionality to retrieve

personality information and recast it in X M L format.

• Information interfaces

Netscient Type Deflnitions: The type definitions define the information interfaces

by specifying types and type structures for the generated X M L files (see section 6.6.1

for more detail).

• Clients: make varying demands on the sofhvare infrastructure:

Soft>vare products: End-user products exploit the full power of the sofhvare architectures.

In-house clients: These are currently restricted to providing user interfaces for personality

administration and extraction (see section 6.6.1) and do not use the object frameworks.

Page 173

The Use of Components in the Network Management Domain

6.6 Case Study Analysis

As an examination of an aspect of development that used component technologies the en house

personality management system is considered. This was also the area in which the researcher had

the most participative involvement, and therefore the greatest potential to assess lite effect of

component technologies first hand.

6.6.1 In-house Personality Management

Figure 6-6 illustrates the use of components within the Netscient organisation, by detailing the

application structure for in-house, personality administration.

Informalion
interfaces

Personality Personality
extraction admin

Extract

Storage

User tier

Business tier

Data tier

Figure 6-6 - Netscient In-house Application Structure

6.6.1.1 System Overview

The software is organised as a simple three-tier structure. The role of each tier is as follows:

Page 174

The Use of Components in the Network Management Domain

User tier: There are currently two clients, one which enables the user to browse and add to

the personality store, and one to extract from the store and generate X M L files. Figure 6-7

and Figure 6-8 provide a screenshot of each client.

The browser client provides functionality to browse all equipment types, edit existing entries

and add new ones. This is implemented as a simple interface to the entry and storage

component classes in order to obtain information about equipment types from the

components and pass modified or new information to them.

The extraction client provides a list of each equipment type, so that a user can make

selections to create an equipment profile (a customised collection of equipment mapping to a

customer's specific requirements) and generate the required XML. Note from Figure 6-6 that

the extractor client makes use of a custom GUI component. This implements an equipment

type listbox, interfacing with the entry and storage component classes to obtain a list of all

equipment entries of a given type.

Page 175

The Use of Components in the Network Management Domain

^ . Browse Nodes

TNode information:
Vendoi [TeBabs

Subtype [HDT

Description

Vefrion ^

Compatible
shefves

TeOabsRSU RiSU/1
TeIlabsRSURiSU/2
TeBabsRSU RSU/1
TeDabsRSU RSU/2
TeOabs RSU RSU/8
TeDabsRSU RBU CATV
TeOdt»2301BaSPR-B
TeIlab$2301 CBA
TeflabsMirtHRST
StralacomAXIS

ii Rrsl Previous Next

1
Last

• i D i x

AddNew

Update

Paiameteis

Quit

Figure 6-7 - Netscient Personality Browser

PioliIeEjtliacler - TctlPiolilc
File Tools tieJp

B-TestProJao

t Orders
; |-Pioiects
I ' StAtusCroup

I "-Currendes
^Cannectiom
Q-Eqiipment

'-cards
.-- Sites

Nodes
r-SheJves
- Ports
r Logical ports
-Catwiets

- Properties
• Parameters

Tdlatn RSU RSU/1
TelIabsRSUniSU/2
TeOalM HSU nsU/1
TeBaittRSU RSU/2

Xeflatw RSU RSU/8
TeHabjRSURiSUCATV
reBabs2301BaSPR-6
TeOabs 2301 CBA
TeDabsMnflST
StratacomA^S
SbatacomBF^
Stratacom IGX
Delete Record THj

Figure 6-8 - Netscient Personality Extractor

Page 176

The Use of Components in the Network Management Domain

• Business tier: The business tier defines a number of interfaces for equipment browsing and

entr>', a single interface for equipment extraction, and a storage class discussed below. Each

interface set is actually implemented by two classes, supporting different levels of equipment

detail (a base and detailed level). As each class provides an implementation of the same

interface, clients can dynamically resolve the level of detail required and dynamically switch

between them.

The storage class provides an ADT to hold basic equipment details (id and description) which

can be passed between classes and clients so that different clients can access a given

equipment definition via its id.

• Data tier: The database backend provides structured storage for the personality information.

It is implemented as a simple relational structure within an RDBMS.

6.6.1.2 System Design

The design of the administrative structure served two purposes: firstly, to ease implementation of

the system, and second, more importantly, to communicate the design to product developers in a

structured fashion. This was essential for the information interfaces, which are the primary

overlap between in-house and product software, but it was also important to demonstrate the

overall system structure.

The design used simple, but powerful, techniques to express the structure:

• Functional interface deflnition: It was important to resolve what functionality each

component class would offer before implementation. This ensured version control on each

interface would keep binary compatibility. This means that while the method of

Page 177

The Use of Components in the Network Management Domain

implementation can vary, the function definition (as defined in the interface - function name,

in parameters, out parameters, return types) has to remain constant. Therefore, modification

to the component implementation will not result in clients having to alter their code. Using

the COM standard and Visual Basic, a developer can force a component to maintain binary

compatibility. One possibility is to define the interfaces in Microsoft Interface Definition

Language (M I D L) - the standard interface definition language for COM classes. However, it

is easier to define them as simple classes in Visual Basic. The development environment then

generates a type library containing the MIDL versions, which is used by the component

standard for the component calls.

• Information interface definition: The information interfaces were defined using X M L

Document Type Definitions (DTDs). While recent development in X M L enable type

definitions to be written using XML, the parser used in the product software did not have this

capability. Using DTDs, rather than the newer XAfL-Schema, provided the most portable way

of defining the information interfaces. These information interfaces were a central element of

the design, impacting on:

1. Database design: The tables were defined to map to each defined element and its

attributes.

2. Extraction component implementation: Used to ensure the generated X M L was

compliant with the information interface.

3. Product soft^varc implementation: Used to ensure that the X M L interpreted within

the product software is consistent with the information interface.

Page 178

The Use of Components in the Network Management Domain

• Component class definition: Finally, class definition and relationships were defined in the

Universal Modelling Language (UML). This simple component and object model was found

to provide a good foundation for both component and client development.

6.6.1.3 System Implementation

System implementation was from the bottom tier up. Firstly, the database was implemented using

Microsoft Access initially for speed in assessing system functionality. It will move onto a more

powerful RDBMS as the system evolves. Because the business components all use ADO and

ODBC to interface with the database, the change of engine should be straightforward.

AH components in the business tier were developed using Visual Basic - this was considered the

most productive environment with which to work. As there were no obvious performance

bottlenecks in the business tier, little would have been gained from using C++, for example,

rather than VB.

The user tier was also implemented in Visual Basic, for the similar reasons. It essentially provides

thin clients for the system. There is little processing functionality within the clients, so the

primary development task was GUI implementation. Visual Basic provided the most productive

environment for this type of work.

6.6.2 Development Review

Overall, the Netscient case study provides a far more positive outcome than DOLMEN:

development schedules were met, and functionally complete software was delivered. The primary

goal of the first year of development for Netscient was to release version one of product software

along with in-house processes to manage equipment profiling, and that goal has been met. Given

Page 179

The Use of Components in the Network Management Domain

that similar development technologies were used in both cases it is interesting to assess where

there were differences in approach which led to such very different outcomes.

In following review we look at things from a development perspective, and then from a project

view. These different pictures help in assessing the impact of component technologies.

6.6.2.1 Development issues

Important aspects of the development process included:

• domain- rather than product-orientated approach

The domain centric approach certainly meant that initial development was a lot longer than

would have been the case with a different approach. A lot of time was spent modelling the

Netscient domain and encapsulating it in the form of an object framework. However, this

time was recouped in application development, which was very productive once the

framework was in place.

» use of the different technologies to realise the various system elements.

Three technologies were used within Netscient: an object framework for domain

encapsulation, a component library to implement in-house personality management, and

X M L for inter-system communication. Clients for the in-house system and product software

were developed as standard applications, incorporating either the object framework or in-

house components. Third party components were also used in product software to provide

additional functionality. As the two main elements (the object framework and personality

components) had no dependencies, their distinct natures had no adverse effect upon

development. The important issues which emerged from this mixing of technologies - the use

of hybrid architectures and the differentiation between information and functional interfaces -

are discussed in more detail in sections 6.6.3.3 and 6.6.3.2;

Page 180

The Use of Components in the Network Management Domain

choice of an object framework for core domain analysis

The encapsulation of core domain functionality into an object framework is judged successful

at the present time. The framework has been successfully incorporated in two software

products, and is currently being used in several others. However, an issue that may arise as

the complexity of the framework grows is the amount of redundant code that is being

included in applications. At present, the entire source has to be compiled into each

application due to the monolithic nature of the implementation. One potential solution could

be to break the framework into a number of sub-frameworks. Alternatively, component

wrappers might be provided for different aspects of functionality. Objects are coded in C-H-,

either approach would be possible without much modification to the source;

choice of cotnponent techniques for third party reuse

This approach to incorporating non-domain specific functionality into Netscient product

software has proved very successful. Firstly, it enables in-house developers to focus on

domain specific functionality, but additionally it demonstrates how components can be used

within a development process without dominating it. Using components, the developer avoids

one of the problems with reusing objects - having to learn the object interfaces before reuse

is possible. For components, while there is still a requirement to familiarise oneself with the

actual interface definition, binding to the object, making object calls, etc. is all carried out in

a standard, component-oriented way. To conclude, in Netscient, the use of components to

encapsulate whole aspects of additional functionality has greatly enhanced development

productivity;

choice of component techniques for in-house system

Page 181

The Use of Components in the Network Management Domain

This has also been fruitful. The components are beginning to be reused in administration

applications. However, the choice of component techniques in this area was also used as a

technology assessment. As mentioned in section 6.4, it was felt that the immediate use of

components through product software development would be unwise, as component

technologies were relatively immature. By firstly using components in-house, the capabilities

of a component approach could be assessed and project personnel could gain skills in

component development. The experiment has proved positive and as a result of this

assessment, component technologies are going to be increasingly used in subsequent software

releases;

• appropriate desig?i techniques

As indicated above, interface definition, UML models, and X M L specification were all used

to good effect.

6.6.2.2 The Use of a Domain Oriented Approach

As discussed and demonstrated in section 6.4.1, the domain-oriented approach does not consider

the products that the organisation wish to develop, but the domain in which they, and their

products, will exist. By modelling the processes and entities with their domain, Netscient have

provided themselves with the means to develop numerous, domain centred products from the

same functional core. Currently, domain encapsulation is demonstrated in two packages. Firstly,

an object framework, which encapsulates all of the entities that comprise a typical ne^vork

management system and the functionality therein. This framework is currently in use in two

products. It is also being extended and incorporated into future releases and also new products.

The company believe that it provides a solid foundation on which to base new applications.

Page 182

The Use of Components in the Network Management Domain

The second domain package encapsulates the in-house processing necessary to support

Netscient's application suite through the management of neUvork profiling and equipment

personalities. Two clients currently exist, exploiting different aspects of the component library.

The potential also exists to either use the component library in its current form for new clients

(for example, remote Internet-based administration), or to extend the library to incorporate new

functionality. Again, domain encapsulation has provided the foundation on which to build new

applications without the need to alter the infrastructure.

are When comparing this to the DOLMEN encapsulation approach (the conclusions from which

discussed in section 5.6), we have to conclude that the Netscient approach offers far more reuse

potential than DOLMEN. While it is certainly true that other factors inhibit reuse of DOLMEN

software - in particular, too many dependencies between components drastically reduce their

utility. Nonetheless, the conclusion from comparison of the approaches used in the case studies is

that domain encapsulation wil l generally lead to more reusable components that product

encapsulation.

6.6.3 Issues Arising from the Use of Component Technologies

As mentioned in section 6.3, it was anticipated that other aspects of the use of component

technologies would come to light as the project unfolded. The following are considered the most

important of these.

6.6.3.1 Components in an SME

reuse Netscient demonstrates the effective of use of component standards to facilitate third party

the project demonstrates this through the reuse of extra-domain functionality developed by other

software vendors. This has enabled a vertical domain sofhvare house to focus their own

development on domain functionality buying in supporting functionality from third party sources.

Page 183

The Use of Components in the Nenvork Management Domain

Of course, third party reuse is possible with other technologies (for example, object frameworks)

- but it is particularly convenient with components.

The ability of domain specialists to focus on their own area, buying in supporting functionalit>' is

critical for an SME. SME software houses can focus their development effort upon domain

specific knowledge and, through developing using component standards, expose their domain

knowledge to other SMEs. A scenario could be envisaged where a number of SMEs, each with

specialised domain knowledge, might share their experience via component techniques to achieve

far more than possible by a single company. Such virtual corporations might hope to compete

on equal terms with the large software houses that have far greater resources at their disposal.

6.6.3.2 Information Interfaces

Perhaps one of the most important findings in the Netscient case comes from the separation of

functionality and information when considering distribution. Component technologies can

certainly provide the functionality to allow the passing of complex structured information across

distributed systems. Indeed in the DOLMEN case, all information was passed as parameters in

component calls. Even stream communication - communicating information over a session

connection - was dealt with using a CORBA server. However, this resulted in a problem - the

complexity of interface definitions was greatly increased to accommodate the information being

passed between components. As the information was passed using CORBA object calls, the

information had to be passed as parameters within a function call. At best the communication

would require a single structured data type, at worst numerous structures, all with structures

nested within them. An example of this is given in Figure 6-9, where a structure is embedded in a

sequence, which is then embedded in another structure. The use of such a construct within a 0++

implementation can easily lead to problems. Memory management within a component system is

already complex due to the distributed nature. When complex types are involved, bugs are all loo

Page 184

The Use of Components in the Network Management Domain

easily introduced. A single error within a structure can cause crashes that are very difficult to

diagnose.

s t r u c t FlowDescriptor {
Flowld f l o w i d ;
StatusSB f l o w s t a t u s ;
SFEPId flow;

) ;

typedef sequence <riowDescriptor>
F l o w L i s t ;

// stream binding (SB) d e s c r i p t i o n

s t r u c t SBDescriptor {
SBId i d ;
F l o w L i s t flows;
StatusSB s b s t a t u s ;
t _ U s e r I d p a r t y _ a ;
t ^ U s e r l d p a r t y _ b ;

) ;

Figure 6-9 - Typical complex information structures in DOLMEN

was This lesson was heeded in the Netscient case, and information passed between components

restricted to the minimum necessary. A policy of separation of functional interfaces and

information interfaces was developed. The two kinds of interface are best engineered using

different development technologies. A functional interface - enabling access to functionality

provided by a component - is best implemented using component technologies. This is one of the

strengths of component approaches.

An information interface - enabling clients and components to exchange structured data - is less

well served by component technologies. Problems occur when the complexity and volume of

information reach such a level that the communication overhead gets too high. In the Netscient

Page 185

The Use of Components in the Network Management Domain

project the use of X M L was found to be more appropriate. XML was devised to exchange

structured information in the context of the Internet. However, it is equally applicable to

structured data in any distributed system. As TCP/IP continues to establish itself as the de-facto

networking standard, the use of Internet technologies can usefully complement component

technologies as both use the same network standard. Moreover, the dominant X M L parsers (IE4

and 1E5 parsers) are themselves implemented as COM object models, and are therefore easily

employed in a component based environment.

Thus, experience in the Netscient project suggests that whereas CORBA and DOOM are sold on

their support for the development of distributed systems, the use of those facilities may lead to

unnecessarily complex and inefficient implementation. Some aspects of distributed development

are well served by a component approach, but others are better handled by different technologies.

6.6.3.3 Hybrid Platforms and Mixing Development Technologies

The Netscient project also featured a more general mixing of development technologies to form a

hybrid platform (see section 6.5). As mentioned earlier in this chapter, it is usually considered

that the adoption of component technologies into a development process has to wholly embrace

component technologies in order that the use of such techniques is successful. The Netscient

case, which achieved all of its first year goals while mixing development technologies, shows that

this need not be the case. The Netscient platform mixes Internet, object and component

technologies effectively, achieving a great deal of software reuse through the exploitation of these

techniques. While there are obvious system boundaries between the primary object and

component implementations (i.e. one was for product sofhvare and one was for in-house

software), all three technologies are employed successfully in product software.

Page 186

The Use of Components in the Network Management Domain

In DOLMEN, there was almost an insistence by management that ever>ahing had to be

component-based, even when it was apparent that some parts of the DOLMEN architecture would

only reside in one place and be used in one context. In these cases (for example, the Stream

Interface [160] was simply a function library performing functions similar to a TCP/IP stack (i.e.

send, receive, etc.)) it may well have been better to implement as standard objects within the

components. As component implementation languages tend to be object-oriented (e.g. C-H-, Java)

this would have been straightforward.

The most evident conclusion to draw from this finding is that it provides some argument against

the commonly held industry belief that component technologies have to be wholly embraced in

order to be effective (for example, see [28]). However, the implications could be more

widespread. As stated above, the majority of literature relating to component-orientation

encourages a replacement of existing technologies with these new techniques. When considered

in the context of the two case studies, the wholehearted component-oriented approach suffered far

more problems than the hybrid approach. What is evident is that while component-orientation

does provide some extremely useful techniques for software development (for example, standards

for reuse, the distribution of functionality), it is not a panacea. Using it to its strengths, and using

other techniques for other areas, provides a more effective development approach.

6.7 Consideration of Findings Against Case Propositions

6.7.1 Proposition 1

Adopting and using component technologies in soft>vare development processes will

affect process activities

The case also positively identifies a number of issues that the use of component technologies

introduces to development activities. Early on in the development process, requirements analysis

Page 187

The Use of Components in the Network Management Domain

was greatly affected - the identification of functionality outside of the core domain resulted in the

need to identify third party components that could be used, rather than considering

implementation of functionality with which organisational developers have no expertise.

We also have evidence of the effect component technologies in both design and implementation

activities. The use of interface definition and modelling within the Netscient case provided useful

tools to the developers of separate, but interacting, software elements. The success of these

techniques could possibly be attributed to stricter version control and greater developer

communication in the event of design changed. Implementation activities, in particular

distributed development, was aided a great deal by both the component standard and services,

which enabled a swift and scalable implementation.

As with the first case study, consideration should be made to how much contribution was made

by the choice of development approach to the issues that arose from using component

technologies. The more positive results in the use of technologies within development activities

are undoubtedly as a result, in part, to the more iterative nature of development adopted by

Netscient, as it gave the opportunity for risk assessment and introduce contingencies before

problems occurred.

Therefore, we should consider development from this proposition carefully - we can state that

component technologies do have an effect upon development activities, but we must also state

that the nature of the development process also contributed to the relative success of the use of

components.

Page 188

The Use of Components in the Network Management Domain

6.7.2 Proposition 2

An awareness of the issues involved in the adoption and use of component

technologies can ease their integration

With this proposition, we have a far more positive outcome than thai of the DOLMEN project, as

a result o f having a more informed decision making process when considering component

technologies. Additionally, directors in Netscient were more cautious in their use of component

technologies, trialing them initially on non-essential developments before considering their use

with product development. The trialing also enabled developers to gain hands-on experience with

the technologies before their use in product development. This is an important lesson to draw

from the Netscient case - technology trialing can enable the development of experience away

from essential sofbvare development within an organisation.

Therefore, this proposition can be confirmed, and should be developed to consider how this

awareness can be promoted.

6.7.3 Proposition 3

A domain-oriented approach to component development provides a greater degree

of reuse than a product-oriented view.

A domain oriented approach in Netscient has certainly promoted effective reuse with both in-

house and product systems. In comparison to the product centric view of DOLMEN, the level of

reuse at Netscient is far higher. In developing the proposition, however, we should consider the

role component-orientation played in this successful approach to reuse. Domain orientation has

been demonstrated effectively with other development technologies (a very obvious example

would be the Microsoft Foundation Classes object framework for Windows development [83]).

Page 189

The Use of Components in the Network Management Domain

Therefore we cannot consider component-orientation to be the driving force behind a successful

domain oriented reuse strategy. However, the case study does demonstrate that the machinery

required for software reuse can be achieved, due to the mechanism they provided, by component-

orientation (such as binary level reuse and common interfacing via the component standard).

6.7.4 Proposition 4

Similar issues with component-orientation occur when using different technologies

from the same field (i.e. Microsoft based, rather than OMG based technologies)

This proposition guides the testing of the theory that the problems of DOLMEN directly relate to

component technologies. While the level of complexity within the DOLMEN project was high,

this was related to the nature of management interfaces rather than the implementation of the

software component themselves. Within Netscient the management interfaces were simpler (i.e.

interfacing to databases rather than telecommunications hardware) but the level of

implementation was similar. Therefore, the first impression through the comparison of

experiences within each case study could be that CORBA technologies do provide more problems

than COM technologies. However, we should consider whether this issue was directly related to

the selection of technologies (i.e. a COM- rather than CORBA-based approach), or whether it

reflects greater knowledge in the use of component-orientation and a more flexible development

approach. I f we hypothesise that the choice of component technologies does affect the experience

of use component technologies, the context of each case study does not allow this to be tested.

Therefore, outcomes based upon this proposition promote further examination into the use of the

different types of component technology. While the case study demonstrate a better experience

using Microsoft technologies, there are too many variables within the case for this outcome to be

considered generalisable at this stage. Additionally, this proposition does encourage consideration

Page 190

The Use of Components in the Network Management Domain

of component technologies within other vertical domains would be useful in considering whether

they reflect the nature of an industry or whether they have universal potential.

6.7.5 Proposition 5

Issues in the DOLMEN case study can be avoided through greater knowledge of the

technologies involved

This proposition complements the second, related to a need for awareness of the issues involved

in the use of component technologies. In a direct comparison between case studies, we can

consider the greater knowledge that Netscient had before using components aided in the

avoidance of the sorts of problems experienced in DOLMEN. Additionally, the all embracing use

of components by DOLMEN was not used in Netscient, due, in part, to a greater knowledge of

the strengths and weaknesses in the use of components.

Caution is needed in interpreting these outcomes from the proposition, since the nature and lack

of control variables within a case study approach means that it is difficult to conclusively

demonstrate fact from case study findings. However, it is worth saying that the issues that

occurred in these cases cow/i/happen in the use of component technologies. The question is how

best to communicate this, and how to separate the important, common issues from the more

idiosyncratic events which resulted from extraneous factors.

6.8 Summary

The Netscient case was interesting as a vehicle for testing of some theories developed from the

DOLMEN study, but also in its own right. It reinforced some findings regarding the use of

component technologies, which will enable an more effective focus of issues when considering

the communication of experience (see chapter 8). It also confirmed that using components for a

Page 191

The Use of Components in the Network Management Domain

domain-orientated approach to software reuse is likely to offer greater reuse potential than a

product-oriented approach used in DOLMEN.

Third party reuse has been demonstrated as a very powerful technique to exploit the knowledge

and developer resource of other organisations. By choosing a component-oriented approach to the

reuse, the time, and developer effort, required to integrate the third party functionality into

organisational system can be greatly reduced, when compared to object libraries, due to the

standard nature of component-oriented reuse. As the third party components were implemented to

the same standard as that being used by Netscient developers, they could be confident that

standard interfacing techniques would enable swift integration.

However, the most interesting results have come in unexpected areas, where perceived wisdom

regarding the use of component technologies was ignored. The separation of functionality and

information is one example. Using different technologies, the strengths of each could be

exploited. More generally, Netscient showed that the mixing of component technologies with

other techniques need not impair their use in any way and may be decidedly beneficial.

Consideration o f these outcomes against case propositions has provided validation of some of the

outcomes of DOLMEN, resulting in some theories being developed and some being rejected as

peculiar to the DOLMEN project. Additionally, further theories in the adoption and use of

component technologies have been arisen from this case study.

In order to direct the thrust of communication o f issues regarding component technologies

further, there is a need to draw from the experience of others. While the case studies provide

depth of analysis, they lack strong external validity. Therefore, a practitioner survey was carried

Page 192

The Use of Components in the Network Management Domain

out further determine the generalisability of issues from the case studies. The following chapter

describes this survey and its results.

Page 193

Practitioner Survey

In the last of the chapters related directly to data collection within the research programme, the

need for, and (he development and execution of a practitioner survey is discussed. Literature

review has highlighted the problems with generalisation from case study findings and this is

addressed through the surveying of others with experience in the use of component technologies.

The survey development was guided by theories developed from case study findings, thereby

allowing for a validation of certain theories and the focusing of resuU development upon common

issues.

7, Practitioner Survey

As a final strand of investigation within the research project, a practitioner survey was carried out

based upon case study propositions. Comprehensive generalisability could not be determined

from two separate case studies, and it was important to determine the frequency of problems in

the adoption and use of component-orientation technologies. Anecdotal evidence from industry

peers and some emerging literature both suggested that the case studies were certainly not

exceptional within the field. For example, Herbsleb and Grinler [67] detailed a case study within

Lucent Technologies where comparable experiences occurred in a project similar to DOLMEN.

While the focus of their case study was the need for communication within distributed

development teams, we could identify a number of issues regarding integration, assumption and

lack of technology trialing that go some way to confirming at least some commonality of

experience in the use of component-orientation.

The survey was, therefore, conducted in order to obtain quantifiable opinion on case study results

and 10 assess the normality of experiences within the studies. By focussing upon practitioners the

results assessment could be very much realistic to the development industry. The objectives of the

survey were as follows:

1. To assess practitioner experience in the learning, adoption and use of component technologies

Page 194

Practitioner Survey

2. To compare practitioner experience with case study propositions and findings

3. To aid in determining the generalisability of case study findings

4. To identify areas of weakness in the adoption and use of component technologies

7.1 Survey Approach

It was decided that rather than use a traditional survey approach (for example, postal or

telephone), an online, World-Wide Web (WWW) based survey would be used. The survey was

held on a WWW server and presented to potential respondents as an online form that they could

carry out via a browser and submitting the results electronically. An online approach was

considered beneficial for a number of reasons:

• A format that appealed to the target audience - it was considered a suitable format for a

survey as the target audience would be technical and IT focussed.

• Storage of results - Results from each survey were stored in a text file on the server that

could be easily imported into data analysis software once the survey was complete

• Reducing time to contact and respond - in comparison to a postal survey, the time taken to

send out the survey and obtain responses could be reduced using an online method.

The initial survey was piloted in order to refine its construction and improve its readability.

Researchers with component experience from the Network Research Group, University of

Plymouth were used for this pilot. Potential respondents were contacted via email with a message

briefly explaining the aims of the survey and including the URL of the survey. This enabled the

recipient to go straight from reading the mail message to carrying out the survey. With the

combined email/online approach, the respondent can carry out the survey without leaving their

PC as soon as they receive the email.

Page 195

Practitioner Survey

It was important to obtain responses from practitioners actively involved in the development of

component-based systems. As potential respondents were also to be contacted via email, a list of

email addresses was required. The most effective information resource in addressing both of these

requirements in obtaining responses was to go to mailing list archives in the area. Mailing lists

are used in developer communities to share ideas and ask questions related to the list topic. List

providers tend to hold archives of previous questions and answers for reference, generally

organised in either month or year sections. Therefore, by going to list archives, email addresses

could be obtained from developers who were active and experienced in the area of component-

based development. In general, questions and discussion from the chosen archives (CORBA-

DEV and DCOM@discuss.microsoft.com) asked in the mailing lists were also complex in nature

- therefore demonstrating a good level of knowledge in the area. Additionally, two personnel

from each of the case studies completed the survey to see whether responses from project

developers would reflect case outcomes.

7.2 Survey Construction

The survey is included in appendix D. The mix of questions was intended to explore issues

arising in the case studies, without guiding the respondent in their answers. It was divided into the

following sections:

• About you: General information about the respondent (name, job title and organisation). It

was stressed that this information was optional - while the information from the survey was

not particularly sensitive, some of the target audience may wish to be anonymous.

• Regarding your use of component technologies: To establish the respondent's experience

using component based techniques. This was done for a number of reasons:

• To establish the degree of experience in using component based techniques in practice

Page 196

Practitioner Survey

• To determine the types o f component based techniques used (in order to establish an

differences in CORBA and COM based experience - reflecting case study two*s first

proposition).

• To determine on what types of projects component based techniques were used, and in

what vertical domains (to determine the spread of use)

• Regarding your learning of component technologies: In order to determine how the

respondent learned about component techniques to gauge the approaches used and how best

to integrate results of this research project with those approaches. Also, to bring to light any

particular problems with learning about component techniques.

• Regarding component technologies and the soft^vare development process: Focusing

more upon findings from the case studies - it is important to determine whether case study

findings reflected the norm or phenomena within component-based projects. Initial questions

determine the respondents own experiences integrating and using component techniques

within their own development processes, while the final set of questions all relate to specific

aspects or activities within the development process.

7.2.1 Question Construction

In general, the survey consisted of closed questions^. This meant that analysis could be carried out

swiftly as answers could be grouped by response. It was only when further elaboration was

required based on a closed response that some open questions were used. In these cases, analysis

of responses attempted to group answers into specific classification for result presentation. For

initial sections of the questionnaire, most responses required only a yes/no response. While a

A closed question will present a set of responses (e.g. "Yes/No", a list of responses), rather than an open question

where the answer is left entirely up to the respondent |138J.

Page 197

Practitioner Survey

richer response could have been obtained using bipolar questions for the entire survey, it was

decided only to use these in the final section for two reasons. Firstly, the start of the survey aimed

to establish key concepts, a level of agreement was not required until questioning related directly

to case study theories. Secondly, there was a conscious attempt to make the questionnaire as

straightfonvard to complete as possible. Presentation of a large number of complex questions

could make it appear more imposing and therefore adversely affect the response rate.

However, the final section of the survey ("Regarding component technologies and the software

development process") did take the form of bipolar agree/disagree questions, where a statement is

presented and the respondent is asked to what degree they agreed or disagreed with the statement.

Traditionally, these questions can suffer due to acquiescence [138], where a respondent tends to

agree with the statement. It was important with this set of questions to get opinion based upon

practitioner experience, not simple agreement, so the problem of acquiescence was addressed in

two ways. Firstly, rather than simple agree/disagree responses, they were divided into a range o f

responses (from "strongly agree" through "no opinion" to "strongly disagree"). Secondly, the

statements were not always stated as positive, and were not always stated to reflect case study

findings (for example "project management is unaffected by component technologies" and

"component development makes system deployment easier"). Based upon survey responses, it

would seem that these attempts to avoid "guiding" the respondent to reflect case study findings

were successful.

7.3 Survey Response

Two hundred practitioners were emailed during March 2000. Forty-three responses were

obtained, providing a response rate of 22%. It was also interesting to note comments received

from respondents regarding the survey. Respondents were given the opportunity to include their

email address in the submitted survey i f they were interested in the survey results. Forty-two out

Page 198

Practitioner Survey

of the forty-three respondents stated an interest in results. Emails received from some respondents

also reiterated their interest in the results and their interest in the research programme in general.

Additionally, a few people who felt that they did not have the technical experience to compi

the survey also expressed an interest in the results. A list of respondents is included in append

E.

ete

IX

Results analysis is presented on two levels - firstly, basic responses to individual questions are

considered. However, with some questions, basic analysis is extended to include trends based

upon other responses, cross question analysis and consideration against case study propositions

and fmdings.

7.4 S u r v e y Analysis

7.4.1 Regarding your u s e of component technologies - establ ishing

respondent type

1. How long have you been using component-oriented techniques?

Statistic Value(years)
Min 0
Max 13
Mean 3.93
Std. Dev. 2.91

Table 7-1 - Statistics regarding experience with component technologies

Table 7-1 provides the basic statistics for experience in the use of component technologies. As

expected with an emerging technology, the mean value is quite low. Additionally, a few

responses of or 8 or more years distorts the distribution - the entire distribution has a skew value

of 1.28. Table 7-2, below, provides statistical information for the distribution with high values

Page 199

Practitioner Survey

(8+ years) removed. Overall, 5 values were removed from the distribution. The skew value

greatly reduced (0.24), providing a far more realistic mean for the majority response.

IS

Statistic Value(years)
Min 0
Max 7
Mean 3.11
Std. Dev. 1.72

Table 7-2 - Statistics regarding experience with component technologies (high values

removed)

2. How long have you been developing software in general?

Statistic Value(years)
Min 2
Max 34
Mean 11.1
Std. Dev. 6.82

Table 7-3 - Statistics regarding general development experience

There is a good spread o f experience among respondents, ranging from relative newcomers to

extremely experienced developers. Once again, a few very high values distort the distribution,

resulting in a skew value of 1.72. Their removal (4 values of 20+ years), detailed in Table 7-4,

results in a far less skewed (0.18) distribution providing more meaningful majority response

statistics.

Statistic Value(years)
Min 2
Max 18
Mean 9.5
Std. Dev. 4.1

Table 7-4 - Statistics regarding general development experience (high values removed)

Page 200

Practitioner Survey

3. What component standards have you used?

S2
Q.
O
0)
I

35

30

25

20

15

10

5

CORBA COM DOOM COM+

Technologies used
EJB Other

Figure 7-1 - Component technologies used

A fairly predictable result, with COM, CORBA and DCOM being dominant. The number of

respondents with COM+ experience is somewhat surprising, particularly as its availability at the

time of the survey was still quite limited. The inclusion of the DCOM mailing list, which

generally addresses highly complex aspects of component based development, involved

practitioners very much on the leading edge of the field.

Responses for "other" included two other Java technologies - Remote Method Invocation and

basic JavaBeans, and also XPCOM (an open source COM implementation provided by the

Mozilla organisation - see http://www.mozilla.org/projects/xpcom/). Another was a set of library

components based upon, but distinct to the CORBA component model. A final "other" response -

EnlireX - could be regarded as a DCOM response, as it provides an implementation of the

standard on UNIX platforms.

Page 201

Practitioner Survey

Another aspect of response, important when considering trends and cross-question analysis, is the

distinction between CORBA and COM developers. An outcome from the case studies was that

there may be differences in experience depending on whether CORBA- or COM-related

technologies are used. For this analysis, COM, DCOM and COM+ were considered COM related

technologies and CORBA & EJB were considered CORBA related technologies. Figure 7-2

illustrates the experience of respondents. The "neither" response came from the respondent who

had used the "CORBA-like" model.

15

17 a COM Related
• CORBA Related
• Both
• Neither

10

Figure 7-2 - COM & CORBA related experience among respondents

One significant outcome from this grouping emerged when considering the experience

classification of the respondents by type (see section 7.4.1.1). In the case of "COM" and "Both"

respondents, there was a spread over all three-experience classifications. For CORBA

respondents, there were no respondents who were "very experienced" and 50% were

intermediate. Also, it was interesting to note that "COM" respondents had the highest proportion

of "very experienced".

Page 202

Practitioner Survey

! O

! ™

70

60

50

40

30

20

10

0

• Both
• COM
• CORBA

Intemiediate Experienced Very experienced

Figure 7-3 - Experience classification of respondents

4. What component tools and technologies have you used?

There was a wide range of responses to this question. While the majority of COM related

technologies centred on Microsoft's Visual Studio, there was great variety with CORBA.

Visibroker and lona being the most popular tool vendors, with approximately 40% of CORBA

experienced respondents having used them.

5. On how many projects have you used component-oriented techniques?

Statistic Value(number of projects)
Min 1
Max 30

Mean 8.42
Std. Dev 9.26

Table 7-5 - Statistics regarding number of projects where component technologies have

been used

Page 203

Practitioner Survey

There is again a good variety of responses, and considerable experience of component

technologies among respondents. Here again, there were nvo high values that skewed the

distribution (1.72), and these were removed to get more realistic statistical values. These are

provided in Table 7-6:

Statistic Value(number of projects)
Min
Max

Mean
Std. Dev

1
15

6.3478
3.9267

Table 7-6 - Statistics regarding number of projects where component technologies have

been used (high values removed)

6. On what scale of project have you used component-oriented techniques?

i2 c
0) •a c o
Q.

o
z

25 -

20

15

10

5

0

n5>

Figure 7-4 - Use of components In different project types

Figure 7-4 details the spread of types of project that have used component-based techniques. The

high value in investigation would suggest that many projects that assessed technologies before

using them on a larger scale. Only a single respondent has used component technologies solely on

Page 204

Practitioner Survey

mvestigative projects. A surprising, but encouraging, number of respondents had used

components on large-scale (product, enterprise or pan-enterprise) projects. This is very useful as

it demonstrates real world use of component technologies.

7. In what vertical domains did these projects reside?

Figure 7-5 illustrates responses to this question. Unsurprisingly, IT services and

telecommunications are the dominant industries in which components are being used.

Additionally, the high level o f responses in the financial sector reflects the high level of resource

available in that sector for investment in new technologies. "Other" sectors described in the

responses include experimental/research, open source operating systems, CAD and

pharmaceutical. The varied response across many different vertical sectors would suggest the

inherent generic applicability of components. As both case studies focused upon the

networking/communications domain, to obtain responses from other domains is useful in further

examining the generalisability of case study findings.

i2 c
c o
Q.
(0

o

20
18
16
14
12
10
8
6
4

^ 1 JOL r-» r-i

Figure 7-5 - Use of component In vertical sectors

Page 205

Practitioner Survey

means

7.4.1.1 Model Respondent and experience classification

Based upon average and majority responses, a model respondent can be defined (note that

are based upon modified values with high values removed to reduce skew). The model

respondent is detailed in Table 7-7, and provides a benchmark with which to compare individual

responses - this is developed when considering responses from Netscient and DOLMEN project

workers in section 7.5.

Experience with component
technologies

3.1 years

General development experience 9.5 years

Component standards used CORBA. COM & DCOM

No. of projects using component
technologies

6

Types of projects Investigation/assessment & product

Vertical domains IT services, telecommunications & banking

Table 7-7 - Model respondent

The definition of an experience classification for each respondent enabled the development of

another comparative measure. Based upon answers from the first section of the questionnaire,

respondents had an "experience rating" assigned. This provided a value to use in cross-question

analysis with the other sections of the questionnaire. The experience rating defined a respondent

as intermediate, experienced or very experienced. Figure 7-6 illustrates the process in determining

an experience rating. As stated in the figure, the weightings assigned to each parameter reflected

the perceived relative important in determining the level of experience a respondent had

specifically with component technologies. Component experience is obviously the most

important value, and has the strongest weighting assigned. Project variety and number of projects

Page 206

Practitioner Survey

both share an equal weighting and are included as they demonstrate a breadth of experience in the

use of components. Development experience is also included as a parameter, although not

strongly weighted, as experience with other development techniques may help in the learning and

use of component technologies (in particular experience of object-orientation). Note that the

intention of the experience rating is to give a simple quantifiable value for use in the evaluation of

future responses - it is not intended to be a precise measure.

i Determining an Experience Rating"

Determine a "Project Variety" value

! A value based upon the types of project on which the respondent has worked, with
weighted values assigned to each type of project - these values reflected the
complexity of each project type.

Investigation = /
Small in-house = 2
Intra organisation = 3

i Product = 4
Enterprise = 4
Pan-enterprise = 5

Project variety = sum of the above

Determiiting an "Experience Value"
Based upon weighted summation of component experience, development
experience, project variety and the number of projects worked on. Weightings were
based upon the perceived importance of each value in determining experience with
component technologies.

Experience value = (component experience * 0.5) + (development experience *
0.2) + (project variety * 0.4) + (no. projects * 0.4)

Determine "Experience Rating"

intermediate 0 < - experience value < = 6
Experienced 6< experience value <= 15
Very experienced experience value < 15

Figure 7-6 - Determining an experience rating

Figure 7-7 provides the distribution of intermediate, experienced and very experienced

respondents.

Page 207

Practitioner Survey

• Intermediate

• Experienced

• Very experienced

Figure 7-7 - Distribution of expenence ratings among respondents

7.4.2 R e g a r d i n g y o u r l ea rn ing o f c o m p o n e n t t e c h n o l o g i e s - e s t a b l i s h i n g

l ea rn ing a p p r o a c h e s and c o m m o n p r o b l e m s

S. How did you learn about component technologies?

Figure 7-8 illustrates this result and demonstrates an expected outcome. Mainstream development

still considers component technologies very new, and reflects this in the lack of training available

in the area. Therefore, practitioners wishing to leam about such techniques have to use literature

and practical projects. "Other" responses were discovery/invention (from a respondent who has

been involved in component-based development for a long time), in-house mentoring, research

and self-stud\.

Page 208

Practitioner Survey

B
c
0>

T3
C
o
a «
0)

o
z

40

35

30

25

20

15

10 -

5

Industry
course

Academic
course

Reading Practical
project

Other

Type of training

Figure 7-8 - Learning about component technologies

9. Did you experience problems when learning about component technologies?

This result is significant in considering the development of component-orientation into a

mainstream technology. As a contributing factor in the adoption of a technology, both diffusion

of innovations [133] and organisational learning [139] theories comment upon the complexity of

a technology being a barrier to adoption. I f the perception of component technologies is that they

are difficult to learn and therefore complex, their adoption wil l be significantly hampered. In

terms of the results of this survey, almost seventy percent of respondents experienced some

difficulties in leaming about component-orientation.

Page 209

Practitioner Survey

31%

Yes
No

by /'

Figure 7-9 - Problems when learning about component technologies

10. I f , yes, were these problems related to (concepts, technologies, differences
between the two, other)

Concepts Technolog ies Di f ferences

be tween the
two

Other

Figure 7-10 - Problems when learning component technologies

Page2\0

Practitioner Survey

Developing from the identification of problems with the learning of component technologies, the

main problems seem to relate to the technologies themselves and also the reconciliation between

concepts and technologies. The problems of this reconciliation have been emphasised in both the

case studies (for example, [129] is a deliverable from the DOLMEN project related to the

development of the CORBA platform) and also industry in general [106, 132]. The response from

the questionnaire further highlights this issue. The majority of elaboration provided by

respondents also focuses around this area, with comments such as:

"Concepts are not well-understood in practice and thus, are not well supported. "

"The tools and technologies, especially early on, were not mature enough to support
the concepts."

"Incompatible vocabulary among various technologies; introduction of unnecessary
vocabulary... "

l l seems that while the concepts regarding component-orientation are reasonably clear, they have

proved less easy to put into practice.

"Other" responses focussed upon problems with documentation, in particular for COM

technologies. Comments included:

"reasonably steep learning curve for COM. The documentation seems obfuscated. "

"Most difficulty with product documentation of their Component Model. "

"COM is poorly documented - the whole thing's a mess!"

These comments are interesting, especially in consideration of the responses to the following

question, which was about the literature available.

PagelW

Practitioner Survey

11. Did you find the literature about eomponent technologies useful when learnini-
ahout I t ^

14%

• Yes
• No

86^-

Figure 7-11 - Was the literature useful when learning

There seems to be some discrepancy between this and the previous question - while a lot of

respondents had difficulties learning about component-orientation, in particular with respect to

technologies and the differences between concepts and technologies, the vast majority of

respondents did find literature related to their learning useful. There is little change in distribution

when considering only those respondents who used "reading" as an element of their learning

process. This would suggest that problems were not related to the documentation itself, but

perhaps differences between what the literature said and what the technology would do.

However, comments from those who did not find the literature useful also reflect the problems

between concepts and technologies:

"Too vendor specific, not grounded in reality "

PagelU

Practitioner Surx ey-

"Inconsistent Some techniques were shown in MFC. others in ATI. Sometimes
took Jays to discover the correct inter/ace for the job. CORBA documentation
virtually non-existent! "

"Early on, nothing was available. Much literature is still too vague to adequately
explain the concepts and get programmers using them effectively. I've seen a lot of
messes result from this training issue. "

"There is very little simple, practical documentation. Either it is highly technical or
relatively simpli.stic with no practical applications "

"Too fragmented. Not easy to get my hands on a single source.

12. Would it have been useful to be able to draw f r o m the experience of others that
had used component technologies?

Yes

Figure 7-12 - Would it be useful to learn from the experience of others

Another significant result as it was a unanimous response - the experience of others is valuable i

the learning process. However, this response does pose the question:

"How can experience be represented in order to communicate it to learners? "

111

This question is considered in greater detail in the following chapter.

Page2\3

Practitioner Survey

13. How long did it take before you felt comfortable with component technologies?

Statistic Value (months)
Min
Max
Mean
Std. Dev.

1
36

11.28571
9.278601

Table 7-8 - Time taken to be comfortable with component technologies

It is interesting to note that a lot of respondents who felt they were comfortable with component

technologies in a short time were of "Intermediate" experience. This might suggest that they have

not yet tried to exploit the most advanced features. On the other hand, a lot of experienced and

very experienced developers had a period before they felt comfortable with the technologies that

lasted beyond the mean response value. Of the four respondents who stated that they were still

not fully comfortable with component techniques, one was intermediate, two were experienced

and one was very experienced.

Page2\A

Practitioner Survey

7.4.3 R e g a r d i n g c o m p o n e n t t e c h n o l o g i e s a n d the s o f t w a r e d e v e l o p m e n t

p r o c e s s

14. Was the inteuration o f component-orientation into your development proeess
s t ra ightforward?

26-:

Yes
No

Figure 7-13 - Was integration straightfonA/ard?

While the majority of responses stated that integration was a straightforward process, the number

of negative responses is significant. Certainly, it demonstrates that the experiences of the

DOLMEN project are not entirely isolated. Further examination of response based upon both

experience and types of component technology used highlight no additional patterns in

integration (i.e. there was not a specific subset of respondents who experienced problems).

However, an interesting comparison is to consider whether those who had problems with

integration also experienced problems learning about component techniques.

Page 215

Practitioner Surxey

Many respondents highlighted problems with the technologies themselves. Additionally,

comments were made relating to organisational and personnel issues. Problems also listed

included issues with interface definition version control and lack of consideration of the

development process.

15. Do you he l i tM that component-orientation makes software development:
(harder, easier, neither easier or harder)

28%

13%

\ • Easier
• Harder

V 5 9 % • Neither easy or harder V 5 9 %

Figure 7-14 - Component-orientation makes software [easier, harder, neither easier or

harder]?

The differences in response between the difficulties in learning but the lack of problems with

integration and use developed from the responses in questions 14 & 15 seem to indicate that the

main difficulties in the adoption and use of component technologies lie in the initial learning of

concepts. However, it is still worth noting that while the majority of respondents felt that

component-orientation made software development "easier", the combined total of "harder" or

"neither easier or harder" comes to 41%.

Page2\6

Practitioner Survey

A comparison of responses against both technologies used and experience classification did not

highlight any significant correlation.

Comments as to why component-orientation makes software development hard focused upon the

complexity of implementation and the level o f knowledge required to exploit a component

standard and services - this relates directly to the issues in being a component producer, rather

than consumer.

Another comment related to complexity in the organisation - all personnel involved in the

software development effort have to be familiar with terminology and technologies in order that

component-orientation is used effectively. We return to the issue of common language in the

learning of a technique with our examination of learning approaches in chapter 8.

One particularly interesting opinion related to a perceived strength of component-orientation -

black box reuse. The comment followed on from criticism of the lack of component

documentation - in the case of source code reuse, this is not a major problem as the code itself

can be used to determine dynamic behaviour. However, in the case of components, the interface

and possibly some type information [64] are the only things that are available to the re-user in the

absence of supporting documentation. The comment highlighted the value of source code in

debugging, and the fact that third party reuse of component means that this is not available to the

developer.

Respondents who stated that component-orientation made software development easier focussed

primarily on the power of reuse that is afforded through binary objects. Many comments stated

PagelM

Practitioner Survey

that component-orientation meant that software development focused more on assembly and less

on the coding of new functionality. Interfaces were also discussed as a means of making software

development easier due to the contract between client and server - a client developer can work to

the specified interface without having the implementation with them. A final positive aspect is

seen in the network transparency that distributed standards provide, as this saves a good deal of

low level programming in the development of bespoke network interfaces.

However, a few comments were more equivocal, retuming to the importance of the leaming

process in gaining the benefits of component-orientation.

Comments from respondents who stated "neither easier or harder" seemed to provide a balance

between the two views, with comments such as "easier to define, harder to implement", and

"easier for reuse but harder to leam".

Page2\%

Practitioner Survey

! () . (. ivcn the choice, would you use component-oriented techniques uhen
developing software (always, sometimes, occasionally, never).

• Always

• Sometimes
• Never

Figure 7-15 - Willingness to use component technologies

No trends emerge from comparison of responses against use of technology or level of experience.

However, when comparing component use against opinion whether the technologies make

software development harder or easier, there is an interesting result (see Figure 7-16).

Page2\9

Practitioner Survey

90

80

70

60

S, 50

5S 40

30

20

10

0

• Easier
• Harder
• Neither

Always Sometimes

Component use
Never

Figure 7-16 - Comparison of component use with opinion regarding component difficulty

As the figure shows, among those respondents who considered that component-orientation makes

software development harder, 60% would still use component techniques all of the time for future

development projects. It also shows that those respondents who thought that component-

orientation made software development neither easier or harder were most cautious with its use,

the vast majority saying that would use component-orientation only sometimes.

This response can be compared with the Netscient case study, where components were used to the

strength in the distribution and sharing of functionality, but for other aspects of in house systems,

ihey were not considered appropriate and other techniques were used.

17. Component-orientation is easily adopted into the development process

This question was posed because the DOLMEN case study seemed to demonstrate that adopting

component-orientation into a development process was problematic. While the Netscient case

Page 220

Practitioner Survey

suffered far fewer problems, we could not test whether this was due to "lessons learned" from the

DOLMEN case or a more normal experience in the adoption of component technologies. The

results from the survey would suggest that the DOLMEN case experience was not the norm and

that component technologies can be adopted in a straightfonvard manner. This leads to asking the

question:

Why did adoption go so badly wrong in DOLMEN?

Firstly, the DOLMEN development process itself comes into question. It has been criticised in the

case study analysis as being too rigid and linear to be able to both review progress and also adapt

to unexpected occurrences that could arise from the use of new technologies. Additionally, little

provision was made for the familiarisation or leaming of the new technologies before

commencing development. The case studies have demonstrated the complexity of component

technologies and the importance of being aware of both their strengths and weaknesses before

using them in development projects. Survey responses that have highlighted the problems with

the learning of component technologies also contribute to the argument for having good

knowledge of them before commencing development.

ere It should also be noted that while the majority response for this question has been positive, th

is still a fair proportion of respondents who do not believe that component technologies are easily

adopted into the development process. Therefore, while the DOLMEN experiences are certainly

in the minority, they are by no means unique.

Page 221

Practitioner Surve\'

27% 54%

• Agree

• No opinion

• Disagree

• Strongly disagree

• No response

Figure 7-17 - Component technologies can be easily adopted

While the survey provided little evidence of any difference due to the type of component

technology used, an interesting outcome can be seen from comparing responses in this question to

those people who had problems integrating the technologies themselves. Figure 7-18 illustrates

the difference in response between the respondents who did experience problems, and those who

did not. The most surprising thing about this comparison is that almost exactly the same

proportions in each group provided similar opinions. One would expect those who experienced

problems integrating component technologies into their own development processes to feel that

they are not easy to adopt. However, the results presented here do not confirm this expectation.

Page 222

Practitioner Survey

O
O)

60

50 50

40 40

30 • 30 •

20 20

10 -
n .

10 -
n . i - n 41IU

• Overall

• "Yes"

• "No"

Response

Figure 7-18 - Ease of adoption vs. integration problems

18. Component technologies can be adopted independently of wider organisational
consideration

There is a more or less equal split in the responses here between those who agreed or strongly

agreed with the statement, and those who disagreed or strongly disagreed. I f the survey

respondents reflected case study findings, we would expect those who agreed with the question to

have experienced problems with adoption and use (as occurred in the DOLMEN project).

Conversely, while those who disagreed had a far more straightforward adoption (as occurred in

the Nelscient project). The survey responses showed no such patterns.

Page 223

Practitioner Survey

10% ^
5% 10%

35%

30%

• Strongly Agree
• Agree
• No opinion

• Disagree
• Strongly disagree
• No response

10%

Figure 7-19 - Component technologies can be adopted independent of organisation

issues

However, a comparison of opinion against experience of component technologies (see Figure

7-20) does indicate a difference in opinion based upon technology type. A large number of COM-

only respondents thought that component techniques could be used independent of wider issues,

while respondents who had used both technologies or just CORBA felt, in the majority, that they

could not. This may be because CORBA still tends to be seen as an extension of the base

platform on which to develop software. While some platforms are starting to incorporate CORBA

(such as GNU's GNOME project - http://www.gnome.org), in the vast majority of cases, a

CORBA implementation and third party CORBA objects have to bought in.

The Windows platform provides COM as a standard subset and any Windows system will contain

countless COM components - it is implicit in Windows development. Additionally, the ease in

which a developer can become a component consumer on the Windows platform - through the

use of tools such as Visual Basic, means that it does not seem like such an undertaking to start

using COM technologies. The perception is that CORBA requires real understanding and

Page 224

Practitioner Survey

commument whereas a project can exploit a few existing COM components can be done with

linle extra effort.

60

50

40

30

20

10

m

Response

• Overall
• Both
• COM
• C O R B A

Figure 7-20 - Comparing agreement with question 18 against use of technology

19. Project management is unaffected by component technologies

Figure 7-21 demonstrates a very strong response disagreeing with the statement presented in the

questionnaire. It confirms one of the issues arising from the DOLMEN case, where component

orientation was considered to be an implementation technology that was not of concern for the

project management. This response greatly strengthens the opinion that this approach to the use

of component technologies was wrong, and that project managers need to be aware of the

in their use as much as developers.

issues

Page 225

Practitioner Survey

5% 7%

36%

• Strongly agree
• Agree
• No opinion

• Disagree

• Strongly disagree
• No response

Figure 7-21 - Project management is unaffected by component technologies

20. Component-orientation makes software reuse easy

One of the underlying philosophies of component orientation, ever since its theoretic introduction

by Mclllroy [100] is that it makes software reuse possible on an industrial scale. Industry

literature (for example [37], [33]) is especially keen on the reuse aspect of component orientation.

The case studies had experienced mixed results in generating large-scale reuse: DOLMEN had

not been at all successful in developing reusable components, whereas Netscient was. The

analysis of the case studies suggested that it was perhaps not the technologies themselves, but

their use in DOLMEN that hampered reusability. The response from respondents in the survey

(see Figure 7-22) would also indicate that the DOLMEN experience was not typical - the majority

of respondents either agreed or agreed strongly with the statement.

Page 226

Practitioner Survey

33%

39%

• Strongly agree
• Agree
• No opinion
• Disagree

• Strongly disagree

Figure 7-22 - Component onentation makes software reuse easy

However, a significant proportion (28% in total) that either disagreed or strongly disagreed. This

promoted an examination of responses against the type of technologies used (as DOLMEN had

been a CORBA oriented project, compared to Netscient's COM approach). As can be seen from

Figure 7-23 - CORBA only respondents accounted for most of the negative responses, while

COM only respondents were largely positive.

Pa^e 227

Practitioner Survey

O
(0

5?

60

50

40

30

20

10

0

L_f— ' tdim

• Overall
• Both
• COM

• CORBA

Figure 7-23 - Ease of reuse compared to technology experience

21 . Component-orientation should focus upon software reuse

This question was intended to complement the previous one, asking whether component

orientation should be reuse focused. Figure 7-24 shows another positive response, with the

majority of respondents of the opinion that component orientation should be reuse focused.

Page 228

Practitioner Survey

7%
5%

17%

12̂

14%

4 5 -

• Strongly agree
• Agree
• No opinion
• Disagree
• Strongly disagree
• No response

Figure 7-24 - Component orientation should focus on software reuse

In this case, there was no great difference between respondents based upon technology

experience. Perhaps this suggests that while CORBA developers find that software reuse is

difficult to achieve, it should still be one of the drivers in using component technologies.

22. losing component technologies is s t ra ightfonvard

This question relates to the complexity of component technologies, in the view of practitioners

who have used them. This, in turn, impacts upon their adoption into the mainstream (as discussed

elsewhere in this thesis - see section 3.2). The interest arises in comparison with some of the

more positive responses. For example, the answers to questions 17 (Adoption is straightforward)

and 20 (reuse is easy). One might assume that those positive outcomes signal the ease of use o f

component technologies. However, the fact that the majority response was to the contrar>

suggests once again that it is only when developers are fully aware of issues in the use of

technologies that they become truly easy to use.

Page 229

Practitioner Survey

2% 5% 7%

26^ :

43%

• Strongly agree
• Agree
• No opinion
• Disagree

• Strongly disagree
• No response

17%

Figure 7-25 - Using Component Technologies is Straightforward

23. A component-oriented approach encourages dtsi^n

The positive response illustrated in Figure 7-26 confirms an unexpected outcome from the

Netscient case. While it was not an explicit part of the investigation, it became apparent, through

both direct and participant observation, that in order to keep track of the mix of component

clients, in house components, third part>' components and external systems, design documentation

was being used to far greater etTect than in previous non-component-oriented projects within the

organisation. As this was an unplanned outcome that, in essence, produced the hypothesis

•'Component-orientation encourages design activities", it was important to test this. It emerged

that 83% either agreed or strongly agreed w ith such a statement.

Pa^e 230

Practitioner Survey

5% 5%

2%

36 ' :

A

Q Strongly agree
• Agree
• No opinion
• Disagree

• No response

Figure 7-26 - Component orientation encourages design

24. Component based development makes system deployment easier

26%

24%

a Strongly agree
• Agree
• No opinion
• Disagree
• Strongly disagree
• No response

21%

Figure 7-27 - Component based development makes system deployment easier

Page 23 I

Practitioner Survey

A comparison of opinion against technology experience (see Figure 7-28) again highlights

significant correlation. It seems that CORBA-only respondents have a majority response agreeing

with the question whereas COM-only developers fmd deployment a more complex task.

However, CORBA only respondents also have a response that is above the overall response in

disagreeing with the statement. Only respondents experienced in both CORBA and COM

development are below the overall response in disagreeing with the statement. It is also

interesting to note that respondents who have used both types of technology have the greatest

response of "no opinion". This suggests that component orientation either has no effect upon

deployment or its complexities and benefits balance each other out. An opinion that might be

thought to follow from this response - that the more experienced developers are the ones who

have seen both good and bad points in deploying component system - is not supported by a

comparison of response against experience.

0)

S5

45

40

35

30

25

20

15

10

5

0

6??

• Overall
• Both
• COM
• CORBA

Figure 7-28 - Ease of deployment against technologies used

Page 232

Practitioner Survey

25. (omponent h;l^c(i (k'> elopment makes s\siem maintenance eaMt i

This final question again tests experience of technology against underlying philosophy (see

section 2.6). Another purported strength of component orientation is that it eases system

maintenance. I heoretically, the use of interfaces, black box and binary reuse means that a

component can be bug-fixed and plugged into a live system without any component clients

needing to be brought down in the maintenance (for example, see [33]). As this issue could not be

tested in either of the case studies (as, in each case, they were only studied until the first version

release of the software), this final question was used simply as a test of practitioner experience. It

would seem, given the positive responses to the question that this aspect of component orientation

is bome out by practitioner experience.

26%

• Strongly agree
• Agree
• No opinion
• Disagree
• Strongly disagree
• No response

55%

Figure 7-29 - Component onentation makes system maintenance easier

Page 233

Practitioner Survey

7.5 Implications of Survey Results on Case Study Findings

7.5,1 Case personnel responses

The following compares personnel responses from both cases against model/majority responses

from the total survey respondents in relation to the fmal section of the questionnaire related to

experience of component technologies' effect on the software development process. In each case

study two respondents were asked to carry out the survey, so their experiences could be measured

directly against the experience of others.

The most surprising aspect of this comparison is the amount of agreement between, in particular,

the DOLMEN respondents but also the Netscient respondents, and the majority response.

Conflicts with the majority responses are highlighted in the table, illustrating the number of

responses in agreement. This comparison goes some way to confirm that the experiences of

personnel in both case studies are similar to the experiences of others within the field. This is

encouraging in determining the external validity of the case studies, as a common criticism of

case study research is the problem of generalisation of results [167].

Page 234

Practitioner Survey

DOLMEN 1 DOLMEN 2 iNetscient 1 |Netscient2 Model
respondent

14: fy^i
Strajghtforw
ard
Integration
15. |Eas/er IHarder
Development
easier or
harder ^

Always

Harder

16. Use
component
technologies

Sometimes Never Sometimes Always

Disagree Strongly Disagree adopted d i s a g r e e

Independent
adoption

Project Disagree Strongly
disagree

Disagree Strongly
disagree management

is unaffected
20. Reuse is

21. Focus
Disagree upon reuse

22. Easy to Disagree

Strongly
agree

Encourage
design
24. Make
deployment
easier

Disagree Disagree Disagree Disagree Strongly
agree

Make Disagree Disagree Strongly
agree

mamtenance
easier

Table 7-9 - Comparison of model respondent against

respondents

DOLMEN and Netscient

Page 235

Practitioner Survey

7.5.2 Comparison of Responses Against C a s e Study Propositions

7.5.2.1.1 General Case Propositions

1. Adopting and using component technologies in softAvare development processes wil l

affect process activities

There are some very positive responses in the survey that strengthen this proposition. In particular

questions related to project management, system design, deployment and maintenance (see

questions 20, 24, 25 and 26 respectively) all resulted in responses that would confirm the effect

the component-orientation has on development activities.

2. An awareness of the issues involved in the adoption and use of component technologies

can ease their integration

The major theme that runs through responses in this survey reflects the fact that learning and

understanding o f component technologies is the issue in using them successfully (in particular,

see discussion regarding questions 16, 17, 18 and 23). Therefore, this proposition has been greatly

strengthened by survey results.

7.5.2.1.2 DOLMEN Case Propositions

3. Component technologies ease the development, integration and deployment of

distributed systems

The distributed aspect of component-based development was not explicitly addressed in the

survey, but positive responses to questions such as 25 and in particular the discussion regarding

questions 16 and 17 highlight the fact that component technologies can be used to address the low

level elements of distributed development. Indeed, one respondent to question 16 explicitly slated

the benefits of using component software rather than having to hand craft network interfaces.

Page 236

Practitioner Survey

4. Uncontrolled adoption and use of component technologies can have a negative affect
upon a development project

Drawing from the central outcome of the survey relating to the need for understanding, the

proposition is demonstrated to have some validity. Undoubtedly, the experiences of the

DOLMEN project are very much in the minority among component practitioners. They are not,

however, unique. This in itself strengthens the issues identified in the DOLMEN case study as

possible outcomes when using component technologies, i f such use i f not carefully considered.

7.5.2.13 Netscient Case Propositions

5. A domain-oriented approach to component development provides a greater degree of

reuse than a product-oriented view.

This proposition was not explicitly addressed in the survey. However, responses to questions

related to software reuse issues through the use of component technologies would suggest that the

level of reuse achieved in the Netscient case is not uncommon. Therefore, it would seem that the

lack of reuse potential shown in the DOLMEN case would once more relate to a lack of

understanding of the component technologies, rather than an inherent problem with them.

6. Similar issues with component-orientation occur when using different technologies from

the same field (i.e. Microsoft based, rather than OMG based technologies)

Several questions have highlighted differences in experience relating to the types of technologies

used by respondents, in particular, questions 19 ("Component technologies can be adopted

independently of wider organisational considerations"), 21 ("Component-orientation makes

software reuse easy") and 25 ("Component based development makes systems deployment

easier"). However, we cannot illustrate any explicit trends throughout the survey (i.e. there is

Page 237

Practitioner Survey

nothing to suggest that CORBA will always result in poor development, whereas COM wi l l

always results in effective development). Therefore, once again, were are drawn back to the issue

of front-loading knowledge when using component-oriented techniques - with an awareness of

the issues and an understanding of the technologies, effective development can be achieved,

regardless of their type.

7. Issues in the DOLMEN case study can be avoided through greater knowledge of the

technologies involved

case
Relating back to the issue discussed in proposition 2» it has certainly been illustrated in the

study that awareness and understanding are the important issues in using component

technologies.

7.6 Chapter summary

In order to address issues regarding the external validity of research findings from the two case

studies in relation to the effect of component-orientation upon software development, a

practitioner survey was carried out. This chapter has reviewed the method used in carrying out the

survey and considered the responses obtained against case study findings and their development.

The survey has highlighted issues in the adoption and use of component technologies that are

particularly problematic and also enabled further examination of case study propositions based

upon the experience of others. This, in turn, allows the determination of those issues that should

drive the development of research results.

The survey highlighted the problematic areas as learning, and understanding of the issues

involved in component-based development. The following chapter examines how these
issues can

Page 238

Practitioner Survey

be addressed and discusses a strategy for development based upon both research findings and also

and examination of relevant literature.

Page 239

Adopting and Using Component Technologies

This diopter proceeds from die assessment of component technologies to consider the most

effective approach in developing results to a form suitable for adopters. An effective approach

should consider adoption theories, the way that an organisation learns and the nature of the

results from the research program/ne. In addressing these issues, an effective strategy for the

transfer of research experience to organisational knowledge about co/nponent technologies is

developed.

8. Adopting and Using Component Technologies

This chapter examines the development of results from the research analysis into a form that can

be used by practitioners wishing to learn from our research findings. It begins by considering the

nature of results from the case studies and survey, and discusses problems in their presentation as

a learning aid. In examining the development of the results, two new research aims are presented.

The remainder of the chapter is divided into two distinct parts. Firstly, the suitability of a

reference model for component platforms is discussed, drawing from literature related to the use

of such models in software engineering. It is argued that the reference model not only enables a

comparison of similar technologies but can also be used to aid in the construction of knowledge

regarding component technologies, exploiting the implementation independent nature o f such

models. The reference model is defined, and its use is demonstrated against existing platforms.

The second part of the chapter concerns the further development of results in order to encapsulate

experience into a learning strategy. Drawing from previous discussion related to organisational

learning, this section examines existing approaches for technology transition and discusses the

suitability of such approaches for our own needs. Pattern approaches are examined in further

detail and reasons for their suitability to our own requirements is discussed.

Page 240

Adopting and Using Component Technologies

The chapter ends by defining a strategy for the sharing of experience in the adoption and use of

component technologies, drawing together both the reference model and patterns approach in

specifying a contextualised pattern language that serves as a learning tool for practitioners.

8.1 Developing Case Study and Survey Results

The results from the case studies and survey provide an assessment of the impact of component

technologies upon software development. However, the aims of the research include a

requirement to provide a tool for practitioners to learn from the findings o f ihis research

programme. Additionally, the survey highlighted the desire of practitioners to learn from the

experience of others within the field. The results from the analysis methods provide a number o f

theories related to the adoption and use of component technologies, and a validation of those

theories. However, the results are not suitable, in their current form, as a learning tool.

In developing them it is important to keep their essence while restructuring them to provide an

effective representation of experience usable by learners - any outcomes should be of use to an

organisation wishing to bring component-orientation into their own development approach.

This raises the issues:

1. how does one communicate experience to a learning organisation?

2. how can the results be best developed to fit into the learning process?

We first examine the role of reference models in communicating concepts. In developing a model

for component platforms, we aim to address a learning need in reconciling concepts to

implementations in component technologies and provide a tool to aid further development o f the

above issues.

Page 24 \

Adopting and Using Component Technologies

8.2 A Reference Model for Component Platforms

8.2.1 Component Platfornf)s

An element of the case studies that enabled the placing of each into context was the definition of

the platform used to develop software. It defined component infrastructure, services used and the

nature of components developed on top of the infrastructure. In the case of Netscient, it also

related other software technologies to provide a definition o f the related technologies used in the

development of software. Additionally, such a platform definition enabled a direct comparison of

the development technologies used in each case, proving an aid to reliability for the cases [166].

The following develops the concept of component platforms in a more generic sense.

8.2.2 A Reference Model for Component Platforms

The value of reference models in software engineering is to provide the means to compare

different systems within a domain. Sommerville [145] identifies this value and discusses the use

of models in both the networking domains and the software development environment domain.

Rine & Nada [131] also discuss the value of reference models in software engineering, defining a

model for software reuse that is used to compare the reuse strategies of a number of

organisations. Well known reference models, such as the OSI seven-layer model for networking

[76] define aspects of the domain. Another reference model that is related more closely to this

research programme is the Reference Model for Open Distributed Processing (RM-ODP [78]).

This model identified a need for co-ordination in the definition of distributed processing,

responding to a rapid growth in the domain and confusion related concepts and implementations.

The model defines common aspects of distributed processing, such as distribution,

interoperability and portability, without relating any aspect to a specific implementation. The

model has been influential in the field, and has been used by, among others, the OMG for the

Page 242

Adopting and Using Component Technologies

CORBA standard. It was also used for initial architectural consideration in the DOLMEN project

(see section 5.1).

Another important feature of reference models is that they provide an implementation

independent view of a specific domain. Our work in the domain of component-orientation has

highlighted problems in the reconciliation of concepts with implementation technologies. This

issue was initially identified in the DOLMEN case study, and amplified through the practitioner

survey. Many responses commented upon problems with definition and vocabulary, and also

relating theory to implementation. In developing the results from the research in this programme,

we aim to provide assistance in the learning and adoption of component technologies. A model

that enables the definition and comparison of component platforms is a valuable tool for the

learner. This opinion is in line with other approaches to technology adoption - the guidelines for

the development of transition packages within the SEI's Transition Enabling Program [57]

recommend the use of reference models within a transition package.

The following expands on a simple model presented in [68] in defining a reference model for

component architectures. Hoffmann's model drew on his own work in the development of

concepts in component-orientation, and aimed to distinguish between essential elements within

component-based development. The model presented a simple distinction between components,

component infrastructure and distribution infrastructure and is illustrated in Figure 8-1. The term

"component platform" is used in preference to "component architecture" partly to distance the

model from the wider research area of software architecture [142], which relates to the structure

and design software system. Also, as the model defines the infrastructure on which systems are

built, the term platform is more suitable. Figure 8-2 illustrates the reference model, which

Page 243

Adopting and Using Component Technologies

mcorporaies greater details into the aspects of a platform, as well as differentiating between

essential and non-essential features.

Components

Component infrastructure

Distribution infrastructure

Figure 8-1 - Original Component Architecture Reference Model taken from [68].

Layer 3

Layer 1

Application Infrastructure
Clienti Client2 Clientn

Component Containers

§ in Component i Scripting
Techniques

Componenta

H Componentr

Component Infrastructure Layer 2

Core functionality Services

Distribution Infrastructure

Figure 8-2- Reference Model of a Component Platfonn

Page 244

Adopting and Using Component Technologies

8.2.2.1 Overview

Layers 1 & 2 are broken inio two parts, namely core functionality and services. The core

functionality o f an infrastructure provides what is required to enable any component construction

and interaction. Component services add value to the functionality, perhaps implementing a

function thai would otherwise need to be created by the developer (for example, securit>',

transaction control, licensing, etc.). It is possible for a platform to be free of these services, but it

would be far harder to develop componentware without them. On the other hand, it may not be

necessary to provide a huge suite of component services to complement the standard.

8.2.2.2 Layer 1 - Distribution Infrastructure

The distribution infrastructure defines the protocols and services required enabling the platform to

provide distribution and network transparency for any system developed on the platform. Core

functionality should define:

• Net^vork protocols: The protocols by which inter-component and client/component

interaction can take place.

• Ma rsh a II ing/un marshal ling: The way in which a component call is packed, transmitted,

received and unpacked across the network.

Additional services enable a more efficient distributed implementation by providing functionality

for core services within distributed applications, such as:

• Security: Providing functionality to ensure secure communication between clients and

components and also between components. Such functionality could include authentication of

calls, non-repudiation, etc., for example, the CORBASecurity service [i 10].

• Distributed naming and location: A central or distributed repository of component names

that enables client and other components to call component functionality without knowing the

component's location on the network.

Page 245

Adopting and Using Component Technologies

8.2.2.3 Layer 2 - Component Infrastaicture

The component infrastructure offers protocols and mechanisms for inter-component interaction,

component structuring, etc. as well as component services (e.g. versioning, licensing, monitoring,

etc.). Core functionality should include:

• Component structuring: Defining the structure of the component (properties, methods,

events, etc.) and the way the component exposes its structure to clients.

• Inter-component interaction: The protocols used in calls from clients to components and

between components.

Component services can be extremely varied, but all aim at making the development of

component based systems more straightforward by implementing common functionality within

such systems. They may include:

• Licensing: Providing some level on control over who can use the component.

" Monitoring: Enabling an external client to monitor a component and respond to component

behaviour (for example in an event based system)

• Scaling: Providing the means to transparently scale the component's use from single to

multiple clients, without the component developer needing to be concerned with such issues

as threading, resource control, etc.

" Persistence: Keep a component instance "alive" when not resident in memory so that

properties of the instance can be recalled at a later time.

• Transaction control: Ensuring atomic transactions to counter the possibility of system

crashes when writing to a database or similar.

The split between distribution infrastructure and component infrastructure is important: a

component system could exist on a standalone machine with no network distribution. JavaBeans

Page 246

Adopting and Using Component Technologies

and COM are examples of component standards providing functionality solely for stand-alone

systems.

8.2.2.4 Layer 3- Application Infrastructure

The application infrastructure provides the immediate aspects of the component system that are

available to the application developer in order to build software systems. It uses the distribution

and component infrastructure as a foundation and develops components and component clients

based upon this infrastructure in order to develop systems. The application infrastructure

comprises of a number of elements:

• Components: Components themselves are the packaged, reusable binary units that

implement a given aspect of functionality. They will be structured in line with the component

infrastructure, exposing functionality via some form of interface, and are held in memory in

some form of component container.

• Interfaces: Interfaces are the means by which a component exposes its functionality to the

outside world. This is defined generically within the reference model, no specific technique is

assumed for achieving this. However, CORBA and DCOM (see below) define component

interfaces using an interface definition language.

• Component containers: Enable the execution of instances o f a component within a

component system by providing an environment in which they can be loading into memory.

Containers can be independent units (for example, a DLL or an ActiveX control), or be part

of an executable process (such as a CORBA server process).

• Component clients: Elements that wil l , in general satisfy user requirements through the

assembly and scripting of components within the infrastructure. Such clients can be part of a

component container itself (for example COM automation servers such as Excel), or be

Page 247

Adopting and Using Component Technologies

e.xiernal to the component infrastructure, accessing component functionality contained, for

example, within DLLs.'**

• Scripting techniques: These techniques enable easy assembly and calling of component, and

also provide basic programming constructs such as loops and conditional statements in order

to add simple custom functionality within a client. A familiar example of a scripting

technique within a component infrastructure is Microsoft's Visual Basic for Applications,

8.2.3 Current Standard Component Platforms

The reference model can be used to compare platforms from the two case studies (see sections 5.4

and 6.5). To further demonstrate its use, the following applies it to two major component

platforms: the OMG Object Management Architecture (OMA) [109] and the Microsoft

Distributed interNet Application Architecture (DNA) [102].

10

l-or further discussion regarding Microson's COM technologies, readers arc referred to |36|

Page 248

Adopting and Using Component Technologies

8.2.3.1 OMG OMA

Layer 3

Layer 2

Layer 1

Application Infrastructure
Clienti Client2 Clientn

Server Processes

C O R B A Object,

in
I

C O R B A Object;

C O R B A Object,

CORBA CORBAServices

Core functionality

CORBA

." Services.^^^Mi;:;?^'

CORBAServices

Figure 8-3 - Mapping the OMA to the Component Platform Reference Model

8.2.3.1.1 OMG OMA - Layer 1

Core distribution functionality is defined within the CORBA standard, which specifies both

network protocols (running, in general, on top of TCP/IP) and marshalling. Distribution services

are generally implemented as CORBAServices, which cover a large range of services, including

security and naming.

Page 249

Adopting and Using Component Technologies

8.2.3.1.2 OMG OMA - Layer 2

As the OMA specifically focuses upon distributed object solutions, layer 2 functionality is also

provided within the CORBA specification. The structure of a CORBA 2 component is very much

a contentious issue - it has been argued [132] that the CORBA 2 standard does not provide a

component infrastructure. However, while a CORBA object may not have a formally defined

component structure, the nature of CORBA objects (i.e. exposing functionality through

interfaces, binary reusability) indicates a component-oriented nature. The issue of a component

model for CORBA is to be addressed in the CORBA 3 specification. Additional functionality

related to component infrastructure is provided via a set of system services (OMG Common

Object Services, OMG Common Facilities). Further services related to component specific

aspects, such as versioning, persistence and licensing can also be found within the

CORBAServices specification.

a 2.3.1.3 OMG OMA - Layer 3

Components are implemented as CORBA objects. Common types of object for horizontal and

vertical domains are defined in standards such as CORBAServices[l09].

Interfaces for CORBA objects are defined using the OMG Interface Definition Language,

Interfaces are then implemented by a CORBA object. Common interfaces within the OMA for

industry specific implementations are provided within the CORBA domain initiatives [109].

For current CORBA implementations, component containers lake the form of CORBA servers,

which will create instances of CORBA objects and execute an event loop to deal with calls to

these instances. True component containers and scripting techniques for the OMA are realised by

Page 250

Adopting and Using Component Technologies

the CORBA Component Model and CORBA Component Scripting, which are integral parts of

the CORBA 3.0 specification".

8.2.3.2 Microsoft Windows DNA

Layer 3

Application Infrastructure
Clienti Client2 Clientn

i COM Server (DLL, OCX, EXE)

in COM Objecti

in COM Object2

COM Objectn

VBA, VBScript

Layer 2 DCOM MTS, MSMQ, etc.

Gore functionality

Layer 1 DCOM

Services

MTS, MSMQ, etc

Figure 8-4 - Mapping the Windows DNA to the Component Platfom Reference Model

Ai the lime of writing (September 2000), the CORBA 3 specification was not publicly available from the OMG.

Page 25]

Adopting and Using Component Technologies

8.2.3.2.1 Microsoft Windows DMA • Layer 1

The distribution infrastructure for the original DNA is provided by the DCOM standard

implementation. As well as defining protocols, DCOM provides a number of distributed services,

such as security, as part of the standard implementation.

8.2.3.2.2 Microsoft Windows DNA - Layer 2

DCOM also provides core component services for the DNA by specifying component structure

and inter-component communication. Additional component services are generally provided via

an implementation. For example, scaling, transaction control and further security are all provided

by the Microsoft Transaction Server product, and asynchronous messaging is provided by the

Microsoft Message Queue Server (MSMQ. However, the advent of COM+ [88] has affected the

nature of the DNA, in particular at two lower layers of the reference model. While early versions

of the DNA used DCOM to provide core functionality and various products to provide

component services, the core COM+ implementation provides both core functionality and

additional services (such as messaging, transactions, scaling and event monitoring) as part of a

single implementation. The COM+ implementation can be seen as a complete layer I and 2

implementation.

a 2.3.2.3 Microsoft Windows DNA - Layer 3

Components within the DNA will be implemented as DCOM objects. As with the OMA,

Microsoft have domain initiatives [to address common components for both horizontal and

vertical domains.

Interfaces for components are defined using the Microsoft Interface Definition Language and are

then mapped to component implementations. Unlike CORBA objects, a DNA component can

Page 252

Adopting and Using Component Technologies

implement numerous interfaces. Various types of component within the DNA (for example,

ActiveX controls, automation servers) are required to implement certain t>'pes of interfaces.

Clients within the DNA will generally be concerned with providing user interfaces to component

functionality and are easily developed through scripting. While these can be developed as new

applications using Windows development tools, standard clients such as Internet Explorer or the

user interface elements of the Microsoft Office suite can also be used to access both standard and

custom component functionality, by exploiting the scripting elements of the DNA.

Component containers come in many forms within the DNA, for example, ActiveX controls and

COM DLLs. Containers can also exist in executable form, for example COM servers such as

Excel or Word.

Finally, the scripting element of the DNA is provided by the Visual Basic for Applications (VBA)

language, which is commonly used to script DCOM components.

Finally, it is interesting to note recent developments within the DNA. While the initial

specification was very much focused upon DCOM and component products, the recent DNA

2000 release [102] has moved away from a pure component approach to mix components with

other approaches, in particular Internet technologies such as X M L , HTML and HTTP. This is

similar in approach to the Nelscient platform (see section 6.6.3.3), which attempted to use

technologies to their strengths, rather than relying on a single technology for all aspects of

development.

Page 253

Adopting and Using Component Technologies

8.2.4 An Alternative Viewpoint - Visual Basic 3

In some respect, it is more interesting to relate the reference model to less well-known component

platforms, or platforms that are not considered "pure" component approaches. One such example

is an early version of the Visual Basic development environment (version 3) that provided a basic

component platform for the development of Windows applications using 16 bit VBX components

[91], especially once Microsoft had released the control development kit for third party

developers. This is a far less "pure" component platform, but the reference model can still be used

to assess aspects of the platform:

8.2.4.1 Visual Basic 3 Layer 1 - Distribution Infrastructure

No facilities for distributed applications were provided for the platform.

8.2.4.2 Visual Basic 3 Layer 2 - Component Infrastmcture

A simple set of mechanisms that enabled the visual representation of a Visual Basic extension

(VBX) control within the Visual Basic environment and an API for interfacing the environment

and clients with control ftinctionality.

• Component structuring - defined in the control development kit API to provide properties

and events for a control, although no means of providing methods was included within the

API.

• Component services: No additional services were defined as part of the platform.

8.2.4.3 Layer 3 - Application infrastructure

• Components - VBX controls were the core component type for the platform. They took the

form of a 16 bit binary library that provided functionality that extends the Visual Basic

environment in some way, generally additional GUI components.

Page 254

Adopting and Using Component Technologies

• Interfaces - A control application programmer interface defined the structure of source code

(event loop, common properties, extended properties, functions for reading and writing

properties, functions for drawing the component on a form, etc.) that had to be used in order

that the VBX containers could use (interface with) controls.

• Clients - Applications developed within the Visual Basic environment used VBX controls to

build up the interface for a Windows application. These applications were then compiled into

Windows executables.

• Containers - The core container for VBX controls was the Visual Basic development

environment itself. However, while a single "component" could be provided via a VBX

control, the control itself could also be considered a container for the component as it

provided the execution environment for component functionality (which was very similar to a

16 bit Windows DLL structure). A client application required the VBX controls in its

distribution in order to function.

• Scripting - The Visual Basic language itself, in its version 3 form, was little more than a

basic scripting language - it providing core programming constructs but was loosely typed

and had little memory management.

8.2.5 Applications of a Reference Model for Component Platforms

To conclude this section, the use of the reference model within the learning process is considered.

As discussed at the beginning of this section, the classic use of reference models is the provision

of a technology independent viewpoint of an aspect of the IT field. However, their importance as

a learning tool should not be underestimated. In providing a technology independent view of, for

example, a specific development approach, it demonstrates the decomposition of the topic into

pure facets - i.e. concepts can be described independent of implementation. Our survey responses

have demonstrated the problems within the field of component-orientation in marrying concepts

Page 255

Adopting and Using Component Technologies

to implementation. I f an organisation can clearly see the constituent parts of an approach, they are

better able to relate it to their knowledge of previous techniques.

Thus, the developed reference model serves two purposes - firstly as a comparative tool but also,

more importantly, as a learning tool to facilitate the relation of component-oriented concepts to

both existing knowledge and the development of new understanding.

8-3 Developing the Organisational Learning (OL) Perspective

Of the approaches in chapter 3, organisational learning (OL) appears to be the most suitable for

our aims as it focuses upon the development of organisational knowledge about an innovation. It

differs from the other theories discussed in the chapter which are more focussed upon why a

technology is adopted by an organisation, but not the learning process once the technology is

adopted.

Following our review of OL in chapter 3, we have identified the following aspects that affect the

development of results from our research:

1. Component-orientation is a complex technology that may present significant knowledge

barriers for an organisation wishing to adopt it.

2. An organisation should have a knowledge base regarding a technology before attempting to

adopt it.

3. Effective construction of a knowledge base requires information related to previous know-

how/experience of a technology, rather than simple signalling information.

4. The knowledge base is built up from various levels of learning (individual, group and

organisation) and places a need for the development of common language (specific to the

adoption domain) throughout an organisation.

Page 256

We therefore aim to provide information that can be used within the construction of an

organisation's knowledge base regarding component-orientation and to address the issue of

knowledge barriers for ihe organisation.

8.3.1 The Organisational Learning Process

An important difference between OL and previous adoption theories is the nature of both

information and its communication. Attewell's [5] work in applying diffusion of innovations and

OL theory lo the adoption of complex technology is at the heart of the matter. It insists on the

distinction between signalling information and knowledge. While this can be likened to the

differentiation o f hard and soft information within diffusion of innovations theory, the emphasis

from the OL perspective is that of the communication and construction of knowledge. This differs

from previous theories that focus upon signalling, viewing the communication of existence as the

important aspect for the adoption of an innovation.

Attewell focuses upon the need for the communication of knowledge as the precursor to effective

adoption of a technology, through the lowering of what he refers to as knowledge barriers. A

knowledge barrier can be defined as an aspect of the new technology that the organisation needs

to understand in order that it can be used effectively - the burden of developing such technical

know-how becomes a hurdle to adoption. Such barriers are generally related to the elements of

context as discussed in section 3.2.1.3. Attewell presents a number of potential solutions to

overcoming knowledge barriers, and identifies the role o f suppliers, or other external parties in

the development of organisational knowledge. The advantage of the outside authority, he argues,

lies in economies of scale with learning. An external consultant or supplier is likely to have a

great deal more experience in the use of the new technology, and they have had greater potential

to use it. Another benefit Attewell identifies from use of an external source is "rare event

learning" - obtaining knowledge from events that occur infrequently. He argues that there is great

Page251

Adopting and Using Component Technologies

value in such experience, as such exceptional experiences generally occur when new approaches

are being used - the adopter can learn from the consultant's "mistakes".

in an

come

However, while the supplier or consultant plays a role in lowering the knowledge barriers

organisation, it is also acknowledged that organisational knowledge development has to

from "learning by doing" for an organisation. Attewell argues that with complex technology, its

effect upon practice, users and products is unique to an organisation and it is only through using a

new technology that a comprehensive knowledge base can be created.

Therefore, we can view our development of results not as providing a complete knowledge base

that is transferable directly into an organisation, but to guide an organisation's own development.

Any development should aid in the identification of potentially problematic areas and encourage

learning from the experience of others - a coaching, rather than dictatorial role in the

development of organisational knowledge.

However, while Attewell's work guides in setting the direction for the development of results, it

makes no suggestions as to how this knowledge is communicated or the process of assimilation.

For these aspects, other work provides guidance.

Fichman &, Kemerer [54] use Attewell's work as a focus for their own research into the adoption

of object oriented technologies. However, they develop the background theory by defining the

assimilation process - the process by which knowledge regarding a technology is developed

within an organisation. They define the process as:

1. Grasping abstract principles of the technology.

2. Understanding the nature of benefits attributable to the technology.

Page2S%

Adopting and Using Component Technologies

3. Grasping specific technical features of different commercially available instances of the

technology.

4. Discerning the kinds of problems to which the technology is best applied.

5. Acquiring individual skills and knowledge needed to produce a sound technical product on

particular development projects.

6. Designing appropriate organisational changes in terms of the team structure, hiring, training

and incentives.

We can focus on these activities in presenting the research results, and complement them by

providing tools to aid in organisational development.

Crossan, Lane & White [43] identify the different levels at which learning occurs within the

organisation (individual, group and organisation) and how these are interrelated. This harks back

to AttewelPs work, which comments upon the need for individual learning to be the foundation

for organisational knowledge. In both instances, organisation learning results from the

development of individual knowledge into organisational culture - the institutionalisation o f the

41s framework.

In relating the 41s framework to the aims of the research programme, focus should be upon the

interpreting and integrating processes. It is at this level that learning moves from being an

individual activity to a group level with shared understanding and the development of

organisational knowledge.

Page 259

Adopting and Using Component Technologies

Within both o f these processes, the authors stress the importance of language within the

development of knowledge. A shared, common language enables conversation about the

technology that, in turn, supports the learning process. As the authors state:

'conversation can be used not only to convey meaning, but also to evolve new
meaning. "

as
The value of conversation is also backed up by other complementary learning theories, such

social constructivism [61], that identify the value of social interaction among peers in the learner

process, it is also featured in survey responses (see section 7.4.3), that comment upon a need for

common language among all that are involved in the learning process within an organisation.

When considering the role of language in the learning of a new technology, we focus upon the

commonality o f definition and concepts - to ensure that everyone involved in the learning process

has a shared understanding of the technology. Within the DOLMEN case study a lack of shared

understanding hampered development efforts, and a common issue drawn from the practitioner

survey was that of reconciling concepts with implementation. Additionally, such an issue is also

important in Fichman & Kemerer's assimilation process, as they defme the grasping of abstract

principles as the first activity in the process. Common language can be seen as a way to address

this issue.

To summarise, the OL approach provides a number of ideas that are germane to the development

of research results:

1. The external information provider can play a pivotal role in the development of knowledge

regarding a complex technology.

2. Rare event learning has value in the development of knowledge.

3. Learning by doing should be guided from external experience.

Page 260

Adopting and Using Component Technologies

4. Interpretation and integration are supported through the use of language

8.4 Approaches to Adoption

The following examines a number of approaches to the adoption of new technologies and

techniques in the light of the criteria identified above.

8.4.1 Standards/Guidelines

There are many standards and guidelines within in the field of software engineering [159].

Standards are described by ISO [79] as:

...documented agreements containing technical specifications or other precise
criteria to be used consistently as rules, guidelines, or definitions to characteristics,
to ensure that materials, products, processes and services are fit for their purpose.

The difference between standards and guidelines within software engineering is somewhat

blurred. However, Sommerville [145] distinguishes ihem in terms of rigour. A standard wil l be

very prescriptive defining a specific approach that must be used in achieving an outcome,

whereas guidelines wil l generally be more advisory in nature. However, in both cases they wil l

generally go through a very thorough committee based submission, assessment and voting

process before being defined and published. For example, both the ISO and the OMG have a

well-defined process for the development of their standards involving proposal, submission,

review and voting procedures.

While a standard could be considered as part of the institutionalisation of a learning organisation,

in that it defines common vocabulary, language and practice in achieving certain aims, we cannot

consider them a suitable approach for our own needs in the development of our results. Firstly,

Page 261

Adopting and Using Component Technologies

our results are not in a suitable form to be cast as contributions toward guidelines or standards for

the adoption and use of component technologies. Our case studies have allowed us to develop

theories in the adoption and use of component technologies, and the survey has allowed us to

focus these theories. However we cannot, and do not want to. state that the occurrence from the

case studies are indicative of practice for others using component technologies. Additionally, we

do not wish to dictate practice from these results - we wish to communicate our own experiences

so that others can reuse them. Therefore, we cannot consider a standards/guidelines approach as

suitable for our aims in developing our results.

8.4,2 Transfer Packages

Transfer packages take the form of documentation related to a specific software technology or

technique in order to guide adopters. These packages wil l generally package data regarding the

technology or technique either from experimentation or review, and are intended to guide future

use. Two types of package are considered below, the Transition Package from the Software

Engineering Institute (SEI) and the Software Engineering Laboratory's Experience Package

concept.

8.4.2.1 SEI Transition Packages

The SEI Transition Package (TxP) was developed within the SEI's Transition Enabling Program

[140]. Fowler and Patrick detail the concepts behind transition packages, provide an example of

such a package (in this case, for requirements management, a key process area within the C M M

[116]) and detail the process of their creation in [57].

The authors describe a transition package as:

"a kit based approach to providing materials needed to use new technologies and
practices as well as to introduce technologies and practices into organizations " (pp.
I).

Page 262

Adopting and Using Component Technologies

They define the following as the process for the production of a transition package:

1. Document a description of both the subject area for the transition package and the people you

expect to use it. This description establishes the scope and purpose of your transition package

effort.

2. Identify potential sources of materials.

3. Gather the materials.

4. Identify multiple views of the materials; i f possible, base views on accepted reference

models.

5. Assemble and package the materials, and create the views.

6. Distribute the package to the users.

7. Evaluate how people use the TxP and upgrade it accordingly.

They also comment that feedback from their evaluation of transition packages has highlighted

user interest in evidence being presented in a case study format - having a context in which to

understand the material. This is clearly very relevant to the presentation of the results from this

research programme.

The transition package concept is interesting in considering approaches to the adoption using

diffusion of innovations theory as its foundation. Transition packages draw from diffusion of

innovations and aim packages at early majority to late adopter types. As such, it seems that a lot

of information presented within the package is signalling information, rather than knowledge.

While a lot is discussed relating to multiple views and sources of evidence, little consideration is

given to the provision of knowledge or experience related to the actual use of the technology. For

Page 263

Adopting and Using Component Technologies

this reason, we consider that transition packages do not provide a completely satisfactory

technique for our purposes.

8.4.2.2 S E L Experience Packages

The SEL approach differs from transition packages in that it exists within a process improvement

approach (the Quality Improvement Paradigm), and is based very much upon experience and

experimentation. The Experience Factory approach [I I] views process improvement as an

iterative process of understanding, assessing and packaging. As part of tliis approach the

experience package presents assessment results in the form of tools, standards and training

materials that wil l aid in the improvement of the development process with respect to a specific

aspect of software development. Experience packages within the SEL's own experience factory

[13] have included an Ada users manual, a cleanroom process model and a software management

environment.

The process of developing the packages forms part of the Quality Improvement Paradigm, with

measurement arising from the Goal/Question/Metric paradigm. The approach is discussed in

section 3.1.4.1. The packages then form part of an experience base, that the organisation

associated with the experience factory can draw from when developing their software processes.

Experience packages have their foundation in quantitative data obtained from controlled

measurement within the practitioner environment. This is a contrast to our own data collection

methods that focused upon case study of external development projects. The experience factory is

is, therefore, not suitable for the development of packages from the case studies as no

measurements were defined for each project. As slated in the case study discussion, there was no

management role in either project - the researcher could not dictate project direction. This

problem was also addressed by work by DaimlerChrysler AG in trying to establish their own

Page 264

Adopting and Using Component Technologies

experience factory. This work, initially documented by Houdek [72], identified several problems

in using the approach within the DaimlerChrysler organisation - namely insufficient structure,

unsuitable classification and missing technical support. Landes, Schnieder and Houdek took up

these issues within the OL context in a later publication [93], where the problem of lack of

quantitative data was discussed explicitly. The information gained from experience in their own

projects were primarily reports detailing problems with a technology or technique, explanations

for the problems, attempts at solutions and solution evaluation. However, rather than attempt to

restructure application projects within the organisation the authors examined what could be done

with the type of information they had at their disposal. In an aim to provide structure around

qualitative information related to experiences, they developed the concept of quality patterns -

drawing from the wider concept of patterns [2] that is discussed below.

In considering the work from DaimlerChrysler, we can see a number of similarities with our own

research - it is grounded in OL theory and it involves the development o f qualitative evidence

into representative experience. The major difference is that internal experience was used for the

DaimlerChrysler work, whereas we aim to develop our results as an external input into the OL

process. However, as discussed above, the external input to the process can often be beneficial to

the organisation. The following section considers the pattern approach in more detail, before

assessing its suitability against our own criteria.

8.5 Pattern Approaches

A pattern can be defined as a problem/solution pair - it defines a problem and puts forward

suggestions for a solution, both the problem and solution being based upon experience. The

widely cited origin of patterns comes from Christopher Alexander, who observed this

problem/solution pairing as the way experts approach problem solving and applied the theory to

architecture [2]. Alexander observed that experts would never consider a completely new solution

Page 265

Adopting and Using Component Technologies

for a problem, they would base a new solution upon previous solutions - the reuse of experience

in a problem solving capacity.

The main feature o f patterns is that they are problem-, rather than solution-oriented. This

approach is quite different from standards, which prescribe a way of practice in order to improve

the quality of, for example, software development products. Houdek & Kempter [71] summarise

the panem approach effectively as:

In describing a pattern, the main focus is not only in presentation a solution, but in
observing what problems a user of this experience will have in the future. The
solution is described with respect to future use.

The most well known use of patterns within the software engineering field is the use of design

patterns for object oriented systems [60]. This now seminal work applies the patterns concept to

the design of object orientated systems, defining a group of patterns that address problems in the

design of object oriented systems and putting forward clear, simple solutions.

However, while patterns have typically been applied to design problems due, perhaps, to their

origins, there are becoming more diverse, with applications occurring wherever a problem

oriented approach seems appropriate (for example, in architecture [2] and organisational

development [15]). An early example of the use of patterns for education comes from

Cunningham & Beck [44], who developed a small pattern language for novice developers

wishing to learn about Smalltalk. While these patterns focused upon implementation issues (for

example the development of a windows based GUI), they do demonstrate the possibility of using

patterns for learning.

Another interesting development is the concept of AntiPatterns. AntiPatterns are described by

Brown et. al. [29] as a pattern to describe a problem area within (in this case) software

Page 266

Adopting and Using Component Technologies

development. While a pattern aims to guide best practice, an AntiPanem aims to identify a

problem and describe how to obtain a good solution from the situation.

A pattern approach generally consists of the following:

• Pattern language: A collection of interrelated patterns is referred to as a pattern language.

While it does not enforce a formal language, it encourages a common vocabulary for talking

about the particular domain or problem.

• Pattern template: Defming a structure for all patterns within the pattern collection, also

known as a pattern catalog.

• Patterns: A pattern will address an individual problem within a domain, present possible

solutions, and relate them to others.

Another common element of patterns is their complementary nature. Generally, a pattern wil l not

exist in isolation, but will complement other patterns, either on a peer level (termed synergistic by

Mowbray and Malveau [105]) or by contributing to a larger scale pattern (termed subsidiary

patterns by Mowbray and Malveau).

8.5.1 Examples of Patterns

8.5.1.1 Alexander's Architectural Patterns

• Pattern language: "Towns, Buildings and Construction" was the term given to Alexander et.

al.'s pattern language [3], related to the architecture within towns. The language covers a

huge range (253 patterns) of concepts related to town design, ranging from the large, town

scale (for example, the Independent Region) to the small, related to a single building (for

example. Alcove).

Page 267

Adopting and Using Component Technologies

• Template: Alexander's patterns have little formal sU-ucture. Each does, however, follow a

general form (sometimes referred to as Alexanderian Form [29]). Firstly, the pattern is

assigned a name, followed by an overview of the pattern and the problem it addresses. A

description of the pattern and a number of examples follow this. This description wil l be

followed by a "therefore", which will detail a solution to the problem identified in the pattern,

along with detail of other patterns that complement the solution.

• Pattern example: A simple example from the pattern language is a Window Place. This

pattern relates to a location within a room that allows the occupant can sit and also have a

good source of light. Examples such as a window seat, a bay window and a low sill. The

pattern's solution is to provide a Window Place in any room where the occupant will spend a

length of time during the day, and the solution is related to other patterns such as Alcoves,

Low Sill and Built-in Seats.

8.5.1.2 Gamma et. al.'s Design Patterns for Object-orientation Systems [60]

• Pattern language: The pattern language of Gamma et. al.'s patterns relates to the design of

object-orientation systems, expressing solutions in terms of classes and objects that work

together to address a problem.

• Template: The authors have a general structure for the pattern that is followed by most

patterns related to software development. There is a name, a problem that describes when the

pattern should be applied, a solution that describes the elements that address the problem, and

consequences, that are the results and trade-offs coming from using the pattern. However,

each pattern is also defined in greater detail using a template:

Name and classincation: The pattern name and how it relates to the pattern language.

The authors define a number of classifications based upon purpose (creational, structural

or behavioural) and scope (class or object).

Intent: What is the pattern's intention

Page 268

Adopting and Using Component Technologies

Also known as: Other names for the pattern

Motivation: The "problem/solution" aspect of the pattern - an instance that illustrates the

design problem and how the classes and objects within the pattern addressed it.

Applicability: Where the pattern can be applied

Structure: A diagrammatic representation of the objects and classes within the pattern,

defined in 0 M T [I 3 5] .

Participants: A description of the classes and objects within the pattern

Collaborations: How the participants collaborate

Consequences: The trade-offs and results of using the pattern

Implementation: Advice on how to implement the pattern

Sample Code: An illustration of the pattern in an OO language

Known Uses: Examples of the pattern in real world systems

Related Patterns: Other patterns that complement the pattern, on a synergistic or

subsidiary level.

• Pattern example: A widely known and used pattern from the 0 0 design language is the

Observer pattern. This pattern identifies the need for other objects to be informed of the

change in state of a given object. It motivation comes from the model/view paradigm [97]

inherent in windows systems, where different views of a specific data set are provided. These

views need to be updated i f the data changes. Hence, the views are observers on the data

object. The pattern defines the pattern participants (e.g. subject, observer) and how they

relate. It goes on to discuss a number of implementation issues, such as mapping subjects to

observer, dealing with more than one observer and how the update is triggered.

8.5.1.3 Quality Patterns

• Pattern language: Quality patterns form the basis for the communication of experience

within an Experience Factory context. Therefore, the author's quality patterns can be seen to

Page 269

Adopting and Using Component Technologies

be an experience package, used by others within the organisation to learn. The language

defined by such patterns relates to the communication of experience with specific

development processes and technologies.

' Template: The template follows a simitar general form of other pattern approaches in that it

provides a pattern name, a problem, and solution and an explanation. The problem/solution

pairing within the pattern can be considered the experience aspect of the pattern, which holds

the learned knowledge. The context in which the knowledge is placed enables the

transference of the experience. The general pattern structure is expanded to a formal pattern

template consisting of:

Classincation: Broken into package and object types, and a viewpoint, relating to the

typical user of the patter.

Abstract: An overview of the pattern

Problem: Defining the source of the pattern

Solution: A model solution to the problem presented

Context: Where such a pattern would be relevant

Example: Describing a use of the pattern is a given situation

Explanation: A description of the use of the pattern and its outcomes

Related experience: Relationships with other patterns within the experience package.

Administrative information: Author name, date pattern produced, etc.

Pattern example: An example provided by the authors in [71] is that of an IT contract. The

quality pattern examines the issues to address in the reviewing and amending o f contracts, in

particular related to the issue of outsourcing. It defines a number of issues to check in the

provisioning o f such contracts and places the issues in the context of large-scale development

projects where development in outsourced.

Page 270

Adopting and Using Component Technologies

8.5.2 Consideration of Patterns from an OL Perspective

Schmidt, Johnson & Fayed [136] identified the following as motivation for the creation of

patterns and pattern languages:

1. Success is more important than novelty: A pattern becomes more valuable the longer it has

been used successfully.

2. Emphasis on writing and clarity of communication: Through the use of a template, patterns

can follow a common form for ease of communication.

3. Qualitative evaluation of knowledge: Knowledge about problems can be expressed in a

qualitative way, rather than in a quantitative way or through theorising.

4. Good patterns arise from practical experience

5. Recognise the important of human dimensions in sofhvare development: Patterns aim to

support the human nature of software development, rather than trying to enforce rigid rules,

or replace the human element with automated tools.

For our own needs and from the theoretical viewpoint we have developed from literature review

(i.e. practitioner focused research identifying issues that should be shared with others in the field),

points 2-5 all provide a good argument for a patterns based approach. We have identified

communication as an essential aspect of the learning experience, we focus upon qualitative data

from our research, we wish to draw from and share practical experience, and we recognise the

human aspect of the learning process.

We also see two other issues as important in considering the use of patterns from an OL context.

Firstly, they communicate expert knowledge and experience - they aim to help the user by

sharing previous experience. The pattern can be used as an external source, as discussed by

Altewell to aid in the learning process through the lowering of knowledge barriers. Attewell's

Page 271

Adopting and Using Component Technologies

identification of the communication of know-how or knowledge as the essence of organisational

learning can also be addressed with such an approach, as can the value of rare-event learning.

More importantly, patterns specifically aim to define a language that is used when discussing

issues within the domain. The influence of 0 0 design patterns upon the field of object-orientation

can be seen in a language such as Java, which defines, for example, Observer classes, and in

component approaches. The observer pattern is very much an influence upon component

monitoring such as that defined in the CORBA Event Service [110] and also interception in

COM+ [88]. As previously emphasised in the discussion regarding organisational learning,

language is extremely important in the development of individual learning into an organisational

context.

8.6 Conclusions: An Overall Strategy for Results Development

In concluding this investigation into a strategy for the development of research results, all of the

ideas discussed within this chapter are drawn together, A reference model for component

platforms was developed, and its use as a leaming tool was discussed. Previous approaches to the

transition of experience were examined and a pattern-based approach was identified as being the

most suitable solution to our needs. However, the findings from other approaches should not be

dismissed, in particular the experiences of the SEI [57] in the validation of their transfer package,

which highlighted the need for context in such things. Therefore, the overall strategy focuses

upon a pattern language for the adoption and use of component-orientation, but places the

language in the context from which it is developed. The complete package is presented in the

following chapter. However, following identification of an approach for the package based upon

literature and the type of results we had obtained from study, an initial package was developed.

This package was then reviewed by an industrial software development organisation in order to

further refine the approach used. This review is discussed below.

Page 272

Adopting and Using Component Technologies

8.6.1 Refinement Based upon Industrial Feedback

As the intention of the package is that i l should be used to promote knowledge regarding

component-orientation in industry, it was important to obtain industrial input into the

development of the package. A draft package was produced and assessed by a research and

development group within a large software/telecommunications organisation in Germany. The

group specialises in the development of software solutions using leading edge technologies, in

order to determine their effectiveness for other product lines. As one of the technologies they

were currently hoping to use was component-orientation, there was a good opportunity to

examine the suitability of approach to the development of knowledge in this area. The package

was delivered to the organisation and distributed among lead developers for use in considering

the suitability of component-orientation to specific development projects. Feedback in the

suitability of the package approach was very positive. Particular issues drawn from the feedback

were:

I . The patterns approach is good - the problem/solution pairing, backed up with examples of

real world occurrences, is a very good format for presenting experience. The fact that this

knowledge comes from real world experience differs from a lot of literature about CBSD,

which seems to dictate practice without demonstrating any foundation for the arguments

presented.

2. A non-prescriptive format is also effective - i l is very difficult to get developers working to

tight deadlines to follow approaches that enforce specific practice. The "softer" approach

provided by patterns enables their use without dictating practice.

Page 273

Adopting and Using Component Technologies

3. The coniexi is very valuable - its both demonsirales the origins of the knowledge and also

enables the user to be able to relate the suitability of the package to the user's own needs. The

reference model clearly defines aspects of component-orientation free from implementation -

again, the majority of literature tends to express choice of platform from a very vendor-

specific view.

The following, from an email discussion with one developer, highlights the perception of the

package in the organisation:

> Do you see value in the package for educating in the use of CBSD?

Yes, the package can be viewed as some sort of "best practice" which supports
developing CBSD. From one of the projects I got in touch with here at XXX, they say
that if they would have used your package which says "First, discover the
technology, etc.", they wouldn't have blown a lot of money!

However, it was important to obtain feedback that would help refine the package into a more

effective tool'^ in using the feedback for refinement, a couple of issues were identified:

1. The focus o f the package should be the patterns - the context complements the patterns well

but should not have as much emphasis in the package. A brief description of each case study

(type of industry, scale, use of technologies) is sufficient.

2. Greater emphasis should be made regarding the reference model - it is useful as a learning

tool in its own right, as well as being used for comparison of case study platforms.

The draft package discussed (he case studies in detail as it was considered important to provide a complete picture of

each. Additionally, the reference model was only used for comparison of case study approaches, it was presented as a

subsection of the case study discussion.

Page 274

Adopting and Using Component Technologies

Following the feedback, ihe package was refined in the following ways:

1. Case study descriptions were reduced to brief reviews of important aspects. A lot of

descriptive text was removed.

2. The reference model was moved into a section on its own, prior to the discussion of its use

within the case studies.

3. Further description was added to the patterns, in particular the example of occurrences o f the

patterns were strengthened.

The following details the structure of the revised package, based upon its refinement following

industrial feedback.

8.6.2 Package Structure

8.6.2.1 Context

Detailing each situation that has conu-ibuted to the development of the pattern language. The

context is composed of the following aspects:

• Reference model for component platforms: Used to define core concepts in component-

orientation and also as a comparative tool in the case studies.

• Points of reference from the case studies: Each case study is defined from three points of

reference:

• Overview: A textual description of the case study, detailing type of industry, scale o f

project, type of software developed, etc.

• Component platform: Based upon the reference model for component platforms.

Page 275

Adopting and Using Component Technologies

• Development process: The nature of the process used to develop case study software

products.

• Survey element: Additionally, the survey aspect of the research is placed in the context of

strengthening theories and focusing development. The survey aims and respondent profile are

provided.

8.6.2.2 Language

The definition of the language itself, consists of:

• Pattern template: Drawing from templates within the field, the pattern template defines

context, problem, solution and relationship within each pattern.

• Patterns for the adoption and use of component technologies: The patterns themselves,

based on problems/solutions from the case studies, focussed by survey findings.

8.7 Summary

In considering the development of results from the research programme, knowledge barriers to

the adoption of component technologies that relate to the complexity of learning have been

identified. In aiming to overcome this barrier, the organisational learning field is further

examined to consider previous attempts at technology adoption based upon this sound theoretical

foundation. Approaches used to package experience related to process and product technologies

were also considered and a pattern approach was identified as being the most suitable. However,

the importance o f context for the developed results is acknowledged. The reference model for

component platforms is defined for two reasons. Firstly, as with other reference models within the

software-engineering field, it can be used to compare different platforms to distinguish features.

Additionally, it is used as a learning tool to differentiate concepts of component development

from the complexity of technologies and implementations within the field. Once there is

familiarity with concepts, the mapping of platforms to the reference model can help demonstrate

Page 276

^^opling and Using Component Technologies

where each technology fits into the make up of a component system. A general strategy has been

defined, and a draft implementation was tested in an industrial context. This enabled the

development of the package into a full solution, detailed in the following chapter.

Page 277

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

use
This chapter develops a transition package for use by organisations wishing to adopt and

component technologies. It can be seen as a culmination of literature review, data analysis and

results development.

9. A Strategy for the Sharing of Experience in the Adoption and

Use of Component Technologies

This chapter draws together results from the case studies and the practitioner survey, and

literature related to the adoption of complex technologies to present a transition package that aims

to assist organisations wishing to adopt and use component technology. Based upon theories of

organisational learning, the package centres around a pattern language as a way of relating

previous knowledge related to the use of component technologies. The aim is to provide a non-

prescriptive approach to the use of component technologies, illustrating past experience to

promote awareness, without explicitly dictating practice. The pattern language's source is

presented as a context to the language, with a view to helping adopters relate the language to their

own needs.

The majority o f this chapter consists of the transition package, divided into context for the

patterns and the pattern language itself. The package appears in the thesis as it would be provided

to practitioners, although in order to avoid duplication, some aspects are referenced to other

sections. The chapter then reviews the structure of the package and considers its use. Conclusions

are drawn from this validation regarding the future development of such a package.

9.1 A Transition Pacfoge for the Adoption and Use of Component

Technologies

The package consists of two sections: context, which discusses the nature of the work that led to

the experiences expressed in the patterns, and the patterns themselves.

Page 278

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

9.1.1 Target Audience

The package is intended for use by personnel who will be involved in the development of

software using component-based techniques. The three primary roles to which the language is

applied are aligned with viewpoints defined in the AntiPatterns reference model [29]:

1. Project managers

2. Software designers/architects

3. Software developers

Patterns are marked as being applicable to specific roles. It should be noted that these roles are

deliberately broad - the package aims to present the learner with information and a context for

that information. From this position, the learner can decide how relevant a specific pattern is to

their own needs. The role markings are therefore for guidance only.

9.2 Context

The context section of the package describes the source of the pattern language, which is based

upon practitioner experience in the use of component technologies. The context comprises the

following sections:

• A Reference Model for Component Platforms: This reference model defines an

implementation independent view of a component platform - the collection of software

technologies used for the development of software systems. It enables the comparison of

platforms from the different case studies (see below), and defines common elements o f

component-based systems in a generic way.

• Case Study Points of Reference: Depth of information related to the use of component

technologies comes from case studies of component-orientation in practice. Two case

Page 279

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

Studies examined the use of component technologies in different settings. Outcomes from

the case studies were in the form of theories related to the effect of component

technologies upon software development.

Survey Points of Reference: Case study outcomes provided a number of theories related

to the effect of component technologies upon software development. However, in some

cases it was difficult to determine whether outcomes were as a direct result of component

technology, or whether a combination of factors was to blame. A survey of component

practitioners enabled further clarification o f issues, identifying common problems and

isolating phenomena.

9.2.1 Reference Model for Component Platforms

The reference model discussed in section 8.2 is used to contrast the different development

technologies used in each case study. As such, it is included as an aspect of this package. The

definition of the reference model, from section 8.2.2, is included in the package as a technology

independent view of a component platform that defines core concept.

9.2.2 Case Study Points of Reference

Each case study is defined from three points o f reference:

• Overview: A textual description of the case study, detailing type of industry, scale of project,

type of software developed, use of component technology.

• Component platform: Based upon the reference model for component platforms, in order to

detail the software technologies used to meet project aims.

• Development process: The nature of the process used to develop products.

Page 280

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

9.2.2.1 Case Study A - Points of Reference
9.2.2.1.1 Overview

Case Study A was a component-based project related to the development of a

telecommunications architecture across disparate network technologies. It was particularly

focussed upon the integration of mobile and fixed network technologies. It was a project whose

development teams were distributed across Europe, with approximately thirty developers in eight

different locations. Architectural designers were also distributed in other locations across Europe.

The development effort in the project centred on three aspects:

1. an integrated CORBA platform across mobile and fixed networks - to enable the

interoperation of developed components independent of underlying technologies;

2. a component suite encapsulating the functionality of the defined telecommunications

architecture;

3. application development that would make use of the component suite and component

platform and lest out the functionality of the telecommunications architecture.

Page2S\

A Strategy for the Sharing of Experience in the Adoption and Use ofComponem Technology

9.2.2.1.2 Case Study A - Component Platfomi

Layer 3

Audio Conferencing Information Browsing

CORBA Processes

CO
Access session components

Service session components

Communications session components

Connectivity session components

Resource adapters

Layer 2 Custom CORBA Platform

CORBA Implementations Inter-ORB Bridge

Location register
Orblx

Location register

Layer 1
Orblx

Global Naming Service

CoolOrb OrbixNames CoolOrb Naming

;ies were

Figure 9-1 The component platform used in Case Study A

Notes on the component platform:

• The plaifomi merges distribution and component functionality as all technologi

distributed in nature.

• GNS refers to Global Naming Service - a project-developed service to enable components

from different CORBA implementations to be accessed independent of ORB.

• Location register was a service developed by the project to locate components on mobile

platforms

Page 282

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

• Component layers performed different aspects o f functionality within the architecture.
Component interfaces are defined as OMG IDL.

9.2.2.13 Case Study A - Development Process

Architectural Specification / Technology Reviews

Application Devhtopment

J *
Application Req.

Specification

Application Interface
Specification

-

Application Functional
Specification

Application
Implementation

Application Testing

Component Development

Component Req.
Specification

Component Interface
Specification

" - -

Component Functional
Specification

- '

Component
Implementation

Component Testing

OPE Developme,

DPE Req. Specification

DPE Interface /
Functional Specification

DPE Implementation

DPE Testing

Integration Testing

Architectural Trialing

Figure 9-2 -The development process used in Case Study A

Notes on the development process:

• DPE refers to Distributed Processing Environment, the custom CORBA platform developed

by the project to enable interoperaiion across core platforms.

Page 283

A Strategy for the Sharing of Experience in (he Adoption and Use of Component Technology

• Technical reviews were literature-based assessments of the development technologies
available to aid in the development of the software architecture.

9.2.2.2 Case Study B - Points of Reference

9.2.2 2.1 Case Study B - Overview

Case Study B centred on a network management Independent Software Vendor (ISV) in their first

year of operation. The organisation was an SME, with the three directors and approximately ten

software developers based in a central location. However, the organisation also relied on the

services o f external contractors and consultants for skills outside of their core domain. Its

software development effort centred around two aspects:

1. The development of a software product line.

2. The development of in house sofhvare to support software product line development.

Two development teams were present within the organisation - six developers working on

product development and four developers working on in house software development. The lead

developer from each team also acted in the role of designer for the relevant sofhvare. The three

company directors also provided input into requirements analysis for the organisation and had

design input into both software projects.

Page 284

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

9.2.2.2.2 Case Study B - Component Platform

Layer 3

Product clients In house clients

; COM DLL/EXE

Personality extraction

8 Personality integration

1 XML Integration 1 Diagramming

GIS

Visual BasicA/BA

Object frameworks -
MFC
Domain specific

XML Type Definitions

-I-

Layer 2

Layer 1

DOOM
OLE DB

OLE Automation

MTS

Figure 9-3 - The software platform used in Case Study B

Notes on the software platform:

• As with Case Study A, distribution was implicit in the software platform, hence no distinction

is made between component and distribution functionality.

" Case Study B mixed other software techniques with component technologies (see Mixed

Platforms partem).

" Interfaces to components were defined in VB class definitions and Microsoft IDL.

Page 285

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

• Other interfaces are provided by X M L type definitions (see Information Interface pattern)
and object definitions

9.2.2.2.3 Case Study B - Development Process

Domain modelling

Core requirement def.

Initial framework
design

Additional requirement def.

Initial component
design

Select third party
products

Inter application interface definition

Product development In house development

Design

Develop &
integrate

Review

Develop &
integrate

Review

Test Test

Release Integrate

Major version review

Figure 9-4 -The development process used in Case Study B

Page 286

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology'

9.2.3 Survey Points of Reference

9.2.3.1 Survey Overview

The surveying of practitioners enabled a refinement of issues identified from case studies. The

questionnaire was constructed to elicit opinion about findings from the case studies. The main

conclusion that could be drawn from survey responses was that the most complex issue in the

adoption and use of component technologies lies in the learning process. This finding situated

transition information toward the development of knowledge from experience.

The target audience for the survey comprised 200 practitioners with experience of component-

based technologies. Email addresses for potential respondents were collected from mailing lists

that related to issues in component based development. Response rate for the survey was 22%,

with 43 respondents.

9.2.3.2 Survey Questionnaire

Provided in appendix D

9.2.3.3 Respondents Details

Provided in appendix E.

9.3 Language

The vehicle used to communicate experience in the adoption and use of component technologies

is a set of patterns that draw knowledge related to component-orientation from the case studies

discussed above. The patterns take the standard form of problem/solution pairs based upon

practical experience. They aim to identify potential problems in the use of component

technologies, provide examples of these and suggest potential solutions.

Page 287

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

9.3.1 Pattern template

The template follows a structured approach but is not as categorised as some. It aims to order

experience, relying on qualitative description within the problem/example/solution aspects of

each pattern for the core discussion and includes:

• Name: The name of the pattern.

• Applies to: Identification of personnel that are affected by this pattern (see section 9.1.1).

The case studies have demonstrated that component technologies have an effect upon most

aspects o f software development.

• Abstract: An overview of the pattern

• Problem: The origin of the pattern, and the problems it addresses

• Example/experience: A demonstration of the pattern drawing from case studies and survey

responses.

• Solution: A possible solution to the problem, drawn from experience or "lessons learned"

from the case studies.

• Related to: Other pattems within the language that have a relationship with the pattern.

9.3.2 Pattern Relationships

Relationships among patterns develop underlying concepts in component-orientation. Some

patterns may have synergistic relationships, sharing a common principle or contributory outcome.

Other patterns may complement others through the affect of outcomes resulting from pattern

application. Pattern relationships are illustrated in Figure 9-5, and discussed in more detail in the

"relates to" attribute of each pattern.

Page 288

A Siralegyfor ,he Sharing of Experience in the Adoption and Use of Component Technology

Technology
Assessment Mixed

Platforms
Assessmen

irformaton
demons

Toctmokioy

Assessmort
Odxxxro

Technology
Selection

Infomiation
Interface

Technology
Control

Component
Packaging Third Party

Reuse

Feeds in Feeds in

Dependency
Identification Component

Documentation
Feeds in

U&odby used by

U s e d b /

Used by

Interface
Control

Deployment
Resource

Figure 9-5 - Pattern relat ionships

Page 289

A Straiegyfor ihe Sharing of Experience in the Adoption and Use of Component Technology

l e s 9.3.3 Patterns for the adoption and use of component technolog

9.3.3.1 Technology Assessment

Applies to

Manager - In order to ensure correctly functionality at the start of the project

Developer - To carry out trials prior to project execution

Abstract

Do not assume functionality - ensure technologies can perform what is required through trialing

prior to project execution.

Problem

Component technologies are still very new compared to other development technologies.

Frequent releases and bug fixes can adversely affect a component-oriented project (see

Technology Control pattern). In addition, there exists the possibility of expected or assumed

functionality not being realised by an implementation. There may also be compatibility issues in

the use of different technologies. For example, the difference between CORBA standards and

implementations raises a problem. Implementations differ and provide enhancements to the

expected standard implementation, leading to incompatibilities

An assumption that can be made by managers and developers is that i f component technologies

follow the same standard, compatibility will be guaranteed. Experience has shown that this is not

necessarily the case.

Page 290

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

Example/experience

Case study A provided a number of examples related to assumed functionality and compatibility

with CORBA systems. Problems occurred in two different ways:

• Interfacing objects developed with different CORBA systems: In the case of project

A, two CORBA implementations were chosen, each suitable to the respective target

hardware operating system. As both implementations claimed to be HOP compatible, it

was assumed that the HOP functionality could be used to interface the different objects.

When trialing was attempted with the two different implementations, it was discovered

that the objects were not compatible. This problem, compounded with the problem on

communications overheads (see Systems Trialing pattern), resulted in the development o f

a bespoke inter-ORB protocol.

• Interfacing objects developed using different language mappings within the same

C O R B A implementation: Greater concern arose from the discovery of incompatibility

between objects developed using different language mappings (in this case, Java and

C++). This caused a greater problem because, in conU*ast to the interoperability issues

between different CORBA implementations, there was no trialing of technologies to test

this issue prior to implementation. It was assumed that the objects would interact (as was

claimed by the vendor) and therefore no trialing was necessary. Consequently, discovery

of this issue was not made until integration testing, which had an extremely detrimental

effect upon development schedules.

While case study A provides us with a lot o f evidence in a single instance of the need for

technology assessment, this is not an isolated case. Survey responses have further highlighted

Page 291

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

problems with technologies, with respondents commenting on the lack of cohesion between

expected functionality and implementation and also problem reconciling concepts with

technologies.

Solution

The trialing of technologies against project requirements prior to commencing the project, or as a

parallel activity during design activities, should ensure that the technologies perform in the

correct fashion or, i f not, enable the identification of problems without impacting upon project

schedules. Another benefit from getting development personnel to carry out technology trials

prior to implementation is that it enables familiarisation with technologies before they are used

within the confines of a project schedule.

Related to

This pattern focuses upon ensuring the correct functioning of technologies and effective

development witliin a project. It complements the Systems Trialing pattern which is concerned

with ensuring the chosen hardware and software systems can cope with the introduction o f

component technologies, and the Technology Control pattern, concerned with the efficient use o f

technologies throughout the project. As a result of the practices that form the technology

assessment pattern, there could also be influence upon both Technology Selection and Mixed

Platforms.

Page 292

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

9.3.3.2 Mixed Platfomis
Applies to

Manager - in the selection of technologies in a project

Architect - in determining the choice of technologies for different aspects of the system

Developer - implememing the designed functionality in the chosen technology

Abstract

Use component technologies to their strengths. Do not assume they will solve all problems.

Problem

Most industrial literature related to the adoption of component technologies (for example,

[33],[28]) insists that the successful use of component technologies can only come from an

organisational embracing of the technologies and a total commitment to their use. Component

technologies should replace existing development techniques, organisations should develop

component repositories, and developers who produce components will be distinct from those who

assemble applications from the components.

A problem facing managers with this approach is, firstly, the level of risk involved. With no

proven record in the use of component technologies, can they justify replacing other proven

approaches with the new techniques? Additionally, they must face the task of re-skilling -

ensuring architects and developers have the requisite skills to be able to carry out a component-

oriented project successfully - while still having lo commit resources to existing development

projects.

Page 293

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

Thus they might prefer to phase introduction of component techniques into the development

platform, but by doing so they go against current thinking in the area, risking wasted effort and a

failed adoption.

Example/experience

Our own experience includes a wholehearted component-oriented project and one that used

component-based techniques in tandem with object-orientation and Internet technologies. It

indicated that a complete embracing o f component technologies does not necessarily lead to a

successful project. In Case Study A, the approach was for a 100% component-based solution,

making component technologies the underpinning technology for all software development. The

hope was to ensure effective interoperation of system elements and provide network

transparency. While transparency was achieved, and a level of interoperability was achieved, the

pure component approach also introduced over complexity in some areas. For example, core

communication functionality was implemented in component form, introducing unnecessary

dependencies between clients. Another problem came from a component-based approach to

application interfaces that meant GUI development had to interweave two event loops (one for

GUI events, one for CORBA events) into the same application.

In case study B, component-orientation was combined with other techniques such as object

frameworks and Internet technologies - the most suitable approach was used for each aspect of

system development. For internal system functionality, an object framework encapsulated core

business functionality. Component techniques were used to interface third party software, and to

encapsulate internal business activities. The communication of information between products was

achieved using Internet technologies. The resulting development platform, as discussed in section

Page 294

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

6.5 demonstrated that component techniques can be used in tandem with other technologies and,

in this case, resulted in a far more flexible, and effective, development process.

Solution

I f component-orientation is viewed as a development technique, rather than a change in the

philosophy of software development, it can complement other, potentially more stable,

development technologies.

A mixed platform can have two advantages - firstly, and most importantly, it enables the use of

different software technologies to their strengths. However, it also enables the chance for low risk

adoption o f new technologies, of which component-based techniques could be part.

Related to

The Mixed Platform is related to Information Interface, Technology Selection and Component

Packaging, in that they do not uncritically adopt the belief that component-orientation should be

the sole technique for software development. It also complements Technology Assessment, by

providing a way of acquiring skills to underpin component-orientation.

Page 295

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

9.3.3.3 Systems Trial ing
Applies to

Manager - Ensuring chosen hardware and operating systems can cope with the load of component

technologies before project commencement.

Developer - Carrying out irialing prior to the project commencement.

Abstract

Component technologies place additional load on hardware and operating systems. Ensure that

eelected platforms can cope with this load prior to project commencement.

Problem

Component technologies typically add extra processing overheads to implemented systems. As

well as requiring processes in which to execute component instances, the component standard and

additional services are themselves implemented as low-level processes. Therefore, component-

based systems wil l generally require more powerful hardware. Additional issues may result from

non-optimal support in current operating systems.

Example/experience

Case study A provides an example of the problems that can be experienced due to the additional

requirements of a component-based platform. Development work was generally carried out in

isolation with small subsets of the complete system being used to unit test component

functionality. Testing on a scale approaching full system size was not attempted until integration

activities were carried out. Once a full set of objects was loaded onto mobile terminals, it was

discovered that the terminals could not cope with the number of objects required to be resident in

Page 296

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

memory at a given time. Excessive processing requirements also affected the performance lo the

point where terminals would hang. Unexpected issues led to already scheduled resource being

expended investigating the problem. It was not at all clear whether system lock ups were a result

of an error in a component or the component technologies themselves.

Once component technologies had been identified as the cause, loading onto more powerful

terminals cured the problems of system lock ups. However, execution was still slow as a result of

the load placed- on the system by the component platform. This adversely affected trial results,

meaning that some aspects (attempts at real time communication) of trialing were not possible.

Solution

In a similar approach to that suggested in the Technology Assessment pattern, it is worthwhile

putting resources into trialing component technologies on the proposed target systems at the

outset of the project. While this may have a minor impact on start dates or resource allocation at

the beginning of the project, it could avert costly setbacks i f problems are not identified before

integration activities. As with the Technology Assessment pattern, resource invested at the start

of the project in investigating the use o f the component technologies can also reduce

implementation time as developers will gain experience and knowledge using the technologies.

Related to

The Systems Trialing pattern complements the Technology Assessment in seeking to prove the

correct functioning of all technologies prior to the start of a project. As an outcome from the

practices defined within the systems trialing pattern, Technology Selection could also be

considered synergistic.

Page 297

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

9.3.3.4 Techno logy Control
Applies to

Manager - identifying the need for control and scheduling trialing.

Developer - ensuring control is held over technologies used

Abstract

The control of technologies used is essential for a successful componeni-oriented development

project.

Problem

Component technologies are still very new in comparison to other development techniques. As

such, even more so than with other technologies, there are frequent new releases with new

features, bug fixes and enhancements. A common behaviour among software developers is to get

the latest version of any piece of development technology as this will be (it is assumed) the best.

The problem the manager faces is being able to determine which of the new releases (i f any) o f

each technology are required by the project and whether the new release should be applied to the

project. I f it is, there may be problems such as backward compatibility. Clearly, the manager

needs to ensure that all developers on the project are using the same version of development tools

to ensure compatibility among tools. Integration testing is a complex issue in component based

systems, and bug tracing can result in tracking through numerous components. It is very

important to avoid further confusion resulting from incompatibilities in, for example, the code

generated by different compilers.

Page 298

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

Example/experience

The culture of "newest version is best" among developers was demonstrated effectively within

case study A. The problem in this project was compounded by the disu-ibuted nature of the

project. It was difficult for managers to get direct control over developers as they were in

different geographical locations. A project specifecation of compiler and technology versions was

issued at the start of the project, but there was little control over tools usage once the project had

commenced. The complex nature of the project resulted in the use of advanced feature of

CORBA technologies. Unsurprisingly, this type of use exposed flaws in the CORBA

implementations that resulted in the need for bug fixes from the relevant CORBA vendors.

However, this was not carried out at a project level - individuals who discovered problems tended

to contact vendors independently, and received individual bug fixes. This resulted in numerous

versions of technologies being used to develop the project components.

Problems identified as a result of differences in technologies used included problems integrating

the CORBA platform (which was U-aced to a discrepancy in the minor version number of

compilers used) and inter component communication (traced to different CORBA

implementations - a conflict between single and multi threaded versions).

Solution

As with interface control, standard change control and communication processes are effective for

controlling component technologies. Any new version or technology introduced into the project

should come only with official approval and must be communicated to all project personnel. The

essential aspects are to ensure that all development personnel are using the same version of

technologies and that they are compatible.

Page 299

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

Related to

The pattern relates to the family of patterns related to version and change control, providing

discipline over variables within the development project, in particular. Component

Documentation and Interface Control. Additionally, we also have issues related to the

technologies used for the component-orientation project and, as such, we can also relate this

pattern to Technology Assess/nent and Technology Selection.

Page 300

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

9.3.3.5 Technology Selection
Applies to

Manager - selecting technologies for project development

Abstract

Technology selection should reflect project and organisational requirements, not necessarily the

latest fashion in component technology.

Problem

Component technologies are an evolving field that is affected by constantly developing standards

and emerging technologies intended to further improve development productivity, application

scalability, application integration, etc. Coupled with this continued evolution are the market

forces that drive development of the field - component vendors are looking for market share and

dominance in an emerging field. Therefore, when making decisions regarding whether to use

component technologies and i f so, which technologies to use, managers are faced with a

bewildering amount of information and hype. This information overload can reduce objectivity in

the selection o f technologies, resulting in selections that do not reflect the needs of the

organisation and the resources available.

As discussed in the Mixed Platform pattern, a common misconception in the field is thai

component-orientation can only be successful i f it is wholeheartedly embraced, replacing all

previous development technologies. Experience reflected in the Information Interface pattern has

shown that whereas component technologies excel in the distribution o f functionality, the

integration of different functional packages (i.e. components) and the benefits of software reuse

Page 301

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

that such integration affords, they do not in fact provide an optimal solution to the transfer of
information within networked systems.

Example/experience

The problem defined in this pattern may seem lo be somewhat obvious - of course technologies

should match requirements and experience within an organisation.

However, evidence from the case studies suggests that while one might hope such things would

be apparent to an organisation, in reality, this is not always the case. Case study A followed good

practice in carrying out an assessment of their requirements for a distributed software system, but

it suffered from being very much literature based. Also, and crucially, it was difficult to assess

against their requirements, as these were, at that stage, unclear to the project personnel

themselves. The result of this lack of rigour in technology selection impacted upon the entire

development process.

Case study B had a more considered approach to choice of technologies. Decisions were

informed by discussion with developers, both internal and external to the organisation that had

used the different technologies being considered. The selection of any technology where

organisation personnel had no experience was subjected to trialing prior to project use. This

enabled further evaluation of the technologies, provided the opportunity for personnel to get

experience with them, and enabled an assessment against project specific requirements.

Survey responses strengthen the opinion that requirement analysis should consider technology

selection. Many respondents had trouble learning about component-orientation, with technologies

being the major issue in the learning process. Additionally, respondents showed an average time

Page 302

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

to feel comfortable with component technologies of approximately 12 months. Without effective

requirement analysis that includes technology trialing, it is likely that developers wil l be working

on live project while still not feeling comfortable with the technologies they are using.

Solution

A solution to this problem lies in effective requirements analysis that considers:

• Project requirements: Does the project suit a component-oriented approach and is it

applicable to all areas of the project?

• System platforms: The underlying organisational platforms should play a large part in

the choice of component technologies. A core UNIX platform would be far better suited

to a CORBA approach, whereas a Windows platform would be better suited to DCOM.

• Resource available: In the event that existing personnel do have experience in certain

technologies, it should be exploited i f possible.

I f a component based approach appears appropriate, and it is felt that selected component

technologies might be effective, the Technology Assessment pattern should be considered, to

further confirm suitability and present the opportunity of personnel training.

Related to

The Technology Selection pattern provides a high level view of the reasoning underlying the

choice of component technologies. Technology Assesstnent and Systems Trialing contribute to the

overall approach to assessing organisational and project need. Additionally, patterns related to

the exploitation of component technologies to their strengths, such as the Information Interface,

Mixed Platform and Component Packaging can all contribute to Technology Selection.

Page 303

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

9.3.3.6 Information Interface
Applies to

Architect - in designing the system

Developer - in providing an efficient implementation of a design

Abstract

The information interface handles the distribution of information between elements in a

distributed system. Such interfaces do not suit a component-based approach.

Problem

Within a distributed system, there are two primary aspects of distribution - functionality and

information. The distribution of functionality relates to the spreading of processing requirements

across a network. In order to be able to share functionality between elements, a functional

interface needs to be defined between them. The distribution of information relates to the

communication of stnictured data among elements within the distributed system. While the

passing of information may result in an element carrying out some processing requirement, it is

not the communication itself that effects the call. In order to be able to share information between

elements, an information interface needs to be defined between them.

Component technologies provide the ideal environment for the distribution of functionality. A

functional interface can be defined using the interface definition language, and functionalit>'

implemented in the component technologies aid location, communication and marshalling.

However, the communication of structured information introduces communications capacity

penalties that can be increased by the use of component technologies. While an information

Page 304

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

interface can be implemented using component technologies, to do so can introduce unwanted

complexity and also adversely affect execution speed due to the communications overhead.

Example/experience

Case study A featured a total adoption of component technologies, implementing all elements as

CORBA objects and using a CORBA platform for the communication of both functionality and

information. This was a very effective strategy for distributed functionality. However, it became

apparent that the structures being developed for the communication of information were

becoming very complex, due in part to the complications of the language mapping of the

component standard. Further problems were discovered when executing the system, whose

performance suffered for having to pass large information structures using CORBA.

Case study B adopted a more conservative approach to the use of component technologies,

exploiting a component approach when distributing functionality across their network, but using

Internet technologies for the communication of information. Information interfaces were defined

as X M L Document Type Definitions. Information took the form of structured X M L based upon

this type definition. This provided a simpler and more efficient solution. A perceived problem of

mixing component techniques with other development technologies did not materialise.

Solution

Use different technologies to their strengths. Component technologies provide effective

mechanisms for the distribution of functionality where passed calls do not contain more than

function arguments. However, language mapping and communication overheads can result in

overcomplex solutions to the communication of information. Techniques such as X M L are

specifically developed to structure information and, when used on top of simple Internet

Page 305

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

protocols, can provide much simpler solutions. Type definition as specified within the X M L

standard can then be used to specify information interfaces in the same way that IDL is used to

specify functional interfaces.

Related to

The Information Interface pattern relates to other patterns addresses the optimal use of

component technologies. In particular, it compliments the Technology Selection and Mixed

Platforms patterns.

Page 306

A Strategy' for the Sharing of Experience in the Adoption and Use of Component Technology

9.3.3.7 Component Packaging
Applies to

Architect - identify the system elements that should be component based, and determine the

granularity of component packaging.

Abstract

Do not assume that everything should be implemented as components. Those elements that are

components should be of a size that lends itself to effective implementation.

Problem

It is easy to assume that, i f component technologies are to be used, everything should be wrapped

into component packages. This approach can lead to unnecessary complexity. As with all

software technologies, component techniques should be used only where appropriate - the

technologies are tools to aid implementation and reuse, not to drive the system realisation.

Additional issues arise from the packaging of functionality in component form. A common

question raised regarding both component- and object-orientation is the granularity of classes that

provide functionality. However in component-orientation, the greatest problem lies not in the size

of component classes, but the scale of the packages in which they are distributed. In order that a

class instance is created, the associated component package has to be loaded into memor>'.

Therefore, system efficiency can be adversely affected by individual packages for each

component class.

Effective reuse depends on the identification of dependencies among components (see

Dependency Identification pattern). The reuse potential of a component can be adversely affected

Page 307

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

by over-dependency as, obviously, a component cannot be reused without the components upon
which it is dependent.

Example/experience

This problem also belongs to the set of issues related to the need for adequate knowledge of

component techniques when addressing requirements analysis and system design. Our own

experience draw from different approaches to the analysis of requirements, with correspondingly

different outcomes.

Case study A focused initial design on the transformation of all requirements into system

components. As delegation" was used extensively an extremely dependent architecture resulted.

In terms of the packaging of functionality, the consequences of this approach were twofold.

Firstly the complexity of implementation was increased, and as a result, the processing overhead

on the mobile clients was extremely high. Secondly, the potential for reuse of any Case Study A

component was low. It was very difficult to isolate a component that could perform a function

without delegating some aspect of functionality to another component.

Case study B's more pragmatic and informed approach to the packaging of functionality is also

discussed in complementary patterns. Functionality was not aUvays packaged in component form.

Inter-related functionality concerned with the internal functionality of the domain in which the

organisation existed was implemented as an object framework. As core functionality was an

expectation within any software packages developed by the organisation, this approach was

Dclegalion is the mechanism by which an object or component draws on the functionality of a difTerent object or

component in order to fulfil their own functional request.

Page 308

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

deemed most suitable. Functionality external to the core domain, which would be required to

differing degrees by different sofhvare packages, was developed in a component form and

implemented within a single component package. Third party software, which was also used for

functionality outside of the organisation's own domain, was also component based ensuring ease

of integration.

In relation to the scale of component packaging, this point was most effectively demonstrated in

Case Study A, in which CORBA objects were generally contained in single object processes.

Therefore, in most cases, the creation of a new type of object required another process to be

loaded into memory. This could result in a large number of processes being resident in memory in

order to achieve simple functionality. In some cases this resulted in an overload of the hardware

and system crashes on the small client terminals.

Solution

The solution to the problems of component packaging and reuse can only result from careful

consideration of system needs and experience in the design and implementation of component

based systems.

On the basis of our own experience, we can draw a number of conclusions:

1. Component technologies are particularly effective at enabling parts of the system to be reused

in other projects, distributing a system over a network, and exploiting existing in-house and

third party software.

2. Aspects, such as system-specific user interfaces and processing peculiar to individual

elements of the system, derive no benefit from being componentised.

Page 309

A Strategy for the Sharing of Experience in (he Adoption and Use of Component Technology

3. Another area in which component technologies do not necessarily offer optimal solutions is
in the distribution of information.

4. Complementary functionality should be encapsulated within a single package, in order to

maximise reuse potential (through the reduction of dependent packages) and minimise the

number of packages resident in memory in an executing system.. Therefore, it is desirable to

have a few packages with a number of component classes, rather than provide each

component class in a separate package.

Related to

This pattern complements others that relate to the exploitation of component technologies to their

strengths, such as Technology Selection and Information Interface. Dependency Identification can

be considered synergistic to this pattern in that is also guides the architect in the identification of

components and their scale of packaging. Third Party Reuse can also be considered synergistic

for the same reason.

/'age 310

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

9.3.3.8 Third Party Reuse
Applies to

Manager - selecting appropriate technologies to enable reuse.

Architect - identifying of areas in which third-party components can be employed to good effect.

The architect can also identify specific third party instances.

Developer - interfacing third party resources to system functionality.

Abstract

Exploit the interoperability benefits of component technologies to draw from the resources of

others and focus your own developer effort.

Problem

A constant problem within the software-engineering domain is the problem of recreating existing

functionality within a new setting. Numerous examples of similar functionality can of^en be

found, especially with software from the same domain. Some examples of domain reuse can be

seen in the area of user interface development, where common toolkits for core functionality (i.e.

dialog boxes, buttons, etc.) are available for other developers to reuse.

However, the traditional problem with third party reuse is the learning curve when familiarising

oneself with others' software, as a result of source code reuse and non-standard interfaces. I f the

effort required to interface third party software to in house software products is too high, reuse is

not a viable option.

Page3\\

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

A purported strength of a component-oriented approach is the level of software reuse it affords.
Standard interfaces and interoperability protocols should enable a higher degree of reuse than that
afforded by other technologies. This pattern centres on the problems of third party reuse and
considers whether component-orientation does in fact enable a more effective reuse strategy.

Example/experience

Case study B involved a lot of third party reuse in the implementation - primarily because, as an

SME, they could not afford the developer effort outside of the organisational domain. In their

case, such an approach successfully enabled complex functionality to be introduced into their

applications with little developer effort. The use of component standards for the integration of the

components into the applications aided in reducing the amount of integration effort required. In

most cases, standard component packages could be easily integrated into their software with no

concern for the specific implementation.

We can also identify the benefits of component-orientation for sofhvare reuse from the

practitioner survey, where over seventy percent of respondents agreed to some degree the

component-orientation made software reuse easy. Further analysis of the responses identified

differences in opinion depending upon the selected component technologies - COM reuse seemed

to be easier to achieve than CORBA reuse. This also reflects our own findings, Case Study A

achieving a low degree of reuse with CORBA technologies, while Case Study B achieved a high

level of reuse using COM techniques.

Solution

Third party reuse is a powerful way to exploit another developer^s domain knowledge to help

meet our own requirements. The use of a component standard makes integration far easier than is

Page3\2

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

possible with, for example, an object framework, where interfaces are non-standard and objects

have to be compiled into the main application. I f the third party sofhvare is written to the same

component standard, component assembly tools can be used to further simplify integration.

Third party components are especially beneficial outside the specific area of the organisation, or

in a horizontal domain, such as graphical user interfaces or network communication. In these

cases, while it is possible to use in-house developers to achieve the required functionality, buying

in can save time and effort. The available resources are probably better utilised implementing

domain specific components.

Third Party reuse can only be effectively achieved through the combined effort of project

personnel - the choice of platform will affect the degree to which third party reuse is available.

The identification of areas for third party reuse is essential to focus developer effort upon novel

aspects of the system, and the selected third party products have to be successfully interfaced into

the system, making correct use of the component technologies.

Related to

This pattern relates to Technology Selection, as it will guide reuse strategy. Component

Documentation is synergistic to Third Party Reuse as it should reflect the different elements of

the system, distinguishing those developed in-house with those from third party sources.

/'age 313

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

9.3.3.9 Depeni jency Identification
Applies to

Manager - Relies on the architect to identify dependencies that must be taken into account in

development schedules

Architect - Identifies dependencies in the system structure and advises managers accordingly

Abstract

Components which client and other component developers require in order to test their own

developments must be scheduled accordingly.

Problem

Within a component based system, there will invariably be components upon which others

depend to be able to carry out their function. We are faced with a tension between two

philosophies within the field of component-orientation - firstly, we have stated that an interface

definition in a contract between component server and component clients. With that definition it

is possible for the client developer to work independently of the component developer, knowing

that the client and component will integrate as both have worked from the same interface

specification. However, we must also acknowledge the need for the client developer to unit test

their own work prior to integration. While code walkthroughs and comparisons with design

documentation will aid in this testing, effective unit testing can only be carried out with

dependent components in place. Therefore, they are dependent on delivery of the implemented

component in order to ensure effective testing. Without the dependent components, can the

developer state that their client/component has been fully tested prior to integration?

/'age 314

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

Example/experience

Case study A defined a layered architecture where communication passed through several

components, each performing some function before delegating responsibility to the next

component layer. This architecture resulted in a large number of inter component dependencies.

Development o f components was generally undertaken in isolation with reliance placed upon

interface definition and other design documentation. While some dependencies had been

identified, this was at a high level - it was acknowledged that the CORBA platform needs to be in

place for testing, and was scheduled ahead of component development. However, there was no

dependency identification within the layered component architecture itself. Al l component

development was scheduled for commencement and delivery at the same time.

A requirement on project managers was that developers guaranteed unit testing prior to delivery

for integration testing. As dependent components were not available for unit testing, a lot was

carried out with dummy components - simple implementations that would return expected

values. Components were delivered for integration as "tested as possible", but without having

been tested against the real dependent components.

The inevitable outcome of this approach was an extremely problematic integration process. Many

components did not function as expected, and had to got back for further refinement.

Solution

The solution to this potential problem is straightforward - architects of the system are required to

identify dependencies and liase with project managers scheduling development. Scheduling

should ensure that those components upon which others rely are available prior to integration. A

staggered implementation plan should account for dependencies and therefore aid testing

Page3]5

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

activities. An additional benefit of this planning is thai component developers wi l l be able to

identify problems with interfaces prior to them being used by the client developer. However, this

solution assumes a simple hierarchical dependency graph, alternative strategies would have to be

used for more complex dependencies.

Related to

Dependency Identification complements both the documentation process and post-

implementation- activities. As such it can be considered synergistic to the Component

Documentation, as it will affect the documenting of the design process. Component Testing and

Deployment Resources can be considered to complement the Dependency Identification pattern

as these wil l be directly affected by effective dependency identification. Finally, Component

Packaging complements Dependency Identification with relation to the potential for component

reuse.

Page3\6

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

9.3.3.10 Component Documentation
Applies to

Manager - putting in place the facilities for change control and version management

Architect - initial production of documentation and revision of documentation

Developer - feeding back changes in implementation that should be reflected in design

documentation

Abstract

Documentation from design activities should reflect the current system state to be of value in

implementation, testing and deployment. It must be subject to change control in order to avoid

design conflicts.

Problem

The issue of documentation is important in any development project. However, it can be argued

that component-orientation brings an even greater requirement for documentation that accurately

represnts both initial state and current system models. The nature of component-orientation

should promote isolated development activities and encourage a greater level of third party reuse,

due to the interoperability afforded by the technologies. Effective documentation is therefore

essential to keep track of component relationships, interfaces between system elements and

dynamic behaviour.

Example/experience

We can draw from all three strands of study to illustrate the issues in component documentation.

Firstly, the practitioner survey gave a very positive response to the question "Component

Page3\7

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

orientation encourages design", with almost ninety percent of respondents agreeing lo some

degree. This refiects theory developed from the case studies identifying the importance of design

documentation for the development of component-based systems.

Case Study A's rigid development process specified activities for both the static and dynamic

specification of the project architecture, and committed substantial project resources to those

design activities. Static modelling used OMG IDL for interface definition and OMT [135] models

for internal component representation. Dynamic modelling used SDL for interaction diagrams

and generated Message Sequence Charts (MSCs) that proved invaluable for component

development. As component developers were carrying out implementation in isolation, in most

cases in different geographical locations, good design documentation was essential in identifying

external interactions that needed to be implemented. General use of MSCs was invaluable to

developers in determining their component's dynamic behaviours. However, problems arose

when developers encountered problems with the design and updated their o\vn version of

documentation to reflect changes. In many cases these changes were not communicated to a

project wide audience, resulting in different versions of particular aspects of design

documentation.

The biggest problem with such unconsolidated changes came during integration and deployment.

Integration exercises were the first activities to discover the discrepancies in design

documentation. Working from official document versions sometimes resulted in conflicts

between intended behaviour and implemented behaviour. This resulted in unscheduled revision

and re-implementation activities. The most problematic outcome from these discoveries was a

complete revision of documentation, working back from implementation. This meant that the

"definitive" set of design documentation was only in place following implementation.

/'age 318

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

Case Study B also committed significant resources to design activities. Design in Case Study B
had the additional complexity of integrating a high degree of third party functionality into the
systems, as well as using different development technologies. In this case, design documentation
was essential to represent the interfacing of system elements and to keep track of internal
components, third party components, object frameworks, information interfaces and platform
technologies. A range of design techniques were used - UML for object and component
relationships and interactions, either Microsoft IDL or Visual Basic class definitions for interface
definitions and X M L type definitions for information interfaces. Documentation was more
effective for implementation and deployment in this case as iteration in the development process
encouraged documentation review that would reflect changes brought about through
implementation activities. Therefore, when systems were being deployed, the documentation did
reflect the current system state.

Solution

Good design documentation is essential in component-based projects to ensure project-wide

knowledge regarding all system elements is achieved. Important elements include:

• Static models: The obvious part of static models is interface definition, which defines the

contract between component and clients. However, equally important is component

composition documentation, which should represent the internal construction of the

component. This is valuable for integration and deployment activities.

• Dynamic models: Defining the interactions between system elements and changes of

stale resulting from these interactions.

Page3\9

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

• Platform model: Valuable in showing where the different tools used at all levels of the
system.

Techniques for the design of object-orientation systems are entirely suitable for component-based

development. Some approaches, such as UML now include techniques specific to component

based development, such as external interface definition and deployment diagrams that model

component packaging. However, what is more important than the choice of technique is that all

project personnel understand the documentation methods used.

Finally, but crucially, effective version and change control must be applied to documentation to

ensure project wide knowledge of the system stale. Changes in documentation are essential i f it is

to represent current system state, but changes should be carried out through the correct process in

order that all project personnel are aware of the changes. As with other elements that require

change and version control in a component based project, standard software engineering tools and

techniques are suitable.

Related to

With its relationship to version and change control within a component-based project, this pattern

is synergistic to both Interface Control and Technology Control. In its reflection of system state,

it also complements both Component Packaging and Dependency Identiftcation.

Page 320

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

9.3.3.11 Interface Control
Applies to

Manager - having to provide the mechanisms for the control

Architect - controlling initial specification

Developer - being responsible for change request and communication when required

Abstract

The interface defmition defines the contract between component and client developers. Change of

interface definition can have an adverse impact on the project unless rigorously controlled.

Problem

The interface definition (or definitions) of a component provides the means for clients (whether

these are simple clients or other components) to access component functionality. It is often stated

that the interface defines the contract between component and client developers. A strength of the

component approach is that it allows component developers to work in isolation as long as they

have the required interface definitions. Using the underlying component technologies,

theoretically, all should be able to be integrated as all have used the same interface specifications.

The interface definition is, therefore, the crucial aspect of component development. A change to

an interface, being used by client developers, can have disastrous consequence for a project,

making integration impossible.

Page 321

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

Example/experience

While the pattern may, like some other patterns, seem like an obvious and fundamental concern

for the managers of a component based project, evidence from our research would suggest that

this is not always the case.

Case study A had an architectural design that led to numerous inter-component dependencies (see

Dependency Identification partem). Additionally, a number of standard interface definitions

provided type information for information structures passed throughout the architecture. As such,

the interface definitions were extremely important.

Unfortunately, in a number of cases, incomplete specification and design lead to changes in

functionality. In some cases, there was also an impact upon common type definitions. In some

cases, developers felt the need to change interfaces in order to be able to carry out their function

effectively within the system. Communication of these changes was generally done on an

informal basis, with emails sent out to those developers who were using the interface. Inevitably,

as no formal system was in place, developers were sometimes missed of f the list to whom the

change was communicated, resulting in different developers using different versions of the same

interface.

The inflexible nature of the development process used by the project meant that these issues were

not discovered until integration testing, and consequently many late changes had to be made. This

had an extremely detrimental effect on the schedule.

Page 322

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

An assumption that this was an isolated issue case was disproved upon surveying practitioners. A
number of respondents also indicated issues related to the version control of interface definition
as one of the problems experienced when using component technologies.

Solution

The control of the interface includes two elements of standard software engineering practice:

• Version control: Ensure the current versions of the interface are available to all

developers, and to ensure that a current version cannot be changed when others are using

it.

• Change control and communication: Any change should be put through a formal

change request and review process. Any changes authorised should be communicated in

such a way that all developers are aware of the change and are aware of the new version

of the interface.

Standard methods can be applied: component-orientation does not introduce anything that is not

addressed by existing version and change control systems.

Related to

The issues o f version and change control also affect other elements of the component oriented

development project that are addressed in the Techiwiogy Control and Componettt

Documentation patterns.

Page 323

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

9.3.3.12 Component Testing
Applies to

Managers - scheduling activities and managing resources

Developers - responsible for carrying out testing strategies

Abstract

Traditional testing activities can be affected by the nature of component-orientation.

Technologies aid, but do not replace these activities.

Problem

The conventional split into testing of individual elements and integration testing is equally

relevant to component-based systems. However, perhaps even more than with traditional systems

development, iteration is desirable. Other patterns within this catalog address the philosophy of

working in isolation within a component-based project. The belief is, due to the interoperability

afforded by component technologies, as long as design documentation is available and scheduling

is able to cope, individual components can be developed in isolation and integrated effectively.

However, it does result in integration becoming perhaps the most problematic activity in the

development process - this will usually be the first time that developers can see whether

requirements have been successfully transformed into a real system. Componenl technologies do

not of themselves prevent or solve problems with design or implementation, and issues concerned

with the interoperability of components, in particular in systems where there is a great deal of

inter-component dependency, may not be able to be tested until integration.

Page 324

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

Example/experience

In considering the testing approaches used in the case studies, Case Study A suffered from a

naivety in their approach to system integration. The assumption that the component technologies

would ease implementation was, to a point, justified. However, while the actual inter-component

aspects were eased by the technologies, the problems with design, which could not be identified

until integration due to a per-component level of implementation, were not identified until the

integration activity. This impacted a great deal on the development schedule, as no provision was

made for feeding back into llie development process.

Case study B adopted a far more cyclical approach to its development process (see Figure 9-4),

and did not assume that development could be carried out in isolation, relying on component

technologies to ease implementation. With this approach, integration was an ongoing process

throughout system construction, and fed problems back into the implementation activity as they

arose.

Solution

The overall solution to this problem is awareness and vigilance in the integration process. I f there

is an over-reliance on component technologies, with developers working in total isolation, there

are likely to be problems with integration. Countermeasures should be put in place to deal with

the problem. The adoption of an iterative process, such as Boehm's spiral model [19] ensures

progressive integration and scheduled risk analysis to identify areas of potential problem prior to

full system deployment.

Page 325

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

Finally, the impact of integration testing can be reduced through the reduction of inter-component

dependencies, which can result in unit testing being a more effective activity within the

development process.

Related to

This pattern shares concerns with Deployment Resources, regarding the philosophy of the

component-based approach. Dependency Identification also plays a crucial role in aiding the

integration process, as it can greatly reduce the need for inter-component integration.

Page 326

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

9.3.3.13 Deployment Resources
Applies to

Managers - for the scheduling of resources.

Architects - to carry out deployment activities.

Developers - to carry out the deployment activities.

Abstract

Adequate resources should be put into deployment activities. Good systems knowledge and good

understanding of the technologies involved are needed.

Problem

The deployment of a software system can be problematic as it attempts to integrate system

elements into a live environment. Component tools that aid the distribution and registration of

components across a distributed system address the technical aspects of the deployment process.

Further component services can also aid in system deployment.

However, two problems arise from a component-based approach to deployment. Firstly, in order

to use component tools effectively, deployers have to be skilled in the use of the technologies and

also the underlying concepts. Additionally, system architects who have an overview of the

implementation should be available to advise on construction of the system. Managers should not

assume that automation of deployment based on the tools available will render the process trivial.

Page 327

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

Example/experience

The issue of deployment was addressed in the survey of component developers, with mixed

results. Opinion among developers as a whole was fairly balanced, with a slight bias toward the

view that component orientation does make deployment easier. Comparison of experience with

different technologies showed no pattern in issues related to specific component implementation.

It would seem that many developers have experienced both good and bad outcomes from the

deployment of component based systems.

Case study experience was similar. It is certainly true that component technologies do aid the

technical process of deployment. However, the smoothing of technical obstacles should not be

seen as a reason to under resource the deployment activity.

In Case Study A there was little resource committed to deployment, the assumption was that, as

the component technologies would aid in the integration of the system, deployment would be a

simple assembly. In reality, it was a problematic area, as it was still identifying problems arising

from discrepancies in design documentation. It was also evident that those deploying the system

had problems relating to both system components and the technologies in general.

Solution

A solution to the problems of deployment with componenl based systems lies in ihe identification

of suitable personnel and realistic scheduling for the deployment activity.

A conclusion that can be reached from the problems experienced in this case study is that people

with both systems knowledge (understanding how system elements should be constructed and

Page 328

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

how they inter-relate) and also developers skilled in the use of componeni technologies should be
on hand to ensure effective deployment.

Scheduling for deployment should also consider the potential for problems, as it is evident that

deployment may uncover errors that remained hidden in the system implementation. While

integration testing should address the issues concerned with component interfacing and

technology issues, deployment may identify behavioural problems i f testing has not been

rigorous.

Related to

Deployment Resources aims to raise awareness of issue in the deployment of component-based

systems. It has relationships with Component Documentation and Dependency Identification in

that such issues wil l impact upon the relative success of system deployment.

Pagen9

A Strategy for the Sharing of Experience in the Adoption and Use of Component Technology

9.4 Summary

In the previous chapter, a pattern-based approach was identified as the most suitable for the

development of results from the research programme into a usable tool for organisations wishing

to develop knowledge in the adoption and use of component technologies. A pattern language

developed from the findings of the research programme forms a body of knowledge that can be

used to promote understanding about component technologies. By placing the patterns in a

context describing the nature in which they were developed, the learning process is further aided

by providing the learner the opportunity to be able to relate their own needs to the origins of the

language.

Page 330

Conclusion

10. Conclusion

The research presented in this thesis aimed to assess the impact that component technologies

make upon software development. It also aimed to develop assessment findings into a form that

would be usable by practitioners who wished to adopt and use component technologies

themselves. In order to develop an effective strategy for these aims, three bodies of knowledge

were reviewed:

1. In order to determine an effective strategy for assessment, a review of previous work in

assessing software technologies was carried out.

2. In order to effectively understand how the results could be developed, a review of previous

work in the adoption of technology was carried out

3. In order to establish a baseline for consideration of research findings, a review of current

opinion regarding component technologies was carried out. In contrast to other reviews

carried out, this focused upon industrial literature. This was due to the lack of academic work

in the area [98] and the industrial drivers in the development of component-orientation.

Drawing from the review of assessment approaches, two techniques were used for the collection

and analysis of information related to assessing the effect of component-orientation on sofhvare

development. Case study research enabled an in depth practitioner-focused investigation of the

issues in the adoption and use of component systems within two large-scale projects. These case

studies led to the development of theories related to the effect of component-orientation within

each case. However, as is common with case study techniques, it was difficult to generalise

findings. Therefore, another research approach was used to investigate commonality of

experience. Practitioners with leading edge component oriented development experience were

surveyed in order to identify common issues and phenomena from the case studies. The

Page 331

Conclusion

surveying approach guided the identification of core problems in the adoption and use of

component technologies and focused the development of results.

The development of results drew from the review of adoption techniques, and additional work

considering previous approaches to the packaging of information related to software technologies.

A pattern approach was considered the most suitable based upon this review and also the nature

of results - theories related to the use of component technologies and a body of experience in

their use. However, the pattern approach was augmented by surrounding them in a context that

enabled users to be able understand their origin and be able to see what degree of relation there

was between the context and their own needs. A part of the context drew from the development of

a reference model for component platforms - another tool to aid in the education of component-

orientation. The reference model is influenced by the aims of other similar models in that it

provides an implementation independent view of a sofhvare domain. It also enables a comparison

of case studies against defined criteria. Initial industrial feedback regarding the package was

positive, highlighting the effective structuring of "best practice" without prescription.

10,1 Research Achievements

In the thesis introduction, we discussed findings by the SWEBOK project (see section 1.2)

concerning the problem of ascertaining the effect of component orientation upon the development

process. More importantly, the project also stated that it was difficult to understand how to

present knowledge regarding component integration, and how that knowledge related to other

information within the software-engineering field. The findings from this research programme

challenge current thinking regarding the adoption and use of component technologies. While such

thinking places great importance on distinct technologies and a total embracing of a component

approach, the need for knowledge and understanding of concepts has been highlighted, and also

demonstrated the applicability of component technologies in tandem with other development

Page 332

Conclusion

technologies. Therefore the achievements of the programme can be viewed in terms of
progressing understanding related to the adoption and use of component technologies. Thus, the
research can be seen to provide some response to the problems the SWEBOK project has
identified.

Additionally, we define three distinct outcomes from the research:

1. An assessment of component technologies based upon practitioner focused research. The

assessment outcomes provide a detailed analysis of the ways in which component

technologies can affect a software development project. A significant aspect of the results is

that they contradict a lot of current belief regarding the use of component technologies.

2. A reference model for component platforms that has value in two ways. Firstly, it can support

learning by isolating the concepts of component-orientation from implementation specifics. It

is also a valuable tool for comparative analysis of approaches to the use of component

technologies.

3. A contextualised pattern language intended for use as an organisational learning tool for

companies wishing to adopt and use component technologies. The language allows adopters

to learn from the experience of practitioners without having to follow a prescriptive route.

The language is placed in a context that relates the nature of the research surrounding their

development. The context also defines a number of points of reference (for example,

development process and component platform) to further aid in the ability of users to relate

the language to their own tacit knowledge.

Page 333

Conclusion

10.2 Research Limitations

In considering the limitations of the research presented in this thesis, we examine the research

method and also the research findings.

The research method has enabled an in depth analysis of the affect of component technologies

upon two software development projects. The value of a case study approach is that it enables

research to be carried out within a practitioner context without interfering with the environment.

However, the obvious problem with such a method is the level of generalisability that can be

drawn from the findings. It is difficult to determine, based solely on case study outcomes, what

findings represent component problems and what represent phenomena. While there is opinion

that there is value in learning from phenomena (for example, rare event learning [5]) it is often

argued that theories developed from a case study should be tested using a different research

technique. It would certainly be difficult to develop the results into a learning tool based solely

upon the case study findings, as it would be difficult to focus upon common problems. However,

the practitioner survey does address this issue to a degree and has enabled a focus of the

development of results.

In considering the research findings, there are potential issues with both the theories developed

from the assessment and also the pattern language. The issues with the theories are related to the

research method, and discussed above. With respect to the pattern language, it could be argued

that some of the solutions discussed within the pattern language draw from classic software

engineering issues, such as version control and change management. While this could be

considered a problem in the development of knowledge related to a supposed leading edge

technique, it should be considered against the aim of the research. This was to assess how

component technologies affect software development. A philosophy developing from current

Page 334

Conclusion

thinking about component-orientation is that it should completely change the way that software is
developed by organisations. The research findings, in particular the reference to classic sofhvare
engineering approaches when addressing some of the potential problems in using component
technologies, highlights the fact that while component-orientation undoubtedly does affect the
development process, in some cases existing techniques provide suitable solutions.

10.3 Future Work

In further developing the research aims, two aspects of development are proposed:

I . Further validation of the pattern language: Initial feedback from industrial use of the

package has been very positive. This feedback has been used to refine the package to focus

more upon the use of patterns to share experience. Greater use of the package within the

organisation should result from an invited presentation to technical management early in

2001. Further refinement should result from this work. However, it would be of value to

assess the use of the package within other organisations to examine the transferability of the

knowledge presented. The context around the language is intended to allow adopters to

determine the degree of relevance of results to their own work. Therefore, future work wil l

disseminate the package further through its use in other organisations and also through the

publication of results to date.

2. Quantitative measurement of component-oriented projects: The research method chosen

for this programme has enabled an in-depth assessment of the impact of component

orientation and a richness of evidence drawing from numerous sources. However, the

qualitative nature of the evidence does not enable any accurate quantifiable measures related

to issues such as development productivity when using component-orientation. Such

measurement was not possible in the case studies - to try and introduce measurement

programmes to the studies would contradict the independence of practice and assessment.

Page 335

Conclusion

However, now that an unquestionable effect on software development has been established,

there would be value in developing a Quality Improvement Paradigm [11] approach,

identifying aspects for measurement and applying the GQM technique to assessment.

10A Technology Review

Finally, in concluding this research project, we return to the initial aim - to determine how

componenl technologies affect sofhvare development. Our research has unquestionably identified

a number of issues that result from the adoption and use of component technologies that

contradict existing beliefs regarding component-orientation. What should be considered is what

component orientation is trying to achieve - is it a whole change in sofhvare development, or is it

just another contributing technologies. We can view reuse coming from interoperability as the

goal o f component standards - a component client should be able to interoperate with a

component regardless of location and implementation. To a certain extent our research has

identified that practitioners have experienced such benefits from component technologies.

However, these benefits come at the expenses of complexity, especially i f an organisation wishes

to become a component producer. It should also be questioned whether component technologies

provide the optimal solution to interoperability. Certainly, our second case study investigated and

successfully used alternative approaches. The Simple Object Access Protocol (SOAP), being

developed by IBM, Microsoft and DevelopMentor also demonstrates a move away from "pure"

component approaches such as CORBA or DCOM.

It is unquestionable that component-orientation does play a part in the future of software

development - the interoperability benefits for the component consumer are clear to see when one

considers the number of components available to any user via a typical Windows installation.

Whatever the level of underlying technology, the interoperability afforded by a component based

approach affords large improvements in development productivity. However, as identified from

Page 336

Conclusion

the research programme, the efTectiveness of the technology is related to the level of

understanding about i i . Therefore, we conclude that whatever the effects of using the technology,

effective adoption has to come from the development of knowledge about its use.

Page 337

References

11. References

1. Abernethy, T. Munday, C. (1995). "Intelligent Networks, Standards and Services" British

Telecom Technology Journal 13,2. April 1995.

2. Alexander (1979). "The Timeless Way of Building". Oxford University Press.

3. Alexander, Ishikawa & Silverstein (1997). "A Pattern Language". Oxford University Press.

4. Arnold, Robertson & Cooper (1992). "Work Psychology: Understanding Human Behaviour

in the Workplace". Pitman.

5. Attewell (1996). "Technology Diffusion and Organizational Learning". In Cohen & Sproull

(eds). (1996). "Organizational Learning". Sage Publications.

6. Axelrod, R. (Ed.) (1976). "Structure of Decision". Princeton University Press. 1976.

7. Basili & Green (1994). "Software Process Evolution at the SEL". IEEE Software July 1994.

8. Basili & Lanubile (1999). "Building Knowledge through Families of Experiments" IEEE

Transactions on Software Engineering July/August 1999.

9. Basili (1996). Editorial. Empirical SofUvare Engineering vol. 1. no. 2.

10. Basili et. al (1995). "SEL's Software Process-Improvement Program". IEEE Software

November 1995.

11. Basili, Caldiera, McGarry et. al. (1992). "The Software Engineering Laboratory - An

Operational Software Experience Factory". Proceedings of the 14*'' International Conference

of Software Engineering. ISBN 0-81862-6879.

12. Basili, Selby & Hutchens (1986). "Experimentation in Software Engineering". IEEE

Transactions on Software Engineering vol.12 no. 7. July 1986.

13. Basili, Zelkowitz, McGarry et. al. (1995). "SEL's Software Process Improvement Program".

IEEE Software November 1995.

14. Batistaios, S. (ed.) (1996). "Component Modelling and Design Guidelines". DOLMEN

Deliverable MCD2. http://www.fub.it/dolmen/

References

15. Bell Labs (1998). "Organizational Patterns". http://\vw\v.bell-labs.com/cgi-user/OrgPattems/

16. Benbasat, Goldstein, Mead (1987). "The Case Research Strategy in Studies of Information

Systems". MIS Quarterly, September 1987.

17. Bernstein, P. (1996). "Middleware: A Model for Distributed Systems". Communications of

the ACM 39, 2.

18. Bhattacherjee & Gerlach (1998). "Understanding and Managing GOT Adoption". IEEE

Software May/June 1998.

19. Boehm (1988). "A Spiral Model of Software Development and Enhancement". IEEE

Computer, vol. 21, no. 5. May 1998.

20. Bonofede, V. (ed.) (1998). "Execution of the Final Trial", DOLMEN Deliverable TRD4.

http://ww\v.fub.it/dolmen/

21. Booch, G. (1987). "Software Components with Ada", Benjamin/Cummings. ISDB 0-8053-

0609-9

22. Booch, G. (1994). "Object-Oriented Analysis and Design with Applications, 2"'' Edition",

Benjamin/Cummings Publishing Company. ISBN 0-8053-5340-2

23. Booch, G. (1997). "Software as a Strategic Weapon". Rational Software,

http://www.rational.com

24. Briand, Emam & Melo (1999). "An Inductive Method for Software Process Improvement:

Concrete Steps and Guidelines". Appearing in Emam & Madhavji (1999) (eds.). "Elements of

Software Process Assessment and Improvement". IEEE CS Press.

25. Brooks, F (1987). "No Silver Bullets - Essence and Accident in Software Engineering".

Computer 20,4. April 1987.

26. Brooks, F. (1995). "No Silver Bullet Refired. In the Mythical Man Month", 2"̂ Edition.

Addison Wesley.

Page 339

References

27. Brown & Wallnau (1996). "A Framework for Evaluating Software Technology". IEEE
Software September 1996.

28. Brown, J.(I998) "Software Strategies - The Component Decision", The Forrester Report.

htlp://w\vw.forresier.com/

29. Brown, Malveau, McCormick & Mowbray (1998). "Antipattems: Refactoring Software,

Architectures and Projects in Crisis". Wiley Computer Publishing. ISBN 0-47I-I9713-0

30. Bruno, G. (ed,) (1996). "Evaluation of Service Architecture Frameworks". DOLMEN

Deliverable ASDl . http.V/www.fub.it/dolmen/

31. Bruno, G., Lucidi, F. (eds.) (1997). "Service Machine Components (volume 1) - Support of

Personal Communications". DOLMEN Deliverable MCD3voll . http://w\vw.fub.it/dolmen/

32. Bruno, G., Lucidi, F. (eds.) (1997). "Service Machine Components (volume 2) - Application

Support". DOLMEN Deliverable MCD3vol2. http://www.fub.it/dolmen/

33. Butler Group (1998). "Component-based Development. Application Delivery and Integration

Using Componentised Software - Strategies and Technologies".

http://www.butlerforums.com/cbdindex.htm

34. ButlerGroup (1998). "Microsoft Make Hard Work of Distributed Objects!!". Butler Group

Newsletter December 1998. http://www.butlerforums.com/cbdindex.htm

35. Carrington (2000). "Software Engineering Infrastructure". Appearing in SWEBOK (2000).

"Guide to the SWEBOK Stoneman version 0.5". http://ww\v.swebok.org

36- Chappell, D. (1996). "Understanding ActiveX and OLE". Microsoft Press. ISBN 1-57231-

216-5

37. Chappell, D. (1997). "The Next Wave - Component Software Enters the Mainstream".

Chappell & Associates. http://ww\v.chappell.com

38. Computer Weekly (1998). "Forget Objects, Use Components". Computer Weekly, 19

November 1998.

Page 340

References

39. Computing (1998). "Merger would be a Beans Feast". Computing Magazine, 26'*' February
1998.

40. CORBAWeb (1998). "The CORBAScript Lanaguage". hnp://corbaweb.iifl.fr/CorbaScripty

41. Cox, B. (1990). "Planning the Software Industrial Revolution". IEEE Software. November

1990.

42. Cox, B. (1990). "There is A Silver Bullet". Byte October 1990.

43. Crossan, Lane & White (1999). "An Organizational Learning Framework: From Intuition to

Institution". Academy of Management Review vol. 24 no. 3. 522-537.

44. Cunningham & Kent (1987). "Using Pattern Languages for Object Oriented Programs".

Appearing in Meyrowitz (Ed.) (1987) Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA'87), Orlando, Florida, Proceedings.

45. Curtis, Kellner, Over (1992). "Process Modelling". Communications of the ACM, September

1992.

46. Denning, A. (1996). "OLE Controls Inside Out". Microsoft Press. ISBN 1-55615-824-6

47. Drouin (1999). "The SPICE Project". Appearing in Emam & Madhavji (1999) (eds.).

"Elements of Software Process Assessment and Improvement". IEEE CS Press.

48. Eisenhardt (1989). "Building Theories from Case Study Research". Academy of Management

Review vol. 14 pg. 532-550. 1989.

49. Emam (2000). "Description of the SWEBOK Knowledge Area Software Engineering Process

(version 0.5)". http://www.swebok.org.

50. Eveland & Tornatzky (1990). "The Deployment of Technology". In Tornatzky & Fleischer

(eds.) (1990), "The Processes of Technological Innovation". Lexington Books.

51. Fenton, Pfleeger & Glass (1994). "Science and Substance: A Challenge to Software

Engineers". IEEE Software July 1994.

Page 341

References

52. Fichman & Kemerer(1993). "Adoption of Software Engineering Process Innovations. The
Case of Object-orientation". Sloan Management Review. Winter 1993.

53. Fichman & Kemerer(l997). "Object Technology and Reuse, Lessons from Early Adopters."

Computer vol. 30 no. 10 October 1997.

54. Fichman & Kemerer(1997). "The Assimilation of Software Process Innovations: An

Organizational Learning Perspective". Management Science October 1997.

55. Forrester Corporation (1996). "The Forrester Report - Internet Computing Voyage",

http://w\vWiforrester.com

56. Fowler & Patrick (1997). "Experience Using a Benchmarking Workshop to Explore One

Route to Practical Technology Introduction". From McMaster et. al (eds.) "Facilitating

Technology Transfer through Partnership - Learning from Practice and Research".

Proceedings of IFIP TC8 WG8.6 International Working Conference on Diffusion, Adoption

and Implementation of Information Technology. Chapman & Hall.

57. Fowler & Patrick (1998). "Transition Packages for Expediting Technology Adoption: The

Prototype Requirements Management Transition Package". The Software Engineering

Institute Technical Report CMU/SEI-98-TR-004.

58. Fowler & Scott (1999). "UML Distilled". Addison Wesley. ISBN 0-20165-783X

59. Furnell, S. (ed.) (1997). "Definition of Resource Adapters". DOLMEN Deliverable MND3.

http://www.fub.it/dolmen/

60. Gamma, Helm, Johnson & Vlissldes (1994). "Design Patterns". Addison-Wesley.

6L Gergen, K.J. (1995) "Social Construction and the Educational Process". In L.P. Steffe &

J.Gale (Eds) "Constructivism in Education". Hillsdale, New Jersey: Lawrence Erlbaum

62. Gibbs W. (1994). "Software's Chronic Crisis". Scientific American September 1994.

63. Glass (1994). "The Software Research Crisis". IEEE Software November 1994.

64. Grimes, R. (1997). "DOOM Programming". Wrox Press. ISBN 1-861000-60-X

Page 342

References

65. Haines, Canrey, Foreman (2000). "Component Based Soft\vare Development/COTS
Integration". Software Technology Review. The Software Engineering Institute.
http://www.sei.cmu.edu/str/descriptions/cots_body.html

66. Herbert, A. (1994). "An ANSA Overview". IEEE Network, January/February 1994.

67. Herbsleb & Grinter (1999). "Architectures, Co-ordination and Distance: Conway's Law and

Beyond". IEEE Software September/October 1999.

68. Hoffmann (2000)." Software Component Reuse by Adaptation." Ph.D. Theseis. Cork

Institute of Technology, Ireland. February 2000.

69. Hope, S., Hammac, J. (eds.) (1996). "Design Requirements for the Final Trial". DOLMEN

Deliverable TRDI . http://www.ftib.it/doImen/

70. Hope, S., Reynolds, P., Rhodes, S. (eds.) (1997). "Detailed Design of Final Trial". DOLMEN

Deliverable TRD2. http://ww\v.fub.it/dolmen/

71. Houdek & Kempter (1997). "Quality Patterns - an Approach to Packaging Software

Engineering Experience". ACM Software Engineering Notes. 22, 81-88.

72. Houdek (1997). "Software Quality Improvement by using an Experience Factory". Appearing

in Leber, Dumke & Abran (eds.) (1997). "Software Metrics - Research and Practice in

Soft^vare Measurement". Deutscher Univerrsitatsverlag.

73. Humphrey (1989). "Managing The Software Process". Addison-Wesley.

74. lona Technologies (1999). "CORBA 3. -The Way Forward for Middleware".

http://www.iona.com/

75. lona Technologies (1999). "Orbix Product Guide", http://www.iona.com/orbix/index.html

76. ISO (1984). "Basic Reference Model for Open Systems Interconnection". ISO 7498, 1984.

77. ISO (1991). "Quality Management and Quality Assurance Standards - Guidelines for

Selection and Use". ISO 9000-3, 1991.

Page 343

References

78. ISO (1993). "Reference Model for Open Distributed Processing". Document number
ISO/IEC JTCl/SC 2I/WG7. international Standards Organisation.

79. IS0(I997). "Introduction to ISO." http://www.iso.org/infoe/intro.html

80. ITU-T (1993). "Message Sequence Charts (MSC)". ITU Recommendation Z. 120.

81. ITU-T (1994). "CCITT Specification and Description Langauge (SDL)". ITU

Recommendation Z. 100.

82. Jacobsen, I . , Griss, M. , Jonsson, P. (1997) "Software Reuse - Architecture, Process and

Organization for Business Success", ACM Press. ISBN 0-201-92476-5

83. JeffProsise (1999). "Programming Windows With MFC". Microsoft Press. ISBN 1-57231-

6950

84. Jeffrey & Votta (1999). Guest Editors Special Section Introduction. IEEE Transactions on

Software Engineering July/August 1999.

85. Jennings, R. (1998)." Microsoft Transaction Server 2.0", Sams Publishing. ISBN 0-672-

31130-5

86. Katz & Sapiro (1986). "Technology Adoption in the Presence of Network Externalities".

Journal of Political Economy, 1986, vol. 94, no. 4.

87. Kiely, D. (1998). "The Component Edge-An Industrywide Move to Component-Based

Development Holds the Promise of Massive Productivity Gains". Information Week April 13,

1998.

88. Kirtland, M. (1998). "The COM+ Programming Model Makes It Easy to Write Components

in Any Language", http://www.microsoft.com/com/wpaper/

89. Kitchenham (1996-1997). "Evaluating Software Engineering Methods and Tools, parts 1-5".

ACM SIGSOFT Software Engineering Notes vol. 21 no. 1 - vol.22 no. 1.

90. Koch, G. (1993). "Process Assessment: The BOOTSTRAP Approach". Information and

Software Technology vol. 35, no. 6/7. 1993.

Page 344

References

91. Kruglinski(1994). "Inside Visual C-H-Version 1.5". Microsoft Press. ISBN 1-55615-661-8

92. Kunda & Brooks (2000). "Assessing Obstacles to Component Based Development; A Case

Study Approach". Information and Software Technology vol. 42. June 2000.

93. Landes, Schneider & Houdek (1999). "Organisational Learning and Experience

Documentation in Industrial Software Projects". International Journal of Human Computer

Studies. 1999. No. 51.

94. Levin, R. (1998). "Java Technology Enters the Next Dimension". Sun Microsystems.

http://java.sun.eom/features/1998/l 1/jdk.html

95. Liebowitz & Margolis (1998). "Network Externalities (Effects)". In The New Palgraves

Dictionary of Economics, MacMillan.

96. Liebowitz & Margolis (1999). "Winners, Losers & Microsoft: Competition and Antitrust in

High Technology". Independent Institute. ISBN 09455999801.

97. Linton, Vlissides & Calder (1989). "Composing User Interfaces with Interviews". Computer,

22(2). February 1989.

98. Maurer (2000). "Components: What I f They Gave a Revolution and Nobody Came?". IEEE

Computer June 2000.

99. McFeeley (1996). "IDEAL: A Users Guide for Software Process Improvement". The

Software Engineering Institute Handbook CMU/SEI-96-HB-OOI.

100. Mclllroy, D. (1969). "Mass Produced Software Components". Appearing in [108]

101. Mclnnis (2000). Component Based Development: Concepts, Technology and

Methodology. Castek Software Factory Inc. http://www.cbd-hq.com/

102. Microsoft (1997). "Windows DNA-Windows Distributed interNet Applications

Architecture", http://www.microsoft.com/dna/

103. Microsoft Corporation (1997). "Vertical Industry Specifications Supported in Windows

DNA". http://www.microsoft.com/industry/

Page 345

References

104. Microsoft Developer Network (1998). "On Complexity, the Web and the Future of
Software Development", http://msdn.microsoft.com/

105. Mowbray & Malveau (1997). "CORBA Design Patterns". Wiley Computer Publishing.

ISBN 0-471-15882-8

106. MSDN (1999). "Lessons from the Component Wars: An X M L Manifesto".

http://msdn.microsoft.com/workshop/xml/articles/xmlmanifesto.asp

107. Murphy, Walker, Baniassad (1999). "Evaluating Emerging Software Development

Technologies: Lessons Learned from Assessing Aspect Oriented Programming". IEEE

Transactions on Software Engineering vol. 25, no. 4. July/August 1999.

108. Naur, P., Randell, B., Buxton J. (eds.) (1976). "Software Engineering Concepts and

Techniques - Proceedings of the NATO Conferences". Petrocelli / Charter, New York.

109. OMG (1995). "CORBA: Architecture and Specification. Version 2". OMG 1995.

110. OMG (1998). "CORBA Service Specification", document number 98-12-09.

http://www.omg.org/

111. OMG (1998). "Object Management Group Outlines CORBA 3.0 Features". OMG Press

Release, http://www.omg.org/news/pr98/9_9.html

112. Open Software Foundation (1992). "Introduction to OSF DCE". Prentice Hall,

Englewood Cliffs, New Jersey.

113. Orfali, R., Harkey, D., Edwards, J.(1996). "The Essential Distributed Objects Survival

Guide". John Wiley & Sons. ISDN 0-471-12993-3

I 14. Pallazo, S. (ed.) (1996). "Mobility Function as and Service Architecture Requirements".

DOLMEN Deliverable APDl . http://www.fub.lt/dolmen/

115. Papert, S. (1980). "MIndstorms, Children, Computers and Powerful Ideas". Scranton, PA.

The Harvester Press.

116. Paulk et. al. (1993). "Capability Maturity Model, Version 1.1". IEEE Software July 1993.

Page 346

References

I 17. Paulk, Weber, Curtis & Chrissis (1995). "The Capabihty Maturity Model: Guidelines for
Improving the Software Process". Addison Wesley.

118. PC Week (1997). "Virtual Press Centre - Ovum in the Press, Components", PC Week,

March 1997.

119. Pfleeger & Menezes (2000). "Marketing Technology to Software Practitioners". IEEE

Software January/February 2000.

120. Pfleeger (1999). "Albert Einstein and Empirical Software Engineering". IEEE Computer.

October 1999.

121. Potts (1993). "Software Engineering Research Revisited". IEEE Software September

1993.

122. Pressman, R. (1992). "Software Engineering- A Practitioner's Approach. European

Edition". McGraw-Hill, ISBN 0-07-707936-1

123. Raatikainen, K. (ed.) (1997). "Evaluation of Current Communication Technologies in

Hypermedia Information Browsing". DOLMEN Deliverable TAD3.

http://www.fub.it/dolmen/

124. RACE (1992). "ROSA, The ROSA Architecture, Release Two"'. RACE Deliverable

93/BTL/DNS/DS/AOIO/bl.

125. Raghavan & Chand (1989). "Diffusion Software Engineering Methods". IEEE Software

July 1989.

126. Raman, L. (1999). "Fundamentals of Telecommunications Network Management (IEEE

Series of Network Management)". IEEE. ISBN 0-78033-466-3

127. Redwine & Riddle (1985). "Software Technology Maturation". Proceedings of the 8""

International Conference on Software Engineering. lEE Computer Society Press, California.

128. ReTINA (1999). "ReTINA - An Industrial Quality TINA-Compliam Real-Time DPE".

http://www.infowin.org/ACTS/RUS/PROJECTS/ac048.htm

Page 347

References

129. Reynolds, P., Brangeon, R. (eds.) (1996). "Definition of an Enhanced Distributed
Processing Platform for DOLMEN". DOLMEN Deliverable MPD2.
http://www.fub.it/dolmen/

130. Reynolds, P., Brangeon, R. (eds.) (1996). "Definition of an Enhanced Distributed

Processing Platform for DOLMEN". DOLMEN Deliverable MPD2.

http://www.fub.it/dolmen/

131. Rine & Nada (2000). "An Empirical Study of a Software Reuse Reference Model".

Information and Software Technology vol. 42 p. 47-65.

132. Rock-Evans, R. (1997). "Ovum Evaluates: Object Request Brokers - Winners and

Losers". Ovum white paper.

http://wvm.ovum.com/ovum/white_papers/object_request_brokers.htm

133. Rogers (1995). "Diffusion of Innovations (Fourth Edition)". Free Press. New York. ISBN

134. Rogerson, D. (1996)." Inside COM". Microsoft Press. ISBN 1-572-31349-8.

135. Rumbaugh, J., Blaha, M. , Premerlani, V., Eddy, F., Lorenson, W. (1991) "Object-

Oriented Modelling and Design". Prentice-Hall International, ISBN 0-13-630054-5

136. Schmidt, Johnson & Fayed (1996). "Software Patterns". Guest Editorial for Special Issue

on Patterns and Pattern Languages. Communications of the ACM vol. 39 No. 10. October

1996.

137. Schneider, B. (1998). "Comparing Microsoft Transaction Server to Enterprise JavaBeans

- White Paper", http://www.microsoft.com/com/mts

138. Schuman & Presser (1996). "Questions and Answers in Attitude Surveys". Sage

Publications. ISBN 0-7619-0359-3.

139. Schwandt & Marquardt (1999). "Organizational Learning: From World Class Theories to

Global Best Practices". CRC Press LRC.

140. SEI (2000). 'Technology Adoption", http://www.sei.cmu.edu/adopting/adopting.html

Page 348

References

141. SEI(2000). "The IDEAL Model", http://www.sei.cmu.edu/ideal/ideal.hlml

142. Shaw (1995). "Software Architecture: Perspectives on an Emerging Discipline". Prentice

Hall.

143. Software AG (1999). "What is EntireX - Uniting the Universe of Network Computing".

http://vvww.softwareag.com/corporat/solutions/entirex

144. Sommerville (1996). "Human, Social and Organisational Influences on the Software

Process". Appearing in Fuggetta & Wolf (eds) (1996). "Software Process". John Wiley and

Sons.

145. Sommerville (1996). "Software Engineering 5th Edition". Addison Wesley ISBN 0-201-

42765-6.

146. Spector, L. (1998). "Operating System Upstarts Challenge Windows". PC World August

1998.

147. SPICE (2000). "ISO/IEC Soft\vare Process Assessment - Part 7: Guide for use in process

improvement". Working draft v. 1.0. SPICE website http://www.sqi.gu.edu.au/spice/

148. SPICE (2000). "What Is SPICE?". SPICE website

http://www.sqi.gu.edu.au/spice/whatis.html.

149. Stallings, W. (1999). "Snmp, Snmpv2, Snmpv3;and Rmon I and 2, 3'** Edition". Addison

Wesley Publishing. ISBN 0-20148-534-6

150. Steinen (1999). "Software Process Assessment and Improvement: Five Years Experience

with BOOTSTRAP". Appearing in Emam & Madhavji (1999) (eds.). "Elements of Software

Process Assessment and Improvement". IEEE CS Press.

151. Sun Microsystems (2000). "The Java 2 Platform Enterprise Edition: Overview".

http://java.sun.com/j2ee/overview.html

152. SWEBOK (2000). "Guide to the SWEBOK. Stoneman version 0.7".

http://www.swebok.org.

Page 349

References

153. Sz>'perski, C. (1998). "Component Software - Beyond Object-oriented Software".
Addison-Wesly. ISBN 0-20M7888-5

154. Thomas, A. (1997). "Enterprise JavaBeans - Server Component Model for Java". Sun

Microsystems White Paper, http://java.sun.com/products/ejb/white_paper.html

155. TINA Consortium (1994). "Engineering Modelling Concepts (DPE Architecture),

Version 2.0". Document no. TB_NS.005_2.0_94. http://w\vw.tma-c.org/

156. TINA Consortium. "Overall Concepts and Principles of TINA, Version 1.0". Document

no. TB_MDC.0l8_l.0_94. http://ww\v.tina-c,org/

157. Trigila, S. (1998). "White Paper on the Status of Progress of the DOLMEN Audit

Demonstration". DOLMEN document TR-FUB50.

158. Trigila, S., Bonafede, V. (eds.) (1998). "ACTS 036 DOLMEN: Final Report". DOLMEN

Deliverable Z M F I . http://www.fub.it/dolmen/

159. Tripp & Magee (1997). "A Guide to Software Engineering Standards". Artech House.

160. Tzifa (ed.) (1997). "Open Service Architecture for Mobile and Fixed Network

Environment-Initial Release (volume 1)-Modelling Concepts". DOLMEN Deliverable

ASD2vol 1. http://www.fub.it/dolmen/

161. Tzifa, B. (ed.) (1997). "Open Service Architecture for Mobile and Fixed Network

Environment - Initial Release (volume 2) - Modelling Concepts". DOLMEN Deliverable

ASD2vol2. http;//www.fub.it/dolmen/

162. VITAL (1999). " V I T A L - Validation of Integrated Telecommunications Architectures

for the Long Term". http://www.infowin.org/ACTS/RUS/PROJECTS/ac003.htm

163. Wired (1998). "83 Reasons Why Bill Gate's Reign in Over". Wired 6.12 - December

1998.

164. WWW Consortium (2000). "Extensible Markup Language (XML) 1.0 (Second Edition) -

\V3C Recommendation". http://\vww.w3.org/TR/2000/REC-xml-20001006

Page 350

References

165. Yin, R. (1993). "Applications of Case Study Research". Sage Publications. ISBN 0-8039-
5118-3.

166. Yin, R. (1994). "Case Study Research: Design and Methods. Second Edition". Sage

Publications. ISBN 0-8039-5663-0.

167. Zelkowitz & Wallace (1998). "Experimental Models for Validating Technolog>'". IEEE

Computer May 1998.

168. Zelkowitz (1996). "Software Engineering Technology Infusion Within NASA". IEEE

Transactions on Engineering Management vol. 43 no. 3 August 1996.

169. Zelkowitz, Wallace & Binkley (1998). "Understanding the Culture Clash in Software

Technology Transfer". Technical report, University of Maryland, 1998.

Page 351

Appendix A

A. DOLMEN Brochure

Page 352

Appendix B

B. DOLMEN Evidence Examples

The following provides samples of evidence used in the DOLMEN case study. Footnotes from

the evidence discuss its use. Notes tend to relate specific issues to case study propositions. These

are reproduced below:

1. Adopting and using component technologies in software development processes will affect

process activities

2. An awareness of the issues involved in the adoption and use of component technologies can

ease their integration

3. Component technologies ease the development, integration and deployment of distributed

systems

4. Uncontrolled adoption and use of component technologies can have a negative affect upon a

development project

Excerpt of interview a D O L M E N project manager

Interviewer: How does CORBA help the DOLMEN project?

Manager: In the project we are trying to bring together different neUvork technologies. This is

very new work and we are dealing with a number of different operating systems and

management interfaces to achieve this. The CORBA platform enables our developers to

concentrate the efforts on achieving DOLMEN requirements and not worry about network

programming or operating system integration. In interoperability afforded by a CORBA

Page 357

Appendix B

approach is very important to us - without it we could not achieve our aims within the project
schedule. "

Interviewer: You have a rigid development process compare to current thinking in software

engineering. Why is this?

Manager: Telecommunication software is not like other software development. We are primarily

concerned with interfacing to hardware, and the software required is very technical. A rigid

process like the one we are using reflects telecommunications approaches to hardware

development, and is very successful in that context. It enables us to maintain control over the

process and ensure that the entire architectural design can be tested prior to implementation.

Interviewer: How does software reuse figure in your strategy for soft^vare development

Manager: Software reuse is very important to the project. Being TINA compliant means that we

aim to share our software with other TINA compliant projects. At the same time, we hope to

be able to reuse components developed by TINA compliant projects to save us time in our

own software development. Again, a CORBA approach enables us to address reuse without

Relaied lo propositions I & 3, there was an assumption within DOLMEN that CORBA would ease development

with liule front-loading ofcfrort. .

Related to proposition 1, the assumption that telecommunications sofiwarc was different to "other" software resulted

in a development process that was more suited lo hardware implementation and one that did not consider the issues that

a CORBA approach may introduce.

Page 358

Appendix B

having to concern ourselves with the technical requirements - these are achieved through the
CORBA platform.

Sample Email 1

From: XXX
Sent: Monday, October 06, 1997 12:03 PM
To: XXX
Subject: DOLMEN Notice: Implementation of Sen'ice Machine Components in
C++

Dear all.

As discussed in The Hague, KPN is offering a template which wil l
generate the basic structure of a computational object, based on IDL
code for the interfaces of the object. The advantage of this will be
that all the fmal code for the service machine wil l have the same form,
therefore allowing it to be put together easier.

So the question is, are you developing any object in C-H- for which this
template may be used? Please note that the template cannot be used to
generate code for the objects which reside on the terminal, due to the
fact that Cool Orb is used there, as opposed to ORBIX, which the
template is based on. I already have agreement to have the lA, UAHAJAV,
USM, SSM, SF, CSM, CC and LNC developed in this way. "

If you know of any object not on this list but which is being developed
in C-H-, please tell me as soon as possible, as the final list must be
known this week.

Regards,

XXX.

Proposiiion 3 is oddressed with this answer - once again, the assumption lhat CORBA would ease dcvelopmenl and

iniegration is demonstrated.

The issue of a template for component implementation was introduced when il was "discovered" that Orbix did not

support multiple interfaces to a single component. Related to proposition 4, this highlights a problem with the lack of

knowledge regarding CORBA and its implementations prior to use.

Page 359

Appendix B

Sample Email 2
From: XXX

Sent: 12 May 1998 18:12
To: XXX
Subject: DOLMEN Notice: Final version of IDLs.

Dear Al l ,

The final version of the IDLs have been put on the FUB/Orange servers at
-wpmc/mc7/FinallDLs.tar.gz and included here.

The following IDLs have changed :

•common.idl:

1. typedef l_ServiceType t_ServiceTypeName; has been removed

2. exception UserNotResponding{}; has been replaced by
exception UserNotResponding{string name;};

*commtypes.idl :

1 .Due to probs in CoolOrb enum StatusSB {idle, activesiatus,
suspendedstatus
}; is changed to
enum StatusSB {idlestalus, activestatus, suspendedstatus };

2. The exception NonAssociatedSFEP is added

•pa.idl The version within PA_090598.tar.gz has been used

1. void DisplaylnvitationsQ ; has been replaced by
tJnvitationList DisplaylnvitationsQ;

•tcsm.idl and also TCSM_CSM.idl

Activate has been changed to Aclivate_ and the function QueryNFEP is put
in.

•Streamlnlerface.idI

AddFlow (inout StreamFIowEndPoint endpoint) This is as agreed in
MC-KPN24.

•HIBGSS.idI

A new version now exists which also replaces i_HTTP_AccessRequest.idl and
i_ProxyControl.idl. Thus these two interfaces have been removed.

Page 360

Appendix B

*UAPHIB = i_AgentControl.idl

oneway void error(in EncodedString err, in EncodedNVPairList params); is
now
oneway void send_error(in EncodedSlring err, in EncodedNVPairList params);

If any changes have occured in the CMA's IDLs due to Handover, they are not
yet available. Also the idls for the new objects have yet to be released.
For this reason the IDLs included here may be updated once more, but no
further update to common.idl will now occur.
If these IDLs could be made available on the FUB/Orange server before the
end
of this week (Friday 15th May) it would be very helpful as we could then
supply Orange complete set of IDLs on Monday 18th May.'^

Due to the above fact, implementers wi l l now only need to supply their code
and not the IDLs to Orange.

I hope this will solve any problems, and can you all please ensure that the
correct type definitions are include in your code.

I would like to thank you all for you co-operation

Regards

XXX

Excerpt from D O L M E N Working Paper

Mix Java, WWW and CORBA mechanisms

The scheme of interaction between generic components in WWW and Java based implementation
can be illustrated by the figure I .

In this figure, we identify a Java-enabled web browse, a WWW server, an applet store database, a
CGI program and CORBA objects.

A user starts a Java-enabled web browser on his machine, enters an URL address and the browser
connects him to a WWW server. The typed address should be a description of an Internet

This sample email highlights iwo issues discussed within the case study, both related lo propositions 2 & 4. The

fi.xing of interface definitions did not occur due to problems with designs. As such, numerous changes were made to the

definitions. The communication of changes was carried out in this ad-hoc manner, with emails detailing changes to all

concerned panies.

Page?>6\

Appendix B

resource. Using the browser, he can download and execute applets from the WWW server. The
applet can ask the browser to display messages, or different Web pages located on the server.
Appleu can also GUI to display information and to read inputs from the user.

For sending data from an applet to CORBA objects, we can use a gateway CGI program. The
CGI programs can then use CORBA mechanisms to access standard CORBA objects (we tested
"C" CGI programs with Orbix objects).

Java-enabled web Browser

I D E N T I F I C A T I O N

UserlD

Password

Ok) (Cancel)

GUI: a web browser running
applets

H T T P CGI program

CORBA
objects

Figure 1-Java to Corba

A direct interaction between the applets and CORBA objects is possible in the specific case of
Orbix using OrbixWebllOP (Internet Inter Orb Protocol). Since Java and C - H - languages are
close, functionality of an Orbix C-H- client can be implemented in a Java program or applet. An
OrbixWebllOP IDL compiler is used to translate the mapping of an Orbix C-H- client into Java
one. The Java client is then used instead of Orbix C-Hclient.

Since we are planning to use Orbix in Dolmen, an approach based on the two alternatives to
implement the user system can be investigated.''

" Taken from a working paper, this except demonsmites the assumptions related to the use of CORBA

implcmcnialions within the development of DOLMEN software (and as such, related lo propositions 2 & 4). In this

case, Java was not considered appropriate for implementation until it was decided to reuse existing WWW software for

the browsing application. It was then assumed that the software could interface with the DOLMEN architecture via

MOP. but not testing was done of this assumption prior to integration.

Page 362

Appendix B

Excerpt from meeting notes (observation)"

Notes from TA Workpackage meeting 12/2/98
University of Helsinki, Finland.

Note - Stream binding functionality should follow working paper MC-TF07.

Note- TCSM is being developed by XXX. Refer to working paper MC-NTU12 for specification.

These design issues relale to working papers, not formal design documents

Application has dependency upon TCSM for stream set up.

Note - User interface should provide options for invites, suspending and closing sessions.

Issue - is there any support for GUI development in CoolORB - C libraries or Tk/Tcl? Need for
custom libraries?

Related directly to CORBA implementation, should such problems have been identified during

technology selection?

Note - Application startup should determine whether an invite or resumption is being carried out.
Passing a session id of the form <retailer>_Audio_<session_no> should signify the resumption of
a session. Not session id should mean that the session is new.

Retailer = RetUK or RetFIN

Suspending from the application should carry out the following:
Break stream connection
Suspend session through the session manager reference
Inform suspendee that the session has been suspended via the GUI
Close application

Distinguish between session owner when closing sessions on the GUI. Provide two buttons:

Leave - end call (owner), leave call (other)
End - quit session (owner), leave call (other).

°̂ Notes from meetings used lo document observations regarding the DOLMEN use of component technologies.

Comments related to research aspects were included in itaiics. These meeting notes highlight a number of problems

related to design issues and problems with CORBA implementailon (propositions 2 & 4 are addressed).

Appendix B

Integration to start 25/5/98
-it wil l have to be staggered because the software won't be ready in time.

Draws from problems related to the identification of object dependencies and the scheduling of

development

Note - a redefinition to the common.id! spec
Enum StatusSB { idle, activestatus, suspendstatus }

Change idle idlestatus

Changes in specification '^ad-hoc " based upon meeting discussion

Note - new TCSM to be distributed to overcome bugs in mobile side stream connection

Issue - what about deleting a stream binding? Should an MSC be generated for this?

Further "ad-hoc " design issues

Note - logging out with sessions running should not be possible as the User Agent should deny a
log out request is there are any sessions running.

Issue - what happens i f the application crashes? (with relation to session and stream connections)

Issue - What shells should be used for start-up scripts

Outstanding issues in user and service session start-up:

Remove ProfileComp from auduiImpl::Update
Determine QoS rates from session manager
Need to keep track of the user profile in the session manager which can be called after the
UpdateProfile in the interface code
When GetSFEP is called by the session manager, this is an indication to set up a stream binding
(refer to MSC!).
Add a function in the application to send a TCSM and SFEP ref to the session manager.

Page 364

Appendix B

Excerpt from Software Development Crisis White PapeH'

See section 5.5.4

The excerpt from a while paper regarding the software development crisis from DOLMEN can also be considered an

example of evidence from the case. This relates lo propositions 2 & 4. in lhat il contrasts what was expected with what

happened with the use of components.

Page 365

Appendix C

C. Netscient Evidence Examples

The following provides samples of evidence used in the Netscient case study. Footnotes from the

evidence discuss its use. Notes tend to relate specific issues to case study propositions. These are

reproduced below:

1. Adopting and using component technologies in software development processes wil l affect

process activities

2. An awareness of the issues involved in the adoption and use of component technologies can

ease their integration

3. A domain-oriented approach to component development provides a greater degree of reuse

than a product oriented view.

4. Similar issues with component-orientation occur when using different technologies from the

same field (i.e. Microsoft based, rather than OMG based technologies)

5. Issues in the DOLMEN case study can be avoided through greater knowledge o f the

technologies involved

Excerpts from an interview with a Nctscicnt director

Interviewer: In your selected approach to developing your software, you don't choose a 100%
component approach. Why is this?

Director: Component techniques are still a volatile area. Choosing a technology for our products
that uses an approach that could be obsolete in six months is too risky. Do you choose COM or do
you choose COKBA, and is CORBA going to survive the MS onslaught? Obviously, we see
potential in components, which is why we are looking at their use with in house systems. At the
moment it is looking promising. We also see this as a chance to gets some skills in component
development without risking our product line. "

This point tie into propositions 2 and 5. There is an illustration of greater caution and less trust of "hard" information

that is provided by vendors.

Page 366

Appendix C

lnter\'iewer: Do you see initial skills as important for a transition to components?

Director: Absolutely. Especially with components - where are the training courses and where are
the consultants? It untested waters for IS Vs. Do we have any guarantees that an 100%
components approach will work, apart from the vendors, and they'll say anything to get a sale. I f
we can't get a yardstick, we have to do our own assessment before using them. I think we've got
some great developers here - Tim really knows his stuff. So, get him to look at components and
tell us what he thinks. We can't risk our entire company on the newest hype technology - our
investors wouldn't let us!

Interviewer: What strengths do you see from a component approach.

Director: While the encapsulation of internal systems appeals, we see the big benefit coming from
third party integration. We are an SME competing with large organisations. Look at TMN - it's a
huge undertaking to develop our own suite to interface with TMN systems, but i f we could buy in
a component set and plug it into our own products - heaven!. On a smaller scale we are making
great use of GIS functionality within N-Centre. Having a GeoConcepl component has made this
very straightforward.

Excerpt from email interview with head developer

Interviewer: How is the GIS functionality embedded into the main application (OLE, ActiveX
control, whatever)?

Developer:
Netsigner uses the following external components,

It uses GeoConcept (GIS) via an ActiveX Control
It uses Addflow (Diagramming) via an ActiveX Control
It uses Crystal Reports through OLE Automation
It uses the IE X M L COM component (I wish MS would hurry up and release a
standalone redist!)
It use the ADO COM component (Why don't Oracle release their own OLEDB
provider, Why doesn't MS Oracle provider work!)

Anything external to our core functionality really! COM integration is straightfonvard using
VC-H- so it seeins daft to rewrite existing work.

Inter\'iewer: Why chose X M L to distribute information?
Developer:
Have you tried passing big structures in COM! Especially 0++! I like coding but not that much.
But seriously, the overhead passing information with a component-based approach is too high, its
too complex and its inefficient. X M L presented an elegant solution - I know its supposed to be
web based but it seemed sensible for in house comms too. We're still using TCP/IP, just not

Page 367

Appendix C

browser technology. Components are still an essential aspect - generation and parsing are both
done with them - MS parser and in-house generator. "

Excerpt from early requirements document

Overview of Netscient Administrative Structure^'*

Netscient are a software house specialising in the development of simulation and management
software for network providers. Their first suite of applications focuses on providing network
managers with the means to design and plan networks without having to affect the live network
until a new design is acceptable. The planning software must therefore be responsive to
organisational limits on networking equipment (for example, being aware of how many customer
connections are on a given node). It must also be aware of hardware specific conditions that will
affect a network configuration (for example the maximum number of connections to a network
card).

While the awareness of company specific parameters can be set into the application by a user, the
hardware boundaries can vary greatly:

between models in the same family;
between models in different families;
between different vendors equipment.

Obviously, to accommodate all of these differences in a single application or application suite
would result in a huge application which would require constant updating. In order to escape this
problem, Netscient came up with the concept of externalizing the behaviour of a specific piece of
equipment (termed a personality by Netscient), and selling personality sets with the application
suite.

Therefore, in terms o f the internal development issues, Netscient are faced with a number of
problems
How are these personalities described?
How are they stored?
How are new personalities (i.e. new vendors) entered into the personality store?
How are personalities extracted from the store
How can these personalities be managed (i.e. kept to a reasonable level of detail)?

" Another illustration of a greater awareness of the strengths of a component approach - a result of trialing work with

the technologies. Having a good understanding of the issue involved has enabled a exploitation of components while

ensuring that problem areas are avoided.

Related to proposition 3, this early document focused upon domain, not product, functionality for the organisation. It

was an early requirements spec that inftuenced a lot of the early system design.

Page 368

Appendix C

Sample email 1̂ ^

From: XXX
Sent: Monday, October 12, 1998 5:21 PM
To: XXX

Subject: Re: TMN Stuff

Hi again,

TMN is a seriously big issue for us. We will have to graft a TMN
interface onto N-Center in order to communicate (transfer & receieve)
information on sales orders, customer provisioning profiles, equipment
configurations, billing profiles.

We have joined the Network Management Forum (WWW.NMF.ORG) whose SMART
TMN initiative is intended to bring out the process data from an
otherwise resevoir of academic standards. This is the route we are
likely to take, i.e. applying process-specific data to N-Center.

I think our favoured approach will be to use a TMN converter, probably
bought-in. So yes TMN is on the radar screen. But not yet ready to load the
missile.

Regards

XXX

Sample email 2 - example of external systems integration

From: XXX
Sent: Thursday, July 22, 1999 5:01 PM
To: XXX

Subject: Cisco integration

XXX

another favour.
The attached message follows a meet and demo to XXX at Cisco. He talked
about Directory Enabled Networks, and the *net' location of Cisco inventory.

Both sample emails relate to the issue of third party integration - it illusmites the intention lo integrate with outside

functionality, and to reuse ihe software of others. This intention drove a need to exploit component standards for

interoperability.

Page 369

Appendix C

The idea running through my mind was lets get to it and load it as a
personality table in N-Center. XXX gave me the following addresses and
I've got to the murchiso site and downloaded the attached powerpoinl
presentation on schema.

Do you think you could give a couple of lines on the relevance of this to
our personality tables? Seems neat that cisco do it and keep it up to dale
and we just download it?

Cheers

XXX

PS file wil l follow - my PC's run out of memory!

Original Message—
From: XXX
Sent: 20 July 1999 08:20
To: XXX
Cc: X X X
Subject: Re: •* Ping**

It was good to see you and your product, I thinnk we can get some good
interest in it and I will start to introduce CAP G and COmpaq to the
prospect of talking to you.

For DEN schema try

<http://murchiso.com/den/>http.//murchiso.com/den/

1 found the link via

<http://wwwin.cisco.com/nsmbu/Products/active_directory/ad_main.htm>hnp:/
/wvvwin.cisco.com/nsmbu/Products/active_directory/ad_main.htm
<htip://wwwin.cisco.com/nsmbu/Products/active_directory/den.html>http://ww

win.cisco.com/nsmbu/Products/active_directory/den.html
>

Regards
XXX

Page 370

Appendix C

Design documentation sample: Sample information interface definition^*

< ! E L E M E N T P R O F I L E (N O D E j S H E L F | C A R D | C O N N E C T I O N j
S I T E 1 C U R R E N C Y | S T A T U S G R O U P 1 O R D E R |
J O B I P R O J E C T I T R U N K | C A B I N E T I S V C I V C |
L O G I C A L P O R T I P O R T I C I R C U I T I C H A N N E L | C A B L E S E G M E N T) * >

E L E M E N T NODE (C O M P A T I B L E S H E L F , P A R A M E T E R) * >
E L E M E N T C O M P A T I B L E S H E L F E M P T Y >
E L E M E N T S H E L F (C O M P A T I B L E C A R D , P A R A M E T E R) * >
E L E M E N T C O M P A T I B L E C A R D E M P T Y >
E L E M E N T C A R D (P A R A M E T E R) * >
E L E M E N T S I T E (P A R A M E T E R) * >
E L E M E N T C U R R E N C Y (P A R A M E T E R) * >

E L E M E N T S T A T U S G R O U P (M A N D A T O R Y P A R A M E T E R , P A R A M E T E R) * >
E L E M E N T O R D E R (M A N D A T O R Y P A R A M E T E R , P A R A M E T E R) * >
E L E M E N T J O B (M A N D A T O R Y P A R A M E T E R , P A R A M E T E R) * >
E L E M E N T P R O J E C T (M A N D A T O R Y P A R A M E T E R , P A R A M E T E R) * >
E L E M E N T T R U N K (M A N D A T O R Y P A R A M E T E R , P A R A M E T E R) * >
E L E M E N T C A B I N E T (M A N D A T O R Y P A R A M E T E R , P A R A M E T E R) * >
E L E M E N T S V C (M A N D A T O R Y P A R A M E T E R , P A R A M E T E R) * >
E L E M E N T V C (M A N D A T O R Y P A R A M E T E R , P A R A M E T E R) * >
E L E M E N T L O G I C A L P O R T (M A N D A T O R Y P A R A M E T E R , P A R A M E T E R) * >
E L E M E N T P O R T (M A N D A T O R Y P A R A M E T E R , P A R A M E T E R) * >
E L E M E N T C I R C U I T (M A N D A T O R Y P A R A M E T E R , P A R A M E T E R) * >
E L E M E N T C H A N N E L (M A N D A T O R Y P A R A M E T E R , P A R A M E T E R) * >
E L E M E N T C A B L E S E G M E N T (M A N D A T O R Y P A R A M E T E R , P A R A M E T E R) * >
E L E M E N T P A R A M E T E R (A V A I L A B L E V A L U E) * >
E L E M E N T M A N D A T O R Y P A R A M E T E R (P A R A M E T E R) * >
E L E M E N T A V A I L A B L E V A L U E E M P T Y >

< ! A T T L I S T P R O F I L E

NAME C D A T A # R E Q U I R E D
D E S C R I P T I O N C D A T A # I M P L I E D
L E V E L C D A T A # F I X E D "2">

< ! A T T L I S T NODE

I D C D A T A # R E Q U I R E D
V E N D O R C D A T A # R E Q U I R E D
T Y P E C D A T A ^ I M P L I E D
S U B T Y P E C D A T A ^ R E Q U I R E D
D E S C R I P T I O N C D A T A % I M P L I E D

26
An illustration of an interface definition away from component technologies.. This specification was used by both in

house and product developers in ihe development of their systems and proved to be a very successful piece of design

documentation.

Page 31\

Appendix C

VERSION
NOSHELVES

<!ATTLIST SHELF
ID
VENDOR
TYPE
SUBTYPE
DESCRIPTION
VERSION
NOSLOTS
AVAILABLESLOTS
SLOTTYPE

CDATA
CDATA

#REQUIRED
#REQUIRED>

CDATA *f REQUIRED
CDATA #REQUIRED
CDATA #IMPLIED
CDATA JfREQUIRED

CDATA #IMPLIED
CDATA #REQUIRED
CDATA #REQUIRED
CDATA ^REQUIRED
CDATA *iREQUIRED>

<!-- Mandatory p a r a m e t e r s f o r CARD t y p e
S l o t N o s ; A l i s t o f s l o t numbers i n w h i c h
i S u p p o r t e d P r o t o c o l s : A l i s t o f p r o t o c o l s

c a r d s u p p o r t s — >

<!ATTLIST CARD

a c a r d c a n f i t
(T l , T3, e t c .) t h e

ID CDATA #REQUIRED
VENDOR CDATA #REQUIRED
TYPE CDATA #IMPLIED
SUBTYPE CDATA #REQUIRED
DESCRIPTION CDATA #IMPL
VERSION CDATA #REQUIRED
CHANNEL CDATA #REQUIRED
TOTALCAPACITY CDATA #REQUIRED
CAPACITYUNIT CDATA #REQUIRED
CARDTYPE CDATA #REQUIRED
NOPORTS CDATA #REQUIRED
PORTCAPACITY CDATA #REQUIRED>

O A T T L I S T COMPATIBLESHELF
ID CDATA #REQUIRED
DESCRIPTION CDATA #IMPLIED>

<!ATTLIST COMPATIBLECARD
I D CDATA #REQUIRED
DESCRIPTION CDATA #IMPLIED>

<!ATTLIST PARAMETER
NAME CDATA #REQUIRED
DESCRIPTION CDATA IMPLIED
VALUE
MANDATORY
FIXE D
TYPE
fiREQUIRED>

CDATA #REQUIRED
(YESINO) #IMPLIED
(YESINO) ftlMPLIED
(STRING I BOOL|FLOAT I INT DATETIMEIFORMULA)

<!ATTLIST AVAILABLEVALUE

Page 372

Appendix C

VALUE CDATA #REQUIRED>

<!ATTLIST S I T E
ID CDATA #REQUIRED
TYPE CDATA #IMPLIED
SUBTYPE CDATA #REQUIRED
DESCRIPTION CDATA #IMPLIED
VERSION CDATA #REQUIRED>

<!ATTLIST CURRENCY
ID CDATA ^REQUIRED
TYPE CDATA #IMPLIED
SUBTYPE CDATA #REQUIRED
DESCRIPTION CDATA #IMPLIED
VERSION CDATA #REQUIRED>

<!ATTLIST ORDER
ID CDATA ^REQUIRED
TYPE CDATA ^IMPLIED
SUBTYPE CDATA ^REQUIRED
DESCRIPTION CDATA #IMPLIED
VERSION CDATA #REQUIRED>

<!ATTLIST JOB
ID CDATA #REQUIRED
TYPE CDATA #IMPLIED
SUBTYPE CDATA #REQUIRED
DESCRIPTION CDATA #IMPLIED
VERSION CDATA #REQUIRED>

<!ATTLIST PROJECT
ID CDATA #REQUIRED
TYPE CDATA ^IMPLIED
SUBTYPE CDATA #REQUIRED
DESCRIPTION CDATA #IMPLIED
VERSION CDATA #REQUIRED>

<!ATTLIST STATUSGROUP
ID CDATA #REQUIRED
TYPE CDATA #IMPLIED
SUBTYPE CDATA ^REQUIRED
DESCRIPTION CDATA #IMPLIED
VERSION CDATA #REQUIRED>

<!-- Mandatory p a r a m e t e r s f o r TRUNK ty p e
T r u n k s : L i s t o f t r u n k s i n t h e c o n n e c t i o n
#VCs: L i s t o f VCs i n t h e c o n n e c t i o n
C i r c u i t s : L i s t o f c i r c u i t s i n t h e c o n n e c t i o n - - >

<!ATTLIST TRUNK
I D CDATA #REQUIRED
TYPE CDATA #IMPLIED

Page 373

Appendix C

SUBTYPE CDATA ^REQUIRED
DESCRIPTION CDATA #IMPLIED
VERSION CDATA #REQUIRED
MAXVC CDATA #REQUIRED
MAXCIRCUIT CDATA #REQUIRED>

<!ATTLIST CABINET
ID CDATA ^REQUIRED
TYPE CDATA #IMPLIED
SUBTYPE CDATA ^REQUIRED
INTERNALDIMENSIONS CDATA #IMPLIED
EXTERNALDIMENSIONS CDATA #IMPLIED
DESCRIPTION CDATA I M P L I E D
VERSION CDATA #REQUIRED>

<!ATTLIST SVC
I D CDATA #REQUIRED
TYPE CDATA #IMPLIED
SUBTYPE CDATA #REQUIRED
DESCRIPTION CDATA #IMPLIED
VERSION CDATA #REQUIRED>

<!-- Mandatory p a r a m e t e r s f o r VC t y p e
#hops: L i s t o f hops on t h e VC
#VCs: L i s t o f VCs t h e VC b e l o n g s t o - - >

<!ATTLIST VC
ID CDATA #REQUIRED
TYPE CDATA #IMPLIED
SUBTYPE CDATA #REQUIRED
DESCRIPTION CDATA #IMPLIED
VERSION CDATA #REQUIRED
MAXHOP CDATA #REQUIRED
MAXVC CDATA #REQUIRED>

<!ATTLIST LOGICALPORT
ID CDATA iREQUIRED
TYPE CDATA #IMPLIED
SUBTYPE CDATA #REQUIRED
DESCRIPTION CDATA ^̂ IMPLIED
VERSION CDATA # REQUIRE D>

<!-- Mandatory p a r a m e t e r s f o r PORT t y p e
#VCs: L i s t o f VCs on t h e p o r t - - >

<'ATTLIST PORT
ID CDATA ^REQUIRED
TYPE CDATA ^IMPLIED
SUBTYPE CDATA #REQUIRED
DESCRIPTION CDATA #IMPLIED
VERSION CDATA #REQUIRED
VCCAPACITY CDATA #REQUIRED
MAXVC CDATA ^REQUIRED

Page 374

Appendix C

MAXVP CDATA #REQUIRED>

< ! — Mandatory p a r a m e t e r s f o r C I R C U I T t y p e
t r u n k s : L i s t o f t r u n k s on the c i r c u i t - - >

<!ATTLIST C I R C U I T
ID CDATA iREQUIRED
TYPE CDATA #IMPLIED
SUBTYPE CDATA #REQUIRED
DESCRIPTION CDATA #IMPLIED
VERSION CDATA ^REQUIRED
TRUNK CDATA #REQUIRED>

<!ATTLIST CHANNEL
ID CDATA #REQUIRED
TYPE CDATA #IMPLIED
SUBTYPE CDATA #REQUIRED
DESCRIPTION CDATA #IMPLIED
VERSION CDATA #REQUIRED>

<!ATTLIST CABLESEGMENT
ID CDATA #REQUIRED
TYPE CDATA #IMPLIED
SUBTYPE CDATA #REQUIRED
DESCRIPTION CDATA #IMPLIED
VERSION CDATA #REQUIRED>

Page 1,15

Appendix E

D, Component Survey

Component Technologies Survey

This survey is being conducted as parts of a Ph.D. investigation into the impact of
component technologies upon softv^are development, in order to develop better
practices for their adoption and use.
If you have any other comments regarding component orientation that you feel may
help v/ith this investigation, please send them to andv@iack.see.plvm.ac.uk
Thank you
Andy Phippen
School of Computing
University of Plymouth
Drake Circus
Plymouth
Devon PL4 8AA
England
About you (optional)

Your name
Your position
Organisation name

Regarding your use of component technologies

1. Hov/ long have you been using component oriented software techniques?

2. How long have you been developing software in general?

3. What component standards have you used?
• CORBA
Q COM
• DCOM
• COM+
• EJB
Q Other (please specify):

4. What component tools and technologies have you used?

5. On how many projects have you used component oriented techniques?

6. On what scale of project have you used component oriented techniques?
• Small scale investigation/assessment
• Small in house development
Q Intra organisation development

Page 376

Appendix E

Q Product development
a Enterprise development
• Pan-enterprise development

7. In what vertical domains did these projects reside?
• Government
• Healthcare
Q IT services
• Manufacturing
• Retail
• Telecommunications
Q Banking
• Construction
• Education
• Energy
• Military
• Accounting
• Insurance
• Legal
• Media
• Other (please specify):

Regarding your learning of component technologies

8. How did you learn about component technologies?
• Industrial course
• Academic course
• Reading
• Practical project
• Other (please specify):

9. Did you experience problems when learning about component technologies?
Q Yes
• No

10. If yes, were these problems:
• Related to concepts
• Related to technologies
• Related to differences between concepts and technologies
Q Other (please specify):

If you wish to describe these problems further, please do so below:

11. Did you find the literature about component orientation useful when learning
about it?
• Yes
• No
If no, why was the literature not useful?

Page^11

Appendix E

12. V/ould it have been beneficial to be able to draw form the experiences of others
who had used component technologies?
• Yes
• No

13. How long did it take before you felt comfortable with component technologies?

Regarding component technologies and the software
development process
14. Was integrated component orientation into your development process
straightforward?
• Yes
Q No
If no, what problems did you encounter?

15. Do you believe that component orientation makes software development:
Q Easier
Q Harder
• Neither easier or harder
• Other (please specify):

16. If you believe that component orientation makes software development harder,
why is this?

If you believe that component orientation makes software development easier, why is
this?

17. Given the choice, would you use component oriented techniques when developing
software:
Q Always
• Sometimes
• Occasionally
a Never

Appendix E

Finally, for each of the following statements, would you strongly agree, agree, have
no opinion, disagree or strongly disagree?

Strongly
agree Agree No

opinion Disagree Disagree
strongly

18. Component orientation is easily adopted
into a development process

19. Component technologies can be adopted
independently of wider organisational
consideration

20. Project management is unaffected by
component technologies

21. Component orientation makes software
reuse easy

22. Component orientation should focus upon
software reuse

23. Using component technologies is
straightforward

24, A component oriented approach
encourages design

25. Component based development makes
system deployment easier

26, Component based development makes
system maintenance easier

If you are interested in the results of this survey please include your email address
below:

Page 379

Appendix E

E. Survey Respondents

Survey respondents were encouraged to include their name, position and organisation with a

sur\'ey response. While some preferred to remain anonymous, those who did include respondent

information are listed below.

Patrick Gleeson, R & D Developer, KPN Research, Holland

Ingo Stengel, Telecommunication Engineer, Univ. of Applied Sciences Darmstadt

Holger D. Hofmann, Software consultant, ABB Group, Germany

Hermann Kurth, software engineer and project leader, Mannesmann Mobilfunk

Ralf Kretzschmar-Auer, Chief Architect, dv/d systempartner

Dr Ulrich Eisenecker, Professor, University of Applied Sciences Kaiserslautem

Ralf Reussner, Phd-Student, Univ. Karlsruhe

Paul Dowland, Research Student, University of Plymouth

Mike Evans, R & D consultant, Glowebs

Andrew Watson, Technical Director, OMG

Charles Jursch, CTO, Patotech Software, Inc.

Jeff Watson, Sr. PC Developer / Webmaster,

Alex Goodstein, Director / IT Consultant, Linkform Computing Ltd.

Huseyin Caglayan, Developer, IT Innovation Centre

Scott Butler, President, Tango Enterprises, Inc.

Johny Baron, Software Leader, Oramir

Frederic Gos, Advanced Software Engineer, Novo Nordisk IT A/S

Chris Sells, Director of Software Engineering, DevelopMentor

Darayush Mistry, Senior Consultant, Siebel

Roger Woller, Program Manager, Microsoft

Page 380

Appendix E

Stephen McKeown, Programmer, DTSC

Kirill M Katsnelson, Sr. Software Architect, Datamax Technologies, Inc.

Dean Olynyk, Technical Architect, black box consulting Inc.

Alexander Jerusalem, CTO, Vienna Knowledge Net

Michael Rees, Associate Professor in Computer Science, Bond University, Australia

Tim Kemp, Development Manager, Netscient Ltd.

Chris Sanders, R & D Director, Netscient Ltd.

Bill Slater, Software Developer, WR Engineering

Nicholas Moss, Business Consultant, DSTC

Tim Korson, Senior Partner, Software Architects

Jamie Cornes, Systems Engineer, DSTC

Alexey A. Ryaboshapko, Lead Programmer, Argussoft Co

Mike Siddall, Lead Programmer, Genesis Development

Albert Pi, Senior Programmer, PCI Inc.

/'flgeasi

Appendix F

G. Papers and Presentations

Papers

"A Distributed Component Framework for Integrated Network and Systems Management",
Martin Knahl, Andy Phippen, Holger Hofmann. Information Management and Computer
Security, Volume 7, Number 5.

"Online Distance Learning: Expectations, Requirements and Barriers", Steven Furnell, Mike
Evans, Andy Phippen, Mosa Al i Abu-Rgheff. Virtual University Journal, 1999.

"A Hyper Graphics Markup Language for Optimising WWW Access in Wireless Networks",
Paul Reynolds, Steven Furnell, Michael Evans and Andy Phippen. Euromedia 1999, Munich,
Germany April 1999.

"Strategies for Content Migration on the World Wide Web", M.P. Evans, A.D. Phippen, G.
Mueller, S.M. Fumell, P.W. Sanders, P.L.Reynolds. Internet Research Volume 9 Number 1.
1999.

"Content Migration on the World Wide Web", M.P. Evans, A.D. Phippen, G. Mueller, S.M.
Furnell, P.W. Sanders, P.L.Reynolds. Published in Proceedings of the International Network
Conference 1998. University of Plymouth. 1998.

"Mobility Considerations for Integrated Telecommunications Service Environments", M.P.Evans,
S.M.Furnell, A.D.Phippen, P.L.Reynolds. Published in the Proceedings of the Sixth lEE
Conference on Telecommunications. lEE Conference Publication No. 451. ISBN 0-85296-700.
1998.

"A Software Platform for the Integration of a Mobile Client to Intranet Service", Andy Phippen,
Chris Hindle, Steven Furnell. Published in the Proceedings of Euromedia '98. Society for
Computer Simulation. ISBN 1-56555-140-0. 1998.

"Network Resource Adaptation in the DOLMEN Service Machine", M.P.Evans, K.T.Kettunen,
G.K.BIackwell, S.M.Furnell, A.D.Phippen, S.Hope and P.L.Reynolds.Published in Intelligence in
Services and Networks: Technology for Co-operative Competition, Mullery et al. (eds.), Springer,
1997.

"Resource Adaptation in the TINA Service Environment", M.P.Evans, A.D.Phippen,
S.M.Furnell, P.L.Reynolds. Published in the Proceedings of the Fourth Communication Networks
Symposium. Manchester Metropolitan University. 1997.

As well as the papers above, numerous internal publications were written for the DOLMEN
project. Additionally, contributions were made to three DOLMEN public deliverables.

Pagem

Appendix F

Presentations

"Adopting and Using Component Technologies - an Organisational Learning Approach", invited
presentation Mannheim, Germany, summer 2001.

"Experiences with CORBA and Distributed Systems", invited presentation to technical
management at Wandell and Golterman, January 1999.

"Component Architectures and their Impact upon Software Development", presented to the
Distributed Applications Research Group, Fachoshule Darmstadt, Germany, June 1998.

Page 383

