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Pore Level Fluid Migration In Reservoir Sandstones 

by 

Adam Keith Moss 

Abstract 

The void space properties of a set of gas reservoir sandstone samples have been 
measured. The properties include porosity, absolute gas permeability, electrical resistivity 
formation factor and tortuosity. The mineralogy of each sandstone was determined by 
scanning electron microscopy and energy dispersive x-ray analysis. Mercury intrusion and 
extrusion data have been measured for most of the sandstone samples. A new procedure 
for measuring the degree and range of void size correlations within resin-filled sandstones 
has been developed. Image analysis of backscattered electron micrographs of these samples 
supplies void size and positional information. A "semi-variogram" study of void size and 
coordinate data ascertains the degree and range of void size correlation. Measurable 
correlation has been found in two sandstone san^Ies, but was absent from four others. 

Diffusion coefficients of methane, iso-butane and n-butane through dry sandstones 
have been measured using an adaptation of a non-steady state method, using a redesigned 
apparatus. A repeatability and error analysis of diffusion coefficient measurement has also 
been performed. A correlation between diffusion coefficients, absolute permeability, 
porosity and formation factor was detected for sandstones containing litde clay. The 
diffusion coefficients measured for clay affected sandstones did not correlate with any 
petrophysical properties of these samples. 

A computer model capable of simulating porous media has been previously 
developed. It consists of a 10x10x10 network of cubic pores and cylindrical throats, and 
simulates die mercury intrusion curve. The void size distribution is modified until both 
simulated and experimental curves closely match. New void size distribution input and 
curve fit algorithms have been developed to increase the speed and accuracy of die 
simulations and a new modelling procedure allows the modelling of samples with void size 
correlation. The model is capable of simulating porosity, permeability, tortuosity and 
mercury extrusion. Each of the reservoir sandstones has been modelled and their 
characteristic properties simulated. Successful simulations were obtained for all relatively 
clay-free reservoir sandstones. Clay affected sandstone simulations were less successful due 
to the high complexity of these samples. 

A study into formation damage witiiin reservoir sandstones was also undertaken. 
The effect of colloidal particulate void space penetration is measured and simulated. 
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PLATE 6.4: Backscattered SEM Image of Sample 212B With Detect and Segmentation. 

PLATE 6.5: Backscaitered SEM Image of Sample 212E. The Image is 2.28mm Long. 

PLATE 6.6: Backscattered SEM Image of Sample 212E With Detect and Guard Frame 
Indicating Analysis Area. Individual Features Numbered. 

PLATE 6.7: Backscattered SEM Image of Sample 212E With Detect and Segmentation. 

PLATE 6,8: SEM Photo Micrograph of Sintered Glass Disc. 

PLATE 6.9: SEM Photo Micrograph of Sintered Glass Discs With Grey Level Detect of 
123 and Guard Frame. 

Chapter 10 

PLATE lO . l : Calcium Carbonate Particles Deposited With Clashach Pore Space. 
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CHAPTER 1 

INTRODUCTION 

1.1 Aim Of The Research 

A computer model capable of simulating the void space within sandstones and other 

porous media has been developed by a previous research student at the University of 

Plymouth, Dr Michael Spearing. The program, which we call Pore Cor, had been applied 

to modelling clean homogeneous sandstones. The brief for this research project was to 

further develop the model to simulate tiie void space of sandstones from a gas reservoir. 

A number of parameters characteristic of the void space being modelled are needed to 

construct the simulated void network. These include a pore and throat size distribution, 

porosity, connectivity and degree of pore size correlation. Figure 1.1 shows the principal 

inputs and outputs of the model. The chapter number for a ful l description of each 

phenomenon is also given. The study involved the measurement of a large number of 

parameters, for clarity the theory for each is outlined individually in each chapter. 

1.2 Sandstones 

Sandstones are mixtures of mineral grains and rock fragments which are the result 

of disaggregation of rocks of all types. Rock disaggregation can be both chemical and 

physical, these processes operate selectively on different minerals within the original rock. 

Mineral and rock fragment detritus can be transported by a number of mechanisms, water 

and wind being the commonest transport mediums. Transport from source area to 

sedimentary basin can lead to differential abrasion, soft minerals decrease in size and 

become rounded. High silica content minerals such as quartz are resistant to transport 

abrasion, these hard minerals constitute a high proportion of sandstone content. 

The size of detritus particles transported is a function of the transporting mediums 
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velocity. As the mediums velocity decreases smaller particles are deposited. Fluctuations 

in the transport mediums velocity' causes differential deposition. Layers of particles of 

similar size are deposited at the same time, whilst different size particles may be deposited 

at a later date. Banding of similar size particles over a range of scales is common to all 

sandstone deposits. The classic sandstone depositional environment is an intertidal region, 

such as a beach. Within the turbulent wave region all small particles are held in 

suspension, as the wave velocity decreases smaller particles are deposited. Thus fine sand 

is deposited in the calm shallow water areas of the beach. The cycling tides mean the 

beach detritus is re-worked continually, but any major sea-Ievel change can lead to the 

beach environment being preserved and sandstone units forming. 

Sand grains usually form tangential contacts with their neighbours, thus forming 

an open three-dimensional void network. The void space between grains can be altered by 

stress, points of grain contact can experience pressure solution resulting in material 

redistribution and a decrease in void space. The introduction of clays and cementing 

materials also alters void space. Grain size, shape and surface features all effect the 

geometr>' of the void space and thus the fluid flow properties of the sandstone. The 

banding of similar size grains mentioned earlier leads to a variation in void sizes 

throughout a sandstone unit, generally the larger the grain size the larger the void size. 

Hydrocarbon reservoir areas often contain large sandstone units. These sandstones 

can have hydrocarbon filling the void spaces or void space which is in contact with 

hydrocarbons. The geometry of hydrocarbon reservoir sandstone void space dictates the 

accessibility of any hydrocarbons present. Banded sandstones can contain areas of large 

voids which act as preferential flow channels during hydrocarbon extraction. Conversely 

a banded sandstone may contain an area of very small voids which could form a barrier 

to flow, hindering hydrocarbon extraction. 



1.3 Test Order 

This work was conducted on a set of fifteen sandstone plugs supplied by British 

Gas's London Research Station (LRS). These sandstones are from a gas reservoir area, the 

exact location is confidential. As we are only interested in the samples as examples of 

porous sandstone and not distinct stratigraphic units, this does not present a problem. 

Figure 1.2 shows the order of testing each sandstone sample. The terms basic and special 

core analysis are those used by core analysis laboratories which supply exploration 

geologists with data concerning a reservoir's hydrocarbon potential. The whole test scheme 

is extremely time consuming and requires samples of good condition. A model such as 

Pore-Cor could be used to predict elusive measurements such as diffusion coefficients or 

measurements unattainable in pooriy consolidated samples such as permeability. A three 

dimensional void space model can also be applied to simulating particle invasion 

phenomena such as clay redistribution in reservoir rocks or general filtrate properties. 
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CHAPTER 2 

POROSITY AND PERMEABILITY 

2.1 Porosity Measurement 

The total porosity (Oj) of a porous solid is defined as the ratio of total pore volume 

to total sample volume: 

^ _ pore volume _ total volume - solid volume 2̂ i ) 
^ total volume total volume 

The ratio of interconnected pore volume to total sample volume is termed the effective 

porosity. This is the pore space which contributes to fluid flow. Figure 2.1 shows the total 

porosity values obtained from different particle packing arrangements. Notice the large 

reduction in the porosity of the cubic packing system when a second smaller particle size 

is introduced. A sandstone contains particles of a range of different shapes and sizes so, 

porosities within the 10 - 25 % range, are common. One factor to be aware of when 

measuring porosities of randomly packed porous media is that any measured value is an 

average of an infinite number of composite porosities. Unlike the regular packed 

structures in Figure 2.1, i f a random packed porous sample is cut up, different porosities 

will be measured for each part of the sample. 

There are a number of methods used to measure total and effective porosity. These 

all involve the measurement of the sample volume, this is commonly done by measuring 

the volume of mercury the sample displaces. The mercury does not enter the pores at 

ambient pressures. Total porosity can be calculated from sample volume measurements 

before and after the destruction of the pore space by grinding. The analysis of a large 

number of thin sections can also supply a total porosity value. 
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Both these methods are obviously destructive and so not normally used in a core analysis 

regime. FiUing the pore space with a gas or liquid is the most common method of 

measuring effective porosity. The filling of the pore space with helium is the method used 

by British Gas (LRS) to calculate effective porosity. A technique known as the gas 

expansion method utilises the ideal gas law (PV=nRT). The apparatus consists of two 

chambers A & B separated by a tap. At the start A is at a known pressure and B is 

evacuated, when the tap is opened a pressure equilibrium occurs. Knowing the volume of 

Chamber A and the resulting pressure, the volume of Chamber B can be calculated. By 

repeating the operation with the porous sample in Chamber B the solid volume can be 

measured. The ratio of solid volume over sample volume is the effective porosity. The gas 

expansion method of effective porosity measurement is prone to large experimental errors 

and the apparatus must be constantly recalibrated using solid blocks of known volume. 

Another method of effective porosity measurement is to measure the volume of a 

liquid that can be forced into tiie pore space. A common liquid used is mercury, this non-

wetting liquid is used in pore size distribution studies in a technique called mercury 

porosimetry (Chapter 5). During mercury porosimetry experiments the effective porosity 

is easily measured from the maximum volume of mercury intruded into the pore space. 

2.2 PermeabiJitv Measurement 

The ability of a rock to allow flow of a gas or fluid is defined as its permeability. 

The relationship between permeability (K), pressure gradient (dp/dx), sample cross 

sectional area (A) and viscosity of a flowing fluid (p) at flow rate dv/dt is called Darcy's 

Law ; 

dv ^ AK dp (2 2) 
dt p dx 

Darcy's Law assumes there is no reaction between the fluid/gas and rock and only one 



component is flowing. 

The unit of permeability most commonly used in the oil industry is the Darcy. A 

rock with a permeability of one Darcy allows a fluid of 1 cP viscosity to flow at IcmVs 

when a pressure gradient of 1 atm/cm is applied across the sample with a face of Icm^ 

surface area. Other common units for permeability are the perm and cm ,̂ 1 perm = Icm^ 

= 10̂  Darcy. A perm is a very large unit. Sandstones have permeabilities within the range 

10'̂ -10'̂ ^ perm or 1 md - 10 Darcys (Monicard 1980). The permeability is a function of 

pore size and arrangement, generally the larger the pores, the larger the permeability. It is 

important to note that most porous media exhibit different permeabilities in different flow 

directions. Permeability of a sample is a combination of a large number of flow channels 

through the sample. Thus like porosity, the permeabilities of two halves of a sample are 

not the same as the whole except for extremely homogeneous samples. 

2.2.1. The Klinkenburg Effect 

The measurement of permeability at different pore pressures and using different 

fluids/gases gives different results. This is known as the Klinkenburg Effect and is caused 

by non-Darcy flow at the pore walls. In large diameter pores at atmospheric and high 

pressures, gas molecules collide with each other and rarely with the pore walls. At low 

pressure in small pores wall collisions are common and flow rate is increased. Thus for 

samples with small voids or large void samples tested at low pressure, the calculated 

permeability is erroneous. The Klinkenburg Equation defines the measured permeability 

(K3) as the sum of the true permeability (K„) and a "collision/slip" term (b) : 

^a-^A^ (2.3) 

P„ is the Average Pressure 



The "slip" term, is proportional lo the collision diameter (X) of the gas molecules 

t = (2-4) 

c - 1 

r = pore radius 

The true permeability (K^), effectively the liquid permeability, can be found by plotting 

measured permeability against the inverse of average pore pressure. The intercept at the 

permeability axis being the true permeability. McPhee and Arthur (1991) outline in detail 

the measurement of true permeability and "slip terms". Morrison and Duggan (1991) 

formulated equations for flow rates which would produce a maximum of a 1% non-Darcy 

slip flow during gas permeability measurements, within 1" diameter Morecambe Bay 

sandstone plugs. 

British Gas (LRS) use an E.P.E. nitrogen permeameter to measure gas permeability. 

Samples are held in a "Hassler Sample Holder", which holds the plug tight in an inflatable 

sleeve. Nitrogen is flowed through the sample with the downstream side of the plug at 

either atmospheric or elevated pressure. Upstream and downstream pressures are measured 

by pressure transducers, flow rate is also measured. The whole apparatus is interfaced to 

a p.c for quick data acquisition. The nitrogen permeameter is run at conditions in which 

slip flow is negligible. 

2.3 The Samples 

The sandstone plugs from British Gas (LRS) were supplied with depth, porosity and 

gas permeability data. The fifteen sandstone plugs are grouped into three sets according 

to original depth. Sandstones 212A - 212E are from a depth of approximately 927m all 

widiin 25cm or each other. The quoted porosity and gas permeability being 20.4% and 

2200md respectively. Sandstone plugs 250A-250E are from about 13 m deeper than the 
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212 sandstones. The group's porosity is 20.1% and gas permeability 685md. Plugs 490A -

490E are quoted as having porosities and permeabilities very much lower than the 

previous two sandstone groups, 15.1% and 83 md respectively. The 490 sandstones are 

from a far greater depth than the other sandstones (approx. 1017m). It was later discovered 

that the porosity and gas permeability data supplied by British Gas (LRS) was derived 

from measuring the porosity and gas permeability of one plug in close proximity to those 

in each of three groups, and assuming all sandstones in the group would have the same 

values. The assumption that sandstone plugs up to 30cm apart will have the same 

porosities and gas permeabilities is wrong. These properties can change greaUy over a few 

centimetres. Table 2.1 shows porosities and gas permeabilities measured for each plug. 

Note tiiat plug 212B was located only 5cm from 212A but has a gas porosity 1.7 times 

greater and a gas permeability 28 times larger. This highlights the importance of measuring 

all parameters for each individual plug and not assuming neighbouring samples are 

identical. 

Table 2.1 does not contain porosity and gas permeability data for five of die plugs 

supplied. These five samples were mounted in epoxy resin, for diffusion coefficient (see 

Chapter 7) before the data from British Gas (LRS) was invalidated. The gas porosities and 

gas permeabilities of these five plugs could not be measured because they broke into 

irregular shapes when extracted from the resin. Samples must be cylindrical for accurate 

gas permeability measurements. 

Comparing the porosities measured by filling pore space with either helium or 

mercury reveals the unsurprising conclusion that gas porosities are nearly always higher. 

The highest pressure applied to the invading mercury was 120aUTi this corresponds to a 

smallest invaded pore of 0.12um diameter, calculated from the Washburn Equation, (see 

Chapter 5). Helium can fill pores significantiy smaller that 0.12pm, thus the porosity 

measurement by gas is larger. Image analysis yields porosity from back scattered electron 

11 



t o 

PLUG NO. DEPTH/m POROSITYoAs /% POROSITY,,^ /% POROS ITYi^iACE ANALYSIS PERMEABILITY/MD 

2I2A 926.85 12.30 8.70 12.10 50.47 

2I2B 926.90 20.80 16.80 20.60 1413.58 

2I2C 927.00 24.40 21,50 3161.56 

2I2D 927.06 13.70 11.50 335.05 

2I2E 927.09 22.00 18.70 22.30 1427.77 

250A 939.74 22.40 23.50 23.00 1208.49 

250E 939.96 21.10 20.00 (21.20) 693.52 

490A 1017.12 13.20 10.43 

490B 1017.19 15.70 14.10 27.06 

490C 1017.27 23.20 20.30 

490D 1017.36 14.10 14.50 (13.20) 14.10 10.71 

490E 1017.44 15.90 13.80 15.50 16.53 

T A B L E 2.1: Porosity and Permeability Data. Bracketed Values Equal Repeat Experiments. 



microscopy images of the resin filled pore space. The results agree well with the gas 

porosity values but the technique is subjective because the operator has to decide what 

parts of the image are pore space and what solid, image analysis is discussed in depth in 

Chapter 6. 

Gas permeability measurements range from 10.71md to 3161.56md. There is a 

general trend that high porosity samples have large permeabilities. Figure 2.2 shows a plot 

of log permeability against porosity for the ten samples. Regression analysis produced a 

positive slope with an R-squared line fit of 0.696. A better line fit is obtained of the 

regression analysis is restricted to plugs from the same group. For the 212 group of plugs 

R-squared equals 0.890 and for the 490 group of samples R-squared equals 0.622. This 

type of cross plot is used by hydrocarbon geologists for predicting permeability from down 

hole porosity measurements. 

13 
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CHAPTER 3 

SCANNING E L E C T R O N MICROSCOPY 

3.1 Introduction 

The scanning electron microscope (S.E.M.) has become an invaluable tool in the 

analysis of reservoir rocks. High magnification images with a great depth of field are 

easily obtainable from small amounts of sample material. Appendix 1 outlines the theory 

and instrumentation used in S.E.M. The concepts involved in the analytical technique of 

energy dispersive x-ray analysis (E.D.X.) are also covered. The analysis of the reservoir 

sandstones was performed on a Jeol 6100 S.E.M. E.D.X analysis has been applied to 

selected sample areas. 

A slice approximately 3mm thick is cut off the end of each sandstone plug. The 

slice is broken to form fresh fracture surfaces for analysis. The small "chips" of sample 

are mounted on metal stubs using graphite paste. The S.E.M. sample is coated in gold to 

a thickness of lOnm to allow electrical conduction and so avoid image distortion due to 

charge build up. The working voltage of the S.E.M. is 20 KV. 

3.2 Results 

Plate 3.1 shows a typical image obtained from a relatively clean high 

porosity/permeability gas reservoir sandstone. This image is of plug 250B, grain size 

ranges from about 300um downwards. Grain contacts show some deformation and grain 

surfaces have a sparse covering of fine material. Plug 250B contains the occasional 

authigenic quaru overgrowth, Plate 3.2. These euhedral growths are common at grain 

contacts and a pressure solution origin has been proposed (Pittman 1972). The action of 

heat and pressure can cause the break up of other mineral grains. Plate 3.3 shows a 

broken-up or diagenetized potassium feldspar grain. The mineral was identified by its x -ray 

spectra, Figure 3.1. Energy dispersive x-ray analysis is semi-quantitative and so the 
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PiifML 
F L A T K 3.1: SEM Photomicrograph of Plug 250B. 

P L A T E 3.2: SEM Photomicrograph of Plug 2508, Showing Quartz Overgrowth. 
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P L A T E 3.3: SEM Photomicrograph of Diagenetized Potassium Feldspar Grain, Plug 250B. 

/ 

PLATK 3.4: SEM Photomicrograph Aulhigenic Clay Within a Pore, Plug 250B. 

17 
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F I G U R E 3.1: X-ray Spectra for Potassium Feldspar Grain in Plate 3.3. 
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F I G U R E 3.2: X-ray Spectra for lUite/Smectite Clay in Plate 3.4. 
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ratios of peak heights in Figure 3.1 are related to the elemental ratios in the mineral 

formula. The spectra in Figure 3.1 has aluminium and potassium peaks of equal height and 

a silicon peak approximately three times in height. This corresponds with the composition 

of potassium feldspar Al K SijOg (The large gold peak in Figure 3.1 is due to the gold 

coating on the sample). Feldspars form clay minerals upon diagenesis. The fine grained 

material inside the feldspar grain in Plate 3.3 may be authigenic clay materials. Note the 

quartz overgrowtii in the bottom right of Plate 3.3 has partially enveloped the detrital grain 

below it, A cluster of authigenic clay is shown in Plate 3.4, This clay has a crystal 

structure common to illite and obviously formed after deposition because it fills the pore 

space and has a delicate cr '̂stal morphology (Wilson & Pittman 1977). Figure 3.2 shows 

the x-ray spectra for this clay. A clay of illite/smectite mixed layer clay mineralogy can 

be deduced from this spectra. This clay cluster is an isolated feature and the occurrence 

of clays within sample 250B is rare. The surface of grains within sample 250B are sparsely 

covered in fine grained material. Plate 3.5 shows a high magnification image of one of 

these fine particles. This beautiful mineral contains silicon, aluminium and calcium but 

remains unidentifiable. The morphology and distribution of minerals found in sample 250B 

is similar to that found in all samples from groups 212 and 250. The exception being 

sample 212A which has an area of partially cemented grains. 

S.E.M. analysis of sample 490A showed a very different mineral assemblage. The 

grains of this sample are coated in clay particles, Plate 3.6. Two types of clays are 

identifiable, kaolinite in its characteristic stacked plates formation and grain coating Illite. 

Figure 3.3 shows the x-ray spectra from one of the kaolinite stacks, the dominant elements 

are aluminium and silicon. Kaolinite particles usually have a pseudohexagonal morphology. 

The examples in Plate 3.6 have broken edges probably caused by sample cleaning. Illite 

clays coat the grains in a more random fashion. A close inspection of the illite particles 

shows the presence of "hairy" illite, Plate 3.7. These laths are a common morphological 
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PLATK 3.5: SEM Photomicrograph of an Unidentified Fine Particle, Plug 25()B. 

PLATK 3.6: SEM Photomicrograph of Clay Particles Within Plug 490A. 
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F I G U R E 3.3: X-ray Spectra for Kaolinite Clay in Plate 3.6. 
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F I G U R E 3.4: X-ray Spectra for lUite Clay in Plate 3.7. 
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F L A T K 3.7: SEM Photomicrograph Showing Hairy and Platey Illite Clay, Plug 49()A. 
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form of Lllite (Guven et al 1980). The x-ray spectra for the illite indicated aluminium, 

silicon and potassium as major elements, Figure 3.4. 

Nearly ail the sandstone samples have been analyzed by S.E.M. and it is possible 

to group the samples according to their mineralogy: 

SAMPLE NO. MINERALOGY 

212A PREDOMINANTLY QUARTZ, AREA OF 
CEMENTED GRAINS, C L A Y FREE 

212B-212E PREDOMINANTLY QUARTZ, ALMOST 
CLAY FREE. 

250A-250E PREDOMLNANTLY QUARTZ, ALMOST 
C L A Y FREE. 

490A-490E QUARTZ WITH ILLITE AND 
KAOLINTTE C L A Y COATING 

T A B L E 3.1: Mineral Characteristics Of Each Sample Group 

There is a correlation between clay content and porosity and permeability data, Figure 3.5. 

Clay particles block pore space reducing porosity and restricting flow causing low 

permeabilities. The presence of clay minerals within gas reservoir sandstones has been 

cited as causing problems during hydrocarbon extraction from these areas (Macchi et al 

1990). 
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C H A P T E R 4 

F O R M A T I O N F A C T O R 

4.1 Introduction 

The measurement of the electrical resistivity of a brine fi l led rock plug is a 

common test within a special core analysis regime. The ratio of electrical resistivity of the 

brine fiUed pore space (R^) and the electrical resistivity of the pure brine of the same 

dimensions as the sample (R^) is approximately constant. This relationship was first noted 

by Archie (1942) and he named the constant the "formation factor" (F): 

F=^ (4.1) 

Archie also found a correlation between the formation factor and the sample porosity (<!)): 

F = - ^ (4.2) 

The constant, a, has value of approximately 1, m is called the cementation exponent. 

A graph of the log formation factor against log porosity w i l l yield a line wi th gradient m 

and porosity-axis intercept a. Theoretically the line should intercept the porosity axis at 

100%, since a porosity of 100% means that no solid is present and thus the formation 

factor is unity. In reality this intercept is not always at 100%. The gradient m, the 

cementation exponent, is related to the consolidation character of a group of samples. A 

cementation exponent of 2.2 indicates highly cemented grains and a value of 1.3 an 

unconsolidated sample, Figure 4.1. The cementation exponent is strictly related to 

formation factor and not measurable by any other method. The grouping of the exponent 

values in Figure 4.1 is obtained from correlating visual appearance of many samples with 
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measured cementation exponent values. Note the points obtained from hexagonal, rhombic 

and cubic packed structures are all below those obtained for real reservoir samples. 

Archie (1942) formulated an expression for the resistivity of a partially saturated 

sample. 

5=_L (4.3) 
^ 0 5 / 

R, is the resistivity of the partially brine fil led sample at saturation S„. is the resistivity 

of the sample at 100% saturation, n is called the saturation exponent. The saturation 

exponent is approximately 2 and Archer and Wal l (1986) quoted a value of 2.27 for a suite 

of Berea sandstones. Equation 4.3 is extensively used during petroleum and gas exploration 

to estimate the amount of non-conducting oil/gas within the pore space. 

A l l the above equations rely on the assumption that the rock matrix is non­

conducting, ie the only conducting medium is the brine within the pore space. For 

sandstones containing no clays or metallic minerals (Pyrite etc) the above assumption 

holds. For shaly sandstones with high clay content the measured resistivity of the brine 

f i l led sample is lowered by the presence of conductive water/ion layers on the clay 

surfaces. Thus sandstones with high clay content wi l l have lower formation factors, which 

may lead to a low estimate of cementation characteristics, or an underestimate of the water 

saturation within a potential reservoir i f Equation 4.3 is employed, (Keelan and McGinley 

1979). 

Within sandstones the amounts of metallic minerals such as pyrite found is low, the 

most common conducting minerals are clays. The conductivity of the clays depends on the 

brine salinity and the clay cation exchange capacity (C.E.C). A high C.E.C. means many 

ions are present at the clay surface, producing a high conductivity and a low formation 

factor. 
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Waxman and Smits (1968) proposed a method for assessing the contribution of clay 

conductance to the measured formation factor. By measuring core conductivity at different 

brine strengths, a plot of core conductivity (Cj) against brine conductivity (C^) yields an 

X-axis intercept equal to the clay conductivity C, effect, see Figure 4.2. The Waxman-Smits 

approach was used by Keelan and McGinley (1979) to obtain formation factors 

independent of clay conductivity (F"). 

4.2 Tortuosity 

The tonuosity (T) of a porous sample is the ratio of the distance through the pore 

network ( L J and the length of the sample (L) , see Figure 4.3 

7 = i l (4-4) 
L 

Obviously tortuosity has a lower l imit of one ie a straight path through the sample. The 

movement of a diffusing gas molecule or ion within the pore space wi l l be tortuous and 

it has long been recognised that a study of these processes can elucidate the tortuosity. 

Cornell and Katz (1953) related tortuosity to formation factor and porosity : 

T^=F^ (4.5) 

The equation was also used by Chen (1973) in a study of sandstone tortuosities measured 

by both resistivity and gas diffusion methods. Referring to Figure 4.3, the porosity (O) is 

defined as the fractional void of the sample. I f A is the cross-sectional area of the sample 

and X is the fraction of A made up of void space, such that XA is the sum of areas of all 

surface pores, then the total pore volume is X A . L , . As the volume of the sample of length 

L normal to die plane of the cross-section is A.L, porosity is : 
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KIGURIC 4.2: Core Conductivity Against Brine Conductivity (After Waxman and Smits, 1968). 



F I G U R E 4.3: A Schematic Porous Medium Showing a Tortuous Capillary containing 
Brine of resistivity R^. Cross Sectional Area=A. 
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^^XAL^^XL^ (4.6) 

AL L 

The resistance of Uie brine filled pore space is 

R = ^ (4.7) 
' XA 

The resistance of the brine of the same dimensions as the sample 

R - - ^ (4.8) 
' A 

Therefore: 

F=5=:!ifi.^=A (4.9) 
/ ? 2 XA R L XL 

Using Equation 4.6 to eliminate X; 

F = ( i l )2_L (4.10) 
L <D 

Equation 4.10 is equivalent to Equation 4.5 and Equation 4.5 has also been substantiated 

by Tye (1982). Wyl l ie and Rose (1950) proposed a different equation relating to tortuosity 

and formation factor : 

Here they define T =(LyL)^ and during the derivation they use the product O A as the 

cross-sectional void area, which is incorrect The porosity O is an average for the whole 

sample and not the open void area in a plane normal to the measurement direction, as is 

required in the derivation. The correct term is X A as used in our earlier derivation of 
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Equation 4.10. Suman and Ruth (1993) noted this discrepancy and introduced areosity {t) 

as the open void area associated with local f low direction. They stated that : 

T=Ft (4.12) 

The concept of areosity is valid but practically it is impossible to measure its value. 

4.3 Formation Factor And Tortuosity Measurement 

4.3.1. Method 

The dry sandstone plug of known porosity and bulk volume is weighed and 

saturated with brine solution using the vacuum saturation technique. This involves placing 

the plug in a desiccator with a side-arm connection to a vacuum pump. The plug is 

evacuated for two hours. The vacuum is then broken by running in the brine via a funnel 

with a tap attached to the top of the desiccator. I f the saturated plug is weighed and the 

brine density is known the percentage saturation can be calculated : 

SATURATED MASS -DRY MASS 
BULK VOLUME . ^ . BRINE DENSTTY 

%SATURATION= — ~ A lUU (413) 

Any plug with a percentage saturation not in the upper 90% region w i l l have an 

abnormally high resistivity and thus large errors in formation factor measurement w i l l be 

incurred. 

The saturated samples are left for 24 hours for ionic equilibrium to establish between rock 

and brine (ie 24 hours). The brine solution is prepared to match the real down hole water 

from the area in which the samples were obtained (Appendix 2). After the equilibration 

period, excess brine is removed from the surface of the sample and it is carefully loaded 

into a rig similar to that shown schematically in Figure 4.4. The resistivity is measured. 
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Measurements are repeated twice daily until the calculated formation factor is consistent 

to within 2-5% over at least three measurements. The measurement of the formation factor 

is a very "user unfriendly" test. 

An excess brine film on the surface of tiie sample causes surface conductants and a 

lowering of the tortuosity. The excess brine must be removed by dabbing on a tissue, 

which can cause errors i f brine is sucked out of the sample. A ful l explanation of errors 

in resistivity measurements are to be found in Worthington (1975). 

4.3.2. Results 

The formation factors and tortuosities of thirteen of the reservoir sandstones have 

been measured. Table 4.1. Samples 81 through to 108 are reservoir sandstones used in a 

formation damage study, see Chapter 10. The formation factors quoted in Table 4.1 are all 

calculated ignoring the effect of clay conductivity. To apply the Waxman-Smits correction, 

the cation exchange capacity of each sample must be measured, which is very time 

consuming. The most clay affected sample 490E has a high formation factor. A trend of 

low permeability, low porosity samples having high formation factors is observed. 

Therefore the suppression of formation factor by clay conductivity is not acute. 

Equation 4.2 has been applied to each group of sandstones from the same bedding 

horizon within the reservoir. A l l samples with the prefix 212 are f rom the same lithological 

horizon so plotting log formation factor against log porosity yield a gradient equal to the 

cementation exponent, Figure 4.5. Different cementation exponents are obtained i f the 

regression line is forced through the unity porosity point ie a = 1 in Equation 4.2. A 

cementation exponent of 1.765 for forced regression and 1.741 for free regression (a = 

1.05) was measured. Using Figure 4.1 these cementation exponent values correspond to 

a poorly to moderately cemented group of sandstones. Figure 4.6 shows the cementation 

exponents obtained when the extremes of the measured formation factor range are used. 
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PLUG 
GROUP 

PLUG NO. PERM/mD POROSITY/% FORMATION 
FACTOR 

TORTUOSITY TORTUOSITY 
RANGE/+_ % 

CEMENTATION 
EXPONENT RANGE 

212 

2I2A 50.47 12.30 42.05 2.27 +2.6/-2.3 

1.733 - 1.795 212 
212B 1413.58 20.80 14.76 1.75 +3.87-3.7 

1.733 - 1.795 212 212C 3161.56 24.40 13.71 1.83 +4.8/-5.2 1.733 - 1.795 212 

2I2D 335.05 13.70 32.86 2.12 +3.87-3.7 

1.733 - 1.795 212 

2I2E 1427.77 22.00 13.92 1.75 +2.57-2.6 

1.733 - 1.795 

250 
250A 1208.49 22.40 16.21 1.91 +2.37-2.8 

1.830 - 1.878 250 
250E 693.52 21.10 17.74 1.94 +1.07-1.5 

1.830 - 1.878 

490 490E 16.53 15.90 51.12 2.85 +4.97-5.1 N7A 

80's 
81 421.47 14.00 28.96 2.01 +6.07-6.3 

1.656 - 1.762 80's 
82 34.47 11.10 43.11 2.19 +4.67-5.0 

1.656 - 1.762 

90's 98 213.62 16.20 20.00 1.80 + 1.77-1.7 N7A 

lOO's • 
107 218.14 12.1 49.04 2.44 +3.27-3.6 

1.787 - 1.864 lOO's • 
108 29.17 9.50 72.12 2.62 +4,97-5.2 

1.787 - 1.864 

TABLE 4 .1 : Measured Data For Each Sandstone Plug. Formation Factors Equal Mean of Measured Range. 
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The resulting cementation exponents are stil l within the poorly to moderately cemented 

grouping. This result matches physical appearance because all samples within Group 212 

are quite friable. 

Group 250 consists of only two samples. To obtain a regression line the unity 

porosity value is used as a third point. Figure 4.7. The cementation exponent for group 250 

is 1.855, indicating moderately cemented sandstones. The 80*s group of sandstones had a 

cementation exponent of 1.712 (poorly cemented), Figure 4.8. The lOO's group of samples 

were moderately cemented with an exponent of 1.828, Figure 4.9. Samples 490E and 98 

are single samples. The formation factors of similar samples have not been measured, and 

therefore their cementation exponents cannot be calculated. 

Tortuosities are calculated using Equation 4.5. Measured tortuosities roughly 

correlate with permeability, in that high permeability samples have a low tortuosity, see 

Table 4.1. 
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CHAPTER 5 

M E R C U R Y POROSIMETRY 

5.1 Introduction 

Mercury porosimetry is probably the most commonly used technique for porous 

media investigation. Mercury is non-wetting to most surfaces. A pressure must be applied 

for it to penetrate pore space. The smaller the pores in the pore network, the higher the 

pressure needed to facilitate penetration. 

Although the basis of mercury porosimetry was formulated in the 1940s (Ritter & 

Drake 1945), much controversy still surrounds interpretation of mercury porosimetry data. 

If a pore/throat shaft is of an idealised cylindrical shape of radius, r, the pressure P̂ , 

applied to the mercury to cause penetration is defined by the Washburn Equation : 

= (5.1) 

where a = surface tension of mercur>', and 6 is the contact angle of mercury on the 

sandstone. The Washburn Equation is a simple adaption of the Young-Laplace Equation 

which is a general equation of capillarity. 

The Washburn Equation is used to obtain pore/throat size distributions in the 

majority of studies, even though most natural pores are not cylindrical. Many workers have 

mentioned the inadequacies of the Washburn Equation. Cedeci (1980), demonstrated that 

if the Washburn Equation is applied to divergent conical shaped pores, there is an 

overestimation of the pore size. It was also postulated that mercury will penetrate low 

angle divergent conical shaped pores without the application of any positive pressure on 

the mercury. Thus the volume of small, low angle conical pores will be assigned to the 

larger pore region of the calculated size distribution. 

In an analysis of the shape of graphs of volume of intruded mercury against applied 
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pressure, Shiveley (1991) calculated the dominant pore shapes within silica gel and 

precipitated sulphur pore networks. The theory would not be applicable to pore networks 

of varying pore shapes. From SEM observations, reservoir sandstones do not contain 

regular pore shapes, so the application of Shiveley's theory is limited only to ideal pore 

systems. 

Dullien and Batra (1970) mention the use of 'equivalent pore radii\ This is the 

radius of a straight cylindrical capillary that would give rise to the same capillary pressure 

as the measured value. The idea of equivalent pore radii was dismissed by Van Brake) 

(1981) because for complicated pore shape, the relationship between and cosS is not 

linear. 

Use of the Washburn Equation requires values for contact angle and surface 

tension. The most commonly used values for contact angle of mercury on sandstones are 

140° for the intrusion of mercury and 130° for the extrusion. In reality values ranging from 

112° to 180° have been measured (Van Brakel 1981). 

The best method of measuring contact angle is debatable. The most common 

method involves measuring the contact angle of a small drop of mercury on a surface 

similar in composition to the porous sample; thus a glass or silica surface would be used 

for sandstones. This method must take account of surface roughness, since most reservoir 

sandstones do not have smooth pores. In general surface roughness increases contact angle. 

Good and Mikhail (1981) maintained that for most pore systems with rough surfaces 

contact angle approaches 180°. The Washburn Equation assumes a constant value for 

contact angle throughout intrusion, which is almost certainly a mistaken assumption. It has 

been shown that contact angle changes with different solid surfaces and different absorbed 

species on these surfaces. Mouscou and Lub (1981) obtained shifts in calculated pore size 

distributions when cyclohexane was adsorbed onto the surface of a homogeneous y-alumina 

porous structure. A shift in pore size distributions was also measured when the y-alumina 
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was coated with molybdate ions. Both shifts can be attributed to the changes in the contact 

angle. The effect of sorbaies can be minimised by ouigassing samples. Most sandstones 

consist of many minerals of varying polar strengths, so change in contact angle as mercury 

moves over each different mineral would not be unexpected. The contact angle has also 

been reported by Kloubek 1981 and Good and Mikhail 1981, as changing with pore radius, 

albeit only in micropores ie. pores of diameters below 2 x ICT'pm; this is called the 

Toiman Effect 

As mentioned earlier there is a general trend of a drop in contact angle when 

comparing intrusion of mercury with extrusion - this is termed contact angle hysteresis. 

This difference has been attributed to slight wetting of the sample by the mercury. 

Smithwick (1986) tested this theory by performing multiple mercury intrusion/extrusion 

cycles and found virtually no change in contact angle between the first and second 

intrusions; thus any wetting by mercury does not explain contact angle hysteresis. 

Smithwick postulated that contact angle hysteresis was due to irreversible energy losses 

occurring when the three-phase boundary (mercury, vapour, rock) moves. This energy loss 

is analogous to heat formation by factional forces. 

The surface tension of the mercury within the pore space is also non-constant. 

Surface tension can change due to mercury impurities and adsorbates from the sample 

surface. These two effects can be minimized if instrument grade mercury is used, and 

samples are sufficientiy outgassed (Good and Mikhail 1981). The Tohnan effect also alters 

surface tension as well as contact angle, but again this effect only occurs within 

micropores. It will have littie effect on pore size distributions within sandstones, whose 

pores of interest are predominantiy within the macropore region ie. pores with diameters 

greater than 2 x 10'"um. The recommended value for surface tension of mercury within 

sandstone pores is 485 Dyn/cm or 0.48 nm ' (Good and Mikhail 1981), which is the value 

we have used in all future calculations. 
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The commonest method of obtaining a pore size distribution from mercury 

porosimetry data involves calculating the first derivative of the intrusion curve. As 

mentioned earlier a pore/throat can only be penetrated if a high enough pressure is applied 

to the mercury. If the sample contains large pores shielded by smaD pores/throats the large 

pores will only be filled after a pressure sufficient to penetrate the smallest pores/throats 

is reached. Thus the volume of the large pores is attributed to the small pores within the 

pore size distribution. Some workers have tried to statistically correct for this "shielding 

effect" (Connor and Horowitz, 1988). 

Another common misinterpretation of mercury primary intrusion data is due to the 

assigning of the pore diameter corresponding to the point of inflection as the most frequent 

or characteristic pore size of the sample. In fact, this size is neither the most common nor 

the average pore size. As is shown later fi-om computer modelling, the pore size 

corresponding to the point of inflection is better defined as the "threshold pore size". This 

is in line with percolation theory in which the percolation threshold corresponds to the 

point at which a continuous path of mercury forms through the sample. Kaiz and 

Thompson (1987) found the point of inflection to correspond with break-through of 

mercury through the sample. In our computer simulations of mercury intrusion, the point 

of inflection always occurs just when a continuous path of mercury spans the sample ie. 

at break-through (Matthews et al 1993). Most sandstones produce a sigmoidal shape 

primary intrusion curve when percentage pore space occupied by mercury is plotted on a 

linear scale and pore entry diameter on a log scale. Figure 5.1. The point of inflection of 

the sigmoidal curve is dependent on the arrangement of pores in the network as mentioned 

above. The shape of the curve is also dependent on the spatial pore arrangement. Neasham 

(1977) compared mercury intrusion data with scanning electron micrographs of each 

sample. He found that samples with little clay distributed in isolated areas has steep 

mercury intrusion curves. Mercury had also intruded nearly all available pore space at the 
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F I G U R E 5.1: TiT^ical Mercury Intrusion/Extrusion Curves for Sandstone. 
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maximum applied pressure. Samples with pore lining clay had shallower intrusion curves 

and a smaller maximum intruded volume. Pore-bridging clay reduces the pore volume 

accessible to mercury still further and causes very shallow intrusion curves. Thomeer 

(1960) noticed that plotting mercury intrusion data on a log-log axis produced a near 

hyperbolic curve. The equation for such a hyperbola can be written: 

^ ^ ^ P f ^ ^-CliLogPJP^) (2) 

Where {^^^ = Fractional bulk volume occupied by mercury at pressure P̂ . 

(^b)p« - Fractional bulk volume occupied at infinite pressure. 

P(. = Mercury capillary pressure. 

P̂ j = Extrapolated mercury displacement pressure. 

G = Geometrical parameter. 

The geometrical parameter (G) defines the shape of the hyperbola. The geometrical 

parameter can range from 0 to 10. The "steep" intrusion curves have a low geometrical 

parameter value, Figure 5.2. Neasham (1977) applied Thomeer's intrusion curve theory to 

his clay affected samples. Sandstones with a discrete particle clay distribution had G values 

of 0.05 to 0.15. Sandstones with pore-lining clays had larger values from 0.25 to 0.8. The 

Washburn Equation can be used to convert P̂ . and P̂  to the pore diameter equivalents, pore 

diameter (DJ and extrapolated displacement diameter (D ,̂). 
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FIGURK 5.2: Family of Mercury Intrusion Curves With Varying Pore Geometrical Factors. 



5.2 Structural Hysteresis 

During mercury intrusion the size of the throats connected to a particular pore, 

determines at which pressure mercury will penetrate that pore. As the pressure applied to 

the mercury is decreased, mercury starts to leave the pore network and compressed residual 

air enters the pores. The removal of mercury fi-om the pores is termed mercury extrusion. 

Application of the Washburn Equation lo the mercury extrusion data, shows that only the 

smallest pores empty at high pressures. A pore network containing small pores shielded 

by large pores, will only completely empty of mercury when a low pressure corresponding 

to the large pore sizes is reached. Thus the mercury extrusion curve is different to the 

primary intrusion curve, a phenomenon known as Structural hysteresis. 

Structural hysteresis can be demonstrated in the pore network of Figure 5.3. During 

mercury intrusion Pore B of the internal pores would fill first, then D and then A & C at 

about the same pressure. When the whole pore network is full and pressure is decreased, 

the first pore to empty is B. The retreating mercury meniscus wiU next move through D 

and then C. Pore A will remain full of mercury until a low enough pressure is reached. 

However by this time all other pores/throats will have emptied and the path of mercury 

to the surface will "snap-off' at pore A, leaving a residual amount of mercury trapped in 

the network. Thus not only is the sequence of pore filling different to that of pore 

emptying, but also residual mercury trapping can occur within large pores at "snap-off' 

sites. Wardlaw & McKeUer (1981) observed the withdrawal of mercury from a glass 

micromodel and found that trapping increases as pore to throat size ratio increases. Snap-

off of the mercury occurs at large pore/small throat junctions. Samples with areas of large 

pores and connecting large throats ie banded samples will produce low mercury residuals 

(Tsakiroglou 1991). 

Dead end pores are also thought to be sites for mercury trapping (Vavra 1990). 
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Dead end pores only have one entrance. The wetting phase cannot re-enter the pore, 

assuming there is no throat surface flow of the wetting phase. Thus a large number of 

dead-end pores within the pore network will lead to significant mercury trapping. 

5.3 Contact Angle Hysteresis 

The contact angle of the mercury meniscus with the pore will decrease when an 

intruding mercury front becomes an extruding front. As mentioned earlier, the most 

commonly used contact angles are 140° for intrusion and 130° for extrusion. The change 

in contact angle is termed contact angle hysteresis. When applied to the Washburn 

Equation, the change causes the extrusion curve to be shifted towards the smaller pore 

region. The ambiguity of precise contact angle values during intrusion and extrusion means 

that the exact magnitude of any contact angle hysteresis is unknown. 

The combined effects of structural and contact angle hysteresis within mercury 

porosimetry are phenomena closely related to the void space arrangement within the pore 

network. Wardlaw & Cassan (1979) postulated that the volume of mercury trapped after 

complete mercury extrusion, is proportional to residual oil volumes after water flooding 

within an oil reservoir. This theory was recendy reiterated by Vavra et al (1992). They 

stated differences between injection and extrusion curves can provide information on 

recovery efficiency. 

5.4 Results 

Twelve samples from the reservoir sandstone plugs supplied by British Gas were 

analyzed on a Ruska 1059 mercury porosimeter - Figures 5.4 - 5.17. 

Appendix 3 shows the apparatus diagram, experimental procedure and calibration curves. 

The apparatus must be calibrated to remove the effect of mercury and line compression 

with pressurisation. 
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MERCURY POROSIMETRY CURVES. 
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F I G U R E 5.6: Mercury Porosimetry Curves for Plug 212C. 
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F I G U R E 5.7: Mercury Porosimetry Curves for Plug 212D. 
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MERCURY POROSIMETRY CURVES. 
PLUG 212E 
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FIGURE 5.8: Mercury Porosimetry Curves for Plug 212E. 
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MERCURY POROSIMETRY CURVES. 
PLUG 250A 
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FIGURE 5.9: Mercury Porosimetry Curves for Plug 250A. 
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MERCURY POROSIMETRY CURVES. 
PLUG 250E 
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FIGURE 5.10: Mercury Porosimelry Curves for Plug 250E. 
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MERCURY POROSIMETRY CURVES. 
PLUG 250E REPEAT 
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FIGURE 5.11: Mercury Porosimetry Curves for Plug 250E Repeat Run. 
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MERCURY POROSIMETRY CURVES. 
PLUG 490A 
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FIGURE 5.12: Mercury Porosimeu-y Curves for Plug 490A. 
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MERCURY POROSIMETRY CURVES. 
PLUG 490B 
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FIGURE 5.13: Mercury Porosimetry Curves for Plug 490B. 



MERCURY POROSIMETRY CURVES. 
PLUG 490C 
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FIGURE 5.14: Mercury Porosimetry Curve.s for Plug 490C. 
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MERCURY POROSIMETRY CURVES. 
PLUG 490D 
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FIGURE 5.15: Mercury Porosimetry Curves for Plug 490D. 
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MERCURY POROSIMETRY CURVES. 
PLUG 490D REPEAT 
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FIGURE 5.16: Mercury Poro.simetry Curves for Plug 490D Repeat Run. 
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MERCURY POROSIMETRY CURVES 
PLUG 450E 
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FIGURE 5.17: Mercury Porosimetry Curves for Plug 490E. 
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Mercury intrusion data for all samples produced the sigmoidal shape curve when 

percentage pore space occupied by mercury on a linear scale is plotted against pore entry 

diameter on a log scale. The point of inflection for each intrusion curve can be measured, 

Table 5.1. Samples within groups 212 and 250 were found, by scanning electron 

microscopy, to be relatively clay free. Points of inflection for these two groups of 

sandstones range from 15.44 to 33.80um. Group 490 sandstones contain a large amount 

of pore lining clay, points of inflection for this group are lower that those of the clean 

sandstones; ie 2.95 to 12.7pm. There is a correlation between permeability and point of 

inflection in mercury intrusion curves. Generally higher permeability samples have higher 

points of inflection. It is to be expected that a sample with predominanUy large pores will 

have a high permeability. The same sample will have a low pressure mercury break 

through point or percolation threshold. As mentioned earlier, mercury breakthrough and 

percolation threshold correspond to the intrusion curve point of inflection. Conversely clay 

affected sandstones have a majority of small pores and therefore low permeabilities and 

low points of inflection. 

The geometrical parameter (G) has been calculated for each mercury intrusion 

curve, Table 5.1. The parameter was measured using the graphical method outlined in 

Thomeer (1960). This involves overlaying the experimental intrusion curve on Figure 5.2 

and matching the experimental curve with the similar shaped curve from the family of 

curves. The relatively clay free sandstones in groups 212 and 250 have low geometrical 

parameters, which indicate steep mercury intrusion curves. Sample 212A has a geometrical 

parameter of 2.0; the shallowness of the intrusion curve for this sample is due to a high 

percentage of cemented pore space as highlighted in Table 3.1, Chapter 3. The clay 

affected samples, group 490, all have high geomenical parameters, ranging from 0.5 to 1.6. 

The shallower mercury intrusion curves in the clay affected sandstones are due to such 

factors as wide pore size distributions and low pore connectivity. The geometrical 
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SAMPLE NO. PERMEABILITY/mD POINT OF 
INFLECTlON/pm 

GEOMETRICAL 
PARAMETER 

EXTRAPOLATED 
DISPLACEMENT 
DIAMETER/DbMin 

TRAPPED 
MERCURY/% 

212A 50.47 17.30 2.0 34.33 28.15 

2I2B 1413.58 29.30 0.2 39.18 31.86 

2I2C 3161.56 33.80 0.1 47.66 

212D 335.05 28.09 0.4 51.60 

212E 1427.77 29.30 0.3 44.79 42.77 

250A 1208.49 15.44 0.8 36.04 74.66 

250E 693.52 20.83 0.1 23.79 21.67 

250E REPEAT 693.52 24.34 0.1 25.53 26.94 

490A 4.17 1.0 20.06 50.46 

490B 27.06 10.80 0.5 19.01 50.24 

490C 12.71 0.6 30.79 43.63 

490D 10.71 12.71 1.0 26.22 61.92 

490D REPEAT 10.71 2.95 1.6 24.85 52.22 

490E 16.53 7.46 1.4 19.90 50.67 

TABLF^ 5.1: Mercury porosimetry Results. 



parameter does not correlate directly with other petro-physicai properties of sandstones but 

it is a useful parameter to quantify the shapes of mercury intrusion curves. Figure 5.18 

shows eight mercury intrusion curves plotted on the same axis. The effect of sandstone 

lilhology on a mercury intrusion curve shape can clearly be seen. The intrusion curve 

shallowing effect caused by the presence of pore lining clay is in line with the findings of 

Neasham (1977). 

Figures 5.4 to 5.17 show both intrusion and extrusion data for each sample. 

Extrusion data down to the lowest pressure attainable on the porosimeter used were 

obtained for all samples except 212C and 212D. For these two samples extrusion was 

stopped at atmospheric pressure (approx. 1 atm.), because at the time of their analysis the 

monitoring of mercury withdrawal in the vacuum region was not thought possible on the 

Ruska porosimeter. The percentages of mercury trapped within the pore space at the lowest 

attainable pressure are listed in Table 5.1. Clay free samples generally have lower 

percentages of trapped mercury than clay affected samples. The one exception is sample 

250A, Figure 5.9. No further mercury is extruded from the pore space below aUnospheric 

pressure. Wardlaw et al (1987) measured zero extrusion below atmospheric pressure for 

a sample of Indiana limestone. The extrusion data for sample 250A should not therefore 

be dismissed as inaccurate, just unusual for a sandstone. 

The amount of mercury trapped within the pore space is related to the number of 

large pore/small throat connections and dead end pores within the pore network. The shape 

of the mercury intrusion curve depends on factors such as pore size distribution/throat size 

ratios and connectivity. The shallower the intrusion curve, the flatter the pore size 

distribution, higher the pore/throat size ratio and lower the connectivity. Thus there should 

be a correlation between the geometrical parameter and percentage residual mercury. 

Samples 212B, 212E, 250E and 250E repeat, all show such a correlation. The higher the 

geometrical parameter, the higher the percentage of mercury trapped. 
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Sample 212A should be reviewed in isolation because it is highly cemented and has 

different lithology than the other clay free sandstones. 

The presence of clay within the pore space adversely affects the extrusion of 

mercury. Group 490 sandstones generally have higher percentages of trapped mercury than 

the clay free sandstones. The rough surface caused by pore-lining clay will cause alteration 

of the extruding mercury contact angle. Work is done by the mercury whilst extruding over 

the clay surface. Smithwick (1986) postulated that energy losses due to friction occur 

during extrusion. Such energy losses wil l reduce the extrusion potential of the mercury. 

Redistribution of clays during mercury intrusion can cause high mercury trapping 

percentages (Churcher et al 1990). Clay particles may move through the pore space at the 

head of the intruding mercury. These clays can mechanically block pores thus hindering 

the extruding mercury. 

AH extrusion data displayed in Figures 5.4 to 5.17 were collected in single day 

sessions. In a few cases the samples were left at the lowest pressure overnight, Figure 5.19. 

The two examples in Figure 5.19 show small "loops" at the end of the extrusion curves; 

this is due to a slight pressure rise overnight. The lowest pressure was reattained thus 

forming the loop. The continued extrusion of mercury overnight would indicate that 

perhaps equilibrium was not reached during extrusion the previous day. The results of 

overnight extrusion are probably spurious. To explain the results, the system needs to be 

calibrated at low pressure overnight. This is an area for future work. 
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FIGURE 5.19: Mercury Porosimetry Curves Showing Increased Extrusion After Overnight 
Exposure to Lowest Pressure Attainable. 
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CHAPTER 6 

IMAGE ANALYSIS 

6.1 Introduction 

The visual inspection of a sample is the oldest form of analysis. Optical and 

electron microscopes facilitate the inspection of features undistinguishable to the naked 

eye. "What is discreet at one scale is composite at a larger scale" - M L Thompson (1992). 

Computer manipulation of images started in the seventies. The introduction of fast, cheap 

computers has lead to image analysis being applied to a wide range of materials, ranging 

from sandstones soils and textiles, to biological specimens and components in nuclear 

reactors. 

An image analysis system consists of three main computer controlled components. 

An image-acquisition component converts the features of the sample into a digital image 

which is stored in an electronic memory. In our studies, the image-acquisition component 

was an electron microscope under low magnification, although a high magnification optical 

microscope connected to a video camera could also have been used. The second 

component is an image processor which can manipulate and measure features within the 

image. Finally an image display component presents both image and calculated data in 

either VDU or printed form. 

The advent of powerful computers has meant that intricate image manipulations and 

complex measurements are attainable in seconds. This advance has meant image analyzers 

are often used as "black box instruments", without proper regard to process and procedure. 

6.1.1 Void Space Identification 

The most important pan of an image analysis scheme is sample preparation. The 

sample must be processed to preserve and highlight the features of interest. This study 
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involved pore size measurement, and therefore pore space had to be emphasised. The most 

common method of pore space enhancement involves resin impregnation of the sample. 

Epoxy resin is pressurised and forced into the pore space, the resin hardens and the sample 

is cut and polished. The polished face can be observed by backscaner electron microscopy 

which highlights the low molecular mass resin as dark areas (see Appendix 1). Some resins 

fluoresce naturally when illuminated (auiofluorescence), whereas others fluoresce when 

stained (Bouabid et al 1992). Some workers have used Wood's metal to impregnate pore 

space. Wood's metal is an alloy with a low melting point of 70°C. In the liquid state, 

Wood's metal has a similar surface tension and contact angle to mercury, and thus Wood's 

metal porosimetry produces similar intrusion curves to mercury porosimetry (Dullien and 

Dhawen 1975). Once Wood's metal has intruded throats of a desired size calculated by the 

Washburn equation, the alloy is frozen. Cutting and polishing the sample facilitates 

inspection of the intruded pores. 

The above methods of resin or alloy impregnation, followed by the cutting and 

polishing of the sample, produce two dimensional images from a three dimensional sample. 

Any measurements of the two dimensional image will only be representative of the three 

dimensional sample if the sample if isotropic (Thompson et al 1992). Anisotropic and 

inhomogeneous samples are best analyzed by taking multiple slices through the sample, 

a technique known as serial sectioning. A recent sandstone study by Lymberopoulos and 

Payatakes (1992) involved analyses of thirty serial sections approximately 7.5um apan. 

From the images of the section an average three dimensional connectivity and pore:throat 

size correlation factor was calculated. A similar study on Berea sandstone has been 

performed by Lin and Cohen (1982). Serial section analysis is the most informative 

method for investigation of anisotropic/inhomogeneous porous media. However, the 

accurate mapping of clean sandstone samples would require accurately located serial 

sections about 0.1 urn apart, and for reservoir sandstones with clay inclusions, the spacing 
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would need to be 0.01pm or less. At a spacing of 7.5pni, intervening layers have to be 

interpolated using a series of assumptions, and it is difficult to make a reliable estimate 

of connectivity we have therefore restricted this study to single plane image analyses. With 

studious selection, such analyses can provide images which reveal the data we require, 

namely pore size distributions and void space size correlation factors. 

Obviously an image should represent the features of interest within a sample, and 

therefore care must be taken in selecting investigation areas and magnifications. When 

using a single plane through a sample to calculate a pore size distribution, the image area 

should include all pore sizes of interest. Samples with wide pore size distributions are 

difficult to analyse completely within one image. Unfortunately there is no easy way of 

integrating image analysis results from different scales (Thompson et al 1992). 

A typical image-acquisition component within the image analyzer produces a 

digitized black and white image of a sample, made up of pixels of a range of 256 grey 

levels. Grey level 0 being black and 256 being white. As mentioned earlier, to facilitate 

easy featiu-e detection there should be a large contrast between features of interest and the 

remaining image. Pore space impregnation produces easily detectable pore voids. When 

comparing many SEM images, brightness and contrast levels should be kept constant. This 

will produce images in which pore space is always of a certain grey level and below, thus 

avoiding any ambiguity about pore space recognition. The grey level below and at which, 

a pixel is detected is called the "threshold grey level". The selection of the threshold grey 

level is outlined by Gong and Newton (1992) in a study of fabric pore size distributions. 

Figures 6.1 and 6.2 show grey level distributions for images of a fracture surface under 

normal SEM mode and resin filled pore space using backscatter SEM, respectively. The 

threshold grey level is easier to deduce in the backscattered electron image because the 

pore space grey level peaks at about 64, a direshold level of about 76 would detect most 

of the image pore space. The grey level distribution for the SEM image of the fracture 

surface shows that pore space and grains have similar grey levels within this 
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type of image. 

Threshold grey level allocation is the first step in the image processing scheme. 

There are numerous procedures which can be applied to the image after threshold grey 

level detection, including erosion, dilation and smoothing. These image processing steps 

are collectively known as a image analysis protocol. Any image analysis protocol should 

produce a final image in which pore space is easily identifiable but an accurate 

representation of the original grey level image (Thompson et al 1992). Any protocol should 

also include identification of edge features when measuring pore size distributions from 

two dimensional images. Any measurement on features cut by the edge of the image will 

erroneously effect the pore size distribution. To remove this effect, an inner frame is 

defined within the image and only pores whose bottom right-hand pixel are within the 

frame are included in the analysis. Measurement of porosity and pore size distributions are 

attainable if edge features are removed. Lymberopoulos and Payaiakes (1992) found that 

the image boundary can cause problems when calculating three dimensional connectivity. 

Upon completion of the image analysis protocol, pore space should be easily recognisable. 

Each pore/throat is represented by a two dimensional shape. 

6.1.2 Void Feature Measurements 

In image analysis differentiation between pores and throats is difficult therefore the 

universal term "void" is used to describe any space between solid particles within the 

sandstone sample. A "void feature" is the two-dimensional expression of a void after 

sectioning. When comparing image analysis with other void space investigative techniques, 

such as mercury porosimetr>', measurements should be comparable to each other. Best et 

al (1985) compared mercury intrusion curves with image analysis data for graphite nuclear 

moderators. They found that image analysis void measurements produced a void size 

distribution with a higher percentage of large voids than that obtained from mercury 

intrusion data. This is due to mercury intrusion being controlled by small voids connecting 
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the larger voids; thus for an effective comparison only void entry diameters should be 

measured. Bouabid et al (1992) reiterated Best*s conclusions when using image analysis 

to measure soil void size distributions. Bouabid et al stated that the smallest chord length 

of a feature is most representative of effective capillary diameter. For complicated feature 

shapes, as are detected within sandstones, the minimum chord will always be one or two 

pixel lengths. This is because a complex shape will have "nooks and crannies" in which 

very small chord lengths will be measured. A more practical feature measurement which 

is still representative of capillary diameter is minimum feret at feature centre of gravity, 

also known as breadth. If we assume that breadth of a void feature is analogous to 

capillary diameter or pore entry diameter in mercury porosimetry, we are assuming all void 

entrances are perpendicular to the image plane. This assumption is not as great as that of 

Bouadid et al who would calculate a very low capillary diameter distribution by the 

minimum chord method on complex feature shapes. 

Ruzyla (1986) considered the maximum feret diameter to be a measure of void 

diameter, a feret being the spacing between parallel tangents to a void feature in a given 

direction. Dullien and Dhawan (1975) defined void diameter as the mean of maximum 

feret intercept with the feature taken in many directions. Their study, on sandstone 

samples, compared void size distributions obtained from mercury porosimetry and Wood ŝ 

metal impregnation/sectioning. 

A slice through a three dimensional array of voids produces void features with 

irregular shapes. A void feature maybe an expression of a number of different size and 

shaped voids. A revealing form of image analysis on such images is called segmentation. 

A feature is eroded, as the feature gets smaller it breaks up into its principal shape 

components. Complete erosion wiU reduce each principal shape component to its centre 

of gravity. Each shape can be built back until it is nearly the fully connected original 

feature. If the reconstruction is stopped one pixel width before reconnection, the resulting 

features can be said to represent each interconnected void, without appreciable area loss. 
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The many different measurements used to quantify void size distributions using image 

analysis highlight the problems involved in using two dimensional images to quantify tlu-ee 

dimensional pore space. 

Image analysis has been applied to a number of the gas reservoir sandstones used 

throughout this study. Primarily to measure the degree of void size correlation within each 

sample. The void size correlation investigation described below compares results obtained 

from two different measurements on each detected void feature. The breadth at the void 

centre of gravity of every feature is measured, this being analogous to the capillary 

diameter of the void as described earlier. The area of every delected feature is also 

measured, the square root of this value being defined as the void diameter. This definition 

of void diameter assumes void features approximate square shapes. This is obviously an 

over simplification but the measurement does allow an easily calculated void diameter, 

which is of use in void size comparison studies such as the void size correlation 

investigation. The void size data obtained can also be used to calculate void size 

distributions. The void size distributions for a number of sandstones have been calculated 

using feature breadth and square root of feature area as the void size measurements, both 

before and after a segmentation process. 

6.2 Image Analysis on Fracture Surfaces 

An initial attempt to measure void size correlations involved analysis of images 

from an SEM study of fractured sample surfaces. Fracture surfaces were initially used 

because they are quick to prepare and allow EDX analysis of the relatively undisturbed 

surface. The major disadvantage of using SEM images of irregular surfaces for quantitative 

image analysis, is due to the shadowing around each exposed artifact. The shadows are 

impossible to differentiate from the dark areas caused by the voids. 

To overcome this three images were obtained from the same area of the specimen. 

The images differ only in their orientation to the SEM detector. The second and third 
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images being created by rotating the sample clockwise through 90** and 180° respectively 

from the original position. The three images are digitized and stored in a TIFF format, a 

format compatible with most image analyzers. Each image is made up of 256 grey levels, 

0 being black and 256 white. Image analysis is performed on a Cambridge Quantimet 570 

instrument. A computer program has been written on the Quantimet 570 to allow analysis 

of the three images. 

The three images are imponed into the Quantimet 570. The second and third 

images are rotated anti-clockwise by 90°and 180° degrees respectively. A one pixel 

marker is placed on all three images at an easily identifiable point. The centre of gravity 

for the three created markers is recorded. The differences between the three x and y 

coordinates are then used to move the rotated grey images to a comparable position of the 

first. All three images are then detected for voids and shadows, ie. a threshold grey level 

is set. The resulting binary planes are 'superimposed' so that when any feature is detected 

in ail three planes the resulting feature is kept. To prevent loss of features due to the 

original markers not being coincident a build is done back into the original detection of 

image one. As these features occiu' in all three images they can not be shadows but deep 

seated pores. 

The procedure described above successfully removed the detected area caused by 

shadowing but the resulting detected voids are only those deep within the rough fracture 

surface. An analysis of correlations between these would give erroneous results because 

only pores dominant at depth would be analyzed. Unfortunately this novel procedure is 

unable to supply suitable images for a void size correlation study. The technique does 

illustrate the power of image analyzers and may find an application in other studies 

involving rough surfaces. 

6.3 Image Analysis on Resin Filled Void Space 

Due to the failure of the fracture surface rotation procedure, the traditional method 
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of resin filling the void space has been used. This allows the acquisition of images suitable 

for pore size correlation analysis. Fragments of six sandstones have been resin 

impregnated, the analysis of two of these samples 212B and 212E is outlined in detail. 

Sample 212B was strongly banded in appearance, had a porosity of 21.2% and a 

permeability of 1410.5md. Sample 212E was less strongly banded vidth a porosity of 22.0% 

and permeability of 1427.8md. 

The void space of each sample was pressure saturated with epoxy resin (Araldite). 

After resin curing, the samples were cut perpendicular to any banding, and cut surface 

ground using carborundum paste. After grinding, the surface was checked for any un-filled 

pores using an optical microscope. Any sample with unimpregnaied void space is 

resaiuraied in resin and reground. 

Images of each sample were collected on a Joel 6100 scanning electron microscope 

(SEM) with backscattered electron detector. Samples were carbon coated to facilitate 

conductance when operating the SEM. The resin filled void space appeared black when 

observed in backscatter mode. Images were set with a high contrast so that the dark void 

space is easily detectable. Backscatter SEM images can be collected as polaroids or 

digitized. Digitization produces an image (TIFF Extension) which is superior to polaroid 

images. Image analysis was performed on the Quantimet 570 instrument. Figure 6.2 shows 

the grey level distribution for a backscanered SEM image of 2I2B with resin filled void 

space. The backscatter distribution shows a peak at about grey level 64, due to the dark 

resin filJed voids. Thus, as mentioned previously, a threshold grey level of 76 would detect 

most of the image void space. 

The backscaiiered SEM image of sample 212B is shown in Plate 6.1; magnification 

is x33 and the image is 3.3mm long. Plate 6.2 shows the image of 212B with all pixels 

of grey level 76 and below detected in red. As mentioned earlier, edge features can give 

erroneous void size distributions, and therefore a guard frame is placed in the centre of the 
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P L A T E 6.1: Backscattered SEM Image of Sample 212B. The Image is 3.3mm Long. 

P L A T E 6.2: Backscattered SEM Image of Sample 212B With Grey Level Detect of 76 
Shown in Red. 
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image. Only features whose top right hand pixel is contained within the guard frame are 

counted. Experimentation with the guard frame size produces a detect area in which no 

feature is cut by the image edge, Plate 6.3. Each feature can be numbered for easy 

identification, as shown. Before any feature measurement can be executed the image 

analyzer must be calibrated, using an image scale bar which does not appear in Plates 6.1 

to 6.3. The 212B image was calibrated to 6.536pm per pixel. After calibration, it is 

possible to make absolute measurements of many features such as area, length, breadth and 

distance between centres of gravity of two features. The results can be output as hard 

copy or as a data file. Plate 6.4 shows the segmentation process applied to sample 212B; 

the detected area is the same as Plate 6.3. Comparison of Plates 6.3 and 6.4 shows that 

complicated pore features have been split into features more recognisable as an idealized 

interconnecting void network. 

The same image analysis procedure was also applied to sample 212E. Plate 6.5 

shows the backscattered SEM image of sample 212E at a magnification of x50, the image 

being 2.28mm long with a calibration of 4.545pm per pixel. Detected area and feature 

numbers are shown in Plate 6.6 and detection after segmentation in Plate 6.7. 

6.4 Void Size Distributions 

Data from the images of samples 212B and 212E can be analyzed to calculate void 

size distributions. Figures 6.3 and 6.4 are void size distributions for the images of samples 

2123 and 212E respectively. The features are grouped into 20 size ranges, indicated by the 

discontinuities in graph lines. The vertical axis is tiie number of features in a particular 

size range divided by the total number, expressed as a percentage. 

Figure 6.3 shows that void breadth in sample 212B ranges from 13um to 778pm. 

Sample 212E has a void breadUi range of 4.545 - 359 um, Figure 6.4. The smallest size 
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PLATK 6.3: Baekscattered SEM Image of Sample 212B With Detect and Guard Frame 
Indicating Analysis Area. Individual Features Numbered. 

P L A T E 6.4: Backscaltered SEM Image of Sample 212B With Detect and Segmentation. 

84 



c 

PLATK 6.5: Backscattered SEM Image of Sample 212E. The Image is 2.28mm Long. 

Plate 6.6: Backscatiered SEM Image of Sample 212E With Detect and Guard Frame 
Indicating Analysis Area. Individual Features Numbered. 
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PLATK 6.7: Backscattered SEM Image of Sample 212E With Detect and Segmentation 
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F I G U R E 6.3: Void Size Distribution for Image Analysis of Sample 212B. 
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FIGURE 6.4: Void Size Distribution for Image Analysis of Sample 212E. 



of any void space distribution derived from image analysis is dependent on the 

magnification of the image. A feature has to be at least one pixel in size and thus the pixel 

calibration defines die smallest feature size possible. Figure 6.3 shows that the smallest 

void detected in sample 212B had a breadth of 13pm, ie. two pixels wide. Sample 212E 

contained voids of 4.5pm breadth, ie. one pixel wide. Obviously smaller voids could only 

be detected i f the images were of higher magnification, but then the observation area 

becomes smaDer and unrepresentative of the whole sample. Both samples have void 

distributions skewed towards the smaller sizes and very few features above 100pm. 

Void size distribution data can be plotted as cumulative void area against void 

diameter. Figure 6.5 shows such distributions for a range of feature measurements on 

sample 212B. An obvious effect of segmentation is to increase the percentage of the 

smallest voids. The cumulative void size distributions for sample 212E are shown in Figure 

6.6. Comparing the segmentation distributions for both samples it can be seen sample 212B 

has a more open void space. Approximately 65% of sample 212B is made up of voids 

100pm and below, whereas nearly 100% of sample 212E's void space is within this size 

range. 

Figures 6.7 and 6.8 show void space distributions obtained from both segmented and 

normal detect images, compared with the mercury intrusion curves for samples 212B and 

212E. Void entry diameter in image analysis is take as the breadth of void feature at the 

centre of gravity as described above. Image analysis distributions are all overestimated 

compared to mercury intmsion distributions, in line with the findings of Best et al (1985). 

For both samples the segmentation distribution is a closer fit to the mercury intrusion 

distribution than the normal detect distributions. This is because segmentation splits the 

complex void feature shapes into their principal component shapes, these being more 

representative of the void network than the complex void shapes. The discrepancy between 

the segmentation disoibutions and the mercury intrusion distributions is due to the 

89 



CUMULATIVE VOID AREA/% 

o 

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 

VOID DIAMETER/MICRONS 
ROOT AREA BREADTH ROOT AREA AFTER SEGMENTATION BREADTH AFTER SEGMENTATION 

FIGURE 6.5: Cumulative Void Size Distributions for Different Feature Measurements on Sample 212B 
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FIGURE 6.7: Comparison of Cumulative Void Size Distributions From Image Analysis With Mercury Intrusion Data for Sample 2I2B, 
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FIGURE 6.8: Comparison of Cumulative Void Size Distributions From Image Analysis With Mercury Intrusion Data for Sample 212E. 



shielding effect of the void network during mercury intrusion. The shielding effect is 

described in detail in Chapter 5. Mercury cannot penetrate a large pore until a high enough 

pressure is reached to penetrate the smaller pore entrance (throat). Thus this shielding 

effect shifts the mercury intrusion void size distribution to the smaller void sizes. The 

difference between the segmentation and intrusion distributions is a measure of this 

shielding effect Figures 6.9 to 6.12 show the void size distributions for samples 212A, 

250A 490D and 490E. Unfortunately the segmentation process was not applied to these 

images. 

6.5 Measurement of Void Size Correlation 

Porous media investigators usually measure the media's void size distribution and 

co-ordination number and decline to investigate void size correlation. The importance of 

void size correlation on the transport properties of porous media has long been known. 

Tsakiroglou and Payatakes (1991) demonstrated that simulated mercury intrusion curves 

had a less pronounced point of inflection within pore-pore and pore-throat correlated 

models. loannidis and Chaizis (1993) obtained similar results in a correlated void space 

model used to simulate oil-waier drainage capillary pressure curves for sandstones. 

The need to measure void size correlation factors for effective modelling is obvious 

but such studies are rare. Wardlaw et al (1987) measured pore:throat size correlations of 

Berea sandstone and Indiana limestone using Wood's metal porosimetry coupled with 

image analysis. Pore-throat size correlation was high within the limestone but the 

sandstone had a weak correlation. Lymberopoulos and Payatakes (1992) found weak pore-

pore correlation within a sandstone, but significant pore-throat correlation during a serial 

section analysis. The Wardlaw investigation involved tedious pore counting methods to 
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FIGURE 6.9: Comparison of Cumulative Void Size Distributions From Image Analysis With Mercury Intrusion Data for Sample 212A. 
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FIGURE 6.10: Comparison of Cumulative Void Size Distributions From Image Analysis With Mercury Intrusion Data for Sample 250A. 
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FIGURE 6.11: Comparison of Cumulative Void Size Distributions From Image Analysis With Mercury Intrusion Data for Sample 490D. 
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FIGURE 6.12: Comparison of Cumulative Void Size Distributions From Image Analysis With Mercury Intrusion Data for Sample 490E. 



calculate the correlations. Lymberopoulos and Payatakes devised an original program for 

pore and throat recognition and measurement. Both the above methods are time consuming 

in application or development so we have followed an alternative approach to void space 

correlation measurement. To test the void size correlation measurement method, an ideaJ 

highly correlated porous media was developed. This correlated system consisted of two 

sintered glass discs of different pore size ranges. The coarse disc had a pore size range of 

100-160pm and the fine disc had a 16-40pm pore size range. These discs were stuck 

together and ground flat using silicon carbide paste. An image of the discs is obtained by 

scanning electron microscopy (Plate 6.8) and this image processed by image analysis (Plate 

6.9). The threshold grey level on Plate 6.9 was 123 and the calibration was 6.579um per 

pixel. The area and centre of gravity of each detected pore feature was saved as a data file 

for future analysis. As in the void size distribution measurement, the square root of the 

void feature area is taken as the void diameter. Figure 6.13 shows a graph of difference 

in the log of diameter between a large void feature and all other features, for the three 

largest features. The regression analysis indicates a slight correlation, = 0.164 to 0.327. 

The above analysis was applied to the ten largest void features, a similar scatter of points 

as Figure 6.13 was obtained. The clustering of points in the upper right hand comer of 

Figure 6.13 indicates that most small void features are a long way from the biggest void 

features. The \̂ ade scatter in Figure 6.13 highlights the problem of using two-dimensional 

sections of three-dimensional porous media. 

Although an area of a porous structure may contain all large voids, when sectioned 

only small expressions of these voids may be cut by the section plane. Within the large 

pore region of the sintered glass image, small pores are found. These small expressions of 

large pores adversely effect the correlation measurements. 

Applying the above analysis to the resin filled sample 212B (Plate 6.3), no 

correlation was found. Figure 6.14, Although the image has distinct areas of large and 
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PLATK 6.8: SEM Photo Micrograph of Sintered Glass Disc. 

PLATK 6.9: SEM Photo Micrograph of Sintered Glass Discs With Grey Level Detect of 
123 and Guard Frame. 
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small voids Figure 6.14 is very scattered, = 2.9 x 10"* to 5.9 x 10"̂  and no void size 

correlation is measurable. This result is mirrored in the analysis of the ten largest void 

features. 

The above analysis detected no correlation in the obviously correlated banded 

sandstone (212B) and only partial detected correlation in the highly correlated glass model 

structure. An alternative correlation measurement technique was therefore developed. 

6.6 Variogram Study 

The variogram is a commonly used tool for the analysis of spatial variability. 

Consider two points and separated by a vector h. At these two points a property 

has been measured, eg feature area, the values of this property equals Z(Xi) and Z(Xi+h) 

respectively. The variability between these two values is given by die variogram function 

2y(h). 

2y(h) = - i - E [ Z(x.) - Z ( X ^ h) r (6.1) 
N{n) i « , 

Gamma (y) is termed the semi-variance or estimate (Journel and Huijbregts 1978). 

Therefore the estimate is half the average of the squared differences. The variogram is 

usually expressed as a plot of semi-variance against distance between points or vector, h. 

Figure 6.15a shows that the variogram can become constant beyond a given distance, a,. 

The upper limit of semi-variance is called the sill. The term sill originates from ore 

exploration, an area in which variogram studies are extensively applied. The occurrence 

of the sill corresponds to a region where semi-variance is no longer a function of direction 

and distance. The distance at which this occurs is called the Range, a,-. The distance up to 

the Range is conrunonly called the Zone of Influence. The variogram can often be linear, 

ie the sill is never attained Figure 6.15b. A linear variogram often denotes a change in the 
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FIGURE 6.15b: A Semi-Variogram for an Anisotropic Sample. 
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general mean and semi-variance with distance ie anisotropy. 

6.7 Geo-Eas 

The variogram study on the data from the sandstone images was perfomed using 

a computer program called Geo-Eas. This program was developed for ore exploration 

studies but is within the pubUc domain. The software availability and usage is outline in 

Appendix 4. 

6.7.1 Results 

Geo-Eas has been applied to the image analysis data obtained from the highly 

correlated sintered glass system, Plate 6.9. Figure 6.16 is a pixel co-ordinate plot of each 

void feature's centre of gravity. The semi-variogram for this data set using void area as 

the variable is shown in Figure 6.17. The semi-variogram shows that the Zone of Influence 

(ai), is only 38.4 pixel units. The centre of gravity co-ordinate plot in Figure 6.16 shows 

a distinct gap of approximately 100 pixel units between the small and large void regions. 

A semi-variogram of this highly correlated system should have a Zone of Influence 

measurement of about 100 pixel units. The discrepancy in the Zone of Influence 

measurement is due to small voids within the large void region, as mentioned earlier, these 

are artifacts of large voids caused by the two-dimensional sectioning of the void network. 

Figure 6.18 shows a fitted curve through the glass variogram. This idealised variogram 

yields a Zone of Influence which approaches the expected result ie, 94 pixel units. 

The small voids within the large void region can be removed creating an extremely 

high correlated glass model system. We have removed the "noise" caused by two-

dimensional sectioning. Whilst ignoring data within real sandstone images would be 

foolish, the glass model system can be viewed as a training system which can be used to 

produce different variograms. Thus variograms produced by real void networks should be 

easily diagnosed. 
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The variogram of the very highly correlated glass system without "noise" indicates litde 

variance within each specific void region, Figure 6.19. Variance increases once the 

investigation distance is greater than the 100 pixel unit gap. 

By joining two sets of data from the sintered glass model, a correlated multiple 

banded structure can be fabricated. Figure 6.20 shows such a structure containing two large 

void bands and two small void bands. Al l "noise" features have been removed as described 

earlier. The semi-variogram for this structure is of the expected shape. Figure 6.21. 

Variance reaches a maximum at about 175 pixel units (QJ); this is approximately the 

distance between the mid-points of a void band and its contrasting neighbour. The semi-

variogram has a variance minimum at approximately 280 pixel units (02), this is the 

distance between mid-points of like void bands. At distances greater than O j , variance 

increases as voids within the second contrasting void bands are included in the variance 

calculation. Unfortunately, the maximum analysis distance in Figure 6.21 is only 327 pixel 

units; this distance corresponds to the data processing limit of the Geo-Eas program. The 

variance trend is still discernible without the ful l data set being analyzed. 

The semi-variogram in Figure 6.22 is for the multiple banded glass model including 

the "noise" void features. The pixel co-ordinate plot for centres of gravity of each void 

within the multiple banded glass model is shown in Figure 6.23. Notice that the glass 

model has been reduced to approximately 100 x 100 pixel units. The number of void 

features has been reduced so that the data processing limit of Geo-Eas is not exceeded. In 

Figure 6.22 the number of void pairs at each distance used to calculate the estimate are 

given beside each point The semi-variogram for the multiple banded glass model with 

"noise" shows distinct maxima and minima, despite the presence of many local maxima 

and minima. A smoothed best fit Une has been drawn; this highlights the distinct maxima 

and minima. The first variance maximum is at 22 pixel units» 22 units corresponds to 

approximately the distance between mid-points of adjacent contrasting void bands, see 
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FIGURE 6.19: Semi-Variogram for Sintered Glass Data With "Noise" Features Removed. 
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ESTIMATE 
3,500,000 

3,000,000 

2,500,000 

2,000,000 -

1.500.000 
46 I 161 

20 40 60 80 100 

DISTANCE/PIXEL UNITS 
120 

AREA 
— B -

CALIBRATION: 6.579 MICRONS PER PIXEL 
NUMBERS EQUAL VOID PAIRS THAT GENERATE EACH POINT 

140 

FIGURE 6.22: Semi-Variogram for Multiple Banded Sintered Glass System, Including "noise" Features, With Smooth Curve. 
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Figure 6.23. The minima at 46 pixel units indicates the presence of like void bands with 

mid-points approximately this distance apart. The second maxima at 61 pixel units is 

indicative of the occurrence of a second contrasting void band. The semi-variograni has 

thus successfully measured the spatial relationships betvî een void space within a synthetic 

correlated structure. However the void space within reservoir sandstones is of far greater 

complexity that of the sintered glass model, and any correlation present is therefore harder 

to measure. 

The Geo-Eas program has been applied to the analysis data obtained from the back 

scatter electron microscopy images of the reservoir sandstones, 212B & 212E, Plates 6.3 

& 6.6 respectively. The semi-variogram for sample 212B is shown in Figure 6.24. The 

image analysis data used to generate this semi-variogram are the same data used in the root 

area size distribution of Figures 6.5. The semi-variogram for sample 212B has a maxima 

at 718um a minima at 1031um and a second maxima at 1367pm. The second minima 

at 2109pm is only due to a few void pairs whilst not being a significant proportion of the 

investigation area; these voids may be part of another void band which extends beyond the 

measure zone, Plate 6.3 shows the image analysis investigation area for sample 212B. The 

top of the measure area contains a band of large voids; below this is a cluster of smaller 

voids. Plate 6.3 includes feature identification numbers, the small void banding is 

highlighted by the clustering of these numbers. Below the small void band is another large 

void band and below that another small void band. Thus the investigation area in sample 

212B (Plate 6.3) contains a double set of large and small void bands over a distance of 

1.78mm. The values of maxima and minima distances do correspond to approximately the 

distances between the mid-points of each like or unlike void band. 

Applying the variogram study to the breadth of each feature for the 212B data set 

produces a semi-variogram of very similar form to that obtained when area is the variable. 

Figure 6.25. For sample 212B the area and breadth of a void are related. This relationship 
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FIGURE 6.24: Semi-Variogram for Sample 2I2B With Smooth Curve. 
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indicates relatively simple void cross section geometries. 

Figure 6.26 shows the semi-variogram for the image analysis data output from 

sample 212E .(Plate 6.6). The semi-variogram increases to a plateau, although after 

attaining this plateau estimate increases slightly. The peak at approximately 170pm is a 

noise peak. This shape semi-variogram indicates either a random void arrangement or a 

simple coupling of a small and large void band. Close inspection of Plate 6.6 shows that 

the latter is true, a region of large voids are situated at the top of the investigation area and 

smaller voids below. The semi-variogram for the breadth of void feanires, Figure 6.27 , 

again has a similar form as that for area within sample 212E. At first glance it would 

appear tiiat sample 212B has more correlated void space than 212E, but a comparison of 

correlation over the same size area indicates a similar degree of correlation.The 

investigation area of Sample 212B is 1.78mm x 1.78mm, and within this area a double set 

of large and small void bands are detectable. Sample 212E had an investigation area of 

1.077 x 1.077mm and a single set of large and small bands was detected. I f the samples 

are compared over the same distance a similar degree of correlation is obtained. 

The Geo-eas analysis has been applied to four other reservoir sandstone samples, 

samples 212A, 250A, 490D and 490E. No void size correlation has been detected in these 

samples. Table 6.1 summarizes the correlation investigation results: 

SAMPLE NO. DEGREE OF CORRELATION 

212A NON DETECTED 

212B TWO SETS OF LARGE AND SMALL 
VOID BANTDS OVER 1.78mm 

212E ONE SET OF LARGE AND SMALL 
VOID BANDS OVER 1.08mm 

250A NON DETECTED 

490D NON DETECTED 

490E NON DETECTED 

TABLE 6.1: Summary of Void Size Correlation Study Results. 
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6.8 Improved Curve Fit To Variogram 

Ii is clear from the preceding discussion that the conclusions concerning the degree of pore 

size correlation within a sample depend critically on the shape of the variogram curve. The 

manual fit to the data points, used above, is made difficult by the fact that the variogram 

points are scattered and are generated by widely differing numbers of void pairs, so that 

the statistical weighting W of the points varies typically from 1 to around a thousand. 

Moreover, the statistical weighting tends to be greatest in the middle of the h (abscissa) 

range, with very low values as /i -> 0 and /i This precludes standard fitting 

procedures, such as polynomial fits, since these become unstable in the high and low h 

regions, which are nevertheless important in determining correlation within the sample. 

Thus to achieve a stable and reliable curve fit, one needs to make some careful 

assumptions about the variogram, while remembering that its overall shape cannot be pre­

determined. The assumptions are as follows: 

(i) the minimum investigation distance is limited by the fact that the digitised 

image is in the form of pixels, which typically correspond to an absolute size of 

around 5 microns. Because of this resolution cut-off, it is reasonable to assume that 

the variogram and its first derivative should both tend to zero as the vector h tends 

to zero. 

(ii) We assume that we have chosen the magnification level such that the largest 

h values are greater than the correlation distances h of interest, i.e. those distances 

corresponding to features which affect fluid migration characteristics on a plug 

scale. It then follows that the variogram will tend to a constant value, and its first 

derivative to zero, as h becomes large. 

(iii) As h increases, the radius of investigation increases, and so do the chances of 

features being masked by other property values Z. Hence the flexibility of the 
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variogram curve decreases as V/i. 

These three conditions are independent of the fractal nature of the sample, which is 

masked by the resolution lower limit, and the investigation area upper limiL Obviously 

the resolution could easily be improved by increasing the magnification, but this might 

then invalidate assumption (ii) above. 

A best fit cubic spline algorithm (NAG library E02BAF) is capable of taking into 

account both the statistical weights and the three characteristics listed. The latter are input 

as follows: 

(i) two Y = 0 points are added to the experimental data at /i = 0 and /z = -A, , where 

hi is the first experimental value of h. 

(ii) two points are added to the experimental data ath = Ih^-h^^ and h = 3hj,-2hn-\, 

where n is the number of experimental points, with the asymptotic mean value of 

y at high h given by : 

The number of points {n-k+1) used to calculate the asymptotic mean value is on 

the basis of the statistical weights of the highest h values, is the maximum possible 

provided that: 

y=n-Jk- l J~n-k 

<v>. - = (6-2) 

(6.3) 

(iii) 7 intermediate knots K are specified for the cubic spline, the knots being those 

points at which the cubic curves join with continuous value, and with continuous 

first and second derivative. The knots are spaced such that: 
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(6.4) 

6.8.1 Results 

Figures 6.28 and 6.29 show the cubic spline curve fit procedure applied to the semi-

variograms of samples 212B and 212E respectively. The curves are similar to those 

obtained by a manual fit The maxima and minima for each curve are approximately the 

same as those measured in Figures 6.24 and 6.26. The cubic spline fit eliminates the 

degree of ambiguity associated with the manual fit procedure. 

6.9 Conclusions 

A new method has been developed for measuring the degree of void size 

correlation within resin filled sectioned sandstone samples. The procedure has been tested 

against an artificially correlated void network, consisting of two sintered glass discs of 

different grade. The Geo-eas program calculated the distance between different void bands 

within this test system, the results being consistent with distances measured manually. The 

Geo-eas program has also been applied to image analysis data from the more complex void 

networks found in sandstones. Void size correlation has been found in two sandstones and 

homogeneous void space detected in four other samples. The correlation information can 

be used in the Pore-cor void space model to facilitate an accurate simulation of sandstone 

void networks. At the moment the information obtained in the correlation study can only 

be used as an indication of degree of correlation to use in the model. Future work will 

involve calibrating the model by applying the correlation procedure to images from model 

networks with varying void size correlation. 
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CHAPTER 7 

DIFFUSION 

7.1 Introduction 

The redistribution of hydrocarbons in subsurface rocks can be facilitated by 

different migratory mechanisms including viscous/bulk flow, solution and gaseous 

diffusion. This migration can be divided into two stages; primary migration denoting the 

transport from fine grained source rock to adjacent more permeable beds and secondary 

migration which is the movement of the hydrocarbons within these reservoir rocks. 

Diffusion has long been argued as a principal mode of hydrocarbon redistribution 

in subsurface rocks. Molecular diffusion involves the statistical movement (Brownian 

motion) of molecules, unlike viscous flow which is driven by pressure gradients (Krooss 

1987). Often migration is a combination of viscous and diffusive fluxes. Thorstenson and 

Pollock (1989) stated that very small pressure gradients can produce viscous fluxes that 

are of the same order or overwhelm diffusion phenomena. 

The potential for large scale diffusive migration was noted by Leythaeuser et al 

(1982). In the Harlingen gas field, Holland, it is estimated that 1x10^ m̂  of methane have 

been lost due to diffusion through the cap rock over a period of 4.5 million years. 

Leythaeuser and co-workers analyzed core samples from Spitsbergen Island at a depth of 

80m. The distribution of hydrocarbons throughout tiiis whole length and across a 

lithological siiistone/sandstone boundary, were measured. Both siltstone and sandstone had 

acted as a source rock early in the areas history. Both contained type I E kerogen. The light 

hydrocarbons were later removed from the lower sandstone unit. This produced a sink into 

which hydrocarbons from the siltstone could di^se. This work proved that molecular 

diffusion is an important transport mechanism in primary migration. 

The diffusion of hydrocarbons can be within many different phases; gas, water, oil 
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or within the kerogen geopolymer. Mineral and organic phase siufaces can also provide 

interfaces for diffusive processes (Krooss 1987). The complex nature of diffusive processes 

within subsurface rocks was noted by Thomas (1989), who pointed out the danger of 

applying the classical diffusion laws to multi-phase systems. 

Much work has been done on the measurement of diffusion coefficients within 

saturated rocks (Krooss 1986,1987). The majority of subsurface rocks contain pore waters, 

but diffusion in the unsaturated zone can be important in any prediction of diffusive losses 

from potential reservoirs. Chen (1973) measured the methane diffusion coefficients for a 

set of dry sandstones with permeabilities ranging from 7 to 336 md. Results indicated a 

correlation of diffusion with permeability, porosity and formation factor. However no 

information has been published on the repeatability and errors associated with diffusion 

coefficient measurements. In this snjdy we measure the diffusion coefficients of metiiane, 

iso-butane and n-butane within nine dry sandstone samples. Repeated measurements were 

performed and a detailed analysis of factors affecting diffusion undertaken. 

7.2 Theory 

The theory for the experimental measurement of diffusion coefficients in sandstones 

is adapted from the non-steady state method used by Daynes (1920). This method was 

originally used to measure diffusion through rubber membranes and was applied to 

sedimentary rocks by Krooss (1986). The technique monitors the build-up of a steady state 

of diffusive flux within the sample. Figure 7.1 shows the concentration profiles throughout 

the sample during steady state attainment. 
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Fick^s First and Second Laws give a mathematical description of diffusion in 

isotropic substances. Pick's First Law states that: 

(7.1) 

J is the gas flux per unit area of the section, flux being the rate of mass transfer of the 

diffusing gas, C is the concentration of the diffusing substance, X the space co-ordinate 

normal to the section and D is the diffusion coefficient. Fick's Second Law is: 

K-DE£ (7.2) 
dt dX^ 

If C, and Q are concentrations at distances x = 0 and x = / respectively, t is time, 

then we define boundary conditions, C = C i a t x = 0 t > 0 

C = C 2 a t x = / t > 0 

and initial conditions C = F(x) 0 < x > / t = 0 

Crank (1975) matiiematically describes the concentration change during the build 

up to the steady state condition. If face x = 0 is kept at a constant concentration Cj, and 

the other face x = / at Cj and the sample is at an initial uniform concentration C^ then : 

C = C . ^ ( C 3 - C . ) f . l j : ' ' ^ " " " " ^ ' s i n i ^ e x p ( - D n W - ) 
' ' I T t f f , n I (7.3) 

* l ^ f ^ s i n i i f i l ^ e x p { - D ( 2 , « M ) ^ 7 r ^ f / / ^ } 
Tt ^ 2m+\ I 

Where n and m = 1,2,3-
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A common experimental arrangement is that Q and C2 are zero, ie the sample is initially 

at zero concentration and the "sink" face of ihe sample is maintained at effectively z&ro 

concentration. Therefore Equation 7.3 reduces to : 

C = C , ( l - f - l f : l s i n _ ( ^ i ^ £ > e x p ( - D « W ^ ) ) (7-4) 

The rate at which the hydrocarbons emerge from unit area of sink side is given by, 

-D(dCydx\,, which is in effect Pick's first law of diffusive flux, 

J - - D i £ 
dX 

therefore, 

^ = C , ( J - - i f : \ c o s ( ^ ) exp(-Dn^K^///^ ) ) 
3A: / y I I 

substitute for x = / 

= C , ( J - - IcosA txp(-Dn'K't/l' )) 

-D— = DC,(1 + 2 V 1 cosnn expC-D/i^Tr^///^ )) 

The total amount of diffused gas, Q(t) is obtained by integrating with respect to t, 

Q{t) = -D f dt= DCxi-*-2T 1 C0S//K — exp (-Dn^n't/I^)) ^Constant 

0 a 
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(2(0 = DC,{i - —Y^ exp (-Dn^re t/l^)) ^ Constant 

At t = 0, Q(t) = 0 and substiniiing (cos n7i)/n^ = (-l)7n^ then, 

-21DC. - (-1)" ^ 
0 = 1. Y LJl- + Constant 

Die r n^ 

Therefore, 
2/DC, J : , (-1)" 

Cofistant = E l i L 
Dn^ \ n^ 

and thus: 

Qit) = DC,[L ^ J L ± ^ { 1 - exp(-Dn^7i^r//^ )) ] 

but J -̂LJZ. is equivalent to —!L (a geometric series) 
I n^ 1̂  

therefore. 

2(0 = DC,[i ^ ^ . ^ {\ - txp(-Dn^n^t/l^ )) ] 

which, as t approaches the line 

2(0 = D C . [ I - ^ ] 
(7.5) 
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This represents a straight line graph and has an intercept on the t axis when Q(t) = 0 where 

^ 6D (7.6) 

to is the period a plane of diffusate would take to transverse the sample and is called the 

lag time. Thus from a measurement of lag time and length, the sample thickness, the 

diffusion coefficient may be calculated. An example of such lag time plot is shown in 

Figure 7.2. On plotting the diffusive flux against time the attainment of the steady state 

is easily observed. Figure 7.3. The lag time does not correspond to the time at which the 

steady state is fu-st attained. The dotted line. Figure 7.3, shows the flux verse time profile 

for such an ideal system. The amount of gas diffusing through the sample should not affect 

the lag-time. Figure 7.3 shows the situation in which two different steady states are 

achieved but the time to attain each is constant Such a case is presented later for diffusion 

through reservoir sandstone samples. 

7.2.1 Relationship Between Diffusion and Tortuosity 

The path a diffusing species takes through a porous medium is dependant on the 

arrangement of voids and the connectivity of the void network. Van Brakel formulated an 

equation relatijig diffusion coefficients with tortuosity (T), porosity (O) and bulk diffusion 

coefficient of the gas into nitrogen (Djj): 

D <1> 
D (7.7) 

The bulk diffusion coefficients for the three gases studied into nitrogen, were given the 

following values by Wackeham and Slater (1973):-

D,2 meUiane = 0.243 cmVs 

D,2 iso-butane = 0.107 cmVs 
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D,2 n-butane = 0.106 cmVs 

Equation 7.7 is used later to calculate diffusion coefficients from simulated tortuosity 

values. A comparison of simulated and measured diffusion coefficients is made. 

7.3 The Apparatus 

The apparatus used to measure diffusion coefficients is adapted from a design by 

Krooss (1986). Changes to the Krooss' design that Dr Spearing initiated were due to the 

inability of Krooss' cold trap to collect the diffusing gases. The apparatus used in this 

study was initially constructed by Dr M.C. Spearing, to which gas-tight discs and other 

modifications were made, as described below. The Spearing diffusion apparatus is shown 

in Figure 7.4. 

The principal components of the apparatus are a gas diffusive source, the sample 

cell, gas collection and analytical system. The source of the diffusing gases are two gas 

cylinders, one containing methane and the other a 50:50 mixture of n-butane and iso-

butane. The flow rate from each cylinder is controlled by the cylinder regulators and in­

line needle valves. Bubble flowmeters are used to measure total flow rate and that from 

each cylinder. All flow lines are made of 1.8mm internal diameter brass tubing, all fittings 

are Swagelok or captive seal. 

The sandstone samples must be mounted in brass rings to allow a gas-tight fit 

within the sample cell. The mounting medium is an epoxy resin. A resin to hardener ratio 

of 2:1 was found to be the best composition. The epoxy resin is allowed to cure for 

approximately two hours before setting the sample in the brass ring. Curing before 

application produces a high viscosity resin which is unlikely to penetrate deep within the 

sandstone pore space. After complete resin hardening the brass and resin are ground 

smooth on one face by a lathe. 
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The sample cell consists of two stainless steel plates. The mounted sample sits in 

a recess cut in the steel discs, the brass ring fits tight against rubber o-rings set in each 

steel disc which forms a gas tight seal. A gas tight disc can be positioned over the face of 

the sample which stops diffusion into the sample before the source cavity is ful l of 

diffusate, Figure 7.5. A full explanation of the gas tight disc operation is given on pages 

139-140. The source and sink volumes are 7.2 cm^ and 8.5 cm^ respectively. The source 

side of the sample cell has an inlet of diameter 3mm and an outlet diameter of 6mm. The 

large outlet diameter is to reduce pressure build up on the source side. The volume of the 

sink has been optimized to allow negligible concentration build-up, thus satisfying the 

criteria that Cj = O in equation 7.4, but not excessively large, so as to maintain short 

sampling periods. 

The gas collection system consists of a sample loop of 1.8mm internal diameter 

brass tubing connected to the sink side of the sample cell and the analytical system, a gas 

chromatograph (G.C), via a 6-pon gas sampling valve. The sample loop has a volume of 

18,2 cm\ This volume is large enough to accommodate all the gases flushed from the sink 

side of the sample cell, whilst not being too large and causing a large pressure drop upon 

transfer to the G.C.. Tap 2 is a needle valve and allows fine control over the transfer of 

gas into the sample loop. Tap 3 is an on-off valve used to control evacuation of the sample 

loop. To maintain a zero pressure gradient across the sample during sink flushing, a 

nitrogen blow-off and water manometer are connected to this side of the sample cell. Upon 

sink flushing nitrogen is directed from the G.C. into the sink via Tap 1. The nitrogen flow 

rate is high within the G.C.; a flow controller reduces this flow for flushing purposes. 

The analytical system is a Pye 104 Gas Chromatograph with a flame ionisation 

detector. The G.C. column which gave the best separation of die three alkanes contained 

Porapak P, which is a porous cross linked polymer bead packing. The G.C. signal is 

processed by an integrator. 
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Experimental Procedure 

1) The G.C. is turned on, the flame is lit and the oven left to equilibrate. The G.C 

settings are as follows : 

Attenuation 10 x 10̂  

Oven Temperature 82°C 

Nitrogen Carrier Gas Flow Rate 75 ml/min. 

Detector Temperature 1 SO^C 

Flame lonisation Detector Air Flow Rate 300 ml/min. 

Flame lonisation Detector Hydrogen Row Rate 44 ml/min. 

The integrator is set up as follows : 

Attenuation 1 - 4 

Peak Width 0.05 - 0.16 

Threshold 0.0 

Area Reject -2 

Equilibration of the G.C. is usually accomplished overnight When running many samples 

it was found best to leave the G.C. on constantly. 

2) A few hours before an experiment the hydrocarbon flow rates are set at a 

cumulative rate of 0.2 ml/min,. Equilibrium of hydrocarbon flow is very difficult to obtain 

but once reached can be maintained easily. Thus when running many experiments it is best 

to leave the hydrocarbons in constant flow mode. When not entering the sample cell 

hydrocarbons are piped into the fume cupboard. 

3) The mounted sandstone is secured in the sample cell and the gas tight disc screwed 

down over the source face of the rock. 

4) The mixture of hydrocarbons are introduced to the source side of the sample cell. 

The time the hydrocarbon flow line is connected should be noted. At a combined flow rate 
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of 0.2 ml/min., the source cavity will lake 36 minutes to f i l l . 

5) During filling of the source cavity the sample loop is evacuated up to Tap 2. A 

vacuum of 0.05 Torr can be achieved if the system is totaDy leak free. 

6) When the source cavity is full the gas tight disc is screwed away from the sample 

face, a stop watch is started at this point. 

7) The flushing sequence is staned after the disc is withdrawn to check diat no alkanes 

entered the rock during source cavity filling. Tap 3 is closed and Tap 2 is opened carefully 

until the water manometer rises slightly. Tap 1 is switched to direct the nitrogen from the 

G.C. into the sink side of the sample cell. Tap 2 is slowly opened further, keeping the 

water manometer level. When the sample loop is fu l l , excess nitrogen will bubble through 

the blow-off. Tap 1 is immediately returned to its original position, to direct nitrogen 

through the G.C.. The gas sampling valve is switched from the " f i l l " position to the 

"inject" position, thus flushing the contents of the sample loop into the G.C. The integrator 

is started. Transfer of the sample loop contents to the G.C. takes about one minute. After 

this rime Tap 2 is closed and the sampling valve returned to the " f i l l " position. Tap 3 can 

now be opened to re-evacuate the sample loop. 

8) The flushing sequence is repeated every 614 minutes unril the peak areas for each 

hydrocarbon are constant for at least four consecutive intervals. 

The experiment is then stopped, the cumulative peak areas of each hydrocarbon calculated 

and each flushing time noted. 

The flushing sequence is extremely difficult to perform without inducing large 

pressure differences across the sample. During some experiments a hexane manometer was 

placed across the sample cell to monitor pressure differences. With practice the manometer 

could be kept level during each flushing. The experimental procedure is the same as that 

outiined in Spearing (1991), apart from the magnitude of the combined flow rate used, and 

the covering of the rock face with the gas tight disc during source cavity filling. Spearing 
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recommended a combined hydrocarbon flow rate of 1.5 ml/min. At this flow rate the 

hexane manometer across the sample indicated 0.5mm of hexane pressure difference for 

a 99.74md sandstone sample. Applying Darcy^s Law to this system such a pressure 

difference across this sample produce viscous fluxes of the same order as the diffusion 

results quoted by Spearing (1991). Thus the combined hydrocarbon rate has been reduced 

to 0.2 ml/min.. No pressure difference was detected at this flow rate, either by hexane 

manometer or differential pressure transmitter. The new low hydrocarbon flow rate causes 

a long source cavity filling time (36 minutes). The gas tight disc allows complete filling 

of the source cavity before any hydrocarbons enter the rock. The Spearing method had a 

large error associated with the exact starting time of the experimenL Even at a flow rate 

of 1.5 ml/min., the source cavity takes 4.8 minutes to fill, thus the exact time diffusion 

commences is unknown. The source cavity concentration is not constant thus the criteria 

for Equation 7.4 are not fulfilled. The gas tight disc eliminates all these errors and 

uncertainties. 

7.4 Regression Analvsis to Find Lag Time (O 

The lag time (t^) can be calculated by plotting the cumulative peak height, from the 

G.C. integrator, for each gas against time and finding the straight line intercept when 

cumulative peak height equals zero, as in Figure 7.2. The lag time can be obtained in an 

accurate manner by carr>'ing out a regression analysis of the data using a computer 

statistics package. The Minitab statistical package has been used in this study. The 

cumulative peak areas and time data are input into the computer except for the first few 

points where the steady-state diffusive flux has not been reached. The regression 

calculation calculates the equation of the best fit straight line. As new points at lower 

sampling times are added the curve deviates from the straight line. The deviation from the 

straight line is expressed as an error value, Ê  with D^ associated degrees of freedom. 
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If 
^n-^.JD.-x ^ 4 (7.8) 

then the current data point deviates from the straight line. For a reasonable number of 

points on the straight line, the critical value of 4 for the ratio above corresponds lo a 5% 

significance level. The equation of the straight line before the unacceptable deviation 

occurred is used to obtain the lag-time. Using equation 7.8 the diffusion coefficient can 

be calculated. 

Figure 7.6 shows an example of successive regressions as performed on the Minitab 

package. In this example time is plotted against cumulative peak area, so lag time is equal 

to the y-axis intercept. Applying Equation 7.8 to the error data a ratio of I is obtained. 

Assuming that the next data point deviates then in this example lag time is 4.17 minutes, 

7.5 Results 

The diffusion coefficients of the three hydrocarbons, methane, iso-butane and n-

buiane, have been measured in one sample of Clashach outcrop sandstone and eight 

reservoir sandstone samples. Spearing (1991) extensively studied diffusion within samples 

of Clashach outcrop sandstone, and this sandstone is almost 100% quartz and contains very 

little fine material. Such a clean void structure contrasts greatly with that of the reservoir 

sandstones. I f the degree of complexity of the void space affects diffusion then this may 

be indicated in the diffusion coefficients measured. 

The operation of the diffusion apparatus was extremely difficult. Many runs had 

to be aborted because the hydrocarbon flow rate fluctuated or a large pressure difference 

was induced across the sample during sink flushing. Appendix 5 shows the peak area 

against time plots for at least five successful runs for each sample. The peak area against 

time plots show the build up to a steady-state flux for each gas. Occasionally methane 

attains a steady state before the second sink flushing time (ie 6.5 minutes), so in these 
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MTB > PRINT CI 02 C1 =TIME, C2=CUMULATIVE PEAK AREA-

ROW 01 02 

1 0.0 * 
2 6.5 * 
3 13.0 * 
4 19.5 * 
5 26.0 5035944 
6 32.5 6478144 
7 39.0 7985744 
8 45.5 9470944 
9 52.0 11000644 
10 58.5 12540544 

DATA SET 

MTB > REGRESS 01 1 02 

The r e g r e s s i o n equation i s 
01 = 4.38 +0.000004 02 

6 cases used 4 cas e s contain m i s s i n g v a l u e s 

P r e d i c t o r Ooef Stdev t - r a t i o p 
Constant 4.3835 0.2072 21.15 0.000 
02 0.00000433 0.00000002 190.43 0.000 

s = 0.1428 R-sq = 100.0% R-sq(adj) = 100.0% 

A n a l y s i s of Variance Ĉ _̂  

SOURCE DF / SS MS F p 
Regression 1 ̂  739.29 739.29 36264.27 0.000 
E r r o r ^ ^ 0.08. 0.02 
To t a l 5 739.37 

MTB > LET 02(4)=3563844 ^ .̂-j 
MTB > REGRESS 01 1 02 

The r e g r e s s i o n equation i s 
01 = 4.17 +0.000004 02 

7 cases used 3 cases contain missing values 

P r e d i c t o r Ooef Stdev t - r a t i o p 
Constant 4.1678 0.1751 23.80 0.000 
02 0.00000435 0.00000002 212.34 0.000 

s = 0.1620 R-sq = 100.0% R-sq(adj) = 100.0% 

A n a l y s i s of Variance 

SOURCE DF / SS MS F p 
Regression 1 M 1182.9 1182.9 45087.70 0.000 
E r r o r 0.1 0.0 
T o t a l 6 1183.0 

APPLYING EQUATION 7: 
^-1/^-1 

FIGURE 7.6: Mini-Tab Regression Analysis 
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cases the lag time cannot be calculated. The methane diffusion in high 

porosity/permeability sandstones is difficult to measure with this apparatus for shon sample 

lengths due to shon lag times. Thus for high porosity/permeability rocks the longest 

sample length obtainable is recommended. 

The flame ionisation detector within the G.C. measures the number of carbon 

radicals produced when each hydrocarbon is ionised. Thus the peak area response for unit 

volumes of iso-butane and n-butane will be four times that for the same volume of 

methane. The experimental peak area against time plots show that iso-butane always attains 

a higher peak area plateau, ie steady state, than n-butane. The butane source cylinder 

contains a 50:50 mixuire of iso and n-butanes, and so the difference in the steady state 

peak areas must be due to subsequent change in the butane ratio. The butane mixture is 

not ver>' volatile at room temperature. Iso-butane has the lowest boiling point, so 

fractionation of the mixture as it leaves the cylinder is a distinct possibility. The flame 

ionisarion detector is very sensitive; a small increase in the amount of gas diffusing 

through the sample will produce a large increase in peak area. Diffusion is related to the 

time taken to reach the steady state, not the steady state peak area. The independence of 

diffusion and steady state peak area are discussed later in more depth. 

The regression analysis using the Minitab statistical package produced excellent line 

fits. In all experiments, the best fit line to the data, including the last data point to satisfy 

equation 7.8 had an R-square regression fit of 1.000. The excellence of the fitted line 

means that the lag time intercepts had low variances. One standard deviation from the lag 

time intercepts produced diffusion coefficients which never exceeded ± 1% of the 

coefficient calculated from the regression analysis value. In many experiments the lag time 

intercept had a standard deviation of zero. 

The diffusion coefficients measured during successive runs on the same samples 

were found to have a wide range. Extreme results from these ranges were analyzed by a 
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Q-test A few extreme values were discarded with 90% confidence. Table 7.1 shows the 

remaining range of diffusion coefficients for each sandstone sample: the mean values are 

shown in brackets. The range of values for each sample still appear quite large. The 

narrow range of methane diffusion coefficients is due to the small number of successful 

runs for this gas as explained earlier. The wide range of diffusion coefficients measured 

for each sandstone sample prompted an analysis of errors associated with the technique. 
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SAMPLE NO. METHANE DIFFUSION 
COEF. RANGE/cm^^s' 
X10-' 

ISO-BUTANE DIFFUSION 
COEF. RANGE/cnrs ' 
XIO'^ 

n-BUTANE DIFFUSION 
COEF. RANGE/cmV 
X10-' 

CLASHACH 1.460-10.250 (5.415) 4.330-9.660 (6.978) 4.930-7.290 (6.325) 

2I2A 2.204-5.853 (4.328) 1.784-5.049 (3.565) 

250A 4.774-18.568 (10.901) 2.700-8.319 (5.260) 

250E 6.808-8.587 (7.687) 1.967-6.032 (4.033) 

490A 1.375-1.496 (1.435) 1.309-17.490 (7.274) 1.321-9.797 (5.071) 

490 B 1.330-2.447 (1.888) 1.010-12.765 (5.107) 1.67I-I1.562 (4.618) 

490C 4.524 3.067-23.570 (12.477) 2.918-16.310 (9.559) 

490D 8.279-11.678 (9.978) 3.289-9.262 (5.465) 2.701-7.325 (4.508) 

490E 5.053-6.851 (5.952) 1.213-4.396 (2.982) 1.185-3.960 (2.660) 

EXTREME RESULTS EXCLUDED FROM RANGES WITH 90% CONFIDENCE. 
BRACKETED VALUES ARE THE MEAN OF ACCEPTED RESULTS. 

TABLE 7.1: Diffusion Coefficients for Reservoir Sandstones. 



7.5.1. Error Analysis 

The formation for viscous fluxes within the sample has already been cited as a 

major source of error within diffusion coefficient measurement. The combined alkane flow 

rate into the source cavity had been reduced to 0.2 ml/min. At this flow rate» no pressure 

difference is detected across the sample cell. The possibility of viscous fluxes still exists 

even at this reduced flow rate. If viscous fluxes predominated, the lag times and diffusion 

coefficients will be proportional to the peak area once the steady state is established. 

Figure 7.7 shows two examples of samples which have given the same lag time for runs 

with ver>' different peak areas at steady state. The top graph of Figure 7.7 is for iso-butane 

during runs 6 and 10 in sample 250A. The peak area at the steady state for run 10 is 

approximately four times that of run 6 but the lag times are almost the same. The bottom 

graph of Figure 7.7 shows a similar result for n-buiane in sample 250E. Diffusion is 

independent of steady-state peak area and so viscous flux did not dominate during these 

experiments. Figure 7.7 also shows that the capacity of the sample for diffusing increased 

quantities of hydrocarbon has not been exceeded during these experiments. Ambiguity 

about the stan lime of diffusion has been eliminated by the addition of the gas-tight disc 

within the source cavity. The start of hydrocarbon diffusion is known to within ± 2 

seconds. 

Error within the measurement of sampling time could introduce significant error 

in the lag time calculation. The sink cavity is flushed with nitrogen periodically, usually 

every 6.5 minutes however the exact time of flushing is unknown. The sink volume also 

takes a finite time to empty when flushed. These effects produce a flushing time error of 

+ 0.25 minutes. The effect of this error on the diffusion coefficients can be great, 

especially i f low lag times are measured. 

Figures 7.8 to 7.10 show the measured diffusion coefficient ranges with the effect 

of the identified errors. As mentioned earlier the ranges for methane are narrower because 
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FIGURE 7.8: Methane Diffusion Coefficient Ranges 
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F I G U R E 7.10: Iso-Butane Diffusion Coefficient 



only a few successful runs were performed. The effect of the flushing time error on large 

diffusion coefficients is reflected in the larger ranges of the iso-butane coefficients 

compared with the ranges for n-butane. 

7.5.2 Analysis of Variables within Diffusion Measurements 

The error associated with the flushing time can explain pan of the diffusion 

coefficient range. In an attempt to identify any other factors which may affect diffusion 

coefficient measurement, a multivariate data analysis computer package called Unscrambler 

has been applied to die data. Eleven factors which may affect the diffusion measurements 

have been calculated. Table 7.2 outlines each factor and its range. 

Multivariate data analysis is used to find a mathematical relation between two data 

sets, X and y. The x data set contains the values of the eleven variables during each run. 

The y data set contains all the calculated diffusion coefficients including those later 

removed during the Q-test. The Unscrambler program can produce a calibration model to 

explain the variance in the y-data set ie. in the diffusion coefficients. The calibration model 

can then be used to predict unknown y-values from new measured x-values. Unscrambler 

uses a partial least squares regression to form the model. The calibration model relates the 

variance in the x-data to the variables in the y-data through a set of components or model 

factors. The first factor explains the most dominant variance, the largest fraction of the 

total data set variance. The second factor handles the next-largest fraction of variance. 

Figure 7.1 la shows die relationship between the variables and the first three model factors. 

The loadings on the y-axis indicate which variables are dominant within each factor. 

Positive and negative loading carry equal weight. The first factor within tiie model uses 

permeability, porosity and the percentages of each alkane detect at zero time as its 

dominant variables. The correlation of porosities and permeabilities with diffusion is to be 

expected and this is discussed later. 
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K E Y TO 
F1G7.IU 

FACTOR DEFINITION RANGE 

A PERMEABILITY/mD A B S O L U T E GAS P E R M E A B I L I T Y OF SAMPLE. AS DEFINED IN CHAPTER 2 CONSTANT FOR EACH SAMPLE. 10.74 
1208.49 mD BETWEEN SAMPLES 

B POROSITY/% GAS POROSITY. AS DEFINED IN CHAPTER 2. CONSTANT FOR EACH SA.MPLE 12 ?-23.2% 
B E T W E E N SAMPLES 

F COMHINED A L K A N E FLOW 
KATf:/ml/min 

COMBINED FLOW R A T E OF THE T H R E E A L K A N E S . MEASURED ON BUBBLE 
METER. 

0.154-0.27? ml/mm 

II METHANE FLOW 
RATE/ml/mm 

METHANE FLOW R A T E . MEASURED ON B U B B L E METER. O.CM7-0.178 ml/mm 

ISO-BLTANE FLOW 
RATE/ml/min 

ISO-BUTANE FLOW R A T E . C A L C U L A T E D BY MULTIPLYING B U B B L E METER 
READING BY RATIO OF ISO AND n-BUTANE STEADY S T A T E PEAK HEIGHTS. 

0.016-0.090 ml/min 

1 n-BUTANE FLOW 
RATE/ml/min 

n-BUTANE FLOW R A T E . C A L C U L A T E D BY MULTIPLYING B U B B L E METER 
READING BY RATIO OF ISO AND n-BUTANE STEADY S T A T E PEAK AREA. 

0.003-0.060 ml/mm 

G DAYS BETN^EEN RUNS NUMBER OF DAYS BETWEEN S U C C E S S I V E RUNS. 7-335 

C P E R C E N T A G E OF METHANE 
S T E A D Y S T A T E AT EXPT. START 

METHANE PEAK AREA AT R R S T SINK FLUSHINCI (T=(n AS A PERCENTAGE 
O F FINAL STEADY STATE PEAK AREA. 

o.o-2om 

D P E R C E N T A G E OF ISO-BUTANE 
SI HADY STATE AT EXPT. START 

ISO-BUTANE PEAK AREA AT R R S T SINK FLUSHING (T=0) AS A PERCENTAGE 
O F FINAL S T E A D Y STATE PEAK AREA 

0.0-2.8^ 

I- IM K C I A T A G E OF n-BUTANE 
STEADY STATE AT EXPT. START 

n-BUTANE PEAK AREA AT R R S T SINK FLUSHING a=0) AS A PERCENTAGE 
OF FINAL S T E A D Y STATE PEAK AREA. 

0.0-3.1% 

K Ml I H A S E ISO BUTANE RATIO RATIO OF METHANE AND ISO-BUTANE S T E A D Y STATE PEAK AREA. 0.166-2.737 

TABLE 7.2: Potential Factors Affecting Diffusion Coefficients. 
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The relation between diffusion coefficients and percentage of each alkane at zero time is 

also obvious. If the gas tight disc leaks during source cavity fil l ing, then the diffusion 

coefficient measured will be anomalously high. These extreme results were removed later 

by the Q-iest. Unscrambler has proved that it is wise to reject these extreme results. The 

second and third model factors represent less dominant components of variance. The 

combined and individual alkane flow rates have high loadings within the second model 

factor and days between successive runs also had high loading. 

A test of the calibration model is its ability to explain the variance in the diffusion 

coefficient data set. Figure 7.11b demonstrates the amount of variance left as the number 

of factors within the model is increased. The ideal model will attain a local residual 

variance minimum at a given number of model factors. The residual variance increases 

with addition of each model factor. This indicates that the calibration model is unable to 

explain the variance in the diffusion coefficient range. There is a slight correlation between 

porosity, permeability and diffusion. The remaining variance within the diffusion 

coefficient data set is not related to any of the variables identified. The unexplained 

variance maybe due to an amount of natural randomness within diffusion processes. 

7.6 Correlation of Diffusion with Petrophvsical Properties 

The mean values of the iso-butane diffusion coefficients for all the relatively clean 

sandstones correlate well with permeability and formation factor. The clean sandstone 

samples are clashach, 212A, 250A and 250E. The regression analysis of the data is shown 

in Figure 7.12. The permeability correlation produced an R-squared value of 0.93 for the 

four samples. The formation factors correlate less precisely with diffusion coefficient. The 

porosity of each sample also correlates with mean iso-butane diffusion coefficient, although 

not as well as permeability and formation factor. The intercept of the best f i t line with the 

100% porosity point should be equal to the bulk diffusion coefficient of iso-butane in air. 
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The calculated 100% porosity intercept is 0.056716 cmVs. The is approximately half the 

value of 0.106 cmVs quoted by Spearing (1991). This result is interesting but the 

regression line has a low R-squared fit coefficient 0.6115. One standard deviation from the 

regression line produces an 8% variation in the 100% porosity intercept A good 

correlation between the n-butane diffusion coefficients and other petrophysical properties 

of the samples was not found. The small number of clean sandstones used in this study 

means any correlation is hard to detect. If a large number of clean sandstones were 

analyzed, perhaps a better correlation would be found. 

7.6,1. Clay Affected Sandstones 

The five clay affected sandstones produced no correlation between any measured 

variable and diffusion coefficients. Spearing (1991) reported that a sample containing a 

high percentage of clay would be liable to alkane adsorption on the clay surface. The effect 

of alkane adsorption within the pore network is cited by Spearing as causing a low 

diffusion coefficient measurement on the first run, all subsequent runs giving higher 

coefficients. The same conclusions cannot be drawn from these data. Four samples had a 

successful fu-st run and on no occasion did these runs give the lowest diffusion coefficient 

within the range. Spearing based his conclusions on one successful fu-st run for each 

sample so his data are very limited. 

One effect which was noticed during successive runs was that i f a sample was 

tested on consecutive days, a large coefficient was measured for the second run. This is 

due to the sample containing alkane remnants during the second run. Samples must be 

alkane free at the start of the experiment to satisfy Equation 7.4, any residual alkanes will 

cause a reduction in lag time. For this reason, samples were left at least seven days 

between runs. After this time no correlation with diffusion coefficient and the period 

between runs was found. 
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Absence of a correlation between diffusion and any peirophysical property within 

clay affected sandstones points to a number of subtie effects involving the clays and 

diffusing alkanes. The adsorption and release of alkanes from the clay surface would be 

dependant on the type and distribution of clay within the pore space. Variation in diffusion 

coefficients measured in clay affected samples with similar porosity and permeability may 

be due to small differences in clay morphology and location. A detailed study of clay 

distribution within pore space and its effect on diffusion is needed to quantify these effects. 

Clays within the pore space can have a more direct effect on successive diffusion 

coefficient measurements due to their brittle nature. During the long period in which the 

samples were tested (4 months to 1 year), clays could have become redistributed due to 

mechanical dislocation. A fine clay particle may move i f the sample is handled roughly 

and pathways for diffusive flux become blocked. This phenomenon is common when fluids 

permeate the pore-space. It is termed formation damage and is discussed in detail in 

Chapter 10. The effects of preferential adsorption and clay migration could combine to 

cause a wide range of measured diffusion coefficients for the clay affected sandstones. 

158 



CHAPTERS 

THE VOID SPACE MODEL 

8.1 Other Void Space Models 

Before detailing the void space model and calculation, it is interesting to compare 

our network with other networks used to simulate pore space phenomena. A comprehensive 

survey of work up to 1975 has been given by Van Brakel (1975). He discusses models 

ranging from simple bundles of straight, equal radius capillary tubes, through to three-

dimensional interconnecting networks. Van Brakel recommends that work be done on 

networks of interconnecting tubes in which the volume and geometry of the network and 

its junctions are explicitiy specified. This is the course undertaken in this study. Van 

Brakel raised some interesting points about the nomenclature used by porous media 

investigators. He cited the use of the terms pore size and pore size distribution as hindering 

progress, stating that real pore space has a continuous complicated structure and pores do 

not have a finite lengtii. The idea of a pore size distribution could be thought of as 

meaningless to real porous media. However, i f the void space is characterised by such 

techniques as measuring sphere or cube sizes which f i l l a void, then terms like pore and 

pore size distribution are meaningful even in real void space. Void space models use 

simple three-dimensional shapes to represent the pores and throats in porous media, so that 

within a void space model the terms pores and throats are valid. Within tiiis study any 

voids with smaller connecting voids is defined as a *pore* the smaller connecting voids 

being defined as 'throats'. The modeller must.be careful only to use these terms in the 

modelling context. 

The three-dimensional shapes used to^represent pore space within models are as 

numerous as the.mediods for measuring feature size within image analysis, Chapter 6. In 
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the next section we describe many different network simulators used to model 

intrusion/extrusion of a non-wetting phase and absolute permeability. 

8.1.1 Non-Wetting Phase Intrusion/Extrusion Simulations 

Garboczi (1991) demonstrated mathematically that a range of pores and throats of 

different shapes and sizes could be successfully represented by a random network of 

interconnecting elliptical cylinders. The elliptical cylinders can range from circular 

cylinders (semi-minor axes equal) through to cracks (one semi-minor axis = 0). Yanuka 

et al (1986) have also used different void shapes in the form of a three-dimensional 

network of intersecting ellipsoids for their simulation of percolation processes. 

Lenormand and coworkers (1988, 1989) have used 100 x 100 x 1 and 25 x 25 x 

1 networks of spherical pores and cylindrical throats to simulate two-phase displacement 

effects, namely capillary fingering, viscous fingering and stable displacements. They link 

the displacement effects to a statistical percolation model. The different behaviour is 

expressed in terms of a 'phase diagram' plotted using axes log M and log C„ , where M 

is the viscosity ratio ( = viscosity of injected fluid / viscosity of static fluid) and the 

capillary number C„ is the ratio of viscous forces to capillary forces, given by 

^ ^ udV/df (8-1) 
AO 

where u is the viscosity of the fluid, dWdr is the volume flow rate normal to a plane of 

an area A, and a is the interfacial tension. Our method of simulating mercury porosimetry 

corresponds to an invasion percolation calculation in the invasion percolation region of the 

Lenormand phase diagram, which occurs at low C„ and high M. 

Blunt and King (1990, 1991) generate 2-D and 3-D networks of up to 80,000 pores 

of equal volume, with individual pore coordination numbers in the range 3 to 12, and 

overall connectivity of 6. The throat sizes are uncorrelated and form a uniform, linear 
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distribution. The invasion percolation and unstable viscous flood regimes are modelled. 

Tetrahedral pores were irregularly arranged and used to model mercury intrusion 

and extrusion by Mason and Mellor (1991). Mason and Mellor used a Haine's in-sphere 

approximation to calculate the mercury meniscus curvature. The centre co-ordinates of the 

pores were the same as those measured for a random packing of 3,367 equal spheres by 

Finney (1970). These same co-ordinates were used by Bryant and Cade (1992) as the 

starting co-ordinates of pores within a model to monitor permeability, porosity and 

mercury intrusion point of inflection, with increasing cementation and compaction. Mason 

and Mellor and Bryant and Cade maintained that a spatial correlation existed within the 

supposed random pore arrangement. Bryant and Cade used this as evidence for spatial 

correlation within all granular porous media. The detected spatial correlation may only be 

a function of the original packing used in the model and not indicative of all pore 

networks. 

Chatzis and Dullien (1985) used 33 x 33 x 1 and 18 x 18 x 12 networks formed 

from angular capillary nibes with angular bulges to represent pores. The network was 

expressed as a regular network with pore-throat correlation, and a mathematical percolation 

performed. The network was then transformed to a pore volume network, and fitted to 

experiment. There was good fit around the points of inflection of the mercury intrusion 

curves of a range of sandstones, as would be expected because the curves were scaled by 

means of their break-tiirough point pressures, but above about 70% pore volume the 

theoretical curves differed by up to 8%. 

Conner and Horowitz (1988) developed a 10 x 10 x 10 matrix, all pores having the 

same volume, and throats having zero volume. Mercury intrusion curves were calculated 

using the Washbum/Laplace equation. Throat size distributions are often assumed to be the 

derivatives of mercury intrusion curves, and tiiey corrected tiiese derivatives using a 

distortion and stmctural factor. The necessary but arbitrary choice of a connectivity of 6 
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in their simulation was found to be very limiting. 

Tsakiroglou and Payatakes have used 20x20x20 and 30x30x2 networks (1990, 

1991) for the simulation of mercury intrusion and extrusion curves. They used an invasion 

percolation algorithm effectively the same as in this work, but also included resistance 

effects due to pore shape. The simulations showed that pore-throat correlation and to a 

greater extent pore-throat and pore-pore correlations, shallowed the mercury intrusion curve 

and reduced residual mercury trapping. 

Day et al (1991) used a cubic lattice with random pore size allocation from a log-

normal distribution to simulate mercury intrusion and extrusion. The lowering of 

connectivit>' increased residual mercury trapping. Two mechanisms for mercury trapping 

were simulated. The first, a purely structural hysteresis type extrusion, produced very little 

mercury trapping even at low connectivities. The second mechanism assumed that two 

mercury menisci did not coalesce when a pore is filled from two different connections. The 

meeting point of the two menisci acts as a seed for mercury extrusion. This approach to 

simulating mercury extrusion leads to increased trapping. Similar conclusions have been 

reached by Park and Ihm (1990) using percolation theory to model intrusion and extrusion 

with or without mercury menisci coalescence. 

8.1.2 Permeability Simulations 

A long standing problem in the study of porous media has been the question of 

how to calculate the permeability of a solid from a knowledge of the geometry of the void 

space within it. 

Early attempts to calculate permeability from a combination of characteristic 

parameters were reviewed by Scheidegger (1974). The simplest method is to assume that 

flow is occurring through a bundle of straight capillaries. 

Permeability has dimensions of length^ , and dimensional considerations lead to the 
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definition of a hydraulic radius 0/5, related to the square root of permeability. ()) is the 

effective porosity and S the total externally accessible surface area per unit volume of the 

solid. Extension of this dimensional approach by Kozeny (Scheidegger, 1974) to what he 

refers to as a virtual stream tube led to an equation: 

k = c,<))V5^ (8-2) 

where is the Kozeny constant which varies from 0.5 for a virtual stream tube of circular 

cross-section, to 0.66 for a strip cross-section tube. In practice the consideration of a 

virtual su-eam tube, though more rigorous and generalised than the straight capillary model, 

adds little further insight. 

If equation 8.2 is corrected for tortuosity T, one obtains 

k = c,^'/{TS') (8.3) 

However, the concept of tortuosity is alien to the Kozeny virtual stream tube approach, 

which by its very nature does not invoke detail of the structure of the medium. T in 

equation 8.3 is thus ill-defined. 

Koplik et fl/ (1984) uses the "effective medium" approach to calculate permeability. 

The pore network of a sample of Massilon sandstone had previously been characterized 

by serial section image analysis. In their calculation of the permeability of the sandstone, 

they set up a "ball and stick" network of pores and throats. However, the geometry of the 

pores does not enter the calculation because the pressure drop across each pore is assumed 

to be zero - only pressure drops across the throats are considered. Simulated permeabilities 

were about a tenth of the measured values. The small sample used for the image analysis 

and the width between sections is cited by the authors as the reason for the model's 

failings. The effect of averaging the effective capacities of each throat within the effective 

medium and then averaging the pressure gradient along each throat also has a detrimental 
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effect on the simulated permeability. 

A further relationship for the permeability has recently been given by Katz and 

Thompson (1986, 1987), based on a consideration of the dimensionality of characteristic 

parameters, and the sensitivity of permeability to threshold values of these parameters. 

They obtain 

)t = - L ^ (8-4) 
226 F 

is the characteristic throat diameter at the *break through point' on the mercury intrusion 

curve. As mentioned in Chapter 5, the *break through point* corresponds to the percolation 

threshold, the pressure (or diameter), at which a continuous mercury path spans the rock. 

Our model shows this to occur at the point of inflection of the mercury intrusion curve. 

The Katz and Thompson approach to modelling permeability is quoted as predicting 

permeabilities to within a factor of two from the measured value. Obviously the model is 

dependent on the assumptions used in the Washburn Equation. The 1/226 factor is derived 

from assumptions about the relationships between pore length and pore diameter, Garboczi 

(1991). The Katz and Thompson model is also only able to simulate permeabilities. A pore 

space model should ideally simulate different pore space phenomena so that the 

complicated relationships between these pore space properties can be elucidated. 

The permeabilities and formation factor of homogeneous isotropic Fontainbleau 

sandstone has been modelled by Adler (1990, 1992). Two-dimensional thin section images 

of the sandstone were used to characterize each sample's porosity and correlation function, 

and this function was then applied to the model. Formation factor was always 

overestimated whilst permeability was always underestimated by as much as a factor of 

5. Adler appears to compare his simulated formation factors with those measured on real 

sandstones by another worker in 1964 ! Fontainbleau sandstone is in fact very 

homogeneous so it is unlikely Adler's samples varied significantiy from those studied in 

the 1960s-
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loannidis and Chatzis (1993) compare the results of their three-dimensional pore 

space model with experimental data from many sources. The mercury intrusion curves, 

porosity, permeability and formation factors for each sandstone are quoted as having been 

measured by different workers during three different studies. Thus the measured porosity 

for one sandstone lithology is measured on a different sample from that used in the 

permeability measurements. To compare the results of a pore space simulation with such 

data is meaningless. The true test of any void space model is its ability to simulate the 

pore space of a sample and its characteristic properties which are unique to that specific 

pore arrangement. 

8.2 Description of the model 

The network model which we call PORE-COR (Pore-level Correlator) has three 

main characteristics: (i) it has a real geometry, (ii) die same network witii precisely the 

same geometry is used to model a wide range of properties, and (iii) no property-

independent fitting parameters are invoked, and thus the model can be applied to any 

porous medium. 

The first characteristic, the model's real pore space geometry, is evident from 

Figure 8.1. This is the diagram for the model's three-dimensional unit cell. Each unit cell 

contains 1000 nodes on a regular 10 x 10 x 10 matrix. The nodes are positioned using 

Canesian coordinates x,y,z. I f the sample is isotropic, the allocation of these axes is 

arbitrary. The void volume in the unit cell comprises up to 1000 cubic pores centred on 

the nodes. The origin of the axes is at the corner of the unit cell adjacent to the first node. 

For clarity in the figure, the axis origin is displaced to the left, i.e. negative y, and only 

the outer layers of pores are shown, numbered as indicated. Connected to each pore are 

up to six cylindrical throats along the line of the arcs in the positive and negative x,y and 

z directions. The arguments for using different shapes to model pore space are numerous 
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as mentioned earlier. However, the use of cylindrical throats allows easy application of the 

model to merciu-y intrusion studies. The choice of cubic pores is mainly due to the 

simplicity of modelling these shaped pores. The construction and intricacies of the model 

unit cell are outlined later. 

The second feature, the wide range of properties which have been modelled with 

the same network, is detailed in the box diagram, Figure 1.1. The third feature of the 

modelling is that no property-independent fitting parameters are invoked. We do use 

fitting parameters, namely the skew of the throat size distribution and the connectivity, and 

both parameters can be optimised manually or automatically. However, the parameters are 

actual properties of the sample, and can be checked as having realistic values. We do not 

need to use any entirely arbitrary, property-independent fitting parameters to fit the 

simulation to experiment. In methods where this is necessary, the applicability of the 

model is dramatically reduced, because one does not know whether the fitting parameters 

are general ones, or whether they apply only to the particular sample or samples under 

consideration. 

8.2.1 The Construction of die Unit Cell 

Initially a throat size distribution is entered into the model. This consists of 100 

throat diameters and the percentage of each size within the throat distribution. Every value 

of throat size distribution had to be input into the model developed by Spearing (1991), 

a lengthy process. A new mode of throat size distribution has therefore been developed. 

The throat sizes are now distributed linearly between the maximum and minimum sizes 

with the hundred throat sizes spread evenly over a logarithmic axis. We term this type of 

disffibution a log-linear distribution. Figure 8.2a shows the log-linear distribution for a flat 

throat size distribution of 1% of every throat size. The log-linear distribution can be tilted 

to increase the proportion of large throats. Figure 8.2b, or increase the proportion of small 
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throats, Figure 8.2c. This type of throat size distribution input allows a wide range of void 

structures to be modelled and facilitates easy distribution inpuL The model requires simply 

the minimum and maximum throat sizes and the percentage of the smallest throats, termed 

the percentage skew, and the resulting throat distribution is calculated and input The 

percentage skew values for the throat size distributions in Figures 8.2 a-c are 1%. 0% and 

2% respectively. The pore size distributions in Figures 8.2 a-c will be explained later. The 

initial estimate of the throat size distribution is obtained from electron microscopy or the 

mercury intrusion curve. The throat size distribution is optimised by fitting the simulated 

mercury intrusion curve to the experimental curve; this optimization is outlined in detail 

later. The average number of tiiroats connected to each pore can be set between 0 and 6. 

The number of tiuoais connected to a specific pore we term the co-ordination number, 

while the average over the whole network is called the connectivity. The connectivity of 

porous media is exceptionally difficult to measure. Lin and Cohen (1982) measured an 

average co-ordination number of 2.9 from serial section analysis of Berea sandstone. 

Average co-ordination numbers of between 2.8 and 3.5 have been quoted in sandstone 

studies by Yanuka ei al (1986) and Koplik et al (1984). The choice of connectivity within 

the model has a pronounced effect on simulated permeability, tortuosity and mercury 

intrusion. The model connectivity affects the breakthrough point and shape of the 

simulated mercury intrusion curve, and ± u s the value used will dictate the success of the 

fi t between the simulated and experimental intrusion curves. 

The throats are distributed randomly amongst the total of 300 positions within the 

unit cell which correspond to the arcs between each node. For throat allocation the cell 

effectively repeats infinitely in the x, y and z directions. This means that throats protruding 

from the outer faces of the unit cell are the same as those entering the opposite face. This 

joining of unit cells allows conservation of mass during the mercury intrusion and 

permeability simulations. 
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The pores centre on the 100 nodes within the unit cell. TTie pores are distributed 

randomly within the unit cell, the only allocation criterion being that each pore must be 

connected to at least one throat of the same diameter. The ratio of pore size to that of the 

largest throat entering it is called the pore size to maximum throat size ratio. The 

justification for this degree of pore:throat correlation is based on work by Wardlaw et al 

(1987). Figures 8,3a and 8.3b show Wardlaw's pore-throat correlation graphs for Wood's 

metal/image analyzer studies of Berea sandstone and Indiana limestone respectively. The 

pore-throat correlation criterion stated above is used to obtain the simulated pore:throat 

correlauon graph shown in Figure 8.4. The spread of points in Figure 8.4 when the pore 

size to maximum throat size ratio is 1 closely resembles that for Berea obtained by 

Wardlaw (Figure 8.3a). The model is capable of simulating limestone type void space by 

altering the pore size to maximum throat size ratio from 1 to 5, Figure 8.4. 

Once all pores and throats are allocated within the network the unit cell is expanded 

or contracted to simulate the experimental porosity. The distance between nodes is constant 

throughout the unit cell. This "pore-row spacing" term is not an arbitrary fitting parameter 

because the distance between nodes has a direct effect on the permeability simulation. The 

lower limit of the pore-row spacing is dependant on the size of the largest adjacent pores, 

thus avoiding pore overlap. The model unit cell is now complete and can be used to 

simulate a wide range of pore space phenomena. 

8.2.2. Mercury Intrusion Simulation 

The model reproduces the mercury intrusion curve by following the procedure in 

the flow diagram shown in Figure 8.5. The mercur>' is non-wetting, The wetting phase is 

air/mercury vapour at very low pressure. Figure 8.5 shows that the mercury first penetrates 

the top layer of the unit cell via the largest throat. The simulation of mercury intrusion is 

in terms of a percolation of non-wetting phase from the top layer and through the whole 

network. Penetration of mercury from only the top face of the unit cell allows the 
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simulation to model intrusion into a sample of effectively infinite dimensions. Boundary 

pores and throats will thus not affect the form of the mercury intrusion curve. 

The filling of the model is controlled by the throat size corresponding to the current 

capillary pressure as described by the Washbum Equation. A contact angle of 140° and a 

surface tension of 0.48 N/m are used within the Washbum Equation. Once the critical 

capiDary pressure for a throat is reached both it and its connecting pore are filled. Mercury 

fills the whole pore space instantly in a piston-like motion. As a pore throat system fills 

with non-wetting phase, the wetting phase will empty. If wetting phase exits via one side 

of the unit cell it will re-enter at the opposite side. This is due to the unit cell infinitely 

repeating in the x and y directions. Wetting phase can only exit the model at the bottom 

face. Diuing the mercury intrusion simulation, the network has inlet and outiet faces and 

the four other faces maintain the flow in the model. Although the simulation is of intrusion 

into a sample of infinite dimensions the percentage of void space occupied with mercury 

is calculated using the void dimensions of one unit cell. 

The reason for simulating the mercury intrusion curve is to check that the throat 

size distribution input into the model is correct. I f the point of inflection and shape of the 

simulated intrusion curve reproduces that of the experimental curve, then this gives 

confidence that the correct throat size distribution has been input. The simulation of a 

sandstone's void space is thus a mapping of the mercury intrusion curve onto the model 

network. Obviously this mapping is dependant on the assumptions within the Washburn 

Equation, as discussed in Chapter 5. Nevertheless the network produced gives an insight 

into the nature of the porous solid. 

8.2.3. Convergence Of Simulation Onto Experimental Intrusion Data 

Spearing adopted a *trial and error' method of fitting simulated merciu^y intrusion 

curves to the experimental curve. This involved adjusting the throat size distribution and 
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connectivity until a good f i t was achieved. This process was extremely laborious due to 

the need to input the one hundred tiiroat sizes and respective frequencies individually. Thus 

few samples were successfully simulated by Spearing (1991). The log-linear throat size 

distribution was developed to allow quick input of a wide range of distributions. Time 

needed to successfully fit simulated with experimental curves was drastically reduced. The 

criteria for a successful fit are a close matching of points of inflection and the 'knee and 

shoulder' of the curves. The 'knee' corresponds to the low capillary pressure/large throat 

diameter region in which small pressure increases start to produce large intrusion volumes. 

Conversely the curve 'shoulder' is the region at a capillary pressure higher than the point 

of inflection, at which intrusion volumes decrease for a given pressure increase. Some 

mercury intrusion investigators have postulated that the low capillary pressure area of the 

intrusion curve, including the CUA'C knee, is sensitive to the distribution of surface pores 

and sample size (Wardlaw and Taylor 1976). Figure 8.6 shows the mercury 

intrusion/extrusion curves obtained by Wardlaw and Taylor for two nearly identical 

limestone samples. One sample is coated with epoxy resin on all sides except one, and the 

other sample left uncoated. The coated sample has a reduced number of surface pores and 

illustrates the shape curves obtained for an effectively infmite sample size. loannidis and 

Chatzis (1993) only used the portion of the intrusion curve at capillary pressures above the 

point of inflection, when comparing experiments with their intrusion simulations. The 

magnitude of sample size and surface pore effects on the low capillary pressure region of 

the intrusion curve are unknown, but it would be sensible to f i t experimental and simulated 

curves with a heavier bias towards the area at pressures corresponding to the point of 

inflection and above. 

The fitting of simulated and experimental intrusion curves by visual inspection can 
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be laborious and requires an experienced Pore-Cor operator. A less subjective method of 

curve fitting procedure was required. Three different automatic curve convergence 

procedures have been programmed into the model by C Ridgway, currently a research 

student at the university. The model now outputs the values of throat size distribution skew 

and connectivity which give the best f i t simulated intrusion curve. 

The first method developed to f i t the intrusion curves involved arbitrarily fixing the 

connectivity at 3.5 and varying the skew to find the best f i t at the 50% pore volume point. 

The point of inflection of intrusion curves is usually close to the 50% pore volume point, 

thus its selection as a fitting point This curve fitting procedure is simple because only one 

parameter is varied but the fixed connectivity means it has limited applications. 

An improved f i t between simulation and experiment can be made by varying both 

skew and connectivity and comparing the curves at many positions, not just the 50% pore 

volume point. When comparing a number of simulations with experiment the deviation 

between curves must be measured at a consistent evenly spaced group of points on the 

pore volume axis. Unfortunately experimental data are not usually evenly spaced in this 

way. Experimental data points are used whenever possible but points are removed or 

interpolated if the pore volume spacing exceeds set limits. The limits are set at half and 

twice the spacing on the pore volume axis compared to what the spacing would be i f the 

experimental data were evenly spaced: 

V 2V 

In • n 

where V^^ is the maximum intruded volume and n is the total number of experimental data 

points. The data point selection and interpolation algorithm produces a set of comparison 

points which are used for every simulation of a given experimental curve. The difference 
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in simulated and experimental throat diameter at each pore volume point are used to find 

the best fit. The deviation between curves can be expressed either linearly or 

logarithmically. 

Total deviation can be expressed as A^^ or Aŷ  where 

A 1=1 
log = — 

and 

A - '"'=1 
E ( ^ « p ( v o - ^ 5 i ^ . o ) ' (8.7) 

where d^^p^^jj is the experimentally measured throat diameter at pore volume point V j , and 

dsimu(vi) is the simulated throat diameter at the same pore volume point v̂ . We call the 

minimisation of Ay^ with change in skew and connectivity the linear method of curve 

fitting, and the minimisation of A,̂ g the log method. 

Bodi linear and log methods use the 50% pore volume method to find the central 

skew value for the range analyzed. All skews ± 0.7% from this value are simulated at 

intervals of 0.1% while, connectivities between 2.6 and 4.0 are used in both linear and log 

curve fit methods-

The linear method gives more weighting to fitting the curves at the low capDlary 

pressure/large throat diameter region. The fact that this area of the intrusion curve is 
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affected by surface pores and sample size is a disadvantage. The log method gives equal 

ight to deviations on the whole curve, and is thus the most applicable method. wei 

8.2.4. The Simulation Of Mercury Extrusion 

The extrusion of mercury fi-om pore space, after complete intrusion, is dependent 

on the size and arrangement of the larger voids within the sample. The effect of pore:throat 

size ratio on mercury extrusion was discussed in Chapter 5. The difference in mercury 

contact angle between the intruding and extruding meniscus is also cited as cause of the 

hysteresis common to mercury intrusion/extrusion curves. A simulation of mercury 

extrusion will thus utilize the model pore size distributions optimized during the mercury 

intrusion curve fitting procedure. The main criterion for a pore to empty is that there 

should be a continuous unbroken path of mercury from it to the surface. The bottom layer 

is the only face at which mercury can leave the unit cell. The network repeats infinitely 

in the x and y directions, so any mercury leaving the unit cell by a side face wil l re-appear 

on the opposite face. Figure 8.8 shows a flow diagram which outlines the procedures 

within the extrusion algorithm. 

The 'conditions' for a pore to empty referred to in Figure 8.8 are as follows. 

The pressure corresponding to the pore diameter by the Washbum Equation must be low 

enough for the pore to empty. Emptying still depends on die following further conditions: 

i) The pore has a continuous unbroken path of mercury to the sink ie. bottom layer. 

ii) The pore/throat size ratio must not exceed a critical value. At high pore/throat size 

ratios 'snap o f f can occur. If the pore size/throat size ratio of a specific pore-throat pair 

exceeds five tiien snap off of the mercury thread occurs at that pore-throat junction. 

These conditions within the extrusion algorithm produce extrusion curves with 

residual mercury trapping. The critical pore/throat size ratio which causes snap off ie.5 is 

from observations of mercury snap-off in a glass micromodel (Wardlaw and McKeller 

1981). 
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Contact angle hysteresis is also modelled. A mercury extrusion contact angle of 

130° is usually used. Mercury surface tension is kept constant for both intrusion and 

extrusion (0.48 nm"'). 

The movement of mercury in and out of the pores and throats is assumed to be 

piston-like and complete. No fractional filling or emptying is modelled. 

8.2.5 Calculation Of Absolute Permeability 

An incompressible fluid flowing through a tube lakes up a parabolic velocity 

profile, with maximum flow rate down the centre of the tube. I f the flow at the walls is 

assumed to be zero, integration over the velocity profile yields the Poiseuille equation: 

^ _ ^ ^ufee S^,^ (8.8) 

lube ^tube 

(dV/dr)iybe is the volume flow rate, the radius of the tube and bP^y^ is the pressure 

gradient across the tube. Poiseuillian flow has been shown to occur for oil displacement 

in capillaries down to 4um in diameter (Templeton 1954). The FGinkenberg correction for 

slip flow is described later. 

We now assume that Poiseuillian flow occurs across the whole cell in the -z 

direction, i.e. from the top to the bottom face of the unit cell. Then 

ycelt-z 'cell 

Q. is an averaging operator over the whole unit cell operating on the fourth power of the 

individual radii v^^^^^ of all tubes lying parallel to die z axis. It is defined such that 

Equation 8.9 is satisfied, and generates a term which is related to the effective Poiseuillian 
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capacity of the cell for flow in the -z direction. Since at this stage of the calculation, all 

the rube lengths \ ^ are identical and 1^^^ = W I O , we can include these lengths in the 

averaging function, so that 

fdv^ n 5P (8.10) 

ceU 

However, the unit cell is not a series of consecutive tubes of length l̂ b̂e, but a three-

dimensional inter-connecting network. We do not allow flow in the +z direction, but do 

allow flow in the ±x and ±y directions. Thus we assume that 

6V^ 
6t 

n - _ Q 
tubesix.y^ 

^ tubesx.yi ^ 
cell 

ceU 

(8.11) 

or, simplifying the notation, 

8u 
tubes 5P 

eta 
(8.12) 

where Q is now operating on the dimensions of all the tubes. 

Comparing Equation 8.12 with the Darcy Equation (Equation 2.2), it foUows that 

k = 
( 4 ^ 

tube 

'tube 

'cell 

'cell 

(8-13) 

A network analysis approach to this problem supplies the term Q(r'*tubes /Imbes) the 

maximal flow capacity through the network of pores and throats. There is an overall 

conservation of flow, so that the entire volume of fluid entering the top of the unit cell 

emerges at the bottom, with no build up through the network. However, the unit cell 

infinitely repeats in all horizontal (x and y) directions, and fluid can pass out sideways 
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from one unit cell to the next. Conservation is maintained by an identical volume flowing 

in at the opposite face of the cell. The value obtained as the maximal flow is an average 

of the capacity values over only the channels found to carry flow. 

To model the flow, the network analysis program must be supplied with the flow 

capacity of each pore-throat-pore connection in the network, which we refer to as an arc. 

The nodes, which are connected to each other by arcs, are positioned at the centre of each 

pore. Thus an arc consists of 3 components: a throat and half of each adjoining pore. 

The flow through a cylindrical throat is given by Poiseuilie's equation (8.8). For 

the flow in a cubic pore of size Cu from the centre to the edge (i.e. a distance of Cu/2), 

the equivalent equation for flow through a square tube is required. This can be derived 

(Schlicting 1979) as 

dV^_± M P (8.14) 
dt 57 u 

Since the volume of incompressible fluid is conserved throughout the system, the 

volume of fluid flowing through each of the three components of the arc must be constant, 

but the time taken for this volume of fluid to flow through each component varies. Thus 

the overall flow time through the arc ht^^ per unit volume of fluid 5V can be calculated 

by adding the individual flow times per unit volume: 

^ = ^ ^ Kr^2 (8.15) 
5V &V bV bV 
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Thus the volume flow rate through the arc is 

dV 5V 
5r._ 8f pore I 5r, throai 

5f pore 2 

5V 

5P 

6V 

57 
4 C«, 7t r 

57 

4 Cm,' 

(8.16) 

where Cu, and Cu, are the lengths of the sides of the cubic pores 1 and 2, and h the length 

of the throat connecting the two pores. The approximation indicated above arises from 

ignoring the discontinuities between the square and circular cross-sections of the fluid 

channel. On applying the Poiseuille Equation (8.8) to each arc, and rearranging: 

[eFTt /Su] 

8 
71 57 

4Cu, 

8/1 57 

4CH2' 

(8.17) 

The diameters of the throats in the network are always smaller than, or equal to, 

the width of the pores which they enter. Thus the throats cause the major restrictions in 

flow. Inspection of Equation (8.17) correctly reveals that the flow due to a pore-throat-pore 

arc is greater than the flow of an extended throat of the same overall length as the arc. 

Thus the greater effective capacities of the arcs over simple throat systems cause a greater 

flow through the medium, and a greater calculated permeability. Such a refinement is only 

possible in a fully geometric pore space network such as that presented here. 
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8.2.5.1. Klinkenburg Correction 

The Klinkenburg Effect is an increase of the observed flow over the flow predicted 

from the Poiseuille or Darcy Equations, and is significant when the mean free path 

between collisions in the fluid is of the same order of magnitude as the diameter of the 

channel it is flowing through. It occurs because the velocity of the fluid at the walls of the 

channel is not zero as is assumed in case of Poiseuillian (laminar) flow. Only gases will 

exhibit significant slip flow in sandstones, because the mean free path for liquids is very 

small compared to the throat and pore sizes. 

The Knudsen number, K„, is indicative of the flow regime occurring in a channel: 

= y/d (8.18) 

where y is the mean free path and d is the channel diameter. K„ is about 10'̂  for laminar 

(Poiseuillian) flow. 10 '' for slip/Iaminar flow and 10 ' for slip flow. 

The measured permeability with which we compare our simulation is a gas 

permeability which has been measured at optimum conditions, so slip flow becomes 

negligible. The capacity equation (8.17) derived for the simulation is for an incompressible 

fluid with no slip correction, and the permeability of the void space simulation is therefore 

independent of pressure. It is of interest to add a slip correction term to Equation 8.17 to 

assess the importance of the slip corrections in the simulation, and to infer its importance 

in experimental measurements. For this purpose we assume that the fluid is nitrogen, and 

approximate this to a perfect gas of molecule. The mean free path may then be calculated 

from simple kinetic theory: 

N is the number density of the gas (the number of molecules per unit volume), which for 

a perfect gas at 300K and 1 atm. pressure is 2.446 x 10" m'^ . q is the collision diameter 
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of the molecule, the value for nitrogen being 363 x 10'*̂  m. Thus the mean free path y is 

6.98 X 10"̂  m. Then from Equation 8.18, the Knudsen number K„ for air in a 200 pm throat 

is approximately 3.49 x 10"̂ , indicating laminar flow. In 50 pm and 2 pm throats K„ is 1.39 

X 10 " and 3.49 x 10'̂  . indicating some slip flow and significant slip flow respectively, 

A correction for slip has been applied by Dawe (1973) to capillary flow gas 

viscometers (Matthews 1986). For laminar flow with slip, the Poiseuille equation becomes 

dV 
"dT 

"1 _ Ji r" 5^ 1 . ! ! 
J 8m/ r 

(8.20) 

for an incompressible fluid where 5 is a constant which may vary with temperature, 

capillary and molecular species and r is the radius of the tube; this equation is analogous 

to the Klinkenburg Equation in Chapter 2. Also 

5Y = 4p/E (8-21) 

where the ratio p/e is the coefficient of slip, and e is the coefficient of external friction. 

Rigorous calculations show that p/e = 1.1 y, and thus from Equation 8.20» it follpws that 

s ~ 4.4. Inspection of Equation 8.20 shows that the effect of slip is negligible when r is 

large compared to y. 

The percentage additional flow caused by the slip flow of nitrogen, relative to 

laminar flow of the gas through the same throat, may now be calculated from 

Equation 8.20. We find that for a 22pm diameter throat there is a 2.9% relative increase 

in flow, and for a 2 pm diameter throat, there is a 32% relative increase. The conducunce 

of a porous medium is dominated by larger throats because the absolute flow'rates are very 

different - a factor of 10* greater for the 22 pm throat than for the 2 pm throat. Thus the 

overall slip effect will be nearer 2.9% than 32%. The corrections would become 

increasingly significant in 'lighter' samples in which the pores and throats were smaller. 

When this slip correction is added to the capacity term, Equation 8.17 becomes: 
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(8.22) 

Equation (8.13) finally becomes 

r 4 ^ 

ecu 

(8.23) 

8.2.5.2. The Permeability Calculation 

Flow is allowed downwards or sideways in the unit cell, but not upwards. 

Therefore from the node at the centre of each pore extend 5 arcs - four horizontal and one 

downward - representing the 5 possible outward flows from the node. There are a total of 

1000 nodes at the centre of the 1000 pores, and thus 5000 arcs. These include the 100 arcs 

extending downwards from the bottom layer of pores, which all join to a common 'super 

sink' node. In addition there are 100 arcs giving the flow capacity from the 'super source' 

node above the top surface, through the top layer of throats, into the top layer of nodes. 

The 5100 capacities r'*̂ ^̂  /Ij ,^ , calculated according to Equation 8.22, provide a complete 

description of the network to the Operational Research network analysis algorithm. This 

algorithm is the 'Dinic' routine which uses a variant of the revised primal simplex 

algorithm that exploits the network structure to reduce mathematical solution time. The 

algorithm calculates the maximum possible flow through each arc, allowing for shielding 

by neighbouring arcs of low capacity, and then calculates a single capacity term 

Q(r'*3^,J„,i. The permeability of the medium is then calculated from Equation 8.23. 
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8.2.6 Tonuosity Simulation 

The tortuosity of a porous medium is defined as the ratio of actual path length 

taken through the medium to length of straight path through the medium. The application 

of this ratio to movement of charge within pore space has been discussed in Chapter 4. 

The tortuosity has been simulated via a weighted random walk. A hypothetical 

particle is allowed to move through the model network starting at the top face. The particle 

randomly chooses its route but at each node the direction choice is weighted by a r̂ /1 type 

term where r is tiie throat radius and 1 is the length of die pore/throat system. The r̂ /1 takes 

into account the dimensions of the pore/throat system and not just tiie throats. 

The particle movement can be in the ±x, ±y and -z directions; no backtracJcing 

towards the top face is allowed. This criterion simulates an electrical potential or 

concentration gradient across the unit cell. The particle is also not allowed to oscillate 

between groups of large pores, thus avoiding large tortuosity simulations. 

Networks with low connectivities can contain pores with no exit, except by 

backtracking. In these cases the particle is allowed to return to its previous node and 

continue in a different direction. The distance from top to bottom face travelled by the 

particle is stored and the tortuosity calculated. One hundred particle walks are performed. 

The model outputs the median, first quartile and third quartile of the tortuosity distribution. 

The first and third quartiles being die values at 25% and 75% along tortuosity range 

respectively. The mean is not quoted because of its unreliability as a statistic to describe 

such distributions. 

8.2.7. Constructing Correlated Structures 

In the previous discussion all throats have been distributed randomly within the unit 

cell. A small number of sandstones are homogeneous over large distances and a random 

pore or throat arrangement gives a good representation of the void space; Clashach is an 
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example of such a sandstone. Conversely a large number of sandstones are inhomogeneous, 

banding being the commonest form of observed variance. Banded sandstones are a function 

of their depositional environment. Sand particles are transported by water or wind. The size 

of particle transported is a function of water or wind velocity. Thus a variation in 

deposited particles occurs with a fluctuation in transpon medium velocity. 

Within simple packing geometries an arrangement of large particles produces large 

voids/interstices. For sandstones unaffected by cement or authigenic clay this correlation 

between large grains forming large voids should also be true. A large number of our 

reservoir sandstones were visibly banded and a degree of pore size correlation had been 

detected by image analysis, it was decided to simulate void space with pore:pore 

correlation as well as the pore:throai correlation already incorporated in the model. The 

correlation algorithm was written by C. Ridgway. 

8.2.7.1 Banded Structures 

Figure 8.8 shows a unit cell with vertical bands of large and small pores. Vertical 

bands are modelled because permeabilities of banded sandstones are always measured 

perpendicular to the banding. 

To construct this banded network the whole unit cell is split into ten vertical layers. 

The total number of throats is determined by the initial throat size distribution and 

connectivity input The whole throat size range is split into ten equal groups and every 

throat assigned to a group depending on size. The first group will contain the smallest 

throats and the tenth group, the largest. For a totally correlated network all throats from 

the first group are placed in the first vertical layer of unit cell and similarly the second 

group of throats in the second layer etc. The tenth group which contains the largest throats 

will thus be positioned in the tenth vertical layer furthest from the smallest throat layer. 

The criterion that every pore must have at least one throat of the same diameter entering 

it is still invoked, so all large pores are positioned in the vertical layer containing all the 
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large throats. The same is true of all the small pores and a totally correlated unit cell is 

formed. The unit cell repeats in all directions. Therefore the vertical layer with large 

throats will join the small throats on the adjacent unit cell. A layer of large pores are 

constructed in the first layer of smallest throats to maintain the continuity of the network. 

The above describes the construction of a totally correlated banded unit cell. Six 

different levels of correlation have been programmed. The correlation increments in steps 

of 0.2 from 0» a random network, to 1, the totally correlated unit cell. The lower levels of 

correlation are achieved by allowing throats from each group to be positioned in an 

increasing number of the vertical layers, until at a correlation of zero, a throat cell can 

reside anywhere in the unit cell. The table below summarizes the correlation level and the 

number of vertical layers a throat is free to position itself: 

Correlation No. of Accessible 

Level Layers 

0.0 10 

0.2 9 

0.4 7 

0.6 5 

0.8 3 

1.0 1 

At a correlation level of 0.8 a throat can reside in the vertical layer it would have, i f totally 

correlated, plus one other layer either side, making a total of three accessible layers. A 

correlation level of 0.6 allows five potential vertical layers for residence the one i f totally 

correlated and two either side etc. Due to the repeatability of the unit cell, a throat 

assigned to one of the edge vertical layer in the totally correlated network, can at lower 

levels of correlation be positioned in vertical layers on the opposite side of the unit cell. 

This corresponds to a throat being positioned in the adjoining unit cell. 
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8.2.7,2. Unit Cells With Small Or Large Pores In Centre 

An algorithm has been written to construct a unit cell with all the small pores and 

throats or all the large pores and throats in the centre (Matthews ei al 1994). This type of 

simulation is not applicable to the void structures observed within sandstones. This 

simulation is useful to describe void space within soils. Grouping of like pores found in 

*ped' structures, are a common constituent of soils. 

8.2.8 Pore Block Simulation 

The simple pore blocking action of a colloid within the pore network can be simulated 

using Pore-cor. Once the pores and throats have been positioned within the simulated unit 

cell, all pores and throats of a specified size or less are removed from the network. The 

blocking of all pores and throats of a specified size or less, assumes all these pores or 

throats are accessible to the simulated colloid, a reasonable assumption i f blocking only 

the smallest pores and throats. The effect of pore blocking on the simulated model 

parameters can be monitored. The pore block simulation has been used to simulate 

formation damage within reservoir sandstones, this study is discussed in Chapter 10. 
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CHAPTER 9 

M O D E L L I N G R E S U L T S 

9.1 Trends Within Simulations 

Before describing the results obtained from the simulations of reservoir sandstone 

void space, some of the model's properties are identified. An interesting application of 

both the mercury intrusion and three dimensional unit cell visualization is that the specific 

location of mercury with the unit cell can be observed. The mercury intrusion can be 

halted at any point throughout the simulation and the position of the mercury front noted 

within the unit cell. Figure 9.1 shows the point at which mercury has just broken through 

the unit cell. The corresponding position on the simulated mercury intrusion curve is 

indicated in Figure 9.2. As predicted by Katz and Thompson (1986), the breakthrough 

point/percolation threshold occurs at the point of inflection on the mercury intrusion curve. 

The next sections describe the effect of changing the connectivity, throat size distribution 

skew and degree of correlation within the unit cell on simulated mercury 

intrusion/extrusion, permeability and tonuosity. 

9.1.1 Changing Connectivity Within A Random Pore:Throat Network 

The connectivity of the unit cell obviously affects the percolation and flow 

properties. A reduction in connectivity will cause a reduction in mercury intrusion curve 

point of inflection and permeability. Figure 9.3 shows the simulated mercury intrusion 

curves for the same pore and tiiroat size distribution and random throat allocation, with 

varying connectivities. The point of inflection is reduced to a lower throat diameter as 

connectivity is lowered. The curves also shallow as connectivity falls. BoUi these effects 

are due to the reduction in routes through the unit cell. As connectivity falls, the mercury 
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follows a more tortuous route to achieve break-through, thus causing a fall in point of 

inflection and a shallowing of the curves. An attempt was made to quantify the shape of 

the simulated intrusion curves by measuring their geometrical parameter. Such an analysis 

is impossible for the simulated curves due to their rough natxire, the rough intrusion ciurves 

being caused by the size of the unit cell. Intrusion into a unit cell of finite dimensions is 

"step wise" because each void represents a significant volume within the whole. 

A reduction in connectivity will also increase the amount of mercury trapped within 

the void space after complete pressure reduction, A unit cell with a connectivity of four 

has a mercury residual of 50%, whereas the same porerthroat size distribution with a 

connectivity of 3.1 has a mercury residual of 58%, Again reduced accessibility causes this 

trend. 

Permeability is significantly affected by a reduction in connectivity. With a 

connectivity of 3 and the pore and throat size distribution used in Figure 9.3, a 

permeability of 0.461 md is simulated. Reducing the connectivity to 2 causes a 

permeability reduction of 98% to 0.006md. Figure 9.4 shows the extent of permeability 

reduction with connectivity reduction. Note there is no path through the cell below a 

connectivity of 2. Such drastic permeability reductions are common during oil production 

from reservoirs due to pore plugging and cementation. These processes are collectively 

called formation damage, a phenomenon discussed later. 

Tortuosity of the unit cell rises with decrease in connectivity. A urtit cell of 

connectivity 3 has a median tortuosity of 2.7 (1st quartile = 2.2, 3rd quariile = 3.5). A 

connectivity of 2.5 produces a median tortuosity of 3 (1st quartile = 2.8, 3rd quartile = 

5,4). Thus median tortuosity has risen and the range moved towards high values. The trend 

of increase in tortuosity with connectivity reduction is quite scattered. 

9.1.2 Changing Throat Size Distribution Within A Random PorerThroat Network 

The throat size distribution input into the model also affects the mercury 
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intrusion/extrusion, permeability and tortuosity simulations. Obviously increasing the throat 

size distribution skew percentage w i l l increase the number of small throats in the network 

and cause the reduction i n the point o f inflection. A corresponding lowering o f 

permeability and an increase in tortuosity w i l l also occur i f the number of small pores 

increases within the unit cell. A combination of varied connectivity and throat size 

distribution skew allow a v^de range of mercury intrusion curves to be simulated. 

The extrusion o f mercury from the unit cell is also affected by the pore:throat size 

distribution. The extrusion of mercury is controlled by pore size and the trapping o f 

mercury dependent on the pore/throat size ratio, as discussed in Chapter 5. For a random 

unit cell the percentage of mercury trapped rises as the number o f small throats within the 

network increases. This is due to an increase in the number of large pores connected to 

small throats, thus increasing possibility of mercury snap-off and trapping. 

9.1.3. Changing Degree Of Pore:Pore Correlation 

The above discussion involved simulated void space networks with no pore:pore 

correlation and only a small degree of pore:throat correlation. The introduction o f 

pore:pore correlation has a marked effect on the simulated mercury intrusion/extrusion 

curves, permeability and tortuosity. 

Increasing porerpore size correlation, with the same pore throat size distribution, causes 

an increase in point of inflection diameter on the simulated mercury intrusion curve, Figure 

9.5. Increased pore:pore size correlation also leads to an increased poreithroat size 

correlation. In unit cells of high correlation, mercury breakthrough occurs at a larger throat 

diameter because of this pore and throat clustering. As correlation is reduced, breakthrough 

diameters decrease and intrusion curves become shallower, as seen in Figure 9.5. The 

grouping of large pores and throats allows efficient extrusion and low percentages of 
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trapping mercury. Permeability is greatly increased by introducing correlation into the 

network. Figure 9.6 illustrates the effect o f correlation on simulated permeability for the 

same pore:throat size distribution and connectivity. In this example the permeability is 

5000 times larger within the ful ly correlated network. Increasing correlation produced a 

decrease in tortuosity. 

The correlated networks w i l l fo l low the same trends identified for random unit cells 

for variations in connectivity and pore throat size distributions. Figure 9.7 summarizes the 

trends identified with variation of connectivity, throat size distribution and correlation. 

9.2 First Attempts To Simulate Reservoir Sandstone Void Space 

Table 9.1 shows the parameters input into the model and the corresponding 

simulation output for every sample analyzed by mercury porosimetry. A log method of 

mercury intrusion curve convergence is used to obtain the optimised pore throat size 

distribution and connectivity. The curve fitting procedure has been applied to the whole 

throat diameter range measured during mercury intrusion. The pore and throat diameters 

in die unit cells range f rom 0.12 to 207.16um. 

The degree of pore:pore correlation has been estimated f rom the visual inspection 

of samples. Image analysis data for the samples analyzed are also used. Image 

analysis/variogram procedure is able to supply information about the degree of correlation 

in sandstones, but as yet the data obtained have not been utilised within the Pore-Cor 

model. The correlation factors used in Table 9.1 are somewhat subjective but the relative 

level of banding in each sample is estimable. The simulated and experimental mercury 

intrusion curves are shown in Appendix 6. A l l mercury intrusion curves are normalized to 

100% occupied pore volume. Porosit>' of those simulation with a random pore:throat 
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INPUT OUTPUT 

SAMPLF. 
NO. 

nXPT. PRRMD-
AOILITY/mD 

liXPT. 
TORTUOSITY 

M I N . T H R O A T 
OrAMCTERAiin 

M A X . THROAT 

DIAMETER/Miii 

PBRCUNTAGG 
SKGW/% 

CONNE­
C T I V I T Y 

CORREIJ^TION 
FACTOR 

POROSITY PERMCAD-
ILITYAnD 

M E A N 
TORTUOSITY 

msj 
QUARTILE 

T1I1RI) 
QUART1I.U 

2I2A 50.47 2.27 0.12 207.16 0.645 2.6 0.00 12.30 

inn 1413.58 1.75 0.12 207.16 1.597 3.7 0.80 8.30 5.430 2.40 100 2.70 

2I2C 3161.56 1.83 0.10 207.16 1.625 3.9 0.80 8.30 11.800 2.60 2.30 3.30 

2I2D 335.05 2.12 0.10 207.10 1.613 3.9 0.60 8.80 0.596 3.20 3.00 3.50 

212U 1427.77 1.75 0.12 207.16 1.734 3.5 0.80 6.20 3.940 2.40 2.00 3.60 

250A 1208.49 1.91 0.14 207.16 1.735 3.8 0.60 6.80 0.232 

250E 693.52 1.94 0.12 207.16 1.791 3.5 0.80 5.30 2.410 2.80 2.20 3.40 

250U 
REPI-AT 

693.52 1.94 0.12 207.16 1.778 3.5 0.80 5.50 2.470 2.40 1.80 3.40 

a90A 0.12 207.16 0.687 2.7 0.00 13.20 0.002 

490B 27.06 0.12 207.16 0.756 2.6 0.00 15.70 

490C 0.12 207.16 0.595 2.6 0.00 17.90 0.002 

490D 10.71 0.12 207.16 0.719 2.6 0.00 14.10 

490D 
RHPEAT 

10.71 0.12 207.16 1.093 2.6 0.00 12.50 490D 
RHPEAT 

10.71 0.12 207.16 1.093 2.6 0.00 12.50 

490ri 16.53 2.85 0.12 207.16 0.883 2.6 0.00 14.90 490ri 16.53 2.85 0.12 207.16 0.883 2.6 0.00 14.90 

T A B L E 9.1: Model InpuLs To Simulate Reservoir Sandstone Void Space and Corresponding Outputs. 



allocation matches the experimental values exactly in many cases. Simulations with a high 

degree of pore:pore correlation have porosities below experimental values. For these 

simulations the pore:throai size distributions are skewed towards smaller values. The 

highest porosity obtainable for a given unit cell is dependent on the size of the largest 

pores. The porosities quoted for the correlated simulations are the values obtained at the 

minimum pore row spacing possible. 

The permeability algorithm calculates permeabilities of 1 x lO'^md and above. Any 

network with a permeability below this value is said to have no path through the unit cell. 

Simulations with a random pore network have extremely low simulated permeabilities, in 

most cases zero f low is attained. Whilst all sandstones of homogeneous appearance had 

lower permeabilities than the banded samples the model has exaggerated this trend. 

Mercury intrusion curves for homogeneous sandstones are usually shallower than those of 

banded sandstones. To fit simulated intrusion curves to shallow experimental curves a low 

connectivity is used, which causes the low permeabilities. Correlated simulations have a 

higher connectivity, but as mentioned earlier, the pore:throat size distributions are skewed 

towards the smallest sizes, thus simulated permeability is significantly below the measured 

values. Tonuosities of the networks are all higher than the corresponding measured values. 

In some cases no path was found through the unit cell. 

9.3 Simulation Of Reservoir Sandstone Void Space Using Truncated Mercury Intrusion 

Curves 

Fitting the whole experimental intrusion curve causes an overestimation of the large 

pore frequency. In real sandstones the large pores measured during mercury intrusion are 

predominantly surface pores. The model does not include surface pore effects but still 

include these large voids throughout the whole network. The overestimate of the frequency 
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of large pores and throats limits the success of the porosity, permeability and tortuosity 

simulations described above. 

The best method of obtaining mercury intrusion data without the effects on surface 

void space is to coat die sample in resin on all sides except one, as performed by Wardlaw 

and Taylor (1976). This procedure is impossible for the samples used in ti^lis study as all 

the material was used in the mercury intrusion experiments. A n alternative approach is to 

remove the knee of the measured intrusion curves and extrapolate the line f r o m the point 

of inflection to the throat diameter axis. The intrusion curve in this fo rm is an 

approximation of that obtained i f a sample of infinite size was analyzed. The tmncated 

intrusion curves for the reservoir sandstones have a maximum throat diameter ranging f rom 

10 to 60pm. Image analysis has shown that some samples do contain voids larger than 

this, but these are rare. In terms of properties such as porosity, permeability, tortuosity and 

mercur>' intrusion, these few large pores play only a small part The fo l lowing results show 

that a truncated mercury intrusion curve facilitates a good simulation o f the reserv'oir 

sandstone void space. 

9.3.1 Results 

Table 9.2 details the model input and output for each truncated curve fit simulation. 

The minimum throat size still matches tiiat measured f rom mercury intrusion data. The 

correlation factors for each sample are die same as used in the first simulations. The log 

fit procedure has been used to obtain die optimized tiiroat size distribution skew and 

connectivity. The simulated and experimental mercury intrusion curves for every sample 

are shown in Figures 9.8 to 9.21. Simulated mercury intrusion curves closely match 

experimental curves for the correlated simulations. 

The shallow intrusion curves of the homogeneous sandstones were not so successfully 
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INPUT OUTPUT 

SAMPLE 

NO. 

EXPT. PERME-
ABlLm* 

EXPT. 
TORTTJOSITY 

M I N . THROAT 

DiAMETERAim 

M A X . TOROAT 
D i A M E T l R / p m 

PERCENTAGE 
SKEW/% 

CONNE­
CTIVITY 

CORRELATION 

KACTOR 

POROSITY PERMBAD-
I L I T Y A n D 

M E A N 
TORTUOSITY 

FIRST 
QUARTILR 

T I I I R D 
OUARTII .E 

2I2A 50.47 2.27 0.12 30.00 0.464 2.80 0.00 12.30 0.10 3.30 3.10 3.70 

2I2B 1413.58 1.75 0.12 60.00 0.185 2.90 0.80 20.00 559.00 2.30 1.70 2.70 

212C 3161.56 1.83 0.10 45.00 0.291 4.00 0.80 24.40 1030.00 2.20 1.90 2.50 

2I2D 335.05 2.12 0.10 42.00 0.258 3.60 0.60 13.70 86.20 2.30 2.00 2.70 

2I2E 1427.77 1.75 0.12 50.00 0.106 2.90 0.80 22.00 521.00 2.40 1.70 3.30 

250A 1208.49 1.91 0.14 50.00 0.351 2.70 0.60 22.40 44.60 NO PATH 

250E 693.52 1.94 0.12 30.00 0.286 3.80 0.80 21.10 506.00 2.10 1.80 2.60 

250E 
REPEAT 

693.52 1.94 0.12 30.00 0.166 3.50 0.80 21.10 327.00 2.10 1.70 2.50 

490A 0.12 17.00 0.000 2.70 0.00 13.20 0.21 2.80 Z20 3.20 

490B 27.06 0.12 15.00 0.215 2.80 0.00 15.70 0.28 2.60 2.40 3.10 

490C 0.12 28.00 0.153 170 0.00 23.20 0.24 3.10 2.30 3.30 

490D 10.71 0.12 24.00 0.293 2.70 0.00 14.10 0.07 2.80 2.10 3.30 

490D 
REPEAT 

10.71 0.12 10.00 0.419 2.80 0.00 14.10 0.11 2.90 2.50 3.40 

490E 16.53 2.85 0.12 16.00 0.088 2.70 0.00 15.90 0.18 3.00 170 3.50 

T A B L E 9.2: Model Inputs and Outputs For Each Truncated Curve Fit Simulation 
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simulated. All random simulations had connectivities from 2.7 to 2.8, These low 

connectivities produced the shallowest simulated curves attainable. Porosities of the 

simulations matched the experimental values in most cases. 

The permeability of the correlated unit cells is very close to the measured data. The 

simulation of the Sample 250E produced a permeability only 30% smaller than the 

experimental value. Most other correlated networks have permeabilities a factor of three 

or four below the measured value. The exception is Sample 250A which although banded 

has a shallow intrusion curve the subsequent low connectivity within the model causes the 

low simulated permeability. Low connectivity in all random simulations leads to the very 

low permeabilities obtained for these samples. The tortuosity simulation follows the same 

trend as the permeability simulation. Correlated unit cells have lower median tortuosities 

than random simulations. Sample 250A is the exception again because no path was found 

through the unit cell, an unusual result due to this network having a permeability higher 

than some of the random unit cells that allowed tortuosity simulation. The median 

tortuosity is higher than the measured values (see Table 4.1) in all simulations. The values 

within the first quariile of the simulated tortuosity range coincide closer with the 

experimental values than the median of the range. Simulated diffusion coefficients for 

methane, iso-butane and n-buiane using Equation 7.7. have been calculated. Table 9.3 

shows the simulated diffusion coefficients calculated using the median tortuosity for each 

sample. 
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S A M P L E 
N O . 

DISO-BUTANE/^2S * 
X10- ' X10- ' 

2 1 2 A 2.745 1.209 1.197 

2 1 2 B 9.555 4.207 4.168 

2 1 2 C 12.250 5.394 5.344 

2 1 2 D 6.293 2.771 2.745 

2 1 2 E 9.281 4.087 4.049 

2 5 0 A 

2 5 0 E 11.627 5.120 5.072 

2 5 0 E 
R E P E A T 

11.627 5.120 5.072 

4 9 0 A 4.091 1.802 1.785 

4 9 0 B 5.644 2.485 2.462 

4 9 0 C 5.866 2.583 2.559 

4 9 0 D 4.370 1.924 1.906 

4 9 0 D 
R E P E A T 

4.074 1.794 1.777 

4 9 0 E 4.293 1.890 1.873 

TABLE 9.3: Diffusion Coefficients Calculated From Median ModeUed Tortuosities. 

Figures 9.22 to 9.24 summarize the simulated diffusion data comparing values calculated 

using the median, first quarule and third quartile tortuosities with experimental data. In 

most cases simulated diffusion coefficients are below the mean experimental values, but 

Figures 9.22 and 9.24 do show some overiap between simulation and experiment. Samples 

490A to 490C are the exceptions to this trend, their simulated diffusion coefficient ranges 

for methane all higher than the experimental ranges. This would appear to conflict with 

the earlier statement that simulated tortuosities are too high. Any further reduction of these 

samples' simulated tortuosities would enhance the difference between simulated and 

experimental diffusion coefficients for methane. The conclusion must be that the 

experimental methane diffusion coefficients measured for 490A to 490C must be too low. 
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The mercury extrusion algorithm has been applied to the networks derived from the 

truncated curve fit procedure. The mercury extrusion curves for all the samples simulation 

are shown in Appendix 7. Experimental extrusion curves are truncated at the same 

diameter as the intrusion curves. The percentage of mercury trapped with the unit cell at 

the lowest simulated capillary pressure is significantly lower than that observed in the 

experiments. Unit cells with correlation have lower mercury residuals than random 

structures as mentioned earlier. Note that the simulated mercury intrusion curves always 

indicate less extrusion at small diameter than experiment curves. At large diameters, 

usually greater then 10pm, the simulated extrusion exceeds the experimental value. 

9.3.2 Summary 

i) The simulation of truncated mercury intrusion curves for samples with pore size 

conelation is successful. Random samples are less successful. 

ii) Simulated porosity and permeability of correlated unit cells matched measured values 

closely. Porosity of random networks match the experimental values but the permeabilities 

of these simulations are much lower than experiment. 

iii) The median tortuosity for each simulation is higher than the measured values. The fu-st 

quartile of the tortuosity ranges show some correlation with experimental values. Diffusion 

coefficients calculated from simulation tortuosity also coincide with the measured ranges. 

iv) Simulation of mercury extrusion follows an exaggerated path of very little extrusion 

followed by a sudden expulsion. 
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CHAPTER 10 

MEASUREMENT AND SIMULATION OF COLLOIDAL FLOW FORMATION 

DAMAGE IN SA>a)STONE 

10.1 Introduction 

In this chapter we discuss the flow of a colloidal suspension through sandstone void 

space. During such flow» colloid particles are forced out of suspension, adhere to the 

surface of the sandstone, and change its structure. The particular system we study is that 

of a flowing colloidal calcium carbonate suspension, similar to drilling mud infiltration -

a common problem within hydrocarbon extraction. In this case the structure change is 

referred to as formation damage. However, the general approach we take is equally 

applicable to other porous solids and colloidal suspensions, and many of the observations 

and conclusions from the present study have wider implications. 

Our experimental investigation has involved the study of the effects of flowing a 

colloidal calcium carbonate suspension, of known particle size distribution, through 

samples of Clashach outcrop sandstone and reservoir sandstone. Electron micrographs were 

used to confirm the distribution of precipitated colloidal particles within the samples. 

Porosity, mercury intrusion and extrusion permeability, tortuosity, gaseous diffusion 

coefficients were measured before and after colloid flooding. 

The blocking of pores and throats by colloidal particles can be modelled, as can the 

consequent effect on the listed properties. The model has successfully simulated samples 

of outcrop sandstone and their subsequent induced formation damage. A simulation of the 

structure and alteration of a set of reservoir sandstones has also been performed, which is 

less precise but which gives a novel and powerful framework in which to discuss 

formation damage. 

230 



10.2. Formation Damage in Sandstone 

Formation damage within oil and gas reservoirs has been a topic of research for 

over 40 years, and many papers have been published on the subject The history of 

formation damage study has been outlined in a paper by K. E. Porter (1989). The reason 

for such intense interest is because of the great financial gains from increasing reservoir 

productivity. At present only 20-30% of reservoir oil is recovered at a cost of 80-90% of 

the reservoir energy (Porter 1989). The obvious way to increase productivity is to minimise 

damage* and thus a comprehensive understanding of the modes of formation damage is 

needed. 

Formation damage due to particulate migration (the subject of this study) can be 

divided into two groups; migration of natural in-siiu fines, and the introduction of foreign 

particles from drilling muds or other areas of the reservoir. In-situ fines can consist of 

varying quantities of clays, feldspars* small quanz crystals etc. 

Most workers have concentrated on the role of clays in formation damage. Clays 

can be a problem component of reservoir sandstones because of the large aspect ratios and 

charged surfaces of the particles. Most clays have a net negative charge due to 

isomorphous substitution in the clay lattice (Lever and Dawe 1984). In aqueous conditions 

ions form a double layer around the clay particles. This double layer consists of the Stern 

layer of counter ions adsorbed to the clay surface. The second part of the double layer is 

called the Gouy-Chapman layer, an outer layer of diffuse ions. The degree of compression 

of the diffuse layer is dependent on the concentration and valence of the ions in solution. 

In a concentrated brine the diffuse layer is compressed. When a clay particle approaches 

a pore wall or another particle the diffuse layers interact and repulsion occurs. This 

repulsion is not the only force operating. Van der Waals attractions between single atom 

pairs are small and not very far reaching, but they are additive between atom pairs. The 

total van der Waals attractions between particles or particles and pore walls is large enough 

and far reaching enough to compete with the repulsion between the diffuse layers. Thus 
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in concentrated brines the diffuse layers are compressed and flocculation or panicles 

adhering to the pore walls can occur (Van Olphen 1963). 

These theoretical explanations have been supported by research into water-

sensitivity of various sandstones. Khilar and Fogler (1981) found that clays were released 

from pore walls or 'conglomerate bundles' when the brine dropped below a critical salt 

concentration. Below this critical salt concentration clays moved within the pore space, 

blocking pore restrictions and causing a drastic permeability drop. Lever and Dawe (1984) 

found sinnilar results with different brine compositions and concentrations. For 

Hopeman/Clashach sandstone, they found that no damage resulted for concentrations of 

3% and above. However, a large permeability drop due to clay migration was noted when 

the concentration of KCl and NaCl brines was reduced to zero (fresh water). Calcium 

chloride brines showed no drop in permeability until a very low concentration was reached, 

but no further drop was experienced even at fresh water concentrations. This anomaly can 

be explained by the Schulze-Hardy Rule. The flocculation power of mono-, di- and 

trivalent ions is found to be in the ratio 1:50:700 respectively. Thus the di-valent calcium 

ions are much stronger flocculating agents than the mono-valent sodium and potassium 

ions. There may have been enough calcium ions left in solution to bind some of the clays 

to each other or the pore walls even at supposed fresh water concentrations. 

I f the composition of the brine within the pore space closely matches that of the 

formation brine, ie. the natural brine that has reached equilibrium with the sandstone, then 

the clays and other fines should be stable. However it has been noted that even flov^ng 

a formation brine through a sandstone can disturb the in-silu fines. Vinchon et al (1993) 

found that at low flow rates large kaolinite stacks were washed away, and ribbon-shaped 

illites migrated until they aggregated together. At higher flow rates some fines were 

removed from the cores studied thus increasing porosity, while other fines blocked the 

smallest pores decreasing permeability. 

The other mode of particulate formation damage is by the invasion of foreign 
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particles. In the work by Vinchon et al they found that fines were removed from the 

studied core; obviously for an in-place sandstone these fines would migrate to another part 

of the formation causing damage. 

In a study by Ochi and co-workers (1993), a sample of Vosgien sandstone 

experienced a 65% reduction in permeability'» when a formation brine and calibrated 

particles were flowed through i t At die same flow rate the formation brine alone caused 

only a 50% permeability reduction. At higher concentrations of calibrated particles a 98% 

reduction in permeability occurred, corresponding to the formation of an internal filter cake 

at the cores input face. Rahman and Marx (1991) stated that the formation of a filter cake 

can be favourable as it filters fluids and stops damage deeper in the formation. Pore 

bridging by particles is found to be a good base for filter cake formation. Particles must 

be slightly smaller than the biggest pores down to about a third of that size. A bentonite 

and polymer suspension produced a very low permeability filter cake at low penetration 

depths. On the oUier hand a suspension of calcium carbonate (the particles used in this 

study) and polymer formed a more open filter cake, facilitated the invasion of fines to a 

greater depth, and thus caused more formation damage. 

In direct observations of particle movement within a glass micromodel by Muecke 

(1979), particles were found to trap at pore bridges. A pore bridge forms when a large 

particle spans a pore. These pore bridges could be broken if the flow was reversed, 

whereupon permeability is temporarily restored until pore bridges form in the other 

direction. Similar conclusions have been reached by Khiiar and Fogler, and Lever and 

Dawe, in sandstones. Ochi et al found that permeability could be temporarily restored by 

simply increasing brine flow rates to break up fines agglomerates at pore restrictions. 

10.3 Modelling Colloidal Flow 

In this work we are concerned not only with the measurement of colloidal flow, but 
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also with maihematical modelling of the effects. The model of colloidal flow which we use 

is simple, in that its only assumption is of physical blocking of pores and throats by 

particles which are bigger than the constriction, an effect which we term simple pore 

blocking. The experiments which we have carried out were deliberately designed to ensure 

that this was the dominant effect Although the colloidal block modelling is 

straightforward in itself, it takes place within the three dimensional model of the sandstone 

void space which can also simulate the wide range of properties discussed earlier. 

Other workers have developed models of colloidal flow effects which are more 

intricate in themselves, but based on simpler networks. Hampton et al (1993) employed 

a 2-dimensional network of size 40 by up to 200. They used a fixed coordination number 

of 4, reduced by random blocking of throats necessary' to maintain a constant porosity. The 

constrictions were tubes only, i.e. there was no difference between pores and throats, and 

the tubes were given a log-normal size distribution. Permeability was calculated by a 

Hardy-Cross successive approximations method, and the particle deposition equations 

included a diffusion term. Rege and Fogler (1991) studied the effects of colloidal 

deposition in a radial situation, such as that found around a bore hole. Their two-

dimensional radial model covered a 120** segment, and used a 20x30 radial matrix which 

was compared with a 20x30 linear matrix. Monodisperse and polydisperse colloid systems 

were studied. They found that particles have a greater blocking effect at the centre of the 

annulus than at the edge, but are less likely to deposit at the centre because of the higher 

flow velocities. Ohen and Civan (1990) have presented a phenomenological model, in 

which one dimensional horizontal flow is assumed through a porous medium containing 

pore bodies which are interconnected by pore throats whose sizes are log-normally 

distributed. The mechanisms for permeability alteration are pore blocking, particle 

deposition and bridging, and the swelling of clayey formations within the pores and 

throats. 
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10.4. Outcrop Sandstones 

10.4.1 Clean and Damaged Samples 

Our initial study into induced formation damage was performed on two samples of 

Clashach sandstone. The work was undertaken with the assistance of Gareth Powell an 

undergraduate at the university. Porosity and permeability were measured at the British 

Gas (LRS), Table 10.1. Scanning Electron Microscopy showed both samples to be almost 

clay free. The diffusion coefficients of methane, iso-butane and n-butane were measured 

for Sample 2, Table 10.1. This is the same Clashach sample discussed in Chapter 7. 

Tortuosity and the formation factor has been calculated from the mean diffusion 

coefficients. 

The colloid suspension used to induce formation damage within the sample 

consisted of calcium carbonate particles suspended in a formation brine. The calcium 

carbonate was supplied by English China Clays International, St Austell (ECCI). In its 

dried form it consisted of 97.1% by weight calcium carbonate and 1.9% by weight 

magnesium carbonate. The particle size distribution is given in Figure 10.1. The majority 

of the particles are of 5um and below. These particles were chosen to be small enough to 

penetrate deep into the pore space of the samples. 

The particles were suspended in a formation brine. The brine was the standard 

brine used for formation factor measurements in Chapter 4. However, the brine caused the 

calcium carbonate to flocculate so it was diluted tenfold and a dispersion polymer (dispex) 

was added. Even at this reduced brine concentration (3% NaCl) the brine was still of the 

strength which formation damage due to in situ fines migration is minimal, as discussed 

previously, G-ever and Dawe 1984). 

The colloid suspension was introduced into the pore space of the dry samples by 

vacuum flooding. The sample was placed in a desiccator which was evacuated for two 

hours. The vacuum was broken by introduction of the colloid suspension. A mesh was 
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to 

Sample 
No. 

Condition Porosity 
/% 

Permeability 
/mD 

Methane 
Diffusion 
Coeff.range/ 
cnrs"' 
xlO-' 

Butane 
Diffusion 
Coeff.range/ 

2 -1 
cm s 
xlO-' 

Iso-butane 
Diffu.sion 
Coeff.range/ 
cnrs'' 
xlO-' 

Tortuosity Formuiion 
Factor 

Sample I Clean 12.8 314.66 

Sample 2 Clean 1 I . I 276.57 1.46-10.25 
(5.415) 

4.93-7.29 
(6.325) 

4.33-9.66 
(6.978) 

1.63 24.02 

Sample 1 After 
colloid flood 

11.8 197.43 

Sample 2 After 
colloid flood 

10.2 
(Calc. value) 

12.41-19.31 
(16.57) 

11.16-20.2 
(14.18) 

8.84-17.25 
(11.63) 

1.07 11.12 

TAIU .r. PARAMF/rKRS MKASURKD FOR CI.ASHACH OUTCROP SANDSTONE , , . , , . , , . ,„„ 
l'xucnc results excluded from ranges with 90% confidence. Bracketed diffusion coefficients are the mean ol values included u, the range. 
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placed over the sample to stop preferential dripping of the colloid in any one area of the 

sample. Confirmation of colloid penetration into the pore space was obtained by scanning 

electron microscopy. These observations are illustrated by Plate 10.1, which shows a 

random packed filter cake structure around an exposed pore at a depth of approximately 

5mm from one of the sample faces. Most particles observed were less than 5pm in 

diameter, also supporting the assumption that these particles are the introduced colloidal 

particles, not the in-siiu fines. 

After colloid flooding the porosity of sample 1 was reduced from 12.8% to 11.8%, 

a relative decrease of 8%. The permeability dropped from 314.66 mD to 197.43 mD, a 

relative reduction of 37%. The porosity and permeability of sample 2 could not be 

measured after colloid flooding, because it was mounted in resin for diffusion coefficient 

measurement. Nevertheless, a porosity value is required for subsequent calculations, and 

it was therefore assumed that the porosity of sample 2 also experienced a relative drop of 

8%, from 11.1% to 10.2%. Both the tortuosity and formation factor drop after colloidal 

flooding, corresponding to the rise in averaged diffusion coefficient. 

10.5 Reservoir Sandstones 

10.5.1 Clean and damaged samples 

Five sandstone samples from a gas reservoir were supplied by British Gas, 

numbered 81, 82, 98, 107 and 108. The sandstones were tested by Toby Matiiews as part 

of an undergraduate research project. Scanning electron microscope observations indicated 

similar mineralogy as the other reservoir samples, although tiiese are all homogeneous ie. 

non-banded. A wide range of porosities, 9.5-16.2% and permeabilities, 29.17-431.47 mD 

were measured at the British Gas London Research Station, Table 10.2. 
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O 

INITIAL STATE COLLOID FLOODED STATE 

Sample Perm. 
/mD 

Porosity 
/% 

Mean 
Tortuos­
ity 

Range Format­
ion 
Factor 

Perm. 
/mD 

Porosity 
/% 

Mean 
Tortuos-
ity 

Range Format­
ion 
factor 

81 431.47 14.0 2.00 1.75-
2.22 

28.54 216.33 13.4 1.99 1.94-
2.03 

29.43 

82 34.47 11.1 2.24 1.97-
2.46 

45.37 26.69 11.7 2.25 2.16-
2.34 

43.23 

98 213.62 16.2 1.79 1.69-
1.88 

19.78 57.61 15.4 1.96 1.86-
2.04 

24.89 

107 218.14 12.1 2.47 2.30-
6.63 

50.01 119,74 11.4 2.15 1.98-
2.31 

40.36 

108 29.17 9.5 2.63 2.44-
2.84 

73.36 17.81 9.7 2.69 2.57-
2.81 

74.49 

TABLE 10.2: Results of formation damage of resei^oir sandstones. Tortuosity range is given by the 95% confidence interval around 

the mean. 



10.5.2 Formation Factor/Tortuosity Measurements 

The lefihand side of Table 10.2 shows formation factor and tortuosity results 

calculated from resistivity measurements for the five samples measured in their native 

state. The tortuosities of the samples are all higher than that of Qashach, Table 10.1, 

suggesting that the reservoir sandstones have a more complex pore network. 

After completing the measurement on the reservoir sandstones in their native state, 

they were flooded with the colloidal suspension. To facilitate deep penetration of colloid 

into pore space, flooding was performed on brine saturated cores. 

10.5.3. Mercury Porosimetry 

Mercury intrusion and extrusion analysis was performed on the five dried reservoir 

sandstones before and after colloid flooding, using a Micromeritics Poresizer 9320 based 

at ECCI StAustell. A section was removed from the clean core and analyzed, and after 

colloid flooding a similar size section was also cut and analyzed. Mercury extrusion on the 

micromeritics porosimeter is limited to a lowest pressure of 9 PSIA or a maximum void 

diameter of 20 um. 

Figures 10.2 to 10.6 show mercury intrusion and extrusion ciuA ês for each sample, 

before and after colloid flooding. Al l intrusion curves have the characteristic sigmoidal 

shape. Some of the curves have a discontinuity at an equivalent penetrated throat diameter 

of 20pm. This is caused by pressure fluctuations when the sample holder (penetrometer) 

is transferred from the low to high pressure port of the Micromeritics porosimeier. Ai l 

samples experienced a drop in pore volume accessible to mercury, as shown in Table 10.3 

and on Figures 10.2 to 10.6. Sample 81 for example (Figure 10.2) underwent a 25% drop. 

This is confirmation that the pore network has been damaged, either by the colloid or by 

the natural fines from within the pore space of the sandstone. It can be seen from Tables 

10.2 and 10.3 that the permeabilities of all the samples were reduced, as might be 
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Sample 81 Sample 82 Sample 98 Sample 107 Sample 108 

Porosity: absolute 
damage / % 

-0.6 +0.5 -0.8 -0.7 +0.2 

Permeability: 
relative damage / 
% 

-49.9 -22.6 -73.0 -45.1 -38.9 

Relative decrease 
in pore volume 
accessible to 
mercury 

Approx -25% Approx -40% Approx -12% Approx -5% Approx -33% 

Point of inflection 23pm—>21pm 17pm—>5pm 26pm—>17pm 24pm—>26pm 14pm-»13pm 

Change in shape 
of intrusion curve 

Loss large and 
some intermediate 
pores. 

Loss of large and 
intermediate pores. 

Wide spread 
blocking. Similar curves. 

Increase in big 
pores. 

Change in relative 
amount of 
mercury trapped 

91.31->83.05% 
at 18.1pm 

90.70^82.5% 
at 9.3pm 

87.0->94.2% 
at 9.4pm 

93.6->92.1% 
at 9.2pm 

91.7-^86.9% 
at 9.2pm 

Damage theory 
Filter cake in large 
and same 
intermediate pores. 

Predominantly 
surface pores. 

Blocking of large 
and 
intermediate pores. 

Blocking over 
whole pore range. 

Native fines move 
emptying large 
pores, but 
blocking 
intermediate 

TABLE 10.3: Analysis of formation damage in reservoir sandstone samples 



expected. Three of the samples exhibited an expected reduction in porosity, although two 

showed a marginal increase. It has been frequently stated that large permeability damage 

can be facilitated by a small amount of pore blocking material (Lever and Dawe, 1984), 

and therefore permeability is more sensitive to formation damage than porosity. The 

relative changes in porosity and permeability are shown in Table 10.3. Thus there is some 

broad similarity of the effects of colloid flooding on all the reservoir sandstone samples. 

However, if the results for the samples are examined in more detail, various 

different colloidal flooding phenomena are revealed, as will now be discussed. The other 

changes to the samples induced by colloid flooding are also summarised in Table 10,3. 

There are two particular effects identifiable for sample 81. The first is the loss of large 

pores, as shown by the reduction in penetrated volume around 100 microns, Figure 10.2. 

A filter cake agglomeration could block large surface and near surface pore, and leave the 

remainder of the pore network unaffected. This process could be similar to that of filter 

cake formation proposed by Rahman and Marx (1991). The second effect is that the 

percentage of mercury contained within the pore space at a pressure corresponding to a 

tiiroal diameter of 18.14um during mercury drainage has reduced from 91.3% to 83.1%, 

as shown in Figure 10.2. This reduction indicates that the small pores empty of mercury 

slightly more efficiently after colloid flooding. This effect is probably related to the loss 

of large pores, but is difficult to inteipret without the full hysteresis curve, which is 

inaccessible to the current apparatus. 

Figure 10.3 shows that sample 82 has a much reduced mercury accessible pore 

volume after colloid flooding. The reduction is the highest of all the samples, at about 

40%, as shown in Table 10.3. As with sample 81, the large pore region of the post 

colloidal flood intrusion curve ( ) shows less intrusion for a particular pressure than 

the intrusion of the clean state ( ), i.e the large pores are blocked. However, in sample 

82, the blocking effect extends to those mid-range pores around the point of inflection. A 
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related feature in the intrusion curves is the less pronounced point of inflection of the 

colloid flooded sample ( ) as compared to the clean sample ( ). It is evident from 

the more gradual intrusion as pressiû e is increased that the nimiber of routes available to 

the intruding mercury has been reduced - i.e. that there is a reduction in connectivity. This 

conclusion is supported by the computer modelling studies described later. As in sample 

81, the percentage of trapped mercury during drainage drops after colloid flooding from 

90.7% to 82.5% as shown in Figure 10.3 and Table 10.3. 

In contrast to samples 81 and 82, in sample 98 there was negligible blocking of the 

large pores. Figure 10.4. Overall the sample experienced a slight drop in accessible pore 

volume after colloid flooding, showing that a small percentage of pores have been blocked. 

However, there is also a significant change in the shape of the intrusion curve. Thus the 

whole pore structure of this sample was altered by the colloid flooding, and the pores that 

were removed from the network must have been distributed throughout the sample. The 

less pronounced point of inflection shows that the connectivity has been reduced. Figure 

10.4 also shows that the drainage efficiency is lower after colloid flooding (94% trapped) 

than before (87% trapped). This is again in contrast to samples 81 and 82. In sample 98, 

the large pores are not blocked^ and the colloid flooding has presumably increased the 

shielding and snap-off effects. The large change in structure caused by the colloid flooding 

of this sample also results in the largest reduction in permeability from 213.6 mD to 57.6 

mD and the largest increase in tortuosity from 1.79 to 1.96 (Table 10.2), a relative 

reduction of 73% and increase of 9.4% respectively (Table 10.3). 

Very littie damage appears to have been done to sample 107 during colloid 

flooding, although the porosity drops slightly and the permeability significandy, Table 

10.3. The mercury porosimetry curves are very similar, and any small variations may be 

due to namral variations in the pore network which are encountered when any sample is 

halved and each half analyzed separately. Whereas the mercury is intruded from all 
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directions, the permeability is measured in the same direction as the colloid is intruded -

hence it is not surprising to discover that the permeability measurements can be more 

sensitive to colloid flooding than the mercmy porosimetry curves. Within this context, the 

significant reduction in tortuosity caused by the colloid flooding of the sample, Tables 10.2 

and 10.3, is difficult to explain. 

For sample 108, there is a large (33%) reduction in the pore volume accessible to 

mercury. Figure 10.6. There is also an increase in the percentage of large pores within the 

network after colloid flooding ( — ). An increase in the number of accessible large pores 

could be caused by micro-fractures opening during colloid flooding and drying. However, 

this is unlikely because there is a drop in the post colloidal flooding permeability from 

29.17 to 17.md, Table 10.2, equivalent to a relative reduction of 39%, Table 10.3. whereas 

micro-fractiuing is usually accompanied by a permeability increase. The other mechanism 

for an increase in large pore accessibility is by removal of natural in situ fines or the 

dissolving of grains or cemenL Material could be removed fi'om the large pores and 

deposited in smaller pores or be expelled completely from the sample. The porosity of 

sample 108 rose slightly after coUoid-flooding, so it would appear that most of the damage 

was caused by natural in situ fines. The amount of mercury trapped at 9.25pm decreased 

from 91.7% for the clean sample to 86.9% for the damaged sandstone. 

10.6 Modelling Outcrop Sandstone Clean and Damaged 

We now describe the application of our Pore-Cor computer model to the simulation 

of colloidally induced formation damage. The simulations for both clean and colloid 

damaged sandstone void space are obtained from a manual curve fit procedure, since at 

the time of this study the automatic curve fit algorithms had not been developed. The 

manual simulations are of comparable quality to the later automatic simulations, but took 

much longer to compute. The experimental intrusion curves have not been truncate-d 
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because a large amount of the void blocking detected occurs in the surface voids. 

Figure 10.7 shows the experimental mercury intrusion curve of a Clashach sample. 

This sample was originally adjacent to the samples used for the colloid flood investigation. 

Unlike reservoir sandstones Clashach is very homogeneous and it is reasonable to assume 

that the duplicate sample has a similar mercury porosimetry curve to that of sample 2. This 

assumption is supported by the almost identical porosity of the neighbouring samples. 

The throat size distribution is manually skewed, so that the mercury intrusion curve 

agrees with experiment. Figure 10.7. The optimum skew gives 0.45% of throats of 1 

micron diameter up to 1.55% of throats of 100 microns diameter (0.45% skew). The 

experimental porosity of 11.1% is achieved by a pore row spacing of 164.0 microns, giving 

a unit cell size of 1.64 mm (connectivity is 3.5). 

The median simulated tortuosity is 2.4. This is higher than the Clashach 

experimental value of 1.58, Table 10.1 The interquartile ranges of the tortuosities of the 

random walks are Q(1)=L9 and Q(3)=2.8, as with other simulations tortuosity is too low. 

The pore block simulation has been applied to the Clashach colloid flood results. 

A 7um radius pore block simulation on the optimized Qashach simulated pore and throat 

size distribution, causes a 37% drop in simulated permeability. This simulated permeability 

drop exactly matches the drop experienced by sample 1, after colloid flooding. A simulated 

tortuosity after pore blocking was unattainable due to no path being found through the unit 

ceU. 

10.7 Computer Modelling Of Reservoir Sandstones 

The Pore-Cor package has been used to simulate the void space of the five 

reservoir sandstones in both clean and colloid flooded states. The model pore network of 

the clean sample 81 is used in the mercury intrusion simulation in Figure 10.8. The 

parameters for this simulation are listed in Table 10.4. When a simulated pore block of 
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Sample 
no. 

State Simulation 
type 

Porosity 
1% 

Min. throat 
size/pm 

Max. throat 
size/pm 

% 
skew 

Conne-
tivity 

Actual 
penn 
change 

Simul. 
penn 
change 

Actual 
tortuosity 

Simulated 
tortuosity 

81 Clean Intrusion curve 
fit 

14.00 0.10 374.32 0.70 3.90 2.00 4.40 

81 Colloid 
Hooded 

Colloid 
block/7.3Mm 

(14.00) 0.10 374.32 0.70 3.90 -49.9% -9.0% 1.99 3.40 

81 Colloid 
flooded 

Intrusion curve 
fil 

13.40 0.22 294.93 0.70 3.45 -49.9% -43.2% 1.99 2.70 

82 Clean Intrusion curve 
fit 

11.10 0.36 517.30 0.85 3.00 2.24 4.9 

82 Colloid 
flooded 

Intrusion curve 
fit 

11.70 0.31 294,90 1.20 2.80 •22.6% -86.0% 2.25 N/A 

98 Cleaji Intrusion curve 
nt 

16.20 0.30 258.00 0.60 3.50 1.79 1.90 

98 Colloid 
flooded 

Intrusion curve 
fil 

15.40 0.30 258.00 0.60 2.80 -73.0% -81.66% 1.96 2.90 

107 Cleaii Intrusion curve 
nt 

12.10 0.22 265.00 0.50 3.40 2.47 2.10 

107 Colloid 
flooded 

intrusion curve 
fit 

11.40 0.31 750.00 0.75 3.20 -45.1% -73.1% 2.15 2.40 

108 Clean Intrusion curve 
fit 

9.50 0.22 203.70 0.95 3.90 2.63 4.40 

108 Colloid 
flooded 

Colloid 
block/6.5Mm 

(9.50) 0.22 203.70 0.95 3.90 -38.9% -37.7% 2.69 N/A 

T A B L E 10.4: Computer simulation of colloid induced formation damage 



radius 7.3pm is applied to the optimum simulated unit cell of sample 81, the simulated 

mercury-accessible pore volume decreases by the same degree as experiment. Table 10.3 and 

Figure 10.9. However, as can be seen in the figure, the shape of the simulated mCTCury 

intrusion curve after the simple pore blocking simulation is not very similar to the 

corresponding experimental curve. 

Thus the simple removal of small pores from the simulated void space is not the correct 

approach to modelling the colloid damage in sample 81. As mentioned earlier, sample 81 

underwent a loss of large pores during colloid flooding. To model the effect of the colloid on 

sample 81 the simulated pore and throat size distribution has to be totally altered, to obtain a 

good mercury intrusion curve fit (Figure 10.10). The remodelling (row 3, Table 10.4) gave a 

permeability 43.2% less than the initial clean sample model. This is in good agreement with 

the 49.9% permeability reduction measured in experiment for sample 81. 

Table 10.4 shows that the simulated tortuosity is too high for this sample, both before and after 

colloid flooding. This is the same discrepancy as for all simulations, discussed earlier. 

However, the simulation does give the correct experimental trend of a reduction in tortuosity, 

although the simulation exaggerates the effect 

The simulated pore network for the clean sample 82 has a wide pore and throat size 

distribution, smallest pores and throats being 0.36pm and the largest 517.30pm (row 4, Table 

10.4). Sample 82 underwent a reduction in the number of large and mid-range pores and throats 

(500 to lOum) during colloid flooding. A simple pore block simulation would not be 

sophisticated enough to model the effects of colloid flooding on sample 82. Therefore the pore 

structure of the colloid flooded sample 82 is simulated by a total remodelling (row 5, Table 

10.4). The new pore/throat size distribution has a smaller pore size range. The connectivity has 

reduced from 3.00 for the clean sample simulation to 2.80 for the colloid flooded. The results 

of the mercury porosimetry simulation on both clean and colloid flooded optimum pore/throat 

size distributions are shown in Figure 10.11. Experimental curves have been normalized so that 
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in both clean and colloid flooded experiments, the maximum volume of mercury intruded 

is equal to an intruded pore volume of one hundred percent. The experimental permeability 

reduced by 22.6% when sample 82 was flooded with colloid whereas the simulated pore 

networks produced an 86.0% reduction in permeability. Experimental measurements 

indicated a slight rise in tortuosity the simulations of the clean and colloid flooded pore 

networks show a change in tortuosity from a median value of 4.9 to no path through the 

unit cell respectively. Thus both simulated permeability and tortuosity show changes in the 

right direction but greatly exaggerated compared to the measured changes in these 

properties. 

The widespread pore blocking experienced by sample 98 manifests itself in a reduction in 

the pore networks connectivity, discussed earlier. Thus to simulate the effect of colloid 

flooding, the pore and throat size distribution is unaltered from the clean to flooded 

simulation, but the connectivity used in the modelling changes from 3.50 to 2.80 (rows 6 

and 7. Table 10.4). Figure 10.12 shows the mercury porosimetry curves for both clean and 

colloid flooded experiments and simulations. Simulated permeability reduction after colloid 

flooding is close to that measured experimentally for Sample 98. A comparison of 

experimental and simulated tortuosity changes shows tiiat Uie trend of increase in tortuosity 

after colloid flooding is mirrored by the simulations, although again somewhat exaggerated. 

Colloid flooding seems to have had littie effect on the mercury intrusion for sample 

107. The post colloidal flooding intrusion curve indicates a slight increase in the 

percentage of large pores intruded with mercury. This observation is evident in the post-

colloidal simulated pore and throat size distribution which includes pores of 750pm, 

significantly larger than the largest pore size of 265um used in the clean sample simulation 

(Table 10.4, row 8). Figure 10.13 shows both experimental and simulated mercury 

intrusion curves for the clean and colloid flooded sample 107. Both clean and colloid 

flooded simulated mercury intrusion curves appear similar in Figure 10.13, but the 
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simulated permeabilities for each pore network are very different A drop in simulated 

permeability of 73.1% is obtained when comparing the clean simulation with the colloid 

flooded simulation. This change is larger than the 45.1% drop measured in 

experiment Simulated torniosity values also exaggerate the degree of blocking experienced 

by this sample. A rise in simulated tortuosity from 2.1 to 2.4 disagrees with a drop in 

measured tortuosity from 2.47 to 2.15 after colloid flooding. 

The simulation data for the clean sample 108 are summarized in Table 10.4. row 

10. A colloid block simulation of radius 6.5pm was applied to this simulated pore network. 

The resulting mercury intrusion curves are shown in Figure 10.14. Both curves are shown 

on the same axis, the y-axis now indicating percentage of pore volume intruded, as a 

percentage of the total pore volume of the clean sample. The pore block simulation of 

radius 6.5pm reduces the pore volume accessible to mercury, to the same volume as 

experiment. Simulated permeability is also reduced by the same degree as experiment 

when the 6.5pm pore block is applied, Table 10.4, row 11. Experimental tortuosity rose 

from 2.63 to 2.69 after colloid flooding. The simulated tortuosity also rose, but from 4.2 

to infinity, ie. to no path through the cell. 

10.8 Concluding Remarks 

1) The invasion of pore space by colloidal particles causes the blocking of flow 

channels within the pore network. The six sandstone samples analyzed in this study all 

experienced large permeability drops after colloid flooding. The accessible pore space 

during mercury intrusion is also reduced, in all samples, after colloid flooding. 

2) An accurate assessment of the manner of damage to the pore space can only be obtained 

by measuring many different properties of the sandstone samples. To study the effect of 

formation damage on one parameter, such as permeability, only reveals part of the picture. 
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A ful l investigation into the effects of formation damage should include mercury 

porosimetry data for both native and damaged state samples. 

3) The six sandstone samples analyzed each experienced different modes of pore blocking 

during colloid flooding. Pore blocking was not confined to just filling of large pores with 

colloid - different samples underwent different blocking scenarios. The different behaviour 

of the colloid within the pore space is probably attributable to the different pore networks 

of each sample before colloid flooding. 

4) To simulate formation damage the pore network of the undamaged sandstone must first 

be accurately modelled. We have presented a three dimensional pore network model which 

is capable of simulating the complexities of sandstone void space. To the primary void 

space geometry we applied a simple pore block simulation which was successful for the 

minority of cases where simple pore blocking was the dominant damage mechanism in the 

real sample pore networks. To model colloid flooding of the other samples the pore/throat 

size distribution and average pore connectivity of the primary void space model had to be 

altered. 

5) An analysis of small samples of sandstone has revealed colloid flooding to be a 

complex mode of formation damage. The quantification and simulation of this type of 

formation damage is complex and requires careful use of a sophisticated 3-D pore space 

network even on a small scale, and underlines the problems of understanding and 

modelling formation damage on a reservoir scale. 
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CHAPTER 11 

CONCLUSIONS 

The void space of a number of reservoir sandstones has been simulated and 

characteristic phenomena such as porosity, permeability and mercury intrusion curves 

successfully modelled. Spearing's original model allowed a realistic modelling of clean 

homogeneous sandstone void space. The model has been refined to facilitate the simulation 

of inhomogeneous/banded sandstones. The degree of success attained within these 

simulations is related to the complexity and the sample's void space. Sandstones containing 

a high percentage of clay are far more complex than clean sandstones and simulation of 

their void space by the present model gives limited success. The next section outlines the 

level of success attained for each simulated parameter and possible routes to improvement. 

11.1. Porosity 

The application of intrusion curve truncation allows a wide range of porosities to 

be modelled. Prior to the truncation procedure the model overestimated the frequency of 

the large pores. The subsequent large pore row spacing needed to accommodate these large 

pores limited the range of simulated porosities attainable. A future refinement of the model 

would be to use a varying pore row spacing in networks with extreme porerpore 

correlation. Thus regions of small pores could be compacted to mirror closely the pore 

arrangement in real banded sandstones. 

11.2. Permeability 

The simulated permeability of the correlated networks closely matched the 

measured values to within a factor of four or better. This level of success exceeds any 
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obtained by other modellers known to the author. The facility to reduce the pore row 

spacing in small pore areas would improve the simulated permeabilities even more. The 

failure of Pore-Cor to simulate the permeabilities of the clay-affected samples is due to the 

extreme complexity of the void space of these samples. 

11.3. Tortuosity 

The tortuosity simulation has been found to produce values that are too high. 

During the particle walk through the unit cell, the particle is allowed to ^wander* too far. 

This effect could be remedied by increasing the direction weighting from r /̂1 to r^/l, but 

this would be introducing a fitting parameter. A more realistic approach to modelling 

tortuosit>' would be to allow a large number of particles to walk through the unit cell at 

the same time. This is more analogous to ions migrating through the electrolyte filled pore 

space. If the simulation forbade particle grouping, the simulated tortuosity value should 

approach those measured experimentally. 

11.4. The Unit Cell And Mercury Porosimetry 

The truncation of mercury intrusion is a somewhat subjective procedure, the 

resulting curve being an approximation of that obtained if surface pores had a negligible 

effect. The best way to refine the model would be to increase its size to a 100 x 100 x 100 

and intrusion/extrusion simulation could proceed through all faces of the unit cell. Surface 

pore effects could be modelled and a closer f i t of extrusion curves would be obtained. A 

larger unit cell would allow simulation of clay affected pore space. A possible method of 

simulating the micro-porosity of clay filled pores could be to position a small unit cell 

within every big pore of the original unit cell. This would produce an extra degree of 

complexity within the model. 
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I i.5 Formation Damage 

The Simple pore block simulation was found to successfully model formation damage 

within only a minority of samples. In the majority of samples analyzed formation damage 

was found to be a complex process, and could only be simulated by altering the pore/throat 

size distribution and average pore connectivity of the void space model. Thus the model 

can successfully simulate sandstone void space before and after it has experienced 

formation damage due to a colloidal suspension. 
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GLOSSARY OF TERMS 

Areosity: Ratio of effective cross-sectional area open to flow in a given direction to cross-
seciional area normal to flow direction. 

Authigenic; Formed or generated in place; specifically said of rock constituents and 

minerals that have not been uansported or that were derived locally where they are found. 

Capillary Pressure: The difference in pressure across a liquid meniscus in a capillary 

tube, ie. the amount of exua pressure required to force a non-welting phase to displace a 

wetting phase in the capillary. 

Cation Exchange Capacity: The sum of the exchangeable cations that a mineral can 

absorb at specific ph. 

Clay: Fine-grained material, grain size less than l/256mm, which becomes plastic when 

wetted. 

Detritus: Rock or mineral particles derived from pre-existing rock by weathering and/or 

erosion. 

Diagcnesis: All the chemical, physical and biological changes, modifications or 

transformations undergone by a rock after formation. 

Illite: Clay mineral with the general formula K,., 5 AI4 [Si,.^^ Al j . , 5 Ojo] (OH)4 

Illile/Smectite Mixed Layer Clay: Clay particles with a mixed mineralogy of illite (K,., 5 

A l j [Si7.g5 Al , . , 5 O20] (0H)4) and the related clay mineral smectite ((l/2Ca, Na)o.7 (Al . Mg, 

Fe), [(Si, AOs . N H2 O) 

Kaolinite: Clay mineral with the formula AI4 Si4 0,0 (0H)8. 

Node: A point in space. 

Outcrop Sandstone:A sandstone unit which occurs at the surface. 

Pixels: Unit cell component of a digitized image. An image being 512 pixels by 512 

pixels. 
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Potassium Feldspar: Common rock-forming silicate with the formula K Al SijOg. 

Pressure Solution: Solution (in a rock) occurring preferentially at the contact surfaces of 

grains (crystals) where the external pressure exceeds the hydraulic pressure of the 

interstitial fluid. 

Quart/: Common rock-forming silicate with the formula Si Oj. 

Overgrowth: Secondary material deposited in crystallographic continuity around a crystal 

grain of the same composition. 

Reservoir Sandstone: A sandstone unit which occurs in a hydrocarbon source area. 

Sedimentary Basin: Area in which detritus is deposited. 

Stratigraphic Unit; A distinct section of stratified rock in which age, formational 

environment and composition are known. 

Type I I I Kerogen: Organic matter in hydrocarbon source rocks produces gas under 

appropriate conditions of pressure and temperature. 
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LIST OF SYMBOLS 

A/m^ = Cross Sectional Area 

a = Dimensionless 'Archie' Constant 

a/m = Range 

b/Pa = Slip Term 

Co/gm'̂  = Initial Concentration 

C,/gm'' = Concentration At Distance x = 0 

CJgm'^ = Concentration At Distance x = 1 

CJQ'^ = Clay Conductivity 

Q = Dimensionless Kozeny Constant 

Cn = Capillary Number 

Cj/Q'' = Sample Conductivity 

Cu/^ = Diameter Of Cubic Pore 

C^Q-* = Brine Conductivity 

C/molm'^ = Concentration 

c = Dimensionless Gas Slip Parameter 

D/mV* = Diffusion Coefficient 

Di2/m^s'* = Bulk Diffusion Coefficient 

DJm = Pore Diameter 

DJm = Extrapolated Displacement Diameter 

D„ = Degrees Of Freedom 

di/m = Throat Diameter At 'Break Through' On Mercury Intrusion 

Curve 

clexp(vi/n^ = Experimentally Measured Throat Diameter At Pore Volume 

Point V. 

dsin,(vi/n̂  = Simulated Throat Diameter At Pore Volume Point Vj 
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E = Error 

F = Formation Factor 

F" = Formation Factor Independent Of Clay Conductivity 

G = Dimensionless Geometrical Factor 

h = A Vector 

J/gs**m*̂  = Gas Rux Per Unit Area 

KJrr? = Permeability 

IC/m^ = Measured Permeability 

K„ = Knudsen Number 

KJm^ = True Permeability 

L/m = Length Of Sample 

hjm - Distance Through Pore Network 

M = Viscosity of Injecting Fluid Over Viscosity of Static Huid 

m = Cementation Exponent 

N = Number Of Molecules Per Unit Volume 

n = Dimensionless Saturation Exponent 

P/Pa = Pressure 

P /̂Pa = Capillary Pressure 

PyPa = Extrapolated Mercury Displacement Pressure 

PjPa = Average Pressure 

Q/gs ' = Gas Flux 

KJOm = Resistivity Of 100% Brine Saturated Sample 

RJQm = Resistivity Of Partially Saturated Sample 

RJQm = Resistivity Of Saturating Brine 

r/m = Pore Radius 

S/m'' = Total Externally Accessible Surface Area Per Unit Volume 

Ŝ  = Fraction Of Void Space Saturated With Brine 
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s = Dimensionless slip constant 

T = Tortuosity 

t/s = Time 

ijs = Lag Time 

V,^m^ = Maximum Intruded Volume 

Vj/m^ = Pore Volume Point 

(Vi,)pc = Fractional Bulk Volume Occupied By Mercury At Capillary 

Pressure P̂  

(Vb)p« = Fractional Bulk Volume Occupied By Mercury At Infinite 

Capillary Pressure 

v/m^ = Volume 

W = Dimensionless Statistical Weighting 

X = Fraction Of Sample Cross-Sectional Area Made Up Of Voids 

Xj = A Point In Space 

x/m = Length 

Z (Xj) = A Property At Point X; 

Y = Semi-Variance 

Aiin = Sum Of Deviation Of 

A,„ = Sum Of Deviation Of Log d 
exp(vi) ŝini(vi) 

e = Coefficient Of External Friction 

0 = Contact Angle 

K/m = Knot Distance 

c/m = Collision Diameter 

u/cp = Viscosity 

^ = Areosity 

a/nm"' = Surface Tension 

<X> = Porosity 

272 



Q = Averaging Operator 

Y/m = Mean Free Path 
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APPENDIX 1 

SCANNING E L E C T R O N MICROSCOPY 

Scanning electron microscopes produce an image of the sample by interaction with 

an electron beam. The best possible resolution obtainable from light microscopes is 0.2um, 

using an electron beam instead of light resolutions of 3nm are attainable. Thus scanning 

electron microscopes are ideally suited to analysis of sandstones. 

The primary electron beam is produced by heating a fine tungsten filament (Figure 

A 1.1). The electron beam accelerates towards the sample under the influence of a voltage 

of 5-30 KV. The beam is demagnified and focused by a series of electromagnetic lenses, 

to produce a fine beam which interacts with the sample. The apparatus must be maintained 

at vacuum (approximately 2 x 10^ Torr) to allow electron beam formation, this restricts 

samples to only dr>' non-volatile substances. Upon collision with the sample surface, the 

electron beam causes a number of emissions (Figure A 1.2). Low energy electrons emitted 

from the sample surface are called Auger Electrons, this emission is not normally detected 

in S.E.M., the sample image is primarily formed by secondary electron emissions. 

Secondary electrons are emitted due to ionization when the electron beam collides 

inelastically with the sample surface. Secondary electrons have energies less than 50EV. 

Backscattered electrons have energies greater than 50EV and normally produce 

signals of the same order as the primary electron beam 5-20KV (Postek 1980). 

Backscattered electrons are formed deep within the sample due to elastic collisions between 

the electron beam and the specimen nuclei or electrons. There is a correlation between 

backscattered electron production and atomic number of the sample. As atomic number 

increases, more backscaitered electrons are emitted. Thus high atomic number elements 

produce a strong emission and appear brighter in a backscattered electron image. This 

facility is used in the imaging of the low atomic number epoxy resin filled pore space, 

which appears black compared to the sandstone grains. 
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I f an electron is removed from an atomic shell of a sample atom by interactions 

with the primary electron beam, the "hole" is filled by an electron from an outer shell. 

Figure A 1.3. This electron movement is accompanied by an emission of characteristic x-

rays of the same energy as the difference in energy between the source and sink electron 

shells. Thus the x-ray emissions are characteristic of the sample elements. The detection 

and identification of these x-rays is known as energy dispersive x-ray analysis (E.D.X.) 

The characteristic x-rays overlay an x-ray continuum (Bremstralung Radiation) which are 

of no diagnostic use. 
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Figure A l . I : Schemaiic Showing SEM/EDX System (from Welton 1984). 
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APPENDIX 2 

BRINE COMPOSITION 

sodium chloride 274.78 g/1 

potassium chloride 1.18 g/1 

calcium chloride (hydrated) 6.04 g/1 

magnesium chloride 7.53 g/1 

sodium sulphate 3.55 g/1 
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APPENDIX 3 

MERCURY POROSIMETRY 

A3.I Apparatus 

Mercury Intfusion/extrusion cycles were performed at the British Gas, London 

research station on a Ruska 1059 porosimeter. The apparatus is shown in Figure A3 . I . The 

apparatus consists of a lOOcc Ruska volumeu-ic pump(I). The pump has a sliding vernier 

scale (2) for volume measurement. A high pressure sample chamber (3) (Penatrometer) is 

attached to the pump. The sample chamber can accommodate samples up to 2.5cm wide 

and 3.75cm long. The lid of the sample chamber is secured by a screw ring (4) which 

forms a pressure/vacuum tight seal. The lid has an observation window for viewing 

mercury level relative to a reference mark. The sample chamber lid is connected to the 

pressure regulator assembly by a high pressure hose (5). The assembly consists of three 

pressure gauges (67 & 8), covering 0-2000PSI a vacuum gauge (9) and five pressure 

control valves (10-14). Pressure is varied by vacuum pump and nitrogen. 

A3.2 Method 

The pump piston is wound in so that the mercury is level with the reference mark. 

The vernier scale is zeroed, pump piston is wound back and sample chamber is evacuated 

down to pressures of 2 x lO'^atm. The mercury is brought up to the reference mark (15), 

the reading on the vernier scale being the bulk volume of the sample, plus mercury 

expansion volume (See Calibration). The scale is re-zeroed, and pressure increased by 

venting the atmosphere control valve (14). The first intrusion point is usually at about 

0.02atm, corresponding to a pore size of 200pm. The small amount of mercury which 

penetrates the pore space is allowed to reach equilibrium and its volume recorded by 

bringing the mercury level to the reference mark. Pressure is increased incrementally up 

to atmospheric pressure, at which point pressure is applied via a niuogen cylinder up to 
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MERCURY - INJECTION CAPILLARY PRESSURE 
APPARATUS, MODIFIED RUSKA 1059 
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FIGURE A3.1: Mercury Injection Capillary Pressure Apparatus, a Modified Ruska 1059. 
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120 atm (0.12 pm by the Washbum Equation). 

The mercury extrusion is measured by isolating the nitrogen at valve 13 and venting to 

atmosphere at valve 14. Extrusion at sub-atmospheric pressure is achieved by closing valve 

14, opening vacuum valve 12 slowly whilst vacuum pump is on. Equilibrium at each 

increase or decrease in pressure is very important Sometimes this may take up to half an 

hour, thus each full intrusion/extrusion cycle takes about one day to collect. Further 

extrusion of mercury during prolonged low pressure exposure indicates that equilibrium 

during extrusion can take a long time to attain. 

A3.3 Calibration 

The porosimeter must be calibrated prior to any experiment. A complete 

pressurization and depressurization of the mercury without a sample is performed. The 

column with each pressure change is noted as in a normal experiment. Thus the 

compression of mercury and expansion of the sample chamber with pressure increase can 

be accounted for. The calibration also indicates the volume of mercury forced into any 

"crevices" during pressurization. Figure A3.2 shows the calibration curves used for the 

fourteen mercury porosimetry experiments performed. The upper graph shows two 

calibration curves applied to the first three samples analyzed. The calibration curves are 

different because the sample chamber contained different volumes of mercury at each 

calibration. After the first three experiments the presence of a calibration hysteresis loop 

became evident (Bottom Graph : Figure A3.2). 

Hysteresis occurs because small amounts of mercury become trapped within crevices in the 

sample chamber. The bulk of the mercury is trapped within the sample chamber screw 

thread. The calibration hysteresis does not form a closed loop, trapping is irreversible. The 

trapped mercur)' volume is very small (0.017cm^), but i t is important to know this volume 

so that accurate mercury residuals can be calculated for each sample. 
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PRESSURE-VOLUME CALIBRATION DATA 
VOLUME CORRECTION/CM+3 
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VOLUME CORRECTION/CM+3 
0.35 

60 80 

PRESSURE/ATM 

FOR ALL OTHER PLUGS 

FIGURE A3.2: Pressure-Volume Calibration Data. 
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APPENDIX 4 

GEO-EAS A V A I L A B I L I T Y AND USAGE 

The Geo-Eas software is entirely within the public domain and can be obtained from 

Evan J. Englund (Geo-Eas) 

USEPA EMSL-LV, EAD 

P O Box 93478 

Las Vegas 

NV 89193-3478 

U.S.A. 

The source code is written in Fortran 77, and wi l l run off any personal computer with a 

DOS facility. The program consists of two parts. Prevar and Vario. Prevar sorts the co­

ordinates of the variable into paris. For this analysis Prevar uses the x and y co-ordinates 

of each feature centre of gravity to calculate the distances between every feature. The 

distances between each pair of features is saved in a pair comparison file. The Vario part 

of the progranmi uses the pair comparison file to calculate the estimate between every 

feature pair. The total analysis distance is divided into specified distances, termed Lag 

Distances.The estimate between all pairs of features within a specific Lag Distance group 

are calculated and the mean of these values is also calculated. The Geo-Eas programm 

quotes mean Lag Distance in each Lag Distance group and mean estimate, these are the 

two data points used to plot the variogram. 
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APPENDIX 5 

PEAK AREA AGAINST TIME PLOTS FOR 
CLASHACH SAMPLE 
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FIGURE A5.1: Peak Area Against Time Plots for Clashach. 
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PEAK AREA AGAINST TIME PLOTS FOR 
CLASHACH SAMPLE 
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METHANE ISO-BUT, 

37.5 
"n^UTANE 

45 5Z5 60 

PEAK AREA AGAINST TIME 
FOR CLASHAC SANDSTONE 

SDCTH RUN 
30.000 

25.000 

20.000 

15.000 

o. 10.000 

5.000 

7.5 15 22.5 30 37.5 
TIME/MIN 

METHANE ISO-BOTANE n-BUTANE 

45 

PEAK AREA AGAINST TIME 
FOR CLASHAC SANDSTONE 

SEVENTH RUN 
200.000 

150,000 

Si 
cr 

5 100.000 

50.000 

7.5 15 22.5 
TIME/MIN 

METHANE ISO-BUTANE n-BLTTANE 

5Z5 

FIGURE A5.2: Peak Area Against Time Plots for Clashach. 
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PEAK AREA AGAINST TIME PLOTS FOR 
SAMPLE 212A 
3RD RUN ON212A. 

PEAK AREA UNFTS 
2,000,000 

1,500.000 

1,000.000 

soaooo 

6.5 19.5 26 32.5 
TIME/MIN 

METHANE BOBUTANE BUTANE 

39 45^ 52 583 

RBOT TWO RUNS ON IMS 8AMPl£ KOT USED/UJW CEIL 
OtSCL£A)CEO. 

5THRUN ON PLUG 212A. 
PEAK AREA UNFTS 
2.500,000 

2,000,000 

1^.000 

1,000.000 

500.000 

J u l 
7.5 15 22.5 30 

TIME/MIN 
METHANE tSOBUTANE BUTANE 

37.5 45 5ZS 

6THRUN ON PLUG 212A. 
PEAK AREA UNITS 
2,000,000 

1,500.000 

1,000,000 

500,000 

0 ^ 
26 32.5 
TIME/MIN 

METHANE BOSUTANE BUTANE 

58.5 

FIGURE A5.3: Peak Area Against Time Plots for Sample 212A. 
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PEAK AREA AGAINST TIME PLOTS FOR 
SAMPLE 212A 

7THRUN ON PLUG 212A. 
PEAK AREA UNFTS 
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a s 13 193 as 323 3S 
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METHANE St^eUTANE BUTANE 

4S5 
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800.000 
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13 19.5 26 32.5 
TIME/MIN 

METHANE tSOBUTANE BUTANE 

39 453 

FIGURE A5.4: Peak Area Against Time Plots for Sample 212A. 
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PEAK AREA AGAINST TIME PLOTS FOR 
SAMPLE 250A 

PEAK AREA UNFTS 
4TH RUN ON 250A. 

2.500.000 -
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1^ .000 • ,-'* _ — — — 
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• 1 u 
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• , 
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/ _ 
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45.5 52 5a5 65 
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3.000.000 
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1.000.000 -/y •• 
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_ J 1 1 J 
0 0 6.5 13 19^ 26 32.S 

TIME/MIN 
METHANE BOeUTANE BUTANE 

39 45.5 52 58.5 

FIGURE A5.5: Peak Area Against Time Plots for Sample 250A. 
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PEAK AREA AGAINST TIME PLOTS FOR 
SAMPLE 250A 

11THRUN ON PLUQ250A. 
PEAK AREA UNITS 
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193 
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393 
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FIGURE A5.6: Peak Area Against Time Plots for Sample 250A. 
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PEAK AREA AGAINST TIME PLOTS FOR 
SAMPLE 250E 

1ST RUN ON PLUG 250E. 
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TIME/MIN 
METHANE iSOaUTANE BUTANE 
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FIGURE A5.7: Peak Area Against Time Plots for Sample 250E. 

Axvii 



PEAK AREA AGAINST TIME PLOTS FOR 
SAMPLE 250E 

4TH RUN ON PLUG 250E 
PEAK AREA UNITS 
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39 453 S2 65 

F I G U R E A5.8: Peak Area Against Time Plots for Sample 250E. 
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PEAK AREA AGAINST TIME PLOTS FOR 
SAMPLE 490A 

1 ST RUN ON PLUQ490A 
PEAK AREA UNITS 
700.000 

600.000 

500.000 

400.000 

200.000 

100.000 

TIME/MIN 
METHANE B O ^ A N E aJTANE 
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2.000.000 
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TIME/MIN 

37.5 45 

METHANE ISOSUTANE BUTANE 

3RD RUN ON PLUG 490A 
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400.000 

200.000 
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METHANE BO-BUTANE BUTANE 

4S.S 52 58. 

F I G U R E A5.9: Peak Area Against Time Plots for Sample 490A. 
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PEAK AREA AGAINST TIME PLOTS FOR 
SAMPLE 490A 

5THRUNON PLUG490A. 
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2:000.000 

1.500.000 

1.000.000 
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6TH RUN ON PLUG 490A. 
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1.500,000 

1,000,000 
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F I G U R E A5.10: Peak Area Against Time Plots for Sample 490A. 
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PEAK AREA AGAINST TIME PLOTS FOR 
SAMPLE 490B 

2ND RUN ON PLUG 490B 
PEAK AREA UNITS 
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F I G U R E A5.11: Peak Area Against Time Plots for Sample 490B. 
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PEAK AREA AGAINST TIME PLOTS FOR 
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6THRUN ON PLUQ490a 

3.500.000 

3.000.000 

2^ .000 
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F I G U R E A5.12: Peak Area Against Time Plots for Sample 490B, 
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PEAK AREA AGAINST TIME PLOTS FOR 
SAMPLE 4900 
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2ND RUN ON PLUG490C 
PEAK AREA UNFTS 
4.000,000 

3,000.000 

2.000,000 

1,000.000 

22.5 30 373 

TIME/MIN 
METHANE BOeOTANE BUTANE 
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F I G U R E A5.13: Peak Area Against Time Plots for Sample 490C. 
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PEAK AREA AGAINST TIME PLOTS FOR 
SAMPLE 490C 

4TH RUN ON PLUG 490C. 
PEAK AREA UNITS 
1.400.000 

1.200.000 

i.ooaooo 

800.000 

400.000 

200.000 

26 32.5 
TIME/MIN 

METHANE BOBUTANE BUTANE 

5TH HUN ON PLUG 4900. 
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• _ - - ' 

1 1 I 1 J 1_ 
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METHANE BOBUTANE BUTANE 

39 45.5 52 

F I G U R E A5.14: Peak Area Against Time Plots for Sample 490C. 
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PEAK AREA AGAINST TIME PLOTS FOR 
SAMPLE 490D 

peak area 
800.000 

600,000 

1 ST RUN ON 490D 
PEAK AREA AGAINST TIME 
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n iQ 45 60 75 90 105 
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30 37^ 
TIME/MIN 

METHANE BOeJTANE BUTANE 

8TH RUN ON PLUG 490D. 
PEAK AREA UNITS 
1.000.000 

800.000 

600,000 

400,000 

200,000 

26 

TIME/MIN 
METHANE BO-SUTANE BUTANE 

F I G U R E A5.15: Peak Area Against Time Plots for Sample 490D. 
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PEAK AREA AGAINST TIME PLOTS FOR 
SAMPLE 490D 

9TH RUN ON PLUG 490D. 
PEAK AREA UNTTS 
1.400.000 

1.200.000 

1.000.000 

800,000 
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6 3 13 19.5 3Z5 39 453 52 
TIME/MIN 
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5 8 3 

13TH RUN ON PLUG 490D. 
PEAK AREA UNFTS 
2.000;000 

1,500.000 

1,000,000 

500,000 

32.5 

TIME/MIN 
METHANE tSOBOTANE BUTANE 

F I G U R E A5.16: Peak Area Against Time Plots for Sample 490D. 
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PEAK AREA AGAINST TIME PLOTS FOR 
SAMPLE 490E 

6TH RUN ON PLUG 490E 
PEAK AREA UNFTS 
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0 6.5 13 193 26 323 39 453 52 58.5 

TIME/MIN 
METHANE BO-BUTANE BUTANE 

65 71.5 

8TH RUN ON PLUG 490E. 
PEAK AREA UNFTS 
2.000.000 

1300,000 

1.000.000 

500.000 

193 
TIME/MIN 

METHANE BOeOTANE BUTANE 

39 

F I G U R E A5.17: Peak Area Against Time Plots for Sample 490E. 
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PEAK AREA AGAINST TIME PLOTS FOR 
SAMPLE 490E 

3RDRUN0N PLUG490E 
PEAK AREA UNITS 
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39 
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6.5 13 19.5 26 32.5 
TIME/MIN 

METHANE BO^UTANE BUTANE 

5THRUN ON PLUG490E. 
PEAK AREA UNFTS 
2.500.000 

2,000,000 

1,500.000 

1,000.000 

500.000 

45.5 52 58^ 

45.5 52 5 a s 

13 19.5 26 32.5 
TIME/MIN 

45.5 52 58.5 

METHANE BOBUTANE BUTANE 

F I G U R E A5.18: Peak Area Against Time Plots for Sample 490E. 
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F I G U R E A6.I: Experimental and Simulated Mercury Intrusion Curves for Sample 212A. 
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FIGURE A6.2: Experimental and Simulated Mercury Intrusion Curves for Sample 212B. 

207,2 



s i m u l a t i o n E x p e r i m e n t a l 
100.0 

> 
X 
X 
X 

75.0 

4 J 
C 
CU 
u 
u 
0) 
a 

50.0 

25.0 

0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10.0 20.0 30,0 50.0 70.0100.0 

Throat diameter / microns 

FIGURIi: A6.3: Experimental and Simulated Mercury Intrusion Curves for Sample 212C. 
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FIGURE A6.4: Experimental and Simulated Mercury Intrusion Curves for Sample 212D. 
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F I G U R F A6.6: Experimental and Simulated Mercury Intrusion Curves for Sample 250A. 
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F I G U R E A 6 . l l : Experimental and Simulated Mercury Intrusion Curves for Sample 490C. 
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r i ( ; U R F A6.12: Experimental and Simulated Mercury Intrusion Curves for Sample 490D. 
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F I ( ; U R K A6.I3: Experimental and Simulated Mercury Intrusion Curves for Sample 490D Repeat Run. 
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n(;URF; A 7 . 5 : Simulated Mercury Intrusion and Extrusion Curve for Truncated Curve Fit for Sample 212E. 
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F I G U R E A7.6: Simulated Mercury Intrusion and Extrusion Curve for Truncated Curve Fit for Sample 25()A. 

20.0 30.0 50.0 



s i m u l a t i o n E x p e r i m e n t a l 
100.0 

> 

75.0 

C 
Q) 
O 
U 
0) 
a 

50.0 

r-i 

o > 
QJ 
U 
O 

25.0 

0.0 

0.1 0.2 0.3 0.1 0.6 0.8 1.0 2.0 3,0 1.0 6.0 8.010.0 

T h r o a t d i a m e t e r / m i c r o n s 

F I G U R E A7.7: Simulated Mercury Intrusion and Extrusion Curve for Truncated Curve Fit for Sample 250E. 
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r iGURK A7.8: Simulated Mercury Intrusion and Extrusion Curve for Truncated Curve Fit for Sample 250E Repeat Run. 
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n ( ; U R K A7.9: Simulated Mercury Intrusion mid Extrusion Curve for Truncated Curve Fit for Sample 490A 
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KIGURK A7 . I0 : Simulated Mercury Intrusion and Extrusion Curve for Truncated Curve Fit for Sample 49UB 
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XCVRK A 7 . I I : Simulated Mercury Intrusion and Extrusion Curve for Truncated Cun'e Fit for Sample 4900. 
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K I ( ; U R K A7.12: Simulated Mercury Intrusion and Extrusion Curve for Truncated Curve Fit for Sample 490D. 
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FIGURK A 7 . I 3 : Simulated Mercury Intrusion and Extrusion Curve for Truncated Curve Fit for Sample 490D Repeat Run. 
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nCiURK A7.14: Simulated Mercury Intrusion and Extrusion Curve for Truncated Curve Fit for Sample 490E. 
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