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Abstract: A plate-wave energy converter (pWEC) moored in front of a floating stationary breakwater is considered in this paper.
The pWEC is composed of a submerged flexible plate with piezoelectric layers bonded to both faces of it. Hence the elastic
motion of the plate excited by water waves can be transformed into useful electricity due to the piezoelectric effect. To evaluate the
performance of the breakwater-attached pWEC in terms of wave power absorption and wave attenuation, a hydroelastic model
based on linear potential flow theory and the eigenfunction matching method is developed with the electromechanical and the
hydrodynamic problems of the pWEC coupled together. The pWEC can be either simply supported or clamped at the edge. A
multi-parameter analysis is carried out with the employment of the present model. Effects of the width, submergence and edge
types of the plate, together with the scales of the breakwater, including its width and draft, on wave power absorption and wave
attenuation, are examined. As the pWEC moves towards a deeper position, the main peaks of the frequency response of the wave
power absorption efficiency become lower and narrower. In contrast, its effect on wave attenuation is limited.

1 Introduction

Since the 1790s, many concepts for wave energy conversion have
been proposed [1], the majority of which can be classified into five
types: oscillating water column (OWC), overtopping device, point
absorber, oscillating wave surge converter and raft-type device. Nev-
ertheless, only a small range of wave energy converters have been
tested at large scale and deployed in the sea [2]. The cost of power
and survivability are two significant challenges that need to over-
come to increase the commercial competitiveness of wave energy
converters (WECs) in the global energy market.

To enhance the economics of the WECs and meanwhile improve
their survivability, an effective way is to integrate them into coastal
structures, such as breakwaters, jetties and piers or along sections
of the coast, which would provide cost-sharing benefits, including
construction, installation and maintenance [3, 4].

So far, most of the studies associated with integrating WECs into
coastal structures have been focused on the OWC, overtopping and
point absorber concepts.

Evans & Porter [5] studied the performance of an onshore OWC
device composed of a thin vertical surface-piercing lip in front of
a vertical wall. Their theoretical studies demonstrated that the inci-
dent wave power could be captured efficiently by choosing proper
submergence of the lip and the spacing distance between the lip and
the wall. To investigate the performance of OWCs installed along
a straight coast/breakwater, Martins-Rivas & Mei [6] and Zheng et
al. [7, 8] developed three-dimensional (3D) theoretical models and
revealed that wave power extraction from the coast/breakwater inte-
grated OWCs for a certain range of wave conditions can be signifi-
cantly enhanced due to the constructive coast/breakwater reflection
effect. He et al. [9] investigated the performance of a pile-supported
OWC breakwater. They found that optimising power take-off damp-
ing for maximum power could lead to both satisfactory power
extraction and wave transmission. Some other studies related to the
integration of OWCs with coastal structures can be found in [10–16].

The hydrodynamic problem for the overtopping device is compli-
cated. Most of the studies related to the integration of that device

with coastal structures have been carried out using numerical sim-
ulation or/and physical model tests. An Overtopping BReakwater
for Energy Conversion (OBREC) was designed to fully utilise tra-
ditional breakwaters and capturing wave energy [17]. Vicinanza et
al. [17] carried out a series of physical tests of a 2-D OBREC model,
discussed the wave loadings and average wave overtopping rate at
its rear and front sides, and proposed a new design method for hor-
izontal force on OBREC upper crown wall. Following their work
[17], more recently, Contestabile et al. [18] completed the analysis
on OBREC geometric parameter variation, with particular interest
to the influence of the draft length, the reservoir width and the
shape of the front ramp, and extended the overall knowledge on the
device behaviour. The loading acting on the flat ramp was found
to be greater than the curved ramp in almost all the tests by about
30–40%. Musa et al. [19] analysed the wave flow over the OBREC
with the utilisation of FLOW 3D software and obtained a similar
trend of the overtopping discharge when compared with the exper-
imental data. Di Lauro et al. [20] performed numerical simulations
based on the model IH2VOF, and studied the hydraulic performance
and stability response of an OBREC device integrated into a vertical
structure. The reflection coefficients of the OBREC were observed to
be lower than those computed in front of the traditional breakwater.
Comprehensive reviews associated with the OBREC can be found in
[3, 21].

The integration of point absorbers into coastal structures has also
been the object of recent work. Schay et al. [22] studied the hydrody-
namic performance of a heaving point absorber near a fixed vertical
wall in regular and irregular seas with a Boundary Element Method
(BEM)-based software. Ning et al. [23] proposed an integrated sys-
tem of a vertical pile-restrained floating breakwater working under
the principle of a point absorber. The experimental test demon-
strated that the system’s capture width ratio was approximately 24%,
whereas the transmission coefficient was lower than 0.50 with a
proper power take-off damping force applied. More recently, Ning
et al. [24], Zhao et al. [25] and Konispoliatis & Mavrakos [26] stud-
ied an array of point absorbers in front of a breakwater by using
a BEM-based numerical code, physical testing and a theoretical
model, respectively. Instead of focusing on the integration of point
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absorbers into a conventional plane breakwater, Zhang & Ning [27]
considered a novel breakwater with parabolic openings for wave
energy harvesting. Their numerical studies showed that the reflected
waves from the parabolic opening could travel towards a fixed focus
position, stimulating wave power absorption of the point absorbers.

In addition to the five dominant types consisting of rigid bodies,
there are some other WECs made from flexible structures, e.g., elas-
tic plate [28] and bulge wave [29], which may offer improved perfor-
mance/survivability and reduced cost compared with steel/concrete
alternatives.

Zheng et al. [30, 31] proposed analytical models to study wave
power absorption/dissipation of an array of floating/submerged
porous elastic plates. Assuming the porosity of the elastic plates
works as a simplified power take-off system, a profound potential
of elastic plates was demonstrated for wave power extraction. The
hydroelastics of a porous elastic plate in other circumstances, e.g.,
in two-layer fluids and in front of a vertical wall, was investigated
by some other researchers [32, 33]. In fact, an elastic plate with
piezoelectric layers bonded to both faces of the flexible substrate
can extract energy from ocean waves [28]. Thanks to the piezoelec-
tric effect, the tension variations at the plate-water interface of the
plate WEC (pWEC) can be converted into a voltage, and the wave
power is ultimately transformed into useful electricity. Renzi [28]
developed a coupled hydro-electromechanical model, and evaluated
the wave power absorption of a two dimensional (2D) submerged
offshore stand-alone piezoelectric plate. Recently, this model was
extended by Zheng et al. [34] to study the 3D hydroelastic problem
of a circular stand-alone submerged piezoelectric pWEC. Buriani &
Renzi [35] considered a submerged pWEC attached in front of a
bottom-seated breakwater. It was demonstrated that the performance
of the pWEC could be significantly improved due to the presence of
the breakwater.

By contrast to the traditional bottom-seated breakwaters, floating
breakwaters have less environmental impact since water and sedi-
ment are permitted to exchange between their seaside and leeside.
Athanassoulis & Mamis [36] investigated a terminator-type piezo-
electric system extracting electric energy from the direct impact of
water waves impinging upon a vertical cliff, which could be formed
by a floating breakwater. The wave power absorption of a cliff inte-
grated piezoelectric system was reported to be as high as 30– 50%
for appropriate hydro/piezo/electric parameters. Liu & Huang [37]
considered the integration of piezoelectric material with a floating
vertical flexible membrane breakwater and developed a theoretical
model to study the performance of the system. It was revealed that
the proposed system was suitable only at sites where the variability
in the wave period is low due to the sensitivity of the transmis-
sion coefficient and the output power density on wave periods. In
this paper, we consider a floating breakwater integrated piezoelectric
pWEC. A 2D theoretical model is developed based on linear poten-
tial flow theory and the eigenfunction matching method to study the
hydrodynamic performance of the system in terms of wave power
absorption and wave attenuation. The proposed model is first vali-
dated by comparing the present results with published data and then
applied to examine the effect of the width, submergence and edge
conditions (i.e., simply supported and clamped) of the pWEC and
the width and draft of the breakwater on wave power absorption and
wave attenuation.

The rest of this paper is organised as follows: Section 2 outlines
the mathematical model for the hydroelastic problem. Convergence
analysis and validation of the present theoretical model are given in
Sections 3 and 4, respectively. The validated model is then applied to
carry out a multi-parameter study on the performance of the floating
breakwater integrated pWEC in terms of wave power absorption and
wave attenuation, the results of which can be found in Section 5.
Finally, conclusions are drawn in Section 6.

2 Mathematical model

A pWEC moored in front of a floating stationary breakwater sub-
jected to regular waves of amplitude A and angular frequency ω is
considered (see Fig. 1). The waves propagate perpendicularly to the

breakwater (i.e., wave crest-line is parallel with the breakwater). The
pWEC is made from a flexible substrate with two piezoelectric layers
bonded to both faces [28, 34]. The thicknesses of the substrate and
the piezoelectric layers are much smaller compared with wavelength
and water depth. Hence the pWEC may be assumed of negligible
thickness in the hydrodynamic problem. The floating breakwater is
assumed to be strictly constrained that its motion can be neglected,
and it is considered stationary in the present work.

As shown in Fig. 1, Cartesian axes are chosen with the mean
free–surface and front vertical wall of the breakwater coinciding
with the planes of z = 0 and x = 0, respectively, x and z mea-
sured in the direction of wave propagation and vertically upwards,
respectively. The length of the breakwater and the pWEC in the
y-direction is assumed to be far longer than a wavelength so that
the hydroelastic problem can be treated as a 2D one. The sea bed
is at z = −h, and the pWEC with a width l is placed at z = −d.
The width and draft of the breakwater are denoted by l0 and d0,
respectively. The fluid domain is divided into five regions (Fig. 1b),
which we will use in the solution process, i.e., Ω1, the seaside outer
region (x ∈ (−∞,−l], z ∈ [−h, 0]); Ω2a, the region above the
pWEC (x ∈ [−l, 0], z ∈ [−d, 0]); Ω2b, the region below the pWEC
(x ∈ [−l, 0], z ∈ [−h,−d]); Ω3, the region under the floating break-
water (x ∈ [0, l0), z ∈ [−h,−d0]) and Ω4, the leeside outer region
(x ∈ [l0,∞), z ∈ [−h, 0]).

2.1 Problem formulation

All amplitudes are assumed to be small enough that linear theory
applies, and the fluid is assumed to be inviscid, incompressible and
irrotational. It is further assumed that all motion is time-harmonic
with the angular frequency ω; hence the fluid velocity potential and
the displacement of the plate about z = −d may be expressed by

Φ(x, z, t) = Re{φ(x, z)e−iωt}, (1)

and

ξ̃(x, t) = Re{ξ(x)e−iωt}, (2)

where Re denotes the real part. The functions φ(x, z) and ξ(x) rep-
resent the time-independent parts of the complex velocity potential
and the plate displacement, respectively.

Under the assumptions above, the spatial velocity potential satis-
fies the Laplace equation in the fluid with the boundary conditions

∂zφ =
ω2

g
φ on z = 0, x ∈ (−∞, 0] ∪ [l0,∞) (3)

∂zφ = 0 on z = −h (4)

∂zφ = 0 on z = −d0, x ∈ [0, l0] (5)

∂xφ = 0 on x = 0 and l0, z ∈ [−d0, 0] (6)

∂zφ
∣∣∣
z=−d+

= ∂zφ
∣∣∣
z=−d−

on x ∈ [−l, 0] (7)

where + and − denote above and below the plate, respectively. The
scattered wave field consists of outgoing waves only with a finite
value at |x| =∞.

Additionally, the time-independent spatial velocity potential, φ,
at the interface of the regions Ω2a and Ω2b should be coupled to
the plate displacement function, ξ, in terms of both kinematic and
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Fig. 1: Schematic diagram of a floating breakwater integrated pWEC: (a) side view in physical variables; (b) fluid domain decomposition used
in the mathematical model.

dynamic conditions [28],

∂zφ = −iωξ on x ∈ [−l, 0] , z = −d, (8)

gχ

(
1 +

β2ζω

i + ζω

)
∂4xξ − ω2γξ = iω(φ− − φ+)

on x ∈ [−l, 0] , z = −d, (9)

in which + and − denote above and below the plate, respectively;

χ =
B′

ρg
, β =

θ′√
B′C′

, ζ =
C′

G′
, γ =

I ′b
ρ
, (10)

where B′ represents the flexural rigidity of the bimorph, θ′ is
a piezoelectric coupling factor, C′ denotes the electrical surface
capacitance, G′ is the surface conductance, I ′b represents the sur-
face density of the bimorph, I ′b = ρ0d0 + 2ρpdp, in which ρ0 and
ρp denote the densities of the substrate and the piezoelectric lay-
ers, respectively. d0 and dp represent the thicknesses of the substrate
and the piezoelectric layers, respectively. ρ is the fluid density. In this
paper, the bimorph piezoelectric plate is characterised by d0 = 0.01
m, dp = 1.1× 10−4 m, ρ0 = 1250 kg/m3, ρp = 1780 kg/m3 (for
details see [38] and [28]).

The two components as given above can be combined into[
χ

(
1 +

β2ζω

i + ζω

)
∂4x −

ω2

g
γ

]
∂zφ+

ω2

g
(φ+ − φ−) = 0

on x ∈ [−l, 0] , z = −d, (11)

which couples the electro-mechanical and the hydrodynamic prob-
lems at the plate-water interface.

We also need to apply edge conditions at the plate end. If the plate
is simply supported, the edge conditions are

ξ(0) = ∂2xξ(0) = ξ(−l) = ∂2xξ(−l) = 0 (12)

and they read

ξ(0) = ∂xξ(0) = ξ(−l) = ∂xξ(−l) = 0 (13)

for a plate whose edge is clamped.

2.2 Expressions of the velocity potentials in different
regions

2.2.1 Regions Ω1 and Ω4: The eigenfunction expansion in
these regions is completely standard and follows from [39, 40], and
we only summarise the results here.
Region Ω1 {x ∈ (−∞,−l], z ∈ [−h, 0]}

Expression of the spatial velocity potential in Region Ω1 may be
written as

φ1 = − igA

ω
eikxZ0(z) +

∞∑
n=0

Ane−iknxZn(z), (14)

where the first term on its right-hand side represents the undis-
turbed incident spatial velocity potential, φI . An are the unknown
coefficients to be determined. k0 = k ∈ R+ and kn ∈ iR+ for
n = 1, 2, · · · support the propagating waves and evanescent waves,
respectively, and they are the positive real root and the infinite
positive imaginary roots of the dispersion equation,

ω2

g
= kn tanh(knh); (15)

The corresponding depth functions Zn(z) are expressed as

Zn(z) =
cosh[kn(z + h)]

cosh(knh)
. (16)

Region Ω4 {x ∈ [l0,∞), z ∈ [−h, 0]}
Expression of the spatial velocity potential in Region Ω4 can be

expressed as

φ4 =

∞∑
n=0

BneiknxZn(z), (17)

where Bn are the unknown coefficients to be determined.

2.2.2 Region Ω2 {z ∈ [−h, 0], x ∈ [−l, 0]}: In region Ω2, the
potential may be written as

φ2(x, z) =

∞∑
n=−2

(Cneκnx +Dne−κnx)Yn(z), (18)

where Cn and Dn are the unknown coefficients to be determined;

Yn(z) =



− sin(κnc)
[
κnh cos(κnz) +

ω2

g
h sin(κnz)

]
,

on z ∈ [−d, 0)

cos[κn(z + h)]
[
κnh sin(κnd) +

ω2

g
h cos(κnd)

]
,

on z ∈ [−h,−d]
(19)

in which c = h− d; κn for n = −2, −1, 0, 1, 2, · · · are the roots
of the dispersion relation for the pWEC,[
χ

(
1 +

β2ζω

i + ζω

)
κ4 − ω2

g
γ

][
κ sin(κd) +

ω2

g
cos(κd)

]
tan(κc)

= −ω
2

g

{[
cos(κd)− ω2

gκ
sin(κd)

]
tan(κc) + sin(κd) +

ω2

gκ
cos(κd)

}
,

(20)
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which can be derived by inserting Eq. (18) into Eq. (11).
Particularly, if β = 0 or ζ = 0, the plate turns into a submerged

elastic plate, for which the corresponding properties of the roots
can be found in [41]. Once the roots for β = 0 or ζ = 0 are deter-
mined, the roots of the dispersion relation for β 6= 0 and ζ 6= 0 can
then be derived by using the homotopy method, starting with the
corresponding roots for the case of β = 0 or ζ = 0 [42, 43].

2.2.3 Region Ω3 {x ∈ [0, l0], z ∈ [−h,−d0]}: The velocity
potential in the fluid domain under the breakwater, i.e., Region Ω3
can be expressed as

φ3(x, z) = E0x+ F0 +

∞∑
n=1

(Eneβnx + Fne−βnx) cos[βn(z + h)],

(21)
where βn = nπ

h−d0 ; En and Fn for n = 0, 1, 2, · · · are the
unknown coefficients to be determined.

2.3 Continuity conditions

Continuity conditions at the interfaces of the adjacent regions and
the side wall of the breakwater should be satisfied:

φ1|x=−l = φ2|x=−l, z ∈ [−h, 0] (22)

φ2|x=0 = φ3|x=0, z ∈ [−h,−d0] (23)

φ3|x=l0 = φ4|x=l0 , z ∈ [−h,−d0] (24)

∂xφ1|x=−l = ∂xφ2|x=−l, z ∈ [−h, 0], (25)

∂xφ2|x=0 =

{
0, z ∈ [−d0, 0],

∂xφ3|x=0, z ∈ [−h,−d0],
(26)

∂xφ4|x=l0 =

{
0, z ∈ [−d0, 0],

∂xφ3|x=l0 , z ∈ [−h,−d0].
(27)

These continuity conditions, together with the edge conditions, can
form a linear algebraic system after truncation of the infinite series of
vertical eigenfunctions at N , and can be further employed to deter-
mine the unknown coefficients An, Bn, Cn, Dn, En and Fn. The
complicated deduction process of the formulas and calculation of
these unknown coefficients are given in the Appendix, i.e., Section
8.

2.4 Free-surface elevation

The elevation of the air–water interface vertically deviating from the
still water level, i.e., the free-surface elevation, is expressed as:

η0(x) =
iω

g
φ|z=0. (28)

2.5 Plate displacement

The displacement of the pWEC about z = −d can be calculated in
terms of Cn and Dn as

ξ =
i

ω
∂zφ|z=−d = − i

ω

∞∑
n=−2

κn sin(κnc)
[
κnh sin(κnd)

+
ω2

g
h cos(κnd)

]
(Cneκnx +Dne−κnx). (29)

2.6 Hydrodynamic force acting on the plate

The vertical hydrodynamic force acting on the plate can be cal-
culated by integrating the hydrodynamic pressure drop across the

pWEC over x ∈ [−l, 0]

Fe = iωρ

∫0
−l

(φ− − φ+)|z=−ddx

= iωρ

∞∑
n=−2

[Cn(1− e−κnl)−Dn(1− eκnl)]

×
(
h sin(κnh) +

ω2h

gκn
cos(κnh)

)
. (30)

2.7 Wave reflection and transmission

The wave reflection and transmission coefficients denoted by R and
T , respectively, can be calculated by

R =
ω

gA
|A0|, T =

ω

gA
|B0|. (31)

2.8 Wave power absorption

2.8.1 Direct method: Wave power absorption by the pWEC
may be evaluated in a straightforward manner following [28, 35]

Pext =
ω2ρg

2

β2χζ

1 + ω2ζ2

∫0
−l
|∂2xξ|2dx

=
ρg

2

β2χζ

1 + ω2ζ2

∫0
−l
|∂3zφ|z=−d|2dx,

=
ρg

2

β2χζ

1 + ω2ζ2

{ ∞∑
n=−2

∞∑
m=−2

κ3nκ
∗3
m sin(κnc) sin(κ∗mc)

×
[
κnh sin(κnd) +

ω2

g
h cos(κnd)

]
×
[
κ∗mh sin(κ∗md) +

ω2

g
h cos(κ∗md)

]
×
[
CnC

∗
m(1− e−(κn+κ

∗
m)l)

κn + κ∗m
− DnD

∗
m(1− e(κn+κ

∗
m)l)

κn + κ∗m

+
CnD

∗
m(1− e−(κn−κ

∗
m)l)

κn − κ∗m
− C∗mDn(1− e(κn−κ

∗
m)l)

κn − κ∗m

]}
.(32)

We introduce the relative absorbed power, i.e., wave power
absorption efficiency

ηext =
Pext
Pinc

, (33)

where

Pinc =
ρgA2

2

ω

2k

(
1 +

2kh

sinh(2kh)

)
(34)

denotes the incoming wave power.

2.8.2 Indirect method: Apart from the direct method, an indi-
rect method can be derived based on Green’s theorem

Pext =
ρω

4i

∫0
−h

[(
φ
∂φ∗

∂x
− φ∗ ∂φ

∂x

)∣∣∣∣
x=X

−
(
φ
∂φ∗

∂x
− φ∗ ∂φ

∂x

)∣∣∣∣
x=−X

]
dz, (35)

where X > max{l, l0}. When X →∞, only propagating waves
remain, and Eq. (35) can be rewritten as

Pext =
ρω[sinh(kh) cosh(kh) + kh]

4 cosh2(kh)

(
g2A2

ω2
− |A0|2 − |B0|2

)
,

(36)
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resulting in the corresponding wave power absorption efficiency

ηext = 1−R2 − T 2, (37)

which is in line with the energy conservation, indicating the incident
wave power is absorbed, reflected and transmitted by the breakwater
integrated pWEC.

3 Convergence analysis

Figure 2 illustrates the impact of the truncated cutoffs (i.e., in terms
of N ) on the frequency response of wave power absorption effi-
ciency and wave transmission coefficient for a floating breakwater
integrated pWEC with l0/h = 0.5, d0/h = 0.5, l/h = 1.0, d/h =
0.2, χ̄ = χ/h4 = 4.78× 10−7, γ̄ = γ/h = 1.258× 10−3, β =
0.24 and ζ̄ = ζ

√
g/h = 1.0. In order to obtain the converged

results, N ≥ 40 is suggested. Hereinafter, N = 40 is adopted.

4 Model validation

When d0/h = 1.0 (or d0/h→ 1.0), the bottom of the floating
breakwater touches (or approaches) the sea bed, making the system
become (or work similar to) a pWEC mooring in front of a bottom-
seated breakwater, the hydrodynamic problem of which has already
been numerically studied by Buriani & Renzi [35]. Moreover, if
either χ or γ is large enough, the pWEC would work as a rigid
plate, and the present hydrodynamic problem becomes the wave
reflection by a vertical wall with a horizontal submerged rigid plate
studied by Wu et al. [44]. Figure 3 presents a comparison of wave
power absorption efficiency between the present results and those of
[35]. Variation of the free-surface elevation at x = 0 and the verti-
cal hydrodynamic force acting on the pWEC for χ̄ = χ/h4 = 104

versus pWEC width, together with the corresponding published data
associated with a rigid plate placed in front of a vertical wall [44],
are plotted in Fig. 4.

If the width of the pWEC is small enough, the floating breakwater
integrated pWEC is expected to work as a single breakwater. Figure
5 illustrates the comparison of the wave reflection/transmission coef-
ficients of a floating breakwater integrated pWEC with l0/h = 0.5,
d0/h = 0.5, l/h = 0.01, d/h = 0.2, and those of a single isolated
breakwater [39].

In addition to the above three extreme circumstances, a more gen-
eral case with l0/h = 0.5, d0/h = 0.5, l/h = 1.0, d/h = 0.2 is
examined, the wave power absorption efficiency of which is cal-
culated by using both the direct and indirect methods, and the
comparison between them is illustrated in Fig. 6.

The excellent agreement between the results shown in Figs. 3, 4, 5
and 6 gives confidence in the present model for solving the problem
of wave interaction with a floating breakwater integrated pWEC.

5 Results and discussion

In this section, the validated model is adapted to study the effects
of the pWEC width, pWEC submergence, breakwater width and
breakwater draft, together with the type of the pWEC edge, on wave
power absorption and wave attenuation of the floating breakwater
integrated pWEC.

5.1 Effect of the plate edge type

Fig. 7 shows that the performance of the pWEC in terms of wave
power absorption is dramatically influenced by the edge types. In
the computed range of wave frequencies, i.e., ω2h/g ∈ [0.1, 2.5],
there are three and four peaks of the ηext − ω2h/g curves observed
for the clamped and simply supported edge conditions, respectively.
For the clamped edge condition, the peak values of ηext and the cor-
responding ω2h/g are (0.22, 0.29), (0.07, 0.71) and (0.58, 1.51).
Correspondingly, for the simply supported edge conditions, they are
(0.06, 0.20), (0.01, 0.51), (0.28, 1.14) and (0.57, 2.26).

This may be explained from the point of view of resonance. The
more strictly the plate edge is constrained, the larger the stiffness of
the plate, resulting in larger wave frequencies where the peaks occur.

The transmission coefficient presents an overall decreasing trend
with increase of the wave frequency (Fig. 7b). Several sudden drops
of T are observed at the frequencies where the peaks of ηext happen.

Figure 8 presents a snapshot of the system with the displacements
of the pWEC and the free-surface elevation at the seaside and lee-
side of the breakwater. The incident water waves have amplitudeA=
0.2 m and period of 5 s, corresponding to a wavelength of 36.58
m. The free surface is found to match seamlessly across Regions
Ω1 and Ω2a defined in subsection 2.2 (Fig. 1b). The clamping
(i.e., Eq. (13)) and simply supported (i.e., Eq. (12)) edge condi-
tions are correctly satisfied by the analytical solutions. On the plate,
short-crested oscillations are created by a short, weakly damped
progressive wave, which has also been reported by Renzi [28] for
an offshore stand-alone pWEC. This can be explained from the
properties of the root of the dispersion equation for the pWEC.
Due to the coupled hydroelectromechanical effect, a coupled sys-
tem of long- and short-crested weakly damped flexural waves with
the length of 36.56 m and 2.72 m, which correspond to the roots
κ0 = (−7.73× 10−9 + 1.72× 10−1i) m−1 and κ1 = (−1.25×
10−2 + 2.31i) m−1, respectively, are excited by the incident waves.
For the present case, the short-crested weakly damped flexural wave
dominates the plate displacements.

5.2 Effect of the plate width, l

Figure 9 plots the wave power absorption efficiency and wave trans-
mission coefficient of the floating breakwater integrated pWEC
against ω2h/g for different values of pWEC width in terms of l/h.
In the computed range of wave frequencies, the larger the width
of the pWEC, the more peaks of the ηext − ω2h/g are observed.
This can be explained from the view of the natural vibration fre-
quencies of a beam with fixed ends and distributed mass, which are
proportional to l−2.

For most of the cases studied, the larger the wave frequencies
where the peaks of the ηext − ω2h/g occur, the larger the peaks
in terms of both the peak value and bandwidth are observed. It is
noted that ηext > 0.8 can be achieved at specified wave frequencies
for the cases with l/h = 0.7, 1.3 and 1.6.

Unlike the wave power absorption efficiency (Fig. 9a), the wave
transmission coefficients plotted in Fig. 9b are found to be rather
insensitive to the change of pWEC width, unless the peaks of ηext
occur, making the T − ω2h/g curves present a local inverted ‘N’
shape.

The integrated system has a dual-function of wave power absorp-
tion and wave attenuation. The effective frequency bandwidth simul-
taneously satisfied with the requested absorption efficiency and
transmission coefficient may be of interest. In the computed range
of wave frequencies, the nondimensional frequency bandwidths with
ηext > 0.3 and T < 0.3 are 0.01 ([2.49, 2.50]), 0.20 ([1.71, 1.91]),
0.07 ([1.47, 1.53]), 0.27 ([2.17, 2.44]) and 0.20 ([1.88, 2.09]) for
l/h = 0.4, 0.7, 1.0, 1.3 and 1.6, respectively. Hence, from the per-
spective of the effective dual-function, the l/h = 1.3 case may be
the most promising among the five cases examined.

5.3 Effect of the plate submergence, d

The submergence of the plate is one of the key parameters affecting
the roots of the dispersion equation for the pWEC (see Eq. (20)),
and is expected to influence the hydroelastics of the pWEC further.
The system with d/h = 0.1, 0.15, 0.2, 0.25 and 0.3 are selected as
fives cases to examine the effect of the pWEC submergence on wave
power absorption and wave attenuation (Fig. 10).

As indicated in Fig. 10a, as d/h increases, the main peaks of
ηext around ω2h/g = 1.5 become lower and narrower. This could
be because most wave power is concentrated at less than one-quarter
of a wavelength below the water level, and the kinetic energy at a
deeper position is less intensive than that at a shallower position.
However, it should be noted that the other two peaks located at
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Fig. 2: Impact of the truncated cut-offs (i.e., in terms of N ) on wave power absorption and wave attenuation, l0/h = 0.5, d0/h = 0.5,
l/h = 1.0, d/h = 0.2, χ̄ = χ/h4 = 4.78× 10−7, γ̄ = γ/h = 1.258× 10−3, β = 0.24 and ζ̄ = ζ

√
g/h = 1.0: (a) ηext; (b) T .

Fig. 3: Frequency response of wave power absorption effi-
ciency, l/h = 1.0, d/h = 0.2, χ̄ = χ/h4 = 4.78× 10−7, γ̄ =
γ/h = 1.258× 10−3, β = 0.24 and ζ̄ = ζ

√
g/h = 1.0.

ω2h/g ≈ 0.3 and 0.7 (corresponding to the wavelength of 108.96
m and 66.31 m, respectively) become higher with the increase of
d/h. For these wave conditions, the wavelength is long enough that
the kinetic energy is almost independent of the vertical position in
the fluid domain, and does not dominate wave power absorption of
the pWEC any more.

With the increase of d/h, the peaks of ηext shift towards high
wave frequencies, and this may be explained from the view of added-
mass, which increases as d/h becomes larger [45], resulting in larger
natural resonant frequencies.

The wave transmission coefficient as plotted in Fig. 10b is found
to be insensitive to the change of the pWEC submergence.

5.4 Effect of the breakwater width, l0

The effect of the breakwater width on wave power absorption and
wave attenuation is illustrated in Fig. 11. As expected, the T −
ω2h/g curves descend along with the raise of breakwater width (Fig.
11b). It is also expected that when the breakwater is wide enough, it
will work like a bottom-seated breakwater and that no wave power
will be transmitted to its leeside.

In contrast to the change of the breakwater width on wave attenu-
ation, its influence on wave power absorption of the pWEC is found
to be rather limited (Fig. 11a). As l0/h increases from 0.1 to 0.9, the
peak value of ηext around ω2h/g = 1.5 decreases merely by 11.6%
from 0.62 to 0.55. It should be emphasised that this is a ‘decrease’
change of ηext, although not too much, instead of ‘increase’, mean-
ing that enlarging the breakwater width not only weakens wave
attenuation but also suppresses wave power absorption of the pWEC.

5.5 Effect of the breakwater draft, d0

The effect of varying the breakwater draft on wave absorption and
wave attenuation is also investigated by examining five cases with
d0/h ranging from 0.3 to 0.7 with a step of 0.1 (Fig. 12).

As demonstrated in Fig. 12, the variation of d0/h plays a similar
role as that of the breakwater width l0/h on the performance of the
floating breakwater integrated pWEC as plotted in Fig. 11, but in a
more dramatic manner. More specifically, as d0/h increases from
0.3 to 0.7, the main peak value of ηext drops from 0.66 to 0.52 by
21.7%. Moreover, the bandwidth of the main peak is compressed.

For d0/h = 1.0, ∂xφ = 0, i.e., null horizontal fluid velocity,
should be satisfied at x = 0 all over the water depth, i.e., the fluid
particles below the pWEC are not allowed to pass through the plane
of x = 0. As a comparison, for d0/h < 1.0, the fluid particles under
the pWEC are free to move across x = 0 for z ∈ [−h,−d0], which
may further liberate the motion of the pWEC and ultimately enhance
wave power absorption.

6 Conclusions

In this paper, a pWEC moored in front of a floating breakwater
is considered. The pWEC consists of a submerged flexible plate
with piezoelectric layers bonded to both faces of it. The elastic
motion of the plate can be transformed into useful electricity due
to the piezoelectric effect. To evaluate the performance of the sys-
tem, a 2D theoretical model is proposed based on linear potential
flow theory and the eigenfunction matching method coupling the
electromechanical and the hydrodynamic problems.

The theoretical model was first validated by comparing the
present results with published data for different extreme cases, and
an excellent agreement between them was achieved. The validated
model was ultimately applied to explore the influence of the edge
condition, width and submergence of the pWEC and the width
and draft of the breakwater on wave power absorption and wave
attenuation. The following conclusions may be drawn:

1. Wave power absorption of the pWEC is dramatically influenced
by the edge types. There are three and four peaks of the ηext −
ω2h/g curves in the computed range of wave frequencies for the
clamped and simply supported edge conditions, respectively.

2. As the width of the pWEC increases, more peaks of the ηext −
ω2h/g curves can be excited. As pWEC moves towards a deeper
position, the main peaks of ηext around ω2h/g = 1.5 become lower
and narrower. Varying the width or submergence of the pWEC, the
influence on wave attenuation of the system is limited.

3. Wave transmission coefficient can be effectively reduced all over
the examined wave frequencies by increasing either the width or the
draft of the breakwater. Nevertheless, the change of the breakwater
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Fig. 4: Variation of wave amplitude at x = 0 and the hydrodynamic wave force acting on the plate versus plate length, ω2h/g = 1.44
(wavelength = 4.0h), d/h = 0.2, χ̄ = χ/h4 = 104, γ̄ = γ/h = 1.258× 10−3, β = 0.24 and ζ̄ = ζ

√
g/h = 1.0: (a) |η0|/A; (b) |Fe|/ρglA.

Fig. 5: Frequency response of the wave transmission coeffi-
cient and reflection coefficient, l0/h = 0.5, d0/h = 0.5, Lines:
present results with l/h = 0.01, d/h = 0.2, χ̄ = χ/h4 = 4.78×
10−7, γ̄ = γ/h = 1.258× 10−3, β = 0.24 and ζ̄ = ζ

√
g/h =

1.0; Symbols: Zheng & Zhang [39].

Fig. 6: Frequency response of the wave power absorption
efficiency, l0/h = 0.5, d0/h = 0.5, l/h = 1.0, d/h = 0.2, χ̄ =
χ/h4 = 4.78× 10−7, γ̄ = γ/h = 1.258× 10−3, β = 0.24 and
ζ̄ = ζ

√
g/h = 1.0.

width/draft has limited influence on wave power absorption of the
pWEC.

The present work is focused on the hydroelastic problem of
a breakwater integrated pWEC with a fixed distributed–parameter
model of the piezoelectric system adopted from [28, 35]. The
device’s wave power absorption could be enhanced if the piezo-
electric system can be appropriately selected and optimised. The
breakwater was assumed to be stationary, and its oscillation was

not registered in our present model. However, this is an aspect of
interest that we plan to investigate as a continuation of this line of
research. How to broaden the effective frequency bandwidth for such
an integrated system is also an interesting research topic for future
work.
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Fig. 11: Frequency response of the wave power absorption efficiency and wave transmission coefficient for different breakwater widths,
d0/h = 0.5, l/h = 1.0, d/h = 0.2, χ̄ = χ/h4 = 4.78× 10−7, γ̄ = γ/h = 1.258× 10−3, β = 0.24 and ζ̄ = ζ

√
g/h = 1.0: (a) ηext; (b)

T .

Fig. 12: Frequency response of the wave power absorption efficiency and wave transmission coefficient for different breakwater drafts, l0/h =
0.5, l/h = 1.0, d/h = 0.2, χ̄ = χ/h4 = 4.78× 10−7, γ̄ = γ/h = 1.258× 10−3, β = 0.24 and ζ̄ = ζ

√
g/h = 1.0: (a) ηext; (b) T .

8 Appendix Derivation process of the formulas
and calculation for the unknown coefficients An,
Bn, Cn, Dn, En and Fn

Here we take the case with simply supported edge condition as an
example to show how to determine the unknown coefficients An,
Bn, Cn, Dn, En and Fn. Inserting the expression of the spatial
potentials at different regions of the fluid domain, i.e., Eqs. (14),
(17), (18) and (21), into the continuity conditions, which should be
satisfied at the interfaces between each two adjacent regions, and the
simply supported edge boundary conditions, i.e., Eqs. (22)-(27) and
(12), gives:

− igA

ω
e−iklZ0(z) +

∞∑
n=0

AneiknlZn(z)

=

∞∑
n=−2

(Cne−κnl +Dneκnl)Yn(z), z ∈ [−h, 0], (38)

∞∑
n=−2

(Cn +Dn)Yn(z) = F0 +

∞∑
n=1

(En + Fn)

× cos[βn(z + h)], z ∈ [−h,−d0], (39)

E0l0 + F0 +

∞∑
n=1

(Eneβnl0 + Fne−βnl0)×

cos[βn(z + h)] =

∞∑
n=0

Bneiknl0Zn(z), z ∈ [−h,−d0], (40)

kgA

ω
e−iklZ0(z)− i

∞∑
n=0

knAneiknlZn(z)

=

∞∑
n=−2

κn(Cne−κnl −Dneκnl)Yn(z), z ∈ [−h, 0], (41)

∞∑
n=−2

κn(Cn −Dn)Yn(z)

=

{
0, z ∈ [−d0, 0],

E0 +
∑∞
n=1 βn(En − Fn) cos[βn(z + h)], z ∈ [−h,−d0].

(42)

i
∞∑
n=0

knBneiknl0Zn(z)

=

{
0, z ∈ [−d0, 0],

E0 +
∑∞
n=1 βn(Eneβnl0 − Fne−βnl0) cos[βn(z + h)], z ∈ [−h,−d0].

(43)
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Table 1 Multiplying terms and the corresponding intervals of integration for Eqs. (38)-(43).

Equation (38) (39) (40) (41) (42) (43)

multiplying term Zτ (z) cos[βτ (z + h)] cos[βτ (z + h)] Zτ (z) Zτ (z) Zτ (z)
interval of integration [−h, 0] [−h,−d0] [−h,−d0] [−h, 0] [−h, 0] [−h, 0]

∞∑
n=−2

κn sin(κnc)
[
κnh sin(κnd) +

ω2

g
h cos(κnd)

]
×(Cne−κnl +Dneκnl) = 0, (44)

∞∑
n=−2

κn sin(κnc)
[
κnh sin(κnd) +

ω2

g
h cos(κnd)

]
×(Cn +Dn) = 0, (45)

∞∑
n=−2

κ3n sin(κnc)
[
κnh sin(κnd) +

ω2

g
h cos(κnd)

]
×(Cne−κnl +Dneκnl) = 0, (46)

∞∑
n=−2

κ3n sin(κnc)
[
κnh sin(κnd) +

ω2

g
h cos(κnd)

]
×(Cn +Dn) = 0. (47)

If the plate is clamped at its edge, then Eqs. (46) and (47) should
be replaced by

∞∑
n=−2

κ2n sin(κnc)
[
κnh sin(κnd) +

ω2

g
h cos(κnd)

]
×(Cne−κnl −Dneκnl) = 0, (48)

and

∞∑
n=−2

κ2n sin(κnc)
[
κnh sin(κnd) +

ω2

g
h cos(κnd)

]
×(Cn −Dn) = 0. (49)

The orthonormal properties of Zn(z) and cos[βn(z + h)] can be
used to help determine the unknown coefficients. Table 1 lists the
multiplying terms and the corresponding intervals of integration for
Eqs. (38)-(43).

After multiplying both sides of each equation among Eqs. (38)-
(43) with the corresponding listed term, integrating vertically over
the listed interval, and making some rearrangement, Eqs. (38)-(43)
can be rewritten as

Aτ eikτ lH
(1)
τ −

∞∑
n=−2

(Cne−κnl +Dneκnl)J
(1)
n,τ

= δ0,τ
igA

ω
e−iklH

(1)
0 , (50)

∞∑
n=−2

(Cn +Dn)J
(2)
n,τ − δ0,τF0H

(2)
τ

−(1− δ0,τ )(Eτ + Fτ )H
(2)
τ = 0, (51)

∞∑
n=0

Bneiknl0J
(3)
n,τ − δ0,τ (E0l0 + F0)H

(2)
τ

−(1− δ0,τ )(Eτ eβτ l0 + Fτ e−βτ l0)H
(2)
τ = 0, (52)

ikτAτ eikτ lH
(1)
τ +

∞∑
n=−2

κn(Cne−κnl −Dneκnl)J
(1)
n,τ

= δ0,τ
kgA

ω
e−iklH

(1)
0 , (53)

∞∑
n=−2

κn(Cn −Dn)J
(1)
n,τ − E0J

(3)
τ,0

−
∞∑
n=1

βn(En − Fn)J
(3)
τ,n = 0, (54)

ikτBτ eikτ l0H
(1)
τ − E0J

(3)
τ,0

−
∞∑
n=1

βn(Eneβnl0 − Fne−βnl0)J
(3)
τ,n = 0, (55)

where

H
(1)
n =

∫0
−h

Z2
n(z) dz =

sinh(knh) cosh(knh) + klh

2kn cosh2(knh)
, (56)

H
(2)
n =

∫−d0
−h

cos2[βn(z + h)] dz =

{
h− d0, n = 0
h−d0

2 , n = 1, 2, · · ·
,

(57)

J
(1)
n,τ =

∫0
−h

Yn(z)Zτ (z) dz

=
kτh sinh(kτ c)

[
ω2

g cos(κnh) + κn sin(κnh)
]

cosh(kτh)
(
κ2n + k2τ

) , (58)

J
(2)
n,τ =

∫−d0
−h

Yn(z) cos[βτ (z + h)] dz

=

[
κnh sin(κnd) +

ω2h

g
cos(κnd)

]
×κn(h− d0)2(−1)τ sin[κn(h− d0)]

(h− d0)2κ2n − τ2π2
, (59)

J
(3)
n,τ =

∫−d0
−h

Zn(z) cos[βτ (z + h)] dz

=
(h− d0)2(−1)τkn sinh[kn(h− d0)]

[(h− d0)2k2n + τ2π2] cosh(knh)
. (60)

To evaluate the unknown coefficients An, Bn, Cn, Dn, En and
Fn, we truncate all infinite series of vertical eigenfunctions at N ,
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i.e., (N + 1) terms (n = 0, 1, · · · , N) for An, Bn, En and Fn
and (N + 3) terms (n = −2, −1, 0, 1, · · · , N) for Cn and Dn,
resulting in (6N + 10) unknown coefficients to be determined. After
taking (τ = 0, 1, · · · , N) in Eqs. (50)-(55) and with the simply
supported edge conditions Eqs. (44)-(47) appended, a (6N + 10)
order complex linear equation matrix is obtained, which can be used
to determine the exact same number of unknown coefficients. N
should be chosen large enough to lead to accurate results. In all the
theoretical computations as given in this paper, N = 40 are used,
unless otherwise specified. It should be noted that Eqs. (50), (53),
and (54) with J(3)

τ,n for n = 0, 1, 2, · · · replaced by 0, together with
Eqs. (44)-(47), are the equations which can be used to solve the wave
diffraction problem of a pizoelectric WEC submerged in front of a
bottom-seated breakwater [35].
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