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Structural characterisation of highly branched isoprenoid alkenes from 

sediment and algae 

David Alan Cooke 

A B S T R A C T 

At least fourteen C25 highly branched isoprenoid (HBI) alkenes have been 
previously reported in estuarine and coastal sediments from locations worldwide. The 
parent alkane structure has been proven but only a few of the double bond positions 
established previously. A wide body of evidence suggests that the compounds have a 
diatomaceous origin, with one report in the laboratory cultured diatom Haslea ostreaha. 
Alkenes with more than two double bonds appear to be rapidly removed from the 
hydrocarbon fraction of most sediments. There is evidence that some of the alkenes react 
rapidly with sulphur to form S-containing analogues. HBIs, both as hydrocarbons and S-
containing analogues, may prove useful environmental indicators once the sources and 
exact structures have been established. 

A study of the temporal variations of HBI and carotenoid biomarker 
concentrations in Tamar sediments was conducted during 1994. The concentrations of 
C25 HBI alkenes exhibited strong negative correlations with those of /J-C2i:6 and 
fucoxanthin, common diatom markers. The strong inverse variance suggests that HBI 
concentrations are related to diatom populations in the Tamar estuary. 

Six C25 HBI alkenes ranging from a diene to hexaene have been isolated from 
*bulk' cultures of Haslea ostrearia and Caspian Sea sediments. The occurrence of HBIs 
in Haslea ostreaha is thus confirmed. Furthermore, the structures were unambiguously 
assigned by detailed nuclear magnetic resonance spectroscopy and mass spectral analysis, 
as well as by chemical degradation. The hydrocarbons are 2,6,10,14-tetramethyl-7-(3-
methylpent-4-enyl)pentadec-5-ene; 2,10,l4-trimethyi-6-methylene-7-(3-methyIpent-4-
enyl)pentadec-9-ene; 2,10,14-trimelhyl-6-methylene-7-(3-methylpent-4-enyl)pentadec-
9,13-ene; 2,10,14-trimethyl-6-methylene-7-(3-methylpent-4-enyl)pentadec-2,9,13-ene; 
2,6,10,14-tetramethyl-7-(3-methyIpent-4-enyl)pentadec-2,5,9,13-ene and 2,6,10,14-
tetramethyl-7-(3-methylenepent-4-enyl)pentadec-2,5,9,l3-ene. Structural elucidation of 
the HBI alkenes produced by Haslea ostrearia and comparison with sedimentary 
distributions suggests that the latter may arise from a facile double bond isomerisation of 
the biosynthetic compounds. The evidence presented suggests that inputs from Haslea 
ostreaha may account for at least eight of the dominant sedimentary HBI alkenes. 

The unusual behaviour exhibited by HBI alkenes during solid phase 
chromatography suggests that an incomplete record exists for HBI alkenes reported in 
the environment. 
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PREFACE 

This thesis is presented in six chapters. Each chapter is divided into subsections 

{e.g. 1.1, 1.2 ... etc.). Further subdivisions are similarly numbered sequentially and, where 

necessary by the use of bold text. Compound structures are assigned unique numbers 

(e.g. I , n, 111... e/c), generally in chronological order of appearance in the text. 

Chapter 1 provides an introduction and general background to the research 

described herein. Chapters 2, 3, 4 describe the research into characterisation, distribution, 

and fate of highly branched isoprenoid (HBI) hydrocarbons. Experimental and analytical 

procedures used are given in Chapter 5, and the conclusions and suggestions for further 

work are presented in Chapter 6. 



A B B R E V I A T I O N S U S E D IN T E X T 

HBI highly branched isoprenoid 

D C M dichloromethane 

Na2S04 sodium sulphate 

NaOH sodium hydroxide 

AgNOs silver nitrate 

TsOH toluene-p-sulphonic acid 

T L C thin layer chromatography 

H P L C high performance liquid chromatography 

G C gas chromatography 

MS mass spectrometry 

RI retention index 

NMR nuclear magnetic resonance 

Pt02.H20 platinum (IV) oxide monohydrate 

T H E total hexane extract 

T O E total organic extract 
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CHAPTER ONE 

Introduction 

The occurrence of widely distributed C25 highly branched isoprenoid alkenes in 

sediments and biota is reviewed. These compounds occur as oikanes and alkenes 

with one to five double bonds in young aquatic (marine) sediments from many 

parts of the globe (e.g. Peru, Antarctica, North Sea and Caspian Sea). Sometimes 

found in high concentrations in surface sediments (e.g. 60 /Jg g'^), the compounds 

rapidly disappear in older sediments, possibly due to reaction with sedimentary 

sulphur. The source of these C25 hydrocarbons is thought to be diatoms, and there 

is one report of a suite of highly branched isoprenoid polyenes biosynthesised 

by the diatom, Haslea ostrearia. 



1.1 Highly Branched Isoprenoid Hydrocarbons 

Highly branched isoprenoid (HBI) alkanes and alkenes are widely distributed, and 

often abundant, natural hydrocarbons found .in coastal marine sediments across the globe 

(reviewed by Rowland and Robson 1990; Hird, 1992). They have been reported in 

regions as diverse as Puget Sound, west coast USA (Barrick ei a/., 1980), coastal Peru 

(Volkman et ai, 1983), Antarctica (Nichols et a/., 1988; Cripps et a/., 1995), S.W. 

England (Hird c'/a/., 1992) and the Caspian Sea (Belt ^/a/., 1994), (Figure M ) . The C20 

(I). C25(n) and C30 ( I I I ) alkanes have been unambiguously identified by synthesis (Yon et 

a/., 1982; Robson and Rowland, 1986, 1988), but the unsaturated counterparts with one 

to six double bonds, which are much more common, have been less well studied. 

Figure 1.2 Structures of the parent C20 C25 and C30 carbon skeletons 

I - C 20 n - c 25 m - c 30 

Only monoenes of C20 HBIs have been reported, whereas C25 HBI alkenes 

possess one to five double bonds (Table 1.1) and the C30 analogues five or six. The 



17 
27 

18 
•19 • 

21 

Numbers indicate references listed in Table 1.1a 



Table 1.1 Sedimentary occurrences of C25 HBI hydrocarbons where GC retention indices are cited (updated from Hird, 1992) 

i ta i ionary | o v i | o v i OVl DDI DBi \im HPl SE30 SE30 SE30 SE30 SE30 DBS DBS DBS DBS DBS DBS smoo SPIIOO SP2tOO SPllW SP2tOO OVl 01 MS 

phase ! 
[Compound 1 1 
: 2 5 : 0 ( I I ) 1 2 I I 2 2110 2111 2105 2109 2109 2112 

Z25A 1 2106 
Z25A 2112 

225:2 2067 2070 2072 2068 2068 2068 2070 
225:2 2080 2082 2082 2079 2084 2082 2084 2084 2082 2082 2083 
225:2 2085 
225:2 2088 2088 2088 2088 2088 

225:3 2044 2044 2044 2046 2044 2044 2044 

225:3 2091 2092 2091 2091 2.191 2091 2090 2090 2090 2094 2089 2092 

225:3 2104 2104 

225:3 2106 2106 2107 2106 2110 2107 2107 

225:3 2119 
225:3 2156 

:25:4 2082 2079 2078 

:25:4 2086 

225:4 2055 

225:4 2129 2126 2128 2124 

225:4 2134 2133 

225:4 2144 
225:4 2175 

225:5 2125 

225:5 
225:5 ' 

• — 
2144 225:5 

225:5 ' 
• — 

1 2170 2169 

225:5 2173 

225:5 2183 2183 2182 

225:5 1 2191 2188 

C25:5 2200 

References , / | 15 16 23 251 22 24 \ 7 8 9 n 12 10 17 i8\ 20 26 21 2 3 4 5 6 13 14 \ 

Kev : Table 1.1a 



Table l . Ia 

Key : Numerical values stated in Table 1.1 are GC retention indices (GC RI). 
Italic numbers relate to the references listed below: 

(1) Blanchard(1979) 
(2) Prahle/a/.,(l980) 
(3) Barricke?/a/.,(1980) 
(4) Venkatesan et a/., (1980) 
(5) Venkatesan and Kaplan (1982) 
(6) Osterrohte/a/.,(1983) 
(7) Requejo and Quinn (1983) 
(8) Volkmane/a/., (1983) 
(9) Albaigesc'^a/., (1984a) 
(10) Albaigesc-/a/., (1984b) 
(11) Requejo a/., (1984) 
(12) Requejo and Quinn (1985) 
(13) Shaw c'/a/., (1985) 
(14) Dunlop and Jefferies (1985) 
(15) Rowland c'/fl/., (1985) 
(16) Voudriasc'/a/.,(1986) 
(17) Venkatesan and Kaplan (1987) 
(18) Venkatesan (1988) 
(19) Nichols a/., (1988) 
(20) Porte c'/a/., (1990) 
(21) YruelacVa/., (1990) 
(22) Green a/., (1992) 
(23) Ten Havener a/., (1993) 
(24) Volkmant'/fl/.,(I994) 
(25) Belt e/fl/., (1994) 
(26) Hird and Rowland (1995) 
(27) Cripps(1995) 



unusua! highly branched structures, variation in degree of unsaturation and widespread 

distribution has led to the proposal that HBIs may be useful as palaeoenvironmental 

indicators or biomarkers (Kenig et a/., 1990; Kohnen et aL, 1991b; 1992a). However, it 

would seem to be premature to use HBIs as palaeoenvironmental indicators before they 

have been rigorously identified and their biological sources have been established. 

A complete structural analysis of the alkenes has been limited to a relatively few 

examples. Dunlop and JefFeries (1985) observed a C20 monoene (gas chromatographic 

retention index, GC RI 1703) and a C 2 S monoene (GC RI 2112) in the hypersaline waters 

of Shark Bay, Western Australia. Ozonolysis of the C20:i and €25:1 isolates yielded a C 1 9 

ketone molecular weight, M.W. 282 and a C24 ketone M.W. 352 respectively, indicating 

in both cases an olefmic methylene bond. Mass spectral analysis of the ozonolysis 

products suggested structures ( IV) and (V) for the alkenes. 

V - Cjs-

Hird et a/., (1992) characterised four HBI monoenes by a combination of gas 

chromatographic (GC), spectroscopic (GC-MS, in one case ^MR) and degradative 

(ozonolysis) analyses of pure isolates. A C20 monoene from sediments of the Tamar 

estuary (UK) and a C25 monoene (hydrogenation product of a diene) from McMurdo 

Sound (Antarctica) both contained methylene double bonds, identical to those reported 



by Dunlop and Jefferies (1985), (IV) and (V). The structure of a sedimentary C20 

monoene from Gluss Voe (Shetland Isles) was tentatively assigned by comparing its RI 

and mass spectrum with that of a synthetic C20 monoene (VI). 

Hird et a/., (1992) also concluded that the double bonds for two C25 monoenes from the 

Tamar estuary were probably in non-methylenic positions by comparison with other 

synthetic C25 monoenes (Robson, 1987). The double bond positions in a HBl diene have 

also been established. Thus, Yruela et al., (1990) used epoxide formation with m-

chloroperoxybenzoic acid to assign tentatively, the double bond positions (not geometry) 

in a C25 diene (RI 2085) (VII ) , isolated from mesohaline sediments (Guadalquivir delta, 

S.W. Spain). 



This derivatisation process succeeded where alkylthiolation, oxymercuration and 

treatment with osmium tetroxide, failed (reviewed by Robson, 1987; Rowland and 

Robson, 1990; Nichols et a/., 1988). The double bond positions in another C25 diene 

( V I U ) were unambiguously assigned via NMR spectroscopy and ozonolysis (Summons 

et a/., 1993). However, this is the only report of a C25 alkene with this parent structure. 

In view of the potential geochemical importance of HBI compounds it is essential 

that the structures and biological origin(s) are established and the factors controlling HBI 

production are investigated. Evidence to date strongly indicates that certain 

diatomaceous algae are a source of these unusual compounds. Nichols et al., (1988) 

reported a C25 HBI alkadiene as a major hydrocarbon in natural populations of Antarctic 

sea-ice diatom communities and suggested that the earlier report of the compound in 

Euteromorpha prolifera was also due to epiphytic diatoms. Summons et a/., (1993) also 

isolated the C25 HBI alkadiene ( V m ) from a diatomaceous benthic microbial community. 

These findings indicate a source from diatoms, but the possibility that associated marine 

bacteria actually produce the HBI alkenes (Requejo and Quinn, 1983; Robson and 



Rowland. 1986) was not refuted until the first isolation of a suite of HBI hydrocarbons 

from two laboratory grown diatom species. Volkman et a/., (1994) identified C25 HBI 

alkenes with three to five double bonds and C30 HBI alkenes with five and six double 

bonds in axenic cultures of the diatoms Haslea osirearia and Rhizosolenia setigera 

respectively. These results probably explain why the HBI alkenes are abundant in marine 

environments where diatoms are the major constituents of the benthic and planktonic 

algal communities (e.g. upwelling areas off Peru, productive coastal regions, algal mats 

and sea-ice diatoms). However. HBIs have not been reported in other diatoms (reviewed 

by Rowland and Robson, 1990) and virtually nothing is known about the conditions 

under which diatoms produce HBIs. Furthermore, none of the alkenes in the cultured or 

field diatoms have been rigorously characterised, their parent structures having simply 

been established by hydrogenation to the alkane, for which full spectral data are available 

(Robson. 1987; Robson and Rowland. 1986, 1988). No specific source has yet been 

reported for the C20 HBIs. Rowland et ai, (1985) isolated a C20 HBI alkane and 

monoene from the macroscopic green alga Enteromorpha prolifera, but this was 

reattributed to the presence of epiphytic diatoms, by Volkman et ai, (1994) and Nichols 

et a!., (1988), particularly since //-C2i:6 was also observed in the hydrocarbon fraction and 

this alkene is typical of diatoms. 



1.2 Sedimentary occurrence of C25 HBI alkene isomers 

Twenty six apparently different C25 HBI alkenes have been reported to occur in 

the marine environment (Table 1.1). Previous authors have tentatively identified some 

isomers by a combination of gas chromatographic retention indices (GC RI), 

spectroscopic features (MS, NMR), degradative analysis (ozonolysis, epoxidation) and 

more rarely by co-injection with synthetic compounds (Dunlop and Jefferies, 1985; 

Rowland and Robson, 1990; Yruela et a/., 1990; Hird et a/., 1992; Summons et a/., 

1993). However, the majority of HBI alkenes have yet to be fully characterised and 

without this detailed knowledge it is difficult to establish whether some HBI isomers, 

reported by different authors, are actually the same. Hird (1992) showed that a number of 

C20 monoenes had similar GC RIs, yet had different double bond positions, emphasizing 

the care needed in making assignments by GC RI alone. The classification, by Hird 

(1992), of HBI isomers from different reports (Table I . l ) was based on a comparison of 

GC RI and mass spectral data. However, a detailed comparison of the GC RI and mass 

spectra, coupled with the frequency of occurrence and relative abundance of all the 

isomers reported in the literature (Table 1.1a), suggested to the present author that there 

are, in fact, only fourteen dominant C25 alkene isomers that are abundant and/or 

commonly occurring in the marine environment (Table 1.2). 

Barrick and Hedges (1980) and Porte et a/., (1990) both reported that the mass 

spectra of two trienes (GC RI 2044 & 2091) and two tetraenes (GC RI 2080 & 2127) 

identified in their studies were identical {e.g. Figure 1.3). Moreover, the difference in GC 

RI (AGC RI = 47) between the two trienes was identical to the AGC RI between the two 

tetraenes. The explanation suggested for this, in both reports, was that all four molecules 



Table 1.2 Sedimentary occurrences of major C25 HBI alkenes (adapted from Table 1.1) 

Reference / 15 16 25 7 8 9 / / 12 10 18 20 26 2 3 4 6 19 Average R I for 
Major Alkene major alkenes 

C25:2 2067 2070 2072 2068 2068 2068 2070 C25:2 2069 
C25:2 2080 2082 2082 2079 2084 2082 2084 2084 2082 2083 C25:2 2082 
C25:2 2088 2088 2088 2088 2088 C25:2 2088 

C25:3 2044 2044 2044 2046 2044 2044 2044 C25:3 2044 
C25:3 2091 2092 2091 2091 2091 2091 2090 2090 2090 2094 2089 C25:3 2091 
C25:3 2106 2107 2106 2110 2107 2107 C25:3 2107 

C25:4 2082 2079 2078 C25:4 2080 
C25:4 2086 C25:4 2086 
C25:4 2129 2126 2128 2124 C25:4 2127 
C25:4 2133 C25:4 2133 

C25:5 2125 C25:5 2125 
C25:5 2144 C25:5 2144 
C25:5 2183 2183 2182 C25:5 2183 
C25:5 2191 C25:5 2191 

Key : Numerical values are GC retention indices 
Italics indicates references listed in Table 1.1a 



Figure 1.3 Representative mass spectra of €25:3 (2044) and C23:3 (2091) 

C25:3 (20 44) 

a ffl a & I51 ll) 1 1 I 

C25:3 (2091) 

233 

11 



were structurally identical except for geometric isomerism about one double bond and the 

presence of an additional double bond at a *remote site' in the C25:4 compounds. The two 

trienes and tetraenes reported by Barrick and Hedges (1980) and Porte et al., (1990) are 

the dominant isomers in many reports (Table 1.2), but several other pairs of the major 

sedimentary alkenes in Table 1.2 also exhibit AGC RI of 47. For example, one pair of 

pentaene isomers also has AGC RI = 47, (GC RI 2144 & 2191), and these occur in high 

concentrations in the marine environment (Volkman et al., 1983; Porte et a/., 1990). 

Although none of the C25 dienes exhibit AGC RI = 47, Venkatesan (1988) noted 

that the mass spectrum of a C25:2 (GC RI 2088) from Antarctica was virtually identical in 

both fragmentation and fragment abundance to that of a C25 diene (GC RI 2082), 

previously reported from sediments (Requejo and Quinn, 1983; Requejo et al., 1984; 

Venkatesan and Kaplan, 1987a) and particulates (Albaiges et al., 1984b). Co-injection of 

two aliphatic fractions (Venkatesan, 1988), one isolated from Bransfield Strait sediments 

(Venkatesan and Kaplan, 1987a) and the other isolated from McMurdo Sound sediments 

(Venkatesan, 1988), containing a C25:2 GC RI 2080 and a C25:2 GC RI 2088 respectively, 

showed that the two alkenes were not the same and led the author to suggest that they 

were geometric isomers. 

These data tend to corroborate the earlier suggestion that several of the C25 HBI 

alkenes are geometric isomers and that some HBIs with three, four and five degrees of 

unsaturation may contain some double bonds in common positions, but this requires 

verification by fijll structural characterisation. 
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1.3 Diagenetic fate of C25 HBI hydrocarbons 

In common with many organic geochemical studies of biological marker 

compounds, considerable interest has been shown, not only in the origins and structures 

of the HBI hydrocarbons, but also in their long term geological fate. Although detailed 

depth related studies have been hampered by the incomplete structural characterisation of 

most of the HBI compounds, several studies have attempted to follow their fate in a 

general way, both in the sediments and water column (reviewed by Rowland and Robson, 

1990; Hird, 1992). 

Numerous studies have shown that high concentrations of C25 HBI alkenes are 

typically only present in surface sediments and decrease rapidly with increasing sediment 

depth (Farrington et a/., 1977; Barrick el a/., 1980; Volkman el a/., 1983). Few 

explanations have been given for the rapid removal of C25 alkenes from the hydrocarbon 

fraction. Laboratory based studies by Robson and Rowland (1988b) and Gough et a/., 

(1992) showed the parent alkane n and a mixture of related monoenes, were more 

resistant to aerobic biodegradation than //-alkanes, //-alkenes, and other branched alkanes 

of the same molecular weight, the alkane II being most resistant. Volkman ei a/., (1983) 

observed a slight increase in the concentration of //-alkanes with depth, in sharp contrast 

with profile of HBI alkenes, were concentrations decreased. This suggested that 

biodegradation was not a major mechanism in the removal of HBI compounds from the 

hydrocarbon fraction and Volkman e/ aL, (1983) postulated that the trends observed may 

be due to incorporation of HBIs into accreting humic substances. 

An alternative mechanism for the depletion of the HBI alkenes comes from 

analysis of related organic sulphur compounds (reviewed by Sinninghe Damste and de 
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Leeuw. 1990; Kohnen et a/., 1992). Sinninghe Damste et al., (1989b) proposed that 

sulphur is abiotically incorporated into a variety of unsaturated lipid precursors, including 

HBIs, during the early stages of diagenesis. This sulphur enrichment would remove the 

labile fijnctionalised precursors from the geochemical record, while still preserving their 

carbon skeletons and information on the sites of their functionality. This could be 

significant for HBI alkenes, as it suggests that double bond positions might be preserved 

through the incorporation of sedimentary sulphur into the structures. Additionally, the 

potential use of HBI alkenes as biomarkers would depend not only on a rigorous 

determination of their structures, but also for related organic sulphur compounds and an 

understanding of the relevant diagenetic mechanisms. 
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1.4 Summary 

• C25 HBI alkenes are widely distributed, and often abundant, natural hydrocarbons 

found in coastal marine sediments across the globe. 

• A wide body of evidence suggests the C25 compounds are biogenic in origin, and 

one common diatom species, Haslea ostrearia is known to produce triene, tetraene and 

pentaene HBIs in culture. Other diatoms (> 50 spp.) have been shown to not produce 

them. 

• The parent alkane structures I , II & III have been proved by synthesis, but only a 

few of the double bond positions have been established in the alkenes, comprising several 

monoenes and a diene ( IV - VHI) . 

• Of the C25 HBI alkenes reported (Table 1.1), only fourteen of these are dominant 

in the marine environment (Table 1.2). 

• Mass spectral and AGC RI (Table 1.2) data for some of the alkenes suggests that 

they may be structurally related in the geometry and location of the double bonds. 

• HBI alkenes with two or more double bonds appear to be rapidly removed from 

the hydrocarbon fraction of most sediments, possibly due to the incorporation of sulphur. 
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• HBI compounds, both as hydrocarbons and S-containing analogues, may prove 

useful environmental indicators once the exact structures have been established. 



CHAPTER TWO 

Investigations into the sedimentary occurrence and biological sources of C25 

HBI hydrocarbons 

This chapter describes the distribution of C25 f^Bl hydrocarbons in recent 

estuarine sediments. The temporal distribution of HBI hydrocarbons and 

carotenoid biomarkers in sediments is reported and the implications discussed. 

The results suggest that diatoms are a source of the sedimentary HBI 

hydrocarbons. 



2.1 Introduction 

Ideally, before HBI alkenes are applied as environmental and/or 

palaeoenvironmental indicators, their biological sources should be established. Prior to 

the recent report of C25 HBIs in the common coastal diatom Haslea ostrearia (Volkman 

et al., 1994), the origins of these compounds had remained obscure, with numerous 

authors tentatively suggesting diatomaceous or bacterial sources (e.g. Barrick and 

Hedges, 1981; Volkman et al., 1983; Rowland and Robson, 1990). In an attempt to 

establish the temporal variations of HBIs in sediments and thereby to establish possible 

biological sources, Hird and Rowland (1995) examined the concentrations of HBIs in 

sediments of the Tamar estuary, at monthly intervals throughout 1990. C25 HBI alkenes 

with two to five double bonds were present at various times of the year and the 

concentrations of these co-varied with the corresponding C20 HBI alkane and monoene 

concentrations. However the concentrations of HBI alkenes did not co-vary directly with 

those of another well known biochemical produced by diatoms (viz. the alkene, //-C2i:c, 

heneicosahexaene), but maximum concentrations preceded those of //-C2i:6by 1-2 months 

at times in 1990. The authors suggested that this may be due to production of HBIs by 

diatoms, such as Haslea ostrearia, earlier in their growth phase than production of n-

C2i:6, but they also acknowledged the possibility that HBIs were produced by diatoms 

other than those, such as Haslea ostrearia, which produced //-C2i:6. Obviously then, 

fijrther research is needed to investigate these possibilities. 

Although //-C2i:6 is produced by many diatoms, including Haslea ostrearia, it 

does not necessarily reflect total diatom population growth throughout the year. To 
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establish a less ambiguous link with diatom populations, additional and perhaps better, 

diatom markers are required. Carotenoids are likely candidates for this purpose since to 

date, over 500 carotenoid pigments have been reported in the marine environment. 

Interest in using carotenoids as chemotaxonomic indicators has resulted in a systematic 

and thorough investigation of the carotenoids of most major classes of marine organisms 

(e.g. Jeffrey, 1976; Liaaen-Jensen, 1978; 1979; Jeffrey and Hallegraeff 1987; Barlow et 

a/., 1993a). Indeed, all marine phytoplankton, many bacteria, fungi, zooplankton, and 

higher heterotrophs synthesise characteristic suites of pigments which can serve as 

biomarkers. These carotenoids of\en incorporate unique structural components which 

allow assignment of the source organism at the genus or family level of taxonomic 

classification (Table 2.1). 

The marked increase in the use of photosynlhetic pigments as markers for 

identifying different algal classes in the marine environment is mainly attributable to 

advances in analytical techniques, particularly the development of H P L C (reviewed by 

Roy, 1987; Wright ef al., 1991) which has replaced two-dimensional thin-layer 

chromatography (Jeffrey, 1974) as the method of choice for routine screening of samples. 

Pigment chromatography has proven especially valuable for identifying contributions from 

the nanoplankton. For example, the presence of green algae in marine waters was 

suggested from the identification of chlorophyll b (Jeffrey, 1976; Gieskes et ai, 1978; 

Klein and Soumia, 1987) and Cryptophytes were identified from the presence of 

alloxanthin (Klein and Soumia, 1987). 

Although marker pigments have been used to provide qualitative descriptions of 

phytoplankton communities (Hallegraeff, 1981; Gieskes and Kraay, 1984, 1986; Jeffrey 
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Table 2.1 Summary of major signature pigments for algal types in the ocean (adapted from Wright et al1991). 

Pigment Algal type Reference 

Chlorophyll a All photosynthetic microalgae, except prochlorophytes U 2 

Chlorophyll b Chlorophytes, prasinophytes, euglenophytes, prochlorophytes 1,2 

Chlorophyll c family Chromophyte algae 3, 18 

C\ Most diatoms, some prymnesiophytes, some chysophytes 3,4,5 

C 2 Most marine chromophyte algae (except some chysphytes) 3,4,5 

Some prymnesiophytes, chrysophytes, diatoms 3,6,7 

Fucoxanthin Diatoms, some prymnesiophytes, chrysophytes, a few raphidophytes 1,8, 18 

19'-hexanoyloxyfTjcoxanthin Prymnesiophytes 7, 8, 9,10,18 

19'-butanoyloxyfijcoxanthin Prymnesiophytes and chrysophytes 7, 8, 9,10,18 

Peridinin Most photosynthetic dinoflagellates 11, 12, 18 

Zeaxantin Cyanobacteria (blue-green algae), prochlorophytes 13, 14, 18 

Fucoxanthin and Violaxanthin Some chrysophytes 8, 15 

AJloxanthin Cryptomonads 16,18 

Prasinoxantin Some prasinophytes 17,21 

Lutein Green algae (chlorophytes and some prasinophytes) 1, 13 

References: I, Jeffrey, (1974); 2, Chisholm ei A / . , (1988); 3, Jeffrey, (1989); 4, Stauber et a / . , (1988); 5, Andersen and Mulkey, (1983); 

6, Jeffrey and Wright, (1987); 7, Vesk and Jeffrey, (1987); 8, Bjomland, (1987); 9, Wright and Jeffrey, (1987); 10, Bjomland e/a/. , (1989); 

11, Jeffrey et ai, (1975); 12, Johansen etal.,{\974); 13, Guillard a / ( 1 9 8 5 ) ; 14, Gieskes g/ a/ . , (1988); 15, Withers g/n/., (1981); 

16, Pennington g/g/., (1985); 17, Fosse/Q / . , (1984); 18, Barlow g/a/., (1993). 



and Hallegraeff, 1980, 1987; Wright, 1987), it is only recently that there have been 

attempts to estimate the quantitative contribution to biomass of algal groups from the 

proportions of marker pigments. Gieskes et al., (1988) used H P L C analysis of carotenoid 

and chlorophyll pigments to estimate the abundances of algal groups in the Banda Sea, 

near Indonesia. They calculated the contribution of each algal class to total Chi a using 

multiple linear regression. This technique makes no assumptions about the Chi a I marker 

pigment ratios in particular algal groups, other than that they are constant in each sample 

group. This procedure was shown to work best with a large data set and the analysis was 

restricted to the major pigments. The contributions of minor groups can be lost in the 

variance of the data and the technique fails when the concentrations of all pigments co-

vary, which can be a fairiy common situation, for example, when several types of algae 

respond to a localised nutrient enrichment. The most popular current approach is rather 

to assume that certain Chi a I marker pigment ratios apply to each of the algal groups and 

to use these directly to calculate the contribution of Chi a from each group. This method 

uses more of the marker pigments, including minor components, and allows multiple 

contributions of a particular pigment to be included and quantified. This technique has 

been applied successfijlly in numerous studies of the marine environment (e.g. Gieskes et 

o/., 1988; Roy, 1989; Wright et a/., 1990; Bidigare et ai, 1990b; Bariow et al, 1990, 

1993a, 1993b, 1995; Latasa, 1992). Some pigments are produced by more than one algal 

class and this must be taken into consideration. Most diatoms have very similar pigment 

compositions, and Stauber and Jeffrey (1988) analysed 51 diatom species and found that 

all but one contained fucoxanthin, diadinoxanthin and diatoxanthin. A few 

prymnesiophytes, chrysophytes and raphidophytes are also known to produce fijcoxanthin 
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(Arpin et a/., 1976; Wright and Jeffrey, 1987). However, Everitt et a/., (1990) and 

Barlow et a/., (1993a) report that where diatoms are the major constituents of 

phytoplankton communities (as in the Tamar estuary) it is possible to use fucoxanthin as a 

direct marker for diatoms. Similarly 19*-hexanoyloxyfucoxanthin is a marker for 

prymnesiophytes, since only one diatom and a few di no flagellates are known to produce 

this pigment (Vesk and Jeffrey, 1987; Wright and Jeffrey, 1987). Chlorophyll b was 

thought to be an accurate marker for green algae (Chlorophyceae and Prasinophyceae; 

e.g. Jeffrey, 1976), but prokaryotic prochlorophytes are now recognised as significant 

contributors (Gieskes et a/., 1988). However, it is even possible to distinguish between 

these two sources since prochlorophytes also contain high concentrations of zeaxanthin 

(Chisholmc'/a/., 1988). 

Hence, many of the sources of organic matter in the marine water column can be 

identified to a high degree of specificity from a knowledge of the carotenoid distributions. 

In a few cases this approach has been used to assign organic inputs to young sediments 

(e.g. Repeta and Simpson, 1991), but carotenoids are labile compounds and undergo a 

variety of transformations in sediments and in laboratory procedures, particulariy if care is 

not taken with their isolation and analysis (Repeta and Gagosian, 1981; 1984; 1987). 

Such transformations may have the effect of obscuring or complicating the original 

pigment distributions and may also influence the extractability of the carotenoids. 

Therefore in the current study, the extractability of carotenoids from recent sediments in 

the Tamar estuary was investigated and suitable analytical and sampling methods for the 

labile carotenoids developed. The multiple carotenoid approach (e.g. Bariow et ai, 1995) 

was then applied to marker pigment distributions in the Tamar estuary during 1993/4 and 
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these compared to concentrations of HBIs and other biochemicals produced by diatoms 

in a study similar to that of Hird and Rowland (1995) but with increased numbers of 

samples collected during periods of diatom blooms. The use of carotenoid pigments as 

markers for algae also allowed the variation of HBIs with other algal classes to be 

investigated. 

2.2 Results and Discussion 

2.2.1 Environmental setting of Tamar estuary 

Surface (0-1 cm) sediment samples were collected from St. Johns Lake (Tamar 

estuary), located in south-west England, (Figure 2.1). This location was primarily chosen 

due to the abundant and consistent production of HBIs (Robson, 1987; Hird and 

Rowland, 1995), the very low input of anthropogenic organic matter (Robson, 1987; 

Hird, 1992) and also because its physical, chemical and biological processes are well 

documented (e.g. Morris ei al., 1978; 1981; 1982; Loring et a/., 1982; 1985; Reeves and 

Preston, 1989). It is characterised by extensive mud flats, with tidal water depths reaching 

4-5 m and water temperatures varying between -20**C in August to -4^*0 in February 

(Morris et a/., 1982). The intertidal sediments are chemically homogenous and generally 

black in colour but the latter are overlain by a thin light-brown oxidised layer (-2-5 mm). 

The sediments are relatively stable with an annual sedimentation rate o f - 1 cm (Clifton 

and Hamilton, 1979), although small perturbations of the uppermost 1 cm of the sediment 

column occur in response to tidal oscillations (Bale et al., 1985). 
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Figure 2.1 Map of Tamar estuary showing location of sediment sampling site at St. Johns 
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2.2.2 Extractability of carotenoid pigments from Tamar sediments 

The complex mixtures of carotenoids found in most marine environments and the 

lability of these compounds in sediments (Repeta and Gagosian, 1981; 1984; 1987) can 

make their quantitative determination in sediments very difficult (Wright etal., 1991). To 

date, little or no research has been published on the extractability and recovery of 

different pigments from sediments. Jeffrey et a/., (1995) have reviewed the various 

solvent systems applied to extraction of pigments from algae in a magtmm opus of 

carotenoid chemistry which is soon to be published, but such data do not necessarily 

relate to the efficiency of extraction of carotenoids from sediments. In the absence of such 

data a limited number of experiments were conducted in the present study to ascertain 

whether selectivity in recoveries of carotenoid pigments of different algal classes could be 

expected. Obviously such selectivity might negate or restrict the use of carotenoids as 

quantitative markers of algal inputs to sediments. 

Two clays (montmorillonite and kaolinite, 10 g each, >99.8% purity; Aldrich 

Chemicals) and a pre-extracted Tamar sediment, (repeated Soxhlet extraction, D C M / 

MeOH, until no extractable organic matter remained, checked by G C and UV-Vis. 

spectroscopy), were spiked with equal amounts (-1 mg) of three carotenoids and 

chlorophyll a, (canthaxanthin, bixin, P-carotene and chlorophyll a, >99% purity, Natural 

Products). These carotenoids were chosen on the basis that they have very different 

polarities (Fig 2.2) and are available commercially in pure state. Whilst these carotenoids 

are not all found in algae, most algal carotenoids are not available in pure form in large 

quantities and are therefore not very suitable for method development. 
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Figure 2.2 Structures of carotenoids 

Fucoxanthin 

OH ^-

HO2C 

Canthaxanthin 

Bixin (9Z)-rorm 

P-Carotene 

C O 2 C H : 

CO2CH3 

The spiked clays and sediments were extracted, (90% acetone / 10% MeOH, 

ultrasonication 15 minutes, repeated xlO), by the method of Barlow e/a/., (1990) and the 

results are shown in Table 2.2 (samples analysed via UV/vis spectroscopy). 
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Table 2.2 Recovery of carotenoids for extractability experiments, 

(values indicate the percentage of each carotenoid extracted, n=l). 

Pigment Montmorillonite Kaolinite Sediment (Tamar) 

Canthaxanthin 21 29 25 
Bixin 29 26 32 

P-Carotene 29 37 23 
Chlorophyll a 31 34 27 

Whilst recoveries were low 30%) there was no significant preferential extraction of 

any of the carotenoids, despite the differences in their chemistries. Thus the suggestion 

that the selectivity of the extraction might negate the use of carotenoids as algal 

biomarkers in sediments (Bariow, personal communication) appears to be groundless, at 

least judging from these experiments, for these minerals and sediments. 

2.2.3. Phytoplankton and HBI distributions at St. Johns Lake, Tamar estuary 

Forty-six pigments and pigment degradation products, were extracted (using the 

validated method described in 2.2.2), resolved and measured ( H P L C - U V / fluorescence) 

in sediments from the Tamar estuary collected during 1993 / 1994. Sediment samples 

were packed in dry ice at the sampling site for transportation to laboratory and then 

stored in liquid nitrogen prior to analysis. These procedures greatly reduced degradation 

of the pigments between collection and analysis, as reflected by the low abundance of 

degradation products such as c/5-carotenoids, 5,8-epoxides, and phaeopigments (Figure 
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2.3). Major pigments were identified by their relative retention times (cf. Barlow et a/., 

1993) and minor peaks in the chromatograms were not assigned (Figure 2.4). 

The sediments were dominated by seven major pigments, indicative of the relative 

composition of the major classes of algae. The estimated contributions of each algal class 

to total Chi a provide an indication of their relative contributions to total algal biomass 

and were calculated by multiplying concentrations of marker pigments by an appropriate 

Chi a I pigment ratio (Table 2.3), as advocated by numerous authors (e.g. Gieskes et a/., 

1988; Roy, 1989; Wright g/a/., 1990; Bidigare g/a/., 1990b; Barlow g/a/., 1990, 1993a, 

1993b, 1995;Latasa, 1992). 

Table 2.3 Marker pigment ratios used to estimate the contribution of individual 

phytoplankton classes to total chlorophyll a from carotenoid concentrations 

Class Pigment ratio Ratio Reference 

Diatoms Chi a : flic 1.24 1 
Dinoflagellates Chi a : pdn 2.58 1 
Cryptomonads Chi a : all 2.01 2 
Green algae Chi a : Chi b 1.13 1 

zea : Chi b 0.019 3 
Prochlorophytes Chi b : Chi a 0.93 4 

zea : Chi b 0.16 4 
Cyanobacteria Chi a : zea 1.71 2 
Prymnesiophytes Chi a : hex 0.69 1 

Chi, chlorophyll; flic, fucoxanthin; all, alloxanthin; pdn, peridinin; 
zea, zeaxanthin; hex, 19'-hexanoyloxyfucoxanthin. 
References : (1) Barlow et a/., (1993); (2) Hager and Stransky (1970); (3) Wright 
and Jeffery (1987); (4) Chisholm et a/.. (1988) 

27 



Figure 2.3 Representative HPLC chromatogram (fluoresence, 405 nm) of phaeopigments 
in Tamar sediments 

r igure 2.4 Representative H P L C chromatogram (absorbance, 436 nm) of carotenoids in 
Tamar sediments 
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The pigment biomarker data (Table 2.4) indicates that there are variations in algal 

community composition and total biomass in the Tamar estuary at St. Johns Lake during 

the year. Diatoms are major components of the phytoplankton throughout the year (29-

58% of total biomass), whilst prymnesiophytes, green algae, and cryptomonads (each 

algal class ranging between 5-25% of total biomass), are important secondary 

components of the community. Cyanobacteria, prochlorophytes and dinoflagellates all 

comprise below 6%, reflecting relatively small contributions to the total biomass. 

The concentrations of HBI isomers in Tamar sediments for 1994 are listed iu 

Table 2.5. Figure 2.5 shows a gas chromatogram of the 'aliphatic' hydrocarbon extract 

from St. Johns Lake. Tliis is similar to those presented by both Robson and Rowland 

(1986) and Hird (1992). The major chromatographic peaks of interest elute between G C 

R l 2000-2200. 

Figure 2.5 Gas chromatogram of the 'aliphatic' hydrocarbons isolated from sediments at 
St. Johns Lake 

C.s HBIs 

IS 

[ill] 

n-alkanes 
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Table 2.4 Concentrations of pigments in Tamar sediments, for 1993 / 1994 (ng/g dry \vt) 

Signature pigment Fucoxanthin Peridinin 19'-hexano 19'-butano Alloxanthin Zeaxanthin Chlb Cilia 
Date 
15.09.93 495.09 11.33 353.57 70.71 61.82 431.67 257.75 1189.62 
23.10.93 403.23 7.41 105.99 13.44 67.5 263.64 192.44 1238.12 
28.11.93 807.24 49.81 403.62 44.84 50.79 668.9 404.91 2170.79 
19.12.93 483.59 46.52 176.4 69.87 76.38 395.25 238.17 1706,4 
13.01.94 477.09 39.01 357.21 83.26 128.25 157.24 193.21 1510.56 
17.02,94 433,63 37.99 213.12 68.41 90.48 309.43 268.79 1829.38 
16.03.94 930.24 31.8 199.59 20.66 107.62 761.98 426.05 2358.61 
11.04.94 1074.19 21.86 294.3 143.22 143.1 418.14 451.26 2282.15 
07.05.94 1240.52 20.65 215.19 84.58 343.85 497.57 339.21 3163.62 
22.05.94 1165.33 25.06 248.32 74.63 285.85 368.08 303,82 3282.87 
05.06.94 911.12 54.05 260.62 24.96 192.78 245.79 337.39 2772.44 
22.06.94 920.9 61.66 396.12 95.87 135.25 323.43 378.56 2739.36 
02.07.94 1159.64 17.97 511.8 110.96 88.28 296.13 271.39 2754.77 
19.07.94 1433.29 32.46 587.03 122.64 132.88 398.13 336.5 2846.97 
28.07.94 1602.15 38.49 572.75 111.38 96.2 346,37 348.18 3368.84 
08.08.94 1698.27 35.71 585.83 141,52 106.73 549.79 587.71 3595.49 
23.08.94 1489.03 49.78 508.26 126.22 84.31 468.17 492.94 3163.19 
31.08.94 1089.11 33.34 406.02 118.8 91.97 429.76 313.99 2191.23 

Key : 19'-hexano, 19-hexanoyloxyfucoxantliin; 19'-butano, 19'-butanoyloxyfucoxanthin; Chi b, chlorophyll b; Chi a, chlorophyll a 



Table 2.5 Concentrations of individual HBI isomers in Tamar sediments, for 1993 / 1994 (ng/g dry wt) 

C25:2(2069) C25:2(2079) C25:3 (2044) C25:3 (2091) C25:3 (2107) C25:4 (2128) C25:4 (2175) C25:5 (2128) 

Date 
15.09.93 155 151 200 788 232 90 0 164 

23.10.93 226 195 261 880 177 0 0 941 

28.11.93 76 25 240 415 60 0 0 1134 

19.12.93 111 63 149 527 73 195 82 160 

13.01.94 0 76 56 449 53 192 148 0 

17.02.94 26 159 63 946 253 0 353 0 

16.03.94 565 211 172 383 288 330 384 89 

11.04,94 93 80 361 779 29 103 57 0 

07.05.94 64 371 89 1060 219 39 0 0 

22.05.94 124 536 175 1226 182 161 0 0 

05.06.94 285 357 194 . 1763 333 422 96 140 

22.06.94 196 549 390 2219 460 506 81 54 

02.07.94 264 102 487 1597 1245 96 0 209 

19.07.94 193 64 236 1285 728 150 0 294 

28.07.94 75 106 159 1252 309 16 37 238 

08.08.94 188 229 451 677 108 0 0 43 

23.08.94 136 219 290 85 365 78 92 117 

31.08.94 172 135 448 105 291 153 0 130 



The relationship between the diatom biomarker flicoxanthin, the relative 

abundance of diatoms (as indicated by the ratio of fucoxanthin to ChJ a) and the HBI 

concentrations , are shown in Figure 2.6. 

Figure 2.6 Variation of HBI concentrations, fijcoxanthin, and % diatoms 
= ( i„ T a ^ ^ , sediments in 1993/1994. 

Data points indicate collection date for sediments. Table 2.3 
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There appears to be a strong negative correlation between Z H B I concentrations and 

fucoxanthin. The HBI concentration is at a minimum during the spring (April) and 

summer (August) when fucoxanthin concentrations maximise, and HBI maxima during 

June and October coincide with flicoxanthin minima. 

The hydrocarbon, /7-heneicosahexaene (//-C2i:6), is abundant in many algae, 

including marine phytoplankton, benthic and epipelic algae (Lee and Loeblich, 1977). It is 
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produced by many diatoms, including those species which produce C25 and C30 HBIs 

(Nichols et a/., 1988; Volkman et a/., 1994). The variation in /;-C2i:6, I H B I s and 

fijcoxanthin concentrations is shown in Fig 2.7. The maximum HBI concentration (June) 

precedes the //-C2i:6 maxima by 4 weeks and //-C2i:6, in turn, precedes the flicoxanthin 

maxima by - 3 weeks. The other, less marked HBI maxima (March and October), show 

less clear and consistent ordering of the peaks. 

These data are consistent with the findings of Hird and Rowland, (1995), who 

reported that in 1990 C20 and C25 HBI concentrations in the Tamar sediments maximised 

1-2 months before //-C2i:6 maxima, (Figure 2.8). 

These strong negative correlations between HBIs, //-C2i:6 (1990 and 1994) and 

fijcoxanthin (1994) suggest that: 

1. the major //-C2i:6 and fucoxanthin-producing diatoms do not produce HBIs, 

2. those diatoms producing HBIs are at maximum growth eariier than the main 

diatom population or, 

3. HBIs are produced eariier in the growth cycles of the diatoms than /7-C2i:6 and 

flicoxanthin. 

All these factors probably contribute. The suggestion that HBI-producing diatoms 

are maximising eariier than the main diatom population is supported by the fact that all 

the HBI maxima generally precede the //-C2i:6 and flicoxanthin maxima by similar periods. 

The growth phase dependence is supported by the observation that in laboratory growth 

phase experiments (Chapter 4) various biochemicals, including //-C2i:6 and carotenoids are 

indeed produced by the diatoms, such as Haslea ostreaha, at different growth stages. 
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Figure 2.7 Variation of HBI concentrations with % diatoms and n- C2i;6 in Tamar estuary sediments 
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Figure 2.8 Variation of HBI and n-C^v,^ concentrations in Tamar sediments (Hird and Rowland, 
1995), 
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Of course, it is also possible that other organisms are producing HBIs in the 

sediments, but there has been no report of these compounds in laboratory cultures of 

various algal classes (e.g. Nichols et a/., 1988; Hird, 1992) and furthermore, when the 

concentrations of ZHBIs are plotted against the carotenoids indicative of other algal 

classes found in the Tamar estuary (Figures 2.9, 2.10 and 2.11), there appears to be little 

or no correlation with any of these classes, suggesting that for this location, diatoms are 

the main producer of HBI alkenes. 
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Figure 2.9 Variation of cryptomonads and green algae with HBIs (ref Table 2.2 for chl a / carotenoid 
ratios) 
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Figure 2.10 Variation of prymnesiophyies and cyanobacteria with HBIs (ref Table 2.2 for chl a / 
carotenoid ratios) 
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Figure 2.11 Variation of dinoflagellates and prochlorophytes with HBIs (ref Table 2.2 for chl a / 
carotenoid ratios) 
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2.3 Summary 

• When sufficient care is taken over sampling and preservation conditions, the 

relative concentrations of carotenoid pigments in surficial sediments can be quantitatively 

determined and the ratios used to establish algal sources. There is no evidence of 

preferential extraction of carotenoids of any one algal class under the conditions 

employed herein. 

• The concentrations of C25 HBI alkenes, in Tamar sediments in 1994, exhibited 

strong negative correlations with those of //-C2i:6 and fijcoxanthin. This is consistent with 

the observations of other workers for n-C2\.6 and HBIs in 1990. 

• The strong inverse variance suggests to the present author that HBI 

concentrations are nonetheless related to diatom populations in the Tamar estuary, since 

the maxima in concentrations of the various diatom markers are offset by consistent 

intervals of 2 - 4 (//-C2i:6) and 6 - 7 (fijcoxanthin) weeks. 

• The results suggest that either the HBI producing diatoms are maximising earlier 

than the main diatom population, and/or that HBIs are produced earlier in the growth 

cycle of diatoms than n-C2i:6 and fijcoxanthin. 

• At this location the concentration of carotenoids indicative of algae other than 

diatoms did not strongly covary (or inversely vary) with the concentration of HBIs. 
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CHAPTER T H R E E 

Characterisation of highly branched isoprenoid polyenes 

This chapter details the first unambiguous structural assignments of a suite of 

HBI polyenes, dienes to hexaenes. Has lea ostrearia and Caspian Sea sediments 

provided sufficient quantities of isolate for six different HBI alkenes to be 

structurally assigned via nuclear magnetic resonance spectroscopy and 

derivatisation techniques (epoxidation and ozonolysis). Epoxidation proved a 

valuable tool in the structural elucidation of HBI compounds, particularly for 

micro-scale reactions. 



3.1 Introduction 

The C2S highly branched isoprenoid (HBI) hydrocarbons discussed in this thesis 

with carbon skeleton 11, commonly occur as polyenes, with two to five double bonds 

(Table 1.1). 

I I 

However, to date their structural elucidation has been confined to one monoene, 

identified by ozonolysis (V, Dunlop and JefTeries, 1985; Hird, 1992) and one diene (YD), 

by Yruela ei al., 1990, who used epoxide formation with w-chloroperoxybenzoic acid to 

tentatively assign the double bond positions. 

V V I I 

The epoxide derivatisation process for VK succeeded where alkylthiolation, 

methoxymercuration and treatment with osmium tetroxide have failed in other studies 

(reviewed by Robson, 1987; Rowland and Robson, 1990; Nichols etal., 1988). 
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For the majority of HBI alkenes, rigorous spectroscopic characterisation has not 

been possible since these hydrocarbons generally occur at low concentrations in complex 

mixtures in sediments. The low natural abundances have precluded isolation in sufficient 

quantities for detailed analysis by *H and NMR spectroscopy. Taking a typical 

example, the maximum concentration of €75:2 2069, recorded in Tamar sediments for 

1993/1994, was 285 ng g* dry weight. A yield of --5.0 mg of isolate (amount required for 

complete NMR analysis) would require extraction of a minimum of 20 kg of dry surface 

sediment. Therefore the utility of epoxidation and ozonolysis as methods for assignment 

of double bond positions, in alkenes isolated from sediments in low quantities ( - 100 fig), 

becomes apparent. Analysis via GC and GC-MS allows these derivatisation experiments 

to be conducted and analysed on microgram quantities of isolate, particularly as the 

reactions do not need to be quantitative. 

In the present chapter, the double bond positions in six C25 HBI alkenes are 

reported. Five HBI compounds were isolated from large scale cultures of the diatom 

Haslea ostrearia and one sedimentary alkene was isolated from Caspian Sea sediments. 

The unusually high concentrations of a C25 diene (GC RI 2079) (< 60 |ag g'* dry v^) 

found in the Caspian Sea sediments provided sufficient quantities of isolate (~5 mg) for a 

full characterisation of the structure via NMR spectroscopy. 

Since Haslea ostrearia biosynthesises a suite of C25 HBI alkenes it provided a 

unique source of these compounds for characterisation. With concentrations as high as 

0.46 mg g"* dry wt (C25:4 2144) there was a substantial reduction in the quantity of 

material required for extraction. Bulk cultures (40 g and 90 g wet wt.) were kindly 

provided by Prof J-M Robert, at the research institute ISOMer, University of Nantes. 
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The two cultures contained different suites of HBI alkenes; one cultured during 

September 1988, contained €25=5 (GC RI 2201) and €25:6 (GC RI 2248) and the other a 

growth phase experiment (see chapter 4 for further details) contained C25:3 (GC RI 2106), 

C25:4 (GC RI 2144) and C25:5 (GC RI 2191). These *batch* cultures ofHaslea ostrearia 

contained sufficient quantities of five different HBI alkenes for isolation and 

characterisation by NMR spectroscopy and epoxide derivatisation. 

3.1.1 General procedure for the characterisation of HBI isolates 

The general protocol used for the flill characterisation of isolated C25 HBI alkenes 

is illustrated in Figure 3.1. Preliminary analysis (GC & GC-MS) of the aliphatic fraction 

(or total hexane extract, THE, for algae) indicated the number of HBI alkenes, the 

number of double bonds in each alkene and an indication of the specific alkene isomers 

present from the retention index (GC RI). These HBIs were then isolated (Section 5.4), 

and purity determined and identity checked by GC & GC-MS. 

Confirmation of the highly branched isoprenoid parent structure was achieved by 

hydrogenation (Pt02 . H2O) to the alkane (11), followed by GC-MS analysis and co-

injection with synthetic FI (Robson, 1987). Mass spectrometry usually revealed the 

molecular ion of the product of hydrogenated alkenes as either m/z 350 (^"-2), or M* 

352. The m/z 350 ion has been reported by numerous authors (reviewed by Rowland and 

Robson, 1990; Hird, 1992; Summons et ai, 1993) and may be an ion source-dependent 

artefact, as suggested by Robson and Rowland (1988). 
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Figure 3.1 Structural determination of HBI alkene isolates 
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3.1.2 Characterisation methods 

3.1.2.1 Microscale ozonolysis 

Historically, ozonolysis has been found to be a particularly useful technique for 

the location of double bond positions of organic compounds (e.g. Davison and Dutton, 

1966; Nickell and Privett, 1966). Its development as a microchemical technique owes 

much to the work of Beroza and Bierl (1966, 1967). The ozone generator and equipment 

used during the present study was similar to that described by Beroza and Bierl (1969) 

and the apparatus is illustrated in Figure 3.2. 

Although a large amount of work has been accomplished concerning the 

mechanism of ozonization (formation of ozonides: see review by Criegee, 1975; March, 

1985) not all the details are known. However, it has been established that when 

compounds containing double bonds are treated with ozone, they are converted to 

compounds called ozonides. 

R 

+ 0 3 R , ^ P - 0 s / R 3 

R2' R4 R2 O R4 

R4 
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Figure 3.2 Apparatus for micro-scale ozonolysis 
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These compounds are unstable and decompose to give two moles of aldehyde, two moles 

of ketone or one mole of each, depending on the groups attached to the alkene. 

The method used in this study was that of Hird et a/., (1992) and the technique 

proved successful in the structural elucidation of a diene (GC RI 2079). The main 

drawback to this technique was the very low yield of products, (for example, C25:2 GC RI 

2079 yielded oxo aldehyde products of only 4.8%). The methodology applied in this 

study did not involve an oxygen acceptor {e.g. triphenylphosphine, PhjP). It is the authors 

opinion that exclusion of PhjP from the reaction was responsible for the low yield of 

products and this is substantiated in a study by Summons et a/., (1993) who, with the 

addition of PhsP, gained a 62.5% yield of a oxo aldehyde after ozonolysis of a structurally 

similar C25 diene (VIM). Another drawback to this technique is the increasing number of 

fragments that would be produced with more unsaturated compounds. The volatility of 

some of these fragments would make analysis more difficult (see Section 3.3.1). 

3.1.2.2 Microscale conversion of alkenes to epoxides 

Perhaps the most common method for the epoxidation of alkenes is their reaction 

with peroxy acids (RCO3H), which is often referred to as the Prilezhaev reaction 

(Prilezhaev, 1909; Swern, 1949). This reaction does not require transition metal catalysis, 

and the yield of epoxide is often high. Several peroxy acids are commercially available, 

including peroxyformic, peroxybenzoic, trifluoroperoxyacetic, and meta-

chloroperoxybenzoic (w-CPBA) acids. w-Chloroperoxybenzoic acid was the reagent 
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used in the following experiments, as opposed to other peroxy acids which are highly 

reactive and decompose readily, whereas m-CPBA is stable, crystalline, and an easily 

handled material. Epoxide formation with w-CPBA has also been applied successfully to 

natural products (e.g. Bierl et ai, 1980), but more significantly to a C25 HBI diene 

(Yruelae/aA, 1990). 

The advantage of epoxide formation, when locating double bond positions, is that 

the reactions can be carried out on microgram quantitities of isolate and the products 

analysed directly via GC and GC-MS. As opposed to allylic cleavage of the alkenes, the 

epoxides have preferential cleavage alpha to the epoxy group. This produces identifiable 

fragments that indicate the position of the epoxy group and thus the position of the 

double bonds in the original compound, as shown below (Bierl et al., 1980). 

3-cleavagq a-cleava^ 

3.1.2.2.1 Mechanism of epoxide formation 

Although the processes of epoxide formation are not flilly understood, the 

reaction probably proceeds via a concerted mechanism (Bartlett, 1950; Carey, 1992) in 

which the alkene and the electrophilic oxygen co-ordinate, with concomitant explusion of 

the carboxylic acid and release of the epoxide (Figure 3.3). The geometry of the transition 
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state facilitates loss of the RCO2H by-product and also dictates a sy?i delivery of oxygen, 

without changing the geometry of the alkene. 

R 

R 

Figure 3.3 Probable reaction mechanism for epoxide formation (Carey, 1992) 

+ X o 

R R 

R 

\ / + RCO2 
0 

More highly substituted alkenes are electron rich and tend to react faster with the 

peroxy acid than do less substituted alkenes (Swern, 1947). According to Lewis, (1969) 

the relative rate of epoxidation increases with the nucleophilic character of the alkene: 

CH2=CH2 has a relative rate of 1, RCH=CH2 24, RCH=CHR 500, R2C=CH2 500, 

R2C=CHR 6500, and R2C=CR2 > 6500. I f a molecule contains two alkene moieties, the 

more highly substituted alkene is epoxidised faster. w-Chloroperoxybenzoic acid is a 

widely applied peroxyacid and has been shown to be as effective as much stronger peroxy 

acids, such as trifluoroperoxyacetic acid (Lewis, 1969). Even highly hindered alkenes can 

epoxidised with only a modicom of difficulty (Abruscato ei a/., 1972; Swindell ei a/., 

1986). 
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3.1.2.2.2 Method development for epoxidation reactions 

Having established that epoxide derivatisation of alkenes was a potential method 

for the location of double bond positions, the technique was first validated on a set of 

standard compounds. The //-alkenes (dodec-l-ene, tetradec-7-ene & octadec-l-ene) 

were primarily chosen as standards because their epoxide counterparts (1,2 

epoxydodecane, 7,8 epoxytetradecane & 1,2 epoxyoctadecane) were commercially 

available. 

+ m-CPBA 
O. 

This facilitated eariy method development as the reaction could be monitored (GC and 

GC-MS) to a known point of completion. The effects of peroxy acid concentration and 

time for reaction were optimised to give the highest yields of epoxide for the n-alkenes 

(>95%). The technique was then applied to a synthesised C 3 0 HBI monoene (Robson, 

1987) of known structure and again the reaction conditions optimised. Details of this are 

given in Appendix I . 

From the preliminary experiments it was found that changing the concentration of 

peroxy acid had little or no effect on the rate of reaction {m-CPBA was varied from 

equimolar to an excess of x60). More significantly, the complete formation of an epoxide, 
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was found to be strongly dependent on the length of time of the reaction. Although 

epoxide formation was observed after a few hours, it was found that the reactions could 

continue for as long as 96 hours before complete conversion of alkene to epoxide. Having 

successfully established the reaction conditions for standards the method was then applied 

to HBI isolates of unknown structure. 

3.1.2.3 Nuclear magnetic resonance (NMR) spectroscopy 

Nuclear magnetic resonance (NMR) spectroscopy is perhaps the most valuable 

spectroscopic technique available in organic chemistry. The information derived from ' H 

and '̂ C NMR spectroscopy is extraordinarily useful for structure determination, 

providing a *map' of the carbon-hydrogen framework. 

The interpreted data collected from NMR analysis is presented in tables and only 

salient spectroscopic features are illustrated for selected HBI alkenes in this chapter. All 

NMR spectra recorded are presented in Appendix I I . 

3.1.2.3.1 NMR experiments 

For an unambiguous structural assignment a combination of experimental 

techniques was applied to each isolate and the general protocol is illustrated in Figure 3.4. 

*H and NMR spectra provides the following information: 

• Number of NMR resonances. Each nonequivalent (*H, '^C) nucleus gives rise to a 

separate resonance, indicating the number of different environments in the molecule. 
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Figure 3.4 General protocol for structural assignment v/aNMR spectroscopy 
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• Chemical shifts. The exact position of an NMR resonance gives information 

relating to the chemical environment of a nucleus (*H, '^C). 

• Integration of N M R resonances ( 'H) . Electronic integrations of the area under a 

peak yields the number of ' H nuclei giving rise to a resonance. 

• Spin-spin splitting (*H). The splitting of resonances into multiplets by coupling of 

neighbouring nuclear spins provides information about the number and geometry of J 

coupled nuclei. 

• A DEPT experiment produces separate carbon sub-spectra for methyl, methylene 

and methine carbons. Quaternary carbons are absent from the spectra. 

Heteronuclear correlations: Allows individual *H-*^C connectivities to be made. 

These experiments 



3.2 Characterised C25 HBI alkenes 

All structural assignments relate to the numbering system as applied to the parent 

alkane shown below, Figure 3,5. 

Figure 3.5 Numbering scheme used for C23 HBI aikenes 

16 17 18 19 

3.2.1 C25:2 (GC RI 2079) IX, Belt et a/., (1994) 

2,6,10,14-tetramethyI-7-(3-methylpent-4-enyl)pentadec-5-ene 

Sufficient isolate ( - 5 mg) of IX was obtained from a bulk sediment extraction 

(Caspian Sea; Belt et a/.. 1994) for analysis via ' H and *̂ C NMR spectroscopy, epoxide 

derivatisation and ozonolysis. The double bond positions within the structure have been 

unambiguously assigned via NMR spectroscopy and additionally confirmed by 

derivatisation. 

I X 
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The C25 HBI (DC) exhibited a molecular ion IVT 348, indicating two degrees of 

unsaturation and the mass spectrum (Figure 3.7), shows characteristic P cleavage allylic 

to the double bonds with diagnostic fragment ions m/z 207, m/z 235, m/z 266 and m/z 

291. Mass spectrometry of the hydrogenated (Pt20.H20) alkene displayed a molecular 

ion yC 352, with the diagnostic ions m/z 210, m/z 238 and m/z 266. The alkane co-eluted 

(GC) with a synthesised C25 alkane 2,6,10,14-tetramethyl-7-(3-methylpentyl) pentadecane 

(Robson, 1987) on three different stationary phases (DBl , DB5 & DBWAX). 

3.2.1.1 Gzonolysis of €25:2 (GC RI 2079) 

Ozonolysis of the C25 diene yielded a Cis 0x0 aldehyde, which was identified by 

GC-MS (Figure 3.6). The mass spectrum exhibits a rvT 282, with diagnostic ions at m/z 

198 (with m/z 180 due to loss of H2O) and m/z 142, (with m/z I ! 4 due to loss of CO). 

The two other expected products (Ce ketone and formaldehyde) were not recorded by 

GC-MS. 

3.2.1.2 Epoxidation of C2S:2 (GC RI 2079) 

The reaction conditions that were applied to the standard compounds did not 

produce a Z>/.y-epoxide product, either by varying the concentration of /w-CPBA (up to a 

sixty fold excess) or over a prolonged period of time (168 hours). The reaction would not 

progress past the formation of a wo/70-epoxy monoene (identified by GC-MS) and it was 

the author's belief that one of the double bonds was probably located in a hindered 

position to the wz-CPBA. The reaction was then conducted at different temperatures 

(from 25°C - 80°C, increasing at 5°C increments) to monitor the effects of temperature 
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Figure 3.6 Mass spectrum of ozonolysis products of Cua GC RI 2079 
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on the reaction. The diene was successfully converted to a C25 to-epoxide, but only at 

reaction temperatures > 55°C. Above 55°C, A/5-epoxide formation was also accompanied 

by further reaction of the epoxide to yield unidentifiable compounds and the formation of 

an unresolved complex mixture. 

The reaction of the diene with m-CPBA commenced with the formation of a 

/7JO/70-epoxide after 6.5 hours (identified from ion m/z 43, after 6.5 hours) and formation 

of a ^>/\y-epoxide after 90 hours. The epoxides have mass spectral fragmentation pathways 

characterised by cleavage alpha to the epoxide ring and the mass spectrum of the bis-

epoxide (Figure 3.7) displays a 380, with particularly diagnostic ions m/z 43, m/z 239, 

m/z 253, m/z 281 and m/z 309. The ion m/z 43 can only be produced i f an epoxide is 

located in the C23-24 position and the second epoxide is confined to the C5-6 position by 

the diagnostic ions m/z 309 and m/z 253. It is clear from Figure 3.7 that the epoxides can 

be located readily via GC-MS and from this the original double bond positions located. 

3.2.1.3 NMR of C25:2 (GC RI 2079) 

The NMR data for the diene is presented in Table 3.1. The ' H spectrum consists 

of resonances associated with alkenic, allylic and alkyl protons. The most conspicuous of 

these are three sets of resonances at 6 5.65, 4.93 and 4.89, which arise from a vinyl (-

C2H3) fijnctionality (Figure 3.8). Given the established C25 isoprenoid skeleton, it is clear 

that this double bond must be located at C23-24. Proton H-23 appears as a low field 

seven line multiplet due to a trans coupling to H-24a (17 Hz), a cis coupling to H-24b 

(10 Hz) and an additional vicinal coupling to H-22 (8 Hz). Further confirmation of this 

double bond position was achieved by a decoupling experiment. Irradiation of H-22 (5 
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Figure 3.7 Mass spectrum of €25:2 GC RJ 2079 (top) and bis-epo^dc product (bottom) 
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Figure 3.8 AJkenic region of *H spectrum for Czs-.i GC RI 2079 (top) and the collapse of 
the seven line multiplet {H-23) to a doublet of doublets upon irradiation of H-22 (bottom) 
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Table 3.1 NMR specUoscopic data for C25:2 GC RI 2079, (Caspian Sea) 

^25:2 GC RI 2079 (DBI) 
Caspian Sea 

Purity 
Quantity 
Solvent 

>98% (by GC) 
5.0 mg 
CDCI3 

24b 24a 

Proton (*H) chemical shifts (multiplicities, integration) 

8(ppm) 

8(ppm) 

5(ppm) 

5(ppm) 

1 , 1 6 

0.88 (d, 6H) 

7 

1.80 (m, IH) 

1 8 

0.82 (d, 3H) 

24a 
4.93 (dd, IH) 

1-99 (q, 2H) 

15, 19 

0,85 (d, 6H) 

22 

2.08 (m, IH) 

24b 
4.89 (dd, IH) 

5.08 (t, IH) 

17 

1.42 (s, 3H) 

23 
5.65 (ddd, IH) 

25 
0.95 (s, 3H) 

Proton coupling constants 

J(Hz) 

J(Hz) 

J H ( 1 , 1 6 ) - H 2 J H 4 - H 5 

6 7 

JH23trans 
17 

JH23cis 
10 

J H 5 - H 9 JH(I5 , 19)-H14 J H I 8 - H 1 0 

7 6 6.5 

JH23vic JH24a - H24b JH25 - H22 

8 2 6.5 
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Table 3.1 cont. 

16 17 18 19 

^ JlO 12 Il4 

1 3 5 7 9 1 1 13 15 

\ 2 1 

I22 
23 

25 

24b 24a 

Carbon (^^C) chemical shifts 

1 2 4 5 6 
8(ppm) 22.6 27.9 25.5 126.3 135.3 

7 1 5 1 6 1 7 1 8 
8(ppm) 49.3 22.6 22.6 11.3 19.9 

1 9 22 23 2 4 25 

5(ppm) 22.6 37.8 145.0 112.3 20.5 

Not assigned 3, 8, 9, 10, 11, 12, 13 , 14, 2 0 & 2 1 

' H and *̂ C chemical shifts are in ppm using residual CHCI3 as an 
internal reference (7.25 and 77.0 ppm for *H and respectively). 
Numbering shown in displayed formulae. 
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2.08) resulted in the collapse of the seven line multiplet associated with H-23 to a doublet 

of doublets due to the H-24a (trans) and H-24b (cis) couplings (Figure 3 .8). 

3.2.2 C25:3 (GCRI2106)X 

2,10,14-lrimethyl-6-methylene-7-(3-methylpent-4-enyl)pentadec-9-ene 

6 mg of X was obtained from a bulk extraction ofHaslea ostrearia for *H and *̂ C 

NMR spectroscopy and epoxide derivatisation. The double bond positions within the 

structure have been unambiguously assigned via NMR spectroscopy and additionally 

confirmed by epoxide derivatisation. 

X 

The C25 triene (X) exhibits a molecular ion M" 346, indicating three degrees of 

unsaturation. The mass spectrum (Figure 3.9) shows characteristic p cleavage allylic to 

the double bonds with diagnostic fragment ions m/z 233, m/z 261, m/z 275, m/z 289 and 

m/z 331 (due to loss of CH3). Mass spectrometry of the hydrogenated (Pt20.H20) alkene 

displayed a molecular ion M " 350 (M-2), with the diagnostic ions m/z 210, m/z 238 and 
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m/z 266. The alkane co-eluted (GC) with a synthesised C23 alkane (Robson, 1987) on 

three different stationary phases (DBl , DB5 & DBWAX). 

3.2.2.1 Epoxidation of €35:3 (GC RI 2106) 

Reaction of the triene with /w-CPBA was conducted at 55°C, resulting in the 

formation of a /W^-epoxide (Figure 3 .9). A /wo//o-epoxide formed after 7 hours and a iris-

epoxide after 72 hours. The mass spectrum of the /m-epoxide displays a M" 394, with 

loss of CH3 (M-15, m/z 379). The presence of vinyl double bond is indicated by the 

diagnostic ion m/z 43, confining the epoxide to the C23-24 location. The second epoxide 

group is confined by ions m/z 309 and m/z 267 (C6-17) and the third by m/z 253 and m/z 

309 (C-9). As seen in Figure 3.9 structures of the epoxides (and hence original double 

bond positions) can clearly be inferred from mass spectrometry. 

3.2.2.2 NMR of C25:3 (GC RI 2106) 

The NMR data are presented in Table 3.2 and assignments relate to Figures 3.5 & 

3.10. The '̂ C and DEPT spectra (Figure 3.10) clearly illustrate the information that can 

be derived from the simplest of NMR experiments. The fully proton decoupled *̂ C 

spectrum shows a total of 25 resonances with 6 alkenic and 19 aliphatic type carbons. 

Analysis via the DEPT sequence reveals the presence of six methyl, eleven methylene, 

six methine and two quaternary carbons (C-6 and C-10). The observation of two 

methylene carbons in the alkenic region (5 108.6 & 5 112.3) confirms the presence of two 

double bonds in terminal positions (C-I7 and C-24). 
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Figure 3.9 Mass spectmm of Cis.j GC RI 2106 (top) and /m-epoxide product (bottom) 

A b u n d a n c e 
100 % i 56 

41 

69 

83 

95 

40 60 80 

26 

109 

r 
100 

289^ 

233 

123 
149 

135 163 177 192 

205 

120 140 

222 

261 

160 180 200 220 

247 

289 

275 

M 
346 

303 317 
I 1, ^ • 

240 260 280 300 320 340 

Sundance 
100 V ' 

71 

3$ 

40 

85 

99 113 

127 
183 

155 169 

80 100 120 140 160 

239 
197 

' ' I' ' • • ' 1 ' 
180 200 

267 

220 240 260 

295309 323 337 

280 300 120 340 360 

379 394 
- r - p r -
380 400 

61 



Figure 3.10 spectrum of €25:3 GC RI 2106 (top) and DEPT spectrum (bottom) 
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Table 3.2 NMR spectroscopic data for C25:3 GC RI 2106, Haslea ostrearia 

C25:3 GCRI2106(DBi) 

Haslea ostrearia 

Purity 
Quantity 
Solvent 

>98% (by GC) 
5.1 mg 
C D C I 3 

24b 24a 

Proton (*BI) chemical shifts (multiplicities, integration) 

8(ppm) 

8(ppm) 

8(ppm) 

5(ppm) 

1,16 

0.86 (d, 6H) 

9 
5.05 (t, IH) 

5,7,11 
1.88 (m, 5H) 

15,19 
0.86 (d, 6H) 

17b 18 
4.74 (br,d, IH) 1.56 (s,3H) 

24a 24b 
4.92 (br,d, IH) 4.88 (br, d, IH) 

8, 22 
2.02 (m, 3H) 

17a 

4.70 (br, s, IH) 

23 

5.67, 5.65* (ddd, IH) 

25 
0.95 (d, 3H) 

Proton coupling constants 

J(H2) 
1,16 
6.6 

9 
6.6 

15,19 
6.6 

63 



Table 3.2 cont. 

I7b 17a 
H H 

24b 24a 

Carbon ('^C) chemical shifts 

8(ppm) 

5(ppm) 

8(ppm) 

5(ppm) 

5(ppni) 

5(ppm) 

1 

22.6 

6 

152.5* 

11 

40.0 

16 

22.6 

21 

34.4 

2 

27.9 

7 

46.8 

12 

25.7 

17 

108.6* 
22 
38.0, 37.9* 

3 

39.0 
4 
25.6 

8 9 

32.9,32.8* 123.1 

13 

38.6 

18 

16.1 

14 
28.0 

19 

22.6 

33.7, 33.6* 

10 

135.6 

15 

22.6 

20 

30.8* 23 

145.0, 144.9* 

24 

112.4, 112.2* 
25 

20.4, 20.0* 

*H and chemical shifts are in ppm using residual CHCI3 as an 
internal reference (7 .25 and 77.0 ppm for ' H and respectively. 
Numbering shown in displayed formulae. 
Chemical shifts labelled * are due to the presence of diastereoisomers. 
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3.2.3 C25:4 (GCRI2I44) X I 

2,10,14-trimethyl-6-methylene-7-(3 -methylpent-4-enyl)pentadec-9,13-ene 

19 mg of X I was obtained from an extraction of Haslea ostrearia for and 

NMR spectroscopy and epoxide derivatisation. The double bond positions within the 

structure have been unambiguously assigned via NMR spectroscopy and additionally 

confirmed by derivatisation. 

X I 

The C25 tetraene X I exhibits a molecular ion 344, indicating four degrees of 

unsaturation, with diagnostic fragment ions m/z 259, m/z 275, m/z 287, m/z 301 and loss 

of CH3 to give m/z 329 (Figure 3.11). Mass spectrometry of the hydrogenated 

(Pt20.H20) alkene displayed the diagnostic ions m/z 210, m/z 238 and m/z 266, but no 

molecular ion was recorded. The alkane co-eluted (GC) with a synthesised C25 alkane 

(Robson, 1987) on three different stationary phases (DBl , DB5 & DBWAX). 
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3.2.3.1 Epoxidation of C25:4 ( G C RI 2144) 

Reaction of the tetraene with /w-CPBA was conducted at 55°C with the formation 

of a /e/ra/r/5-epoxide after 72 hours. The mass spectrum of the epoxide (Figure 3 . 1 1 ) 

displays a 408, with loss of CH3(M-15, m/z 393 ) and diagnostic ions m/z 43 , m/z 239, 

m/z 253, m/z 2 8 1 , m/z 309, m/z 323 and m/z 337. The position of the vinyl double bond is 

indicated by the diagnostic ion m/z 43, confining the epoxide to this location, C23-24 . 

The second epoxide group is confined by ions m/z 323 and m/z 281 ( C 6 - 1 7 ) and the third 

by m/z 253 and m/z 309 (C9-10) . The fourth epoxide group has a diagnostic 

fragmentation ion m/z 337, indicating that it must be located at either the C2-3 or C 1 3 - 1 4 

positions. From the epoxidation results it is clear that the fourth double bond can only be 

in one of these two positions (C2-3 or C I 3 - 1 4 ) and NMR analysis was required to 

distinguish between the two (double bond located at C I 3 - 1 4 ) . 

3.2.3.2 NMR of C25:4 ( G C Rl 2 1 4 4 ) 

The NMR data are presented in Table 3.3 and assignments relate to Figures 3.5 & 

3.12. The ' H - ' ^ C technique is very effective in the structural elucidation of compounds 

providing unequivocal results, as seen in Figure 3.12, correlation of the *^C shifts in one 

direction with the *H shift in the other, via one-bond C H coupling, can be made. This 

technique, in conjunction with two / three-bond C H couplings ( C O L O C ) , facilitates the 

complete assignment of the structures. 
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Figure 3 . i 1 Mass spectaim of 0^5:4 GC RJ 2144 (lop) and /e//-a/r/5-epoxide product 
(bottom) 
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Table 3.3 NMR spectroscopic data for Cjs-i GC RI 2144, Haslea ostrearia 

C2S:4 GCRJ2144(DBi) 
Haslea ostrearia 

Purity 
Quantity 
Solvent 

>98% (by GC) 
18.9 mg 
CDCI3 

17b 17a 
H H 

24b 24a 

Proton ( ' H ) chemical shifts (multiplicities, integration) 

5(ppm) 

8(ppm) 

5(ppm) 

6(ppm) 

8(ppm) 

1,16 
0.87 (d, 6H) 

8,12, 22 

2.04 (m, 5H) 

1.87 (t, 2H) 

9, 13 

7,11 
1.96 (m, 3H) 

15 
5.07, 5.08 (br, m, 2H) 1.67 (s, 3H) 

17a 17b 
4.70(br, s, IH) 4.74(br,d, IH) 

18 
1.57 (s, 3H) 

19 23 24a 
1.59 (s, 31-1) 5.67, 5.65* (ddd, IH) 4.92 (br, d, IH) 

24b 25 
4.88 (br, d, IH) 0.95 (d, 3H) 

Proton coupling constants 

J(Hz) 
1,16 
6.6 

5 
7.5 

23 

Jtrans = 1 7 . 5 

Jc i s = 1 1 . 5 

J v c = 7 . 5 

25 
6.9 
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Table 3.3 cent. 

17b 17a 
H H 

24b 24a 

Carbon (*^C) chemical shifts 

8(ppm) 

5(ppm) 

5(ppm) 

8(ppm) 

8(ppm) 

5(ppm) 

1 
22.6 

2 
27.9 

152.5, 152.4* 

10 

135.2 

15 
25.7 

11 
39.8 

16 
22.6 

3 
39,0 

7 

46.8 

12 
26.7 

4 
25.6 33.7, 33.6* 

8 9 
32.8,32.7* 123.3 

13 
124.4 

20 
30.9, 30.8* 

23 
145.0, 144.8* 

17 18 
108.6* 16.2 

21 

34.4, 34.3* 

24 
112.4, 112.2* 

14 

131.2 

19 

17.7 

22 

38.0, 37.9* 

25 
20.4, 20.0* 

*H and chemical shifts are in ppm using residual C H C I 3 as an 
internal reference (7.25 and 77.0 ppm for * H and respectively. 
Numbering shown in displayed formulae. 
Chemical shifts labelled * are due to the presence of diastereoisomers. 
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Figure 3.12 Correlation of '̂ C shifts and ' H shifts, via a one-bond coupling (HETCOR) 

'̂ C 

C-6 

C-13 C-9 

C-23 c - l o \ ^ ^ C-24 C-17 
JJ. i.> 

, . 1 1 1 
lUl 

40 

! I 

70 



3.2.4 C25:5 (GCRI2191)Xn 

2,10,14-trimethyl-6-meihylene-7-(3-methylpent-4-enyl)pentadec-2,9,13-ene 

4.8 mg of X n was obtained from a bulk culture extraction of Haslea ostrearia for 

' H and '̂ C NMR spectroscopy and epoxide derivatisation. The double bond positions 

within the structure have been unambiguously assigned via NMR spectroscopy and 

additionally confirmed by derivatisation. 

X I I 

The C25 pentaene (Xn) exhibits a molecular ion NT 342 (indicating five degrees 

of unsaturation), loss of CH3 to give m/z 327 and with diagnostic fragment ions m/z 259, 

m/z 273, m/z 287 and m/z 299. Mass spectrometry of the hydrogenated (Pt20.H20) 

alkene displayed a molecular ion M* 350 (M-2), with the diagnostic ions m/z 210, m/z 

238 and m/z 266. The alkane co-eluted (GC) with a synthesised C25 alkane (Robson, 

1987) on three different stationary phases (DBl , DB5 & DBWAX). 
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3.2.4.1 Epoxidation of C25:5 (GC RI 2191) 

Reaction of the pentaene with w-CPBA was conducted at 55*'C with the 

formation of a peniakis-Gpoxide after 72 hours. The epoxide mass spectrum (Figure 3.13) 

displays a 422, with loss of CH3(M-15, m/z 407) and diagnostic ions m/z 43, m/z 267, 

m/z 281, m/z 323 and m/z 351. The position of the vinyl double bond is indicated by the 

diagnostic ion m/z 43, confining the epoxide to this location, C23-24. The second epoxide 

group is confined by ions m/z 323 and m/z 281 (C6-I7) and the third by m/z 267 and m/z 

323 (C9-10). The fourth and fifth epoxide groups have a diagnostic fragmentation ion m/z 

351, indicating that these epoxides can only be located at C2-3 and C13-14 positions. 

3.2.4.2 NMR ofC25:5 (GC Rl 2191) 

The NMR data is presented in Table 3.4. No salient features are reported for this 

compound. 
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Figure 3.13 Mass spectrum of C25:5 GC Rl 2191 (top) and pentakis-epoxlde product 
(bottom) 
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Table 3.4 NMR spectroscopic data for €23:5 GC RI 2191, Haslea ostrearia 

C25:5GCRI2I9I (DBi ) 
Haslea ostrearia 

17b 17a 

18 19 

JlO 12 J l 4 

I 3 5 T7 9 11 13 15 
20 k x 2 1 

Purity 
Quantity 
Solvent 

: >89%(byGC) 
: 2.9 mg 
: CDCI3 

2 3 ^ 

24b 

25 

24a 

Proton (̂ H) chemical shifts (multiplicities, integration) 

1,15 5 7,11 
8(ppm) 1.67 (s, 6H) 1.87 (t,2H) 1.96 ( ra , 3H) 

8, 12, 22 9, 12, 13 16 
8(ppm) 2.04 (m, 5H) 5.09 (m, 4H) 1.60 (s, 3H) 

17a 17b 18 
6(ppm) 4.72 (br, s, IH) 4.76 (br, d, IH) 1.57 (s, 3H) 

19 23 24a 
8(ppm) 1.59 (s, 3H) 5.67, 5.65* (in, IH) 4.92 (br, d, IH) 

24b 25 
5(ppm) 4.88 (br, d, IH) 0.95 (d, 3H) 

Proton coupling constants 

5 23 25 
J(H2) '7-5 J trans 17.5 6.9 

Jcis 11.5 
J vie 7.5 
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Table 3.4 cont. 

24b 24a 

Carbon ("C) chemical shifts 

8(ppm) 

6(ppm) 

8(ppm) 

8(ppm) 

6(ppm) 

8(ppm) 

1 
25.7 

2 
131.2 

152.5, 152.4* 

10 

135.2 

15 
25.7 

11 

39.8 

16 
17.7 

20 

30.9, 30.8* 

23 
145.0. 144.8* 

3 4 
124.4 26.6 

7 
46.8 

33.7. 33.6* 

3 9 
32.8.32.7* 123.3 

12 13 
26.7 124.4 

17 18 
108.6* 16.2 

21 

34.4, 34.3* 

24 
112.4, 112.2* 

14 

131.2 

19 

17.7 

22 

38.0, 37.9* 

25 
20.4. 20.0* 

' H and "C chemical shifts are m ppm using residual CHCI3 as an 
internal reference (7.25 and 77.0 pptn for ' H and " C respectively. 
Numbering shown in displayed formulae. 
Chemical sliifts labelled * are due to the presence of diastereoisomers. 
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3.2.5 C25:5 ( G C R I 2 2 0 l ) X r a 

2,6,10,14-tetramethyl-7-(3-methyIpent-4-enyl)pentadec-2,5,9,l 3-ene 

Insufficient isolate (<l.O mg) of X m was obtained from an extraction of Haslea 

ostrearia for '̂ C NMR spectroscopy, and only *H analysis and epoxide derivatisation 

were possible for this sample. The double bond positions within the structure have been 

tentatively assigned via epoxide derivatisation and additional confirmation by comparison 

of ' H spectrum with other characterised HBI compounds, particulariy C25:6 (GC RI 

2248). 

X I I I 

The C25 pentaene (XITI) has a molecular ion M" 342, indicating five degrees of 

unsaturation, loss of CH3 to give m/z 327, with ftirther diagnostic fragment ions m/z 259, 

m/z 111,, m/z 285 and m/z 299. Mass spectrometry of the hydrogenated (Pt20.H20) 

alkane displayed the diagnostic ions m/z 210, m/z 238 and m/z 266, but no molecular ion 

was recorded. The alkane co-eluted (GC) with a synthesised C23 alkane (Robson, 1987) 

on two different stationary phases (DBl & DB5). 
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3.2.5.1 Epoxidation of C25:5 ( G C RI 2201) 

Reaction of the pentaene with m-CPBA was conducted at 6 0 ° C vAth the 

formation of a pentakis-epoxide after 72 hours. The mass spectrum of the epoxide 

(Figure 3.14) displays a M* 422, with loss of CH3 (M-15, m/z 407 ) and diagnostic ions 

m/z 43, m/z 267, m/z 281, m/z 323 and m/z 351. The position of vinyl double bond is 

indicated by the diagnostic ion m/z 43 , confining the epoxide to this location, C23-24 . 

The second epoxide group is confined by ions m/z 337 and m/z 281 (C5-6) and the third 

by m/z 267 and m/z 323 ( C 9 - I 0 ) . The fourth and fifth epoxide groups have a diagnostic 

fragment ion m/z 351, indicating that these epoxides can only be located at C2-3 and 

C 1 3 - 1 4 positions. 

3.2.5.2 NMR of C25:5 ( G C RJ 2 2 0 1 ) 

Only enough isolate for ' H NMR analysis was obtained. The major difference 

between the ' H spectrum of this alkene and C25:5 ( G C RI 2191) is the loss of methylenic 

(=CH2, 17 Hz) signal and the appearance of a triplet at 2 .70 ppm. The triplet (5 = 2 .70) 

results from the two H-4 protons coupling equally to H-3 and H-5 and the resonance 

appears at relatively low field (5 = 2.70, as opposed to 1.8 - 2 .0 ) since the H-4 protons 

are allylic to two double bonds. 

77 



Figure 3 .14 Mass spectrum of C25:5 GC RI 2201 (top) and peniakis-epo^de product 
(bottom) 
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3.2.6 C25:6 (GCRI2248) XIV 

2,6,10,14-tetramethyI-7-(3-methylenepent-4-enyl)pentadec-2,5,9,13-ene 

Alkene XIV (3 mg) was obtained via extraction of Haslea ostrearia and was 

sufficient for *H and NMR spectroscopy and epoxide derivatisation. The double bond 

positions within the structure have been assigned via NMR spectroscopy and additionally 

confirmed by derivatisation. 

X I V 

The C25 hexaene (XIV) has a molecular ion M^ 340 indicating six degrees of 

unsaturation, loss of CH3 to give m/z 325, with further diagnostic fragment ions m/z 255, 

m/z 271, ni/z 283 and m/z 297 (Figure 3.16). Mass spectrometry of the hydrogenated 

(Pt20.H20) alkene displayed the diagnostic ions m/z 210, m/z 238 and m/z 266, but no 

molecular ion was recorded. The alkane co-eluted (GC) with a synthesised C25 alkane 

(Robson, 1987) on two different stationary phases (DBl & DB5). 
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3.2.6.1 Epoxidation of C25:6 (GC RI 2248) 

Reaction of the hexaene with /w-CPBA was conducted at 60''C and the formation 

of a hexakis-epoxidc recorded after 72 hours. The progress of the reaction, from starting 

compound to a hexakis-epoxidc is illustrated in Figure 3.15. The mass spectrum (Figure 

3.16) displays a Nf" 436, loss of CH3 to give m/z 421 and diagnostic ions m/z 43, m/z 55, 

m/z 281, m/z 295, m/z 327, m/z 351 and m/z 365. The position of the vinyl double bond is 

indicated by the diagnostic ion m/z 43, confining one epoxy group to this location, C23-

24. The second epoxide group is confined by ions m/z 351 and m/z 295 (C5-6) and the 

third by m/z 281 and m/z 337 (C9-10). The fourth and fifth epoxide groups have a 

diagnostic fragment ion m/z 365, indicating that these epoxides can only be located at C2-

3 and CI3-14 positions. The sixth epoxide group was located by the diagnostic ion m/z 

85, which suggested that it was at the C22-25 position. 

3.2.6.2 NMR of €25:6 (GC RI 2248) 

The NMR data are presented in Table 3.5. The set of assignments for and '̂ C 

nuclei is incomplete since limited spectroscopic data were collected. As seen in Table 3.5, 

the double bond located at the C22-25 position is conjugated with the double bond at 

C23-24. This was identified by the low field shift of the resonance H-23 from 5 = 5.65 

(for all other HBIs characterised here), to 6 = 6.35. This resonance (H-23) appears as a 

doublet of doublets due to cis and tram couplings to H-24a and H-24b respectively. 
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Figure 3.15 Reaction of C25:6 with /w-CPBA: a, CTS^ isolate; b, after 20 hours; c, after 72 
hours. GC conditions: OV-1, 40-300°C at S '̂Cmin'* 
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Figure 3.16 Mass spectrum of €25:6 GC RI 2248 (top) and /7ejcaA75-epoxide product 
(bottom) 
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Table 3.5 N M R spectroscopic data for CTS S G C R I 2248, Haslea ostrearia 

C25:6 G C R I 2248 p B ! ) 
Haslea ostrearia 

16 17 18 19 

1 3 5 T? 9 I I 13 15 
2 0 ^ 2 , 

24b 24a 

Purity : >98%(byGC) 
Quantity : 3.0 mg 
Solvent : CDCI3 

16 17 18 19 

1 3 5 T? 9 I I 13 15 
2 0 ^ 2 , 

24b 24a 

Proton (^H) chemical shifts (multiplicities, integration) 

1, 15, 16, 17, 18, 19 
8(ppm) 1.5-1.7 (s, 18H) 

3, 5, 9, 13 4 
5.05 . 5.13 (br, m, 2H) 2.70 (t, 2H) 

7, 8,11,12,21 
5(ppm) 1.96-2.18(m,9H) 

9, 13 23 
5.07, 5.08 (br, m, 2H) 6.35 (dd, IH) 

24a 
8(ppm) 5.19 (d, IH) 

24b 25 
5.03 (d, IH) 4.98 (br, s, 2H) 

Proton coupling constants 

JH4-H3 JH4-H5 H-23 

J(Hz) 6,8 6.8 Jtrans =17.5 

Jcis =10.9 
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Table 3.5 com. 

16 17 18 19 

^ JlO 12 J l 4 

1 3 5 7 9 1 1 13 15 
20^ \ 2 I 

I22 
23 

25 

24b 24a 

Carbon (^''C) chemical shifts 

1 2 3 4 5 
8(ppm) 2 5 . 6 1 3 1 . 2 1 2 4 . 3 3 9 . 8 124 .3 

6 7 8 9 
8(ppm) 135.1 49 .1 3 2 . 2 1 2 4 . 3 

10 11 12 13 14 
5(ppm) 1 3 6 . 3 2 6 . 7 2 6 . 7 1 2 4 . 3 1 3 1 . 2 

15 16 17 18 19 
8(ppm) 2 5 . 6 1 7 . 7 12.1 16 .2 17 .7 

20 21 22 23 24 
5(ppm) 3 2 . 2 3 2 . 2 1 4 6 . 9 1 3 9 . 0 1 1 3 . 0 

25 
8(ppm) 1 1 5 . 4 

' H and '̂ C chemical shifts are in ppm using residual CHCI3 as an 
internal reference (7.25 and 77.0 ppm for *H and '̂ C respectively). 
Numbering shown in displayed formulae. 
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3 .3 Conclusions and summary 

3.3.1 Applications of ozonolysis 

Ozonolysis proved an effective tool for the location of double bond positions in 

the C25:2 (GC RI 2079), but due to the low yield of products (C25:2 GC RI 2079, yielded 

4.8 % of product) the technique had a limited application during this study. Another 

possible drawback to this technique is the increasing number of fragments produced as 

more unsaturated compounds are treated with ozone. For example, the HBl C25:5 (GC RI 

2201) upon reaction with ozone would produce six ketone and / or aldehyde fragments, 

at least three of which would be volatile and could not be identified by conventional GC-

MS. This technique appears more suited to HBI compounds with less than three degrees 

of unsaturation and is best applied in conjunction with other methods of analysis. 

3.3.2 Applications of epoxidation 

This technique has proved a very powerful tool in the structural elucidation of 

HBI compounds. The advantages of this technique are: 

1. That it can be applied to microgram quantities of isolate, greatly reducing the 

amount of material required for extraction and isolation, 

2. The technique can be applied to HBI alkenes which have at least six double 

bonds, 

3. The resultant epoxides can be analysed directly by GC and / or GC-MS, 
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4. ^//7/7a-cleavage of the epoxides, during GC-MS analysis, gives diagnostic 

fragment ions which clearly indicate the position of the epoxides and subsequently the 

original double bond positions, 

5. HBI compounds with less than five degrees of unsaturation give relatively high 

yields of product. 

The main disadvantages to this technique are: 

1. Some epoxide groups cannot be confined to one position, with diagnostic mass 

spectrum fragments indicating a number of different locations, 

2. Increasing the temperature to > 55°C causes fijrther oxidation of the epoxide 

products and the formation of an unresolved complex mixture, greatly reducing the yield 

of identifiable components. 

3.3.3 Applications of NMR 

NMR analysis is the definitive technique for structural elucidation. It is a non­

destructive method of analysis and gives unambiguous structural assignments. The main 

disadvantage of this technique is the large amount of pure isolate required for complete 

analysis (> 5.0 mg). 

3.4 Summary of HBI alkenes characterised 

Table 3.7 shows the structures of the six HBI alkenes characterised and 

summarises the data relating to each compound. 
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Table 3.7 Summary of HBI alkenes characterised 

HBI 
GC RI(DBi) 
Origin 
Cone. 
Quantity 
Purity 
Date collected 

C25:2 
2079 
Caspian Sea 
< 60 |ig g'* (dry wt) 
5 mg 
98% (by GC) 
2 / 6 / 9 2 

Characterisation techniques, 
O3. epoxidation and ' H & '̂ C N M R 

IX 

H B I 

GC Rl(DDi) 

Origin 
Cone. 
Quantity 
Purity 
Date collected 

C25:5 
2201 
Haslea ostreaha 
22 |ig g"'(dry wt) 
< 1.0 mg 
98% (by GC) 
18/10/88 

XIII 

Characterisation techniques, 
Epoxidation and NMR 

H B I 

GC RJ(DBi) 

Origin 
Cone. 
Quantity 
Purity 
Date collected 

C25:6 
2248 
Haslea ostrearia 
77 \xg g"'(dry wt) 
6.0 mg 
99% (by GC) 
18/ 10/88 

X I V 

Characterisation techniques, 
Epoxidation and *H & *̂ C NMR 



Table 3.7 com. 

C25:3 
2106 
Haslea ostreaha 
(growth phase expt) 
< 1.92 pg 
210 ng (dry wt) 
6.1 mg 
98% (by GC) 

H B I 

GC RI(DBi) 
Origin 

Cone, per cell 
Cone, (bulk) 
Quantity 
Purity 
Date collected : 10 /5 /95 

Characterisation techniques, 
Epoxidation and ' H & '̂ C N M R 

C2S:4 
2144 
Haslea ostrearia 
(growth phase expt) 
< 3.66 pg 
460 |.img g'̂  (dry wt) 
18.9 mg 
98% (by GC) 

H B I 

GC RI(Di3i) 
Origin 

Cone, per cell 
Cone, (bulk) 
Quantity 
Purity 
Date collected : 10 /5 /95 

Characterisation techniques, 
Epoxidation and ' H & '̂ C N M R 

XI 

H B I 

GC RI(DBi) 

Origin 

Cone, per cell 
Cone, (bulk) 
Quantity 
Purity 

C25:5 
2191 
Haslea ostrearia 
(growth phase expt) 
<0.83 pg 
92 fig g'* (dry wt) 
2.8 mg 
89% (by GC) 

XII 

Date collected : 10 /5 /95 

Characterisation techniques, 
Epoxidation and *H & '̂ C N M R 



CHAPTER FOUR 

Growth phase experiment: Haslea ostreaha 

This chapter reports preliminary findings of a growth phase experiment 

conducted with Haslea ostrearia. The relationship of highly branched isoprenoid 

alkene production to the growth phase of the diatoms and to other parameters 

(e.g. carotenoids and n-C2i:^ is examined. 



4.1 Introduction 

The Class Bacillariophyceae, better known as diatoms, are unicellular algae, 

which have an opaline silica cell wall, and which contain chrysophyte-like photosynthetic 

pigments. Most diatoms are autotrophic and form the basis of food chains in many 

aqueous ecosystems. Different species occupy benthic and planktonic niches in lakes, 

lagoons, seas and oceans. 

Pennate diatoms dominate the freshwater and epiphytic niches, but they also 

thrive in benthic marine habitats. Diatoms require light and are therefore limited to the 

photic zone of the water column (<200 m), but some epipelic species are motile and 

spend periods at depth in dark sediments. Each species tends to have distinct 

requirements for temperature, salinity, acidity, oxygen and mineral concentrations. 

Seasonal fluxes in these factors at high latitudes lead to spring and late summer blooms, 

9 

especially amongst the planktonic forms, where diatoms may number as much as 10 cells 

per m^ of water (Werner, 1977). Diatoms are abundant in regions of oceanic upwelling 

caused by current divergences, as in those of the Antarctic divergence. These waters are 

favoured because of their high silica, phosphate, nitrate, and iron contents. Cool waters 

are more dense and, together with the ascending currents, they pose the minimum of 

buoyancy problems for these non-motile organisms. 

4.2 Genus Haslea 

Haslea is a new genus of the family Naviculaceae. The cells have a thin 

membrane, spindle-shaped outline with acute ends and convex sides, rarely parallel in the 
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middle. The raphe are straight, with small, approximate central pores and little developed 

apical pores. The genus Haslea is interpreted as a link between Navicitla and the genera 

Gyrosigma I Pleurosigma. Previous taxonomy studies had assigned the species wathin 

this group to numerous other genera {Navictila, Amphipleura, Berkeleya, Gyrosigma, 

Pleurosigma, Schizonema, Stauroneis, Vibrio), and it was not until 1974 that this group 

was separated, mainly fi-om Navicula, as a genus of its own (Simonsen, 1974). These 

include: ostrearia, frauenfeldii, trompii, crystallina, vitrea, kjelmanii, crucigera, 

sulcata, crucigeroides, gigantea, hyalinissima, wawrikae. However, it was a further ten 

years before this new taxonomy was to be commonly applied (Robert, 1984). The 

numerous re-classifications of Haslea ostrearia pose considerable problems for studies of 

exact taxonomic history, and subsequent global distribution. Thus prior to 1984, Haslea 

ostrearia may have been classified as any of the species listed in Table 4.1, which to the 

author*s knowledge is the most detailed listing to date. 

Table 4.1 Taxonomic evolution of Haslea ostrearia 

Genus Species Author & Year 

Vibrio ostrearius Gaillon 1820 

Navicula ostrearia Bory 1827 

Berkeleya fusiformis Grunow 1867 

Navicula fusiformis Grunow 1877 

Navicula fusiformes Cleve 1884 

Navictda fusiformes ostrearia Patrick 1959 

Navicula ostrearia Neville 1971 

Haslea ostrearia Simonsen 1974 
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4.2.1 Haslea ostrearia : biology, morphology and identification 

The morphology of the species ostrearia, which is of interest in the current study 

because of the production of HBIs (see chapters 1 and 2), is described as valves 

lanceolate, spindle-shaped, with acute to roundish ends, -60-100 jim long, 6-10 |im wide, 

straight raphe and approximate central pores (Figure 4.1). The ceil walls are extremely 

delicate and the internal striations (36 transapical striae in 10 |im) are therefore hardly 

discernible by transmitted light microscopy. For diatoms of this morphology it is the 

number of internal striations present (per 10 \xm) that indicate the correct genus and 

species, and an electron microscopic examination is therefore required to reveal the fine 

detail. 

Haslea ostrearia is well known in parts of France where it is fed to oysters to 

produce green colouration of the gills. This is due to the synthesis by Haslea ostrearia of 

marennine, a blue green pigment of unidentified chemical structure. Although Haslea 

ostrearia is reported as a common diatom along the coastal areas of France {e.g. Neuville 

and Daste, 1978; Robert, 1986), elsewhere its record of distribution appears to be limited 

to only three reports: the Indian Ocean (Simonsen, 1974), a north Australian coastal 

region (Ricard, 1987a) and one coastal location in southern England, (Hustedt and 

Aleem, 1951). This suggests that Haslea ostrearia has either a restricted distribution or 

that it has been incorrectly identified / classified in previous studies. Some tentative 

evidence exists to support the latter suggestion. Studies of microbial assemblages in 

coastal areas and oceans are usually based on examination of samples with a light 

microscope, with only a few, i f any, examinations by electron microscopy. This is 

insufficient for correct classification of Haslea ostrearia. Moreover, an examination of 
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Figure 4.1 Haslea ostrearia (after Robert. 1983) 

Frustule 

Chloroplast 

Cytoplasm 

Vacuole 
globule 

Marennine 

Top left Transmitted light microscopic photograph, plane polarized 
Top middle Internal morphology 
Top right Transmitted light microscopic photograpli, cross polarised 
Bottom left Electron micrograph showing external fruslule {^ 12000) 
Bottom right Electron micrograph revealing internal fmslule and striae (x20000) 
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literature reports of the diatoms found in areas of high HBI concentrations reveals that 

many classifications were only to genus level (e.g. Navicula sp.) and these localities often 

contained genera that were morphologically similar to Haslea ostrearia, (e.g. McMurdo 

Sound, Grossi e/a/., 1984; North Sea, Reid a/., 1990; Ebro Delta, Miretal., 1991). In 

other words, Haslea ostrearia may be much more widely distributed in recent 

environments than recognised heretofore. Also, because of the thin silica frustule, Haslea 

os/rearia does not survive morphologically in sediments; Haslea ostrearia may therefore 

even have been widespread in the geological past, as testified by occurrence of HBIs in 

Eocene (Yon ei a/., 1982) and Oligocene (ten Haven et a/., 1993) oils and sediments. 

4.3 Growth phase experiment: Haslea ostrearia and HBI concentrations 

4.3.1 Introduction 

Growth phase experiments are commonly employed by biologists to replicate the 

different environmental conditions experienced by algae, in a controlled laboratory 

environment. Initially these experiments are usually conducted under optimum growth 

conditions to establish a set of control parameters, and then under more stressed 

conditions (e.g. with variations in temperature, salinity and nutrient concentrations). This 

provides essential information on how the parameter concentrations may vary from 

optimum conditions. The parameters are usually recorded at set intervals, from the 

beginning of growth (stationary phase), through maximum growth (exponential phase), to 

the end of growth (lag phase). 

Thus growth phase experiments might be expected to prove to be a powerful tool 

in aiding understanding of HBI production by Haslea ostrearia. Indeed without such data 
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it is possibly premature to advocate the use of HBIs as biomarkers (Kohnen et a/., 1992; 

Rowland and Robson, 1990). The degree of unsaturation, position and geometries of 

double bonds in HBIs may be controlled by factors such as temperature and salinity 

during biosynthesis. As a well known organic geochemical analogy, the number of double 

bonds in the so-called long chain alkenones, as reflected by the index U*̂ 37, is controlled 

by temperature (Marlowe et a/., 1984). These, and other possibilities can be examined by 

monitoring HBI production by Haslea ostrearia under different stressed conditions. 

The growth phase experiment presented herein is the first to date to have involved 

measurement of HBIs, //-C2i:6. and carotenoid concentrations, along with conventional 

parameters (e.g. biomass, temperature, salinity and total lipids). Measurements were 

made every 24 hours for six days. From this experiment it is possible to draw some 

preliminary conclusions about the dependence of HBIs on the growth phase and to 

correlate HBI production with other parameters, such carotenoids and n-Cji.e However, 

the conclusions must remain tentative, as the experiment was concluded before the 

culture had reached the Mag* phase of growth and further replicate experiments are 

necessary. 

4.3.2 Growth conditions and results 

The parameters used for growth are listed in Table 4.2. The experiment was 

conducted at 20-26°C, pH 7.5-8.6, constant salinity (32 parts per ml), under adequate 

nutrient conditions. The concentrations of HBIs and «-C2i:6 determined are given in Table 

4.3. A total ion chromatogram (TIC) of the THE of Haslea ostrearia (day 6) is illustrated 

in Figure 4.2. The THE is dominated by three HBI alkenes, C25:3 (GC RI 2106), C25:4 
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Figure 4.2 GC-MS TIC of total hexane extract o f Haslea ostrearia, growth phase 
experiment day 6. GC conditions: O V - 1 , 40-260°C at l O X m i n ' 

M)uncLance 
100 -

GC R] 2106 

[Time -> 

/J-C21: 21:6 

GC Rl 2M4 

G C R I 219 

//-alkanes 
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Table 4.2 Biochemical parameters recorded for growth phase experiment 

Day Cell number Temperature pH Lipids Proteins Glucide 

mg.l0"^cell mg.lO^cell mg.lO-^cell 
0 3320 20 7.5 0.36 0.57 0.36 
I 4260 21 7.6 0.61 0.47 0.35 
2 9260 23 7.8 0.14 0.39 0.18 
3 22400 26 8.1 0.09 0.32 0.08 
4 43822 25 8.4 0.09 0.26 0.12 
5 58933 20 8.6 0.06 0.23 0.04 

6 76000 21 8.5 0.07 0.19 0.03 

Day Silica Chlorophyll a Carotenoids Phosphates Nitrates Nitrites 

mg.lO^cell tig.lO'^cell ^g.lO-^ceU ^g.lO•*cell |iM.10"^cell nM.10"^cell 
0 36.2 5.3 2.2 1.7 18.4 0.051 
1 11.8 9.2 0.8 3.4 13.2 0.035 
2 17.4 5.2 3.7 0.6 7.7 0 
3 3.2 5.1 3.9 0.2 2.1 0.014 
4 2.6 7.8 5.2 0.1 0.7 0.006 
5 1.7 6.4 6.5 0.05 0.3 0.007 
6 1.2 6.5 4.1 0.004 0.07 0.004 

Table 4.3 Concentrations o f HBIs and /; -C 21:6 recorded for growth phase experiment (fg.cell *) 

Day C25 :3GCRI2106 C25 :4GCRI2144 C25 :5GCRI2191 «-C2I:6 
0 1060 510 210 0 
1 779 408 89 0 
2 427 728 153 101 
3 627 1736 414 367 
4 1920 3666 834 854 
5 722 1544 300 298 
6 290 822 164 102 

96 



(GC R I 2144) and Cjsts (GC RI 2191), which accounts for 50% o f the hexane extract and 

forms a significant contribution to the total cellular lipid content, ranging between 7 and 

22%. The total hydrocarbon content (day 6) is 4.0 pg per cell, which accounts for 17.8% 

o f the total lipid content. This value is unusually high compared to those reported for 

other diatoms. The average, o f the total hydrocarbon to total lipid content for twelve 

diatom species was 1.4%, with no values higher than 2%, (Dunstan et a/., 1994). The 

lipids present in Haslea ostrearia are visible during transmitted light microscopy and 

occur as discrete globules in the central vacuole, as illustrated in Figure 4.1. 

4.3.3 Discussion 

HBIs are indeed produced by Haslea ostrearia under these conditions confirming 

the single report o f Volkman et a/., (1994). The H B I composition comprised a triene, 

tetraene and pentaene all o f which have now been flilly identified (Structures X , X I , X D ; 

see section 3.4). From Figure 4.3 it is clear that HBIs are produced from the earliest 

stages o f growth and the maximum concentrations occur *early* in the exponential 

growth phase. The concentrations o f the H B I alkenes all maximised together at day 4. 

After some initial fluctuations at day 0, 1, between days 2 - 6 , H B I concentrations in 

relation to one another remained relatively constant, with the tetraene almost three times 

as abundant as the triene, which was almost twice as abundant as the pentaene. 

Independence o f growth phase may be an important prerequisite i f alkene ratios are to be 

used for palaeoenvironmental reconstruction. The absolute concentrations were similar to 

those reported by Volkman et a/., (1994), except for the tetraene, which was significantly 

more abundant after 13 days (Table 4.4). 
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Figure 4.3 Concentration o f HBIs produced by Haslea ostrearia 

(C 25:3 GC RI 2106, C 25:4 GC RI 2144 and C 25:5 GC RI 2191) 
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Figure 4.4 Concentration o f HBIs, // -C 21:6 and carotenoids produced by Haslea ostreaha 
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Table 4.4 H B I concentrations reported in Haslea ostrearia 

H B I alkene 13 days (fg/ce!l) 
(Volkmanc/a/ . , 1994) 

6 days (fg/cell) 
(This study) 

C25:3 ( G C R I 2 I 0 6 ) 189 290 

C25:4 (GCRI2144) 2340 822 

C25:5 (GCRI2191) 77 164 

The relationship between the concentrations o f HBIs, carotenoids (mainly 

fucoxanthin; see section 2.1) and /i-C2i:6 (a common diatom hydrocarbon; reviewed by 

Hird and Rowland, 1995) is shown in Figure 4.4. It is interesting to note that both the 

H B I and /7-C2i:6 concentrations maximise on day 4, earlier in the growth phase than the 

carotenoids. This may have important implications in relation to the environmental setting 

o f HBIs, tentatively suggesting that HBIs would reach maximum concentrations before 

the main diatom biochemicals (commonly measured by flicoxanthin. Barlow et ai, 1993) 

as proposed in section 2.2.3, and perhaps offering a unique measure o f Haslea ostrearia 

contributions to diatomaceous inputs to sediments. 

Growth phase experiments may yet prove useful in establishing HBIs as a 

quantitative biomarker for Haslea ostrearia. Reproducible growth phase experiments, 

simulating different marine environments, would give a relatively accurate measure o f the 

concentrations o f HBIs produced per cell. From the concentration o f HBIs in sediments 

(or the water column) it would then be possible to calculate the actual number o f cells 
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required to produce the concentration o f HBIs recorded. This would be a measure o f the 

total number o f cells that contributed to that sample. 

Furthermore, this could be difiFerentiated into HBIs from the number o f living 

Haslea osirearia in the surface sediments and those with a longer history. Evidence 

presented in section 6.3 suggests that one double bond rearranges in H B I alkenes soon 

after the death o f the cells. Should this be the case, then by measuring the concentration 

o f the * primary' HBIs (produced by living diatoms) a direct value could be calculated for 

the number o f living cells. This hypothesis could have important chemotaxonomic 

implications in the future, but a substantial amount o f research, (based on growth phase 

experiments) would first have to be conducted. 
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CHAPTER F I V E 

Experimental Details 

This chapter describes the analytical procedures used in this study. 



5.1 General Procedures 

Glassware was cleaned in Decon-90, rinsed in distilled / Millipore-grade water, 

oven dried (150°C; overnight) and finally rinsed with dichloromethane immediately before 

use. Al l solvents were HPLC-grade (e.g. hexane, dichloromethane, and methanol; 

Rathbums) and found to be o f adequate purity. The purity was checked by GC analysis o f 

solvent concentrates (100 ml to 10 | i l under vacuum). Blank requirements were as 

follows; on-column injections o f 0.5 j i l should result in chromatograms with peaks 

representing less than 0.2 ng in terms o f their FID response. This threshold, under the 

above dilution factor, is equivalent to a level o f artifacts below 0.25 ng g"' when 

referenced to 50 g o f dry sediment. 

Silica gel ( B D H ; 60-120) and alumina (BDH; Grade 1; neutral) were used as 

adsorbents in column chromatography and were extracted with dichloromethane in a 

Soxhlet apparatus for 24 hours. After solvent evaporation, the silica and alumina were 

activated by heating to 180°C and 350°C respectively, (24 hours). Deactivated silica gel 

and alumina were prepared by shaking (4 hours) the absorbent with the appropriate 

quantity o f Millipore grade water and stored (50°C and 120°C; 12 hours). Thin layer 

chromatography (TLC) plates were prepared on solvent-washed 20 x 20 cm or 20 x 10 

cm glass plates with a coating o f 0.25 mm silica gel (Merck Kiesel gel type 60G). 

Argentation TLC plates were prepared from slurries o f silica gel made up in an aqueous 

solution o f 10, 5, or 2% (wet wt) AgNOs. Following drying (120°C; 1 hour) all plates 

were predeveloped in ethyl acetate and used after activation (120°C; 6 hours). 
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Anhydrous sodium sulphate (anhydrous Na2S04), cotton wool, water (Millipore 

grade H2O), hydrochloric acid (HCI), aqueous solutions o f sodium chloride (NaCI; brine), 

potassium chloride (KCI), glacial elhanoic acid and activated copper were all extracted 

with dichloromethane before use to remove possible contaminants. 

Activated copper, for the removal o f elemental sulphur, was prepared according 

to the method o f Blumer (1957). Copper sulphate (Aldrich) ( - 45 g) was placed in a 

beaker (500 ml) containing ice-cold deionised water and hydrochloric acid (2M; 25 ml). 

In another beaker (1 L) a thick slurry o f powdered zinc (Aldrich; 15 g) in 25 ml deionised 

water was prepared. To aid the wetting o f the zinc powder, acetone was added as a 

'wetting agent*. The copper solution was then added to the rapidly stirred zinc slurry. 

Stirring was continued until effervescence ceased and the colour o f the copper turned 

f rom a bright red to a dark red-brown. The supernatant was decanted, allowing the finer 

particles to be removed. The copper was washed with deionised water repeatedly, until 

all traces o f dark particulate matter were removed. Any excess copper not used 

immediately was covered in ice and stored in a freezer. The activated copper was packed 

into columns o f various dimensions and water removed by washings with acetone. After 

several washings the solvent was changed to hexane prior to use. 
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5.2 Extraction and fractionation of hydrocarbons from sediment samples 

5.2.1 Sample collection and solvent extraction 

The general protocol used for the isolation o f hydrocarbons from sediment 

samples is illustrated in Figure 5.1. 

For the Tamar sediments study (Chp 2) all the samples were collected at St. Johns 

Lake (Figure 2.1). The sediment was collected randomly (random numbers generated by 

Casio FX85 calculator) from within the same 20 x 20 m quadrant at each visit. The 

surface sediment, 0 - 5 mm depth, was gathered by metal spatula, transferred to clean 

aluminium cans and frozen immediately. 

The thawed samples were solvent extracted using the method o f Douglas et a/., 

(1981). Sediment (~40g wet weight) was extracted with methanol (40 ml) by 

ultrasonication (10 min.; ultrasonic bath; Kerry Pulsatron HB172). The organic extract 

was separated by centrifijgation (15 min.; 2200 r.p.m.) and decanted. This procedure was 

repeated using dichloromethane / methanol (7:3 v/v; 40 ml), dichloromethane / methanol 

(4:1 v/v; 40 ml) and dichloromethane (40 ml). The combined extracts were shaken 

(separating funnel) with water (Millipore grade; 30 ml) and the lower organic layer 

collected, along with the dichloromethane washings ( 3 x 1 5 ml) o f the aqueous layer. 

Solvent was removed (Buchi; 30°C) and the total organic extract transferred to a vial and 

weighed. I f water was still present after solvent removal, dichloromethane (20 ml) was 

added and the mixture transferred to a small separating fiinnel, where the lower organic 

layer was carefully removed, reconcentrated, and weighed. 
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Figure 5.1 Isolation o f aliphatic hydrocarbons from Tamar sediments 
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5.2.2 Fractionation o f total organic extract (TOE) 

The extract was pre-absorbed onto alumina (TOE, dissolved in D C M , was 

quantitatively transferred to a vial containing -200 mg of alumina and solvent removed 

under a stream o f nitrogen) and applied to a short column (20 cm x I.O cm i.d.) 

containing silica over activated copper powder (0.2 - 0.5g w/w). The column was eluted 

with 60 ml o f hexane and the ^aliphatic' fraction collected in a round bottomed flask. The 

column was subsequently eluted with 60 ml o f dichloromethane for the 'aromatic' 

fraction and finally 60 ml o f methanol for the more *polar' compounds. Afler removal o f 

the solvent the extracts were weighed and stored at 4*'C prior to analysis by GC and GC-

MS. 

5.3 Diatom cultures: Haslea ostrearia 

5.3.1 Extraction o f 'bulk' cultures o f Haslea ostrearia 

Frozen samples o f bulk cultures o f Haslea ostrearia^ were provided by the 

Universite de Nantes. Algal paste (between 20 and 50 g wet wt.) was allowed to thaw 

and was then extracted with hexane (200 ml) by ultrasonication (20 min.; ultrasonic bath; 

Kerry Pulsatron HBI72) . The hexane extract was separated by centrifligation (20 min.; 

2600 r.p.m.) and decanted. The extraction o f the algae was repeated until no hexane 

soluble hydrocarbons remained (checked by GC) to yield a total hexane extract (THE). 

Solvent was removed (Buchi; 30°C), the extract dried (anhydrous Na2S04) and the T H E 

transferred quantitatively to a vial and weighed when dry. Preliminary experiments 

indicated that extraction with methanol / dichloromethane co-extracted high 
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concentrations o f pigments, which caused significant chromatographic problems; thus 

extraction with hexane only, was adopted. 

5.3.2 Microscale extraction o f filter samples 

Frozen filter samples o f Haslea ostrearia, collected as part o f a growth phase 

experiment (chapter 4), were provided by the Universite de Nantes. The thawed filter 

samples were extracted in 2 ml o f hexane by ultrasonication (40 min.; ultrasonic bath; 

Kerry Pulsatron HBI72) . The hexane extract was then passed through a Pasteur pipette 

containing a bed o f anhydrous Na2S04 (-0.5 g) and collected in a 10 ml vial. The 

extraction o f the filter was repeated once and the extracts combined in the 10 ml vial. The 

solvent was removed under a stream of nitrogen and the *dried' extract then redissolved 

in 20 |al o f D C M for analysis by GC-MS. Extraction efficiency was calculated by 

comparison with the response o f an internal standard (2, 21-dimethyldocosane, 5 mg kg**) 

added prior to extraction and compared to a co-injected standard o f known concentration 

(see section 5.6.1). 

5.4 Isolation o f H B I alkenes 

5.4.1 Thin-Layer Chromatography (TLC) 

A H B I pentaene C25:5 (GC RI 2201) and a hexaene C25:6 (GC R I 2248) were 

isolated from the THE (141 mg) o f 48 g of Haslea ostrearia by TLC (20 x 20 cm plate, 

0.25 mm silica, with hexane as the mobile phase). The plate was visualised ( U V light, 

365nm; 0.5% Rliodamine 6G in methanol) and two bands corresponding to R/ values 
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between 0.25 & 0.4 (C25:6 GC RI 2248) and 0.4 & 0.55 (C25:5 GC RI 2201) were 

removed. The alkenes were recovered from the silica gel by desorption with hexane / 

dichloromethane (60:40 v/v; -5 ml) using a Pasteur pipette containing a bed o f alumina 

and the eluates collected in vials. After removal o f the solvent the extracts were weighed 

and stored at -IS^'C. 

Alkene Revalues Amount Purity (GC) 

C25:5 0.40 - 0.55 < 1.0 mg >92% 

C25:6 0.25 - 0.40 6.0 mg >96% 

Each fraction was analysed by GC and GC-MS to confirm the identity and purity o f H B I 

alkenes isolated. These were then characterised via NMR and derivatisation techniques. 

5.4.2 Column chromatography 

A mixture o f H B I polyenes, dienes to pentaenes, (C23:2 GC RI 2088, C25:3 GC RI 

2106, C25:4 GC RI 2088 and C25:5 GC RI 2191) were separated, from the THE o f 37 g o f 

Haslea ostrearia^ into individual isolates (purity up to 98%; checked by GC and GC-MS) 

using column chromatography. The hexane extract (197 mg) was adsorbed onto alumina 

(1 g) and applied to a column (20 cm x 1.0 cm i.d.) containing activated silica and eluted 

with hexane. The eluant was collected in 2 ml vials, for the first 60 ml, and 10 ml vials 

until all fractions had been collected. The separation o f the alkenes was monitored 
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throughout the procedure by GC & GC-MS and respective fractions combined. The 

elution order o f fractions was as follows: 

n-alkanes 0 - 30 mi hexane 

H B I diene 30 - 60 ml hexane >95% purity < 0.1 mg 

H B l triene 60 - 150 ml hexane >98yo purity 5.1 mg 

H B I tetraene 150 - 310 ml hexane >98% purity 18.9 mg 

H B I pentaene 310 - 460 ml D C M - 5 4 % purity 2.8 mg 

After removal o f solvent the extracts were weighed and stored at -18'*C. Each 

fraction was analysed by GC and GC-MS to confirm the identity o f H B I alkenes isolated 

in each fraction and those o f sufficient purity and quantity were further characterised via 

N M R and derivatisation techniques. 

5.5 Pigment samples : collection and analysis 

Surface sediment (0 - 5 mm depth) samples collected from St. Johns Lake were 

stored at the collection site in aluminum containers (packed in solid CO2) until arrival at 

the laboratory where they were frozen in liquid N2. Frozen sediments 3 g) were 

extracted in 1 ml 90% acetone / 10% methanol using ultrasonication (5 min. Soniprep 

150-probe) and the organic extract separated by centrifugation (10 min. at 2200 r.p.m.) 

and decanted (extraction repeated x 10). An aliquot (300 | i l ) o f clarified extract was 

mixed with 300 | i l o f I M ammonium acetate and 100 | i l injected into a Shimadzu HPLC 

system (dual LC-6A pumps, SPD-6AV spectrophotometric detector, SCL-6B system 
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controller) incorporating a 3-\im Pecosphere column (3.5 x 0.45 cm; Perkin-Elmer). 

Pigments were separated by a modification o f the reversed-phase method o f Mantoura 

and Llewellyn, (1983): solvent A consisted o f 80% methanol and 20% I M ammonium 

acetate and solvent B contained 60% methanol and 40% acetone. A linear gradient from 

0% B to 100% B for 10 min. followed by an isocratic hold at 100% B for 7.5 min. was 

used at a f low rate o f 1 ml min.'V Chlorophylls and carotenoids were detected by 

absorbance at 440 nm, and detection o f phaeopigments was performed with a Perkin-

Elmer LSI fluorescence detector using an excitation wavelength o f 400 ( ± 20) nm and 

emission at >600 nm. Dual channel data collection and integration utilised the Philips 

PU6000 software on a Dell personal computer and the software calculated a 

concentration for each pigment. 

5.6 Analysis 

5.6.1 Gas Chromatography (GC) 

Hydrocarbons were examined on a Cario Erba Series 5300 Mega gas 

chromatograph fitted with fused silica columns (0.32 mm i.d.) o f various length (25, 30 

or 50 m X 0.32 i.d.) and phases ( D B l or DB5; J & W) , using flame ionisation detection 

and on-column injection. The column oven was programmed from 40 - 300°C at 5°C 

min."* and held at the final temperature for 10 minutes. Hydrogen was used as the carrier 

gas at a flow rate o f 2 ml min.'* (set at 250°C). Some H B I isolates were also analysed 

using a 25 m D B W A X (J & W) column. The carrier gas was hydrogen and the oven 

temperature programmed from 40 - 270 at either 2.5 or 5°C min.' ' and held at 270°C for 

10 min. 
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Retention indices (GC RI) were calculated according to the following formula 

(Poole and Schuette, 1984) : 

tR(unknown) - tR(z) 
R I = I O O z + I O O 

tR(z+ l ) - t R ( z ) 

RI is retention index; IR is retention time; z represents an n-alkane with z carbon 

atoms. A known alkane mixture was added to the hydrocarbons where appropriate. 

Quantification of individual hydrocarbons was accomplished by measurements of 

G C peak area using a Shimadzu CR3-A recording integrator. These were then compared 

to the response of a co-injected standard of known concentration (/i-alkane; usually Cis, 

C20 or C23). An internal standard (2, 21-dimethyldocosane) was added prior to solvent 

extraction of sediments and algae to calculate the extraction efficiency (5 mg kg'*). 

5.6.2 Gas Chromatography- Mass Spectrometry (GC-MS) 

Analysis of hydrocarbon extracts was performed on a Hewlett Packard 5890 

Series II gas chromatograph coupled to a Hewlett Packard Mass Selective Detector 

(MSD) 5970 Series.. A 12 m (0.2 mm i.d.) fijsed silica column coated with HPl (Hewlett 

Packard) was introduced directly into the ion source of the mass spectrometer. Auto 

splitless injection and helium gas were used and the column oven programmed as for G C . 
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Mass spectrometer operating conditions were; ion source temperature 250°C and 70 eV 

ionisation energy. Spectra (40 - 550 Daltons) were collected using Chemstation software. 

5.6.3 Compound identification 

Where possible, individual hydrocarbons were identified by co-chromatography 

with authentic compounds on GC columns o f different polarities and by comparison o f 

gas chromatographic retention indices (GC RI) with literature data. Additional 

information was provided by GC-MS: the recognition o f components from their mass 

spectra was made by comparison with the spectra o f authentic compounds, published 

spectra or by spectral interpretation. 

5.6.4 Nuclear Magnetic Resonance Spectroscopy (NMR) 

The ' H and '^C N M R spectra o f H B I isolates were recorded in C D C I 3 solutions, 

using a Jeol EX270 (270 MHz; University o f Plymouth) high resolution FT-NMR 

spectrometer. Chemical shifts were measured (6/ppm) using residual C H C I 3 in the solvent 

(5= 7.25 and 77.0 for ' H and '^C respectively) as reference. Multiplicities for ' H 

resonances are described as singlet (5), doublet {d), doublet o f doublets (dd), doublet o f 

doublet o f doublets {ddd), triplet (/), doublet o f triplets {dt), quartet {q) or multiplet (/w). 

Multiplicities for '"̂ C resonances were achieved via the DEPT sequence. Short and long 

range heteronuclear *H - *̂ C correlations were determined using HETCOR and COLOC 

methods. 
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5.6.5 Ultraviolet / visible (UV/vis) spectroscopy 

UV/vis absorbance spectra o f selected samples were recorded using a Perkin 

Elmer Lamba 7 UV/visible spectrophotometer. Both samples and solvent blanks were 

measured in acetone / methanol (90 : 10). 

5.7 Derivatisation o f H B I alkene isolates 

5.7.1 Microscale hydrogenation 

Al l H B I alkene isolates were hydrogenated using the following procedure. 100 | ig 

o f isolate, dissolved in 400 yi\ o f D C M was added to a Reacti-vial (2 ml; Pierce) 

containing activated Pt02.H20 (<1 mg) and hydrogen bubbled through the solution for 60 

minutes. The resulting solution was passed through a Pasteur pipette with a cotton wool 

plug (to remove any Pt02.H20) and analysed directly by GC and GC-MS. 

5.7.2 Microscale ozonolysis 

Ozonolysis was employed in the elucidation o f the positions o f double bonds in 

selected H B I alkenes. A *Micro-Ozonizer" (Supeico Inc., U.S.A.; a modification o f the 

design o f Beroza and Bierl, 1969) was used to generate ozone. A sample o f H B I alkene 

(-200 | ig) dissolved in D C M (500 | i l ) was transferred to a Reacti-vial and sealed with a 

Teflon-lined cap. The reaction mixture was cooled to - -70°C (acetone / solid CO2 bath) 

and an O3 gas stream was passed through an inlet syringe and bubbled ( - 0.5 ml min."*) 

through the reaction mixture for 10 minutes. The solution was analysed by GC and GC-

MS and possible positions o f double bonds determined from ab initio interpretation o f 
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mass spectra or by comparison with reference spectra (e.g. Hird, 1992). Prior to the 

analysis o f H B I alkenes, the technique was validated using simple //-alkenes (tetradec-7-

ene and heptdec-l-ene) which were successfully ozonolysed to 1-heptanal and w - l -

hexadecanal respectively. 

5.7.3 Microscale Epoxidation 

The epoxy derivatives o f H B I alkenes were prepared by reaction with m-

chloroperoxybenzoic acid (CPBA), (AJdrich Chemicals). All reactions were carried out in 

2 ml Reacti-vials. The alkene isolate, dissolved in D C M , was quantitatively transferred to 

a Reacti-vial and solvent removed under a stream o f nitrogen. The m-

chloroperoxybenzoic acid, as a 0.16 or 0.32 molar (in D C M ) solution was added in set 

volumes. The Reacti-vial was sealed with a Teflon-lined cap and placed in a water bath at 

various temperatures. The reaction was monitored by GC & GC-MS until completion. 

The method was validated on three different //-alkenes (dodec-l-ene, octadec-1-

ene and tetradec-7-ene: Aldrich Chemicals) and the resulting compounds compared (GC 

and GC-MS) to the respective epoxide derivatives, which were purchased from 

commercial sources (1,2 epoxydodecane, 1,2 epoxyoctadecane and 7,8 

epoxytetradecane: Aldrich Chemicals). This method was further validated on a synthetic 

C 3 0 H B I monoene o f known structure (Robson. 1987). From these preliminary 

experiments, and those conducted on H B I compounds o f previously unknown structure, 

it was found that exact reaction conditions were specific with respect to time, T°C and m-

CPBA concentration (see sections 5.7.3.1 - 5.7.3.8). 
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5.7.3.1 Dodec-l-ene, octadec-l-ene and tetradec-7-ene 

Reaction conditions: Alkenes 
CPBA 
Temp. 
Yield 

Ci2:i, Ci4:i and Ci8:i cach 200 | i g 
0.16 molar, 300 | i L 
78 hours @ 25*'C 
Each > 95% 

5.7,3.2 Synthetic Cjon H B I (Robson, 1987; Hird, 1992) 

Reaction conditions: H B I alkene 150 f.ig o f C^OA 
CPBA 0.16 molar, 300 ̂ iL 
Temp. 90 hours @ 2 5 ^ 
Yield 92% 

5.7.3.3 C25 2 (GC R I 2079) Caspian Sea 

Reaction conditions: H B I alkene 
CPBA 
Temp. 
Yield 

200 [Ig OfC25:2 
0.16 molar. 200 
90 hours @ 2 5 ° C 
78% 



5.7.3.4 C25:3 (GC R I 2106) Haslea osirearia 

Reaction conditions: HBI alkene 150 \ig o f C25:3 
CPBA 0.16 molar, 200 nL 
Temp. 72 hours @ 50°C 
Yield 44% 

5.7.3.5 C2S:4 (GC R I 2144) Haslea osirearia 

Reaction conditions: H B I alkene 250 | ig o f C25:4 
CPBA 0.32 molar, 300 
Temp. 72 hours @ 55°C 
Yield 5 1 % 



5.7.3.6 Cis s (GC R I 2191) Haslea ostrearia 

Reaction conditions: H B I alkene 
CPBA 
Temp. 
Yield 

250 ^Ig 0fC25:5 
0.32 molar, 300 p L 
72 hours @ 55°C 
32% 

5.7.3.7 C25:5 (GC RI 2201) Hasica ostrcaria 

Reaction conditions: H B I alkene 
CPBA 
Temp. 
Yield 

300 \Xg 0fC25:5 
0.32 molar, 300 | i L 
72 hours @ 60°C 
6.0% 



5.7.3.8 €25:6 (GC R I 2248) Haslea ostrearia 

Reaction conditions: H B I alkene 300 | i g o f C25:6 
CPBA 0.32 molar, 300 nL 
Temp. 72 hours @ 6 0 X 
Yield 2.8% 



CHAPTER SIX 

Conclusions and future research 

Two important conclusions which may have sig/iificant geochemical implications, can be 

drawn from the research presented within this thesis. Experimental procedures used 

during isolation indicate that a strong interaction exists between HBI alkenes and silica. 

For conventional chromatographic techniques, this interaction could result in HBIs, 

with three or more double bonds, being collected in the so-called 'aromatic' 

hydrocarbon fraction and not identified. A subsequent review of previous fractionation 

procedures suggests that an incomplete record exists for HBI alkenes in the 

environment. 

The structural characterisation of HBI alkenes produced by Haslea ostrearia has 

enabled a direct correlation to sedimentary counterparts to be established. I f , upon 

death of diatom cells, the C6-/7 double bond positionally rearranges to C5-6, resulting 

in a mixture of E and Z isomers, then Haslea ostrearia may account for at least eight of 

the fourteen dominant HBI hydrocarbons in sediments. There is still much to be learned 

about HBI polyenes and some possible future approaches are suggested. 



6.1 Introduction 

Evidence has been presented for the important role o f diatoms in controlling the 

sedimentary disributions o f C25 H B I hydrocarbons. 

The significant phase differences between H B I concentrations and those o f the 

diatom biomarkers fucoxanthin and //-C2i:6 in Tamar estuary sediments throughout 1994, 

suggests that HBIs are either produced eariier in the growth cycle o f some diatoms than 

fucoxanthin and //-C2i:6 or, more likely, that the principal diatom producers o f HBIs are 

not the predominant diatom species in the sediments. 

The confirmation o f HBIs as the major hydrocarbons o f the diatom, Haslea 

ostrearia (Volkman et a/., 1994) perhaps supports the latter view; whilst it is a common 

species in coastal environments, Haslea ostrearia has rarely been identified as a major 

component o f the total diatom population in such environments. It is also worth noting 

that in the Tamar sediments the concentration o f //-C2i:6 is approximately equal to the 

total HBI 's , but laboratory cultures show that «-C2i:6 is found in significantly lower 

abundances than total HBI 's , strengthening the argument for different dominant sources 

in Tamar sediments. The H B I concentrations in the Tamar estuary thus afford the 

promise o f a better temporal resolution o f different diatom species inputs to the sediments 

and may allow a better differentiation o f the chemical inputs o f sedimentary diatom 

populations generally. 

The isolation o f large enough quantities o f individual H B I alkenes from laboratory 

cultures o f Haslea ostrearia for N M R spectral analysis has allowed the structures o f most 

o f the HBIs to be firmly established. Novel and interesting though these detailed chemical 
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findings may be, it is fair to ask, what are the geochemical implications o f the data ? As 

wil l be discussed below, the rigorous identification o f H B I alkenes may have a profound 

influence on the environmental and geochemical conclusions which can be drawn fi-om 

the sedimentary H B I distributions. 

6.2 Implications for isolation and fractionation o f H B I alkenes 

To date there have been at least twenty five different reports o f C25 H B I dienes in 

the environment and over thirty reports o f trienes. This contrasts with only eleven reports 

o f the tetraene and eight o f pentaenes (Table 6.1). At face value, this suggests that 

sedimentary polyenes with four or more double bonds are less abundant in the 

environment. However, the data presented herein (Chapters 3 and 4), shows that the 

source organism Haslea ostrearia contains dienes to (at least) hexaenes. For instance, the 

pentaene (GC RI 2191) and triene (GC RI 2106) are both relatively abundant in Haslea 

ostrearia and appear to be biosynthesised at approximately equal rates, under the 

conditions investigated (Chapter 4). Why then should the triene be common in the 

environment, and the pentaene, rare or absent ? The data presented herein (see sections 

5.4.1 and 5.4.2) suggest an explanation may be the unexpected chromatographic 

behaviour o f the H B I alkenes on traditional adsorbents {e,g. silica). For example, silica 

column chromatographic separation o f individual dienes, trienes, tetraenes and pentaenes 

from the total hexane extract o f Haslea ostrearia (Chapter 5) showed that the diene was 

eluted with three column volumes o f hexane, whereas the tetraene (structure X I ) required 

fifteen column volumes. Similarly, the C25 H B I pentaene (GC R I 2201; structure XUT) 
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Table 6.1 Sedimentary occurrences o f C25 H B I hydrocarbons where GC retention indices are cited (updated Table 1.1) 

stationary D61 ov i OVl DB1 DBl HPl HPI SE30 SE30 SE30 SE30 SE30 DB5 DB5 DB5 DB5 DB5 DB5 SPllOO SP3100 SPllOO snioo smoo OV101 MS MS 

phase 
ôĉ ouod 

:25:0(II) 2112 2110 2111 2105 2109 2109 2112 

:25:1 2106 

:25:1 2112 

:25:2 2069 2067 2070 2072 2068 2068 2068 2070 

:25:2 2079 2082 2082 2079 2084 2082 2084 2084 2082 2082 2083 

:25:2 2085 

:25:2 2088 2088 2088 2088 2088 2088 2088 

225:3 2044 2044 2044 2044 2046 2044 2044 2044 

:25:3 2091 2091 2092 2091 2091 2091 2091 2090 2090 2090 2094 2089 2092 

:25:3 2104 2104 

:25:3 2106 2106 2106 2107 2106 2110 2107 2107 

:25:3 2119 

225:3 2156 

225:4 2082 2079 2078 

225:4 2086 

225:4 2055 

225:4 2128 2129 2126 2128 2124 

225:4 2134 2133 

225:4 2144 2144 

225:4 2175 2175 

225:5 2128 2125 

225:5 2144 

225:5 2170 2169 

225:5 2173 

225:5 2183 2183 2182 

225:5 2191 2191 2188 

225:5 2201 2200 

C25:6 1 22481 1 1 1 1 1 1 1 1 1 1 1 1 1 

References \ \ 15 \ 16 \ 23 \ 25 \ 22 \ 24 7 | 8\ 9\ 11\ 12\ 10 77 18 20 26 21 2 i 4\ 5\ 6\ n \ 14 \ 19 

Key : Table 1.1a (Bold text indicates C25 H B I alkenes reported in this thesis) 



had a Ry value on silica gel TLC (see section 5.4.1) ranging from 0.40 to 0.55 (0.25 mm 

thickness; hexane mobile phase) whereas the hexaene (GC RI 2248; structure X I V ) had a 

Ry-value o f 0.25 to 0.40. Thus the sorption behaviour o f the polyunsaturated tetra, penta-

and hexaenes to silica appears to be sufficiently different as to require careful elution with 

a range o f solvents (column) or monitoring o f different Ry values (TLC) for the 

quantitative recovery o f all H B I alkenes. 

This behaviour can be contrasted with 'normal* geochemical isolation procedures. 

For example, Venkatesan and Kaplan (1987) and Venkatesan (1988) reported the 

presence o f mainly diene isomers and minor trienes in sediments and algae from 

Antarctica. The methodology used for fractionation o f the total organic extracts in both 

cases was column chromatography (silica gel) and the TOE was separated into ^aliphatic' 

(eluted with hexane) and 'aromatic* hydrocarbons (eluted with hexane : benzene, 50/50). 

Considering the findings herein, it is likely that trienes, tetraenes and pentaenes, i f they 

were present, were eluted in the ^aromatic' fraction and were not identified. Similarly, 

Nichols et al. (1988), reported the presence o f a C25 diene in sea-ice diatom communities 

from Antarctica. The fractionation used column chromatography (silica) to obtain an 

'aliphatic' fraction (eluted with hexane) and an ^aromatic* fraction (eluted with hexane : 

toluene, 50/50). The ratio o f the volume o f hexane eluant to silica gel was less than two 

column volumes (3 g o f silica; 4 ml o f hexane). With such a small relative volume o f 

eluant. other polyenes, i f present, would almost certainly have been collected in the 

^aromatic' fraction. 
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Whilst it is, o f course, possible that the more unsaturated compounds do not 

occur in the Antarctic, where the degree o f unsaturation may be controlled by other 

factors, such as temperature or salinity, it is interesting that Cripps (1995) reported the 

occurrence o f a suite o f H B I polyenes (dienes to pentaenes) in the lipids o f Antarctic 

marine organisms (fish and squid) when the total hydrocarbons were extracted from the 

digested animals with hexane and not fractionated further by solid phase chromatography. 

The evidence suggests that an incomplete record exists for HBIs reported in 

sediments and any previous conclusions made from the global distribution patterns o f C2S 

H B I alkenes would have to be treated with some care. Re-analysis o f sediments and algae 

using appropriate fractionation procedures, calibrated with the known compounds whose 

structures have been established herein, is required. 

6.3 Implications for occurrence and sources o f C25 H B I alkenes 

Even given the possible inferences o f incomplete isolation procedures, o f the 

twenty six apparently different C25 H B I alkenes reported in the marine environment, only 

fourteen are relatively abundant and frequently occurring (see section 1.2). The retention 

indices o f major C25 H B I isomers occurring in sediments and those produced by Haslea 

ostrearia are shown in Table 6.2. It is interesting to note that four o f the dominant 

alkenes produced by Haslea ostrearia, C25:4 (GC RI 2144), C25:5 (GC RI 2191 & GC RI 

2201) and C25:6 (GC RI 2248), are not detected in sediments at all and the triene (GC R I 

2106) is not predominant in sediments. The fact that only one o f the five HBIs produced 

by Haslea ostrearia correlates with sedimentary isomers might suggest either that; 

Haslea ostrearia is not the source o f sedimentary C25 H B I alkenes; or that Haslea 
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Table 6.2 Occurrence o f H B I alkenes in Haslea ostrearia and sediments (average GC RI for major 
sedimentary alkenes) 

H B I isomer Haslea ostrearia \ Sedimentary (major alkenes) 

C25:2 2069 

C25:2 2082 
C25:2 2088 2088 

C25:3 2044 
C25:3 2091 
C25:3 2106 2107 

C25:4 2080 
C25:4 2086 
C25:4 2127 
C25:4 2133 
C25:4 2144 

C25:5 2125 
C25:5 2144 
C25:5 2183 
C25:5 2191 
C25:5 2201 

C25:6 2248 

Key : Numerical values are GC retention indices 
Bold text denotes characterised H B I alkenes 



ostrearia produces different H B I isomers under environmental conditions to those used 

for the culturing the diatoms in the laboratory (see chapter 4). An alternative suggestion 

is that the positions and / or geometries o f the double bonds o f the alkenes biosynthesised 

by Haslea ostrearia are rearranged in the sediments, producing isomers with different GC 

retention characteristics. The painstaking structural characterisation o f individual alkenes 

adopted herein allows this hypothesis (for which there is ample geochemical precedent in 

other alkenes, most notably steroids and hopanoids; e.g. Peakman et a/., 1988; de Leeuw 

et a/., 1989) to be tested. It is also interesting to note that no such reactions have been 

reported for the alkenones. 

Previous workers have sometimes suggested that some sedimentary H B I isomers 

are geometric isomers. Barrick and Hedges (1980) and Porte et cr/., (1990) both reported 

that the mass spectra o f two trienes (GC RI 2044 & 2091) were identical. The same was 

true o f two tetraenes (GC RI 2080 & 2127). Moreover, the difference in GC RI (AGC 

RI) between the two trienes was identical (AGC RI = 47) to the AGC RI between the two 

tetraenes. An examination o f the data in Table 6.2 reveals that a number sedimentary 

alkenes exhibit AGC RI o f 47, {e.g. C25:4 GC RI 2086 & 2133; C25:5 GC RI 2144 & 

2191). Indeed, the two triene and tetraene isomers reported by Barrick and Hedges 

(1980) and the two pairs o f isomers above are the dominant sedimentary H B I alkenes in 

many reports. 

Comparison o f the GC RI o f sedimentary alkenes and those o f Haslea ostrearia, 

the structures o f which have now been established, suggests a positional rearrangement o f 

one double bond in the biosynthetic products. The dominant H B I alkenes biosynthesised 

by Haslea ostrearia, C25:3 (GC RI 2106), C25:4 (GC RI 2144) and Czs:? (GC RI 2191) all 
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Figure 6.1 Proposed reanangement of HBI triene {Haslea ostrearid) to produce 
the two major tiiene isomers reported in sediments 

C25:3 G C R I 2 1 0 6 
{Haslea ostrearia) 

rearrangement of double bond (C6-17), 
upon death of diatom cells or in sednnents, 

to produce E and Z isomers 

E isomer (sedimentaiy) 
GCRI2091 (or 2044) 

Z isomer (sedimentaiy) 
GCRI2044 (or 2091) 
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differ by either 17 2 or 64 "*"/. 2 retention units to the sedimentary alkenes discussed 

above. For example, the Haslea ostrearia triene (GC RI 2106; structure X) exhibits 

AGC RI of -15 and -62, compared to the two major sedimentary trienes (GC RI 2044 & 

2091), which Barrick and Hedges (1980) suggest are geometric isomers. Given the 

structure of the Haslea ostrearia triene (X), it is possible the C6-17 double bond 

rearranges in the sediment, to the C5-6 position, with formation of a mixture of E and Z 

isomers (Figure 6.1). The same rearrangement can be envisaged for the tetraene (XI) and 

pentaene (XII) structures produced by Haslea ostrearia. The tetraene, GC RI 2144 (XI), 

differs by -17 and -64 retention units from the two major sedimentary tetraenes (GC RI 

2127 & 2080, Figure 6.2). Similarly, the sedimentary pentaene isomers GC RI 2173 

(minor component) and GC RI 2125 which have identical mass spectra and are probably 

a geometric isomer 'pair' have AGC RI of -18 and -66 compared to the pentaene 

produced by Haslea ostrearia (GC RI 2191, X I I ; Figure 6.3). 

The results of acid-catalysed (TsOH-HOAc) rearrangement experiments 

conducted by Hird et al., (1992), on a mixture of synthetic monoene HBI isomers, 

resulted in the production of a new isomer with the double bond in the C5-6 position, 

(Figure 6.4). 

Figure 6.4 Acid-catalysed rearrangement of a double bond inC25 monoenes (Hird et al, 1992 

TsOH 
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Figure 6.2 Proposed rearrangeirent of HBI tetraene {Haslea ostrearia) to produce 
the two major tetraene isomers reported in sediments 

C25:4 G C R I 2 1 4 4 
{Haslea ostrearia) 

rearrangement of double bond (C6-17), 
iq)on death of diatom cells or in sednnents, 

10 produce E and Z isomers 

E isomer (sedimentary) 
GCRI2127 (or 2080) 

Z isomer (sedimentary) 
GCRI 2080 (or 2127) 
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Figure 6.3 Proposed rearrangement of HBI pentaene {Haslea ostrearia) to produce 
die two pentaene isomers 

C25:5 G C R I 2 1 9 1 
{Haslea ostrearia) 

rearrangement of double bond (C6-17), 
upon death of diatom cells or in sediments, 

to produce E and Z isomers 

E isomer (sedimentary) 
GCRI2173 (or 2125) 

Z isomer (sedimentary) 
CJCRI2125 (or 2173) 
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seven years do not contain a double bond at the C6-17 position, but rather at the C5-6 

position. It is possible that the C5-6 double bond resuhed from positional rearrangements 

during prolonged storage. It is also noteworthy that the diene (GC RI 2079; structure 

IX), isolated from sediments had a double bond located at the C5-6 position. 

Previous characterisation studies of both C20 and C23 sedimentary monoenes, 

indicate that the position of the double bond is only located at either the C6-17 or C5-6 

position ( rv , V and V I , section 1.1; Dunlop and Jefferies, 1985; Hird etai, 1992). 

I f the double bond at position C6-17, primarily produced by living Haslea 

ostrearia diatoms, undergoes a positional rearrangement to the C5-6 position, upon 

death of the cells or in sediments, then Haslea ostrearia is indirectly accountable for eight 

of the fourteen dominant sedimentary HBI alkenes reported to date. Four of the other 

major HBIs reported in the sediment are two tetraenes and pentaenes. Although these 

have not been found in Haslea ostrearia to date, with the increasing number of double 

bonds, there is an increased possibility of rearrangement reactions. 

The evidence presented strongly supports the conclusion that Haslea ostrearia is 

responsible for the majority of dominant C25 HBI alkenes reported in the sediments. 

Whilst this does not exclude the possibility that other HBIs are produced under different 

environmental conditions or by other diatom species, it is perhaps a vindication of the 

detailed approach to structural characterisation adopted in this study. 
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Hird et a/.. (1992) also reported that the rearrangement of the double bond produced 

both E and Z isomers at a ratio of E/Z or Z/E = 1:1.6. The average relative abundance for 

two geometric isomer ^pairs', reported in the environment (calculated from concentrations 

where these were reported, or GC peak heights measured from published 

chromatograms) are listed in Table 6.3. 

Table 6.3 Ratio of triene and tetraenes isomers reported in sediments 

Alkene Isomers i 7 8 20 27 Average Ratio 
Ratios 

C25:3 2044 : 2091 2.1 1.3 2.3 1.1 n.d. 1 : 1.7 

C25:4 2078:2124 1.6 n.d. 1.9 1.8 1.3 1 : 1.6 

Numbers in italics indicate references Usted in Table I . l a 

The ratios between triene and tetraene isomer 'pairs' is very similar (C25:3 = 1 : 1.7. C25;4 

= 1 : 1.6) and these values are very close to that reported by Hird et ai, (1992). The 

modeling this reaction, would support the proposed theory. 

Other tentative evidence for the positional rearrangements in HBI alkenes can be 

found from examining the origin of the HBI alkenes so far characterised. The three HBI 

alkenes €25:3 (GC RI 2106), €25:4 (GC RI 2144) and C25:5 (GC RI 2191) were isolated 

from the 'batch* of Haslea ostrearia cultured for the growth phase experiment. The 

culture was extracted within two weeks of completion of the experiment and the three 

polyenes all have a double bond located at the C6-17 position. In contrast, the two HBIs 

(C2S:5 GC RI 2201 and C25:6 GC RI 2248) isolated from a batch of Haslea ostrearia 

cultured over a longer period (one month, September 1988) and stored at -18°C for 

130 



6.4 Future research 

For these unusual compounds to be applied as biomarkers for oil-source rock 

correlations and as indicators of recent and palaeoenvironments, there are important areas 

of research still to be examined. 

To confirm the theory that there may be an incomplete record of HBIs present in 

the sediments it is very important to further establish the fractionation behaviour of the 

HBI polyenes. This should be conducted in two ways; one, by using a number of fijlly 

characterised C25 HBI compounds (dienes to hexaenes) for different chromatographic 

experiments; and where possible, re-analysis of the ^aromatic* fractions isolated from 

sediments, for the presence of HBI polyenes. 

The chromatographic techniques established herein for HBI isolation should now 

be applied to a range of sediments and biota, to obtain further pure HBI alkenes (i.e. 

those currently uncharacterised), in sufficient quantity for characterisation by 

spectroscopy (NMR) and chemical degradation (epoxidation). 

Acid-catalysed isomerisation of HBIs has proved successful in a previous study 

(Hird et a/., 1992) and to unambiguously confirm the proposed link between sedimentary 

HBIs and those of Haslea ostrearia it is essential to conduct similar experiments with 

known compounds. The characterised HBIs from Haslea ostrearia should undergo acid-

catalysed isomerisation and the rearranged products that correlate directly with 

sedimentary counterparts can then be examined further. 

The HBI compounds that have been characterised could be used as models in 

experiments designed to investigate the diagenetic fate of HBI hydrocarbons. These 
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might include the incorporation of sedimentary sulphur and anaerobic biodegradation. 

Sulphur incorporation experiments should be conducted under the low temperature 

simulated sedimentary conditions which have proved useful in previous studies (e.g. 

Rowland e/a/., 1993). 

There are two main areas of further research that should be conducted with 

Haslea ostrearia. The first is more growth phase experiments, both under optimum 

conditions and with conditions that will better simulate environmental stresses on the 

diatoms. The stress experiments should be conducted with cultures grown at different 

temperatures, salinities and nutrient concentrations to note any variation in HBIs 

produced. 

Perhaps the most intriguing area for future research involves the biosynthesis of 

HBIs by Haslea ostrearia. This could be achieved by growing large scale cultures in the 

presence of isotopically-labelled ("*C and '^C) bicarbonate and carbon dioxide feedstocks. 

Subsamples of algae at defined growth stages (lag, exponential and stationary) could be 

extracted and the aliphatic hydrocarbons isolated by TLC, radio-TLC, CC, HPLC or 

radio-HPLC. The alkene isolates could then be analysed by NMR ( 'H, '^C), GC, radio-

GC / GC-MS and GC-IRMS. Numerous other studies of isoprenoid biosynthesis have 

proved successful {e.g. Comforth, 1975) and an examination of the biosynthetic 

mechanisms of HBIs may well provide a valuable insight as to why Haslea ostrearia is 

producing these unusual and interesting compounds. 
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APPENDIX I 

Syndictic C30:i H B l (Robson, 19S7; Hird, 1992) 

Reaction conditions: I-roi alkene 
C P B A 
Temp. 
Yield 

150MgofC:,o:i 
0.16 molar. 300 
90 hours @ 2 5 ° C 
92% 



ISOMER 1 
351 \ 

O C-O-OH 

ISOMER 2 

Q 

O H 
/ \ / 

c—c—c 
c c 

C-O-OH 

DIAGNOSTIC IONS FOR ISOMER 2 



CHARACTERISTIC IONS FOR C30:1 : FOR THE EPOXIDES OF ISOMERS 1&2 

253 



F i l e : C:\CHEMPC\DATA\DA8\0201002.D 
Operator: David Cooke 
Date Acquired: 18 Mar 94 12:08 pm 
Method F i l e : - DACl.M 
Sample Name: C30:l Epoxidation 12 Hours Sample SH888A 
Misc i n f o : 
ALS v i a l : 2 

Abundance 

600000 

550000 -

500000 -

450000 

400000 

350000 ̂  

300000 

250000 

200000 

150000 

100000 

50000 

4b 

3$. 

69 

85 

95 

40 60 80 

Average of 41.213 to 41.509 min.: 0201002.D {+,*) 

113 169 

100 

142 
127 

T 
120 140 160 

183 197 
210 225 

180 200 220 240 

253 

281 
2 6 7 2 9 53 0 6 

323 365 

260 280 I • • • • I 
300 320 

I i' r I I t 

351 I. 37%89 
340 360 380 



APPENDIX II 

NMR spectra for HBI alkenes reported in Chapter 3 



HBI I X 

GC RIcDBi) 2079 1 1 1 1 
Origin Caspian Sea 
Cone. <60 ^ig g"'(dry \vt) 
Quantity 5 mg 
Purity 98% (by GC) ] 
Date collected : 2 / 6 / 9 2 

Characterisation techniques, (1 
O3, epoxidation and *H & '^C NMR 



^25:2 GC RI2079 (DBI) 
Caspian Sea 

16 

x ^ 2 \ ' ^ ^ 
1 3 

17 

5 
20̂  

18 19 

JlO 12 Jll4 
7 9 11 13 15 

17 

5 
20̂  

\ 2 1 

Purity 
Quantity 
Solvent 

: >98%(byGC) 
: 5.0 mg 
: CDCI3 

23 

24b 

I22 

25 

24a 

Proton (*H) chemical shifts (multiplicities, integration) 

1,16 4 5 

5(ppm) 0.88 (d, 6H) 1.99 (q, 2H) 5.08 (t, IH) 

7 15, 19 17 

5(ppm) 1.80 (ra, IH) 0.85 (d, 6H) 1.42 (s, 3H) 

18 22 23 
5(ppm) 0.82 (d, 3H) 2.08 (m, IH) 5.65 (ddd, IH) 

24a 24b 25 
8(ppm) 4.93 (dd, IH) 4.89 (dd, IH) 0.95 (s, 3H) 

Proton coupling constants 

J (H2) 
JH(1, 16)-H2 J H 4 

.6 7 
•H5 J H 5 - H 9 

7 
JH(15, 19)-H14 JH18-H10 

6 6.5 

J(Hz) 
JH23trans JH23cis 

17 10 
J H I S v i c 

8 
JH24a-H24b JH25-H22 

2 . 6.5 



o o 
O OJ 
o -* 

c 24 
23 5 

24b 24a 

:C -••i^V"':'-; .̂ t-: CO 

*:-Vcr.-jT.:;:;»:.:cn»t 

ce.'̂ r̂. ::•! 
OFR 270 .CS MHz 
=X'-!03 "iON 

s e w 
ACQfM 

3^:Tie • 

160 
3 .031 sec 
1.969 sec 

SLVNT C0CL3 

KProcessing-f 

3F 0 .10 H2 
0 .00 DDm 

59^.5359 Hi 
l ? i e . 2 . : 2 0 H z 

10.03 



24b 24a 

Carbon (̂ ^Q chemical shifts 

1 2 4 5 6 
8(ppm) 22.6 27.9 25.5 126.3 135.3 

7 15 16 17 18 
5(ppm) 49.3 22.6 22.6 11.3 19.9 

19 22 23 24 25 
5(ppm) 22.6 37.8 145.0 112,3 20.5 

Not assigned: 3, 8, 9, 10, I I , 12, 13, 14, 20 & 21 

H and * C chemical shifts are in ppm using residual CHCI3 as an 
internal reference (7.25 and 77.0 ppm for *H and '̂ C respectively). 
Numbering shown in displayed formulae. 



C25: 2 

24b 24a 

m 
W 

-I r 
150 

T r 
100 

" T 
50 

'.l--MAr-9'1 OB: AB: 57 

! OrR 67 .60 KHz 

•>;v.00 OCH 
^•'CINT 3275B 
PWl 5 .0 us 

.-SEOU 20000.0 Hz 
SCANS 30780 

ACOTM 0 .819 sec 
PD 1.181 sec 

! SLVNT C0CL3 

; *:processingK 

3F 1.22 H: 
77.00 

XS 69 .3989 H i 

\<r. 1365<J.6100 H : 
VG 11.15 

Q f ^ F R A T O n : 

r- cc o ci m OJ 
lo rvj 

rviriincnrn'T--<ixrOTro<rx>=iuTinr^^ .t> 
o 



C25: 2 

24b 24a 

ouDa>ooTn"'TCOOf>JC3̂ -̂«ofunjvr-.«-«'̂  

•^fnrnryTrnrnrnrnr9ruajnj^^ 

iG-KAY-g- l 08: 16:52 

i^Accuinula t ionK 

OBrJUC 13C 

OFn 67 .80 MHz 
EXMOO DEPT 
POINT 131072 
PWl 9 .8 us 
FREQU 20000.0 Hz 
SCANS 8505 
ACQTM 3 .277 sec 
PD 23 .620 sec 
SLVNT CDCL3 

KProcess ingK 

BF 1 . 2 2 H z 
EXflEF 0 .00 ppm 

xPlo tx 

70:1587 Hz 
13654.6100 Hz 

3 .60 

OPERATOR : 

on. OQ. o 



C 2 5 : 3 

2106 
Haslea ostreaha 
(growth phase expt) 

: < 1.92 pg 
: 210 ^ig g* (dry wt) 
: 6.1 mg 
: 98% (by GC) 

HBI 
GC Rl(DBi) 
Origin 

Cone, per cell 
Cone, (bulk) 
Quantity 
Purity 
bate collected; 1 0 / 5 / 9 5 

Characterisation techniques, 
Epoxidation and *H & *̂ C NMR 



C2S:3 GCRI2106(DBi) 

Haslea ostrearia 

Purity 
Quantity 
Solvent 

>98% (by GC) 
5.1 mg 
CDCI3 

17b 17a 
H H 

24b 24a 

Proton O H ) chemical shifts (multiplicities, integration) 

8(ppm) 

8(ppm) 

5(ppm) 

5(ppm) 

1,16 
0.86 (d, 6H) 

5.05 (t, IH) 

5,7,11 
1.88 (m,5H) 

15,19 
0.86 (d, 6H) 

17b 18 
4.74(br,d, IH) 1.56 (s,3H) 

24a 24b 
4.92(br, d, IH) 4.88 (br, d, IH) 

8, 22 
2.02 (ra, 3H) 

17a 

4.70 (br, s, IH) 

23 

5.67. 5.65* (ddd, IH) 

25 
0.95 (d, 3H) 

Proton coupling constants 

1.16 
J(Hz) 6.6 

9 
6.6 

IS, 19 
6.6 



H H 

24b 24a 



I7b 17a 
H H IS 19 16 \ ^ IS 19 

^ 0 12 

15 1 3 5 j 7 9 11 13 15 
20 .21 

[22 
2 3 ^ 

25 

24b 24a 

Carbon ("C) chemical shifts 

1 2 3 4 5 

6(ppm) 22.6 27.9 39.0 25.6 33.7, 33.6*-

6 7 8 9 10 

5(ppm) 152.5* 46.8 32.9, 32.8* 123.1 135.6 

11 12 13 14 15 

5(ppm) 40.0 25.7 38.6 28.0 22.6 

16 17 18 19 20 

5(ppm) 22.6 108.6* 16.1 22.6 30.8* 

21 22 23 
8(ppm) 34.4 38.0, 37.9* 145.0, 144.9* 

-24 25 
5(ppm) 112.4, 112.2* 20.4, 20.0* 

*H and '"*C chemical shifts are in ppm using residual CHCI3 as an 
internal reference (7.25 and 77.0 ppm for *H and '^C respectively. 
Numbering shown in displayed formulae. 
Chemical shifts labelled * are due to the presence of diasiereoisomers. 



2 5 : 3 

17b 17a 
H. H 

24b 24a 

23 10 24 
17 

2 9 - J U N - 9 5 0 8 : 0 2 : 4 6 

O F I L E C 0 0 2 7 

O B N U C 1 3 C 

EXMOD BCM 

OFR 

OBSET 
OBFIN 
POINT 
FREQU 
SCANS 
ACOTM 
PD 
PWl 
IRNUC IH 
CTEMP 
SLVNT C D C L 3 

EXREF 
BF 
RGAIN 

6 7 . 8 0 MHZ 
1 3 5 . 0 0 kHz 
5 2 0 0 . 0 Hz 

3 2 7 6 6 

2 0 0 0 0 . 0 Hz 
1 9 2 5 9 

0 . 8 1 9 sec 
2 . 1 8 1 sec 

3 . 9 us 

2 7 . 0 c 

7 7 . 0 0 ppm 
1 . 2 2 Hz 

2 6 

OPERATOR 

PPM 

150 ICO 5 0 

(\jaD 
^Tco rniT) 
U T ^ OCO 
njfvj UT^ 
irxn 

l o o m 
'ercxn 



25: 3 
17b 17a 
H H 

24b 24a 

29-JUN -95 10: 04: 47 
OFILE C0028 
OBMUC 13C 
EXMOO DEPT 
OFR 67.80 MHz 
OBSET 135.00 kHz 
OBFIN 5200.0 Hz 
POINT 32768 
FREQU 20000.0 Hz 
SCANS 2500 
ACQTM 0.619 sec 

1 PO 1.181 sec 
; PWl 7.8 us 
IRNUC IH 

j CTEMP 27.4 C 
1 SLVNT CDCL3 
EXREF 22.64 ppm 
BF 1.22 Hz 
RGAIN 26 
OPERATOR 

rtn rmcRD 



r 
5 0 

I 
4 5 

1 — I — I — I — I — I — I — I — r 
AO 3 5 3 0 2 5 2 0 

17b 17a 
H H 

24b 24a 

2B-JUL -95 12: 16: 45 
OFILE BEL64 
COMNT C25: 3 
EXMOO VCHSHF 
OBNUC 13C 
OBFIN 536.9 HZ 
POINT 1024 
FREQU 2481.4 HZ 
CLPNT 255 
TODAT 12B 
CLFRQ 1474.9 Hz 
SCANS 1000 
ACQTM 0.103 sec 
PD 0.587 sec 
PWl 7.B us 
PW2 15.5 us 
PW3 19.6 us 
P I l 3.571 ms 
PI2 0.339 ms 
PI3 1.786 ms 
IRATN 511 
OBATN 511 
CTEMP 25.7 c 
CSPED 14 Hz 
SLVNT CDCL3 
LOOPl 1 
XS -2.4232 Hz 
cxs -2.8807 Hz 
XE 2476.5430 Hz 
CXE 1469.1390 Hz 
TH 3500.00000 
GET 235.1 us 
DELAY 160.0 us 
nPFRATQR : 



HBI : C25:4 
GC FJ(DBi) : 2144 X I 
Origin : Haslea ostrearia 

(growth phase expt) 
Cone, per cell : < 3.66 pg 
Cone, (bulk) : 460 ^mg g'' (dry \vt) 
Quantity : 18.9 mg 
Purity : 98% (by GC) 
Date collected : 10 /5 /95 

Characterisation techniques, II 
Epoxidation and *H & ^̂ C NMR 



C25:4 GCRI2144 (DBI) 
Haslea ostrearia 

17b 17a 

16 *9 

1 3 5 7 9 11 13 15 
20^ \ 2 1 

Purity 
Quantity 
Solvent 

: >98%(byGC) 
: 18.9 mg 
: CDCI3 

23 

24b 

I22 
25 

24a 

Proton (*B[) chemical shifts (multiplicities, integration) 

1,16 5 7,11 
5(ppm) 0.87 (d, 6 H ) 1.87 (t, 2 H ) 1.96 (m, 3 H ) 

8, 12, 22 9, 13 15 
8(ppm) 2.04 (m, 5 H ) 5 . 0 7 , 5 . 0 8 ( b r , m,2H) 1.67 (s, 3 H ) 

17a 17b 18 
5(ppm) 4.70 (br, s, I H ) 4.74 (br, d, I H ) 1.57 (s, 3 H ) 

19 23 24a 
5(ppm) 1,59 (s, 3 H ) 5,67, 5 . 6 5 * (ddd, I H ) 4.92 (br, d, I H ) 

24b 25 
5(ppm) 4.88 (br, d, I H ) 0.95 (d, 3 H ) 

Proton coupling constants 

1,16 5 23 25 

J ( H z ) 6.6 7.5 Jtrans = 1 7 . 5 6.9 

Jcis = 1 1 . 5 

I • = 7 5 



C 2 5 : 1 

O U T ^ CD 

24b 24a 

o'e' ' ' s le ' * '5!4" • •5!2' ' "s'o" ' '4'B 4:5 2:2 2:0 L B L S 1:4 1:2 1:0 0.8 
r - [ - T I • j I . . I • • I 1 ' ' • I • ' M • • ' I ' ' ' 

I / 

A 

rrnm 

, 19-JUN-95 11: 32: 00 
; DFILE PETE291H 
OBNUC IH 
_ EXMOD NON 
i OFR 270.05 MHZ 
! OBSET 
! OBFIN 
POINT 

i FREQU 
I SCANS 
: ACQTM 
! PD 

112.00 kHz 
5800.0 Hz 
32758 

5405.4 HZ 
16 

3.031 sec 
3.969 sec 
4.9 us 

26.0 c 

PWl 
1 IRNUC IH 
' CTEMP 
SLVNT C0CL3 
EXREF 7.25 ppm 
BF 0.16 HZ 
RGAIN 15 
OPERATOR : 

T ; 1 1 1 1 1 r 
8 

I • ' ' ' I 
7 



24b 24a 

Carbon ^^Q chemical shifts 

1 2 3 4 5 

5(ppm) 22.6 27.9 39.0 25.6 33.7, 33.6*. 

6 7 8 9 

5(ppm) 152.5, 152.4* 46.8 32.8, 32.7* 123.3 

10 11 12 13 14 

5(ppm) 135.2 39.8 26.7 124.4 131.2 

15 16 17 18 19 

8(ppm) 25.7 22.6 108.6* 16.2 17.7 

20 21 22 

5(ppm) 30.9, 30.8* 34.4, 34.3* 38.0, 37.9* 

23 24 25 

5(ppm) 145.0, 144.8* 112.4, 112.2* 20.4, 20.0* 

*H and chemical shifts are in ppm using residual CHCI3 as an 
internal reference (7.25 and 77.0 ppm for ' H and respectively. 
Numbering shown in displayed formulae. 
Chemical shifts labelled * are due to the presence of diastereoisomers. 



I7b 17a 
H H 

19-JUN-95 13: 14: 18 
OFILE PETE291H 
OBNUC 13C 
EXMOD BCM 

67.80 MHz 
135.00 kHz 
5200.0 Hz 
32768 

20000.0 Hz 
640 

0.819 sec 
2.181 sec 

3.9 us 

C25: 4 

OBSET 24b 24a 
OBFIN 
POINT 
FREOU 
SCANS 
ACQTM 

IRNUC IH 
CTEMP 
SLVNT CDCL3 

77.00 ppm 
1.22 HZ 

EXREF 

RGAIN 
OPERATOR 

T 1 
140 120 

"T" 
ICO 5 0 

n > ' ' r 
50 4C 

m 
1 ^ 
20 



17b 17a 
H H 

C25: 4 

24b 24a 

WwH 

19-JUN-95 14: 46: 50 
i DFILE PETE290E 
OBNUC 13C 
EXMQO OEPT 
OFR 
OBSET 
OBFIN 
POINT 
FREQU 
SCANS 
ACQTM 
PO 
PWl 
IRNUC IH 
CTEMP 
SLVNT C0CL3 
EXREF 
BF 
RGAIN 26 
OPERATOR : 

67.80 MHz 
135.00 kHz 
5200.0 Hz 
32768 

20000.0 HZ 
320 

0.819 sec 
1.181 sec 
7.8 us 

25.1 c 

77.00 ppm 
1.22 Hz 



j...llL.,HM.lJl..iui 
PPM 

I AO 120 100 BO 
n — I — 1 1 I p 

60 -̂O 1—I—r 
20 

• k 

22-JUN-g5 05: 19: 09 
DFILE BEL60 
COMNT C25: A 
EXMOD VCOLOC 
OBNUC 13C 
OBFIN 
POINT 
FREOU 
CLPNT 
TOOAT 
CLFRQ 
SCANS 
ACQTM 
PD 
PWl 
PW2 
PW3 
P I l 
PI2 
PI3 
IRATN 
0 8 A T N 

CTEMP 
CSPED 

3915.8 HZ 
4096 

10060.4 Hz 
256 
128 

1930.5 H2 
320 

0.102 sec 
0.898 sec 

7.8 us 
15.5 us 
19.6 us 

62.500 ms 
0.259 ms 
31.250 ms 

511 
511 

20.9 C 
15 Hz 

SLVNT CDCL3 
LOOPl 
XS 
CXS 
XE 
CXE 
TH 
DET 
DELAY 

-2.4561 Hz 
-3.7705 HZ 

10055.4500 Hz 
1922.9590 Hz 

5250.00000 
55.5 us 
39.5 us 
17b I7a 
H H 

24b 24a 



HBI 
GC RIcDBi) 

Origin 

Cone, per cell 
Cone, (bulk) 
Quantity 
Purity 
Date collected 

C25:5 
2191 
Haslea ostrearia 
(growth phase expt) 
<0.83 pg 
92 [ig g' (drywt) 
2.8 mg 
89% (by GC) 
10 /5 /95 

Characterisation techniques, 
Epoxidation and *H & *^C NMR 



C25 : 5 G C R I 2 1 9 1 ( D B i ) 

Haslea ostrearia 

Purity 
Quantity 
Solvent 

>89% (by GC) 
2.9 mg 
CDCI3 

17b 17a 
H H 

24b 24a 

Proton ( 'H) chemical shifts (multiplicities, integration) 

8(ppm) 

8(ppm) 

8(ppm) 

8(ppm) 

8(ppm) 

1, 15 
1.67 (s, 6H) 

8,12, 22 
2.04 (m, 5H) 

1.87 (t,2H) 

9,12, 13 
5.09 (m, 4H) 

17a 17b 
4.72 (br, s, IH) 4.76 (br, d, IH) 

19 
1.59 (s, 3H) 

23 
5.67, 5.65* (m, IH) 

7,11 
1.96 (m, 3H) 

16 

1.60 (s, 3H) 

18 

1.57 (s, 3H) 

24a 
4.92 (br, d, IH) 24b 25 

4.88 (br, d, IH) 0.95 (d, 3H) 

Proton coupling constants 

J(Hz) 
5 
7.5 

23 

Jtrans = 1 7 . 5 

Jcis = 1 1 . 5 

Jvic = 7.5 

25 

6.9 



C25: 5 

24b 24a 

23 
9 12/13 

T 1 1 r 

17 

1 ' 
5.8 

. . 
5.5 

1 r~ 1 ' 
5.4 

' 1 ' 
5.2 

' 1 ' 
5.0 

' 1 ' 
4.8 

I 1 

1 _ K • ^ 

OJ o 
i n o 
o o 

o x s rn 
coo> in 

1 1 \ 1 1 

PPM 
T 1 1 r 1 ^ 

1 

25-SEP-g5 17: 28: 49 
DFILE BEL70 
OBNUC IH 
EXMOO NON 
QFR 270.05 MHz 
QBSET 112.00 kHz 
OBFIN 5800.0 Hz 
POINT 32768 
FREQU 5405.4 Hz 
SCANS 640 
ACQTM 3.031 sec 
PO 3.969 sec 
PWl 4.9 us 
IRNUC IH 
CTEMP 23.8 C 
SLVNT C0CL3 
EXREF 5.54 ppm 
BF 0.16 Hz 
RGAIN 22 
OPERATOR 



17b 17a 

16 »v H 
18 19 

JlO 12 J l 4 

1 3 5 7 9 11 13 15 
20^ \ 2 i 

I22 
23 

25 

24b 24a 

Carbon (̂ ^C) chemical shifts 

1 2 3 4 5 

8(ppm) 25.7 131.2 124.4 26.6 33.7, 33.6*. 

6 7 8 9 

8(ppm) 152.5, 152.4* 46.8 32.8, 32.7* 123.3 

10 11 12 13 14 

8(ppm) 135.2 39.8 26.7 124.4 131.2 

15 16 17 18 19 

5(ppm) 25.7 17.7 108.6* 16.2 17.7 

20 21 22 

8(ppm) 30.9, 30.8* 34.4, 34.3* 38.0, 37.9* 

23 24 25 

5(ppm) 145.0, 144.8* 112.4, 112.2* 20.4, 20.0* 

*H and *"*C chemical shifts are in ppm using residual C H C I 3 as an 
internal reference (7.25 and 77.0 ppm for *H and C respectively. 
Numbering shown in displayed formulae. 
Chemical shifts labelled * are due to the presence of diastereoisomers. 
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HBI 
GC RI(DBi) 
Origiii 
Cone. 
Quantity 
Purity 
Date collected 

C 2 5 : 5 

2201 
Haslea ostrearia 
22 ng g"*(diy wt) 
< 1.0 mg 
98% (by GC) 
18/10/88 

Characterisation techniques, 
Epoxidation and ^HNMR 
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GC RlCDBl) 
Origin 
Cone. 
Quantity 
Piuity 
Date collected 

C 2 5 : 6 

2248 
Haslea ostrearia 
77 îg g"̂  (dry wt) 
6.0 mg 
99% (by GC) 
18/10/88 

Characterisation techniques, 
Epoxidation and & *^C NMR 



C25:6 RI 2248 (DBI) 
Haslea ostrearia 

16 17 18 19 

L J J l O 12 J l 4 

I 3 5 T 7 9 11 13 15 

2 0 \ •>> 

Purity : >98%(byGC) 
Quantity : 3.0 tng 
Solvent : CDCI3 

^ 2 1 

24b 24a 

Proton (*H) chemical shifts (multiplicities, integration) 

1 , 15, 16, 17, 18, 19 
8(ppm) 1.5-1.7 (s, 18H) 

3, 5, 9, 13 4 
5.05 - 5.13 (br, m, 2H) 2.70 (t, 2H)-

7, 8,11,12,21 
5(ppm) 1.96-2.18 (m,9H) 

9, 13 23 
5.07, 5.08 (br, m, 2H) 6.35 (dd, IH) 

24a 
5(ppm) 5.19 (d, IH) 

24b 25 
5.03 (d, IH) 4.98 (br, s, 2H) 

Proton coupling constants 

J H 4 - H 3 J H 4 - H 5 H-23 

J(Hz) -6.8 6.8 Jtrans =17.5 

Jcis =10.9 
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D D S E T 

3 . V N T CDCL3 24b 24a 

270 .05 MHi 
112.00 kHz 
5800.0 Hz 

32766 
5'iOi5..; H: 

16 
3.031 s e c 
3 .959 s e c 

4 .9 us 

9 c 

,26 ppm 
,16 Hz 



16 17 18 19 

^ J l O 12 J l 4 

1 3 5 7 9 11 13 15 

20^ \ 2 1 

I22 
23 

25 

24b 24a 

Carbon (*^C) chemical shifts 

1 2 3 4 5 

8(ppm) 25.6 131.2 124.3 39.8 124.3 

6 7 8 9 

8(ppn:) 135.1 49.1 32.2 124.3 

10 11 12 13 14 

5(ppm) 136.3 26.7 26.7 124.3 131.2 

15 16 17 18 19 

5(ppm) 25.6 17.7 12.1 16.2 17.7 

20 21 22 23 24 

5(ppm) 32.2 32.2 146.9 139.0 113.0 

2 5 

5(ppm) 115.4 

*H and '"'C chemical shifts are in ppm using residual CHCI3 as au 
internal reference (7 .25 and 77.0 ppm for ' H and '^C respec lively. 
Numbering shown in displayed formulae. 
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Structural Determination of a Highly Branched C25 Sedimentary Isoprenoid Biomarker by 
NMR Spectroscopy and Mass Spectrometry 
Simon T. Belt, David A. Cooke, Simon J . Hird and Steve Rowland 
Petroleum and Environmental Geochemistry Group, Department of Environmental Sciences, University of Plymouth, 
Drake Circus, Plymouth, Devon, UK PL4 8AA 

T h e C25 d i e n e 2 ,6 ,10 , l 4 - t e t ramethv l -7 - (3 -methy lpenM-eny t )pen tadec -5 -ene h a s b e e n isolated f rom benth ic s e d i m e n t s 
and c h a r a c t e r i s e d by a n d ^^C N M R s p e c t r o s c o p y together wi th m a s s spec t romet ry . 

Polyunsaturated lipids found in sediments and sedimentary 
rocks have proved to be extremely valuable tools for the 
determination of palaeoseawater surface temperatures and 
thus for palaeoclimatic reconstruction. '-^ Despite this, a 
complete structural analysis {i.e. beyond the parent skele-
ton)5-7 of the abundant and widespread polyunsaturated 
highly branched isoprenoid hydrocarbons found in sediments^ 
has been confined to a relatively few examples.®-"* The recent 
discovery that .these highly branched isoprenoids are biosyn-
thesised by a restricted number of diatomaceous a lgae" is 
likely to increase their value as 'biomarker' c o m p o u n d s . [ n 
this communication, we describe the detailed structural 
characterisation of a widely occurring highly branched isopre­
noid C25 diene I using N M R spectroscopy and mass spec­
trometry. Compound I is a colourless oil that was isolated 
from recent benthic sediments of the Caspian Sea by solvent 
extraction, column chromatography and Argentation T L C . ^ 
Initial identification of a highly branched C25 diene structure 
came from the E I mass spectrum (M+ = 348), which showed 
two degrees of unsaturation, together with its low R l 2079 
( D B l ) . Further, the position of the T branch in the isoprenoid 
chain was located by hydrogenation of I to a C25 alkane which 
co-chromatographed ( G C ) with previously synthesised 
2,6,10,14-tetramethyl-7-(3-methylpentyl)peniadccane'' on 
three phases ( D B l , D B S and D B - w a x ) . Having established 
the parent structure, the locations of the two double bonds 
needed to be established. 

Sufficient 1 {ca. 5 mg) was obtained from a bulk sediment 
extraction for ' H and '^c N M R spectroscopic analysis.t T h e 
fully proton decoupled ^^C spectrum shows a total of 25 
resonances with four alkenic and 21 aliphatic type carbons as 
expected. Analysis via the D E P T sequence reveals the 
presence of seven methyl, ten methylene, seven mcthine and a 
single quaternary carbon (C -6 ) consistent with structure 1 
(amongst others), while the observation of a methylene 
carbon in the alkenic region (6 112.3) confirms the presence of 
a double bond in a terminal position. The ' H spectrum of I 
consists of resonances associated with alkenic, allylic and 
aliphatic protons. T h e most conspicuous of these arc the three 
sets of resonances at 6 5.65, 4.93,and 4.89, which arise from a 
vinyl (-C2H3) functionality (F ig . 1). G i v e n the established C25 

H-24a.b 

H-5 
H-23 

—I 1 1—-1 1 1 1 1 1 1 1 
5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 

5 
Fig. 1 >H spectrum showing the resonances due to the 2 alkenic 
functions in I. The peak marked X is due to an impurity. 

isoprenoid skeleton, it is clear that this double bond must be 
located ai C-24 . Proton I-I-23 appears as a low field seven line 
multiplet due to a trans coupling to H-24a (17 H z ) , a cis 
coupling to H-24b (10 H z ) and an additional vicinal coupling 
to H-22 (8 H z ) . Th is latter coupling to a single allylic H-22 
proton is further verification of the assignment of the first 
double bond. The allylic H-22 proton itself appears as a 
multiplet at 6 2.08 due to couplings to H-23, H-21 and H-25. 
Th is assignment was based upon the following decoupling 
experiments. Primari ly, when the resonance at 6 2.08 was 
irradiated, the seven line multiplet associated with H-23 
collapsed to a doublet of doublets due to the H-24a and H-24b 
couplings. Similarly, when a reciprocal irradiation was carried 
out at 6 5.65, one,of the couplings at 6 2.08 was eliminated. 
T h e irradiation of H-22 also resuited in the transformation of 
the doublet at 6 0.95 to a singlet, allowing assignirient of H-25. 
T h e only singlet in the spectrum is found at 6 l;42 and arises 
due to H-17. 'The remaining methyl protons (H -18 , -H - ( l , 16 ) , 
H-(15,19)l show couplings to the neighbouring methine 
protons and appear as doublets in the region 6 0.8-0.9. 

Further analysis of the ' H spectrum demonstrates the 
presence of an additional alkenic proton (H-5) which appears 
as a triplet due to an allylic methylene coupling (H -4 ) . T h e 
absence of a proton on the remaining alkenic carbon (C -6 ) is 
consistent with the observation of a single quaternary carbon 
in the ^^C spectrum. T h e assignment of the H-4 allylic protons 
was made- by irradiating H-5 and observing the change in 
multiplicity at 6 1.99 from a quartet to a triplet.-Similarly, 
irradiation at 6 1.99 resulted in the observation of a singlet for 
the H-5 resonance. A t this stage, the structural data described 
for the second double bond position was consistent with six 

292/1(2) 235(10) 
2087(15) 

266(17) 

309P) 

253(6) 

339(15) 
.--281(8) 

[100)43 

Fig. 2 Fragmentation pathways observed from the mass spectra of 
and Its bis-cpoxidation product. ' 



2078 J . C H E M . S O C , C H E M . C O M M U N . , I 9 9 4 

M.=:282 

142: B 

H 2 C O 

A - H j O - * 180 

O H C B - C O 114 

Scheme 1 Reagents and conditions: 0.5 mmol d m - ^ ( C H 2 Q 2 ) . O3 flow 
rate 5 cm^ m i n " ' , - 7 0 ' ' C 

other C25 diene structural isomers. However , by inspection of 
these, it could be seen that structure 1 was the only isomer that 
contained a total of four allylic methylene or methine protons 
(H -22 , H-4, H-7) in agreement with the integration of these 
proton resonances. F r o m this, it is possible to assign a single 
structure for compound I. T h e allylic proton located at the 
T -branch (H-7 ) occurs as a multiplet at 6 1.8 with coiiplings to 
H-20 and H-8. T h e corresponding carbon resonance is shifted 
to significantly higher frequency (at least 10 ppm, identified 
via >H- '3C C O S Y compared with the other sp^ hybridised 
carbons. • " . 

Addi t ional confirmation of structure 1 has been achieved 
via ozonolysis and epoxidation in conjunction with mass 
spectrometry. Ozonolysis of 1 yields the aldehyde and ketone 
products as shown in Scheme 1, while F ig . 2 demonstrates how 
epoxidation of the parent diene can be monitored conve­
niently by mass spectrometry. 

W e acknowledge D r Roger Evens . for obtaining the N M R 
spectra, M r R. Srodzinski for help with the M S and M-Scan 
L t d for provision of the sediment samples. 
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Footnotes w 
t Selected NMR data for I at 270 M H z for >H in CDCI3. >H a n d . " C . 
Number ing shown in displayed formula. Missing integrations due to 
overlap. >H: 6 5.65 (ddd . I H , JH23-H2A^ iTJiu^-HUt, 10, JH23-H2i8 H z . 
H -23 )4 .93 ( d d , y H 2 4 : > - H 2 J b 2 H z , H - 2 4 a ) . 4 . 8 9 ( d d , H - 2 4 b ) . 5 . 0 8 ( t ; i H , 
y H 5 - H 9 7 H z . H-5 ) . 2.08 ( m . H-22) . 1.99 ( q , ^H^-HS = JH-m = 7 H z . 
H -4 ) . 1.80 ( m , I H . H-7 ) . 1.42 (s . 3 H , H-17) . 0.95 | d , 3 H , yH25-H22 = 
6.5 H z , H-25] , 0.88 (d , 6 H . I6>-H2 = 4.5 H z . H ( l . 1 6 ) ) . 0 85 [d. 6 H . 
-'HIS.ISUH.J = 4.5 H z . H ( l 5 . 1 9 ) J , 0.82 (d , 3 H . A „ a . H . o = 6.5 H z . H-18) : 
' - ^ C { ' H } . D E P T a n d > H - ' 3 C C O S Y : 6 1 4 5 . 0 ( C - 2 3 ) . 1 3 6 . 3 ( 0 - 6 ) , 126.3 
( C - 5 ) . 112 .3 ' (C -24 ) . 49.3 ( C - 7 ) . 37.8 ( C - 2 2 ) : 25.5 ( C - 4 ) . 22.5-22.7 
( C - ( l . 1 6 . 1 5 , 1 9 ) ) . 20.5 ( C - 2 5 ) . 1 9 . 9 ( 0 - 1 8 ) , 11.3 ( 0 - 1 7 ) . 
i Conditions for epoxidation: 37.5 MJnoI M C P B A , 6.25 \imo\ I in 0.25 
cm3 C H z Q z , 25 * 0 , 90 h. 
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