
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

01 University of Plymouth Research Outputs University of Plymouth Research Outputs

2019-10

Enhancing Data Security in Cloud using

Random Pattern Fragmentation and a

Distributed NoSQL Database

Santos, NL

http://hdl.handle.net/10026.1/17145

10.1109/smc.2019.8914454

2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)

IEEE

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

�

Abstract� The cloud computing model has become very

popular among users, as it has proven to be a cost-effective

solution to store and process data, thanks to recent

advancements in virtualization and distributed computing.

Nevertheless, in the cloud environment, the user entrusts the

safekeeping of its data entirely to the provider, which introduces

the problem of how secure such data is and whether its integrity

has been maintained. This paper proposes an approach to the

data security in cloud by utilizing a random pattern

fragmentation algorithm and combining it with a distributed

NoSQL database. This not only increases the security of the data

by storing it in different nodes and scramble all the bytes, but

also allows the user to implement an alternative method of

securing data. The performance of the approach is compared to

other approaches, along with AES 256 encryption. Results

indicate a significant performance improvement over

encryption, highlighting the capabilities of this method for cloud

stored data, as it creates a layer of protection without additional

overhead.

I. INTRODUCTION

The paradigm of cloud computing has been well received
by different communities, as its users are able to reduce costs
associated with storage, maintenance, computing power, and
focus on the development [1]. Despite the many benefits
brought by this technology, many threats have also emerged.
Cloud data centres are increasingly becoming targets of attacks
not only from outside attackers, but also malicious inside users
[2]. What is more, the cloud provider is responsible for both
management and safekeeping of the user data and, in most
cases, does not disclose such procedures to its users [3-5].
Encryption is widely used to secure the data in the cloud,
however, encryption algorithms expose data once they are
compromised [6], not to mention the encryption process adds
overhead, rendering this approach less appealing for data
driven environments, such as big data or internet of things
[7][8]. This paper approaches the problem by proposing the
use of a fragmentation algorithm, combined with a distributed
NoSQL (Not only SQL) database to secure data stored in the
cloud. The data is fragmented into chunks, which are
scrambled and stored in the database, which is also distributed
across different nodes. This provides a faster alternative to
secure data in the cloud and this distributed approach allows
the data to be processed simultaneously, taking advantage of
the high resources offered by cloud computing and thus
facilitating its adoption in this environment. Scenarios suitable
for the proposed method lie mainly on environments where

N. L. Santos is with the School of Computing, Electronics and

Mathematics, University of Plymouth, Plymouth, PL4 8AA, United

Kingdom (email: nelson.santos@plymouth.ac.uk)

B. Ghita is with the Centre for Security, Communications and Network
Research, University of Plymouth, Plymouth, PL4 8AA, United Kingdom

(email: bogdan.ghita@plymouth.ac.uk)

speed is paramount and the client resources are limited. This
includes mobile cloud computing, internet of things (IoT),
including medical devices that compose a wireless body area
network [9], as resources such as battery power, processor
speed and memory capabilities, affect greatly the capabilities
of the device. Another area of application for the proposed
method would include backup and storage of data in public
clouds, where the provider is entrusted with the safeguarding
of the data, without disclosing its procedures to the client [5].
The data will reside in different nodes and, in the unlikely
event the cloud gets compromised, attackers would not be able
to reconstruct the data even if the attacker is able to access all
the database nodes. The method proposed fits in the bitwise
category, as described by [10], in which the method can be
applied to any data type, increasing its usability and scenarios
of application.

The paper will start by analysing the related work
concerning data security on the cloud, followed by a detailed
description of the proposed method. Afterwards, the proposed
method will be compared to similar approaches with regards
to performance. Finally, the results will be presented and
discussed, to increase the awareness of the benefits and
drawbacks of using alternative approaches to encryption to
secure data in the cloud.

II. RELATED WORK

A. Data Anonymization

One of the many approaches evaluated by the research
community to secure data in the cloud revolves around
anonymization of stored data. A review of various well-
known anonymization algorithms identified that K-anonymity
prevents linkage between records by generating large
equivalence classes; however, if records of the same class have
similar values on a sensitive attribute, an attacker can identify
an individual [11]. L-Diversity, although overcoming this
drawback, proved to be difficult to achieve and insufficient in
preventing the disclosure of attributes. To overcome this, t-
closeness was proposed, however the amount of useful
information that can be extracted after applying it is very
limited.

A publication by Goswami and Madan [12] compared and
contrasted different techniques using Map Reduce for their
advantages and disadvantages. Such techniques included [13],
which proposed a two-phase top-down specialization using K-

G. L. Masala is with the School of Computing, Mathematics and Digital
Technology of the Manchester Metropolitan University, Manchester, M15

6BH, United Kingdom (email:g.masala@mmu.ac.uk)

��������	
����

�������
��
�����
����	
������
�������

���	���������
���
�
�����������
��
��
��������

Nelson L. Santos, Bogdan Ghita, Giovanni L. Masala

2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)
Bari, Italy. October 6-9, 2019

978-1-7281-4569-3/19/$31.00 ©2019 IEEE 3735

Authorized licensed use limited to: Plymouth University. Downloaded on May 11,2021 at 21:27:00 UTC from IEEE Xplore. Restrictions apply.

anonymity that used the full capability of MapReduce for data
anonymization. However, according to the authors [12], it was
susceptible to overhead errors due to actions such as splitting
and key-value pair sorting. Another investigated method was
[14], which proposed MapReduce with optimal balancing
scheduling anonymization that improved the data locality
problem in map reduce. Nevertheless, beyond its security
issues, the method proved challenging to apply on a big data
environment. The authors of [15] also proposed a top down
specialization using MapReduce, including a more accuracy
constraint MapReduce framework for data anonymization, but
the proposed method had reduced extensibility and fault
tolerance.

Furthermore, [16] replaced location coordinates with
semantic categories, a technique known as semantic labelling,
to achieve data anonymization; this is effective but can only be
used in locations that can be mapped to semantic vocabulary.
In addition, the categories needed to be decided in advanced
and without the possibility of adding categories during runtime
or changing existing categories in real time.

B. Encryption

When addressing the security, trust and privacy of data in

cloud computing, the most common approach is the use of

encryption [2]. Dahya and Rani [17] combined DES and AES

using RSA to increase the protection of sensitive data

(username and password) in the cloud using symmetric tokens.

Similarly, [18] proposes a Hybrid Cryptographic System that

combines symmetric and asymmetric encryption, along with

hashing and salting techniques at various levels to protect data

in the cloud. However, using such high number of encryption

mechanisms affects the efficiency of the system. Furthermore,

their current implementation does not support multi cloud

environments or any recovery features that would prevent data

loss. Potey, Dhote and Sharma [19] proposed the use of full

homomorphic encryption in the cloud in order to allow users

to compute their data, residing on a Dynamo DB, in a public

cloud whilst encrypted. Despite this advances, homomorphic

encryption algorithms, similar to symmetric algorithms, add

unwanted overhead and consume vast resources. What is

more, there is also the need to evolve current querying

algorithms under the full homomorphic encryption scheme

[19]. Correspondingly, [20] proposes a scheme for data storage

by combining symmetric encryption and erasure codes.

Despite being well researched and widely used, symmetric

algorithms require the exchanging of the secret key [21],

which, if captured, would render the mechanism ineffective.

Additionally, encryption adds unwanted complexity

computing overhead, hindering therefore its use on

applications with limited resources, such as mobile phones

[22] or internet of things, where it would impact the CPU and

memory usage, therefore dramatically reduce battery life.

From a slightly different perspective, environments where

speed is paramount, such as big data or real-time applications,

are also affected by encryption as the client cannot run queries

on encrypted data [23]. Even with the existence of

homomorphic encryption, which allows encrypted data to be

processed, the large key size and low calculation efficiency,

hinders its practicality in cloud computing [24][25].

C. Data Fragmentation

Data fragmentation as a concept can be found in the

literature as far back as the late 70s [26]. It has proven to ensure

data security at much lower costs allowing multiple fragments

to be accessed simultaneously by exploiting concepts in

parallel computing, [23]. However, its adoption is yet to be

widespread [10], as it was mainly adopted in relational

databases [27, 28] and multi-cloud architectures [29]. Kapusta

and Memmi [10], provide a wide range survey of different data

protection mechanism using fragmentation, where the authors

categorize different approaches into bitwise and structure wise

fragmentations. In [30], the authors analyse the performance

of different data fragmentation algorithm and contrasts with

the use of encryption. The techniques include a predefined

fragmentation, a random pattern fragmentation and a

combination of random pattern fragmentation with AES

encryption. Results from that research indicated a trade-off

between performance and security and offered a range of

environments where the mechanism could be applied

effectively. However, the evaluated mechanisms did not

provide any means of data management, not to mention the

research was limited to a single instance in the cloud, creating

therefore a single point of failure.

In [31], the authors propose a fragmentation and dispersal

technique of cypher texts obtained using block ciphers.

Similarly, [6] combined different encryption algorithms with

a distribution system, which distributes a database across

different clouds, based on the level of encryption applied.

Bahrami and Singhal proposed a lightweight method that

allows mobile clients to store .JPEG images on multiple

clouds [32]. In their approach, the data is scrambled using a

pseudo-random permutation based on the chaos system, but

the mechanism can only be applied for jpeg image files and

does not work with multiple file types. Some authors

implemented a database in addition of a fragmentation

technique to add more management to the data. For instance,

[33] introduces a distributed MongoDB database to store the

fragmented data. Similarly, [34], demonstrates a solution,

where the data is randomly fragmented before being stored in

a NoSQL database. However, the NoSQL database proposed

by the author was hosted on a single instance, inducing

therefore the problem of a single point of failure.
This work will introduce a combination of the random

pattern fragmentation algorithm and an Apache Cassandra
database [35], where the objective is to split the data into
chunks and utilize the database not only to add management to
the data, but also add a layer of security as the fragmented data
stored on it, will be distributed across different nodes.

III. METHODOLOGY

As mentioned previously, this paper aims to increase the

security of cloud stored data by employing data fragmentation

and a distributed database. The method aims to identify an

alternative data security solution for cloud computing, where

the data is divided into multiple chunks and scrambled into

split files. Those split files, in turn, are inserted into an Apache

Cassandra database, which is distributed across multiple nodes

(virtual instances in the cloud). This technique allows the data

to be dispersed across and in the events a node gets

3736

Authorized licensed use limited to: Plymouth University. Downloaded on May 11,2021 at 21:27:00 UTC from IEEE Xplore. Restrictions apply.

compromised, the attacker would not gain complete access to

the data. Furthermore, in the unlikely event all nodes get

compromised, the attacker would only be able to reconstruct

the data with either the pattern key stored in the client, or using

brute force, which would take considerable time to be

reconstructed. Moreover, the proposed method also allows for

the nodes to be stored in different cloud providers, increasing

significantly the security of the data.

A. Random Pattern Fragmentation (RPF)

The random pattern fragmentation algorithm, as seen in

figure 1, splits of the original file into N chunks determined

by the users. The chunks are then scrambled in a random order

and inserted into special files (split files) that contain

metadata, of what is being stored, such as extension and size.

The number of split files is also determined by the user and

the chunks are serialized into arrays of raw bytes. Finally, the

split files are then sent to the database, where each split file is

saved as a row in the table. Unlike other related approaches,

such as [32] and [36], the proposed method does not track the

header and footer of the file, nor it adds padding to chunks to

ensure they are all the same size. This is due to the unwanted

performance overhead that both practices introduce. Rather,

the proposed method relies on a combination of the metadata

in the split file and the order of the pattern stored in the client

machine, to determine the correct order of the chunks. It is

also important to note that all communications between the

client machine and the database occur via a virtual private

network (VPN), encrypting therefore all the data in traffic.

Fig.1 Proposed random pattern fragmentation algorithm during the
fragmentation stage.

During the reconstruction stage, as seen in figure 2, the
database is queried on the metadata held on the split file. The
split files are then downloaded in the client machine, where the
serialized chunks are aligned and re-organized based on the
pattern stored in the client machine and the metadata that each
split file contains. This process includes creating a dictionary
datatype containing the unique id assigned to the chunk and
the raw bytes containing the data. Once in the correct order,
the chunks are then converted to a byte array and de-serialized
and the original file is stored in the client device. Similar to the
previous stage, all communications are secured through a
VPN.

Fig 2. Proposed Random Pattern Fragmentation method in the
reconstruction stage

B. Cassandra Distributed Database

Apache Cassandra is an open source NoSQL database that

stores and handles large data on commodity servers, whilst

maintaining its service availability high without any single

point of failure [37]. Cassandra is a wide column store, which

combines a key-value and tabular database management

systems and consists of a number of nodes that communicate

in a peer-to-peer fashion, without a master node. Within the

database, distribution is performed using an internal

component named partitioner, a hashing mechanism that

computers a numerical token on the primary key of a table

row, and assigns it to a node in the cluster. The database is

natively distributed, allowing the addition of nodes or

datacentres with minimal downtime. This built-for-scale

architecture allows the database to handle large amounts of

data and concurrent operations. Such factors, along with its

support of multiple data types, led to Cassandra being the

database of choice for this project.

In the proposed approach, the database will store the split

files, which contain the chunks in raw bytes and their

metadata; when the user selects the desired number of split

files, the same number of tables is automatically created to

store them. The process of the insertion into the database can

be described as follows:

� The user describes the desired number of split files

and a corresponding number of tables is created

� When the client program completes the fragmentation

and has the split files ready for upload, separate

threads are created to handle the insertion into the

database concurrently.

� The split files are inserted and the chunks (in byte

arrays) are stored as Binary Large Objects (BLOBs).

For the download of the split files, the steps would consist of:

� A query with the details of the file is created and sent

to the database

� For each split file described by the client, a separate

thread is created to handle the download of all the

split files concurrently

3737

Authorized licensed use limited to: Plymouth University. Downloaded on May 11,2021 at 21:27:00 UTC from IEEE Xplore. Restrictions apply.

� When all the files are downloaded from the database

the connection is closed.

IV. EXPERIMENT AND RESULTS

For the experiment, a dataset of four datatypes (.bmp,

.jpeg, .pdf and .docx) is crated, with each file containing

around 100 KB in size. Despite the user having the choice of

selecting different chunk sizes and number of split files, for the

purpose of the experiment, all the data was gathered with 1000

byte chunks and 2 split files. A Bitnami Cassandra stack [38],

was launched on a Microsoft Azure [39] infrastructure,

containing three Standard D1 v2 virtual machines, with 1

VCPU and 3.5 GB of RAM, hosting Linux Ubuntu Server

16.04 LTs [40]. To secure the connection between the client

program and the database nodes, a Virtual Private Network

[41] is used. The tables were created in advance of the

experiment, where a user was assigned two tables,

representing the chosen number of split files. This method was

preferred as a latency was identified when creating a new table,

due to all the different components responsible for data

distribution and replication are being created/synchronized

across all nodes. The data stored in the table included the name

of the user, the file name and extension, along with a serialized

blob (Binary Large Object) of the split file, containing the

randomized chunks inside. After chunks have been created,

randomized, the split files are created and inserted to the

database asynchronously, with each file having a unique

connection to the database and accessing its corresponding

table. Similarly, to reconstruct the file, the database is accessed

asynchronously and the split files are obtained simultaneously,

then combined and reorganized according to the pattern key

stored in the client machine.

To compare the results, a program was created using the

PyCryptodome [42] library to perform encryption and

decryption functions in the same dataset files using the

Advanced Encryption Standard (AES) with 256 bit blocks. A

single encrypted file was uploaded to a virtual machine with

similar specifications as a single Cassandra node, using the

Secure Copy Protocol [43]. Afterwards, the same file was

downloaded and decrypted by the program, with the

downloaded file being saved at a directory specified by the

user.

Additionally, the method proposed by [34], using an

Apache CouchDB database [44] with random pattern

fragmentation was also analysed, given the similarities to the

proposed approach, when compared to other methods in the

literature review. In this approach, the file was fragmented,

shuffled and inserted into split files. Each document

represented a split file and it was uploaded accordingly. In the

reconstructing stage, the documents were retrieved and the

split file rebuilt into chunks and rearranged accordingly before

being stored back into the local machine. Finally, a single file

was uploaded in a virtual machine with similar specifications,

using the SCP protocol. This would represent the average time

to send and receive a file from the cloud, without applying any

techniques.

The experiment will consider the total time taken from

processing the initial file, along with fragmenting, inserting to

the database, downloading and reconstructing back the

original file (latency). External factors such as the fluctuations

on the network or CPU cycles will be considered as deviation

on the calculations. In contrast, the latency from processing the

file, encryption, sending, receiving and decrypting will be

considered for the comparison program. The client device used

had and Intel Core i7-5650U CPU with 16GB of RAM,

running on a 64-bit Windows 10 operating system.

Initial results, shown in figure 3 and table 1, highlight the

significant improvement in latency when using the proposed

method versus its counterparts. The average latency of the

proposed method was around 0.56 seconds. In contrast, the

approach using CouchDB averaged 1.57 seconds, whilst AES

mean latency is 1.6 seconds. The single file upload averaged

1.44 seconds across all data types. The latency does not seem

to vary between file types, with standard deviation values

being 0.02 for Cassandra, 0.01 for the CouchDB and 0.03 for

both the AES encryption and the single file upload. It is

important to notice that for this experiment, as explained

earlier, the time taken to create tables for an individual user

was not taken into account, as they were created in advance.

In fact, the user can submit many files during the session, and

this added latency is only counted at the beginning of the

session and not for each file sent. Nevertheless, it can be seen

on table 1 that on average, the database takes 0.70 seconds to

create both tables that store the split files.

Fig.3 Performance comparison of proposed methods with other approaches

Table 1 Detailed performance comparison of all methods

File

Type

Cassandr

a

(s)

Couch

DB

(s)

AES

(s)

Single

File

(s)

Chunk

Len.

(s)

Table

Creati

on

(Cassa

ndra)

(s)

DOCX 0.57 1.55 1.59

6

1.39 1000 0.72

PDF 0.56 1.56 1.56

1

1.44 1000 0.69

JPEG 0.53 1.57 1.65

1

1.45 1000 0.73

BMP 0.54 N/A 1.60

1

N/A N/A 0.67

MEAN 0.56 1.57 1.60 1.44 1000 0.70

St.

Dev.

0.02 0.01 0.03 0.03 1000 0.02

A significant improvement in performance comes from the

underlying workflow. Given that the file is fragmented,

3738

Authorized licensed use limited to: Plymouth University. Downloaded on May 11,2021 at 21:27:00 UTC from IEEE Xplore. Restrictions apply.

processing is done simultaneously on the split files, either in

the client machine or the database. Such asynchronous

behaviour allows different components to be processed

quicker and more efficiently, unlike encryption, where the

processing is sequential on a block-by-block basis. Moreover,

in [34], despite some asynchronous methods being used, the

database was hosted on a single server, not only restricting the

available resources, but also increasing the risk of total data

loss, as this architecture would represent a single point of

�������	
 �����
�����
 �����������
 ������������
 ����
 ��������
 �

data replication technique that spans across the cluster, which

allows data to be easily recovered, in case a node encounters

any problems.

The proposed method does not aim to replace encryption.

Rather, fragmenting the data and concurrently sending the

fragments into the cloud, provides an alternative to securing

the data in the cloud in a more bespoke manner. As seen in

table 2, random pattern fragmentation provides enough

security without consuming many resources, making it ideal

for usage in environments such as mobile phones, Internet of

Things, or big data, where the devices possess very limited

resources and performance is paramount.

Table 2 Performance and security comparison of all methods

Method Security Performance Suitability

RPF +

Cassandra

Med High Mobile, Big

Data, IoT

RPF +

CouchDB

Med Med Mobile, Big

Data, IoT

AES High Low High Security

Environments

V. CONCLUSION

Cloud data security, privacy and trust has become a crucial

issue that impacts the success of this paradigm. Traditional

encryption mechanisms are not suited for the task of protecting

data in the cloud, as the nature of unstructured vast volume of

data, along with the exponential increase on demand for fast

access to the data, increase the latency and add overhead to the

processing of the data. Similarly, data anonymization

techniques also proved to add unwanted overhead and, in some

scenarios, proved insufficient to fully preserve the privacy of

an individual. We have proposed a method that combines

random pattern fragmentation with a wide-column NoSQL

database. Current results indicate a higher performance when

compared to its counterparts, which implies the usability of the

proposed method in cloud computing, especially in scenarios

with high speed needs and limited resources. A drawback in

the current system lies in the management of the user tables in

the database. The number of split files is predefined at the

beginning and further changes are not allowed at runtime. This

would allow the user to quickly assess the security level of the

data and further distribute or split the data when needed. In

addition, further improvements would need to be done to

increase the usability of the proposed system in environments

that need constant access to the data, or real-time access.

Additionally, one ought to also account for the processing

overheads brought by the proposed method, such as deploying

configurations and starting the VPNs, as well as acquiring

access through firewalls. Future work will also include the

introduction of additional mechanisms of data recovery and

further tests with bigger datasets and an environment

encompassing different cloud providers. With cloud

computing rapidly increasing and the users become more

security-conscious, having a vast array of possibilities to

secure the data not only deters attacks from occurring, but also

drives the evolution of such technologies further.

VI. REFERENCES

[1] M. Bahrami and M. Singhal, "The Role of Cloud Computing
Architecture in Big Data", in Information Granularity, Big Data, and
Computational Intelligence, 8th ed., Pedrycz and S. Chen, Ed. Springer,
2015, pp. 275-295.

[2] Z. Yan, R. Deng and V. Varadharajan, "Cryptography and Data
Security in Cloud Computing", Information Sciences, vol. 387, pp. 53-
55, 2017.

[3] Cloud Security Alliance, "Top Threats to Cloud Computing", CSA,
2010.

[4] P. Kumar, P. Raj and P. Jelciana, "Exploring Data Security Issues and
Solutions in Cloud Computing", Procedia Computer Science, vol. 125,
pp. 691-697, 2018.

[5] R. Hegarty and J. Haggerty, "Extrusion detection of illegal files in
cloud-based systems", International Journal of Space-Based and
Situated Computing, vol. 5, no. 3, p. 150, 2015.

[6] A. Alsirhani, P. Bodorik and S. Sampalli, "Improving Database

Security in Cloud Computing by Fragmentation of Data", 2017

International Conference on Computer and Applications (ICCA), C. J.
Kaufman, Rocky Mountain Research Lab., Boulder, CO, private

communication, May 1995.
[7] G. Manogaran, C. Thota and M. Kumar, "MetaCloudDataStorage

Architecture for Big Data Security in Cloud Computing", Procedia
Computer Science, vol. 87, pp. 128-133, 2016.

[8] M. Potey, C. Dhote and D. Sharma, "Homomorphic Encryption for
Security of Cloud Data", Procedia Computer Science, vol. 79, pp. 175-
181, 2016.

[9] M. Li, W. Lou and K. Ren, "Data security and privacy in wireless body
area networks", IEEE Wireless Communications, vol. 17, no. 1, pp. 51-
58, 2010.

[10] K. Kapusta and G. Memmi, "Data protection by means of fragmentation
in various different distributed storage systems - a
survey", arXiv:1706.05960v1, 2017. [Accessed 14 March 2019].

[11] K. Parmar and V. Shah, "A Review on Data Anonymization in Privacy
Preserving Data Mining", International Journal of Advanced Research
in Computer and Communication Engineering, vol. 5, no. 2, pp.75-
79,2016.Available:
https://www.ijarcce.com/upload/2016/february16/IJARCCE%2016.pd
f. [Accessed 12 April 2019].

[12] P. Goswami and S. Madan, "Privacy preserving data publishing and
data anonymization approaches: A review", 2017 International
Conference on Computing, Communication and Automation (ICCCA),
2017.

[13] Z. Priyanka, K. Nagaraju and Y. Venkateswarlu, "Data Anonymization
Using Map Reduce on Cloud based A Scalable Two-Phase Top-Down
Specialization", International Journal on Recent and Innovation
Trends in Computing and Communication, vol. 2, no. 12, pp. 3879-
3883, 2014. [Accessed 18 April 2019].

[14] R. Sreedhar and D. Umamaheshwari, "Big-Data Processing With
Privacy Preserving Map-Reduce Cloud", International Journal of
Innovative Research in Science, Engineering and Technology, vol. 3,
no. 1, pp. 343-350, 2014. [Accessed 18 April 2019].

[15] M. Balusamy and S. Muthusundari, "Data anonymization through
generalization using map reduce on cloud", Proceedings of IEEE
International Conference on Computer Communication and Systems
ICCCS14, 2014.

3739

Authorized licensed use limited to: Plymouth University. Downloaded on May 11,2021 at 21:27:00 UTC from IEEE Xplore. Restrictions apply.

[16] O. Barak, G. Cohen and E. Toch, "Anonymizing mobility data using
semantic cloaking", Pervasive and Mobile Computing, vol. 28, pp. 102-
112, 2016.

[17] N. Dahiya and S. Rani, "implementing multilevel data security in cloud
computing", International Journal of Advanced Research in Computer
Science, vol. 48, no. 8, pp. 146-152, 2017.

[18] A. Arora, A. Khann, A. Rastogi and A. Argarwal, "Cloud security
ecosystem for data security and privacy", in 2017 7th International
Conference on Cloud Computing, Data Science & Engineering -
Confluence, Noida, India, 2017.

[19] M. Potey, C. Dhote and D. Sharma, "Homomorphic Encryption for
Security of Cloud Data", Procedia Computer Science, vol. 79, pp. 175-
181, 2016

[20] R. Wang, "Research on Data Security Technology Based on Cloud
Storage", Procedia Engineering, vol. 174, pp. 1340-1355, 2017.

[21] A. Bhardwaj, G. Subrahmanyam, V. Avasthi and H. Sastry, "Security
Algorithms for Cloud Computing", Procedia Computer Science, vol.
85, pp. 535-542, 2016.

[22] M. Bahrami and M. Singhal, "A dynamic cloud computing platform for
eHealth systems", 2015 17th International Conference on E-health
Networking, Application & Services (HealthCom), 2015.

[23] H. Dev, T. Sen, M. Basak and M. Ali, "An Approach to Protect the
Privacy of Cloud Data from Data Mining Based Attacks", in 2012 SC
Companion: High Performance Computing, Networking Storage and
Analysis, Salt Lake City, 2012, pp. 1106-1115.

[24] X. Song and Y. Wang, "Homomorphic cloud computing scheme based
on hybrid homomorphic encryption", 2017 3rd IEEE International
Conference on Computer and Communications (ICCC), 2017.

[25] Z. Mahmood and M. Ibrahem, "New Fully Homomorphic Encryption
Scheme Based on Multistage Partial Homomorphic Encryption Applied
in Cloud Computing", 2018 1st Annual International Conference on
Information and Sciences (AiCIS), 2018

[26] A. Shamir, "How to share a secret", Communications of the ACM, vol.
22, no. 11, pp. 612-613, 1979.

[27] T. Hong and J. Ren, "Fragmentation Storage Model: An Efficient
Privacy Protection Technology", 2017 4th International Conference on
Information Science and Control Engineering (ICISCE), 2017.

[28] G. Aggarwal et al., "Two can keep a secret: A distributed architecture
for secure database services", in Proc. CIDR, 2005.

[29] J. Bohli, N. Gruschka, M. Jensen, L. Iacono and N. Marnau, "Security
and Privacy-Enhancing Multicloud Architectures", IEEE Transactions
on Dependable and Secure Computing, vol. 10, no. 4, pp. 212-224,
2013.

[30] N. Santos, S. Lentini, E. Grosso, B. Ghita and G. Masala, "Performance
Analysis of Data Fragmentation Techniques on a Cloud Server"in
Proc, International Journal of Grid and Utility Computing.

[31] K. Kapusta and G. Memmi, "Enhancing Data Protection in a
Distributed Storage Environment Using Structure-Wise Fragmentation
and Dispersal of Encrypted Data", 2018 17th IEEE International
Conference On Trust, Security And Privacy In Computing And
Communications/ 12th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE), 2018.

[32] M. Bahrami and M. Singhal, "A Light-Weight Permutation Based
Method for Data Privacy in Mobile Cloud Computing", in 2015 3rd
IEEE International Conference on Mobile Cloud Computing, Services,
and Engineering, San Francisco, CA, 2015, pp. 189-198.

[33] G. Masala, P. Riu and E. Grosso, "Biometric Authentication and Data
Security in Cloud Computing", in Computer and Network Security
Essentials, K. Daimi, Ed. Detroit: Springer, 2018, pp. 337-353.

[34] N. Santos and G. Masala, "Big Data Security on Cloud Servers", in 11th
International KES Conference on Intelligent Interactive Multimedia:
Systems & Services, Goad Coast, 2018.

[35] "Apache Cassandra", Cassandra.apache.org, 2018. [Online].
Available: http://cassandra.apache.org/. [Accessed: 16- Dec- 2018].

[36] S. Lentini, E. Grosso and G. Masala, "A Comparison of Data
Fragmentation Techniques in Cloud Servers", Advances in Internet,
Data & Web Technologies, pp. 560-571, 2018.

[37] DataStax Academy, "What is Apache Cassandra", DataStax Academy,
2019. [Online]. Available: https://academy.datastax.com/planet-
cassandra/what-is-apache-cassandra. [Accessed: 04- Apr- 2019].

[38] "Bitnami Cassandra Stack for Microsoft Azure", Docs.bitnami.com,
2019.[Online].Available:https://docs.bitnami.com/azure/infrastructure/
cassandra/. [Accessed: 04- Apr- 2019].

[39] Microsoft Inc, "Microsoft Azure Cloud Computing Platform &
Services", Azure.microsoft.com, 2018. [Online]. Available:
https://azure.microsoft.com/en-gb/. [Accessed: 08- Dec- 2018].

[40] "The leading operating system for PCs, IoT devices, servers and the
cloud|Ubuntu", Ubuntu.com,2019.[Online].Available:https://www.ubu
ntu.com/. [Accessed: 04- Apr- 2019].

[41] J. Lawas, A. Vivero and A. Sharma, "Network performance evaluation
of VPN protocols (SSTP and IKEv2)", 2016 Thirteenth International
Conference on Wireless and Optical Communications Networks
(WOCN), 2016. Available: 10.1109/wocn.2016.7759880 [Accessed 4
April 2019].

[42] "AES � PyCryptodome 3.8.1 documentation", PyCryptodome, 2019.
[Online].Available:https://pycryptodome.readthedocs.io/en/latest/src/c
ipher/aes.html. [Accessed: 13- Apr- 2019].

[43] CISCO, "Secure Copy", 2011.

[44] "Apache CouchDB", Couchdb.apache.org, 2019. [Online]. Available:
http://couchdb.apache.org/. [Accessed: 18- Apr- 2019].

3740

Authorized licensed use limited to: Plymouth University. Downloaded on May 11,2021 at 21:27:00 UTC from IEEE Xplore. Restrictions apply.

