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Development and modelling of a Point Source
Integrating Cavity Absorption Meter (PSICAM)

Christophe Jean-Yves Joél Lerebourg

Abstract

The absorption coefficient is a fundamental parameter in understanding the underwater
light field, for solving the Radiative Tranfer Equation and understanding/interpreting remotely
sensed data from the ocean. Measuring the absorption coefficient is particularly complicated in
coastal areas where the optical properties of the water body are the result of a complex mixture
of dissolved and particulate components, but mainly because of the interfering effect that
scattering has upon the measurements. A great variety of in situ instruments and laboratory
techniques have been developed to measure total absorption or the absorption by the various
fractions that constitute the total absorption. They are, however, all affected by scattering and
empirical corrections need to be applied. Among the instruments to measure absorption, a
promising one appeared to be one based on an integrating cavity. Kirk (1995, 1997) outlined the
principle and theory of an absorption meter based on an integrating sphere: a Point Source
Integrating Cavity Absorption Meter (PSICAM). He argued that owing to its design, a PSICAM
would be insensitive to scattering.

A novel Monte Carlo code was written to simulate the behaviour of a PSICAM of
various cavity radiuses. The results of the simulations carried out with this code showed that
such an absorption meter should indeed be unaffected by scattering even with high levels of
scatterers. One important disadvantage deduced from numerical modelling for a PSICAM is its
sensitivity to the reflectivity of the integrating cavity.

Several prototype PSICAMs of increasing quality were built and tested with scattering-
free standard solutions. A major difficulty in the development of the prototype was found to be
the calibration of the integrating sphere reflectivity. A final laboratory instrument made of a
Spectralon sphere was built and tested with artificial and natural water samples containing
different levels of scattering particles and compared with existing in sifu and laboratory
techniques: the ac-9 transmissometer and the filter paper technique for particulate absorption as
well as measurement of Coloured Dissolved Organic Matter. Compared with the ac-9
transmissometer, the PSICAM showed remarkable agreement even for water with very high
content of Suspended Particulate Matter. Very good correlations were obtained when compared
with traditional CDOM measurement. In some cases, significant discrepancies occurred with
filter paper measurements of particulate absorption. From laboratory to in situ experiments the
PSICAM proved to be a reliable instrument assuming that the instrument was regularly and
carefully calibrated. Finally, the PSICAM was deployed during a cruise around the Antarctic
Peninsula where total and dissolved absorption measurements were carried out together with
chlorophyll absorption measurements after extraction in acetone.
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Chapter 1: Introduction

Chapter 1: Introduction

1.1. Why measure light absorption in the
oceans?

Absorption of light is the key factor if we are to understand the behaviour of light under
water. It is of major importance for the understanding of the Radiative Transfer Equation and
for the understanding and interpretation of remotely sensed data of the ocean. Seawater contains
dissolved inorganic salts, dissolved inorganic matter, dissolved gases and a great variety of
suspensions including terrigenous particles, phytoplankton, zooplankton, bacteria and detritus.
Each of the constituents mixed in very varying proportions produce the complex colour of the
oceans. The separation of the coxﬁponents that contribute to absorption has been shown to be
important in estimating water column primary production, in predicting the presence of harmful
algal blooms and in estimating suspended particulate concentration. A major goal for the
understanding of remotely sensed data has been to understand and differentiate the optical
signature of these components of the water column and their relationship to the water leaving
radiance. The interest in studying the optical properties of natural waters has been very much
enhanced since the arrival of space technology into ocean sciences that could provide large
amounts of data, on a regular basis and on various size sca]es,_ of the optical properties of the
ocean. These technologies have :ﬁade a new method for studying the ocean available to the
ocean scientist community and have produced large amounts of data to understand and
interpret. In comparison to the amount of data provided by satellite technology, our
understanding and tools to investigate in situ optical properties was then limited. Various
instruments capable of measuring in situ optical properties of the ocean have been developed in

order to provide ground validation and a better understanding of the satellite data.
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The absorption properties of oceanic provinces, where the impact from land drainage
and sediment resuspension limited, are well documented. In these area referred to as case 1
water where the optical properties are dominated by phytoplankton, algorithms have been
produced to predict phytoplankton concentrations and productivity from satellite imagery. One
area which is less well documented, although easier to reach and to study on a regular basis, is
the coastal area. These waters are referred to as case 2 waters because their optical signature is
the result of a more complex mixture of components: chlorophyll, yellow substances, organic
and inorganic components originating from land drainage and sediment resuspension. One
difficulty in studying these areas is that they are highly changeable in time and space. Another
difficulty in studying the optical properties of these waters and in particular their absorption
properties is that they generally contain high concentrations of scattering particles, which

corrupt the absorption measurements.

1.2. The problem

There are a great variety of ir situ instruments or laboratory techniques that can be used
to measure absorption. Most of them however are moderately or highly sensitive to scattering
by particles. For those techniques, empirical corrections need to be applied for the scattering
effect of particles. Other methods separate the dissolved and particulate fraction of a sample and
measure them with different techniques. In coastal areas or in oceanic regions of high
productivity, it is therefore very difficult to perform an accurate measurement of absorption on a

non-disturbed sample.

One of the biggest challenges in optical oceanography today is to understand the
phenomena and interactions in the highly dynamic coastal region. A recurrent problem in
measuring absorption, particularly in these regions of the ocean as well as in highly productive

oceanic regions, appears to be the interfering effect of scattering. It is towards the development
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and testing of a new method for absorption measurement that the work presented here is
addressed. Kirk (1995, 1997), proposed a design for an absorption meter, which he argued
would be insensitive to scattering. He proposed the construction of an absorption meter whose
sample to measure would be placed in a spherical integrating cavity and illuminated by a central
point source at the centre of the cavity: a Point Source Integrating Cavity Absorption Meter
(PSICAM). The sample to be analysed was to be enclosed in an integrating cavity, so that
measurement of absorption could be made regardless of the level of scattering. With such a
system, the only light losses would be due to absorptiOn. Kirk, (1997) also detailed the optical
theory for a PSICAM. The challenge of building and testing such an instrument was the

inspiration for this PhD programme of research.

The first part of this work is dedicated to a review of the different optically active
components to be found in the marine system, and how and in what proportion they absorb and
scatter light. A review of the different existing techniques either in situ or in the lalboratory to
measure absorption as well as scattering is then presented in order to understand their
advantages and disadvantages. Prior to building a prototype absorption meter, modelling of the
PSICAM was carried out using the theory elaborated by Kirk (1997) for absorbing and non-
scattering solutions and then by means of Monte Carlo simulation to investigate the behaviour
of the instrument with absorbing and scattering solutions. From the observations made from the
modelling experiments, a first basic prototype was built following the advise provided by Kirk
(1997) and tested with standard solutions of known absorption. The following strategy was to
build and test low cost but increasingly sophisticated prototypes with standard solutions. These
prototypes used different materials for the integrating sphere as well as the light source. Once a
prototype was tested and proved efficient with standard non-scattering solution, the final step

consisted of testing the instrument with artificial and natural water samples containing
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scatterers. For the validation of the system with solutions containing scattering particles, the
method chosen was to compare the PSICAM measurements with existing and accepted
techniques, namely the ac-9 transmissometer and the filter paper technique to measure
particulate absorption. The prototype PSICAM was also field tested during an oceanographic

cruise around the Antarctic peninsula.

1.3. The propagation of light underwater

Clearly, a crucial aspect of this work is the behaviour of the underwater light field and
particularly the changes in that behaviour which occur when the light field interacts with
dissolved and particulate material within the water body. There exist two “models” for

describing the propagation of light through a medium: the wave model and the photon model.

o The wave model defines light with a specific wavelength A (nm) and frequency v (Hz or

m’") related by Equation 1-1

=5 (nm)
v

Equation 1-1
where c is the speed of light in the propagation medium concerned.

o The photon model considers light as indivisible particles referred to as quanta or
photons. Thus, a beam of light in air consists of a continuous stream of photons
travelling at ¢=3.10%m.s”. This theory, for example, is the one considered when
modelling light by the Monte Carlo technique.

Thus light is neither a particle nor a wave but both aspects are necessary for the

understanding of light properties. The last part of this chapter will present the basic properties

and their definitions used in marine optics.
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1.3.1. Defining the light field

The light field may be expressed in terms of polar co-ordinates (Figure 1-1) where
° O = the zenith angle (the angle between a given light beam and the upward vertical)

° @ = the azimuth angle (the angle between the vertical plane incorporating the light pencil

and some other specified vertical plane such as the vertical plane of the sun)

-~
-

]
v

Figure 1-1: Angles defining direction within a light field (from Kirk, 1994)

Common quantities defined for use in underwater optics are:

Radiant flux, @ is the time rate of flow of radiant energy. It is expressed in W (J.s1) or

photon.s™.

Radiant intensity, 7 is a measure of the radiant flux per unit solid angle (o) in a specified
direction (Equation 1-2). The radiant intensity of a source in a given direction is the radiant flux
emitted by a point source, in an infinitesimal cone containing the given direction, divided by

that element of solid angle. 7 has the unit of W.st™! or photon.s™ s,



Chapter 1: Introduction

1(1)= dd(4)
dw
Equation 1-2

Radiance, L at a point in space is the radiant flux at that point in a given direction per unit solid
angle per unit area at right angles to the direction of propagation (Figure 1-2, Equation 1-3).
Radiance has a unit of W.m™.sr™" or photon.s'.m?.sr’.

d? o)

L{A,8,p)= —————
( qj) dScosf dw

Equation 1-3

Y
S— > ~— } -
\\ ds dScosV

r_-________—-"

V

Figure 1-2: Definition of radiance (from Kirk, 1994)

Irradiance, E at a point of a surface is the radiant flux incident on an infinitesimal element of
surface, containing the point under consideration, divided by the area of that element (Equation

1-4). E as a unit of W.m™ and is defined as:

E(4)= dL(’l)
ds
Equation 1-4
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Downward irradiance E,, and upward irradiance E,, the values of the irradiance on the
upper and lower faces, respectively, of a horizontal surface (Equation 1-5). Therefore Ey is the
irradiance of the downwelling light and E, the irradiance due to the upwelling light stream.

They both have units of W.m™ or photon.s”.m and are defined as:

E (3)= fn L(4,6, p)cos8 dw
E (1)=- fz” L(4,8, p)cos8 dw

Equation 1-5

The net downward irradiance, E, is the difference between the downward and the upward

irradiance (Equation 1-6).

E(A)=E,(4)- E,(4)
E(/l) = fn L(/1,9,¢) cos@ dow
Equation 1-6
The net downward irradiance is a measure of the net rate of transfer of energy downwards at

that point in the medium.

The scalar irradiance, Ej is the integral of the radiance distribution at a point over all

directions about the point (Equation 1-7).

E,(1)= [ L(1.6,0) do
Equation 1-7
Scalar irradiance is thus a measure of the radiant intensity at a point, which treats radiation from
all directions equally (Equation 1-8). It is sometime useful to divide the scalar irradiance into a
downward and an upward component: the downward scalar irradiance, Egg and the upward

scalar irradiance, Ep,:
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Eos(1)= [ L(1.6,0)dw
Eo ()= [ L(1.6,p)do
Equation 1-8
Scalar irradiance (total, upward and downward) has the same unit as irradiance (W.m? or

photon.s™.m™).

1.3.2. The Apparent Optical Properties

The AOPs depend both on the medium (i.e. on the inherent optical properties, see
section 1.3.3) and on the ambient light field. Therefore, AOPs of a water body can display a
great variation in short period of time if a cloud passes in front of the sun or if the wind changes
the sea surface state. However, observation shows that certain ratios of the AOPs are relatively
insensitive to environmental factors such as sea state. The most commonly used AOPs are

described below.

1.3.2.1. Average cosine
The radiance distribution at a particular point in a medium varies markedly over all
angles. The complete radiance distribution over all zeniths and azimuth angles represents a

large amount of data. These data can be simplified in terms of three average cosines (for

downwelling ﬁd, upwelling :lu, and total light Il, Equation 1-9).

)= 2455
B,(2)= ,‘fo ((i))

Equation 1-9




Chapter 1: Introduction

1.3.2.2. Reflectance

Another way to simplify the radiance distribution over all zenith and azimuth angles is

the irradiance reflectance R(A,z) or Remote Sensing Reflectance Rgs(6,1) (Equation 1-10). The

first one is the ratio of the upward and downward irradiance at a given depth. The latter is

defined as the ratio of the water leaving radiance and the downward irradiance measured below

the surface.
Ry B
E,(1)
T
Equation 1-10
1.3.2.2.1. Vertical Attenuation Coefficient

The vertical attenuation coefficients for downward

(Ku(A), Equation 1-12), net downward (Kg(A), Equation 1-13) and scalar (Ko Equation 1-14)

irradiance as well as for radiance (K(A,0,9), Equation 1-15)

logarithm of these values with depth. They are defined as:

dInE,(A) 1 dE, (1)

(Kq4(A), Equation 1-11), upward

specify the rate of change of the

Ko()=-—4 TTE,Q) 4
Equation 1-11
_dmlEf) 1 dE,(2)
KW=-—7 T EQ) &
Equation 1-12
__dn[E,(1)-E,() _ L d[E,W-E0)
R S Y Y R ) R

Equation 1-13

K,(1)= -2 nE(2) 1 dE(A)

dz E (1)

Equation 1-14

dz
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dinL(i.6,0) 1 dL(1,6,9)
dz L(1.6,9) d
Equation 1-15

1.3.3. The Inherent Optical Properties

The Inherent Optical Properties (IOPs) unlike the AOPs depends only on the

K(1,6,0)=-

characteristics of the water body and not on the structure of the light field (Preisendorfer,
1961). They are intrinsic properties of the water body. There are three IOPs: the absorption
coefficient a(}), the bulk scattering coefficient b(A) that can also be investigated in terms of its
angular distribution (the volume scattering function B(A,0)) and the beam attenuation coefficient

c(A)=a(A)+b(A).

In an aquatic medium, photons can be either absorbed or scattered. Therefore, if we are
to understand the behaviour of solar radiation in an aquatic medium, we have to measure in

which relative proportions water scatters and absorbs light.

Imagining an infinitesimally thin layer illuminated orthogonally by a parallel beam of
monochromatic light (Figure 1-3). The absorption coefficient is the fraction of the incident flux
that is absorbed, divided by the thickness of the layer. The scattering coefficient is the fraction

of the incident flux that is scattered, divided by the thickness of 