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Abstract 
The absorption coefficient is a fundamental parameter in understanding the underwater 

light field, for solving the Radiative Tranfer Equation and understanding/interpreting remotely 
sensed data from the ocean. Measuring the absorption coefficient is particularly complicated in 
coastal areas where the optical properties of the water body are the result of a complex mixture 
of dissolved and particulate components, but mainly because of the interfering effect that 
scattering has upon the measurements. A great variety of in situ instruments and laboratory 
techniques have been developed to measure total absorption or the absorption by the various 
fractions that constitute the total absorption. They are, however, all affected by scattering and 
empirical corrections need to be applied. Among the instruments to measure absorption, a 
promising one appeared to be one based on an integrating cavity. Kirk (1995, 1997) outlined the 
principle and theory of an absorption meter based on an integrating sphere: a Point Source 
Integrating Cavity Absorption Meter (PSICAM). He argued that owing to its design, a PSICAM 
would be insensitive to scattering. 

A novel Monte Carlo code was written to simulate the behaviour of a PSICAM of 
various cavity radiuses. The results of the simulations carried out with this code showed that 
such an absorption meter should indeed be unaffected by scattering even with high levels of 
scatterers. One important disadvantage deduced from numerical modelling for a PSICAM is its 
sensitivity to the reflectivity of the integrating cavity. 

Several prototype PSICAMs of increasing quality were built and tested with scattering-
free standard solutions. A major difficulty in the development of the prototype was found to be 
the calibration of the integrating sphere reflectivity. A final laboratory instrument made of a 
Spectralon sphere was built and tested with artificial and natural water samples containing 
different levels of scattering particles and compared with existing in situ and laboratory 
techniques: the ac-9 transmissometer and the filter paper technique for particulate absorption as 
well as measurement of Coloured Dissolved Organic Matter. Compared with the ac-9 
U^ansmissometer, the PSICAM showed remarkable agreement even for water with very high 
content of Suspended Particulate Matter. Very good correlations were obtained when compared 
with traditional CDOM measurement. In some cases, significant discrepancies occurred with 
filter paper measurements of particulate absorption. From laboratory to in situ experiments the 
PSICAM proved to be a reliable instrument assuming that the instrument was regularly and 
carefully calibrated. Finally, the PSICAM was deployed during a cruise around the Antarctic 
Peninsula where total and dissolved absorption measurements were carried out together with 
chlorophyll absorption measurements af^er extraction in acetone. 



AUTHOR'S DECLARATION 

At no time during the registration for the degree of Doctor of Philosophy has the author 

been registered for any other University award. 

This study was financed with the aid of a studentship from Qinetiq (formerly DERA) 

and carried out in collaboration with the University of Plymouth. 

A variety of internal seminars were attended. Seminars were given by researchers from 

the Institute of Marine Studies and from external institutions. 

The material in this thesis has been presented by the author at several external 

conferences. 

Presentation and conferences attended: 

Development of a Point Source Integrating Cavity Absorption Meter. Applied Optics and Opto-
Electronics Conference. The Applied Optics Division of the Institute of Physics, 
Loughborough. 

Experiments with a Point Source Integrating Cavity Absorption Meter (J). Applied Optics and 
Opto-Electronics Conference. The Applied Optics Division of the Institute of Physics, 
London. 

Experiments with a Point Source Integrating Cavity Absorption Meter (2). Challenger Century 
Conference. Plymouth 

Publication: 

C.J.Y. Lerebourg, D.A. Pilgrim, G.D. Ludbrook, R. Neal., 2002. Development of a Point 
Source Integrating Cavity Absorption Meter. Journal of Optics A: Pure and Applied Optics, 
4, 56-65. 

Date 



Acknowledgement 

This thesis would never have been completed without the help and support of many 

individuals and organisations. Among these are my supervisors Dr Derek Pilgrim, Dr. Geoffrey 

Ludbrook and Ronald Neal who help me throughout this PhD. The practical support offered by 

the technicians and workshop staff of the Institute of Marine Studies, in particular by Steve 

Bennetts, has also been crucial to the success of this project. 

I would like to thank the Plymouth Marine Laboratory to let me use their facilities for 

the validation of the instrument and giving me the opportunity to use up to date instrumentation. 

In particular, I would like to thank Gerald Moore for the help he gave me throughout the PhD, 

James Fishwick for being there when I needed help and Victor Martines for the endless 

explanations that I asked him about particulate absorption measurement. 

I would also like to thank Qinetiq (formerly DERA), the organisation that has sponsored 

this project for the last three years, so enabling me to undertake this thesis. Once again Geoffrey 

Ludbrook for inviting me to field test the PSICAM on a research cruise in the Antarctic. 

Eu estava pensando aprender muita coisa em tres anos de doutorado e de fato eu aprendi 

muito. Mas a ultima coisa que eu pensava aprender era falar portugues e mais portugues do 

Brasil. Por isso quero agradecer a minha Claudinha pelo o apoio no momento mais difficil dessa 

tese e a toda a comunidade Brasileira de Plymouth. 

Finalement et non les moindres, je tiens k remercier tr^s chaleureusement ma famille: 

mon p^re, ma mere ma soeur et ma grand-mere pour leur soutien moral et financier durant 

toutes ces annees. 

ni 



Table of contents 

Abstract " 

Acknowledgement iii 

Table of contents iv 

C H A P T E R 1: I N T R O D U C T I O N I 

1.1. W H Y M E A S U R E L I G H T A B S O R P T I O N I N . T H E O C E A N S ? l 

1.2. T H E P R O B L E M 2 

1.3. T H E P R O P A G A T I O N O F L I G H T U N D E R W A T E R 4 

1.3.1. Defining the light field. 5 

1.3.2. The Apparent Optical Properties 8 

1.3.2.1. Average cosine 8 

1.3.2.2. Rencctance 9 

1.3.3. The Inherent Optical Properties 10 

1.3.4. Radiative Transfer Theory 13 

1.3.5. Summary 15 

C H A P T E R 2 : T H E A B S O R P T I O N A N D S C A T T E R I N G O F U N D E R W A T E R L I G H T 1 6 

2.1. T H E A B S O R B I N G C O M P O N E N T S 16 

2.1.1. Water 17 

2.1.2. Yellow substance (GelbstofO -2̂  

2.1.3. Organic and inorganic detritus (Tripton) 22 

2.1.4. Phytoplankton 24 

2.1.5. Total absorption coefficient bio-optical models 26 

2.2. T H E S C A T T E R I N G O F U N D E R W A T E R L I G H T 28 

2.2.1. The scattering process 28 

2.2.1.1. Rayleigh scattering 29 

2.2.1.2. Large scale scattering - Mie Scattering 30 

2.2.2. The scattering components 37 

2.2.2.1. Pure water and pure sea water 38 

2.2.2.2. Suspended particles 40 

2.2.2.3. Scattering by bubbles 51 

2.2.3. Conclusion 53 

C H A P T E R 3 : T H E M E A S U R E M E N T O F A B S O R P T I O N A N D S C A T T E R I N G 5 5 

3.1. T H E M E A S U R E M E N T O F A B S O R P T I O N 55 

3.1.1. Refecting Tube Absorption Meter (RTAM) 56 

3.1.2. Tethered Optical Profiling System (TOPS) 5 7 

I V 



3. J.3. Isotropic Point Source 58 

3.1.4. The Compound Radiometer: 59 

3.1.5. Integrating Cavity Absorption Meter (ICAM) 59 

3.1.6. Spectrophotometer 62 

3.2.1NSTRUN4ENTAL E R R O R S - ABSORPTION METERS 64 

3.2.1. Reflecting Tube Absorption Meter 65 

3.2.2. Tethered Optical Profiling System (TOPS) 65 

3.2.3. Isotropic Point Source 65 

3.2.4. The Compound Radiometer: 66 

3.2.5. Integrating cavity absorption meter (ICAM) 66 

3.2.6. Spectrophotometer 67 

3.3. M E A S U R E M E N T O F S C A T T E R I N G 68 

3.3.1. Measurement of the Volume Scattering Function 68 

3.3.1.1. Small angle scattering meter 70 

3.3.1.2. Large angle scattering meter 70 

3.3.1.3. ECO-VSF 71 

3.3.1.4. HydroPeia 71 

3.3.1.5. Variable angle scattering meter 71 

3.3.1.6. Fixed angle scattering meter 72 

3.3.1.7. Turbidimeter 72 

3.3.2. Measurement of b(X) via the Conservation of Energy Equation 73 

3.3.2.1. Beam transmissometer 73 

3.3.2.2. The ac-9 transmissometer (WetLabs) 73 

3.3.3. Measurement ofb(X) viatheAOPs 74 

3.4. C O N C L U S I O N 75 

C H A P T E R 4: P R I N C I P L E A N D M O D E L L I N G O F A P S I C A M 7 7 

4.1. P S I C A M P R I N C I P L E 78 

4.2. I N V E S T I G A T I O N OF A P S I C A M P E R F O R M A N C E 81 

4.2.1. Effect of cavity radius and reflectivity 81 

4.2.2. Calculation of the absorption coefficient 87 

4.2.2.1. Reflectivity 87 

4.2.2.2. Kirk's formula for absorption 88 

4.2.2.3. Least square method 91 

4.2.2.4. Conclusion 92 

4.2.3. Sensitivity analysis 93 

4.3. M O N T E C A R L O M O D E L L I N G 100 

4.3.1. Introduction: 100 

4.3.2. Mode of operation of the Monte Carlo code. 101 

4.3.3. Mathematics of the Monte Carlo Code 106 

4.3.3.1. Emission, scattering and absorption 107 



4.3.3.2. Collision on the cavity wall 109 

4.3.4. Limitations of the code / / / 

4.3.5. Simulations 114 

4.3.5.1. Probability of phoion survival 114 

4.3.5.2. Average number of collisions 120 

4.3.5.3. Average path length 122 

4.3.6. Discussion 123 

C H A P T E R 5: D E V E L O P M E N T O F A P R O T O T Y P E P S I C A M 1 2 6 

5.1. L I G H T D E T E C T O R S 126 

5.1.1. Photovoltaic cells i27 

5.1.2. Photoconductive detector 127 

5.1.3. Photo-emissive cell - photo-multiplier 127 

5.1.4. Silicon photodiodes 128 

5.1.5. Charge-coupled device 129 

5 .2 . S P E C T R O P H O T O M E T E R 1 2 9 

5.3. T H E I N T E G R A T I N G S P H E R E 130 

5.4. F I R S T P R O T O T Y P E 130 

5.4.1. Prototype sphere without baffle 131 

5.4.].\. Reflectivity measurement 131 

5.4.1.2. Absorption measurement 132 

5.4.2. Prototype sphere with baffle 135 

5.4.2.1. Reflectivity measurement 135 

5.4.2.2. Absorption measurement 136 

5.4.3. Discus ion 138 

5.5. S E C O N D P R O T O T Y P E 139 

5.5.1. Light source I'^O 

5.5.1.1. Ocean Optics Inc. LS-1 tungsten light source 140 

5.5.L2. White Light Emitting Diode H I 

5.5.1.3. Halogen generator and fibre bundle 141 

5.5.1.4. Stability of the light source 142 

5 .5 .2 . Experiment with standard solutions 1^5 

5.5.2.1. Calculation of the reflectivity 148 

5.5.2.2. Calculation of absorption of standard solutions 149 

5.5.2.3. Discussion 152 

5.6. S P E C T R A L O N P R O T O T Y P E 152 

5.6.1. Spectralonprototype 1 cm cuvette 153 

5.6.1.L Reflectivity 153 

5.6.1.2. Experiment with food dye 154 

5.6.1.3. Conclusion 160 

5.6.2. Spectralon prototype 10cm cuvette 162 

5.6.2.1. Reflectivity 162 

VI 



5.6.2.2. Experiment with food dye 165 

5.6.2.3. Conclusion 176 

C H A P T E R 6: V A L T O A T I O N 1 7 9 

e.l.lKTRODUCnON 1 7 9 

6.2. L A B O R A T O R Y E X P E R I M E N T 1 7 9 

6.2.1. Comparison with the ac-9. 181 

6.2.1.1. Coneciion I 182 

6.2.1.2. Correction 2 183 

6.2.1.3. Correction 3 186 

6.2.1.4. Conclusion 190 

6.2.2. Comparison with the filter pad technique 191 

6.2.2.1. Introduction 191 

6.2.2.2. Mcasuremenl outline 192 

6.2.2.3. Results 195 

6.2.3. Conclusion J99 

6.3. IN-SITU MEASUREMENTS 200 

6.3.1. CDOM/Particulate absorption 20J 

6.3.2. Ac-9 transmittometer in situ 206 

6.3.3. Field test around the Antarctic Peninsula 210 

C H A P T E R 7: D I S C U S S I O N A N D F U R T H E R W O R K . 2 1 4 

C H A P T E R 8 : C O N C L U S I O N S 2 1 9 

Appendix I; Standard Solution Experiments 223 

Appendix 2: Laboratoiy experiments 229 

Appendix 3: In situ data 244 

Appendix 4: Field lest around the Antarctic Peninsula 253 

List of figures 260 

List of tables 267 

References 268 

Publication 280 

Vl l 



Chapter 1: Introduction 

Chapter 1: Introduction 
1.1. Why measure light absorption in the 
oceans? 

Absorption of light is the key factor i f we are to understand the behaviour of light under 

water. It is of major importance for the understanding of the Radiative Transfer Equation and 

for the understanding and interpretation of remotely sensed data of the ocean. Seawater contains 

dissolved inorganic salts, dissolved inorganic matter, dissolved gases and a great variety of 

suspensions including terrigenous particles, phytoplankton, zooplankton, bacteria and detritus. 

Each of the constituents mixed in very varying proportions produce the complex colour of the 

oceans. The separation of the components that contribute to absorption has been shown to be 

important in estimating water column primary production, in predicting the presence of harmful 

algal blooms and in estimating suspended particulate concentration. A major goal for the 

understanding of remotely sensed data has been to understand and differentiate the optical 

signature of these components of the water column and their relationship to the water leaving 

radiance. The interest in studying the optical properties of natural waters has been very much 

enhanced since the arrival of space technology into ocean sciences that could provide large 

amounts of data, on a regular basis and on various size scales, of the optical properties of the 

ocean. These technologies have made a new method for studying the ocean available to the 

ocean scientist community and have produced large amounts of data to understand and 

interpret. In comparison to the amount of data provided by satellite technology, our 

understanding and tools to investigate in situ optical properties was then limited. Various 

instruments capable of measuring in situ optical properties of the ocean have been developed in 

order to provide ground validation and a better understanding of the satellite data. 
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The absorption properties of oceanic provinces, where the impact from land drainage 

and sediment resuspension limited, are well documented. In these area referred to as case 1 

water where the optical properties are dominated by phytoplankton, algorithms have been 

produced to predict phytoplankton concentrations and productivity from satellite imagery. One 

area which is less well documented, although easier to reach and to study on a regular basis, is 

the coastal area. These waters are referred to as case 2 waters because their optical signature is 

the result of a more complex mixture of components: chlorophyll, yellow substances, organic 

and inorganic components originating from land drainage and sediment resuspension. One 

difficulty in studying these areas is that they are highly changeable in time and space. Another 

difficulty in studying the optical properties of these waters and in particular their absorption 

properties is that they generally contain high concentrations of scattering particles, which 

corrupt the absorption measurements. 

1.2. The problem 
There are a great variety of in situ instruments or laboratory techniques that can be used 

to measure absorption. Most of them however are moderately or highly sensitive to scattering 

by particles. For those techniques, empirical corrections need to be applied for the scattering 

effect of particles. Other methods separate the dissolved and particulate fraction of a sample and 

measure them with different techniques. In coastal areas or in oceanic regions of high 

productivity, it is therefore very difficult to perform an accurate measurement of absorption on a 

non-disturbed sample. 

One of the biggest challenges in optical oceanography today is to understand the 

phenomena and interactions in the highly dynamic coastal region. A recurrent problem in 

measuring absorption, particularly in these regions of the ocean as well as in highly productive 

oceanic regions, appears to be the interfering effect of scattering. It is towards the development 
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and testing of a new method for absorption measurement that the work presented here is 

addressed. Kirk (1995, 1997), proposed a design for an absorption meter, which he argued 

would be insensitive to scattering. He proposed the construction of an absorption meter whose 

sample to measure would be placed in a spherical integrating cavity and illuminated by a central 

point source at the centre of the cavity: a Point Source Integrating Cavity Absorption Meter 

(PSICAM). The sample to be analysed was to be enclosed in an integrating cavity, so that 

measurement of absorption could be made regardless of the level of scattering. With such a 

system, the only light losses would be due to absorption. Kirk, (1997) also detailed the optical 

theory for a PSICAM. The challenge of building and testing such an instrument was the 

inspiration for this PhD programme of research. 

The first part of this work is dedicated to a review of the different optically active 

components to be found in the marine system, and how and in what proportion they absorb and 

scatter light. A review of the different existing techniques either in situ or in the laboratory to 

measure absorption as well as scattering is then presented in order to understand their 

advantages and disadvantages. Prior to building a prototype absorption meter, modelling of the 

PSICAM was carried out using the theory elaborated by Kirk (1997) for absorbing and non-

scattering solutions and then by means of Monte Carlo simulation to investigate the behaviour 

of the instrument with absorbing and scattering solutions. From the observations made from the 

modelling experiments, a first basic prototype was built following the advise provided by Kirk 

(1997) and tested with standard solutions of known absorption. The following strategy was to 

build and test low cost but increasingly sophisticated prototypes with standard solutions. These 

prototypes used different materials for the integrating sphere as well as the light source. Once a 

prototype was tested and proved efficient with standard non-scattering solution, the final step 

consisted of testing the instrument with artificial and natural water samples containing 
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scatterers. For the validation of the system with solutions containing scattering particles, the 

method chosen was to compare the PSICAM measurements with existing and accepted 

techniques, namely the ac-9 transmissometer and the filter paper technique to measure 

particulate absorption. The prototype PSICAM was also field tested during an oceanographic 

cruise around the Antarctic peninsula. 

1.3. The propagation of light underwater 
Clearly, a crucial aspect of this work is the behaviour of the underwater light field and 

particularly the changes in that behaviour which occur when the light field interacts with 

dissolved and particulate material within the water body. There exist two "models" for 

describing the propagation of light through a medium: the wave model and the photon model. 

o The wave model defines light with a specific wavelength X (nm) and fi-equency v (Hz or 

m'') related by Equation 1-1 

/ I = — {nm) 

Equation l - l 

where c is the speed of light in the propagation medium concerned. 

o The photon model considers light as indivisible particles referred to as quanta or 

photons. Thus, a beam of light in air consists of a continuous stream of photons 

travelling at c=3.10^m.s"'. This theory, for example, is the one considered when 

modelling light by the Monte Carlo technique. 

Thus light is neither a particle nor a wave but both aspects are necessary for the 

understanding of light properties. The last part of this chapter wil l present the basic properties 

and their definitions used in marine optics. 
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L3.L Defining the light field 

The light field may be expressed in terms of polar co-ordinates (Figure 1-1) where 

o 9 = the zenith angle (the angle between a given light beam and the upward vertical) 

o (p = the azimuth angle (the angle between the vertical plane incorporating the light pencil 

and some other specified vertical plane such as the vertical plane of the sun) 

Figure 1-1: Angles defining direction within a light field (from K i r k , 1994) 

Common quantities defined for use in underwater optics are: 

Radiant flux, O is the time rate of flow of radiant energy. It is expressed in W (J.s"') or 

photon.s"'. 

Radiant intensit>', / is a measure of the radiant flux per unit solid angle (co) in a specified 

direction (Equation 1-2). The radiant intensity of a source in a given direction is the radiant flux 

emitted by a point source, in an infinitesimal cone containing the given direction, divided by 

that element of solid angle, /has the unit of W.sf' or photon.s''.sr''. 



Chapter 1: Introduction 

do) 
Equation 1-2 

Radiance, I at a point in space is the radiant flux at that point in a given direction per unit solid 

angle per unit area at right angles to the direction of propagation (Figure 1-2, Equation 1-3). 

Radiance has a unit of W.m'^.sr * or photon.s '.m'^sr''. 

d' CD(A) 

dS cos 0 dco 

Equation 1-3 

tlScosfl 

Figure 1-2: Deflnition of radiance (from K i r k , 1994) 

Irradiance, £* at a point of a surface is the radiant flux incident on an infinitesimal element of 

surface, containing the point under consideration, divided by the area of that element (Equation 

1 -4). £ as a unit of W.m'^ and is defined as: 

Equation 1-4 
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Downward irradiance Ea, and upward irradiance Eu, the values of the irradiance on the 

upper and lower faces, respectively, of a horizontal surface (Equation 1-5). Therefore Ed is the 

irradiance of the downwelling light and £„ the irradiance due to the upwelling light stream. 

They both have units of W,m*^ or photon.s"*.m"^ and are defined as: 

( X ) = £ 0, <p) cos (9 do) 

EX^)='t L{A,0,<P)COSO do) 

Equation 1-5 

The net downward irradiance, £ , is the difference between the downward and the upward 

irradiance (Equation 1-6). 

£(A)=£, (A ) -£„W 

E{X)= [^L{x,e,<p)Qosedo) 

Equation 1-6 

The net downward irradiance is a measure of the net rate of transfer of energy downwards at 

that point in the medium. 

The scalar irradiance, EQ is the integral of the radiance distribution at a point over all 

directions about the point (Equation 1-7). 

EM)-i^L{X,0,<p)dco 

Equation 1-7 

Scalar irradiance is thus a measure of the radiant intensity at a point, which Û eats radiation fi"om 

all directions equally (Equation 1-8). It is sometime usefijl to divide the scalar irradiance into a 

downward and an upward component: the downward scalar irradiance, Eod and the upward 

scalar irradiance, EQU'. 
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EM= [^L{X,e,(p)do} 

Equation 1-8 

Scalar irradiance (total, upward and downward) has the same unit as irradiance (W.m'^ or 

photon.s''.m'^). 

7.5.2. The Apparent Optical Properties 
The AOPs depend both on the medium (i.e. on the inherent optical properties, see 

section 1.3.3) and on the ambient light field. Therefore, AOPs of a water body can display a 

great variation in short period of time if a cloud passes in front of the sun or if the wind changes 

the sea surface state. However, observation shows that certain ratios of the AOPs are relatively 

insensitive to environmental factors such as sea state. The most commonly used AOPs are 

described below. 

7.3.2.7. Average cosine 
The radiance distribution at a particular point in a medium varies markedly over all 

angles. The complete radiance distribution over all zeniths and azimuth angles represents a 

large amount of data. These data can be simplified in terms of three average cosines (for 

downwelling \x^, upwelling |Ju, and total light j i . Equation 1-9). 

Equation 1-9 
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7.5.2.2. Reflectance 
Another way to simplify the radiance distribution over all zenith and azimuth angles is 

the irradiance reflectance R(A.,z) or Remote Sensing Reflectance Rrs(0,̂ ) (Equation 1-10). The 

first one is the ratio of the upward and downward irradiance at a given depth. The latter is 

defined as the ratio of the water leaving radiance and the downward irradiance measured below 

the surface. 

Equation 1-10 

1.3.2.2.1. Vertical Attenuation Coefflcient 

The vertical attenuation coefficients for downward (Kd(^), Equation 1-11), upward 

(Ku(X), Equation 1-12), net downward (Ke(^), Equation 1-13) and scalar (Ko, Equation 1-14) 

irradiance as well as for radiance (IC(̂ ,0,cp), Equation 1-15) specify the rate of change of the 

logarithm of these values with depth. They are defined as: 

' dz E,{^) dz 

Equation 1-11 

K (X)- = > dEM) 
dz E^^) dz 

Equation 1-12 

d\n[EA^)-EM)]_ 1 d[EA^)-EM)] 

dz -[EAA)-EM)] dz 
Equation 1-13 

^ln£o(A)^ 1 dEA^) 

' dz EA^) dz 
Equation 1-14 
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d\nL{X,e,q,)_ 1 dL{X,e,g>) 
^ ' dz L{X,e,q>) di 

Equation 1-15 

7.5, J. The Inherent Optical Properties 
The Inherent Optical Properties (lOPs) unlike the AOPs depends only on the 

characteristics of the water body and not on the structure of the light field (Preisendorfer, 

J96J). They are intrinsic properties of the water body. There are three lOPs: the absorption 

coefficient a(^), the bulk scattering coefficient b(k) that can also be investigated in terms of its 

angular distribution (the volume scattering function P(^,0)) and the beam attenuation coefficient 

In an aquatic medium, photons can be either absorbed or scattered. Therefore, if we are 

to understand the behaviour of solar radiation in an aquatic medium, we have to measure in 

which relative proportions water scatters and absorbs light. 

Imagining an infinitesimally thin layer illuminated orthogonally by a parallel beam of 

monochromatic light (Figure 1-3). The absorption coefficient is the fraction of the incident flux 

that is absorbed, divided by the thickness of the layer. The scattering coefficient is the fraction 

of the incident flux that is scattered, divided by the thickness of the layer. 

Thin layer 

Beam of light 

Figure 1-3: Interaction of a beam of light with a thin layer of an aquatic medium (Kirk, 1994) 

10 
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To calculate the absorption and scattering coefficient, the absorbance (A), the 

scatterance ( B ) and the attenuance ( C ) are first calculated (Equation 1-16). I f OQ is the incident 

radiant flux on the thin layer, O A is the radiant flux absorbed by the layer and O B is the radiant 

flux scattered by the layer then A and B are calculated as: 

Equation 1-16 

Absorption, scattering and attenuation coefficients have units of m'' and are then 

calculated as: 

^ ' Ar 

6 W = ^ 
^ ^ Ar 

^ ^ Ar 

Equation 1-17 

The way in which scattering aff'ects the penetration of light into the medium depends not 

only on the value of the scattering coefficient but also on the angular distribution of the 

scattered flux. This angular distribution has a characteristic shape for any given medium and is 

specified in terms of the Volume Scattering Function (VSF), P(A.,0) (Equation 1-18) that has 

units of m'Vsr"' and is defined as: 

' E{X) dV 

Equation 1-18 
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An alternate defmition of the scattering coefficient is the integral over all direction of 

the volume scattering coefficient (Equation 1-19): 

0 

Equation 1-19 

The forward brand backward bb scattering coefficients (Equation 1-20) in the forward 

and backward direction are related to the total scattering coefficient as b= bf + bb and defined 

as: 

0 

nil 

Equation 1-20 

Another useful parameter to compare the shape of the angular distribution of scattering 

in different media separately from the absolute amount of scattering that occurs is the 

Normalised Volume Scattering Function or scattering phase function p (Equation 1-21). p 

has a unit of sr'* and is calculated as: 

b 

Equation 1-21 

The integral of p over all solid angles is equal to 1. 

Additional parameters like the ratio of molecular scattering to total scattering r|, the ratio 

of molecular backscattering to total backscattering scattering r|b and the probability of photon 

survival c5 (also called single scattering albedo) (Equation 1-22) are defined as follows: 
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bMhb,^{X) 

Equation 1-22 

1.3.4. Radiative Transfer Theory 
Assuming a horizontally stratified water body (with properties everywhere constant at a 

given depth), with a constant input of monochromatic un-polarised radiation at the surface, and 

ignoring fluorescence emission within the water, the equation may be written: 

^ = -c (z ,X )L{z ,A ,0 ,<phL*{z ,A ,0 , ^ ) 

Equation 1-23 

The term on the left is the rate of change of radiance with distance r, along the path 

specified by zenith and azimuth angles 0 and 9 at depth z. The rate of change is the result of 

two opposing processes: 

o loss by attenuation along the direction of travel through c(z) 

o gain by scattering along the path dr of light initially travelling in other directions 

(0\(p')into the path(0,q)). 

The gain term is determined by: 

o the volume scattering fianction of the medium at a depth z, P(z,0,(p;0*(p') (this 

notation indicates(X) that the scattering angle is the angle between the two direction 

(0,(p) and (0',(p')). 
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• the distribution of the radiance L(2,0\(p') 

Each element of irradiance L(z,0',(p*)dQ)(0',(p')' incident on the volume element along 

dr gives rise to some scattered radiance in the direction (9,(p). The total radiance derived in this 

way is given by: 

Equation 1-24 

Having dp=dz/cos0, Equation 1-24 become: 

dz 

Equation 1-25 

And by integrating each term of this equation over all angles 

f c o s 5 ^ f e ^ ^ a ; = -Lc{z,A)i(z,A,^,«,Va,+ Ll*(z,^^,^,>/., 
^ dz 

we arrive at the relation originally derived by Gershun (1936): 

dz 
Equation 1-26 

It follows that 

and we arrive at the relation known as Gershun's equation (Gershun, 1939): 

a{2,X)=K,[z,k)ji{z,X) 

Equation 1-27 

dQ)(e',(p') is an element of solid angle forming an infinitesimal cone containing the direction 0*,(p*) 
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L3.5. Summary 
The optical properties of natural waters are divided into two types: the AOPs which are 

highly dependant of the environmental conditions (cloud cover, sea state, sun angle...) and the 

lOP's, which are intrinsic properties of a water body. Of these properties, the one which will 

focus our interest is the absorption and its measurement and secondarily scattering, which 

interfere importantly on the measurement of absorption. Our effort in this thesis will be to 

model and implement a new version of absorption meter based on an integrating cavity 

(PSICAM). This new instrument if proved successful could provide the base for a new 

approach to measure in situ absorption even in ocean provinces of high organic or inorganic 

particulate content as well as a new laboratory technique to measure the different fraction 

constituting a natural water sample. 
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Chapter 2: The Absorption and Scattering 
of underwater light 

Since the prime objective of this work is the design of an effective underwater light 

absorption meter, it must follow a detailed understanding and description of the components 

responsible for absorption of light underwater. However, it is found that the absorption process 

interacts with and is, in a large extent, dependent upon the related scattering process. In this 

chapter, we explore these two processes and their interaction. 

2 . 7 . The absorbing components 
Light absorption, which takes place in natural waters, is essentially the result of four 

major components of the aquatic environment: 

i . the water itself 

i i . Dissolved Organic Matter-DOM (also called Coloured Dissolved Organic 
Matter-CDOM, Gelbstoff or yellow substance) 

ii i . the inanimate (organic or inorganic) particulate matter (tripton) 

iv. the photosynthetic biota (phytoplankton and macrophytes) 

The photosynthetic biota and inanimate particles constitutes the Suspended Particulate Matter 

(SPM). 

Each of these components has a specific spectral absorption signature that we will 

describe. Determination of the spectral absorption coefficient a(X) for natural waters is a 

difficult task for several reasons. Firstly, water itself absorbs only weakly at near-UV and blue 

wavelengths, so that very sensitive instruments are required. More importantly, scattering, is 
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never negligible, so that carefiil consideration must be made of the possible bias of absorption 

measurement due to scattering. For example at ?̂ =400nm, the molecular scattering provides 

46% of the beam anenuation coefficient c(X) in pure water. Scattering effect can dominate 

absorption at all visible wavelengths in water with high suspended loads. In most cases, the 

absorption by pure water is usually taken as known. The real difficulty is to measure the 

absorption properties of the various dissolved and particulate components of the natural waters. 

2.1.1. Water 
Pure water, although it appears colourless is actually a blue liquid. This blue colour is 

apparent under sunny conditions in clear or tropical oceanic waters or in weakly productive 

coastal water. The colour of pure water arises because it absorbs very weakly in the blue and 

green part of the spectrum but scatters significantly. The absorption of pure water starts 

increasing at wavelength higher than 550 nm and is quite significant in the red region. 

Because of the very weak absorption it is very difficult to measure the absorption 

coefficient of pure water in the blue and green part of the spectrum. The values reported in the 

literature vary widely. Smith & Baker (1981) arrived at a set of upper bound values in the 

wavelength range 200 <^< 800nm partly based on their own measurement of vertical 

attenuation coefficient (IQ) for irradiance in the clearest ocean waters and partly on what they 

consider to be the best laboratory measurements, i.e. those of Morel & Prieur (1977) in the 

photosynthetic region (380-700 nm). Their work assumed that for the clearest natural waters: 

o Absorption by salt and other dissolved substances was negligible 

o The only scattering was due to water molecules and salt ions 

o There was no fluorescence 
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They arrived at the inequality: 

Equation 2-1 

where is the measured vertical attenuation coefficient and bjw is the assumed known 

scattering coefficient of pure sea water. They then derived aw(X) from in situ measurement of 

very clear ocean waters. 

Sogandares and Fry (1997) measured the absorption spectrum of pure water in the 

wavelength range 340<A.<640nm with photothermal deflection spectroscopy (a technique which 

is relatively insensitive to scattering). They were able using this technique to show for the first 

time the seventh and eighth harmonics of the 0-H stretch. 

The most up to date set of data for the absorption coefficient across the visible band of 

the spectrum (380-700nm) is the one obtained by Pope and Fry (1997) using an integrating 

cavity absorption meter {section 3.1,5). This set of data is in agreement with the data obtained 

by Sogandares and Fry (1997) using photothermal spectroscopy. They found that the 

absorption in the blue is significantly lower than the previous sets of data obtained from Smith 

and Baker (1981) with a minimum at 418 nm (0.0044 m"'). Figure 2-1 is a log-normal plot that 

compares the data sets obtained by Smith and Baker (1981) and Pope and Fry (1997). The 

major improvement for the latest was to be able to measure very low absorption signal in the 

blue region. 

It can be seen (Figure 2-2) that the absorption spectrum of pure water is approximately 

exponential from the blue to the red. Two thresholds are also visible across this spectrum: a 

distinct one at ~604 nm and a weak one at ^514 nm. They have been identified as 
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corresponding respectively to the fifth and the sixth harmonics of the 0 -H stretch vibration of 

liquid water (Kirk, 1994). 
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0.001 
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Pope & Fry 

Wavolongih (nm) 

0.01 
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Figure 2-1: log normal plot of aw(\) obtained from Smith and Baker (1981) and Pope and Fry (1997) 
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Figure 2-2: Pope and Fry (1997) measurement of pure water absorption 
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The dependence of light absorption by water upon temperature was studied by various 

authors {Pegau and Zaneveld 1993, Buiteveld ei. al 1994, Pegau and Zaneveld 1994. Trabjerg 

and Hojerslev 1996, Pegau ei. al. J997). Pegau and Zaneveld (1994) measured the temperature 

dependence of pure water in the visible wavebands with an ac-9 (WetLabs Inc.) in the 

temperature range 11-34°C. They found the largest dependence (0.0034 m'' °C'') at the longest 

wavelength tested (715 nm). The dependence at shorter wavelength was less than a third of that 

observed at 715 nm. Trabjerg and Hojerslev (1996) measured the temperature dependence of 

pure water and filtered sea water (S=:;25%o) in a 1 metre pathlength cell. For both samples they 

found a temperature dependence of -0.00091 ±0.00006 m"***C"' fi-om 400 to 550 nm for a 

temperature range of 6-30°C. The dependence for wavelength longer than 600 nm was partially 

in agreement with previous works with the maximum dependence at 600, 660 and 740nm. 

Using an ac-9, Pegau et ai (1997), investigated the absorption dependence on 

temperature (15-30°C)and salinity (0-38 PSU) of pure and salt water. They confirmed the high 

dependence of absorption on temperature in the near infra-red for both waters. In the visible the 

dependence was shown to be less than 0.001 m''**C"' except around 610 nm. They showed that 

the effect of salinity was negligible in the visible region but appeared to be important in the near 

infi-a-read region. At 715 nm, the dependence was proved to be -0.00027m''PSU''. 

Salinity and temperature have little influence on absorption except in the infra-red 

region, although there can be discrepancies in the values found in the literature. These two 

parameters can therefore be of importance especially in the case of instrument which measure 

the transmittance of a natural sample relative to a standard, typically pure water, which is at 

room temperature and of zero salinity. 
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2.7.2. Yellow substance (Gelbstoff) 
When plant tissue decomposes in the soil or in a water body, most of the organic matter 

is broken down by microbial action within days or weeks to, ultimately, carbon dioxide and 

inorganic forms of nitrogen, sulphur and phosphorus. In the processes of decomposition, the 

organic matter passes trough a complex form of organic components referred as humic 

substances, yellow substance or Gelbstoff (Kirk, 1994). These humic substances are very 

complex molecules that include aromatic rings and long chains of alkyls. Humic substances 

have both very soluble and insoluble macromolecules and are classified in terms of their 

solubility behaviour. The soluble ones give the yellow-brown colour of the highly organic 

concentrated waters. The chemical composition of these humic substances is highly dependent 

on the characteristics of the vegetation that the rivers are draining and also on the aquatic plant 

living in both freshwater and seawater. 

The absorption spectrum of these yellow substances depends on their concentration. A 

convenient parameter to describe the concentration of yellow substance is the absorption 

coefficient at 440 nm (aj<440)). This wavelength is chosen because it corresponds 

approximately to the mid-point of the blue waveband peak that most classes of algae have in 

their photosynthetic action spectrum (Kirk, 1994). When the yellow substances absorption is 

low, the absorption coefficient can be measured in the near ultra-violet (350-400 nm) where 

absorption is higher, and a(440) determined using the relationship (Bricaud, ei. al, 1981): 

Equation 2-2 

where a(^) and a{Xo) are the absorption coefficient at wavelength X and at the reference 

wavelength XQ - 400nm, S is a coefficient describing the exponential slope of the absorption 

curve. This slope has been estimated for a wide range of seawaters. An average value of 0.014 
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m ' is accepted as representative of a wide range of coastal and oceanic waters {Bricaud, et.ai, 

1981: Carder, et.al., 1989 and Roesler, et.ai, 1989). The reference absorption coefficient 

ay(440) varies roughly from 0 to 2 m"' fi-om clear oceanic waters to estuarine waters, and fi-om 

0.5 up to 20 m * for inland waters {Kirk 1994), 
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Figure 2-3: absorption coefficient of yellow substances for a range of 3 /440) 

Figure 2-3 shows that yellow substance preferentially absorbs light in the blue part of 

the spectrum. The absorption coefficient then decreases exponentially with increasing 

wavelength. 

2.7.3. Organic and inorganic detritus (Tripton) 
The tripton is the fraction of the Suspended Particulate Matter whose light absorption 

properties has been the least investigated because it is so difficult to measure. At typical 

concentrations, the particulate matter does not absorb strongly but scatters light strongly. 

Therefore, its measurement would be very inaccurate by normal spectrophotometry. A 
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convenient way to access its absorption spectrum would be with an Integrating Cavity 

Absorption Meter. 

It is not easy to separate the contribution of phytoplankton and tripton to the total 

particulate absorption. Several authors have investigated this fraction. Iturriaga and Siegel 

(1989), made direct examination of individual particles using microspectt-ophotometry. Kishino 

et al. (1985) measured filter pad absorption before and after chemical extraction of the 

phytoplankton pigments. Roesler et al. (1989) used models based on an assumed ratio of 

phytoplankton absorption at two wavelengths in the blue and red. Morrow et al (1989) used 

statistical methods based on typical absorption spectra of phytoplankton and detritus. Bricaud 

and Stramski (1990) used models based on an assumed ftonctional form for detrital absorption. 

These various methods showed a similar characteristic absorption spectrum for tripton 

which like the yellow substance has a decreasing exponential form fi-om short to long 

wavelength. This similarity is likely due either to humic material adsorbed on suspended 

particles or to free particulate humic aggregate. In productive waters, or in oceanic waters away 

fi-om land drainage, some of the light absorbing tripton arises by decomposition of the 

phytoplankton. The detrital fraction in seawater also has an absorption spectrum of the humic 

t)T)e but sometimes with characteristic features due to the breakpoint products of photosynthetic 

pigments (Bricaud and Stramski, 1990; Morrow, et al., 1989; Roesler, et al., 1989 and Iturriaga 

and Siegel, 1989). 

Roesler et al., (1989) proposed the following model for tripton absorption: 

ajA)^aJm)exp[-S{A-m)] 

Equation 2-3 

with S varying from 0.006 to 0.014 with a typical value of 0.011. 
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The in sUu absorption coefficient due to particulate matter at 440 nm (atri(400)) is a 

convenient and useful measure of particulate colour in any water. But it is not as good an 

indicator as ay(440) is for the yellow substance. 

2J.4. Phytoplankton 
Phytoplankton absorbs light as a source of energy in the photosynthetic process. 

Spectral characteristics of absorption by phytoplankton result from, and can therefore be used to 

identify, pholosynthetic and auxiliary pigments characteristic of particular phytoplankton 

taxonomic groups (Sathyendranath, et al., 1987). Investigations and models of primary 

production must include spectral absorption coefficients of photosynthetic pigments, which 

determine the ability of phytoplankton to collect light for use in photosynthesis. 

The photosynthetic pigments (chlorophyll, carotenoid, biliprotein) contained in the algal 

cells contribute to the light attenuation in the euphotic zone. Absorption by chlorophyll is 

characterised by strong absorption bands in the blue and in the red (peaking at 430 and 665 nm 

for chlorophyll a) with very little absorption in the green. Chlorophyll-a occurs in all 

photosynthetic plants and its concentration in mg{chla).m'^ is commonly used as a relevant 

optical measure of phytoplankton abundance. Chlorophyll concentrations typically range from 

O.Olmg.m'"* in the clearest open ocean waters to 10 mg.m""* in productive coastal up-welling, to 

100 mg-m'"̂  in eutrophic estuaries. 

The absorbing pigments are not evenly distributed within phytoplankton cells but are 

localized into chloroplasts. This localised distribution of the pigments means that the spectral 

absorption by a plankton cell or by a collection of cells in water has less pronounced peaks and 

reduced overall absorption than i f the pigments were uniformly distributed throughout the water 

(Kirk, J 994). This so-called pigment packaging effect is a major source of both inter and intra-
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specific variability in spectral absorption by phytoplankton, because the details of the pigment 

packaging within cells depend not only on species but also on cells size and physiological state. 

This in turn depends on environmental factors such as ambient lighting and nutrient availability. 

The inter-specific variation of phytoplankton absorption was studied by Sathyendranath e(. al 

(1987). Another source of variability in addition to chlorophyll a concentration and packaging is 

changes in pigment composition (the relative proportion of accessory pigments, namely 

chlorophyll b and c, pheopigments, biliproleins and carotenoids) since each pigment displays a 

specific absorption curve {Kirk 1994). 

The absorption coefficient of phytoplankton species can be calculated as a function of 

the chlorophyll concentration: 

^pHyM)='^^pHyM<^^^ (mg.m*') 

Equation 2-4 

The specific absorption coefficient of the phytoplankton, a'ph>io depend not only on the 

total amounts of the photosynthetic pigments present, but also on the size and the shape of the 

algal cells or colonies within which the pigment are located, which is also a consequence of the 

nutrients characteristic of the water {Mitchell and Kiefer, 1988; Bricaud and Stramski, 1990 

and Cleveland, 1995). It is also necessary to introduce a parameterisation taking into account 

the biological and ecological variability {Cleveland, 1995). Bricaud, et al., (1995), proposed a 

parameterization of a*phjto as a function of chlorophyll a and pheopigment concentration: 

Equation 2-5 

where A and B are positive parameters depending on the wavelength. 
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Figure 2-4: Absorption coefficient of phytoplankton for a range of chlorophyll concentration 

700 

Figure 2-4 using Bhcaud, et.al,, (1995) parametrisation shows clearly the two 

absorption maxima of the phytoplankton cells, the blue maximum at «435 nm and the red 

maximum at «670 nm. 

The blue peak is higher than the red because of the contribution of accessory pigments. 

There is relatively little absorption between 550 and 650 nm with a minimum around 600 nm. 

2.7.5. Total absorption coefficient bio-optical models 
At any wavelength, the aquatic medium has a total absorption coefficient, which is the 

sum of the absorption coefficients of all the light-absorbing components. The variation of this 

total absorption coefficient with wavelength is the absorption spectrum of the medium as a 

whole. For any given water body, the total absorption coefficient at each wavelength is obtained 

by adding together the known absorption coefficient of pure water, yellow substances, tripton 

and phytoplankton: 
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Equation 2-6 

Prieur and Sathyendranath (J981) were the first to develop a model for absorption 

coefficient in Case I waters. Their model was statistically derived and included absorption by 

phytoplanJcton pigments, non pigment organic materials and yellow matter derived for 

phytoplankton degradation. A simplified version of this model was then proposed by Morel 

(1991) (Figure 2-5): 

fl(/l)=[fl,(/l)+0.06fl;(A)C**''][l + 0.2exp(-0.014(A-440)^^ 

Equation 2-7 

where a,/^) is the absorption coefficient of pure water ac* (A.) is a non-dimensional statistically 

derived chlorophyll-specific absorption coefficient and C is the chlorophyll concentration in 

mg.m""*. This model obviously has its limitations due to the assumption made to obtain it. Other 

bio-optical models were produced (Gordon 1992, Kopelevich 1983) but are not described here. 

'E 

C=10.0 mg-

• ^ ^ ^ ^ 0=0.00 mg| m-3 ; 

400 450 500 550 600 650 700 
Wavelength (nm) 

Figure 2-5: Total absorption coefficient model proposed by Morel (1991) 
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2 , 2 The scattering of underwater light 
2.2. L The scattering process 

Many of the photons entering the marine system undergo scattering more than once 

before being absorbed. Scattering does not by itself remove light. A scattered photon is still 

available for photosynthesis for example. The effect of scattering is more to prevent a linear 

penetration of light. The photons therefore have a zig-zag trajectory as they are scattered from 

one particle to another. For underwater visibility and imaging, scattered light would not form a 

coherent image on the retina or on an image, having quite the same effect as scattered light by 

fog in the atmosphere. Scattering increases the total pathlength which the photons follovv in 

traversing a certain depth and so increases the probability of their being captured by one of the 

absorbing components of the medium. In addition, some photons are actually scattered back in 

the upward direction. Thus the effect of scattering is to intensify the vertical attenuation of light. 

A photon is scattered when it interacts with some component of the medium in such a 

way that it is caused to diverge fi-om its original trajectory. Scattering in natural waters can be 

divided in two categories: 

i . Small scale density fluctuations (or Raleigh scattering) 

i i . Large scale (>?L) organic and inorganic particles (Mie Theory) 

These categories, do not correspond to real difference in the physical processes, but 

correspond to the size domain in which the mathematical theories used to describe scattering are 

applicable. 
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2.2.1.1. Rayleigh scattering 

Small scale scattering or Rayleigh scattering (in reference to Rayleigh theory of 

scattering for gases) determines the minimum values for scattering properties encountered in 

water and salt waters. Raman (1922) and Shideikin (1922) first described the fiindamental role 

played by small scale-scattering in natural waters. According to Rayleigh theory, within any 

particle, such as an air molecule, in a light field, a dipole is induced by the electrical vector of 

the field. As the dipole oscillates at the fi-equency of the exciting radiation, it emits radiation of 

the same fi^equency in all directions. It is this radiation which forms the scattered light. 

The Rayleigh molecular theory of scattering does not strictly apply to liquids: the strong 

interaction between the molecules makes it impossible to consider the interaction of the 

radiation with molecules on an individual basis. In any liquid, however, the continual random 

motion of the molecules leads to localized microscopic fluctuation of density and therefore of 

dielectric constant, which can be regarded as a dipole. It is the interaction of these fluctuations 

with the radiant field that are considered. The Einstein-Smoluchowski theory of scattering 

relates these fluctuations of density to the associated fluctuations in the index of refi-action, 

which gives rise to scattering. 

The Rayleigh theory of scattering apply only when scatterers are small relative to the 

wavelength of light. This is true in the case of gas molecules and of the small density 

fluctuations in pure liquids. Even the clearest natural waters are not optically pure and always 

contain particles. The particles which occur in natural water have a continuous size distribution 

which is approximately hyperbolic {Bader, 1970). The number of particles with diameter 

greater than D is proportional to 1/D^ where y is a constant for a particular water body, but 

varies widely from 0.7 to 6 in different water bodies {./erlov, 1976). Although a hyperbolic 

distribution implies that smaller particles are more numerous than bigger particles, most 
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scattering in natural water is due to particles of diameter greater than 2 ^m {Jerlov, 1976). This 

is not small relative to the wavelength, and so scattering behaviour different from the density 

fluctuation type must be expected. 

2.2.1.2. Large scale scattering - Mie Scattering 
Mie scattering theory (1908) predicts the light scattering behaviour of spherical particles 

of any size. It enables to calculate the bulk scattering property of a water body considering its 

individual constituent. Calculations based on Mie theory are playing an increasingly important 

role in hydrologic optics, primarily because modem computers make it convenient to perform 

the necessary computations. The physical basis of the theory is similar to that of Raleigh in that 

it considers the oscillations set up within a polarised body by the incident light field and the 

light re-radiated (i.e. scattered) from the body as a result of these oscillations. Instead of (as in 

Rayleigh theory) equating the particle to a single dipole, Mie theory considers, the additive 

contribution of a series of electrical and magnetic multipoles located within the particle. The 

solution of Mie's equations is in the form of infinite series of mathematical functions. Details of 

the solutions are given by Van de Hulst (1957) and by Bohren and Huffman (1983). 

The advantage of the Mie theory is that it gives an exact solution to scattering. For very 

small particles, it also leads to the same predictions as the Rayleigh theory. For particles larger 

than the wavelength of the light, Mie theory predicts that most of the scattering is in the forward 

direction within small angles of the beam axis. A series of maxima and minima is predicted at 

increasing scattering angle, but these are smoothed out when a mixture of particles sizes is 

present. The disadvantage is that the analytical expressions are fairly complex and do not lend 

themselves to easy numerical calculations. 

The Mie theory may be explained as follows. Suppose that there is a single, 

homogeneous sphere of diameter D, whose material has a complex index of refraction ms=ns-iks 
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and that the sphere is imbedded in an infinite, uniform, non-absorbing medium whose index of 

refraction is therefore real: mm=nm. The sphere is illuminated by a collimated beam of 

monochromatic light of wavelength Xm=XyQc/nm, where Xvac is the wavelength in vacuum of light 

corresponding to the given frequency. The beam is much larger in diameter than the sphere. It is 

to be found how the incident light is absorbed and scattered by the sphere, determine the 

angular distribution of the scattered intensity and the state of polarisation of the scattered light. 

Mie's solution is often presented in terms of the various absorption and scattering 

efficiencies. The total scattering efficiency Qb, gives the fraction of radiant energy incident on 

the sphere that is scattered into all directions. The incident energy passing through an area equal 

to the cross-sectional area of the sphere, As = nr^. Similarly, the absorption efficiency Qa gives 

the fraction of incident energy that is absorbed by the sphere. The total attenuation efficiency is 

therefore calculated as Qc = Qa + Qb- The attenuation efficiency of a particle can be greater than 

unity. This means that a particle can affect the behaviour of more light in the incident beam than 

wil l be intercepted by its geometrical cross-section. This applies only to the scattering part of 

attenuation, i.e. it is possible for a particle to scatter, but not absorb, more light than its 

geometrical cross section would intercept. 

The Mie solution can also be presented in terms of absorption and scattering cross 

sections. The scattering cross section Os, is the cross sectional area of the incident beam that has 

power equal to the power scattered by the sphere. Similarly, the absorption cross section CTQ, is 

the cross sectional area of the incident beam that has power equal to the power absorbed by the 

sphere. The total attenuation cross section GC, is the cross sectional area of the incident beam 

that has power equal to the total power attenuated by the sphere. The scattering cross sections is 

therefore related to the corresponding efficiencies by the geometrical cross section of the 

sphere: 
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Equation 2-8 

Similarly, Ca = QaAs and CTC=QCAS, 

The different efficiencies and cross sections depend on the various parameters o f the 

problem: 

o wavelength Xm=KaJi^ 

o diameter (D) or size parameter (a) describing the size of the sphere relative to the 

wavelength of the incident light within the medium usually written as: a = — -
m vac 

o index of refraction (mr) of the sphere and the surrounding medium; 
n ^ f k ^ 

m^= — - / — =/7^ -ik^ (nr can be less than one: a spherical air bubble in water 

would have nr «0.75.) 
o Some of the Mie formulas also involve the phase shift parameter: p = 2a(« , - l ) , and the 

absorption thickness: p ' = ^k^a = a^D where aj is the absorption coefficient of the material 

forming the sphere. Phytoplankton cells typically have as values of 10"*-10̂  m"' at visible 

wavelengths, as must not be confiised with the bulk absorption coefficient for natural waters 

containing phytoplankton. 

As an example of the Mie parameter values {Mobley, 1994), consider a phytoplankton 

ceil with D = 8|im, ns=1.4, and as = 4x10^ m \ I f the cell is floating in water with nm = 1-34, and 

i f the incident light has = 500 nm, then a = 67.4, p = 6.0 and p' = 3.2. 

The various single-particle cross sections obtained from Mie theory are the key 

parameters to construct the equations that give the bulk inherent optical properties. For the most 

numerous oceanic particles, (virus or colloids at a concentration of lO'^ m'"'), the average 

distance between particles is greater than ten wavelengths of visible light and for the optically 

significant phytoplankton, the average separation is thousands of wavelengths Mobley, 1994. 
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Moreover, these particles usually are randomly distributed and orientated. Therefore, to 

calculate the total scattering coefficient b(^) from the single particle cross section ab(D,nir,A.), 

ocean water can be assumed as a very dilute suspension of random scatterers. Consequently, the 

intensity of light scattered by an ensemble of particles is given by the sum of the intensities due 

to the individual particles. Coherent scattering effects are negligible, except at extremely small 

scattering angles {Shifrin, J988; Fryet ai, 1992b). 

Because of this optical independence of the individual particles, their individual 

contributions to scattering can simply be summed up: 

\ \<T,{D,m,,X)n{D)dDdm^ 
allmr allD 

Equation 2-9 

where n(D) is the particle number size distribution. It is a key parameter to connect 

particle of all different sizes and indices of refraction with the bulk scattering coefficient. n(D) 

is closely approximated by n{D) = kD^ (Bader, 1970) where k is the concentration of particles 

larger than I^m and s is the slope of the distribution ranging typically between -3 and -4 for 

smaller size range and between -4.5 to less than -5 for larger particles {Stramski and Kiefer, 

1991). 

In practice, Equation 2-9 usually is evaluated separately for particles that have the same 

index of refraction, but which differ in size. For the i ^ particle type: 

b,{^)= \a[[D,mU?)n%D)dD 

= %i{DM,A)^n^{D)dD 
'rata 

Equation 2-10 
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where Dmin' and Dmax' are the minimum and maximum diameters of particles of type i . ^ ^ / ^ is 

the projected area of the spherical particle. The value of bi(X) is the contribution by the i ^ 

particle type to the total scattering coefficient b(X). Corresponding equations can be written for 

other quantities, such as absorption and back-scattering. Mie theory also gives a cross section 

for scattering through angle 0, Gd (0,X.) via the same formulation as Equation 2-10. 

Early works at predicting bulk properties from assumed particle properties and size 

disUibutions are seen in Kullenherg (J974) and in Brown and Gordon (1974). Brown and 

Gordon were unable to reproduce observed back-scattering values using measured particle size 

distributions. However, their instruments were imable to detect submicrometer particles. They 

found that Mie theory properly predicted back-scattering i f they assumed the presence of 

numerous sub-micrometer, low index of refi-action particles. Bacteria and colloids are most 

likely to be the particles they assumed. Mie calculations have used three-layers spheres to 

model the structure of phytoplankton (cell wall chloroplasts and cytoplasm core) and have used 

polydispersed mixtures of both organic and inorganic particles {Kitchen and Zanefeld, 1990b). 

The value of Mie theory is that it gives a theoretical structure for the analysis and 

modeling of the lOP's. Having a limited amount of measured parameters, (beam attenuation, 

absorption and particle size distributions, irradiance reflectance), Mie theory can be used to 

determine the unknown parameters: particle refractive index {Forget, et.al, 1999), Volume 

Scattering Functions {Vohen, 1998). Mie scattering calculations are able to reproduce observed 

volume scattering fiinctions, except at very small angles, given the proper particle optical 

properties and size distributions. 
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The anomalous diffraction theory of Van de Hulst (1957) can be used to calculate the 

scattering efficiency of particles with refraction index up to about twice that of the surrounding 

medium {Kirk, 1994): 

xs inp + 
' 4 ^ 
— x( |-cos/?) 

KP J 
Equation 2-11 

Where p = ( ^ ^ ) * ("V -1) , being the refractive index of the particle relative to that 

of the surrounding medium, and r being the radius of the particle. For a non-absorbing particle. 

Qsca,=Q an. 

400 -*-450 -*-500 -^550 

-^600 -^650 —700 

10.5 12 13.5 15 3 4.5 6 7.5 9 
Particle diameter M 

Figure 2-6:Scattering efficiency of non absorbing spherical particles as a function of size calculated using the 
equation of Van de Hulst (1957). The particles have a refractive index of 1.17 relative to water. Wavelength 

from 400 to 700 nm. 

Figure 2-6 shows the way in which the scattering efficiency for visible light of a 

spherical non absorbing particle of refractive index relative to water of 1.17 (a typical value for 

inorganic particles in natural water; {Kirk, 1994), varies with particle sizes. It can be seen that 

the scattering efficiency rises steeply from very low value for very small particles to about 3.2 

at a diameter varying from 1.5 to 3 jim depending on the wavelength. With increasing diameter, 

Qb oscillates with diminishing amplitude to level off at a value - 2 for very large particle for all 

visible wavelengths. A similar general pattern of variation of Qb with size would be exhibited 
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by any scattering particle of the type found in natural waters at any wavelength in the visible 

range. 

In a natural water sample, the hyperbolic distribution of particle sizes imply that small 

particles (virus, bacteria and colloids) are more abundant but the smaller particles, although 

numerous have a lower scattering efficiency 

From the scattering efficiency Qb can be calculated the scattering coefficient using 

Equation 2-10: 

Equation 2-12 

For our example, we aim to calculate the scattering coefficient of particles of a given 

sizes. Therefore, the equation becomes: 

* (^) - Q s c a . i O , m a ) ^ n ( D ) 

Equation 2-13 

n(D) is the Junge cumulative size fimction and can be expressed for a concentration of I g.m'"' 

by n(D)=D'^ {Mobley. 1994; Figure 2-7) or n(D)=D'^ (Bader 1970, Nanu and Robertson J993; 

Figure 2-8). 

^ 5 5 0 

-^650 

— 700 

PerUde diameter {mii 

Figure 2-7: b(X) as a function of diameter calculated for a slope of the cumulative size distribution s—3 
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6 e 10 

Figure 2-8: b(k) as a function of diameter calculated for a slope of the cumulative size distribution s=-4 

Figure 2-7 and Figure 2-8 presents the results of such calculation respectively for s=-3 

and s=-4. The scattering coefficient shows a peak situated at different diameters depending on s 

and X. The optimum for scattering, from 1.8 to 2.0 |im downward depending on wavelength 

Figure 2-7 and from 0.6 downward Figure 2-8 the scattering coefficient decreases more steeply 

for s=4 due to the relative abundance of small particles which are less efficient scatterers. As 

the particle diameter increases beyond the optimum, scattering by the suspension shows a 

progressive decrease to very low values, with only minor, heavily damped, oscillations 

corresponding to the oscillations in Qb for the individual particles. The attenuation of oscillation 

being more marked for s=4. The result of theses calculations therefore does not support the 

statement of Jerlov (1976). They show that most scattering is due to particles between 0.5|im 

and 2|im, which still is not small relative to the wavelength. 

2.2.2. The scattering components 
The scattering agents in seawater are: 

i . the water itself 

i i . suspended particles 

i i i . bubbles 
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2.2.2. L Pure water and pure sea water 
Morel (1974) has reviewed the theory and observations of scattering by pure water and 

pure sea water. Scattering by both pure water and pure sea water vary strongly with wavelength. 

Experimentally, scattering by pure water or pure sea water is found to vary in accordance with 

X'^''^^ rather than X'^ (Equation 2-14,Equation 2-15) as predicted by density fluctuation theory 

for gases. This is a result of the variation of the refi-active index of water with wavelength. In 

sea water the basic theory is the same as for pure water, but random fluctuations in the 

concentrations of the various ions (CI-, Na+ ...) give rise to higher index of refi-action 

fluctuations, and therefore greater scattering. Pure sea water (35-38%o salinity) scatters about 

30% more intensely than pure water (Figure 2-10). As a result of these differences, the volume 

scattering ftinction for either pure water or for pure sea water has the form: 

( l 
>^.(^.^)= >^.(90°,/l) -f (l + 0.835cos^ e) (--' [m ' sr~') 

Equation 2-14: V S F of pure water or pure sea water 

where Pw(90°,X) is the value at 9 = 90° of the VSF of pure water or pure sea water. Rather than 

the form: 

Equation 2-15: VSF for gases derived by Raleigh 

which is the equation Rayleigh scattering for gases. The 0.835 factor rather than unity is 

attributable to the anisotropy of the water molecules. The predicted angular distribution of 

scattering by water is therefore similar to that given by the Rayleigh theory for gases. It is 

identical in the forward and backward direction and shows a minimum at 9 = 90° (Figure 2-9). 
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Figure 2-9: V S F of pure sea water for \ = 500 nm (solid line) and X = 600 nm (dotted line), calculated with 
Equation 2-14, with P(90, 500) = 1.8*10-̂  m'*sr * and P(90, 600) = 0.88*10'̂  m *sr * (Morel, 1974) 

The total scattering coefficient bvj{X) is given by: 

6 , ( A ) = 1 6 . 0 6 do 

Equation 2-16 (Morel, 1974) 

Haltrin and Kattawar (1991) used the following equation to calculate K{Xy 

ZJ,( /1) = 5 .826*10-
400 

(m-') 

Equation 2-17 (Haltrin and Kattawar, 1991) 

The following graph present the scattering coefficient of pure water and pure sea water 

calculated {Morel, 1974; Haltrin and Kattawar, 1991) or measured {Smith and Baker, 1981). 

For both types of water, it can be seen that there is a strong wavelength dependence with a 

maximum in the blue part of the spectrum. This explains the blue colour of the ocean. It also 

appears that the theoretical data match very well the measured ones. 
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Figure 2-10: Computed or measured values of the scattering coefficient from various authors (Morel, 1974; 
Haltrin and Kattawar, 1991, Smith and Baker, 1981) 

The scattering coefficients of natural waters are always much higher than those of pure 

water. Unlike absorption, the scattering properties of natural waters are greatly modified by the 

inorganic particulate content. Even in ocean areas of very low productivity (1000m depth 

Tyrrhenian sea b(546)=0.0I6 m'' (Morel, 1973), Sargasso Sea b(633)=0.023 (Kullemberg, 

1968)) b(440)=0,04m'' (Jerlov, 1976) the total scattering coefficient is much greater than the 

scattering coefficient of pure water for the same wavelength. Scattering coefficient values are 

on average higher in inland and estuarine waters than in open sea. Indeed, the very high values 

that can occur in some turbid inland waters are unlikely to be equalled at sea because of 

floculation of suspended materials due to the changes in ionic content. Therefore, in studying 

the optical properties of natural waters, a contribution of the scattering must be expected even in 

open ocean conditions. 

2.2.2.2 Suspended particles 

The scattering particle found in natural waters can be divided in two categories: 
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o Biogenic scatterers mainly zooplankton, phytoplankton, bacteria and virus, dead 

and fragments of dead cells or macrophytes. 

o Terrigenous scatterers derived from land, re-suspension of bottom sediment 

caused by wave action, tidal currents and storms or airborne dust carried by 

wind. 

Unproductive oceanic waters away from land have the lowest values of scattering since 

few of these particles are likely to be encountered. Coastal and semi-enclosed marine waters 

have higher values due to the presence of re-suspended sediments, river-borne terrigenous 

particulate material and phytoplankton: San Diego Harbor (California) 1.21 < b(530) < 1.82 m'* 

{Petzold, 1972), English Channel b(546) = 0.65 m"' {Morel, J973), High levels of 

phytoplankton can give rise to high values of the scattering coefficient in oceanic areas such as 

the Mauritanian up-welling off the west coast of Africa (0.4 < b(550) < 1.7 m"'; Morel, 1982). 

As in the case of absorption, the scattering properties of phytoplankton can vary from one 

species to another. Algae such as diatoms and coccolithophores which have shells respectively 

made of silica and carbonate are more intense scatterers than, for example, naked flagellates. 

(Bricaud, et ai, 1983; Bricaud and Morel, 1986; Morel and Bricaud, 1986; Morel, 1987), 

Blue-green algae with gas vacuoles scatter light much more intensely than those without {Ganf, 

et.al, 1982). Like the mineral and the detrital particles, algal cells have a scattering phase 

frmction which is strongly peaked in the forward direction (Stramski and Morel, 1990). 

However, the backscattering ratio (bb/b, the proportion of the total scattering which is in a 

backwards direction) is much lower (0.0001-0.0004) for the living cells {Bricaud, et a.l 1983; 

Stramski and Morel, 1990) than for the mineral and detrital particles (--0.019). This is a 
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consequence (Bhcaud, et ai, 1983) of the low refractive index relative to water of the living 

cells (1.015-1.075) {Carder, et ai, 1972; Morel 1987; Ackleson and Spinrad, 1988) compared 

with that of the inorganic particles (1.15-1.20) (Jerlov, 1976). The backscattering ratio is greater 

in the small (picoplankton) cells, such as cyanobacteria, than in the larger eukaryotic cells 

{Stramski and Morel, 1990) i.e. the picoplankton is a more efficient back-scatterer than larger 

cells. 

A contradiction of the assertion that phytoplankton are weak scatters is observed in 

satellite oceanography. Remote sensing images show that blooms of coccolithophores have a 

high reflectance and therefore high backward scattering. The investigations carried out on this 

phenomenon tends to attribute this high backward scattering to the numerous detached 

coccoliths, rather than from the living cells themselves {Holligan, et al, 1983; Morel, 1987), 

Another source of scatterers can originate from arid regions of the continents {e.g. : the 

Sahara). Large amounts of dusts can be carried up in the atmosphere by wind, and when 

subsequently re-deposited in adjoining areas, can significantly increase scattering in the water 

{Kopelevich, 1984). 

Figure 2-11 compares the values of the scattering coefficient measured by various 

authors with the scattering coefficient measured by Stynth and Baker (1981). It can be seen that 

even for the clearest waters. Sargasso Sea and Tyrrhenian sea, the values of b(X.) are at least one 

order of magnitude higher than those for pure water or pure sea water. 
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Figure 2-11: scattering coefflcient of natural waters measured by various authors {Morel, 1973 ; Kuilemberg, 

1968 ; Jerlov, 1976 ; Morel, 1982 ; Petzold, 1972 ; Morel, 1973 ; Morel, 1982), compared with pure water and 

pure sea water. 

2.2.2,2,1. Models for the VSF 

The volume scattering function for natural waters differs strongly in shape from that of 

pure water. High purity of water is required to observe the volume scattering function of pure 

water or pure sea water (Figure 2-9 and Figure 2-10) as described previously. As soon as there 

is a small amount of particulate matter in the water (which is always the case even for the 

clearest natural water) the volume scattering function becomes highly peaked in the forward 

direction, and the scattering coefficient increases by at least a factor of ten. This is typical of 

scattering by particles of diameter greater than the wavelength of light, and scattering in natural 

waters is primarily due to such particles. 

The contribution of the particulate matter to the total volume scattering function Pt(0,^) 

is obtained from: 
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/3^{0,;l) =p,M - P , M 

Equation 2-18 

where the subscript p refers to particles and w refers to pure water ( i f p is measured in fresh 

water) or pure sea water (for oceanic measurements). 

Iff clear ocean 
coastal vrater 
turbid harbor 
pure sea water 

> 10' 

20 40 60 80 100 120 140 160 180 

Scattering angle (deg) 

Figure 2-12: Log-log plot of Petzold*s measurement of (he VSF in three different location and the computed 
values for the VSF of pure water. 

Although having been published thirty years ago, the unique in situ scattering 

measurements from Petzold (1972) are still the set of data widely used in modelling the 

underwater light field. The instrument he used had a spectral response centred at ^ = 514 with a 

bandwidth of 75nm (Full Width at Half Maximum). These sets of data were used to produce 

Monte Carlo simulation of the instrument under investigation (see Chapter 4). Figure 2-12 

shows Petzold's measurement of P(0,514) and the computed pw(B,514) for pure sea water on a 

log-log plot. The top curve was obtained in the turbid water of San Diego, California (turbid 

harbour), the centre curve comes from near-shore in San Pedro Channel, California (coastal 

water) and the bottom curve is from very clear water in the Tongue of the Ocean, Bahama 

Islands (clear ocean). The same data are displayed on a polar plot in Figure 2-13. Both graphs 

show the very strong proportion of forward scattering for natural waters including the clear 

44 



Chapter 2: The Absorption and Scattering of underwater light 

ocean set of data. The particles cause at least a four order of magnitude increase in scattering 

between 0 « 90** and 0 » 1**. The contribution of scattering by pure sea water to the total is 

therefore negligible except at back-scattering angles in the clearest natural waters {Morel and 

Gentili 1991). The backscattering (0>9O**) constitutes 4.4% of total scattering in the case of 

clear oceanic water but only 1.9% in the turbid harbour water. The other surprising feature of 

these volume scattering fimctions from very different waters is the similarity of their shapes. 

l eo 
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210 

^0 

dear ocean (m ' sr ') / ^ 
• • • coastal waters (rrt'sf') 

turt)ldtert)or(m-'sr') 
pure sea water (m'er') 
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Figure 2-13: Polar plot on semi-log scale ofPetzold's measurement of the V S F in three different location and 
the computed values for the V S F of pure water. 

Highly peaked forward scattering like that seen in Figure 2-12 and Figure 2-13 is 

characteristic of diffraction dominated scattering in a polydisperse system (a system containing 

particles of many different sizes). Scattering by refraction and reflection from particle surfaces 

becomes important at large scattering angles (0>15°). 

Compared with density fluctuation scattering, particle scattering is rather insensitive to 

the wavelength. The strong X'^'^'^ wavelength dependence described by Equation 2-16 for pure 
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water and pure sea water scattering is not observed in natural waters. This is because scattering 

is dominated by diffraction from polydisperse particles that are usually much larger than the 

wavelength of visible light {Mobley, 1994). Although diffraction depends on the particle size to 

wavelength ratio, the presence of particles of many sizes diminishes the wavelength effects that 

are seen in diffraction by a single particle. Moreover, diffraction does not depend on particle 

composition. However, a wavelength dependence is to be expected, especially at backward 

scattering angles where refraction, and hence particle composition, is important. Molecular 

scattering also contributes something to the total scattering at back-scattering angles in clear 

water {Morel and Gentili, 1991). In these clear oceanic waters, density fluctuation scattering is a 

major contributor for 0>9O°, therefore a more marked inverse dependence on wavelength is to 

be expected. 

Morel (1973) presented the total volume scattering function of two different water types: 

clear water (Tyrrhenian sea) and turbid water (English Channel) and for three different 

wavelengths (366, 436 and 546 nm). The clear waters under study showed a definite 

dependence upon the shape of P(0) on ^, whereas the particle rich turbid water shows a much 

weaker wavelength dependence. He then shows that the wavelength dependence is strongest for 

backscattering angles and weaker for forward scattering. 

Few theoretical models describing the VSF have been produced. Kopelevich (1983) and 

Kopelevich and Mezherricher (1983) have derived statistically a two parameter model for 

spectral volume scattering functions. This model distinguishes the contributions by "small" and 

"large" particles. Small particle are taken to be mineral particles less than 1 |im in diameter and 

having an index of refraction of mr=1.15 relative to water. Large particles are biological 

particles larger than l | im in diameter and having an index of refraction mr = 1.03. The model is 

defined by: 
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Equation 2-19 

where Pw(0A) is the VSF of pure water calculated with Equation 2-14 with ^=550nm and an 

exponent of 4.30, Vj is the volume concentration of small particles (cm^ of particles per of 

water, i.e. ppm), V| the analogous concentration of large particles, Ps*(0) is the small particles 

VSF per unit volume concentration of small particles (m''sr''ppm'') and Pi*(0) is the analogous 

large particle concentration specific VSF. Both Ps*(0) and Pi*(6) are found in Kopelevich's 

work. The ranges of values for oceanic waters are between 0.01 and 0.20 ppm for Vs and 

between 0.01 and 0.40 ppm for vi and can be parameterised in terms of the total volume 

scattering function measured at A.=550nm for 0=1° and 0=45**: 

V , =-l.4xl0-'>9(r,550)+10.2>!?(45%550)-0.002 

V, = 2.2x10-'y^(r,550)-1.2^(45',550) 

Equation 2-20 

Thus p(0,^) can be determined from two measurements of the total VSF. 

The mathematical form of the Kopelevich's model reveals that large particles give 

diffractive scattering at very small angles, thus pr(0) is highly peaked for small 0 and the 

wavelength dependence of the large particle term is weak QC^\ Small particles contribute 

more to scattering at large angles and thus have a more symmetric VSF and a stronger 

wavelength dependence {X'^'^). 

Mobley (1994) qualitatively compared this model with Petzold's data set and a data set 

from Morel (1973). He showed that the Kopelevich model for P(0,X) qualitatively reproduces 

the wavelength behaviour observed in the clear and turbid waters but the model under-predicts 
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P at small scattering angles and over-predicts P at large angles compared to the Petzold's 

measurements. 

2.2.2.2.2. Models for Particulate Scattering Coefficient 

Because total light scattering in natural water is dominated by the particulate 

contribution, it is expected to increase in proportion to the concentration of suspended 

particulate matter. Early work on scattering properties found an approximately linear 

relationship between turbidimeter measurements and the concentration of suspended matter 

(Biscaye and Eittreim, 1975: Sternberg, et a!., J974). The constant of proportionality can, 

however vary from one kind of suspended matter to another (Duchrow and Everhart, 1971): 

The refractive index and the size distribution of the particles both influence the relation between 

b(^) and sediment concentration. 

Several simple models are available for the total scattering coefficient b(^). A 

commonly employed bio-optical model described by Gordon and Morel (1983) is: 

HA) = ^ ' ' ' ^ ( 0 . 3 0 ± 0 . 1 5 ) C ' " (m"') 

Equation 2-21 

where X is in nm and C is the chlorophyll concentration in mg.m"-*. Morel (I991b) adds a pure 

water term, bw(>.) to the right hand side of the equation so that the models gives the correct 

value at C = 0. 

A related bio-optical model for the total back-scattering coefficient bb(>.) is found in 

Morel (J 988), Stramski and Kiefer (1991): 

0.002 + 0.02 
\ A ) 

Equation 2-22 
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This model shows the contributions by pure water and by particles. The first factor in 

brackets in the second term on the right-hand side of the equation represents the probability of 

backscattering by a particle. The second factor in brackets is the total scattering by particles. 

Oi-K^ogC) factor gives the particle contribution a A,"' wavelength dependence in 

very clear (C=0.01 mg.m"'') water and no wavelength dependence in very turbid water 

(C=I00 mg.m'^). The empirically derived models for b{X) and bb(X) (Equation 2-22 and 

Equation 2-23) are intended for use only in Case 1 waters. However, even when the model is 

applied to Case 1 waters, from which it was derived, the predicted b{X) value can easily be in 

error by a factor of two. I f the model is applied to Case 2 waters, the error can be an order of 

magnitude {Gordon and Morel 1983). For a given C value, h{X) is higher in Case 2 waters, 

because of the presence of additional particles that do not contain chlorophyll. 

The integration of Kopelevich's equation (Equation 2-19) over 0 yields another model 

for h{X): 

b{x) = 0.mi — +1.34V ^550^ 1.7 

+ 0.312 SSO'i 
0.3 

Equation 2-23 

where V j and vi are given by Equation 2-20. Kopelevich claims that the accuracy of this 

model is 30%. An extension of Kopelevich's model is found in Haltrin and Kattawar (1991): 

b{^)=bM^b%{k)P,+bl,{X)P, 

Equation 2-24 

Here bw(X) is given by: 

^ 4 0 0 V ' " -3 Z?^(;i)=5.826xl0 

Equation 2-25 

49 



Chapter 2: The Absorption and Scattering of underwater light 

which is essentially the same as Equation 2-21. The terms bps°{X) and bpi''(X) are the 

specific scattering coefficients for small and large particles, respectively, and are given by: 

\ A J 

. ;W = 0 . 3 4 1 l M 
V A y 

Equation 2-26 

Ps and Pi are the concentration of small and large particles, respectively. These 

quantities are available in the literature and parameterized in terms of chlorophyll concentration 

C. This work also presents a model for back-scattering: 

(^) ={b,(A) + fl.Z>; {A)P, + B,b; {A)P, 

Equation 2-27 

where Bs = 0.039 is the back scattering probability for small particles and B| = 0.00064 is the 

back-scattering probability for large particles. 

The bio-optical models for scattering just discussed are useful but very approximate. 

The reason for the frequent large discrepancies between model prediction and measurements is 

because scattering depends not just on particle concentration (as parameterized in terms of 

chlorophyll concentration), but also on the particle index of refraction and the details of the 

particle size distribution, which are not well parameterized in terms of chlorophyll 

concentration alone. Whether or not Kopelevich's model or its derivative Haltrin-Kattawar 

form, which at least partition the scattering into large and small particle components, is in some 

sense better than the Gordon-Morel model is not known at present. 

The following figure shows the calculation of particle scattering coefficient calculated 

using Haltrin - Kattawar's and Gordon - Morel's models for a range of chlorophyll 

concentration from 0 to 3 mg-m'**. Both models display the same monotonic curves decreasing 
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toward the longer wavelength. However, Gordon's model tend to display a more important 

wavelength dependence. 

Gordon and Morel 

Haltnn and Kattawar h 

g 0.25 g 0.25 

" 0.15 55 0-15 
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Figure 2-14: Particle scattering coefncient calculated using Haltrin - Kattawar's and Gordon - MorePs 
models for a range of chlorophyll concentration from 0 to 3 mg.m~̂ . 

Most of the models derived for particulate scattering found in the literature were initially 

derived for Case 1 water where very little effect of terrigenous material is expected. Applying 

those models to coastal waters obviously leads to erroneous values of the scattering coefficient. 

With the recent interest shown on the study of Case 2 waters, it is to be expected that new 

mathematical models would take into account both biogenic and mineral contributions. 

22,2.3. Scattering by bubbles 
Air bubbles in the ocean are generated mainly by the injection of air by breaking waves. 

In instruments such as the ac-9 (Wellabs Inc.) where water is pumped into a measuring cell, 

additional bubbles are created by cavitation. These bubbles influence light propagation in water 

where they are present. Pioneering research on the bulk optical properties of bubbles in the 

ocean was carried out by Stramski (1994). He studied the light scattering capabilities of clean 

bubble populations with a size distribution following the fourth power, having diameters 
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between 10 and 150 |im. He found that this class of bubbles can contribute up to approximately 

10% of the total scattering coefficient. He used the bubble size distribution measured by 

O 'Hern et al (1988) using a holographic method. This bubble size distribution assumes that the 

bubble number decreases as size increases according to the fourth power law, agreeing 

generally with acoustical observations. However, many in situ measurements {Kolovayev, 1976; 

Johnson and Cooke, 1979; De Leeuw and Cohen, 1995) have observed bubble size distributions 

with a plateau located between 40 and 80 |im. Although it has been argued that these peaked 

distributions are an artefact of the optical methods used {Medwin and Breitz, 1989), there is still 

uncertainty in the reasons for the differences between the optical and acoustical results. The 

light scattering that is due to bubble populations with such a size distribution varies from the 

situation analysed by Stamski (1994). Furthermore, Stramski considered only clean bubbles. In 

nature, bubbles quickly acquire organic fihns after their formation in the sea {Thorpe, 1982). 

These organic films are composed mainly of proteins and lipids {Glazman, 1983), whose mean 

relative refractive indices (mr=1.20 for proteins and mr=l . l0 for lipids) are quite different from 

those of air bubbles (mr=0.75), and thus it is expected that coated bubbles would scatter 

somewhat differently from clean bubbles. 

Zhatig et al. (1998) applied Mie theory to estimate the optical efficiency for both clean 

and organic film coated bubbles in the ocean and to study the efiecl of thickness and 

composition of this film coating on the light-scattering capability. Based on published in situ 

observations of bubbles in the ocean water, a generalised bubble size distribution was proposed. 

The maximum bubble radius used was 300^m, which corresponds to the maximum radius 

found in most field experiments. The minimum radius bubble found in the ocean so far is 10 |im 

measured by holographic techniques {O'Hern, et.ai, 1988). Even smaller bubbles radius 

(-3(im) was suggested by the results of Johnson and Cooke (1981). Another study by Yount et. 
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al. (1984) found stabilised bubbles of radius of the order of l | im or less in distilled water. The 

gas cavitation nuclei have an estimated radius of --O.lfim (Youni, 1979). In their calculation, 

they considered a minimum radius of 0.01 jam. the size bubble distribution the proposed is: 

Equation 2-28 

where No (m""̂ ) is the total bubble number density in a unit volume of water and p(r) (urn"') is 

the bubble probability density function at radius r. By use of this generalized bubble size 

distribution, they calculated scattering and back scattering coefficient of bubble population and 

compared them with the optical properties of natural particles. 

They concluded that in the visible domain, there is no significant difference in total 

scattering between clean bubbles and bubbles coated with organic f i lm. Bubbles coated with 

organic film however, exhibit an enhanced back scattering efficiency due to the coating. The 

enhancement is directly proportional to both the refractive index and the thickness of the f i lm. 

They showed that for a bubble population with a mean radius greater than I j im, the back-

scattering efficiency can be enhanced by a factor of 4 because of the organic coating of 

thickness of 1 | im. They also showed that the effect of absorption by these coated bubbles was 

negligible. 

2,2.3. Conclusion 
This chapter described the different absorbing and scattering components encountered in 

natural waters and the theoretical approaches to investigate them. It appears that they are 

complicated parameters to measure because of the complexity and the variety of dissolved and 

particulate components present in natural waters. The experimental identification of the 

different components signature in a water sample is a difficult task, especially when coastal and 
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productive waters are considered. The mathematical model to describe the absorption spectra of 

the various optically active component in sea water appear to be well documented The 

mathematical models that have been derived to describe the Volume Scattering Function and 

the bulk scattering coefficient are, however, still approximate especially in Case 2 waters. The 

investigation of coastal waters optical properties is a great challenge of optical oceanography. 

Accurate instaioment is therefore needed i f this goal is to be achieved. 
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Chapters: The measurement of absorption 
and scattering 

Understanding the propagation of light through the ocean and determining the 

relationship between the water leaving radiance and the in situ oceanographic properties 

(optical, biological, physical and chemical) remain the largest challenges of optical 

oceanography. For example, the separation of the optical absorption into its biological and non 

biological component is of particular interest for the remote sensing of primary production. The 

determination of the scattering and back-scattering coefficient is crucial for determining the 

light field. Together with absorption, they determine the amount of energy with is transferred 

into the ocean and made available for photosynthesis and heat transfers or reflected back into 

the atmosphere. These optical properties determine the amount of energy captured or released 

by the world oceans. The goal of much research in optical oceanography has been to 

differentiate the processes and component (water, yellow, substance, organic and inorganic 

particulate matter) influencing light propagation and to determine their impact on the aquatic 

ecosystem. This goal has led to the elaboration of a variety of techniques to measure absorption, 

scattering, back-scattering and the angular scattering function. The techniques developed for 

this purposes have all their advantages and disadvantages and will be described in this chapter. 

3.1. The measurement of absorption 
Pegau et al, (1995) reviewed the different existing techniques to measure the absorption 

coefficient of natural waters. The importance of the absorption coefficient and the difficulty of 

measuring it accurately in low-signal, scattering suspensions has led to the development of a 

variety of measurement techniques. 
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In situ measurement techniques include: 

o the reflecting tube absorption meter (Zaneveld, et. al, 1990; Moore, et. al, J 992) 

o isotropic point source (Soremon and Honey, 1968; Maffione, et.ai, 1993) 

o methods using Gershun*s equation (Gershun, 1939) to relate the absorption 
coefficient to the apparent optical properties (Tyler, 1960; Hojerslev, 1975; Spitzer 
andWermand. 1981; Doss and Wells, 1992; Voss. 1989; Voss and Chapin, 1992) 

Laboratory techniques include: 

o the integrating cavity absorption meter (Fry, ei.al., 1992) 

o optoacoustic measurements (Trees and Voss, 1990) 

o photothermal measurements (Bennett, et.ai, 1986) 

o measurements of the components portion using a spectrophotometer (Yentsch, 1962; 
Kiefer and Soohoo, 1982; Roesler, 1989, Tassan and Ferrari, 1995) 

The optoacoustic and phototherma! techniques were not investigated here. A number of 

absorption meters which employ these techniques and are available include: 

o The reflective tube absorption meter (RTAM) 

o The tethered optical profiling system (TOPS) 

o The isotropic point source (IPS) 

» The compound radiometer 

o The integrating cavity absorption meter (ICAM) 

o The spectrophotometer 

These meters will now be described in some detail. 

3,LL Reflecting Tube Absorption Meter (RTAM), 
The RTAM uses a collimated beam light source and encloses the sample in a reflective 

tube. The reflective tube collects the near forward-scattered light so that the radiant flux lost due 

to absorption may be estimated (Zaneveld, et.ai, 1990). This instrument actually measures the 

absorption coefficient plus a small fraction of the scattering coefficient associated with the 

uncollected scattered light. The uncorrected absorption coefficient au is obtained using: 
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1 , 
a,.= — In 

L u 
sample 

Equation 3-1 

where L is the path length of the instrument, Vsampie is the signal voltage for the sample, and Vpw 

is the signal voltage for pure water. Note that this is essentially the same approach as is used in 

a spectrophotometer. Rather than using a reference cell, the meter is calibrated in the laboratory. 

Algorithms using simultaneous measurements of the beam attenuation coefficient are then 

applied to remove the portion of the scattering coefficient included in the signal (Zaneveld, ei 

al, 1992). The various correction methods for an RTAM will be described in Chapter 6, 

3.1.2. Tethered Optical Profiling System (TOPS). 
The Tethered Optical Profiling System used by Pegau et al., (1995) consisted of a 

multiple radiometer package. The measurement of Ed(X,z), Eu(X,z) and Eo(X,z), respectively the 

downward irradiance, the upward irradiance and the scalar irradiance allow the calculation of 

KE, the net downward irradiance. Equation 3-2 

and | i , the average cosine, Equation 3-3. 

Equation 3-2 

0 

Equation 3-3 

These data are then applied to Gershun's equation (Equation 7-27) to determine a(k,z). 
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3.L3. Isotropic Point Source 
The isotropic point source technique was first proposed by Sorenson and Honey (1968), 

who argued that the attenuation of irradiance E from an isotropic source should decay with 

distance approximately as: 

E{r)a 

Equation 3-4 

where a is the absorption coefficient and r is the radial distance from the source. Thus, by 

measuring the irradiance from the source as a ftinction of r, the absorption coefficient could be 

determined. 

The vector irradiance (more precisely, the radial component of the vector irradiance) 

from an isotropic point source was derived from the steady state radiative transfer equation 

without internal source (Maffione, et. al, 1993): 

Equation 3-5 

where Oo is the radiant flux emitted by the source and ^ is the average cosine of the light field 

from the source. The assumption in Equation 3-5 is that the water column within which E(r) is 

measured is homogeneous (Pegau et al, 1995). The solution to Equation 3-5 for the absorption 

coefficient is: 

fl(/l,z)=/i 

Equation 3-6 

r 

58 



Chapter 3: The measurement of absorption and scattering 

where KE is the diffuse attenuation coefficient for irradiance. To avoid errors due to the ambient 

background Hght, IPS measurements have to be made either at night or in deep water. When 

r 00, Equation 3-6.reduces to Gershun's equation. 

3.1.4, The Compound Radiometer: 
The compound radiometer estimates the absorption coefficient by measuring the 

moment of the Legendre polynomial expansion of a radiance distribution. The absorption 

coefficient is determined by applying the measured moments to a form of Gershun's equation 

(Zaneveld and Pak, 1972; Wells, J983). This device uses a series of reflectors to measure the 

integral moments of the radiance distribution at a number of zenith angles (Doss and Wells, 

1992). The radiance distribution is then deduced from a linear combination of the measured 

moments. The moments are symmetrical about the vertical axis and optimised to facilitate 

computation of the inherent optical properties in the form of the Dn series as a function of depth 

(Doss and Wells, J 992). The zeroth-order moment (Do) is the absorption coefficient, Deo is the 

beam attenuation coefficient, and the intermediate Dn describe moments of the volume 

scattering function. 

3.1.5, Integrating Cavity Absorption Meter (ICAM) 
The theoretical basis of the Integrating Cavity Absorption Meter was developed by 

Elterman (1970). In an ICAM, a diffuse light field is set up within a cavity that has a diffusely 

reflective wall and is filled with the liquid whose absorption properties are to be measured. 

From the measured effect of the liquid on this light field, the value of its absorption coefficient 

can be determined. The idea was adopted by Fry et al. (1992) who describe the theory and 

design of an instrument that could be used to measure the absorption coefficient of water. This 

ICAM has a cylindrical shape and consists of two concentric integrating cavities to ensure that 

the light inside the inner cavity is isotropic (Figure 3-1). Pope et al., (1997) used an ICAM to 

59 



Chapter 3: The measurement of absorption and scattering 

measure the absorption coefficient of pure water in the wavelength of 380 to 700 nanometres. 

The ICAM has two specific advantages. First, because of the long path length of the photons as 

they undergo multiple reflections from the cavity wall before absorption, the instrument can be 

used to measure low values of absorption coefficient. Second, because the light field is already 

totally diffuse, it cannot be made more diffuse by scattering because of particles within the 

cavity. Thus, measurement of absorption is not affected by scattering (Fry, et ai, 1992). 

Light in 

Detector 

Detector 

Detector 
S, 

Light in 

Figure 3-1: cross section of an ICAM 

There are Uvo methods of calibration for the ICAM, one described by Fry et al. (1992b), 

and one developed by the Naval Research Laboratory {Kennedy, 1992). 

(1) The method describe by Fry et ai, expresses the absorption coefficient as a linear 

function (Equation 3-7) of the voltage signal measured in different parts of the instrument. 
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Equation 3-7 

where K i , K2, K 3 and K 4 are calibrations constant of the instrument and So, Si and S2 are the 

signal voltage at different places in the cavity (Figure 3-1). The calibration constants Kj can be 

determined by measuring the known absorption coefficient of a dye solution. 

(2) The algorithm developed by NRL calculates an effective path length for the cavity. 

The effective path length is dependent on the geometry of the cavity, the refractive index o f the 

sample and the field of view of the sensor (Kennedy, 1992). The assumptions made with the 

ICAM are the following: 

o The light field within the cavity is isotropic, 

o The light field within the sample is isotropic 

o The change in energy density is due only to the absorbance of the sample, 

o The absorbance of the empty sample is zero. 

When an empty cavity reading is used as the zero absorbance value, the absorption 

coefficient can be determined from Equation 3-8. 

Equation 3-8 

where / is the effective pathlength, yE(^) and Vs(A) are respectively the signal voltage measured 

for an empty cavity and a cavity field with a sample. 

When used in this way, the integrating cavity absorption meter does not require 

standardisation, either by measuring known calibration samples with a spectrophotometer or by 

measuring absorption of clean water to determine the total absorption coefficient of the sample. 
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3A. 6. Spectrophotometer 
Spectrophotometric measurements of absorption are based on two fundamental laws 

concerning the relationship between the intensities of the radiation incident on and transmitted 

by a layer of absorbing substances: Lambert's and Beer*s laws. 

Lambert's law states that the proportion of radiation absorbed by a substance is 

independent of the intensity of the incident radiation. The law can also be expressed in the form 

that each successive layer of thickness dl of the medium absorbs the same fraction dl/I o f the 

radiation of intensity I incident up it. Therefore dl/I=-|i dl, where ^ is a constant. This 

expression becomes on integration: 

Equation 3-9 

where 1Q is the intensity of radiation incident on a layer of thickness / and / is the emergent 

intensity. Equation 3-9 can also be written as 

10 

Kl 

or log.o 

where A: = log,o(c'')= 0 .4343// 

Equation 3-10 

Another important quantity^ (absorbance), is defined by: 

(1 \ ( \ \ 
A = \og,, -f =log,o - =Ll 

Equation 3-11 

where T is the fraction of radiation transmitted or transmittance 

Beer's law states the relationship between the intensities of the incident and transmitted 

radiations in a different way: the absorption depends only on the number of absorbing 
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molecules through which the radiation passes. I f the absorbing substance is dissolved in a non-

absorbing medium, the absorbance will then be proportional to the concentration of the solution. 

Beer's law can therefore be combined with Lambert's law in die form: 

or 1 = 1^ 10-"'^ 

Equation 3-12 

where a is the absorption coefficient, / the pathlength along which the incident radiation is 

absorbed and the concentration of the absorbing molecules. 

A beam of monochromatic light passes through a quartz or plastic cell of known path 

length. The measured quantity is the intensity (I) of the light that passes through the cell. Two 

measurements are conducted, one with a cell field with pure water, (lo), and a second with the 

water sample under consideration. The transmittance (T) is then calculated: 

Equation 3-13 

The absorbance is then calculated using Equation 3-11 

and the absorption coefficient is then derived from Beer's law (Equation 3-12). 

However, the low concentration and absorption signal of suspended particles in the water 

column requires that the particles be concentrated before their absorption spectrum can be 

measured in a spectrophotometer (I'entsch, 1962). The most common procedure for a natural 

water sample is to determine separately the absorption coefficients of the different components. 

The value of the total absorption coefficient of the medium, at a given wavelength, is then 

calculated as the sum of the individual absorption coefficients of all the components present. 
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Equation 3-14 

where aooMW, apanW, aw(X)» are respectively the absorption coefficients of Dissolved Organic 

Matter (Gelbstoff), particulate matter and pure water. This is commonly done by filtering a 

sample of water to retain the particulate matter on a filter pad. The spectral absorption o f the 

particulate matter, apart(^) is then determined in a spectrophotometer, which measures the 

transmittance through the filter pad and collected particulate matter. This technique was 

described by Bannister (1988), Mitchell (1990). Stramski (1990), Cleveland and Weidemann 

(1993). A variation of this technique consists of measuring the light reflected by the filter pad, 

as opposed to the transmitted light. These two methods were compared by Balch and Kilpatrick 

(1992). A method using measurement in both transmittance and reflectance was later developed 

by Tassan and Ferrari. 1995. 

Laboratory methods for the measurement of absorption in dilute suspension of particles 

usually employ spectrophotometers (Bricaud et. al., 1983), although photo-acoustic methods 

have been investigated {Trees and Voss, 1990). These methods give good accuracy but are not 

well suited for ship-borne work. 

To arrive at the total absorption, the dissolved absorption ay(X) must be taken into 

accoimt. This Gelbstoff substances are rarely negligible even in open ocean. To measure it, a 

volume of the water sample is filtered. The absorption of the filtrate is then measured, 

preferably, on a long path cuvette. SLy{X) is often estimated in terms of ay(400) {see section 27.2) 

3.2. Instrumental Errors - absorption meters 
An essential aspect of the assessment and objective comparison of any instrumentation 

is recognition and, where possible, quantification of any errors inherent in individual 
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instruments. The errors known to exist and affect the performance of the instruments described 

in section 3.1 will now be explored. 

3.2.1. Reflecting Tube Absorption Meter 
The inherent error in the RTAM approach is due to the undetected back-scattered light. 

Various approaches can be used to estimate this undetected light (Zaneveld. eiai, 1994). I f 

simultaneous measurements of the spectral absorption and beam attenuation coefficient are 

made, Zaneveld et al., (1994) showed that an error of less than 1% could be obtained. 

Otherwise, an error of ± 5 % is possible with a precision of approximately 0.003 m"' (Pegau, et 

ai. 1995). Calibration problems are also encountered. The first one is an instrumental drift that 

can not be entirely removed using pure water calibration; the second one is cavitation in the 

flow tube of the instrument {Pegau, et.al, 1995). Another source of bias common to ail systems 

that use a pure water reference is the possibility of contaminated "pure" water used in the 

calibration, and this is impossible to estimate. 

3.2.2. Tethered Optical Profiling System (TOPS). 
Gershun's equation is used with TOPS irradiance profiles to calculate absorption 

coefficient with an estimated uncertainty of approximately 10%. This uncertainty includes a 

contribution from instrument noise of up to 7% {Pegau et al., 1995). 

3.2.3. Isotropic Point Source 
Errors in the IPS method arise from several sources. All of these errors, except for the 

assumption of water homogeneity, are due to the particular instrumental implementation and 

optical conditions of the water mass {Pegau, et a!., 1995). The largest sources of errors are: 

1. the assumption of constant radiant output of the isotropic source during each light flash 
since a reference detector is not used. 

2. Variable alignment of the source and detectors due lo the variability in water movement. 
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3. The assumption that ^=1 since only vector irradiance and not scalar irradiance was 
measured. 

Errors fi^om 1 and 2 should be random and therefore quantified in the standard error of 

the regression fit. Errors of 2 can also be systematic i f instrument misalignment remains 

constant during a measurement. The error from the assumption that | i= l (3) is systematic and 

difficult to quantify {Pegau, et ai, 1995). 

Another source of error in this method is the approximation that the path length in the 

exponent is the geometrical radial distance r, when, in fact, scattering increases the mean path 

by 6r so that the expression should be (Pegau, et. ai, 1995): 

•air+a-) 
E{r)a 

Equation 3-15 

I f 6 r « r , the error will be small. 

3.2.4. The Compound Radiometer: 
The Compound Radiometer has an estimated uncertainty of 0.0Im"' in the depth range 

of 12 to 18 m {Miles and Wells, 1993). This is the range in which the radiometer works best. 

Performance deteriorates in deep water, due to lack of light and also in very shallow water 

(Pegau, et ai, 1995). The performance of course depends also on the turbidity of the water. 

3.2.5. Integrating cavity absorption meter (ICAM) 
The algorithm developed by NRL does not require standardisation with a 

spectrophotometer or the need of pure water to retum the total absorption coefficient of the 

sample. Errors arise from the assumption that absorption in an air-filled cavity is zero. The 

assumption of an isott-opic field within the cavity is also a source of error with this method. The 

overall error with this method is assumed to be around 1 % {Pegau, et ai 1995), This method of 
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calibration is more accurate than the first one developed by Fry et al (1992) because no 

calibration with standard dye solution is required. 

3.2.6, Spectrophotometer 
With a spectrophotometer, using the cuvette technique, a proportion of the light is 

scattered outside the field of view of the sensors. Therefore, spectrophotometers do not measure 

the true absorbance but the attenuance (absorbance plus a fraction of scattering). This might be 

a problem for a solution v«lh a high scattering coefficient relative to the absorption coefficient. 

The measurement of the blank cell is far less biased by the scattering effect. This problem can 

be minimised by placing a layer of scattering material between the cell and the incident beam, 

so that both samples are illuminated by a diffuse beam. 

Errors in total absorption coefficients estimated from spectrophotometric measurements 

arise also from several sources. The first is the unknown error in values of pure water spectral 

absorption {Smith and Baker, 1981, Pope and Fry, 1997). 

The filter pad method (Yentsch, 1962) is the standard way of measuring particulate 

absorption at sea. However, this is not an ideal technique. The major problem with this 

technique is that the intense scattering within the filter pad and the collected particulate matter 

increases the average distance travelled by the photons passing through the sample, which 

increases the apparent absorption. Correction must be applied for this increased photon 

pathlength and this is a potential source of bias. Other sources of errors with this technique 

include: 

o The inability of filters to retains all particles 

o Absorption by yellow substances retained on the filter 

o Decomposition of pigment during the filtration process 

o Errors are associated with separate techniques to measure absorption, due to suspended 
particles and due to dissolved organic matter. 
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This technique, later modified by Tassan and Ferrari, 1995 was used and wi l l be 

described in the Chapter 6. 

3.3. Measurement of scattering 
Experimentally, b(^) can estimated by three different ways: 

• Measurement and integration of the VSF 

• Calculation via the energy conservation equation c{X) = a(^) + h{X) 

• Calculation via the AOP's 

• Calculation via Mie theory {see section 2.2.7.2) 

5. J. 7. Measurement of the Volume Scattering Function 
In principle, the theory of an instrument to measure the Volume Scattering Function 

P(A.,9) is simple. A collimated beam of known spectral irradiance E{X) illuminates a volume of 

water dV and the scattered intensity 1(^,0) is measured as a function of angle (Figure 3-2). 

dV 
di(e,a,) 

A i 

m dr 

Em 

Figure 3-2: Principle of measurement of the VSF 

However, the engineering of such an instrument for in situ measurement is quite 

difficult: 

68 



Chapter 3: The measurement of absorption and scattering 

o Firstly, the scattered intensity typically increases by five or six orders of magnitude 

over the angular range from 0 = 90** to 9 = 0.1° for a given natural water sample, and 

scattering at a given angle G can vary by two orders of magnitude among water 

samples. The required dynamic range of an instrument is therefore great. 

o Secondly, measurement at near forward (0<1**) and near backward (0>I79*') angles 

are very difficult to make and the behaviour of P(0,̂ ) at these angles is crucial for 

the determination of b(X) by integration {Equation 1-19), since typically one-half of 

all scattering takes place at angles of less than a few degrees. 

Owing to the technical difficulties of measuring P(0,X) at small angles, very few data are 

available in the literature. Spinrad et al. (1978), Padmabandu and Fry (1990), and Fry et al. 

(1992a) have reported measurements at very small angles on suspensions of polystyrene 

spheres, but no such measurements have been published for natural water samples. The 

Padmabandu and Fry technique is interesting because it allows the measurement of P at 0 = 0° 

exactly, by use of the coupling of two coherent beams in a photorefractive crystal to measure 

the phase shift that corresponds to 0° scattering. Measurement of P(0,X) is of theoretical interest 

because of its relation to attenuation via the conservation energy equation {section 3.3.2). 

Enhanced backscatter has been reported in suspensions of latex spheres; a factor of two 

mcrease in scattered intensity between 0 = 179.5° and 180° is typical (Kuga and Ishimaru, 

1989). Measurements in natural waters {Maffione and Honey, 1992) show only about 10% 

increase in P(9,X) as 0 goes from 179.5° to 180°. Recent studies show that small (<300nm) air 

bubbles in water also can generate important backscatter {Arnott and Martson, 1988; Zhang, 

1998; section 2.2.2.3), 

Because of these design difficulties, only a few instruments have been built for in situ 

measurement of the VSF. Petzold, (1972) gives the details of two such instruments, one for 

small scattering angles and one for larger angles {see section 3.3. l.l and 3.3.1.2). The arrival on 
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the market of newly developed instrument like HydroScat (2-4-6) (Hobilabs; extrapolate the 

back-scattering coefficient at 2, 4 or 6 wavelength via the measurement of P(0,^) at one angle), 

ECO-VSF (Wetlab) or HydroPeta (under development HobiLab) might provide the scientific 

community with a new approach to the measurement of the scattering coefficient. Commercial 

instruments are available for laboratory measurement of P(0,X). These instruments are subject 

to their own problems, such as degradation of samples between the times of collection and 

measurement. These instruments include 

• Fixed angle scattering meter 

• Variable angle scattering meter 

• Turbidimeter 

Among the in situ and laboratory techniques mentioned: 

• Petzold small and large angle scattering meter 

• The ECO-VSF 

• The hydroPeta 

• The fixed angle and variable angle scattering meter 

• The turbidimeter 

wil l be briefly presented in the following sections. 

3.3. J. J. Small angle scattering meter 

Petzold (1972) developed a small in-situ scattering meter using a highly collimated 

beam of light traversing a 0.5 m pathlength in the water and then being focused by a long-focal-

length lens onto a receiver. Light scattered within a very narrow angular range is selected by 

means of a field stop placed on the focal plane and detected with a PhotoMultiplier Tube. The 

field stops allowed measurement for three different angles (0.085, 0.17, 0.34^). 

33.7.2. Large angle scattering meter 
This instrument for measuring large angles scattering is designed so that either the light 

source or the detector is rotated relative to the other. Petzold (1972), designed an in situ large 

70 



Chapter 3: The measurement of absorption and scattering 

scattering angle meter for 10<9<170 which he used with his small angle scattering meter to 

produce the data set discussed in section 2.2.2.2. 

3.3.1.3. ECO-VSF 
The ECO-VSF (WetLabs) measures the optical scattering at three different angles: 100, 

125 and 150 degrees, and at wavelengths of 450, 530, and 650 nm, thus providing the shape of 

the Volume Scattering Function (VSF) throughout its angular domain. The VSF from 90 to 

180° is then calculated by interpolation and extrapolation. The three-angle measurement allows 

determination of specific angles of backscattering through interpolation. Conversely, it also can 

provide the total backscattering coefficient by integration and extrapolation from 90 to 180 

degrees. The sensor employs three transmitters coupled to a single receiver to obtain its 

measurements. 

3.3.1.4. HydroPeta 
HydroPeta (under development, Hydroscat) projects a collimated beam of light through 

the water, and uses narrow angle radiometers to measure the radiance emerging at various 

angles. Unlike earlier "free angle" designs, which used a single movable receiver to measure all 

angles, HydroPeta uses an array of stationary receivers, viewing a common volume, to measure 

at discrete angles from 10° to 170° . This approach greatly speeds up the measurement of the 

VSF. It also allows the receiver to be tailored somewhat to the huge different signal levels 

found at the different angles (up to four order of magnitude from T to 180°; see section 2.2.2.2). 

3.3.1.5. Variable angle scattering meter 
Commercial light scattering photometers for both large and small angles have been 

developed or adapted by various authors (Aughey and Baum, 1954; Beardsley, 1968; Spilhaus, 

1968;Spinrad and Pak, 1978). 
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3.3. J, 6. Fixed angle scattering meter 
I f a measurement at all angles is not possible, P(0) can be measured at one convenient 

angle. A value of b(X) can then be estimated by making an assumption about the shape of the 

volume scattering function. Jerlov (1976) stated that in marine waters, the ratio of the volume 

scattering function at 45° to the total scattering coefficient is in the range 0.021-0.035 sr"'. 

Kopelevich and Burenkov, (1971) based on measurements in the Pacific and Indian oceans and 

in the Black Sea concluded that the error in estimating b from single angle measurements of 

P(0) is lower for angles less than 15°. An angle of 4° was considered acceptable. A linear 

regression of the type: 

\og{b)=c, \ogp{eyc. 

Equation 3-16 

where ci and C2 are constants, was found to give more accurate values for b than a simple 

proportionality relationship. 

Oishi (1990) concluded that there is an approximately constant ratio between the back 

scattering coefficient and the volume scattering fionction at 120°, so that bb can be calculated 

from a scattering measurement at 120°, using the relationship: bb~ 7P(120°). 

3.3.1.7. Turbidimeter 
A simplified version of the fixed angle scattering meter is the turbidimeter, A beam of 

light is directed along the axis of a cylindrical glass cell containing the liquid under 

investigation. Light scattered from the beam within a broad angle centred on 90° is measured by 

a photomultipier located on the side of the cell. The turbidity of the sample is measured relative 

to that of a standard. Turbidimeters measurements do not provide a direct estimates of scattering 

properties and are in arbitrary units. 
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5.5.2. Measurement of b(X) via the Conservation of 
Energy Equation 

In practise, the scattering coefficient is usually determined by the conservation of energy 

equation: b(^) = c(X) - a(?0> after measurements of beam attenuation and absorption coefficient 

have been made, hence the importance of both these measures. The following paragraphs 

mention two in-situ instruments. 

33.2. L Beam transmissometer 
Beam transmissomters have been used for a long time in marine optics. In principle, 

they measure the proportion o{X), of the incident beam which is lost by absorption and 

scattering along a pathlength r. The beam attenuation coefficient c(X) is given by: 

c W = - i l n ( l - C ) {m-') 

Equation 3-17 

In practice, the construction of an instrument which measures c(X) accurately is difficult. 

The problem is due to the fact that particles scatter mainly in the near forward direction. 

Therefore, unless the acceptance angle of the detector is the measurement will be corrupted 

by scattering and the attenuation underestimated. Corrections need to be applied to obtain the 

value of c(X). 

3.3.2,2. The ac'9 transmissometer (WetLabs) 
The ac-9 (WetLabs) simultaneously measures the absorption and attenuation coefficient 

of water at nine different wavelengths (Figure 3-2). The ac-9 is made of two cylindrical cells of 

10 or 25 cm length. The first, the a-tube is coated with an absorbing substance and measures the 

absorption coefficient of the water sample. The absorbing substance covering the cylinder 
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removes the scattered light from the measurement and therefore gives a fairly good 

measurement of a(X). The second cell, the c-tube, is coated with a reflective material and 

measures the attenuation coefficient. The reflective material entraps the light within the cell, 

thus providing an accurate estimation of the attenuation coefficient although a fraction of the 

light is lost by back-scattering (see section 3.7.7). 

Detector 

a-tube c-tube 

Absolving 
cylinder 

Reflective 
cylinder 

light source 

Figure 3-3: principle of the ac-9 

3.3.3. Measurement ofb(A) via theAOPs 
Information on the scattering properties can be derived from the measured irradiance 

values. For water with a specified VSF and with incident light at a given angle, then at any 

optical depth 4, the irradiance reflectance R(A.,z), and the average cosine /7, of the light are 

functions of b(A.,z)/a(A,,z). I f the value of R(X,,z) at a given optical depth is known, then the 

value of /7 (X,z) and b(^,z)/a(^,z) are fixed, and in principle can be determined. 

Kirk (I98Ia,b) used Monte Carlo simulation to determine the relationship between b/a, 

/7, and R using the volume scattering function determined by Petzold (1972) for the turbid 
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waters of San Diego harbour. He concluded that these relationship (77=f(R) and b/a=f\(R)) 

would be valid for most natural waters of moderate to high turbidity. Using the computer 

derived curves, it is possible, having a measurement of R(X,z) to obtain the corresponding 

values of Ji (A,,z) and b(\,z)/a(X,z). The irradiance values are used to estimate K e and the value 

of a(X,z) is calculated via the Gershun equation a=/7 K e . Knowing a and b/a, the value of b can 

be calculated. Weidemann and Bannister (1986) and Oliver (1990) used the same methods 

compared with others and found good agreement. Various radiometers can be used to measure 

the desired AOP's: Profiling Reflectance Radiometer (PRR; Biospherical Instrument), FreeFall 

(Satlantic Inc.), Scalar Irradiance collector (HobiLabs Inc.), HydroRad (Hobilabs Inc.). 

3.4. Conclusion 
A good understanding of the inherent optical properties of ocean waters as well as a 

good understanding of the respective contribution of the different optically active components 

of these waters is necessary i f better interpretation of remotely senses data and a better 

understanding of the underwater light field. The need for this knowledge is particularly 

important in coastal regions where the colour of the ocean is the result of a complex solution of 

dissolved and particulate components. Through this over view of the various techniques to 

measure the absorption and scattering coefficients of natural waters, it occurs that there is still 

scope for improving the measurement techniques. Therefore, despite the amount of in-situ or 

laboratory techniques that can measure absorption, developing an instrument that would 

measure absorption regardless to the level of scattering is of great interest for optical 

oceanography. 

From the observation of the various techniques to measure absorption, a promising one 

appeared to be an absorption meter based on an integrating cavity. The advantage of such a 
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techniques is that using an integrating sphere as a container cell for a water sample, virtually all 

non absorbed photons would end up at the detector regardless to the level of scattering. The 

brilliant design used by Pope, et al. (1992) achieved this. Kirk (1995. 1997) came out udth 

different idea for the design of the integrating sphere which he argued would be easier and 

cheaper to build as well as more efficient. The theory he developed for this instrument will be 

presented in Chapter 4. 
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Chapter 4: Principle and modelling of a 
PSICAM 

It has been shown in earlier chapters that absorption is not only difficult to measure 

because of the very low values that can occur in the blue and green part of the spectrum but also 

because of the interfering effect that scattering by suspended particles has on a beam of light. Of 

the various instruments that have been designed to overcome these problems, a promising one 

appeared to be an absorption meter based on an integrating cavity. In an integrating cavity 

absorption meter (ICAM), a diffuse light field is set up within the cavity that has a diffusely 

reflective wall and filled with the liquid whose absorption properties are to be measured. From 

the effect of the liquid on the light field, the absorption coefficient can be calculated. 

An absorption meter based on an integrating cavity was already developed by Fry et. al. 

(1992) and was subsequently used to measure the absorption coefficient of pure water {Pope 

and Fry, 1997) and field tested in the gulf of Mexico {Pope et. al, 2000). As describe 

previously, this instrument was based on two concentric cylindrical integrating cavities so that 

the measured sample placed in the inner cavity was illuminated by an isotropic light. Kirk 

(1995) came out with a different idea for an absorption meter based on an integrating cavity: 

using two concentric spherical cavities. He then came out with the idea of using a point source 

(Kirk, 1997) at the centre of the spherical cavity to illuminate it. With this design, the 

absorption meter would be made of a single spherical cavity which he argued would be cheaper 

and easier to build and also more effective. In this chapter, we will expose firstly the theory 

Kirk developed for this instrument with numerical calculation based on his equations and the 

results of simulation carried out with a Monte-Carlo models. 
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4.1. PSICAM principle 
An Integrating Cavity Absorption Meter has Uvo important advantages. First, because of 

the high reflectivity of the cavity, the photons follow a very long path length reflecting from 

one side of the cavity to the other, before being finally absorbed (either by a particle within the 

medium or by the cavity wall itselO- Therefore, an ICAM can be used to measure very low 

absorption values. Second, the light field being totally diffuse within the cavity, the effect of 

scattering from the particles of the studied solution will not make it any more diffuse. Thus, a 

measurement of absorption should not be affected whatever the level of scattering within the 

sample. Fry et ai, (1992) developed such an instrument based on an idea put forward by 

Elterman (1970). It showed as expected insensitivity to scattering and the ability to measure 

very low absorption values. Their cavity was of cylindrical shape {Chapter 3). Kirk (1995) 

showed that using a spherical cavity for an ICAM, explicit equations can be derived for the 

probability of photon survival in transit across the cavity (Pj), the average number of collision 

with the wall per photon (Cf) and the average path length per photon (If) as a function of 

absorption coefficient {a) of the medium, cavity radius (r) and reflectivity of the cavity wall {jS) 

(Equation 4-1) 

2a r 

f l-fp^ 

'/4 
Equation 4-1: ICAM equations (Kirk, 1995) 

The prototype instrument of Fry et al, (1992), is made of two cylindrical cavities 

whereas the proposed version by Kirk is made of two spherical cavities. An isotropic light field 
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is achieved as follow (Figure 4-1). In the empty outer cavity (III) is generated a diffuse light 

field. The inner cavity (I) field with the sample is illuminated by light passing through its wall 

(II). Light is allowed to do so thanks to the slightly translucent as well as highly reflective 

cavity wall (II). The properties of the inner cavity wall (including high Lambertian behaviour) 

create a diffuse light field within cavity I . 

Figure 4-1: Scheme of Kirk*s first version of an 
ICAM (1995): Two spherical cavities. 

Figure 4-2: Scheme of Kirk's second version of an 
ICAM: Illumination from a Point Source at the 

centre of the cavity. 

In the case of a spherical cavity, Kirk (1997) suggested another solution to create a 

diffuse light field which would be easier and less expensive to build: illuminating a single 

spherical cavity with a central point source i.e. Point Source Integrating Cavity Absorption 

Meter (PSICAM, Figure 4-2, Equation 1-2). He argued that assuming that the measured 

solution is not too strongly absorbing, the photons emitted fi-om the centre of the sphere would 

undergo one or more Lambertian reflection and consequently create a diffuse light field within 

the sphere. This assumption actually appears to be a ftmction of the cavity radius to absorption 

ratio and will be described later. 

As for the theory for an ICAM, Kirk derived for a PSICAM explicit equations for the 

probability of photon survival in transit across the cavity (Ps), the average number of collisions 

with the wall per photon (Cf) and the average path length per photon (If). These quantities are 
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fiinctions of the same variables: absorption coefficient (a) of the medium, cavity radius (r) and 

reflectivity of the cavity wall (p) (Equation 4-2). 

1 - exp ( - 2ar)(2ar + l ) 

^ ^ exp {- ar) ^ Pq 

^ \ - pPs 1 - pPs 

+ exp {- 2ar){ar + 1) 

Equation 4-2: PSICAM equations (1997) 

The instrument proposed by Kirk would work like a normal spectrometer measuring the 

transmittance of a water sample relative to a standard (typically pure water). The irradiance on 

the cavity wall being proportional to the average number of collisions, he showed that the 

transmittance could be calculated as: 

Til)- ^ - ^M-c^4^-pPs"') 
EiO) exp{-a,,rX\-pP,) 

Equation 4-3 

where aw is the absorption coefficient of pure water and Ps"' the probability of photon survival in 

transit across a cavity field with pure water. Equation 4-3 can not be solved for absorption but 

assuming that the radiance distribution is homogeneous and isotropic within the cavity Kirk 

proposed the solution: 

a{A) = 
4 
—r 
3 

_ 1 _ 3(1-p(A)) 
T{A) 4r 

Equation 4-4 

We will see later that this equation is a good approximation but a simple least square 

method can be used to solve Equation 4-3 without any assumptions. 
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4.2. Investigation of a PSICAM performance 
4,2 A. Effect of cavity radius and reflectivity 

Kirk (1995) mentioned that the P S I C A M would behave as an integrating cavity 

assuming that the solution under consideration was not too absorbing. Thus there must be an 

absorption to radius relationship which must fix the cavity radius depending on the water type 

that is under consideration. Figure 4-3 and Figure 4-4 show the relationship between the 

probability of photon survival PQ and Ps and the average number of collisions with the wall per 

photon Cf. The range of absorption and cavity radius selected for the calculations are 0.01 to 

10m"' and 0.01 to 0.5m. The calculation for C f were made for p=0.97, 0.98 and 0.99. 
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Figure 4-3: Relation between Ps, Po and the product a*r. 

It occurs that whatever the cavity radius, the three parameters P©, Ps and C f will remain 

very similar for a given absorption-radius product. In case of both Probabilities of Photon 

Survival (Figure 4-3), the two parameters remain almost unchanged for a given absorption-

radius product. In case of the Average Number of Collision (Cf, Figure 4-4), for a given value 
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of the wall reflectivity, the absorption-radius product remains almost unchanged. When the 

value of the reflectivity decreases, Cf logically decreases but major differences only appear for 

low absorption to radius product, i.e. low absorptions. However, this would not be of major 

influence for the isotropy of the light field within the sphere since a photon would have 

undergone multiple Lambertian reflections at this stage. Thus, i f we fix the average number of 
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Figure 4-4 Relation between Q a n d the product a*r 

collisions assumed to create an isotropic light field within the sphere, we will be able to 

determine the adequate cavity radius for a given range of absorption. Kirk (1997) mentioned 

that provided that the medium is not too strongly absorbing, photon in the cavity will have 

undergone one or more Lambertian reflection fi-om the wall, the light field should be diffused 

and the cavity should behave like an integrating cavity. One or more Lambertian reflecfions 

mean one or more collisions on the cavity wall. I f we take two collisions as a limit, this gives us 

an upper limit for the absorption-radius product of about a*r=0.35 corresponding to 0.70, 0.65 
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and 2 for Po, Ps and Cf respectively. This limit would be valid for the three values of reflectivity 

investigated. 

Having this upper limit for the product a*r, we can calculate the range of cavity radius 

suitable for a range of absorptions. In Figure 4-5, the solid line represent the upper limit for the 

cavity radius in relation to a given absorption value. The grey area represents the range of radii 

suitable for a range of absorptions. The upper and lower limit, respectively 0.50m and 0.02m 

are arbitrary. They more or less correspond to practical limits for a usable integrating cavity. It 

is acknowledged that a cavity of 50cm diameter would not be the user friendly compromise in 

terms of volume of the system, volume of water to handle and power of the light source to 

illuminate it! The black dashed line on Figure 4-5 represent the cavity radius of our prototype 

(r=0.05m). This gives a maximum measurable absorption of about 7m"' for our application. 

100 ^ 

1 
> 

0.01 
0.01 0.1 10 
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Figure 4-5: Cavity radius versus absorption optimum 

From the theoretical equations, we manage to set an empirical maximum value for the 

cavity radius. We will now consider the minimum size of the integrating cavity. Kirk (1997) 
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stated that a transmittance of no more than 90% would be recommended to achieve an 

acceptable accuracy. Using Equation 4-3, the evolution of transmittance as a fimction of 

reflectivity can be investigated for a set of absorptions (Figure 4-6). The transmittance was 

calculated for three absorption and reflectivity values respectively a=0.01, 0.1 and Im * and 

p=0.95, 0.98 and 0.99. The calculation were made assuming that the reference was an empty 

cavity of zero absorption and therefore a probability of photon survival Ps = 1. 

Surprisingly, it appears from Figure 4-6 that for a given cavity radius and a given 

absorption, the transmittance actually decreases with increasing reflectivity. For the lowest 

absorption (0.01 m"'), which would correspond to the blue and green part of the pure water 

absorption spectrum, the transmittance decreases very weakly as a function of the reflectivity. 

In such a medium, a photon would have an initial path length of several meters. Thus a fairly 

large cavity would be required to achieve a significant depletion of the transmittance. For the 

medium value of absorption selected (0.1 m'*), which would correspond to yellow orange and 

the begiiming of red wavelengths for pure water absorption, a cavity radius fi-om 2 up to 10 cm 
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Figure 4-6: Effect of the cavity radius on the theoretical transmittance 
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would give an reasonable depletion of the transmittance. For the highest values (a = 1 m ' ) , 

which correspond to the absorption range of pure water in the red, the transmittance decreases 

dramatically with increasing cavity diameter. In such cases lower cavity wall reflectivity would 

be more suitable. Figure 4-7 displays the theoretical transmittance versus the product of 

absorption and radius. As before, it appears that for a given reflectivity the transmittance 

remains similar for a given product a*r. Again, it shows that the transmittance actually increases 

when the reflectivity decreases. Assuming that a transmittance of no more than 90% should be 

expected for acceptable accuracy (Kirk, 1997), an empirical lower limit can be calculated for 

the cavity radius. The three vertical dashed lines on Figure 4-7 represent the three limits of the 

product a*r for the three reflectivities investigated; they are a*r=0.0008, a*r=0.0015 and 

a*r=0.0025 for p=0.99,0.98 and 0.97 respectively. 
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Figure 4-7: Transmittance versus product of absorption and radius. 

From these data, were deduced the domain in which the PSICAM would be acceptable 

in terms of accuracy. 
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Figure 4-8 shows the optimum range for the cavity radius as a function of the absorption 

(grey area). The upper limit was shown on Figure 4-5. As before, the two horizontal dotted lines 

are arbitrary and refer to practical limitations of the cavity radius. In addition, we have now the 

three lower limits corresponding to the three reflectivity values investigated. It appears that the 

higher the reflectivity, the lower the absorption a cavity would potentially measure accurately. 

When investigating a specific wavelength as for LIDAR application for example, one could 

select the absorption range expected and chose an adequate cavity radius. Since we aim to use a 

single integrating sphere for the whole visible spectrum we'll have to compromise for the size 

of the sphere. The horizontal dash-dotted line represents the cavity radius of our three different 

prototypes. This vAW provide us with a potential accuracy fi-om 0.02-0.05m'' depending on the 

cavity reflectivity up to 7m"'. 
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The wavelength dependence hasn't been mentioned in this section. It must be 

remembered that the calculations were performed using zero as reference absorption. In 

practise, the transmittance will be measured relative to pure water. 

400 450 500 550 600 

Wavelength (nm) 

650 700 

Figure 4-9: Example of a typical transmittance spectrum measured in the English Channel (1'* July 2002) 

Figure 4-9 is a typical transmittance spectrum measured with a water sample fi-om the 

English Channel. The transmittance increases fi'om the blue to the red part of the spectrum. This 

would mean, according to our calculations, that in the red part of the spectrum the calculation 

will not be as accurate. Indeed, pure water absorbs very weakly in the blue wavebands. The 

absorption then increases towards the red to peak in the infi-a-red around 950nm at about 50.0m" 

The other absorbing components expected to be found in seawater absorb mainly in the blue 

and green part of the spectrum. As a result, the transmittance remains quite high at the end of 

the visible spectrum. 

4.2.2. Calculation of the absorption coefficient 
4,2,2J. Reflectivity 

Having a measure of the transmittance, of the three others variables (aref, r, p), arcf and r 

are supposed to be known but the reflectivity p(X.) remains to be measured or calculated. In his 
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paper, Kirk, (1997) proposed a simple experiment to measure the reflectivity. From Equation 

4-3, the reflectivity can be extracted: 

r ^ e x p ( - a , r ) / > / - e x p ( - a , r ) / > / 

Equation 4-5 

The solution to calculate p(X) proposed by Kirk (1997) is to use two standard dye 

solutions A and B of different concentration which absorb broadly in the visible waveband and 

measure the transmittance TAB of one relative to the other. From this measurement, the 

reflectivity can be calculated as in Equation 4-5. 

4.2.2,2. Kirk's formula for absorption 
There is no linear solution for the absorption in Equation 4-3. Equation 4-4, proposed by 

Kirk (1997) for the calculation of a(X), is an approximation of the equation of transmittance 

(Equation 4-3). To assess how the calculated absorption will be affected by this approximation, 

let us calculate a set of transmittances given a set of absorptions, a cavity radius and a 

reflectivity. Figure 4-10 shows on a semi-log scale the transmittances calculated for a cavity 

radius of 5cm, a reflectivity of 0.99 and a set of absorption coefficient from 0.01 to 30 m"'. As 

previously, the reference for the calculation is an empty cavity of zero absorption. 
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Figure 4-10: Theoretical transmittance calculated 
with Equation 4-3 
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Figure 4-11: Calculated values compared to real 
values 
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Figure 4-11 shows the result of the absorption calculated with Equation 4-4 compared 

with the real values. With increasing absorption, the data calculated deviate from the reality. 

Figure 4-12 shows the percentage error for four ranges for the set of absorptions. Each of the 

four graphs displays the percentage error versus real absorption. These graphs show that the 

error increases with the absorption giving less than 0.25% error for 0.01 < a < 0.09m'', less than 

1% for 0.1 < a < 0,9m \ less than 5% for 1 < a < 3m"' and more than 5% for a > 4m"'. For the 

smallest values of absorption (a<0.2m'') the calculated values are actually slightly 

underestimated. 
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Figure 4-12: Percentage error in the calculated absorption for a cavity radius of 5 cm 

Figure 4-13 shows the results of the same calculations for a cavity radius of 2 cm. The 

error gets smaller for low absorptions: less than 1% in absolute value for absorptions up to 2m"', 

and less than 5% for absorptions up to 9m"'.The results are improved very significantly for the 

higher absorption values. 
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Figure 4-13: Percentage error in the calculated absorption for a cavity radius of 2 cm 
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Figure 4-14: Percentage error in the calculated absorption for a cavity radius of 10 cm 

Figure 4-14 shows the results of the same calculations for a cavity radius of 10 cm. As 

would be expected, the error for higher absorption is getting even bigger than for a cavity radius 
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of 2 and 5cm and remain acceptably small for absorption lowers than Im *. Let us remember 

that Equation 4-4 used for the calculation assumes an isotropic light field within the cavity. In 

cases of low absorption values, the photons will undergo multiple reflections on the cavity wall 

before being finally absorbed by the medium or the cavity wall, thus creating a homogeneous 

light field within the cavity. With increasing absorption, the photons will undergo less and less 

reflections before being absorbed, thus making the light field less likely to be isotropic. For a 

given absorption, increasing the cavity radius means minimising the number of reflection a 

photon will undergo before being absorbed, having at the end the same effect as increasing the 

absorption. 

4,2,2,3. Least square method 
An alternative manner to calculate the absorption would be to solve numerically the 

equation of transmittance Equation 4-3 for a(X) using a least square technique. The advantage 

of this technique is that it does not suppose any assumption about radiance distribution. With 

this technique, a set of theoretical transmittances is calculated using Equation 4-3 for a given 

range of absorption coefficients. This gives Tth(X). The reflectivity, the absorption coefficient of 

the reference solution and the radius of the cavity are known parameters. The absorption 

spectrum of the sample is then the minimum of the function G(a(^)) (Equation 4-6), where Tcxp 

is the measured transmittance. 

Equation 4-6 

In order to assess this method, the same calculation as for Kirk's formula was carried 

out. Having the same inputs as previously: cavity radius of 5cm and a cavity reflectivity of 
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99%, a set of transmittances was calculated for a given set of absorptions. The absorptions were 

then solved with a least square technique. 

O calculated absorption 
regression 

10 • 15 20 

real absorption (m ') 

Figure 4-15: Calculated values compared to real values 

Figure 4-15 presents the results of these calculations and shows that, provided that the 

range of absorption chosen for the calculation is adequate, a perfect match between the input 

absorption and the calculated one (slope = 1 r̂  = 1). The error range was found to be smaller 

than 3*10"''*. The only limitation of this method would be the computation time. In our case, the 

absorption values used for the calculation follow a logarithmic progression from 0.01 to 30m"^ 

I f accurate calculations are expected, we need to set a small sampling step for the absorption 

vector making the calculation longer. 

4.2,2.4, Conclusion 

From these two techniques, the least square method appear to give better results. 

However, for the range of absorption that we will be interested in for sea water (typically below 

5m''), Kirk's formula will also be applicable. These two techniques also do not take into 

account the experimental errors that would be encountered in a real experiment. Therefore, 
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using the least square technique might be preferable in order to minimise the sources of error. 

The next section will consider the experimental errors that can be encountered with a PSICAM. 

4,2.3, Sensitivity analysis 
Leathers et al. (2000) carried out a sensitivity analysis for a PSICAM. They proposed the 

following equation for the variability of a as a function of the four variables: transmittance (T), 

reflectivity (p), cavity radius (r) and reference absorption spectrum (aref) . 

\op) \dr) \da^.] 

Equation 4-7 

With: 

Table 4-1: Constants of the sensitivity equation 

Coefficient Value 

ddJ&Y -0.72 m"* 
da/dp -16 m"' 
da/dr -3.2 m"̂  

2.1 

They stated that the equation would be valid for visible wavebands in coastal waters for a 

PSICAM made of Spectralon. The coefficient presented in Table 4-1 correspond to an 

absorption coefficient of 0.2 m' ' , a reference absorption of 0.02 m"', a cavity radius of 0.05m 

and a reflectivity of 0.99. Using this formula to investigate the influence of the variability of 

each separate parameter, we arrive at Figure 4-16, The four graphs of this figure are on the same 

10 to 5 scale except for the reflectivity graph, which is on a 10 to 1 scale. This analysis reveals, 

as forecasted by Kirk (1997), the extremely high sensitivity of the instrument to the reflectivity 

of the cavity wall. An error of 0.2% in the value of the reflectivity leads to more than 10% error 

in the calculation of the absorption coefficient. Therefore the calculation of the reflectivity 
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exposed in section 4.2.2A via an experimental procedure appears to be critically important for 

the reliability of the instrument. Moreover, regular reflectivity measurement as well as regular 

maintenance wil l be needed to prevent degradation of the sphere reflectivity. 
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Figure 4-16: Sensitivity analysis for a sphere of 5cm diameter, a reflectivity of 99%, a reference absorption 
of 0.02m'^ and an sample absorption of 0.2m'* 

The second important parameter in terms of sensitivity is the measured transmittance for 

which a 1% error would give about 2% error in the value of the calculated absorption. The most 

likely source of error for this parameter would be instrumental (stability of the light source and 

spectrophotometer). Then comes the cavity radius and the value of the reference absorption. We 

have got almost a one to one relationship for the first one. It should remain constant and 

therefore easily accounted for. The last source of error would depend upon the quality of the 

pure water supply. This is, as pointed out previously, the inherent problem of all techniques 

using pure water as a reference. 

The analysis made by Leather et ai, (2000) targeted a specific value for the absorption 

of both the studied solution and the reference solution. A more general sensitivity analysis was 
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carried out for a range of absorptions between 0.01 and 10 m"' using an empty cavity as a 

reference for the transmittance, reflectivity and cavity radius calculations and a reference 

absorption of 0.01m"' for the calculation of sensitivity with the reference absorption. Three 

cavity radii were taken into account (0.02, 0.05 and O.IOm) and the reflectivity was set to 0.99. 

Al l calculations were carried out using the least square method. Thus, the errors calculated are 

not the consequence of deviation from the homogeneous energy distribution assumption due to 

increased absorption. They strictly represent the sensitivity of the system towards its four 

variables. The principle of the calculations was to derive theoretical transmittances using 

Equation 4-3 for various absorptions. Then to introduce increasing errors on the four variables 

one at a time and calculate the absorption using the least square method to assess how the 

hypothetical measurement would be affected. 

This numerical analysis (Figure 4-17 to Figure 4-19) provides the same kind of patterns 

as Figure 4-16 but gives an idea of how the sensitivity would vary for a range of absorptions. 
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Figure 4-17: Sensitivity analysis for a sphere of 5cm radius 
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The same patterns are indeed observed but in addition it shows that in the case of the 

transmittance and the reference absorption, the smaller the absorption, the higher the sensitivity. 

This agrees with the need for an accurate measurement to achieve a significant depletion of the 

transmittance. In the case of a transmittance error of 1%, the induced errors in the calculated 

absorption are 20%, 4%, 2.5%, 1% and 0.8% for absorptions of 0.01, 0.05, 0.1, 1 and lOm"' 

respectively. In the case of a reference absorption error of 5%, the induced error in the 

calculated absorptions are 5%, 2.5%, 1.1%, 0.8%, 0.2% and 0.15% for absorptions of 0.01, 

0.02, 0.05, 0.1, 1 and lOm"' respectively. On the other hand, the cavity radius does not show 

any significant dependence toward the absorption value. The four curves for 0.01<a<10m'' 

being identical. Finally, the reflectivity also shows very little dependence upon the absorption 

values. 
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Figure 4-18: Sensitivity analysis for a sphere of 2cm radius 

By decreasing the cavity radius to 2cm (Figure 4-18), the sensitivity to the reflectivity 

remains almost unchanged. As is the sensitivity to the reference absorption and cavity radius. 

The sensitivity to the transmittance increases but the difference appears more significant for the 
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lower absorptions. The difference was +0.13%, +0.30%, +2.50%, +4% and +20 % for a= 10, 1 

0.1, 0.05 and O.Olm"' respectively and an initial error of 1% on the transmittance measurement. 

Table 4-2: Percentage error in the calculated absorption for an initial error of 1% in the measured 
transmittance. A/raos represents the error variation relative to r=0.05m 

Radius (m) 0.02 0,05 0.10 

Absorption (m ') % Error A/ro.os % Error % Error A/ro.o5 

0.01 40 +20 20 10 -10 
0.05 8 +4.0 4.0 2.60 •J.40 
0.1 5 +2.50 2.50 1.8 -0.70 
1 1.40 +0.30 1.10 1.09 -0.0} 

10 0.99 +0.13 0.86 0.70 -0.16 

On the other hand, by increasing the cavity radius to 10 cm in our example, the 

sensitivity to the reference absorption and cavity radius still does not show any significant 

variation. The sensitivity to the reflectivity only shows a variation for high absorptions. The 

sensitivity to the transmittance is logically minimised. The variation in the sensitivity is also 

dependent on the absorption (Table 4-2). 
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Figure 4-19: Sensitivity analysis for a sphere of 10cm radius 
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The sensitivity to transmittance varies with the size of the sphere. The sensitivity to 

cavity radius and the reference absorptions remains quite similar whatever the cavity radius, the 

last showing a dependence with the absorption of the solution. Of these three parameters, the 

transmittance and the cavity radius will be fairly well controlled. The error inherent in the 

transmittance measurement will depend upon the stability of system, principally the light source 

and the spectrometer. The cavity radius will remain unchanged, assuming the thermal expansion 

will not be significant, and can be measured accurately enough. The quality of the pure water 

supply for the reference measurement will always be an uncertainty difficult to estimate. It 

could be crucial in the blue and green parts of the spectrum where the standard absorbs very 

weakly. Unfortunately, the reflectivity, the main source of error in the system, changing the 

cavity radius does not produce any significant improvement in terms of sensitivity. As stated 

before, it is the key parameter for the efficiency of the system and its spectrum will have to be 

calibrated regularly. 

Although changing the cavity radius does not significantly reduce the sensitivity of the 

system toward the reflectivity, a cavity with a lower reflectivity proved to be less sensitive. 

Figure 4-20 shows the error in the calculated absorption versus the error in the value of the 

reflectivity for the three previously investigated cavity diameters (0.02,0.05 and O.IOm) and for 

two values of wall reflectivity (p=0.98 and 0.97). For a given reflectivity, changing the cavity 

radius still does not make a significant difference except for the higher absorption values. For 

p=0.98, we have about 10% error on the calculated absorption for 0.2% error with the 

reflectivity. For p=0.97, a 10% error in the calculated absorption corresponds to 0.3% in the 

reflectivity value except again for the highest absorption values. 
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Figure 4-20: Percentage error on the calculated absorption for different radius on and lower reflectivity. 

To summarise, Table 4-3 gives the percentage error in the reflectivity responsible for a 

10% error in the calculated absorption, for an initial absorption of 0.01 and 10m"'. The 

sensitivity definitely decreases for lower reflectivity values but remain unfortunately critically 

important. 

Table 4-3: Percentage error in the reflectivity creating a 10% error in the calculated absorption. T h e left 
value in each column is the value for a=0.0]ni*\ the right one a=]Om'V 

Reflectivity (%) 99 98 97 
Radius (m) 

0.02 OAO O.IJ 0.20 0.2 J 0.30 0.32 
0.05 0.10 0.12 0.20 0.25 0.30 0.38 
0.10 O.IO O.J 5 0.20 0.32 0.30 0.48 

Lastly, Figure 4-21 gives an idea of what would be the sensitivity of the system 

assuming an even lower reflectivity p=0.95 and a cavity radius of 5cm. As in the previous cases 

the sensitivity to the cavity radius and the reference absorption remains equal. The sensitivity to 

reflectivity as expected gets a bit lower. 10% error in the calculated absorption is generated by 
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about 0.5% error in the reflectivity value. The effect on the transmittance would be an increased 

sensitivity especially for the smallest absorptions. 
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Figure 4-21: Sensitivity of the system for a cavity radius of 5cm and a reflectivity p=0.95 

To conclude, the only way to minimise the sensitivity of the system to reflectivity 

appears to be by using a less reflective material. Assuming that the system would be stable 

enough, the resulting increased sensitivity to the transmittance could be overcome. But even so, 

taking the example with p=0.95, 0.1% error in the value used for the reflectivity in the 

calculation would generate about two percent error in the calculate absorption. 

43. Monte Carlo modelling 
4.3.1. Introduction: 

The behaviour of light within the water is determined by the inherent optical properties 

of the aquatic medium. In principle, therefore, it should be possible knowing the absorption, 

scattering and volume scattering function, to calculate the optical properties of a water body. In 
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reality, the complex behaviour of a photon population in the water caused by the combined 

effects of absorption and scattering, themselves dictated by a very complex mixture of 

components, prevent us fi^om establishing an explicit analytical relationship between the 

inherent and apparent optical properties of the light field. However, there are computer models 

which can achieve this by making physically realistic assumptions about the ways in which the 

behaviour of light at any point in a water body is determined by the scattering and absorption 

properties of the medium. One of the most common is the Monte Carlo method. 

The Monte Carlo modelling technique has been used in a great variety of fields, from 

gambling applications to nuclear physics and marine optics (Kirk, 1981a, 1981b, 1992). Its 

application to the behaviour of solar photons in the ocean was initiated by Plass and Kattawar 

(1972), Gordon and Brown (1973), Gordon et.ai (1975) and Gordon (1989a, 1989b, 1991). 

The principles are described in detail in Kirk (1981a,c). 

For our purposes, Monte Carlo modelling wil l determine the behaviour of light within 

an integrating sphere illuminated fi'om its centre, being given the absorption and scattering 

coefficient of a hypothetical medium filling the sphere. 

4.3.2. Mode of operation of the Monte Carlo code 
The behaviour of individual photons within an absorbing and scattering medium is 

stochastic in nature. The lifetime and the geometrical path followed by any given photon are 

governed by its random encounters with absorbing molecules and scattering particles {Kirk, 

1994). The inherent optical properties of a medium (absorption, scattering and volume 

scattering function) are a measure of the proportion of an incident flux absorbed and scattered 

per unit distance. They are also related to the probability that any given photon wil l , within a 

certain path, be absorbed or scattered at a certain angle. 
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The Monte Carlo method requires simple but numerous calculations and is therefore 

only made feasible thanks to computer calculation. It uses the stochastic nature of photon 

behaviour and follows the fate of a large number of photons, one at a time, passing into an 

imaginary body of water with specified inherent optical properties. Random numbers are used 

in conjunction with appropriate cumulative frequency distributions (based on the optical 

properties of the particular water assumed to be present) to choose path lengths between each 

interaction with the medium, to decide whether the interaction is one of scattering or absorption, 

to select the scattering angles and so on. 

Our Monte Carlo model (Figure 4-22), follows the fate of a large number of simulated 

photons, travelling one at a time from the light source situated at the centre of the sphere 

through the integrating cavity until it is finally absorbed by the water phase or the wall of the 

integrating cavity. Two different scattering phase functions are used. The first and most simple 

considers isotropic scattering: when a photon hit a particle, it is equally likely to be scattered in 

any direction in space. The second and supposedly closer to the reality is the seawater scattering 

phase function measured by Petzold (1972) in the turbid waters of San Diego Harbour (Figure 

4-24). This phase function assumes that the majority of the photons will be scattered in the near 

forward direction of the initial path. From the behaviour of all simulated photons, are calculated 

the probability PQ of photon survival from the centre of the sphere to the cavity wall and Ps, the 

probability of photon survival in transit from wall to wall. From those two measurements are 

then calculated the average path length and the average number of collision on the cavity wall 

per photon as describe in Equation 4-2. The step-by-step operation of the model is set out in 

more details on Figure 4-22. For each run, the diameter of the cavity, the maximum number of 

simulated photons and the wall reflectivity are specified. The position of any photon at any time 

in its journey is specified in terms of its Cartesian co-ordinates (x, y, z) or spherical co-ordinates 

102 



Chapter 4: Principle and modelling of a PSICAM 

B E G I N 

A new 
Emitted fron 

photon is 1 
1 x=0, y=0, z=0 II 

r 

Calculation of the initial Path length (P) using: D 
- Random numbers 1 
- Values of a and b || 

f 

Calculation of the 
zenith (9) and the azimuth ((p) angle using: 

- random numbers 

Calculation of new path length using 
Random numbers 
Values of a and b 

1 

Calculation of the reflection angle \\f using 
Random numbers 

Cumulative frequenc>' distribution p(6) 

Calculation of the 
Random 

rotation angle O 1 
number i 

Does the U-ajectory end inside the cavity 

IS the p h o t o n a b s o r b e d i n the c a v i t y Is the photon absorbed on the wall 

/ Record Collision 
with the cavity 

wall 

Record 
Absorption 

Record 
Absorption 

The photon is U 
scattered | 

0 

New path length 
^f ler^f lec t ior^ 

Reflection angles 
H and v: 

•Random Numbers 

Calculation of the 
new coordinates x, 
y, z after reflection 
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(P, 0, (p) (Figure 4-23) whether one or the other is better for the calculations. For the Cartesian 

co-ordinates, the x-y plan is the equatorial plan of the sphere and the z-axis is perpendicular to 

this plan. The origin of the three-dimensional axis is the centre of the sphere, the (O, l , j \ k ) 

base being direct ortho-normal. For the spherical co-ordinates the origin corresponds to 

0(0,0,0) in Cartesian co-ordinates, (p=0 corresponds to the unit vector 7 and 9=0 corresponds to 

unit vector k . One passes from one co-ordinate system to the other according to Equation 4-9 

and Equation 4-10. 

Figure 4-23: From Cartesian to spherical co-ordinates 

The light source is assumed to be a diffijse point source situated at the centre of the 

sphere. Each emitted photon therefore start from the centre of the sphere with co-ordinates x=0, 

y=0 and z=0. For each emitted photon, three random numbers (0<r<l) are generated. One to 

determine the initial path length (P) before the first interaction with the medium, one to 

determine the azimuth angle (cp) and the last one to determine the zenith angle (0) of the emitted 

photon (Equation 4-8). 
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Figure 4-24: cumulative frequency distribution (Petzold, 1972, San Diego Harbour) 

1 
a + b ^ ^ 

(p'lnr {0<(p<2^) 

e = nr {0<e<;r) 

Equation 4-8 

At this stage, two situations are possible. 

First, i f the new point is inside the cavity, a new random number is calculated to 

determine i f the next interaction is one of scattering or one of absorption, the rule being: 

• i f r < a/(a+b) the photon is assumed to be absorbed 

• otherwise it is assumed to be scattered 

I f the photon is absorbed, its number of wall to wall transits is recorded and a new 

photon is emitted. I f the photon is scattered, three random numbers are generated to determine 

the path length (?) before the next interaction, the angle of scattering (0<\\f<n) according to a 

cumulative frequency distribution (Figure 4-24) and the angle of rotation (0<Q<2n) around the 

initial trajectory. 
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Second, i f the new point is outside the cavity then the co-ordinates of intersection on the 

cavity are calculated and a random number determine i f the photon is absorbed on the cavity 

wall or reflected, p being the reflectivity of the wall. The rule in this case is: 

o i f r>(l -p) the photon is assumed to be reflected 

o otherwise, it is assumed to be absorbed 

I f the photon is absorbed, the number of wall to wall transits is recorded, and then a new 

photon is emitted from the centre of the sphere. I f not, the photon is assumed to undergo a 

Lambertian reflection on the cavity wall. Two random numbers are generated to determine the 

angle of reflection on the zenith and azimuth plan and the new co-ordinates x, y, z after 

reflection are calculated. The path length after reflection is calculated as the original one minus 

the distance traversed before the collision. 

At this stage, two situations are possible: 

The new point is inside the cavity in which case random numbers are generated to 

determine the nature of the next interaction, the angle of scattering (v;/), the angle of rotation (Q) 

and so on, or the new point is outside the cavity in which case the intersection with the sphere is 

calculated and so on. 

4.3.3, Mathematics of the Monte Carlo Code 
The position of each photon is expressed at any time in terms of Cartesian (x, y, z) or 

spherical (P = path, 0 = zenith angle, (p = azimuth angle) co-ordinates depending which one is 

better to use for the various calculations. Basically, the model uses spherical co-ordinates for 

emission and scattering and to decide i f the photon is inside the sphere. Cartesian co-ordinates 

are used to calculate the intersection of any given trajectory with the sphere and the new co­

ordinates after being scattered by a particle or reflected on the cavity wall. 
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x = />*sin(6')*cos(^z>) 

z = P*cos{e) 

Equation 4-9: From spherical to Cartesian co­
ordinates 

e = acos{j) 

<P 

aco^ 

2*;r + flsin y 

V y>^ 

if y<0 and x>0 

Ur + acos 
f \ 

- X if y <0 and x < 0 

7T if y = Q and x<0 Oif y = 0 and x>0 

Equation 4-10: Cartesian to spherical co-ordinates 

4.3.3. L Emission, scattering and absorption 
A photon is initially emitted from the centre of the cavity. The initial trajectory of the 

photon is calculated using Equation 4-8. To explain the emission and scattering principle, we 

will assume a cavity of infinite radius. The photon will continue its path, being scattered or not 

until it is finally absorbed. After emission, the photon will be in position described by Xa, ya, Za 

its cartesian co-ordinates and OA, 0A, (PA, its spherical co-ordinates. A first rotation matrix is 

calculated: 

rot\ = 
- sin <p^ - cos 0^ cos sin 0^ cos <p^ 
cos(p^ - cos^^ sin <p^ sin0^ sin <p^ 

0 sin^^ cos^^ 

This matrix expresses the rotation of the new base {A,I,J,K) (Figure 4-25) in the 

original base ( 0 , 7, J, k). I f the photon is not absorbed then it will be scattered. New co­

ordinates are calculated for the scattered photon in the base ( A , 7 , J , K): A B , Vj/B, QB- A new 

rotation matrix is calculated: 

rotl 
cos cos \f/^ - sin fi^ cos fi^ sin 

sin QJ cos y/g cos sin Clg sin y/g 
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This matrix expresses the rotation of the new base (B,Z, A / , / / ) in the original 

( A , / , y , AT) (Figure 4-25). The co-ordinates of B are then calculated in the base (O, / , 7, ̂  ) : 

OBo=OAo-^ron*AB^ 

where OBo and OAo are the vectors expressed in the base (O, i , j \ k ) and ABA is the vector 

expressed in base (A, 7, J , K). I f in B, the photon is not absorbed, it is scattered again. The co­

ordinates of the new point C are calculated. Its position is calculated in base (O, J , j \ k ) as 

OC = OAo + rotl * {AB^ + rot! * BCB) and so on until it is finally absorbed. 

Figure 4-25: Schematic of the bases used for scattering calculations. 
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4.3,3.2, Collision on the cavity wall 
I f at any time during its transit, the photon ends up "outside" the cavity, we must 

calculate the point of collision between its trajectory and the sphere and from this point 

calculate new co-ordinates after reflection on the cavity wall. First, the intersection between the 

straight line describing the trajectory of the photon and a sphere of radius r is calculated. We 

have three unknowns (Xc, yc, Zc) the co-ordinates of the collision point C. To find these we need 

a system of three equations. We know the last position of the photon A (xg, ya, Za) and the new 

position outside the sphere B (Xb, yb, Zb)- In three dimensions, a straight line is defined as the 

intersection of two planes z=ax+by+c. A first plane P] containing A, B and E is calculated. The 

point E is created so that AB* AE = 0 is verified. The second plane P2 containing A, B and D is 

calculated with the created point D verifying AB AAE^ AD. We have now to solve a system 

of three equations and three unknowns: 

• 

z = ax + by-^c {P^) 

z = dx + ey-\-d (P^) 

+ z ' = r ' (Sphere) 

This is a system of second order which has one or two solutions. In general the system 

will have two solutions except i f the trajectory of the photon is tangent to the sphere. One of the 

two collision point is decided depending on the direction the photon is travelling. 

Having the collision point, new co-ordinates after reflection are calculated (AB,|i ,v) 

assuming a Lambertian reflection. Two rotation matrixes are used to allow calculation of the 

new point after reflection. Taking the example of Figure 4-26, the photon hit the cavity at A and 

is reflected at B. The first matrix rot I calculates the rotation of the base (A, I , J , K ) into the 

base (O, J, k ): 
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rot] = cos <p^ 
0 

- cos 6^ cos <p^ sin 9^ cos 
- cos 6^ sin <p^ sin sin q>^ 

The co-ordinates of B are then calculated in the base (O, / , j\ k ): 

OBo=OAo-¥rot\* ABA 

where OBo and OAo are the vectors expressed in the base (O, J,j\k) and ABA is the 

vector expressed in base (A, 7 , J , I f in B, the photon is not absorbed, it is scattered again. 

Figure 4-26: Schematic of the bases used for reflection calculations. 
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The second rotation matrix needed, rot2, will calculate the co-ordinates of the new point 

C emitted from (B, L,M,N) into (O, 7, ]\ k ): 

rot2 = 
cos/i cos V -sin/J cos//sin u 
sin // cos V cos / i sin // sin u 

- sin V 0 cos V 

Again, this goes on until the photon is finally absorbed within the cavity or on the 

cavity wall. 

4.3,4. Limitations of the code 
Monte Carlo models are a powerflil way to simulate the behaviour of photons. However, 

the code produced has its limitations. The output values from the code are the results of 

probabilistic calculations. The probability of photon survival is calculated as follows. The 

number of wall to wall transits and the total number a photons which collided v^th wall and 

were reflected are recorded. The probability of photon survival is then calculated as the ratio of 

the total number wall collisions and reflections to the total number of wall to wall transits. With 

this method, i f the absorption is rather small then the number of wall to wall transits vnW 

become extremely large and the probability will therefore get closer and closer to one. Table 

4-4 gives an example of what's happening. We calculated for a set of absorption values the 

theoretical value of Ps and the result of the simulation for b=Om"', r=0.05m and p=0.999 for 

various number of simulated photons (MP). 

These data show that for small values of absorption coefficient, the simulated 

probability of photon survival will tend to one. I f we try to decrease the number of simulated 

photons, this actually diminishes the total number of wall to wall transits for the set of data and 

hopefiilly removes the artefacts from the calculation. In other words, by changing the total 

number of simulated photons, we can adjust the model to fit the theory for b=Om''. Doing so 
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changes the limit in our example for a=0.5m'' and a=0.lm '. For a=0.05m'\ the value remains 

Ps=l. On the other hand, for fairly high absorption values (a=10m'*), the simulated value for Ps 

is also overestimated relative to the theoretical equation. The simulations for a=5m'* are also 

slightly overestimated. Overall, our code for a cavity of 0.05 m radius, and a reflectivity 

p=0.999 would be applicable for a set of absorptions from 2 to 0.1m"* i f the number of 

simulated photons is adjusted properiy. 

Table 4-4: Calculated Probability of photon survival for a cavity of r=0.05 m and p=0.999 for a set of 

a (m ') 10 5 2 1.5 1 0.5 0.1 0.05 
Theory 0.528 0.722 0.876 0.905 0.936 0.967 0.993 0.997 

MP 

10" 0.535 0.723 0.877 0.905 0.935 0.967 0.993 J 
2A(f 0.533 0.724 0.876 0.906 0.936 0.967 ] 

3A(f 0.535 0.724 0.876 0.906 0.936 0.967 J J 
4.1& 0.535 0.723 0.876 0.906 0.936 0.967 I J 
SA(f 0.533 0.723 0.876 0.906 0.936 0.967 J 
6.7^ 0.535 0.723 0.876 0.905 0.936 I J J 
7A& 0.533 0.723 0.876 0.906 0.936 1 J J 
8.10^ 0.533 0.723 0.876 0.906 0.936 I J 
9A(f 0.534 0.723 0.876 0.905 0.936 I ] J 
l(f 0.534 0.723 0.876 0.905 0.936 I J 

The same calculation was carried out for a sphere of 0.1m radius and a reflectivity 

p=0.999 (Table 4-5). 

Table 4-5: Calculated Probability of photon survival for a cavity of r=0.1 m and p=0.999 for a set of 

a (m') 10 5 2 1.5 1 0.5 0.1 0.05 

Theory 0.297 0.528 0.769 0.821 0.876 0.936 0.987 0.993 
MP 
10" 0.312 0.526 0 768 0.822 0.877 0.936 0.987 

2.1(f 0.310 0.521 0.768 0.822 0.876 0.936 J 
3.10^ 0.312 0.522 0.769 0.821 0.877 0.936 } 7 
4.1(f 0.311 0.527 0.768 0.821 0.876 0.936 I 7 
5.10^ 0.310 0525 0.768 0.821 0.876 0.936 ] 7 
6.10^ 0310 0.525 0.769 0.822 0.877 1 I 7 
7.10^ 0.310 0525 0.768 0.822 0.876 1 I 7 
8.10^ 0.310 0.526 0.768 0.821 0.876 1 ] 7 
9.10^ 0.310 0.528 0.769 0.821 0.876 J I 7 
10^ 0.311 0.528 0.769 0.821 0.876 1 I 7 
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The same patterns are again observed. For small values of absorption, the simulated 

probability of photon survival is 1 depending on the number of simulated photons and the 

probability is overestimated for high values of absorption. In this configuration, the model 

would be applicable for absorptions from 5 to 0.1m"' i f the number of simulated photons were 

properiy selected. 

Again, the same simulation was carried out for a cavity of radius r=0.02m and a 

reflectivity p=0.999 (Table 4-6). As predictable, reducing the cavity diameter makes the 

instrument more efficient for higher absorption values. The domain in which our model 

would be usable would now be from 0.5 to 5m'', again assuming that the number of 

simulated photons is adequate. 

Table 4-6: Calculated Probability of photon survival for a cavity of r=0.02 m and p=0.999 for a set of 
absorption 

a (m ') 10 5 2 1.5 1 0.5 0.1 0.05 

Theory 0.769 0.876 0.948 0.96 J 0.974 0.987 0.997 0.999 
MP 

0.769 0.877 0.948 0.96J 0.974 0.987 7 7 
2.10^ 0.769 0.877 0.948 0.961 0.974 0.987 7 7 
3.10^ 0.771 0.876 0.948 0.961 0.974 ] 7 7 
4.1& 0.770 0.876 0.948 0.961 0.974 ] 7 7 
5.1& 0.770 0.877 0.948 0.961 ] ] 7 7 

0.770 0.876 0.948 0.961 ] 7 7 
7.1(^ 0.770 0.876 0.948 0.969 ] J 7 7 
8.10^ 0.770 0.876 0.948 I ] 7 7 
9.1(^ 0.770 0.876 0.948 1 J 7 7 
10^ 0.770 0.876 J I J 7 7 ; 

The other parameter, which didn't show much flexibility in our code, was the 

reflectivity. The reflectivity used for the previous simulation was p=0.999. I f we decrease p to 

0.99 in the model, the following wil l happen: decreasing p will increase the probability of the 

photon being absorbed on the cavity wall. I f we imagine a single photon emitted from the centre 

of the sphere, it will at first collide with the wall and then start colliding a given number of 
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times on the wall before being absorbed either by the medium or the cavity wall. Suppose that 

the photon is absorbed after the 91st transit across the cavity. I f it is absorbed by the medium, it 

will have survived 90 transits on 91 giving a probability Ps=0.989. I f it is absorbed by the 

cavity, it will have survived 91 transits of 91 giving a probability Ps=l. For a large set of 

simulated photons, this would have the effect of overestimating the probability of photon 

survival. This problem of our code also contributes to the overestimalion presented before. For 

small absorption values, the probability of a photon being absorbed on the wall is increased. 

Various modifications were made in the code to try to eliminate the problem but proved 

unsuccessful. 

The code we developed is restricted to a certain domain of application. Not being able to 

test the model with different values of wall reflectivity is regrettable especially knowing the 

importance of this parameter to the capabilities of the instrument. However restricted this model 

is, we launched various simulations to assess the response of the instrument with increasing 

levels of scattering in terms of probability of photon survival, average number of collisions with 

the wall and average pathlength per photon. 

4.3,5. Simulations 

The influence of scattering was investigated using the Monte Carlo code for four 

different cavity radius (r= 0.02, 0.05 and 0.10m) for the three parameters Ps, Cf and If given in 

Kirk's, paper (1997). Two types of scattering properties were taken into account for the various 

simulations: isotropic scattering and the scattering data measured by Petzold (1975). 

4,3.5.7. Probability of photon survival 
Firstly, the evolution of Po and Pj was calculated using Equation 4-2, thus assuming no 

scattering, for the three cavity radii under investigation as a function of the absorption 

coefficient (Figure 4-27). Po, the probability of a photon to survive the initial transit from the 
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source to the wall is logically always higher than Ps, the probability of a photon to survive a 

transit from the wall back to the wall. The travel distance required is doubled in case o f Ps. 

Logically, the probability also decreases with increasing cavity radius and with increasing 

absorption. 
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Figure 4-27: Probability of photon survival; p=0.999 

A Monte Carlo simulation was carried out to investigate the evolution of the probability 

of photon survival from the centre of the sphere (emission) to the wall (PQ) and in transit from 

wall to wall of the cavity Ps. As pointed out by Leather et ai, (2000), the value of Ps itself 

varies very little with increasing scattering but the error in the ratio 1/(1-pPs) which determines 

the average number of collision with the wall is more significant. Figure 4-28 shows the 

evolution with increasing scattering of the percentage error in PQ and 1/(1-pPs). This simulation 

consider a sphere of 0.05m radius, a wall reflectivity p=0.999 and an absorption a=lm' ' . 

Figure 4-28 shows the same patterns as the one obtained by Leather et. al (2000). The 

value of Po obtained by Monte Carlo simulation decreases with increasing scattering. The 

theoretical value of Po therefore overestimates it when b increases. This result is actually 
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easy to forecast. A photon emitted from the centre of the sphere undergo more and more 

interactions with the medium before finally reaching the cavity wall i f scattering increases. 

These multiple interactions are quite likely to change its initial trajectory and even scatter the 

photon backward. Being scattered backward is more likely in the case of isotropic scattering. 

The overall effect will be to increase its path length before reaching the wall for the first time 

and consequently increase its probability of being absorbed before reaching the wall. The 

percentage error for Po was found to increase almost linearly with increasing scattering. 

%Error=0.1*b; r^=0.99 for isotropic scattering, %Error=0.006*b; r^=0.98 for Petzold 

scattering. This result shows that for calculations made with Petzold's scattering function, 

the percentage error is much smaller. For example, with isotropic scattering, the percentage 

error was found to be about 0.1% and 10% for b= 10 and 100m"' respectively, whereas it was 

found to be about 0.06% and 0.55% for b= 10 and 100m'' respectively with Petzold's 

scattering function. This scattering function indeed assumes that the great majority o f the 

photons are scattered in a near forward angle of the initial trajectory. As a result, photons are 

more likely, although being scattered, to follow a trajectory close to a linear one. 

1 
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Figure 4-28 : Percentage error in PQ and l / ( l -pPJ for a=l and r=0.05. 
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When travelling from the wall back to the wall, Ps appears to be overestimated by the 

model with increasing scattering, probably because when leaving the wall, increasing levels 

of scattering makes it more likely that the photon will be scattered back to the wall. This 

phenomenon is once again less significant when Pelzold's scattering is considered. With 

isotropic scattering, the percentage error was found to be about -0.7% and -5% for b= 10 and 

100m** respectively, whereas it was found to be about -0.036% and -0.8% for b= 10 and 

100m'' respectively with Petzold's scattering function. 

Figure 4-29 to Figure 4-31 show the results of a Monte Carlo simulation for the same 

sphere configuration but for three different absorptions, a=0.1, 0.5 and 2m''. The patterns are 

very similar but the percentage error increases as a consequence of the increased absorption. I f 

we take for example the data for a=2m'', we have now for PQ an error of about 1.9% and 19% 

for b= 10m"' and 100m'' respectively in case of isotropic scattering and 0.12% and 1.15% for 

b= 10m"' and 100m'' respectively in case of Petzold's scattering. For the ratio (l/(l-pP^), the 

figures becomes -1.3% and -9% for b= 10m"' and lOOm ' respectively in case of isotropic 

scattering and -0.2% and -1.3% % for b= 10m'' and 100m"' respectively in case of Petzold's 

scattering. On the other hand the results for a=0.1 and 0.5m"' display much smaller percentage 

error. 
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Figure 4-29: Percentage error in PQ and l/(!-pP,) 
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•B-1/fi-pPs): 

10 
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Figure 4-31: Percentage error in PQ and l/( l-pP,) for a=2 and r=0.05ra 

A similar simulation was carried out for a cavity diameter of 0.10m for four values of 

absorption (0.1, 1, 2 and 5m"') and a wall reflectivity of 0.999. Figure 4-32 to Figure 4-35 show 

the results of those simulations. As before, the same features are observed either for isotropic or 

Petzold's scattering. 

Figure 4-32: Percentage error in PQ and l/(l-pP,) 
for a=0.1m'' and r=0.10m. 
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Figure 4-33: Percentage error in PQ and 1/(I-pPs) 
for a=2m and r=0.10m. 

Figure 4-34: Percentage error in Poand l / ( l -pPJ 
fora=lm 'and r=O.IOm. 
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Figure 4-35: Percentage error in PQ and l/(l-pPj) 
for a=5m and r=0.10m. 
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Figure 4-32 to Figure 4-34 compared to Figure 4-28, Figure 4-29 and Figure 4-31 shows 

that for given absorptions a=0.1, I and 2m'', increasing the cavity radius would result in an 

increased percentage error in both Po and l / ( l -pPs) . The figures in the case of a=lm' ' are for PQ 

about 4% and 35% for b= 10 and 100m'* respectively the in case of isotropic scattering and 

0.2% and 2.5% for b= 10 and 100m'' respectively in the case of Petzold's scattering. The four 

figures also show that increasing absorption results in a more significant percentage error with 

increasing scattering. 

The simulation carried out for a cavity radius of 0.02m and absorption of 1, 3 and 5m'' 

(Figure 4-36 to Figure 4-38) led to the same conclusion. 

Figure 4-36: Percentage error in PQ and l/(l-pP,) 
for a=l and r=0.02m. 
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Figure 4-37: Percentage error in Po and l/(l-pP,) 
for a=3 and r=0.02m. 
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Figure 4-38: Percentage error in PQ and l/(l-pP,) for a=5 and r=0.02m. 
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4 J, 5,2. Average number of collisions 
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Figure 4-39: Theoretical average number of collision 

Firstly, the evolution of Cf was calculated using Equation 4-2, thus assuming no 

scattering, for the three cavity radii under investigation as a function of absorption coefficient 

and for two wall reflectivities (p=0.999 and 0.98; Figure 4-39). Two separate areas can be 

identify in Figure 4-39. The reflectivity dominated part for low absorption and the absorption 

dominated part for absorption higher than Im'V For the latter, given a cavity radius, similar 

results are obtained whatever the reflectivity. For high absorption values, the absorption on the 

cavity wall becomes less significant, the major source of photon depletion being absorption 

within the medium. For very low absorption, absorption on the cavity wall becomes more 

dominant relative to the absorption on the cavity wall. For p=0.98, and low absorption values it 

occurs than the cavity radius does not make significant differences and the same average 

number of collision is observed. This does not appear on the graph for p=0.999 but i f the 

calculation were carried out for lower absorption, the same feature would be observed. 

With the results of the simulations with the probability of photon survival, we calculated 

the error in the average number of collision with the wall as the ratio Po/(l-pPs) (Equation 4-2). 
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The error in Cf is of major interest since Cf is directly proportional to the irradiance on the 

cavity wall (Kirk J995, J997, Leather et.ai 2000). The number of photons colliding on an area 

of the cavity wall is indeed proportional to the irradiance this area will receive. With the data 

used to calculate Cf, the error observed for Po and Ps previously (% error on Po positive and % 

error in 1/(1 -pPs) negative) should compensate themselves and result in a quite small percentage 

error in Cf. 

The average number of collisions with the wall logically decreases with increasing 

absorption. When scattering increases, the average number of collisions appeared to decrease. 

The percentage error observed was much smaller than the one observed for P© and Pg, the effect 

on both probabilities compensating each over. 
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Figure 4-40: Percentage error in the average 
•umber of collisions for r=0.05m; Isotropic 

scattering 

Figure 4-41: Percentage error in the average 
number of collisions for r=0.05m; Petzold 

scattering 

For a cavity radius of 0.05, i f we consider isotropic scattering, the error in Cf was found 

to be 0.25% and 5.6% for b=IO and 100m"' respectively for a=lm"' and 0.6% and 11% for b=10 

and 100m"' respectively for a=2m''. For Petzold's scattering, the error in Cf was found to be less 

than 0.1% and 0.3% for b=10 and 100m"' respectively for both a=l and 2m"^ For the simulation 

carried out with a cavity radius r=0.1m, higher percentage error were found with again a big 

difference between isotropic and Petzold's scattering. A maximum errors of 0.5% with a=5m"' 

for b=10m'' and a maximum error of 5% with a=5m'' for b=100m'' for Petzold's and isotropic 

scattering respectively. 
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Figure 4-42; Percentage error in the average 
number of collisions for r=0.1m Isotropic 

scattering. 

Figure 4-43: Percentage error in the average 
numberof collisions for r=0.1m Petzold 

scattering. 
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Figure 4-44: Percentage error in the average 
number of collisions for n=0.02m; Isotropic 

scattering. 

43.53. Average path length 
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Figure 4-45: Percentage error in the average 
numberof collisions for r=0.02m; Petzold 

scattering. 
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The average path length per photon is not as revealing as the average number of 

collisions, which can be linked to the irradiance received on the surface of the sphere. However, 

it shows clearly the benefit of the integrating cavity in allowing a photon to perform a very long 

path length thus allowing the measurement of very low signals. For example, i f we suppose an 

absorption of Im ", Equation 4-8 would predict an initial path from 0 to more than 2m, which 

can only be feasible i f the photon can be confmed in a reflective volume. Figure 4-46 displays 

the calculated average path length for three cavity radii (0.02m, 0.05m and 0.10m) and two 

cavity wall reflectivities (p=0.999 and 0.98). Similarly, the graph can be divided into two parts, 

the reflectivity dominated part and the absorption dominated part. The latter concern absorption 

values higher than Im '^ In this part of the graph, the path length has an approximately inverse 

relationship with absorption. In this case, whatever the radius or the reflectivity, the absorption 

coefficient is the principal parameter that dictates the average path length. In the fu-st part of the 

graph, having very low absorption, the reflectivity is a dominant source of photon depletion. 

For a given reflectivity, the bigger the radius, the less the photon depletion. 

The next six graphs present the result of Monte Carlo simulations for the average path 

length for three different cavity radii and various absorption values. As a rule, the average path 

length is underestimated by Equation 4-2 for If, when scattering increases. As explained 

previously, increasing levels of scattering makes it more likely that once a photon collides with 

the cavity wall, it is scattered back to the wall or in a close vicinity of the collision point, thus 

multiplying the number of collisions with the wall and increasing the risk of being absorbed by 

it. Figure 4-47 to Figure 4-52 show the average path lengths per photon for the different cavity 

radii for both isotropic and Petzold's scattering. In all cases, the higher the absorption, the less 

the percentage error. Referring to Figure 4-46 the smaller the absorption, the longer the path 

length. Since scattering tends to increase the probability of a photon becoming absorbed on the 
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cavity wall, the probability of a photon not completing its entire path length is also increased. 

At the end a photon in a low absorbing medium with significant scattering will have its path 

length more significantly shortened than a photon in a higher absorbing medium. 

Figure 4-47: Percentage error in the average path 
length for r=0.02m, isotropic scattering. 

Figure 4-48: Percentage error in the average path 
length for r=0.02ni, Petzold scattering. 

As expected, for a given absorption value, increasing the cavity radius increases the 

percentage error but not as drastically as for the probability of photon survival or the average 

number of collision. For example, considering an absorption a=lm'* and b=l00m"', the 

percentage error goes from 0.056, 0.077, 0.12% for f=0.02, 0.05 and 0.10m in case of isotropic 

scattering and 0.0056, 0.013 and 0.015% for r=0.02, 0.05 and 0.10m in case of Petzold's 

scattering. 

Figure 4-49: Percentage error in the average path 
length for r=0.05m; Isotropic scattering. 

Figure 4-50: Percentage error in the average path 
length for r=0.05m; Petzold scattering. 
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Figure 4-51: Percentage error in the average path 
length for r=0.10m; Isotropic scattering. 

43.6. Discussion 

Figure 4-52: Percentage error in the average path 
length for r=O.IOm, Petzold scattering. 

In this chapter, the analysis of the intrinsic sensitivity of the instrument and its 

sensitivity toward scattering was investigated. The calculations performed with the code are in 

agreement with the results of Leather et al., (2000), showing that for the scattering ranges 

encountered in marine waters, the influence on the absorption measurement would be 

insignificant assuming a Petzold scattering function. We arrived at the same conclusion that for 

increasing values of b, the effect of scattering would increase with increasing absorption but 

also increase with increasing cavity radius. Section 4.2.3 suggested that using a less reflective 

material could minimise the sensitivity of the system. 

According to the calculations made from the theoretical equation produced by Kirk 

(1997), we established that the cavity radius should be taken into account for the type of 

water measured, basically case 1 or case 2. For case I water values, a bigger cavity radius 

would be more suitable for an optimum measurement. A longer path would be necessary to 

allow a significant depletion of the initial light beam. The cavity radius chosen for our 

prototype was 5cm, which should allow acceptable accuracy in both case 1 and case 2 

waters. 
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Chapter 5: Development of a Prototype 
PSICAM 

This chapter describes the development and the first experiments carried out with a 

prototype Point Source Integrating Cavity Absorption meter. The instrument itself can be 

schematically divided in three pieces: 

o the light source 

o the integrating cavity 

o the light detector (i.e. spectrophotometer) 

Each of these components wil l be described separately in the following sections. The 

strategy adopted for the development of a PSICAM was to build increasingly sophisticated 

versions for the integrating cavity and the light source. Three different integrating cavities and 

four light sources were tested. The light detector remained the same throughout the 

development of the system. Each prototype was calibrated and tested with standard solution of 

various colours prepared from food colouring solutions. The solutions under study were 

measured relative to a reference solution which is UV treated Mill i-Q water, 

5.7. Light Detectors 
Two main classes of light detectors have been developed to detect and measure radiant 

energy: thermal and quantum detectors. In thermal detectors, radiant energy is absorbed and 

converted into heat energy and the detector responds to the consequent change in temperature of 

the absorbing medium. Quantum detectors respond directly to the number of incident photons, 

rather than to the cumulative energy carried by the photons. Quantum detectors include 

photovoltaic cells, photoconductive and photo-emissive detectors. 
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5.7.7. Photovoltaic cells 
Photovoltaic cells consist of two different substances in contact. Light incident on the 

photovoltaic detector generates a difference of electric potential between the two different parts 

of the detector and as a consequence there is a in the current flow in the electrical circuit 

containing the cell. This current is measured by a current meter included in the circuit. When no 

light is incident on the detector, no current flow is generated. The greater the number of 

photons, the greater the current in the circuit. 

5.7.2. Photoconductive detector 
Photoconductive detectors are based on the specific properties of metal like selenium 

which are more conductive when light falls upon it. The greater the number of photons falling 

on the photoconductive cell, the greater the conductivity and therefore the greater the current 

flow in the circuit. Some dark current flows even i f no light is incident on the cell since the 

photoconductive substance is still conductive even in the absence of light. 

5.L3. Photo-emissive cell - photo-multiplier 
A photo-emissive or photoelectric cell consist of an evacuated tube containing a 

negatively charge electrode (photocathode), usually made of an alkaline metal such as cesium, 

sodium or potassium, and a positively charge electrode (anode). When light is incident on the 

photocathode, the photon dislodges an electron from its surface. These photoelectrons are 

drawn across to the anode, thus generating a current in the circuit containing the cell. In 

principle, no current would flow i f no light were incident on the photocathode, but in practice a 

small dark current flows because of electrons spontaneously emitted by random thermal 

motions in the cathode. 
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A variant of the photoemissive cell is the photomultiplier tube (PMT). Rather than 

having a single photocathode and anode, a PMT has a series of anodes (called dynodes), each of 

which is held at a higher positive voltage than the previous one, the electrons liberated from the 

photocathode by the incident light are attracted by the first dynode. When these original 

electrons strike the first dynode, they generate additional electrons, which are then attracted to 

the second dynode. The electrons striking the second dynode liberate still more electrons, which 

are attracted to the third dynode, and so on. The electron cascade enables the PMT to amplify 

greatly (typically by a factor of one million) the current, which would result from the 

photoelectrons alone. However, PMT response is very sensitive to temperature, the response is 

not stable with time owing to the changes in the dynodes caused by electron bombardment, and 

stable high voltage power supplies are required for operation. For these reasons, PMT's have 

been supplanted by solid state detectors in many oceanographic instruments. 

5 J A, Silicon photodiodes 
Light incident on a photo-diode frees electrons from the silicon but does not eject the 

electron from the diode. The resulting positively charged silicon ions are held fixed in position 

by the crystal lattice whereas the free electrons can move in response to an applied 

electromotive force. These electrons thus generate a current when the photodiode is included in 

a series circuit. The diode thus works as a photoconductive cell. The photodiode does not 

amplify the cunent as does the PMT and is therefore much less sensitive. The advantage is that 

photodiodes have good stability, are easy to calibrate, require little power and are cheap. 

When operated as light detectors, diode junctions have the external electromotive force 

applied so as to separate the photoelectrons and their parent ions, thus generating the measured 

current. I f the electrons are allowed to combine with the ions, then photons are emitted from the 
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diode. These photons have the same energy as the photons required to liberate electrons from 

the semiconductor atoms. When operated in this way, the diode is called a Light Emitting Diode 

(LED). LED's have the same general properties (stability, low cost...) as photodiodes, and are 

often employed as light sources in oceanographic instruments. 

5.7.5. Charge-coupled device 
The Charge-Coupled Device (CCD) consists of linear or arrays of small (=10 nm) 

patches of silicon. When light is incident on the array, electrons are released from each silicon 

patch in proportion to the radiant energy falling on the patch. The charge released by each spot 

is measured. Since the location of the silicon spots is accurately known, the pattern of released 

charges provides a map of the energy falling on the CCD array. 

5.2. Spectrophotometer 
The spectrophotometer used for the prototype is manufactured by Ocean Optics Inc. I t is 

a portable fibre optic spectrophotometer (PC2000) fitted with a diffraction grating whose 

characteristics are shown in Figure 5-1: 600 lines per mm, 650nm spectral range, best efficiency 

(>30%) between 350 and 850nm with a maximum at 500nm. It is a linear CCD array silicon 

detector type. The light enters the spectrophotometer by means of a fibre optic through a slit of 

25^m width and lOOOftm height. The optical resolution of the instrument is a function of the 

number of detector elements (2048 for a PC2000) and the entrance slit, which is l.33nni 

resolution in our case. Owing to the diffraction grating efficiency and the fact that measurement 

will be made in an aqueous medium, it was decided to limit absorption measurement to the 400 

to 700 nm band. The spectrometer was connected to the integrating sphere with a 1000 |xm 

diameter fibre optic. 
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Figure 5-1: Efficiency of the spectrophotometer's diffraction grating (mv^v.oceanoptics.com) 

5.3. The integrating sphere 
The second and most important part of the device is the integrating sphere. An 

integrating sphere is usually used for calibration purposes. A light source illuminates the sphere 

and the highly reflecting properties of the sphere make the light bound many times on the wall 

so that a diffuse light field is generated. Standard integrating spheres are coated on the irmer 

side with barium sulphate, which gives the reflective properties of the sphere. Unfortunately, 

barium sulphate is highly soluble and a standard integrating sphere can not be filled with an 

aqueous solution. A solution proposed by Kirk (1997) was to use a round-bottomed flask 

embedded in barium sulphate. A basic prototype following this idea was build and used as a 

base to test various light sources and make the first attempts at absorption measurement. 

5.4. First prototype 
Two basic prototypes following the suggestion of Kirk (1997) were built for a first 

assessment. The first one was without a baffle, that is the detector was able to receive a 

proportion of direct light. The second was fitted with a baffle to protect the detector fi-om direct 

illumination. 
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5.4.1. Prototype sphere without baffle 
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Figure 5-2: First version of the prototype PSICAM. Single neck round bottomed flask. 

The first prototype PSICAM (Figure 5-2) was made out of a 500-ml round-bottomed 

flask with a 24/29 ground glass neck embedded in barium sulphate as suggested by Kirk (1997). 

The light source was a small tungsten bulb (12V, 3 Watts) within a diffusing Delrin sphere 

located at the centre of the cavity by means of a white plastic stem passing through the neck of 

the flask. The light collector was a 10 degrees field of view collimated lens looking toward the 

light source and fitted to a fibre optic via a SMA connector. The spectrophotometer therefore 

measures a radiance ration rather than an irradiance ratio. This simplification from Kirk*s 

theory (1997) is acceptable i f the light field within the sphere is isotropic. The spectral 

distribution of the light field within the sphere was then recorded with the PC2000 

spectrophotometer. Although the light source was only 3 Watts, the integration time required for 

the experiment carried out with this system never exceeded 600ms. This basic and low cost 

version of a PSICAM was used for a preliminary assessment of the instrument. 

5.4. L1. Reflectivity measurement 

For the first experiment with this prototype, we tried to calculate the reflectivity of the 

cavity. To do this, we used a standard black solution. Its absorption spectrum was measured on 
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an UNICAM Helios spectrophotometer (Figure 5-3, bottom). The dye solution was chosen to 

be fairly absorbing relative to pure water in order to minimise the possible errors with pure 

water standards. The transmittance of this solution was then measured in the PSICAM (Figure 

5-3 top). The reflectivity was consecutively calculated as proposed in the literature (Kirk, 1997; 

Figure 5-4). 
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Figure 5-3: Transmittance of the standard 
solution relative to pure water (top). Absorption 

spectrum of the dye solution (bottom) 
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Figure 5-4: Reflectivity spectrum of the cavity 

The calculated reflectivity has an average of 99.12% for the studied wavelength, 98.70% 

if we except the portion of the spectrum where it is higher than 100%. This artefact in the red 

region of the spectrum was first attributed to the imperfection of the prototype: material of the 

light source, stability of the light, the cavity not being a perfect sphere. Despite the reflectivity 

spectrum deduced fi-om the experiment, an attempt was made to calculate the absorption 

spectrum of a dye solution. 

5A.L2, Absorption measurement 

For this experiment the absorption of a green standard solution (C=0.05ml/I) was used. 

The absorption spectrum of the standard solution was first measured in a 1cm path length 

cuvette with a UNICAM Helios spectrometer. The transmittance of the solution was then 

measured relative to pure water with the PSICAM. 
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Figure 5-5: Transmittance spectrum of the green standard measured with the PSICAM. 

For the calculations, three reflectivity spectra were used: the calculated spectrum of 

Figure 5-4, the average 99.12% calculated for the total spectrum and the average of 98.70% 

which was calculated excluding the portion of the spectrum higher than a 100%. The results of 

these calculations are presented from Figure 5-6 to Figure 5-11. In the first column, are 

presented the calculated absorption spectrum (dotted line) compared to the standard (solid line) 

for each value of the reflectivity. In the second column are represented the corresponding 

calculated versus standard absorptions for each reflectivity considered. On those, the straight 

line corresponds to the one to one relationship. 

For Figure 5-6, where the calculated reflectivity was used, the general shape of the 

absorption spectrum is correct except for both peaks (from 400 to 450nm and 600 to 650run) 

where the values are underestimated. The best recovery appears for the lower absorption values, 

which corresponds to trai\smittances higher than 60%. In the blue part of the spectrum, the 

calculated absorptions appear noisy in comparison to the rest of the spectrum, which is not 

surprising since both the reflectivity spectrum (Figure 5-4) and the transmittance (Figure 5-5) 

are noisy in this part of the spectrum. In the red part of the spectrum, for the region of the 

spectrum where p is higher than 100%, the reflectivity is underestimated. Looking at the 

relationship between calculated and standard absorption (Figure 5-7), it appears that the values 

of absorption below 0.3m'* approximately follow a one to one relationship, the higher ones 
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being underestimated overall. One other possibility of errors for the peaks of the absorption is 

that we may have gone beyond the linear domain of die PSICAM. 
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Figure 5-7: Calculated absorption versus real 
absorption; p spectrum 

I f we assume the same value of reflectivity for the total spectrum, it follows that the 

value of p is overestimated for the blue part of the spectrum and underestimated for the red part 

of the spectrum. Doing this the results remain relatively unchanged for the green wavebands 

where the absorption is minimum. The consequences for the blue and red regions are different. 

The absorption being largely underestimated for the first one and largely overestimated for the 

last. These two features appear very clearly on Figure 5-9 and Figure 5-11 where the graphs are 

divided in two distinct parts. From the knowledge of the previous chapter, it is no surprise that 

the results can be very different depending on the value of the reflectivity spectrum used for the 

calculations. 

1 
iMO.8 
o 
8o.e 

I " 
<0.2 

400 

I I I 1 

r 
* PSICAM measurement 

Standard absorption r 

' 1 1 r 

r 

1 
1 

1 1 • 
1 1 • * 

1 
1 

1 1 
1 1 
1 1 • 

1 \ ' "X 

1 \ \ , 
' ^ 

1 1 
^ . - i ^ ^ 1 

450 650 700 500 550 600 
Wavelength (nm) 

Figure 5-8: Calculated absorption with p=99.12% 
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Figure 5-10: Calculated absorption with p=98.70 

1.40 

120 

c 

s 

|tlflO 

•pOflO 

020 

0 

— 

1 1 1 

i - . f . . ^ . . . . 

. <•. 

1 1 

I *** I 

— 
*̂  : / 

.~oso . i f < . _ . 
O 0 ' • « • X < o o • ̂  1 

o 
0 

• I I 
• t • 

i - i i 

Reference absorption Cm'*) 

Figure 5-11: Calculated absorption versus real 
absorption; p=98.70 

This first test with a prototype PSICAM showed, as in the previous chapter, the 

importance of the reflectivity in the calculations, and that despite using an approximated 

reflectivity spectrum and a crude approximation of the prototype, the general shape of the 

absorption spectrum could be recovered. 

One aspect that must be pointed out with this prototype is that the light detector (a 10° 

field of view collimated lens) is looking toward the light source. By definition, no direct light 

should be measured by the detector for a proper integrating cavity. This was changed for a 

second version of the instrument by adding a baffle on the light source to protect the detector 

from direct illumination (Figure 5-12). 

5.4.2. Prototype sphere with baffle 
5.4.2.1. Reflectivity measurement 

The first consequence of adding a baffle was the need to increase the integration time up 

to 800ms to obtain acceptable readings. As before, we tried to estimate the reflectivity of the 

sphere with this added baffle on the light source (Figure 5-12). The same experiment was 

carried out, measuring the transmittance of a standard solution relative to pure water. 
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Figure 5-12: First version of the prototype PSICAM. Single neck round bottomed flask. Light source with a 
baffle. 
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Figure 5-13: Transmittance of the standard 
solution relative to pure water (top). Absorption 

spectrum of the dye solution (bottom) 
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Figure 5-14: Reflectivity spectrum of the cavity 

The calculated reflectivity is apparently higher than 100% between 600 and 650nni. The 

first assumption that the calculation was affected by the absence of a baffle appears erroneous. 

The quality of the materials used for the prototype, however were still held responsible for this 

artefact. 

5,4,2.2. Absorption measurement 
Despite the problem of calculating the reflectivity spectrum, an attempt to calculate the 

absorption coefficient of a standard solution was carried out. We measured the transmittance of 
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two green solutions of known absorption (C=0.1 and 0.2ml/l) relative to pure water. The 

absorption spectrum of each solution was measured on a Unicam UV-Visible 

spectrophotometer. The absorption spectrum was then calculated using the reflectivity spectrum 

of Figure 5-14 and its average p=0.9968. 
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Figure 5-15: Iransmittance spectrum relative to pure water of Cl=0.1ml/J 
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Figure 5-16: Absorption spectra of solution 
C=0.1ml/I with the calculated p 
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Figure 5-18: Absorption spectra of solution 
C=O.Iml/l with average p=98.96 
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Figure 5-19: PSICAM measurement versus 
standard absorption 

137 



Chapter 5: Development of a Prototype PSICAM 

Despite adding a baffle on the system to protect the detector from direct illumination, 

the result of the experiment remains very similar. When the measured reflectivity spectrum was 

used for the calculations, the main error occurred beUveen 600 and 650 nm where the calculated 

reflectivity was higher than 100%. The results are however better than previously in the blue 

part of the spectrum although still quite noisy. This noisy signal originates in the illumination of 

the system and not in the reflectivity used for the calculation. When the average reflectivity was 

used, the same featiu-es as before were observed: the best fit in the green part of the spectrum 

underestimated in the blue wavelengths and overestimated in the red ones. This lead to the 

suggestion that the PSICAM could be less efficient with low transmittance values, i.e. the 

linearity domain of the system. 

5,4J, Discusion 
There are various facts that can explain the important discrepancies between the 

absorption measured with the PSICAM and with a standard bench spectrophotometer. The 

obvious reason is the value of the wall reflectivity used for the calculations. It proved more 

difficult to measure it than expected. We have seen earlier that it is a critical parameter for the 

calculations of the absorption. The fact that we calculated reflectivity values higher than 100% 

prove that our procedure failed. The dye solutions were very concentrated with a transmittance 

of less than 10% for most of the spectrum. Moreover, this first prototype, with or without a 

baffle was very basic. The materials we used to make the light source were of low quality in 

terms of reflectivity. Using a single neck bottle, we had to remove the light source each time a 

new liquid was pored into the sphere, which contributed to the unreliability of the light input. 

An attempt to estimate this source of error showed that up to 7% variation could occur by 
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removing and putting back the light source. A last point about this system is that having a light 

bulb within a diffusing sphere, the light source was heating up fairly quickly. This approach for 

the light source was abandoned for the next prototype. 

This first version of the instrument enabled us to have a first approach to the instrument 

using basic material for the light source. No ftirther experiments were made with this system but 

a new improved version was built based upon what had been learned from the first one. 

5.5. Second prototype 
The improved version (Figiire 5-20) was based upon a two-neck round-bottomed flask 

in order to have two separate ports, one for the stem of the light source, one for the input and 

output of water. With this arrangement, the light source was not removed throughout the set of 

experiments. This prevented any distortion relative to the reference measurement. As 

previously, the glass flask was embedded in barium sulphate. This time, the bedding was done 

with more care to produce a surface as homogenous as possible. The barium sulphate was 

sieved through a 500 (am grid to remove the coarse grains. Again, the sensor was a collimated 

lens so that a radiance ratio and not an irradiance ratio was obtained to calculate the 

transmittance. The sensor had a ten degrees field of view and was positioned at an angle so that 

no direct illumination from the light source was picked up. The sensor looks toward the light 

source in the vertical plane and makes a 30 degrees angle with the horizontal plan looking 

toward the bottom part of the flask (Figure 5-20). The flasks used to build both integrating 

cavities were standard chemistry apparatus, so was not perfectly spherical. Moreover, the necks 

added extra volume to the sphere. For the experiments, we assumed a perfect sphere of 5.25 cm 

radius. 
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Figure 5-20: Second prototype 

5.5.7. Light source 
The first prototype used a tungsten light bulb within a Delrin sphere to create the 

isotropic light source. One of the problems with this light source was that it was heating up very 

quickly. This could potentially cause errors in the measurements. Making a proper point source 

for the instrument was the biggest challenge. This light source needed to be small so as not to 

interfere too much with the cavity, but powerful enough to strongly illuminate the cavity. With 

this second prototype, a number of illumination systems were tried. 

5.5.7.7. Ocean Optics Inc. LS-1 tungsten light source. 
Experiments were conducted using the halogen tungsten light source (6.5W) provided 

with the Ocean Optics spectrometer as a light source for our PSICAM. The LS-1 light source 

was adapted to fit a three millimetres diameter fibre bundle. The illuminated side of the bundle 

was a Teflon stem terminated by a Teflon sphere. This light source was actually too weak to 

properiy illuminate the sphere so that excessively long integration times were required to obtain 

usable signals. 
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5.5 J. 2. White Light Emitting Diode, 
Experiments were also carried out with white LEDs. Three LEDs were placed in a 

Teflon cylinder and held in the centre of the cavity by a Teflon stem. For practical reasons the 

point source was cylindrical in this case. The advantage of using LED's was that they do not 

produce heat and therefore can be like our first prototype placed within the sphere. Again, the 

illumination of the cavity was rather too small, and integration times required to get measurable 

signals were around 40 second (see emission spectrum in Figure 5-21). 

^ 1000 
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Figure 5-21: Emission spectrum ora white L E D 

5.5.7.5. Halogen generator andfibre bundle. 
The last light source tried consisted of a 75W-halogen generator (see emission spectrum, 

Figure 5-22) especially designed to fit a fibre bundle. 

As before, the end of the bundle was held in a Teflon stem and terminated by a Teflon 

bulb. The fibre bundle used was six millimetres in diameter and could therefore carry a 

significantly higher amount of light. On the other hand this bundle increased the diameter of the 

stem in comparison with the three millimetres one. The experiment carried out with this light 

source showed that it was far the brightest one and allowed a significant reduction in the 

integration time. It was therefore the light source chosen for this second prototype. An attempt 

41 



Chapter 5: Development of a Prototype PSICAM 

with this halogen light fitted to a three millimetres fibre bundle was also investigated. The 

sphere and teflon stem diameter was indeed smaller but the illumination of the integrating 

sphere too weak. 
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Figure 5-22: Emission spectrum of the halogen generator 

5.5.7.4. Stability of the light source 
As pointed out previously, one potential source of error from the light source was that 

we had to remove it each time a new sample needed to be pored into the sphere. This was 

corrected by building PSICAM with a non removable light source. The other source of error 

from the light source was its stability of emission over time. The stability of this halogen 

generator was investigated with the 0 0 1 PC2000 spectrophotometer. The experiment consisted 

of measuring the evolution of its emission spectrum with time. For this experiment, a collimated 

lens fitted to the spectrometer through a lOOOjim fibre optic was used. One measurement every 

minute was taken over-three and a half hours. Figure 5-23 shows the evolution of the percentage 

change relative to the first measurement, taken immediately after the light was switched on. 

This graph shows that the highest variations occur for the shorter wavelengths with a 

significant difference between 400 and 425 nm. The smallest variations occur for wavelengths 
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Figure 5-23: Stability of the halogen generator for 13 wavelengths 

between 500 and 700nm. Overall this graph shows that a warming up time of forty minutes is 

necessary to achieve even moderate stability (±2%). In order to minimise this problem, a 

reference measurement is taken between each sample measurement. The halogen bulb is in this 

configuration powered by a power supply, which is not highly stabilised. The system was 

tested, however with a different power supply (Figure 5-24). The same procedure was followed 

to test the stability of the light source with a Gresham Lion Ltd. power supply. 
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Figure 5-24: Stability of the light source with Gresham Lion Ltd. power supply. 
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Figure 5-24 shows the result of this experiment carried out over 180 minutes. As before, 

the 400 and 425 nm wavebands appear to be the most unstable whatever the wanning up time. 

However, the rest of the spectrum comes out much more stable with this power supply. Figure 

5-25 shows a detail of Figure 5-24 over the range 110/120 mn. It shows that over this period of 

time, up to 5% variation can be expected at 400 nm and up to 2% variation for 425 nm. For the 

rest of the spectrum less than 2% variation is encountered. 

600 625 

Time <mn) 

Figure 5-25: Detail of Figure 5-24 for the range 110/120 mn 

Finally, the stability of the spectrophotometer was tested (Figure 5-25). The procedure 

consisted of covering the input port of the 001 PC 2000 and measuring the signal with the same 

integration time as for the experiments with the PSICAM. Surprisingly, this experiment showed 

that the spectrophotometer itself was responsible for an important part of the variation. 

The Gresham Lion Ltd. power supply was chosen for the experiment but a blank was 

done after each samples to limit the risks of deviation from the reference measurement. Five to 

ten minute is indeed a reasonable amount of time to make a reference measurement, empty the 
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sphere with a peristaltic pimip, pour the sample, empty again and pour pure water in again for a 

new reference measiu-ement. 
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Figure 5-26: Stability of the spectrophotometer 

5.5.2. Experiment with standard solutions 
As for the first prototype, the first experiments with this new prototype were carried out 

with standard dye solutions. This time the standard solutions used were of various colours. The 

first step was therefore to calculate the molecular absorption of those standard dyes. The 

absorbance spectra of the standard solutions were measured with a UNICAM Helios 

spectrophotometer using a one centimetre path length cuvette (Figure 5-27 to Figure 5-30). The 

measurements were carried out using four dye solutions (green, blue, red and black) for 

different sets of concentrations (Table 5-1). Using a one centimetre cuvette, solutions of 

different concentration had to be measured in the PSICAM and in the spectrophotometer. For 

this reason the absorption coefficient of the more diluted standard solution measured with the 

PSICAM where derived fi-om the measurements of concentrated solution in the UNICAM 
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spectrophotometer. The principle was to prepare a stock solution of the dyes and then prepare 

the samples for both the PSICAM and the spectrophotometer from the same stock solution. 

Table 5-1: Set of dye concentrations used to calculate the linear range of the spectrometer 

Dve Soliitinnc — '—^ '-'^ 
Blue 0.5 LO 1.5 2.0 

V " ' - • / 

2.5 5 10 25 50 
Green 1 5 JO 75 25 50 n # U 
Red 0.5 I J.5 2 5 10 25 # 

Black 0.1 0.25 05 LO 2.0 2.5 U 

C-l,Dirtl 

Figure 5-27: Absorbance spectra of the black 
solutions. 

Figure 5-28: Absorbance spectra of the blue 
solutions. 

C - i n f f l 

Figure 5-29: Absorbance spectra of the green 
solutions. 

XAaa 

Figure 5-30: Absorbance spectra of the red 
solutions. 

From the absorbance spectra of each solution was calculated the molecular absorption 

coefficient (aMoiW = A(;^)/(1*C) (m"'.mr'.l); Figure 5-31, Figure 5-33, Figure 5-35 and Figure 

5-37). It can be seen that for the concentrations above the linear range of the instrument the 

resulting molecular absorption is very much underestimated. Finally, using the concentrations 

within the linear range of the instrument, an average molecular absorption was calculated 

(Figure 5-32, Figure 5-34, Figure 5-36 and Figure 5-38). The maximum concentrations taken 
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into account for the average molecular absorption were 5ml/l, 15ml/l and 2ml/l for the blue, 

green and red solutions respectively. The set of concentrations used for the black dye remained 

in the linear range of the instrument. These values of molecular absorption were then used as a 

reference for the experiments carried out v^th the PSICAM. The absorption coefficient o f a 

given solution being calculated as a(k) = aMoi(?-)*C where C is the concentration in ml.l'* of the 

standard solution. 

Figure 5-31: Molecular absorption for the black 
solutions. 

Figure 5-32: Average molecular absorption for 
the black solution. 

C-t.Sflffl 

Figure 5-33: Molecular absorption for the blue 
solutions. 

Figure 5-34: Average molecular absorption for 
the blue solution. 

Figure 5-35: Molecular absorption for the green 
solutions. 

Warckngth (TUB) 

Figure 5-36: Average molecular absorption for 
the green solution. 
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650 7O0 

Figure S-37: Molecular absorption for the red 
solutions. 

Figure 5-38: Average molecular absorption for 
the red solution. 

5.5.2. L Calculation of the reflectivity 
To estimate the reflectivity of the sphere, two standard black solutions of known 

absorption coefficient aA (C=0.01ml.I'*) and aa (C=0.03ml.r') were used. The transmittance of 

solution B was measured relative to solution A. The reflectivity was then calculated fi*om the 

equations of transmittance {Equation 4-5). 
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Figure 5-39: Transmittance spectrum of solution 
B relative to A (top). Absorption spectrum of the 

two solutions. 
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Figure 5-40: Measured reflectivity spectrum 

The black solutions used are more diluted than previously, which results in a 

transmittance spectrum higher than in the previous experiments (Figure 5-39). It is always 

higher than 40%. The spectrum remains between 40 and 60% from 400 to 650nm and increases 

to 100% from 650 to 700nm. The reflectivity spectrum calculated (Figure 5-40) has an average 

of 97.97% and is maximum around 640nm. As in the previous experiments, the spectrum is still 

slighfly higher than 100% in this region. This reflectivity spectrum was subsequently used for 
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the measurement of four standard solutions: blue, green, red and black of concentration O.l, 0.1 

and 0.02ml/l and O.Olml/1 respectively. 

5.5.2.2. Calculation of absorption of standard solutions 
For this experiment, four standard solutions were prepared and measured in the 

PSICAM. One reference measurement was made between each sample. The results of these 

experiments are presented in Figure 5-41 to Figure 5-48. For each solution is presented the 

absorption spectrum measured with the PSICAM (solid line) and calculated using the average 

molecular absorption calculated previously (crosses). The one to one relationship between the 

two techniques is also presented for each standard solution. 

400 450 500 550 600 650 700 
Wavelength (nm) 

Figure 5-41: Blue solution absorption spectra. 
1 2 3 4 

Spectrophotomflter(m'') 

Figure 5-42: Blue solutions regression. 

For most of the tested solutions, the PSICAM replicates the general shape of the 

absorption spectrum, except for the black solution. The best recovery occurs for the red solution 

in which, maximum absorption occurs around 520rmi. The same characteristic occurs for the 

green and black solutions around 640nm which correspond to the portion of the spectrum where 

the calculated reflectivity is higher than 100%. In this area of both spectra, the absorption 

maximum is very much underestimated and the PSICAM spectrum shows two intermediate 
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maxima around 620 and 650 nm for both standard solutions. Surprisingly, this feature does not 

appear in the case of the blue solution which shows an absorption maximum at 630nm. This is 

probably related to the amplitude of the absorption maximum, much higher than for the blue 

and green solutions. The red solution is not affected by the reflectivity spectrum because it does 

not absorb for wavelengths greater than 610nm. 

400 450 500 550 600 650 700 
Wavelength (nm) 

Figure 5-43: Green solution absorption spectra. 

0.5 1 
Spectrophotometer (m'') 

Figure 5-44: Green solution regression. 

In general, the two instruments give comparable results for the lower absorption. The 

PSICAM tends to underestimate the standard absorption for the higher values except for the 

blue solution, which presents the highest absorption. 
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Figure 5-45: Red solution absorption spectra. 
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Figure 5-46: Red solution regression. 
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Figure 5-47: Black solution absorption spectra. specimphotometer(m-̂ ) 

Figure 5-48: Black solution regression. 

Figure 5-49 show the one to one relationship for all the measured solutions on a log-log 

scale to emphasizes the behavior at low absorption values. It is difficult to discriminate a trend 

on this plot. The majority of the values measured by the PSICAM are underestimated. What is 

revealed by this set of measures is the general imprecision of the instrument. The two marked 

artifacts on Figure 5-49 for the green and black solutions are however hardly understandable. 

For the black solution, the shape of the absorption spectrum is not replicates for the short 

wavelength. These artifacts occur for absorption ranges, which for other wavelength or other 

standard solutions have been measured without such marked discrepancies. 
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Figure 5-49: One to one relationship for all the measured solutions. 
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5.5.2.3. Discussion 
The second prototype proved more accurate than the first ones using a single neck 

round-bottomed flask as an integrating sphere. Having two separate ports for the light source 

also seemed an improvement in terms of reliability of the reference measurement. The 

experiment carried out with standard solutions showed that the PSICAM can rephcate the shape 

of the absorption spectrum although the errors are quite significant for some of the solutions. It 

is more than likely that these errors originate in the value of the reflectivity spectrum used for 

the calculations. This is the parameter that once again is the most important for the efficiency of 

the instrument and that we have not measured accurately enough so far. 

This second prototype however is still not ideal. The errors relative to the stability o f the 

light source have been dealt with although there is still scope for improvement. The light 

collector position has been changed so that no direct light is picked up from the source. The last 

uncertainty about the general design of the sphere is now the shape of the sphere. As mention 

previously, the sphere is not strictly spherical and the port for the water input adds an extra 

volume to the sphere. This effect on the efficiency of the PSICAM is difficult to quantify. For 

these reasons, a last prototype was built with an integrating sphere made of Spectralon, for 

which the diameter was much more accurately known. 

5,6. Spectralon prototype 
Spectralon is an optical material manufactured by Labsphere Inc. It is chemically similar 

to Teflon (polytetrafluoroethylene), which gives Spectralon similar chemical properties: it is 

chemically inert and hydrophobic. The principal difference with Teflon is that micro bubbles 

are injected during the process of fabrication, which gives Spectralon a highly reflective and 

Lambertian behaviour. The new integrating sphere was made of a 10.50 cm diameter Spectralon 

sphere. The light collector is like previously a 10** field of view collimated lens. The port for the 
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light collector is situated in the equatorial plan of the sphere and making a 30° angle with the 

vertical. The light source is still a 75Watts halogen generator. The light source is carried by 

means of a 6mm fibre bundle terminated by a Teflon sphere to produce a diffuse light source 

held at the centre of the integrating sphere with a Spectralon stem (Figure 5-50). 

Input and output for Spectralon sphere 
water 

Collimated lens 

Central point source 

Figure 5-50: Spectralon prototype ; side (left) view, top view (right) 

5.6 A, Spectralon prototype 1 cm cuvette 
5,6. LL Reflectivity 

The reflectivity of the cavity wall was calculated in the same way as for the previous 

prototype. A stock solution of the black dye was prepared. From this stock solution different 

concentrations were prepared and measured in a I cm cuvette to calculate the molecular 

absorption coefficient. Then two diluted solutions A=0.0025ml.r' and B=0.005ml.r* were 

prepared from the stock solution; their calculated absorption spectrum is shown in Figure 5-51 

(bottom). Their absorption spectrum was calculated knowing their respective concentrations. 

Finally, the transmittance of solution B relative to A was measured in the PSICAM (Figure 
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5-51, top) and the reflectivity calculated from the equation found in the literature (Equation 4-5, 

Figure 5-52). The transmittance spectrum remains between 60 and 80% from 400 to 650nni and 

then rises up to 100% from 650 to 700nm. The average reflectivity is 0.9947. It increases 

linearly from 0.9803 at 400 nm to 0.9997 at 674nm then increases rapidly to over 1. The last 

part of the spectrum is always noisy because the standard solutions do not absorb in this region. 
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Figure 5-51: Transmittance of Solution B relative 
to A (top); Absorption spectrum of the standard 

solutions for the calculation of the cavity 
rePectivity (bottom). 

Figure 5-52: Calculated reflectivity spectrum. 

5.(5.7.2. Experiment with food dye 
The reflectivity spectrum calculated above was then used to calculate the absorption 

spectrum of the standard solution. As previously, four different dyes were used: blue, green red 

and black. The concentrations used are displayed in Table 5-2. 

Table 5-2: Set of concentrations for the standard solutions 

a C2 C3 C4 

Blue 0.0] 0.02 0.1 0.2 
Green 0,01 0.02 0.1 0.2 
Black 0.001 0.002 0.01 0.02 

5.6.1.2.1. Blue standard, using Kirk 's equation 

Figure 5-53 displays the transmittance spectra of the blue solutions measured with the 

PSICAM. The blue standard has two transmittance minima: a first one around 420 and a second 
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more important one around 640nm. The blue dye thus covers a wide range of transmittances 

across the visible spectrum from 100 to about 5% for the selected concentrations. However, for 

the two most concentrated solutions (C=0.1 and 0.05ml.1"*) the transmittance spectrum appears 

to be distorted in comparison to the two smaller concentrations, which might indicate that the 

solutions are above the linear range of the instrument. 

100 

n 40 

400 450 500 550 600 650 700 
Wavelength (run) 

Figure 5-53: Transmittance spectra measured 
with the PSICAM for the three blue solutions. 

400 450 500 550 600 650 7 0 0 
Wavelength (nm) 

Figure 5-54: Absorption spectra calculated with 
the PSICAM (solid line) and measured on the 

Spectrophotometer (crosses). 

The calculated absorptions are presented on Figure 5-54. The absorptions calculated by 

the PSICAM using the reflectivity spectrum of Figure 5-52 are significantly higher than the 

standards for the four different concentrations. Taking a closer look at each concentration 

(Figure 5-55 to Figure 5-58), it is apparent that there is an almost constant slope of 1.7 (Table 

5-3) between the PSICAM and the spectrophotometer's data. The highest concentration has a 

smaller slope of 1.5. In this last case (Figure 5-58), the slope of the scaUer plot is also 1.7 from 

0 to 6m"* (PSICAM measurement). The highest absorption then presents a lower slope of 1.4 

relative to the spectrophotometer. This would also indicate that the PSICAM does not respond 

linearly as was presumed from the transmittance spectrum of the highest concentration. 
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Figure 5-55: PSICAM versus Spectrophotometer 
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Figure 5-56: PSICAM versus Spectrophotometer 
forCz 

Table 5-3: Slope, intercept and regression coefficient between the t̂ vo instruments 

Slope Intercept 

C/ L723 '0.018 0.995 
C2 7.737 -0.043 0.994 
Cs L773 '0.140 0.997 
C4 1.480 0.0905 0.99 J 
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Figure 5-57: PSICAM versus Spectrophotometer 
forCj 
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Figure 5-58: PSICAM versus Spectrophotometer 
for C 4 . 
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5.6.1.2.2. Green standard, using Kirk 's equation 
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Figure 5-59: Transmittance spectra measured 
with the PSICAM for the four green solutions. 

9 1.5 

400 450 500 550 600 650 700 
Wavelength (nm) 

Figure 5-60: Absorption spectra calculated with 
the PSICAM (solid line) and measured on the 

spectrophotometer (crosses). 

Figure 5-59 presents the transmittance spectra of the four green solutions analysed. The 

spectra display two minima, a first one around 430nm and a second around 640nm. Again the 

ranges of concentration selected allow a wide range of transmittance across the visible 

spectrum. Figure 5-60 presents the calculated absorption spectra using the reflectivity spectrum 

of Figure 5-52. In this case too the absorption calculated with the PSICAM over estimate the 

absorption measured with the spectrophotometer. Looking at the one to one relationship 

between the two instruments (Figure 5-61 to Figure 5-64 and Table 5-4), it is seen that the 

slopes, as for the previous blue standard, are around l.T'-l.S. The shape of the absorption 

spectrum is therefore reproduced but with a systematic factor error of 1.7-1.8. 

0.25 

w 0.1 

0.05 0.1 0.15 0.2 0.25 
Spectrophotometer (m'') 

Figure 5-61: PSICAIM versus Spectrophotometer 
for C , 

Spectrophotometer (m') 

Figure 5-62: PSICAM versus Spectrophotometer 
for Cj 
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0.5 1 1.5 2 
Spectrophotometer (m"̂ ) 

Figure 5-63: PSICAM versus Spectrophotometer 
for C j 

Spectrophotometer (m"') 

Figure 5-64: PSICAM versus Spectrophotometer 
for C 4 

Table 5-4: Slope, intercept and regression coefficient between the two instruments 

Slope Intercept 

Ci 1.86 -0.007 0.975 
C2 1.88 -0.015 0.975 
Cs 1.72 -0.048 0.991 
C4 1.78 -0.099 0.992 

5.6.1.2.3. Black standard, using Kirk 's equation 

The transmittance spectra of the last solution tested are displayed in Figure 5-65. This is 

the dye that was used for the calibration of the cavity reflectivity. It is broadly transmitting for 

400 to 650 nm v^th a maximum at 600nm. It does not filter longer wavelengths. The calculated 

absorption spectra are displayed in Figure 5-66. Again, the PSICAM over estimates the 

spectrophotometer predictions. The slope between the PSICAM and the spectrophotometer 

remains similar for the two highest concentration (Figure 5-69 and Figure 5-70): 1.55 and 1.68 

for C3 and C4 respectively. However, the slopes are not comparable for the two lower 

concentrations: 1.20 and 1.29 for Ci and C 2 respectively. This is probably biased by the strong 

discrepancies that appear for the lowest absorption (Figure 5-67and Figure 5-68) and the error 

for the short wavelength (circles on Figure 5-67and Figure 5-68; see detail of the two lower 

concentrations on Figure 5-71). 
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Figure 5-65: Transmittance spectra measured 
with the PSICAM for the four black solutions. 

400 450 500 550 600 650 7 0 0 
Wavelength (nm) 

Figure 5-66: Absorption spectra calculated with 
the PSICAM (solid line) and measured on the 

Spectrophotometer (crosses). 

This artefact is most likely related to the instability of the reference measurement for the 

lower absorption. This is a part of the spectrum where the diffraction grating is less sensitive 

and where the light source is the most unstable as explained earlier (section 5.2). The origin of 

the error is also visible on the transmittance spectra of Figure 5-65. For the two highest 

concentrations, the transmittance spectra increase slightly from 450nm down to 400nm whereas 

they tend to decrease for the two lowest concentrations. 
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Figure 5-67: PSICAM versus Spectrophotometer 
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Figure 5-68: PSICAM versus Spectrophotometer 
forCz 
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Figure 5-69: PSICAM versus Spectrophotometer 
forCj 
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Figure 5-70: PSICAM versus Spectrophotometer 
for C, 

Table 5-5: Slope, intercept and regression 
coefficient between the two instruments 
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Figure 5-71: Detail of Figure 5-66 for the two 
lowest concentrations. 

5.6.1.3. Conclusion 
To some extent, the results obtained with this prototype are of better quality. The 

absorption spectra shape of the various solutions tested were well reproduced although they 

systematically over-estimated by a factor going from 1.5 to 1.8. The errors such as those for the 

lowest concentration of the black solutions for the short wavelength find a logical explanation 

in the instability of the light source at these wavelengths. Figure 5-72 presents the regression 

between the PSICAM and spectrophotometer measurement for all the studied solutions. It is 

apparent from this figure that the PSICAM can be inaccurate for absorptions lower than 
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0.02m' . This was actually predicted in the modeling chapter. For the other data, this graph 

emphasises the systematic error between the two instruments. 

With this prototype, the sources of errors mentioned previously are very well 

minimized. The integrating cavity and light source unit are made of an optical grade material. 

The cavity diameter in known and the cavity can be assumed to be a perfect sphere although the 

volume taken by the stem of the light source might still interfere. A reference measurement is 

taken between each measured sample to minimize the errors originating from baseline shift. 

This kind of errors is now better understood and mainly appears in the short wavelengths from 

400 to 450nm. Potential errors are still the value used for the reflectivity spectrum and the 

standard used for both the calculation of the reflectivity and the measurement of standard 

solution. Al l the results so far were based on the assumption that calculating the absorption 

coefficient of the standard from measurement in a one centimeter cuvette was accurate enough. 

From the next experiments, a different approach was taken for the calibration of the instrument. 
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Figure 5-72: PSICAIM versus Spectrophotometer for all the measured solutions 

161 



Chapter 5: Development of a Prototype PSICAM 

5.6,2, Spectralon prototype 10cm cuvette 

5.6,2.1. Reflectivity 

The first approach to investigate the reflectivity of the Spectralon sphere as well as the 

other prototype haven't been successful. Initially the source of error was assumed to come for 

the prototype itself: quality of the material used for the integrating cavity and the light source, 

stability of the power supply, integrating sphere not strictly spherical. In this experiment, a 

different approach was used to calculate the reflectivity of the sphere. Four standard solutions of 

a black dye were prepared and their absorption spectrum measured in a 10 cm cuvette relative 

to pure water. The concentrations chosen were Ci=0001mLr\ C2=0.0025 ml.l *, C3=0.005 ml.l"* 

and C4=0.01ml.r'. Their absorption spectra are displayed in Figure 5-51. The transmittance of 

solutions C2, C3 and C4 were then measured in the PSICAM relative to solution Ci- One 

reference measurement of solution Ci was made between each sample to avoid deviation o f the 

baseline. The transmittance of each solution is visible in Figure 5-52. The concentrations chosen 

for the experiment were chosen so that the transmittance depletion covers a wide range over the 

visible range: between 80 and 70%, 60 and 50% and 40 30% for C2, C3 and C4 respectively. 

DSO ^ L 

Figure 5-73: Absorption spectrum of the standard 
solution for the calculation of the cavity 

reflectivity. 

Figure 5-74: Transmittance spectra of the 
standard solutions relative to C i . 
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The reflectivity spectrum of the integrating cavity was then used using Kirk's formula 

(Equation 4-5) for the three different solutions tested. 

C2/C1 
C3/C1 
C4/C1 = 95 

-t-

550 600 
Wavelength (nm) 

Figure 5-75: Reflectivity spectrum calculated from the transmittance of the standard solutions 

400 450 500 550 600 

Wavelength (nm) 

650 700 

Figure 5-76: Average and Standard deviation of the three calculated reflectivity in Figure 5-76 

The three reflectivity spectra calculated presents very similar results (Figure 5-75). The 

three spectra increase from about 96% at 400nm to peak at 98% around 635nm and then 

decreases toward the red wavelength. For the longer wavelengths, the calculated reflectivity is 
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probably erroneous because the dyes used for the standard solutions are very weakly absorbing 

in this region. Figure 5-76 presents the average and standard deviation of the reflectivity 

spectrum calculated from the three measurements. The standard deviation remains below 0.01 

up to 670nm. From the sensitivity analysis carried out in Chapter 4, it is possible to estimate 

form the standard error the percentage error expectable for the absorption calculation. For the 

sensitivity analysis, for a cavity radius of 5cm, it is predicted that the percentage error on the 

calculated absorption is 99 times the error on the reflectivity. It results (Figure 5-77) of a 

percentage error between 5 and 10% form 450 to 660nm, between 10 and 20% below 450nm 

and higher than 20% above 660nm. This would be the percentage error expected for the 

configuration of our PSICAM. This would probably be improved first with a more stable power 

supply which still gives rise to some uncertainty. For the shorter wavelengths, this corresponds 

to the minimum efficiency of the diffraction grating of the spectrophotometer. Finally, the error 

for wavelengths longer than 660nm is more likely to be an effect of the standard solution used. 

400 450 500 550 600 

Wavelength {nm) 

650 700 

Figure 5-77: Estimated error on the calculated absorption. 
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5,6.2.2. Experiment with food cfye 
To test the PSICAM with standard solution, the same procedure was adopted. Various 

concentrations of dye solutions were prepared and their absorption spectra relative to pure water 

was measured in a 10 cm cuvette. The transmittance of the standard solution relative to pure 

water was then measured in the PSICAM so that the same solutions were used both in the 

spectrophotometer and the PSICAM. The standard solutions prepared were blue, green, red and 

black and the concentrations were chosen to allow a wide range of transmittance depletion 

(Figure 5-78 to Figure 5-105). The concentrations prepared are presented in Table 5-6, 

Table 5-6: Set of concentrations for the standard solutions 

CI C2 C3 C4 CS C6 

Blue 5E-3 lE-3 5E-2 # # # 
Green 5E-3 JE-3 5E-2 IE-} # 

Red 2E-4 lE-4 2E-5 # 
Black 5E-4 IE-3E 2.5E-3 5E-3 lE-2 I.5E-2 

5.6.2.2.1. Blue standard, using Kirk 's equation 

n 40 

400 450 500 550 600 650 700 
Wavelength (nm) 

Figure 5-78: Transmittance spectra measured 
with the PSICAM for the three blue solutions. 

400 450 500 550 600 650 700 
Wavelength (nm) 

Figure 5-79: Absorption spectra calculated with 
the PSICAM (solid line) and measured on the 

Spectrophotometer (crosses). 

The standard solutions of different concentrations measured in the PSICAM in case of 

the blue solution allow a transmittance depletion decreasing to about 10% around 630nm for the 

highest concentration (Figure 5-78). The transmittance spectra of these solutions are marked by 
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two peaks: a first one around 410nm and a much more important one around 630nm. The 

calculated absorption coefficients are presented in Figure 5-79 for the three solutions under 

investigation. The absorption spectra of the two lowest concentrations are very well correlated 

between the two instruments. For the highest concentration, a significant discrepancy occurs for 

the second and most important absorption peak at 630nm. The PSICAM indicated a maximum 

absorption of 5.65m'' at 631nm whereas the spectrophotometer measures a maximum 

absorption of 7.25m'' at the same wavelength. A possible explanation of this difference is that 

the solution probably has absorption above the linear range of both instruments. 

Figure 5-80 to Figure 5-82 present the one to one relationship between both instruments 

for Ci, C2 and C3 respectively. The slopes, intercepts and regression coefficients are displayed 

in Table 5-7. For the three different concentrations, the regression coefficient is higher than 

0.99. The absorption spectrum of the fu-st solution is slightly under-estimated. The second 

concentration shows the best fit with the spectrophotometer measurement. Both have a slope 

very close to 1 (respectively 1.02 and 1.05). The highest concentration, as mention previously, 

shows more important discrepancies with increasing absorption, the absorption peak around 

630nm being significantly over-estimated. 

0.1 0.2 0.3 0.4 0.5 
.Snftntmnhntnmfttftr (m'h 

Figure 5-80: PSICAM versus Spectrophotometer 
forC, 

0.5 1 1.5 
Rnftr.tmnhntnmfttnr (m'^\ 

Figure 5-81: PSICAM versus Spectrophotometer 
forC: 
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2 4 6 8 

. S n n r . t m n h n t n m R t f t r {m'^\ 

Figure 5-82: PSICAM versus Spectrophotometer 
forCj 

Table 5-7: Slope, intercept and regression 
coefflcient between the two instruments 

Slope Intercept 

c, 0.99 -0.01 0.999 
0.99 -0.01 0.999 

Cs 1.24 -0.11 0.998 

5.6.2.2.2. Least square technique 

The least square technique was used to estimate the absorption coefficient of the 

standard solutions. For the first two concentrations, the differences between the two techniques 

were insignificant (Table 5-8). However, for the last one, using this technique resulted in a 

smaller absorption peak of 6.52m'* at 63lnm (Figure 5-83). It is indeed possible that owing to 

the concentration of the solution, the light field within the sphere was not homogeneous and 

isotropic as expected when using Kirk's equation. 

2 4 6 8 

Spectrophotometer (m'^) 

Figure 5-83: PSICAM versus Spectrophotometer 
for C 3 using least square technique. 

Table 5-8: Slope, intercept and regression 
coefTicient between the hvo instruments with the 

least square technique. 

Slope Intercept 

c, 0.99 -0.009 0.999 
C2 0.98 -0.007 0.999 

1.14 -0.060 0.999 
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5.6.2.2.3. Green standard, using Kirk 's equation 
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Figure 5-84: Transmittance spectra measured 
with the PSICAIM for the four green solutions. 

400 450 500 550 600 650 700 
Wavelength (nm) 

Figure 5-85: Absorption spectra calculated with 
the PSICAM (solid line) and measured on the 

Spectrophotometer (crosses). 

The standard solutions of different concentrations measured in the PSICAM in case of 

the green solution allow a transmittance depletion going down to about 10 and 20% around 400 

and 640nni respectively for the highest concentration (Figure 5-84). The transmittance spectra 

of these solutions are marked by two comparable peaks: a first one around 440nm and a second 

around 640nm, the first peak being smoothed for the highest concentrations. The calculated 

absorption coefficients are presented on Figure 5-85 for the four solutions under investigation. 

The absorption spectra of the two lowest concentrations are very well correlated between the 

two instruments. The third solution is also well correlated except for the shorter wavelength. 

The PSICAM indeed does not measure a maximum absorption at 440nm and increasing 

absorption toward the lowest wavelength. For the highest concentration, significant 

discrepancies occur around 636nm and for wavelength shorter than 460nm. The PSICAM 

indicated a maximum absorption of 2.84m'' at 636nm whereas the spectrophotometer measures 

a maximum absorption of 2.43m"' at the same wavelength. 

Figure 5-86 to Figure 5-89 present the one to one relationship between both instruments 

for Ci, C 2 , C 4 and C 4 respectively. The slopes, intercepts and regression coefficient are 
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displayed in Table 5-9. For the first two solutions, the regression coefficient is higher than 0.99. 

It then decreases to 0.98 and 0.92 for C 3 and C 4 respectively. Both have a slope very close to 1 

(respectively 1.02 and 1.06) with an intercept of almost zero. The highest concentrations as 

mentioned previously show more important discrepancies with increasing absorption, the 

absorption peak around 636nm being significantly over-estimated. This deviation from the 

reference measurement with the spectrophotometer occurs for absorptions higher than 2m"'. 

This corresponds to the absorption range where the blue solutions started to deviate from the 

reference measurement. 

0.05 0.1 0.15 0.2 
Spectrophotometer (m'̂ ) 

Figure 5-86: PSICAM versus Spectrophotometer 
forC, 

Spectrophoaimeter (m } 
Figure 5-87: PSICAM versus Spectrophotometer 

for C2 

However, the discrepancies accruing for the shorter wavelength are unlikely to be 

strictly related to the linear range of the instrument. I f absorptions higher than 2m'' are likely to 

be above the linear range of the instrument, the two absorption peaks of this dye being 

approximately of the same amplitude, equally important errors would be expected for both 

peaks. The error for shorter wavelength is much higher than around 636nm. In this case, the 

transmittance measurement (Figure 5-84) could be responsible for most of the discrepancies 

since the transmittance peak does not appear markedly on the spectrum. The shorter 

wavelengths are a portion of the spectrum where the light source is more unstable, the reference 

measurement being more likely to drift rapidly in this portion of the spectrum. 
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Figure 5-88: PSICAM versus Spectrophotometer 
for C j 

2 4 6 8 
Spectrophotometer (m"̂ ) 

Figure 5-89: PSICAM versus Spectrophotometer 
for C 4 

Table 5-9: Slope, intercept and regression coefficient between the two instruments 

Slope Intercept 

1.02 -0.006 0.996 
C2 1.06 -0.006 0.997 
C3 1.15 -0.012 0.988 
C4 1.40 -0.116 0.928 

5.6.2.2.4. Least square technique 

The least square technique was used to estimate the absorption coefficient o f the 

standard solutions. For the first two concentrations, the differences between the two techniques 

were insignificant (Table 5-10). The last one, using this technique resulted in a smaller 

absorption peak of 2.72m"* at 636nm (Figure 5-83). No significant changes were observed for 

the errors at the shorter wavelengths. 
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Figure 5-90: Absorption spectra calculated with 
the PSICAM (solid line) and measured on the 

Spectrophotometer (crosses). 

Table 5-10: Slope, intercept and regression 
coefficient between the two instruments with the 

least square technique 

Slope Intercept 

c, 1.02 -0.006 0.995 
C2 1.06 -0.006 0.996 
Cs 1.13 -0.009 0.987 
C4 1.34 -0.09 0.934 
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5.6.2.2.5. Red standard, using Kirk 's equation 
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Figure 5-91: Transmittance spectra measured 
with the PSICAM for the three red solutions. 

400 450 500 550 600 650 700 
Wavelength (nm) 

Figure 5-92: Absorption spectra calculated with 
the PSICAM (solid line) and measured on the 

Spectrophotometer (crosses). 

The standard solutions measured in the PSICAM in case of the red solution allow a 

transmittance depletion going down to about 40% around 518nm for the highest concentration 

(Figure 5-91). The transmitlance spectra of these solutions are marked by one peak at 518nm. 

The calculated absorption coefficients are presented in Figure 5-92 for the three solutions under 

investigation. In this case, a very good correlation is obtained between the two instruments for 

all the concentrations measured. The PSICAM indicated a maximum absorption of 0.14, 033 

and 0.59m'' at 518nm for Ci, C 2 and C3 respectively. The spectrophotometer measures a 

maximum absorption of 0.14,0.34 and 0.56m'* at the same wavelength. 

Figure 5-93 to Figure 5-95 present the one to one relationship between both instruments 

for Ci , C 2 and C3 respectively. The slopes, intercepts and regression coefficient are displayed in 

Table 5-11. For the three different concentrations, the regression coefficient is higher than 0.99. 

In this case, a very good one to one relationship is obtained between the two instruments. The 

highest absorption measured in this case being 0.59m'', the solution used probably stayed 

within the linear domain of the instrument. 
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Figure 5-93: PSICAM versus Spectrophotometer 
forC, 

0 0.1 0.2 0.3 0.4 
Spectrophotometer (m'*) 

Figure 5-94: PSICAM versus Spectrophotometer 
forCi 

0.75 
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0.25 

Table 5-11: Slope, intercept and regression 
coefficient between the two instruments 

Slope Intercept 

Ci 1.002 -0.004 0.995 
C2 0.996 -0.008 0.998 
C3 1.039 7E-4 0.998 

0.25 0.5 0.75 
Spectrophott)meter (m ) 

Figure 5-95: PSICAM versus Spectrophotometer 
for C 3 . 

5.6.2.2.6. Least square technique 

The least square technique was used to estimate the absorption coefficient of the 

standard solutions. No significant differences appeared between the two techniques. With the 

knowledge of the two previous experiments, this was expectable because the concentrations 

used in this case did not result in transmittance spectra lower than thirty percents. 
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Table 5-12: Slope, intercept and regression 
coefHcient between the hvo instruments with the 

least square technique. 

Slope Intercept 

C; 1.04 -0.0081 0.928 
C2 1.01 -0.0126 0.985 
C3 1.04 -0.0034 0.993 

400 450 500 550 600 650 700 
Wavelength (nm) 

Figure 5-96 Absorption spectra calculated with 
the PSICAM (solid line) and measured on the 

Spectrophotometer (crosses). 

5.6.2.2.7. Black standard, using Kirk^s equation 

With the three previous dyes, specific absorption bands were investigated. With this last 

experiment, a black dye was used to cover most of the visible spectrum. As previously, this dye 

did not absorb in the longer wavelengths. 

100 

400 450 500 550 600 650 700 
Wavelength (nm) 

Figure 5-97: Transmittance spectra measured 
with the PSICAM for the six black solutions. 

400 450 500 550 600 650 700 
Wavelength (nm) 

Figure 5-98: Absorption spectra calculated with 
the PSICAM (solid line) and measured on the 

Spectrophotometer (crosses). 

With the chosen set of concentrations, the range of transmittances covered varied from 

90% down to 15%. The dye shows a maximum transmittance around 600nm (Figure 5-97). The 

calculated absorption coefficients are presented in Figure 5-98 for the six solutions under 

investigation. Once again, the absorption spectra of the lowest concentrations are very well 

correlated between the two instruments. It appears that absorptions higher than Im ' ' which 
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corresponds approximately to 40% transmittance is a limit above which the system starts to 

measure erroneous values. The last two solutions C5 and Ce, which have an average 

transmittance of 30 and 20% respectively, have overestimated absorption with the PSICAM. 

For solution C5, the absorption gets overestimated of up to O.I5m'* and up to 0.35m"* for Ce, 

which represent between 5 and 15% error both. 

Figure 5-99 to Figure 5-104 present the one to one relationship between both 

instruments for Ci, C 2 , C 4 and C 4 respectively. The slopes, intercepts and regression coefficient 

are displayed in Table 5-13. Having a closer look on the first two solutions C| and C 2 (Figure 

5-99 and Figure 5-100), they appear to have a constant offset of 0.013 and 0.010m"' 

respectively. 

0.1 

0.08 

0.06 

KO.04 
Q. 

0.02 

1 1 
1 1 
1 1 

jo 0 / \ 

0 ; 

0.24 

0.02 0.04 0.06 0.08 0.1 
Spectrophotometer (m*̂ ) 

Figure 5-99: PSICAM versus Spectrophotometer 
forC, 

0 0.04 0.08 0.12 0.16 0.2 0.24 
Spectrophotometer (m'̂ ) 

Figure 5-100: PSICAM versus 
Spectrophotometer for C2 

The best fit is obtained for solutions C 3 and C 4 which have absorption ranges between 

0.2 and Im*' not taking into account the longer wavelength. Both have a slope very close to I 

(respectively 1.004 and 0.980) with an intercept of almost zero. 
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Figure 5-101: PSICAM versus 
Spectrophotometer for C 3 

0.25 0.5 0.75 1 
Spectrophotometer (m"̂ ) 

Figure 5-102: PSICAM versus 
Spectrophotometer for C4 

The highest concentrations C5 and Ce (Figure 5-103 and Figure 5-104) as mentioned 

previously show more important discrepancies. They have average absorptions around 1.2 and 

2.0m"' respectively not taking into account the longer wavelengths. 

0.5 1.5 
Spectrephotometer{m' ) 

Figure 5-103: PSICAM versus 
Spectrophotometer for C 5 

0.5 1 1.5 2 2.5 ; 
spectrophotometer (m'*) 

Figure 5-104: PSICAM versus 
Spectrophotometer for Q 

Table 5-13: Slope, intercept and regression coefHcient between the two instruments 

Slope Intercept ? 
0.979 0.013 0.960 

C2 1.004 0.010 0.994 
C3 0.980 0.005 0.996 
C4 1.003 0.013 0.996 
Ci 1.082 0.016 0.996 
Ci 1.123 0.024 0.990 
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5.6.2.2.8. Least square technique 

The least square technique was used to estimate the absorption coefficient o f the 

standard solutions. For the fu^t four concentrations, the differences between the two techniques 

were insignificant (Figure 5-105 and Table 5-14). For solution C 5 and Ce, using this technique 

resulted in a smaller absorption maximum of 1.81 and 2.70m'* at 636nm for C 5 and Ce instead 

of 1.86 and 2.86m''. No significant changes were observed for the errors at the other 

wavelengths. 

Table 5-14: Slope, intercept and regression 
coemcient between the two instruments with the 

B 1.5 

Slope Intercept 
c, 0.973 0.013 0.947 
C2 1.004 0.010 0.993 

0.974 0.007 0.994 
C4 0.992 0.015 0.995 
Cs 1.059 0.021 0.995 
Ci 1.086 0.037 0.989 

400 450 500 550 600 650 700 
Wavelength (nm) 

Figure 5-105: Absorption spectra calculated with 
the PSICAM (solid line) using the least square 

technique and measured on the 
Spectrophotometer (crosses). 

5.6,2.3, Conclusion 
In Figure 5-106 is plotted the PSICAM data versus the spectrophotometer for all of the 

studied solutions. The graph is on a log-log in order to enhance the lower absorption values, the 

solid line corresponding to the one to one relationship. A one to one relationship is visible 

between the two instalments fi-om 0.02 up to 2m'*. For the higher absorptions, there are three 

separated features which deviate from the one to one relationship. They correspond to the green 

and black solution errors for the short wavelengths described previously. For absorptions higher 

than 2m"', the PSICAM begins to measure significantly higher absorption than the 

spectrophotometer. For the lower absorptions the limitation appears to be aroimd 0.02m''. 

Below this value, the PSICAM lacks accuracy to properly measure the solutions. This accuracy 

could be improved by a more stabilised light source. However, in the blue part of the spectrum, 
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the combine characteristics of the tungsten bulb emission spectrum (Figure 5-23), the grating 

efficiency (Figure 5-1) and the silicon detector of the spectrometer, which are less sensitive in 

the blue wavelengths are adding to the difficulty of the measurement. As mentioned previously, 

a pure water reference is made between each measured sample to limit deviation of the base 

line. However, ± 1 % deviation of the baseline can occur during the measurement of the sample. 

Minimizing this kind of deviation would obviously improve the measurement of low absorbing 

solution. Another solution would be to increase the diameter of the integrating sphere. To 

achieve accurate measurements for the higher absorbing solutions the cavity radius would need 

to be smaller as stated in Chapter 4. 
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Figure 5-106: PSICAM versus Spectrophotometer for all the measured solutions 

With the imprecision knowledge acquired with the various prototypes, it is apparent that 

the main reason for the initial errors was the imprecision of the absorption spectra o f the 

standard solution used for the calculation of the reflectivity. The high absorptions of the 

solution measured in the PSICAM which were probably over the linear range of the system. 

Therefore the initial system with glass sphere was probably good enough to measure the 
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standard solutions and probably natural samples. The later tests were all carried out with the 

SpectraJon sphere because it presents the closest characteristics to the theory. Further work 

using a glass sphere embedded in a reflective material would be worth while a glass sphere 

would have indeed a very important advantage in comparison with a Spectralon sphere: it 

would be far easier to clean and would be considerably cheaper. 
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Chapter 6: Validation 
6.1. Introduction 

It has been shown in the previous chapter that the PSICAM is efficient to measure the 

absorption coefficient of coloured solutions of various concentrations. The major aspect o f the 

instrument that had to be tested is its response to solutions containing significant amounts of 

particulate material, which means significant amounts of scattering particles. That was a 

difficult characteristic of the instrument to test because of the complexity of producing absolute 

standard solutions containing scattering as well as absorbing particles. To achieve this, a 

laboratory experiment was set up where the measurement of the PSICAM would be compared 

with the measurement of an ac-9. The ac-9 as described in a previous chapter is one o f the 

instruments that can achieve accurate measurements even in solutions containing high levels of 

particulate matter with acceptable accuracy. In addition, the PSICAM was compared with a 

filter paper technique to measure the particulate absorption. The PSICAM data presented below 

where calculated using Kirk's equation. The least square technique was also used for the 

calculation but didn't show major differences (see Appendix 2). 

The PSICAM was subsequently used to measure natural water absorption and compared 

with in situ measurements of an ac-9, dissolved organic matter measurement and the filter paper 

technique for the particulate absorption. The PSICAM was also field tested in Antarctic water. 

6.2. Laboratory experiment 
A laboratory experiment was carried out with the collaboration of Nagur Cherukuru 

(University of Plymouth) and Gerald Moore (Plymouth Marine Laboratory) where "artificial" 

water samples where measured with the PSICAM, an ac-9 and the filter pads technique to 

measure the absorption of suspended particles {Tassan and Ferrari, 1995). A water tank of 
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about one meter cube was filled with milli-Q water in which suspended sediments were added 

progressively to reach a final concentration of 8.77mg/I. During the course of the experiment 

samples of the water were taken to measure the concentration of sediments on filter paper. The 

concentrations measured were 0.03 (pure water background), 0.105, 0.210, 1.310, 2.705 and 

8.77mg/l. These sediments where collected fi-om the River Plym, dried and ashed to remove the 

organic components prior to being added to the tank (Figure 6-1). Water samples were also 

collected and filtered on 25nmi filter paper to measure the particulate absorption. The water in 

the tank was pump through a UV light to keep the volume sterile during the course o f the 

experiment. A second pump was kept running to keep the water in the tank homogeneous 

(Figure 6-1) except during the measurements to avoid formation of micro-bubbles, which could 

corrupt the ac-9 measurements. 

Suspended 
sediments 

ac-9 \^Ei'!M S^ples for 
particiilate 
absorption 

Samples for 
Suspended 
Particulate 
Matter Ivuxmg 

I pump 

PSICAM 

YY././//Z///ZZyfZ77T//ZZZZZZYZ///ZZZZZZ/JWf///ZA 

U V source 

Figure 6-1: Schematic of the laboratory experiment. 
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6,2. L Comparison with the ac-9 
The ac-9 (WetLabs Inc.), measure both the absorption (a-tube) and attenuation (c-tube) 

coefficient of a water sample by incorporating a dual path optical configuration in a single 

instrument. Scattered light that hits the blackened surface of the c-tube is absorbed and therefore 

does not contribute to the measurement of transmitted intensity. Light radiated through the c-

tube is therefore subject to both scattering and absorbing processes. Light passing through the a-

tube is absorbed by the water itself and the various dissolved and particulate components of the 

water. Forward scattering light is reflected back into the water volume by the reflective surface 

of the tube. The a-tube uses the internal reflection principle in reflecting light back into the 

water volume. A clear quartz tube is used. The outer surface of the tube is enclosed by a thin 

volume of air. The difference between the refi-acting index of air (1) and water (1.33) achieves 

internal reflection to 41.7 degrees with respect to the optical axis. 

The instrument is calibrated to provide a reading of 0.00 for each channel in clean fi-esh 

water. The data however needs to be corrected for temperature and salinity offsets. The 

announced precision by the manufacturer is 0.001m''. 

The data needs to be corrected for back-scattering errors. Attenuation measurements are 

limited by the acceptance angle of the instrumentation. The finite acceptance angle of the 

instrumentation means that the instrument collects a portion of the scattered light and thus 

underestimates the true attenuation coefficient. Correcting attenuation measurements for the 

errors caused by collection of scattered light is not recommended as it is extremely difficult and 

of questionable benefit (Pegau et ai, 1994). The a-tube does not collect all of the light scattered 

fi-om the beam. The uncollected scattered light causes the instrumentation to overestimate the 

absorption coefficient. There are three different techniques that can be used for the corrections: 
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o Substraction of a reference wavelength where the absorption is assumed to be 
zero. 

o Removal of a fixed proportion of the scattered coefficient. 

o Use of a reference wavelength to determine the proportion of the scattering 
coefficient to be subtracted fi-om the signal. 

Each correction technique will be reviewed in the following sections and compared with 

the results of the PSICAM (in the correction equations, the index /, w, m and ref means 

respectively total, pure water, measured and reference). 

The general shape of the absorption spectrum obtained from this laboratory experiment 

is decreasing exponentially with increasing wavelength as expected for inorganic suspended 

particulate sediment. The measurement of the PSICAM appears to get closer to the ac-9 results 

for correction 1 and 3, although in each case, the PSICAM underestimates the absorption in 

comparison with the ac-9. The second correction technique gives the most important difference 

with the PSICAM measurement. Because the experiment started with pure water, the absorption 

spectra cover a wider range of absorptions. The scattering coefficient spectrum varied from 0 to 

about 3.5m'* depending on the correction technique (Figure 6-11). 

6,2. LL Correction 1 
The first method of correcting for scattering errors is to subtract the absorption 

measurement at a reference wavelength. 

Equation 6-1 

This technique assumes that at the reference wavelength, the absorption by particulate 

and dissolved materials is zero so that the measured absorption coefficient is caused strictly by 

scattering. It is also assumed that the shape and magnitude of the volume scattering function is 

independent of wavelength. This technique does allow the scattering correction to vary with 
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changes in the materials contained within the sample. Commonly, the reference wavelength 

selected is the near infrared portion (715nm). This correction method being the most basic, the 

comparison with the ac-9 is presented as a reference. The percentage difference between the 

two instruments is presented in appendix 2. 

With this correction technique, the two instruments give similar results (Figure 6-2) 

although the PSICAM generally underestimates the absorption in comparison with the 

PSICAM. For the concentration Co (pure water back ground) the ac-9 produces negative values 

(Figure 6-3). 

-•-ACS-C4 
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— pti^el 
— P « ^ 0 
— ttKA 

Figure 6-2: Absorption spectra of both 
instruments obtained with the first correction 

method. 

Figure 6-3: Detail of Figure 6-2 for the three 
lowest concentrations. 

6.2, L 2. Correction 2 
The second method assumes that the scattering correction is a fixed proportion of the 

scattering coefficient b(X) such that b(X)=c(X)-a(^). This method takes into account the 

proportion of the photons which are scattered back in the a-tube and assumed lost as mentioned 

in a previous chapter: 

a,{^)-a^{;i) = aSA)-s*[c„{l)-a„ ( A ) ] 

Equation 6-2 
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where e is the proportion of the scattering coefficient not detected by the sensor and has a value 

of^A4 for waters where biological particles dominate scattering and increases to aK).18 when 

sediments dominate the scattering. The values of e are empirically derived from field data and 

the third correction technique as well as being modelled by Kirk (1993). This method assumes 

that the shape of the volume scattering function is independent of wavelength. The magnitude 

of the scattering correction is, however, allowed to vary with wavelength. Since a reference 

wavelength is not used there is no requirement that the absorption coefficient is equal to zero at 

the reference wavelength. A e factor of 0.14 is recommended in the literature (ac-9 user manual) 

for water dominated by phytoplankton whereas 0.18 is recommenced for waters with higher 

inorganic suspended content because the back-scattering coefficients of suspended inorganic 

sediments is considerably higher than that of phytoplankton (Prieur and Sathyendranath, J 981). 

For the experiment carried out, an 8 factor of 0.18 was used, due to the inorganic particulate 

content of the water samples. Due to the exclusively inorganic particle content of the water 

samples analyzed, an attempt was made to increase the 8 factor to try to fit the PSICAM data. It 

appeared that 8=0.28 was needed to fit the PSICAM data for the highest concentrations (Figure 

6-6 and Figure 6-7). 

Figure 6-4: Absorption spectra of both 
instruments obtained with the second correction 

method (£=0.18). 

Figure 6-S: Detail of Figure 6-4 for the three 
lowest concentrations. 
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Using an e factor of 0.18 for the calculation as recommended for solutions with a high 

inorganic particulate content, the PSICAM significantly underestimates the values of the ac-9 

(Figure 6-4). The detail for the lowest concentrations (Figure 6-5) also shows a major 

underestimation in comparison to the ac-9. Using this technique, the data from the ac-9 displays 

an almost linear decreasing curve from 400 to 715nm in which the inflexion point around 

650nm does not appear. On the other end, this method unlike the other ones does show some 

absorbance in the red region of the spectrum. Increasing the e factor was tempted although it 

might not have a proper physical explanation because the first and third correction method gave 

comparable results with the PSICAM. Increasing the e factor to such an extent is purely 

empirical, however it gives more comparable results with the PSICAM for concentrations C2 to 

C5. 

Figure 6-6: Absorption spectra of both 
instruments obtained with the second correction 

method (e=0.28). 

Figure 6-7: Detail of Figure 6-6 for the three 
lowest concentrations. 

The slope, intercept and regression coefFicient using 8=0.28 are presented in Table 6-1 

and the one to one relationship is plotted in Figure 6-8. 
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Figure 6-8: Regression between tbeabsorption 
coefficient measured by PSICAM and the ac-9 

with the second correction method. 

Table 6-1: Slope, intercept and regression 
coefficient bet̂ veen the two instruments for 

e=0.28. 

Slope Intercept 

CO 1.3246 -0.0083 0.940 
C I 0.70] 3 '0.0042 0.9843 
C2 0.7835 '0.0034 0.9874 
C3 0.8443 -0.0005 0.9972 
C4 0.8752 0.0 J 55 0.990 
C5 0.9016 0.0581 0.998 

Corrections 
The third correction method is a combination of the first two. It is assumed that there 

exists a reference wavelength at which the absorption coefficient of particulate and dissolved 

materials is zero. It is further assumed that the shape of the volume scattering function is 

independent of wavelength. 

Equation 6-3 

This technique allows for automatic changes in the scattering correction magnitude with 

wavelength and changes in the types of materials present. It requires the largest number of 

auxiliary measurements, which makes this technique the most accurate one. 

Figure 6-9: Absorption spectra calculated with 
the third correction method 
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Figure 6-10: Detail of Figure 6-9 the lowest 
concentrations. 
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The results of the calculations using this technique show that the PSICAM and the ac-9 

give very similar results (Figure 6-9). However, for the lower concentrations, the discrepancies 

between the two instruments are significant (Figure 6-10). This is to be expected; it was 

explained in a previous section {Chapter 4) that for absorptions lower than 0.02m"* the 

PSICAM is not sensitive enough. On the over end, as is shown in Figure 6-10, the ac-9 data set 

shows values below zero. The precision of the ac-9 being O.OOlm ', accurate spectra would be 

expected. The temperature and scattering corrections have been checked for these data sets. The 

error might originate in the quality of the initial measurement. 

In Figure 6-11 is presented the scattering coefficient deduced from this correction 

technique. The spectra show very little wavelength dependence. An average of 0.013, 0.095, 

0.221, 0.725, 1.268 and 3.573m'* is obtained for different concentrations, which are 

considerably higher than the absorption values encountered except for the pure water 

background. 

SCO s » 

Figure 6-11: Scattering coefTicient obtained with 
the third correction method. 

Figure 6-12: Transmittance spectra measured 
with the PSICAM. 

In Figure 6-13 is displayed the absolute value of the percentage error between the two 

instruments. The 750nm waveband is not shown because using this correction technique, the 

absorption on this channel is assumed to be zero. The most important (>50%) errors are 

encountered for the two lowest concentrations (Co=0.03mg/l, pure water background and 
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Ci=0.105mg/1). This makes sense with the previous observations regarding the limit of 

detection of the PSICAM. The absorptions encountered with these two concentrations are 

below 0.02m"* except for the absorption at 412nm of solution Ci which is 0.021m''. 

EC=0.03 [IDC=0.105 SC=0.210 gC=1.310 [ID 0=2.705 ^ 0 = 8 . 7 7 
10000 

1000 

100 

412 440 488 510 532 555 
Wavelength (nm) 

650 676 

Figure 6-13: Percentage error relative to the ac-9 (absolute value). 

H C=0.210 m 0=1.310 SS 0=2.705 S 0=8.77 

412 440 488 510 
Wavelength (nm) 

532 555 

Figure 6-14: Percentage error relative to the ac-9 (absolute value). 

Apart from the two lowest concentrations, strong discrepancies (>50%) occur in the red 

region of the spectrum: 650 and 676nm. The third correction technique assumes that in the red 
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region and in particular at 7l5nra, the absorption by suspended particles is zero and that any 

signal in this region is the result of scattering. Doing this, it also minimizes the absorption at 

650 and 676nm. In a solution with high content of inorganic particulate material, as it is in this 

case, this assumption might not be relevant. I f we do not take into account the last two channels 

of the ac9 (Figure 6-14) and the two lowest concentrations, we arrive at a percentage error 

beUveen 0.16% and 13%. Nonetheless, it could be argued that the value used for the reflectivity, 

being quite noisy in the red region, might be responsible for the other estimation o f the 

absorption coefficient. One argument that could be sustained is the fact that there is absorption 

occurring in the red region that the transmission spectra measured (Figure 6-12). The pure water 

transmission spectrum is not represented on this figure. It can be seen that no significant 

depletion in the transmittance occurs for Ci and C2. However, significant depletion occurs for 

C3, C4 and C5. Despite the possibility of errors due to the values of the reflectivity used, it is 

quite likely that the signal measure in the red region is not entirely due to scattering. The 

percentage difference calculated between the two instruments is within the range o f the 

percentage error predicted in Figure 5-77, Chapter 5. 

On Figure 6-15 and Table 6-2, are presented the one to one relationship between the two 

instruments and the corresponding correlation coefficient, slope and intercept for each 

concentration. Let us not take into account the first two concentrations where the absorption 

values are too low for an accurate measurement with the PSICAM. For the four other 

concentrations, the PSICAM tends to underestimate the absorption coefficient in comparison 

with the ac-9. The slope encountered goes form 0.869 to 0.906 from C2 to C5 for regression 

coefficients going fi-om 0.95 to 0.99. The intercepts are systematically slightly positive as 

expected. 
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ac-9 (m ^ 

Figure 6-15: Regression between the two instruments. 

Table 6-2: Slope, intercept and regression coefficient between the two instruments. 

Slope Intercept 

CO 0.4969 0.0038 0.7965 
C I 0.8878 0.0036 0.8752 
C2 0.8737 0.0027 0.9546 
C3 0.8698 0.0037 0.995 
C4 0.8878 0.0091 0.9884 
C5 0.9067 0.0 i 8 0.9978 

6.2J. 4, Conclusion 
With this experiment, we have shown that depending on the correction method used for 

the ac-9, the PSICAM can produce comparable absorption spectra. The PSICAM produces 

absorption values within 13% difference of the ac-9 data using the third correction method. 

Acknowledging that with the calculated reflectivity spectrum used, errors from 5 to 20% were 

forecasted for 400 to 650 nm and more above 650nm, the differences that occurred with the ac-

9 can be considered acceptable. 

The results presented above correspond to the third laboratory experiment. Two other 

laboratory experiments were carried out comparing the PSICAM and an ac-9. The results of 

these experiments can be found in Appendix 2. 
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6.2,2. Comparison with the filter pad technique 
6,2,2,1. Introduction 

Light transmission measurements on particles retained in glass fiber filters (Yentsch, 

1962) are convenient for determining the light absorption spectrum of particle suspensions 

consisting mainly of natural phytoplankton and organic and inorganic detritus {Gordon and 

Morel, 1983). The procedure has a basic advantage: particles can be concentrated so that 

instrumental accuracy requirements can be met regardless of the high dilutions occurring in situ 

for low productivity regions and regions of little terrigeneous inputs. The main problem arises 

from the large modification of light transmission due to multiple scattering by the filter, which 

results in an over estimation of particle absorption relative to suspension state (Butler, J 962). 

Several empirical expressions have been derived for converting the absorption of the retained 

particles to the equivalent absorption of the particles in suspension. A review of these empirical 

expressions was made by Cleveland and Weidemann (1993). 

Kishino et al, (1984, 1985) proposed a procedure for discriminating absorption by 

phytoplankton pigments from absorption by detritus based on measurements performed before 

and after pigment extraction by methanol. Although some doubts remain about the effectiveness 

of the procedure (Bricaud and Stramski, 1990) and its validity range (little or no effect on some 

algal species), solvent extraction is the method generally used to identify pigment absorption in 

natural phytoplankton populations. To minimize the light losses due to forward scattering, 

which overestimate the sample absorption, a large detector is placed against the sample. The 

losses due to back-scattering can be minimized by placing the filter in an integrating sphere 

(FreietaL, 1975). 

Tassan and Ferrari (1995), proposed a modification of the standard light-transmission 

method through the use of a commercially available integrating sphere attachment to a standard 
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dual beam spectrophotometer. Their technique allow for back-scattering correction. They also 

provide an alternative procedure for phytoplankton depigmentation, which they argue has a 

more general validity than the solvent extraction method. 

(5.2.2.2. Measurement outline 
The dual beam spectrophotometer with the integrating sphere attachment (Figure 6-16) 

permits measurements of filter retained particle samples in both the transmission and reflection 

mode. The two beams, referred to as sample and reference beam, cross the sphere through ports 

A l and B l respectively. The result of the measurement is the ratio of the radiant fluxes incident 

on the detector placed inside the sphere that are induced by the sample and reference beam 

fluxes i.e. p(X)=<Dsb(A,)/a)rt,(̂ ) (where the sub-scripts sb and rb are the radiant flux on the 

detector due to the sample beam and reference beam respectively). 

A1-A2 Sample ports 
B1-B2 Reference ports 
1 Samplebeam 
2 Reference beam 
3 Sample filter set 
4 Reference filter 
5 Spectralbn plate 
6 Black trap 

n © 

® 
T R A N S M I S S I O N M O D E 

® 
R E F L E C T I O N M O D E 

Figure 6-16: Schematic view of the integrating sphere attachment to the dual beam spectrophotometer (from 
Tassan and Ferrari (1995). 
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To measure in the transmittance mode, the sample filter is placed on port A l , with 

sample side facing the beam, while a reference filter is placed on port B l . Ports A2 and B2 are 

closed by a Spectralon plate. The result of the measurement in the transmission mode can be 

expressed as 

Pr = 
Equation 6-4 

where 7 / is the transmittance of the particle retained on the filter for parallel incident light and 

M is a factor accounting for any multiple reflection between the particle layer and the 

supporting filter that would result in increased transmitted light (M-1 when back-scattering by 

the sample is negligible). 

For measuring in the reflection mode, ports A l and B l are open, the sample filter set is 

placed on port A2 (sample side facing the beam) and the reference filter is placed on port 82. 

Absorbing black boxes are placed behind both the sample filter and the reference filter. The 

result of the measurement in the reflection mode is: 

Equation 6-5 

where R is the reflectance, the subscript sf indicates the filter retained particle sample and / 

indicates the filter. 

6.2.2.2.1. Procedure 

The standard procedure for the determination of filter retained particle absorption is 

based upon interpretation of the single light transmission measurement through Equation 6-4. 
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The factor M is normally set to 1, the conection for multiple scattering being made through 

empirical equations. The sample absorbance is calculated as 

f 1 ^ 
= log 

Equation 6-6 

This method leads to an over estimation of the sample absorbance due to the 

contribution of light scattering by the sample. The correction generally applied for scattering 

consists of subtracting the absorbance value at 750nm. This relies on the assumption that the 

phytoplankton absorption is negligible at this wavelength and the scattering is not wavelength 

dependant. Natural phytoplankton however, always include some detritus whose 750nm 

absorbance is low but not negligible, so that the observed absorbance at 750nm is the result of 

both absorption and scattering {Tassan and Ferrari, 1995). In practice, this correction method is 

suitable for oceanic waters (Gordon and Morel, 1983). The situation is different for coastal 

waters due to the presence of inorganic suspended particles coming from various sources. 

Tassan and Ferrari (1995) proposed a different method to measure filter retained absorption 

and correct for the multiple scattering. 

The method they proposed uses both the data provided by double transmission-

reflection measurement (Equation 6-4 and Equation 6-5). The procedure to correct for back-

scattering is based on the radiation balance equation for the sample filter set: 

TR + BK + AF + AS=\ 

Equation 6-7 

Where TR is the fraction transmitted into the sphere, BK is the fi-action back-scattered, 

AF is the fi-action absorbed by the filter and AS is the fraction absorbed by the sample. From 

Equation 6-7 can be estimated the absorption of the particles retained on the filter pad (for 

details of the calculations, see Tassan and Ferrari, 1995): 
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Equation 6-8 

The filter reflectance, Rf '\s obtained fi-om a measurement in the reflection mode, with a 

reference filter against port A2 and a Spectralon reflecting plate closing port 82. The factor x is 

calculated with an empirical equation r = 1 . 1 7 1 - 0 . 2 6 1 5 + 0 . 0 0 0 1 3 w i t h a = \o%{}lpj) 

determined by repeating the transmission measurement with the sample-filter set position 

inverted (sample side facing the sphere cavity). The sample absorption, as, is converted to the 

sample absorbance as: 

As = log 
' 1 

Equation 6-9 

and then to the equivalent particle suspension absorbance, asus, by means of the empirical 

correlation (Equation 6-10). 

=2.303 * (0.423^, +0.479*/( ,^) /£^, , 

Equation 6-10 

where EpaUi, the equivalent pathlength is calculated as volume filtered/filter area (m) 

6.2,23. Results 

During the course of the laboratory experiments, water samples were taken filtered 

through 25mm glass fibre filters (0.7|im pore size) and analyzed for particulate absorption 

(Tassan and Ferrari, 1995). One litre was filtered for each water sample. As explained 

previously, the experiment started with "pure water" and sediments where added to reach a 

maximum concentration of 8.77gm/l. Since only particulate sediments were added, these 

sediments having been ashed, it was assumed that no dissolved organic material was present in 

the water samples. The data presented below compared the total absorption measured with the 
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PSICAM and the particulate absorption measured on filter paper. Figure 6-17 presents the 

results of the two techniques for the six solutions measured. Among the six solutions analyzed, 

only two of them (solution Cj and C3) present a good fit between the two techniques (Table 6-3 

and Figure 6-19). It can be argued that a portion of the sediment content passed through the 

glass fiber filter and therefore the two techniques do not measure the same parameters. There is 

a chance indeed that a source of the differences comes from the previous assumption. However, 

i f this was the only source of error, a similar proportion of difference should be expected 

between the two measurements. Having the two middle concentrations in acceptable agreement, 

two hypotheses can be put forward. For the lowest concentrations the amount of particles 

retained on the filter are not sufficient to allow an accurate measurement. Let us remember 

however that for these two spectra, the maximum absorption encoimtered are below the limit of 

detection of the PSICAM, which is around 0.02m"*. 
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Figure 6-17: Absorption spectra measured with the PSICAM (black line) and with the filter technique (gray 
line). From top left to bottom right: Co, C i , C2, C3, C4 and C5. 
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For the two highest concentration of particulate sediment, the linearity range with the 

filter technique might have been reached leading to underestimation of the absorption 

coefficient. These two hypotheses can be supported by the observation of the raw absorbance 

spectra measured with the dual beam spectrophotometer displayed on Figure 6-18. Let us first 

remember that for this technique, the filters containing the samples are measured in three 

different ways: two measurements in transmittance (sample on port A l ; Figure 6-16) and one 

measurement in reflectance (sample on port A2; Figure 6-16). For the first transmittance 

measurement (the direct beam transmittance, PT), the sample side of the filter is facing the 

beam. For the second transmittance measurement (the diffuse beam transmittance, T) , the 

sample side of the filter is inside the integrating cavity. Finally, for the reflectance measurement 

(PR), the sample side is inside the integrating cavity. 
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Figure 6-18: Raw absorbance spectra measured with the dual beam spectrophotometer. Direct beam 
transmittance (thin black), diffuse beam transmittance (thin gray) and reflectance (thick black); from top 

right to bottom left: Co, C j , C: , Q , C4 and C5. 

For the two samples where both techniques give comparable absorption spectra (C2= 

0.210mg/l and C3 =1.310mg/l) the three measurements give similar absorbance spectra, the 
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reflectance spectra having the highest absorbance. For solution Cl=0.105mg/I, the same pattern 

is observed: the two spectra measured in transmittance mode are very similar, the difference 

between the two being the result of different scattering processes. The spectra measured in 

reflectance gives higher absorbance although in higher proportion than for solution C2 and C3. 

This is a pattern that was always observed for the natural sample, which will be presented in the 

next section (section 6.3). 

For the lowest concentration (C=0.03mg/I; pure water back-ground), a very interesting 

feattire can be observed on the raw data files (Figure 6-18). The two spectra measured in the 

transmittance mode show similar data. These two spectra show very little absorbance. The 

absorbance spectra are actually within the range of the baseline (±0.005). At the other end, the 

spectrum obtained in reflectance mode does show a typical exponential decrease with 

increasing wavelength. 
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Figure 6-19: Regression between the P S I C A M and the Filter technique. From top left to bottom left: CQ, C | , 
C 3 , C4 and C5 . 
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Table 6-3: Slope, intercept and r̂  obtained from Figure 6-19 

Slope Intercept R2 

Co 3.973 •0.0008 0.969 
Ci 1.556 -0.0017 0.968 
C2 1.109 -0.0002 0.982 
C3 1.086 0.0058 0.9837 
C4 1.541 0,0063 0.993 
Cs 2.208 -0.021 0.871 

For solutions C4 and C5 the patterns of the raw file (Figure 6-18) appear different. The 

two spectra obtained in the transmittance mode are still very similar but the spectra obtained 

within the reflectance mode are lower for solution C4 and appears to reach a plateau for solution 

C5. This feature was never observed for natural samples. As for each sample, the same volume 

was filtered, the increasing amount of sediment deposited on the filter increased proportionally. 

Tassan and Ferrari, (1995), stated that there is a range of scattering angles close to 90° for 

which the transmitted light in the transmission mode and the back-scattered light in the 

reflection mode do not enter the integrating sphere. The range depends on the thickness of the 

sample filter set and on the size of both the light beam and the sphere entrance port. The 

corresponding light loss results in an underestimation of PR (spectrum measured in the 

reflectance mode). The thickness of the sample filter set might in those two cases be responsible 

for the underestimation i f the spectrum in the reflectance mode results in an underestimation of 

the absorption spectrum. 

6.2.3, Conclusion 
The filter technique and the PSICAM do show comparable results depending on the 

concentration range of the samples analyzed (acknowledging that there might be a source of 

error due to dissolved inorganic material). Within high concentrations of particulate material on 

the filter, the filter technique underestimates the particulate absorption in comparison to the 

PSICAM, due to errors in the measurement related to the thickness of the particle layer on the 
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filter. The problem can be improved by decreasing the amount of water sample filtered, the 

problem being that in an sampling situation it can be difficult to estimate the Suspended 

Particulate Matter content of an water sample. Supported by the results obtained with the ac-9, 

the PSICAM seems to offer better reliability in the experiment. For the lower concentrations, 

although the filter technique result could be challenge for the first solution analyzed, the 

PSICAM data can not be entirely trusted, firstly because the absorption range measured is 

below the experimental limit of 0.02m'' and secondly because similar discrepancies were 

observed with the ac-9 data. 

6.3. In-situ measurements 
Station L4 is a sampling site five miles off Plymouth (50° 15'N, 04° 15'W) in about 

50m of water. This station is classed neither as case 1 or case 2 water. It has a typical case 1 

characteristic during spring and summer with high chlorophyll concentration and low inorganic 

material content. It turns to case2 characteristic during autumn and winter and has a higher 

inorganic material signature due to the increase in river input. This station is sampled on a 

weekly base. Various optical measurements are made for this station including particulate 

absorption and dissolved absorption. The surface water fi-om this station was measured from 

September 2001 to March 2003 with the PSICAM for validation purposes. Comparison with in 

situ measurement of the ac-9 were also made in February and March 2003 together with 

measurements in more turbid water next to Plymouth Sound break water (BW) and at the mouth 

of River Tamar estuary (Figure 6-20). 
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Figure 6-20: Station L4 50° I5'N, 04° 15'W - break water and Tamar estuary. 

6.3.1. CDOM/ Particulate absorption 
The Dissolved Organic Matter (yellow substances) absorption was measured on the 

visible spectrum after filtration through 0.2^m filters with the sphere and on a 10cm pathlength 

cuvette with a Perkin Helmer Lambda 2 UVA^IS spectrophotometer. 

The particulate absorption was measured as described previously on a dual beam 

spectrophotometer equipped with an integrating sphere. 

For the absorption spectra obtained with the PSICAM, the dissolved absorption spectra 

were measured after filtration through 0.2nm pore size filter. The particulate absorption was 

obtained as the difference of the total absorption spectrum minus the dissolved absorption 

spectrum. The techniques described to measure yellow substance and particulate absorption are 

the commonly used laboratory techniques to retrieve the total absorption. There is however an 

obvious bias doing so: there's a proportion of particles whose diameter is between 0.2 and 

0.7(im which is not accounted for. Differences between the particulate absorption spectrum 

measured with the PSICAM and the filter paper technique might be generated fi"om this 
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difference. The particulate absorption calculated from the PSICAM data takes into account 

particles of diameter higher than 0,2^m whereas the fiher paper technique takes into account 

particles bigger than 0.7^m. 

The comparison with the data obtained with the three techniques wil l be describe with 

four type absorption spectra: spring bloom (18 June 2002, Figure 6-21 to Figure 6-23), summer 

low productivity (22 July 2002, Figure 6-24 to Figure 6-26), autumn bloom (16 September 

2002, Figure 6-27 to Figure 6-29) and winter low productivity (25 November 2002, Figure 6-30 

to Figure 6-32). The total data set is to be found in Appendix 3. 

18'̂  June, 2002 

Figure 6-21: Dissolved and Particulate 
Absorption spectra. 

Table 6-4: Slope, intercept and regression 
coefficient. 

Slope Intercept ? 

Pabs 0.9474 0.0136 0.944 

DOM 0.795 -0.0018 0.967 

0.00 0 03 o.w 000 o.oa o 

tffl 

Figure 6-22: Particulate Absorption regression. Figure 6-23: DOIM regression. 
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22"** July, 2002 

Table 6-5: Slope, intercept and regression 
coefTicient 

Figure 6-24: Dissolved and Particulate 
Absorption spectra. 

Slope Intercept 

Pabs 0,895 0.001 0.971 

DOM 0.791 0.0001 0.9857 

e.oto 

0010 0 020 OOn 0049 0.030 

Figure 6-25: Particulate Absorption regression. Figure 6-26: DOM regression. 

16'** September, 2002 
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Table 6-6: Slope, intercept and regression 
coefficient. 

Slope Intercept 

Pabs 0.751 0.006 0.98 

DOM 0.786 0.003 0.991 

Figure 6-27: Dissolved and Particulate 
Absorption spectra. 
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Figure 6-28: Particulate Absorption regression. 

0(Q 004 ooe O-os 

Figure 6-29: DOM regression. 

25'*' November, 2002 
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Figure 6-30: Dissolved and Particulate 
Absorption spectra. 

0 00 0 09 0.10 

Figure 6-31: Particulate Absorption regression. 

Table 6-7: Slope, intercept and regression 
coefficient 

Slope Intercept r' 

Pabs 1.465 0.023 0.988 

DOM 1.024 0.001 0.987 

Figure 6-32: DOM regression. 

The four selected data sets describe the annual variation of the optical properties at L4 

station. The absorption versus wavelength graphs are on the same scale to emphasize the 
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seasonal variation. On the 18^ of June (Figure 6-21), we have a spring bloom situation with a 

clear chlorophyll absorption peak of 0.05m'' at 670nm and a more important one of 0,12m'* at 

440nm. The signal is particularly noisy in the blue wavelength. This comes directly from the 

transmittance spectrum. At the time of the experiment, the light source was particularly unstable 

at these wavelengths. The yellow substance spectra have the typical exponential decrease. On 

the regression graphs (Figure 6-22 and Figure 6-23), it appears that the PSICAM produces a 

similar particulate absorption spectrum but with an almost constant offset. The DOM spectrum 

however tends to be underestimated mainly in the blue region of the spectrum. 

On the 22"** of July, we have a mid summer situation, with low dissolved and particulate 

content. A small chlorophyll signature is still visible but of less intensity. For this set of data, 

the regression is however better than for the previous data (Table 6-5, Figure 6-25Figure 6-26). 

On the 16̂ ^ of September, we have a autumn bloom situation. Two absorption maxima 

characteristic of the chlorophyll absorption can be seen although of less importance than in the 

spring situation. The expected yellow substance signature is again visible. Both particulate and 

dissolved absorption spectra tend to be underestimated by the PSICAM although very good 

correlations are observed (Table 6-6, Figure 6-28 and Figure 6-29). On the last date sampled, 

we have a winter situation with high levels of dissolved and particulate material due to the 

influence of river drainage and resuspension. There is no more chlorophyll signature visible on 

the particulate spectra. The dissolved absorption spectra of both techniques are very similar 

(Figure 6-32). However, the PSICAM seriously overestimates the particulate absorption 

spectrum. On this particular date, the amount of particulate material present on the filter pad 

was very important. To perform the measurement, the filter pad needed to be humidified with 

filtered water. Doing this, a small amount of material can be lost or displaced on the filter 

making a less homogeneous surface. This indeed happened for this sample and that is probably 
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one way to explain the important discrepancies between the two instruments. The results fi-om 

this date was presented in this section for its characteristic winter absorption spectrum but also 

to point out that the experimental procedure in some cases can be difficult to apply. 

6.3.2. AC'9 transmittometer in situ 
A few comparisons between the PSICAM and in situ ac-9 measurements were carried 

out during winter 2003. The measurement were carried out with the ac-9 in three different 

locations: the station L4, outside Plymouth break water and in the Tamar estuary (Figure 6-20), 

therefore covering a wide range of optical properties. From the station sampled were taken 

surface water samples which were later analyzed in the laboratory with the PSICAM. The 

results of the five days sampled are presented below (Figure 6-33 to Figure 6-40). For each day 

sampled is displayed the absorption spectrum of both instruments as well as the regression 

between the two instruments. These measurements having been made during winter, the 

absorption spectra obtained are characteristic of yellow substance or inorganic particulate 

matter absorption spectra. 

O L I 10 F i b 

OL* 
a L4 

O L4 

• otnca 
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Figure 6-33: Absorption spectra measured with 
the ac-9 and the PSICAM the 10"̂  Februar>'. 

Figure 6-34: Regression of the 14 set of data. 

From all the stations sampled, the ac-9 and the PSICAM produced similar absorption 

spectra. The major differences usually occurred in the red part of the spectrum as that was the 

case with the laboratory experiments. One of the possible sources of difference between the two 

instruments is related to the difference in the procedure used with both instruments, one being 
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an in situ measurement, the other being made in a laboratory after sampling. Although the 

PSICAM measurements were made less than six hours after sampling, modification o f the 

sample might have occurred due to the sampling process. A second possible source of 

difference is that the sample taken for analysis was a surface water sample. These samples are 

compared with an ac-9 vertical profile whose first sampling depth is between one and two 

meters. Although no significant stratification was observed on the temperature and salinity 

profiles (See Appendix 5), significant variations can occur in the first meter of water. Finally, in 

highly variable environments such as coastal waters, the time elapse between the ac-9 profile 

and the water sampling can be enough to show small scale variations. 

Figure 6-35: Absorption spectra measured with 
the ac-9 and the PSICAIM the 17"* February. 

Figure 6-36: Regression of the Break Water set of 
data. 

For water samples of relatively low absorption like such as in Figure 6-35 and Figure 

6-40 (L4 station) the temperature effect which occurs at 600, 660 and 715nm is clearly visible, 

the sample having been measured relative to pure water which was at room temperature. 

Figure 6-37: Absorption spectra measured with 
the ac-9 and the FSICAM the 24̂ ^ February. 
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Figure 6-38: Regression of the Tamar estuary set 
of data. 
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The regression coefficient between the two techniques, for these eight water samples 

varies between 0.98 and 1.00 except for the L4 station sample on the 17*** of March with 

r̂  = 0.95. There are not enough data to produce reliable statistics for the Break Water station 

which seems to produce the best correlations between the two instruments (slope>0.92 and 

r^O.98). The data points drift from a one to one relationship mainly because o f the 

discrepancies which occur to the red chamiels. 

UO I 
W * l M B B i (am) 

Figure 6-39: Absorption spectra measured with 
the ac-9 and the PSICAM the 11"̂  March. 

Figure 6-40: Absorption spectra measured with 
the ac-9 and the PSICAM the March. 

With the four samples measured at L4, there is a sample which importantly 

underestimate the ac-9 measures (17^ March), The other three are in accordance with 

predictions. The tendency is to underestimate the absorption for the shorter wavelength and, as 

previously overestimate the absorption for the shorter wavelength. Finally, for the samples with 

highest particulate content (Teimar estuary), the two instruments are well correlated with the 

major discrepancies appearing in the red part of the spectrum. 

To summarize the above data. Figure 6-41 and Figure 6-42 present the percentage 

differences observed at the different dates and stations sampled. 
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Figure 6-41: Percentage difference observed at station L4 
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Figure 6-42: Percentage difference observed at the Break Water station and in Tamar estuary. 

As it was the case during the laboratory experiment, the most significant differences 

occur in the red part of the spectrum (>100%). There are two reasons for this: the depletion in 

the light transmitted is generally small so that the PSICAM may not be able to measure the 

signal accurately enough. Then the correction method applied assuming that there is a reference 

wavelength (7l5nm) at which there is no absorption. This method has for effect to set to zero 

the absorption at 7l5nm and also to minimise the absorption in the red region of the spectrum. 
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In the blue and green wavelengths measured by the ac-9 transmissometer, the percentage 

differences are usually smaller going from 0.01% to 30% although higher percentages are 

observed (70% difference at 555nm on the 17^ of February). There are unfortunately not 

enough data to derive any trend but it seems that the data from more turbid waters (Break Water 

and Tamar estuary) show a smaller difference. This would make sense knowing the 

characteristic of the integrating sphere but it could also be an artefact of the calculation: the 

absorption being higher, the uncertainty of the measurement of the PSICAM would appear 

proportionally less. 

6.3.3. Field test around the Antarctic Peninsula 
The PSICAM has been successfully tested and compared to other instrument such as the 

ac-9 transmissometer during laboratory experiments with natural samples collected in the 

Plymouth area or with artificial solutions containing scattering particles. As a field test, the 

PSICAM was deployed around the Antarctic Peninsula during a cruise on board HMS 

Endurance from 23"* February to the 13^ March 2002. The PSICAM was calibrated before and 

after the cruise to ensure accurate calculations. Thanks to carefijl manipulation and maintenance 

during the on-board experiments, the reflectivity did not show significant variation. 

The measurement carried out with the PSICAM consisted of total absorption 

measurements as well as dissolved absorption measurements after filtration through 0.2nm 

filters. At each station, two depths were sampled: surface and Secchi depths (see Appendix 4y 

figure 1 for the station locations). In addition to the PSICAM data, chlorophyll absorption 

measurements, after extraction in 90% acetone, were carried out following the method 

described by Strickland and Parson (1972). The Secchi depth was measured as well as the sea 

surface temperature for each station. At most of the stations, a temperature profile was obtained. 
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As an example of the data collected with the PSICAM, a short description of a time 

series undertaken on the eastern part of James Ross Island will be described (Appendix 4, figure 

I station G). The data at this particular location were collected on five different days. For the 

description, four representative days will be presented (3'*̂ , 5^, 7* and 9*̂  of March; Figure 

6-43, Figure 6-44, Figure 6-45, Figure 6-46 respectively). The total data set of the time series as 

well as the other stations sampled during the cruise can be found in Appendix 4. 

Figure 6-43: Total and dissolved absorption 
spectra 03/03/02 

Figure 6-44: Total and dissolved absorption 
spectra 05/03/02 

Figure 6-45: Total and dissolved absorption 
spectra 07/03/02 

Figure 6-46: Total and dissolved absorption 
spectra 09/03/02 

On each of these graphs are presented the total and dissolved absorption for the surface 

and Secchi depth. For the dates sampled, there are no significant differences between values at 

the surface and at the Secchi depth which suggests that there is no important stratification 

except for the case of total absorption spectrum on the 7^ of March. This structure is not, 
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however, indicated by the temperature profile, which is homogeneous dovm to 23m for this dale 

{Appendix 4, figure 28) and further down for the other dates. The dissolved organic matter 

profiles do not show very much changes during the sampled dates and display a typical 

exponential decrease toward the red wavelengths with a maximum absorption around 0.08m ' at 

400nm. A very different situation occurs for the total absorption. On the 3̂** of March, the total 

absorption displays an inorganic absorption spectrum. On the 5^ of March, the total absoqjtion 

spectrum displays a strong chlorophyll signature v^th a maximum in the blue and in the red 

wavelengths. This chlorophyll signature decreases on the 7^ and the situation returns to the 

initial state on the 9^. The situation observed with the absorption spectra is in agreement with 

the Secchi depth measurement except for the 9* of March. The other parameters recorded 

during this time series showed that a calm sea with no wind was observed on the 3̂ *̂ . A north-

north-west wind blew on the 4^ creating a rough sea state. No wind and a calm sea were 

recorded for the following days. Having temperature profiles fairly homogenous during the 

sampled days, it is unlikely that the sea state observed on the 4"̂  of March would have mixed a 

subsurface chlorophyll maximum. The more likely situation is that a water body containing 

higher chlorophyll concentrations was pushed towards James Ross Island and then drifted away 

from the station. On Figure 28, Appendix 4, comparable temperatures were recorded for the 5^, 

6^, 7**" and 8^ (below zero) whereas a warmer water body was encountered on the 9*. This 

would further support the assumption that a current probably going toward the south southwest 

changed the water body around the sampled station. 

Looking at the temperature profiles, it is rather surprising, when used to temperate 

weather, that chlorophyll can still be found in zero and subzero temperatures. During the last 

week of the cruise, the Antarctic winter already started to be felt by an important drop in the air 

temperature. Snow falls occurred three times during this last week of the cruise. 
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The PSICAM proved to work reliably during the cruise and the system performed as 

well as during the laboratory experiments. There are however general aspect of the system that 

will need to be improved to facilitate its deployment at sea either for open ocean cruises, where 

the instrument is used on a daily basis for long periods of time, or for coastal cruises where 

samples of different stations must be analyzed in rapid succession. Firstly, having to make 

regular blank calibrations to ensure reliability of the measurements proved to be more time 

consuming than in a laboratory where pure water facilities are at hands. A more stable unit 

would be a particularly important improvement in sea working conditions. Secondly, a flow-

through system would also improve time cost in sea working conditions. 
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Chapter 7: Discussion and further work 
Discussion 

The results obtained from numerical modelling showed that, as predicted, the PSICAM 

should be relatively insensitive to scattering. This instrument owes this potential to its ingenious 

design: using a reflective sphere instead of a standard linear cell and a central light source, so 

that no corrections are required for the effect of scattering. This unique characteristic makes of 

this instrument a potentially very powerful way to measure the absorption coefficient either in 

productive oceanic regions with high organic particulate content or in coastal regions with high 

organic and inorganic particulate content. A PSICAM would have the further advantage of 

being able to measure particulate absorption with very limited handling of the water sample, 

which also means very limited sources or error due to sample degradation. Furthermore, a 

PSICAM does not require empirical scattering corrections. Such advantages are particularly 

interesting for optical remote sensing application where accurate data in coastal area are crucial 

for the establishment of phytoplankton productivity or chlorophyll concentration algorithms. 

This system has however a disadvantage, which was revealed by both the experiments 

and the theory: accurate measurements of absorption are extremely dependant on the calibration 

of the cavity reflectivity. The component chosen for the integrating sphere of the final prototype 

was Spectralon. Although it has high reflective and Lambertian properties, a problem that 

would be encountered with such a component for routine measurement of natural water samples 

is the degradation of its surface. Being regularly in contact with sea water wil l inevitably 

degrade its surface. The Spectralon sphere used for the experiment described in this thesis was 

£ilways rinsed very carefully with pure water and its surface checked for traces of fouling and 

cleaned i f necessary. The cavity reflectivity was however regularly calibrated. After a year and 
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a half of regular use, its properties have not been significantly degraded, although a depletion of 

the reflectivity was observed (Figure 7-1), Nonetheless, the small variations of the reflectivity 

would have generated important errors in absorption measurements i f not taken into account. 
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Figure 7-1: Evolution of the reflectivity of the Spectralon integrating sphere 

I f there is any significant fouling or soiling, the only way to clean the Spectralon is to 

use a very fine glass paper to erase the degraded surface. For this reason, a more robust material 

would be preferable for a sea-going instrument. The initial glass integrating sphere embedded in 

barium sulphate or coated with a reflective material would be easier to clean. Materials like 

ceramic have not been tested but could also provide a good alternative. 

A problem inherent to the prototype that has been developed is the stability of the light 

source. Having a single beam system necessitates taking regular measurements of the reference 

solution and this is very time consuming. More importantly, for the critical measurement of the 

reflectivity of the integrating cavity, light input variations between the reference measurement 

and the measurement of the standard solution generate small errors in the calculation of the 
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reflectivity, which in turn create even bigger errors in the calculation of the absorption 

coefficient of standard solutions or natural samples. It is however acknowledged that 

particularly in the blue part of the spectrum, the instability of the signal is not only due to the 

light source but is a combined effect of the light source, the diffraction grating o f the 

spectrophotometer and the sensitivity of the silicon photodiodes. 

The various experiments carried out with natural or artificial solutions showed that the 

PSICAM could equal the performance of existing techniques even with high levels of scattering 

particles in the solution assuming that the calibration was regularly and careftilly made. Testing 

the efficiency of the PSICAM with absorbing and scattering solutions was a difficult task 

because of the difficulty in producing absolute standard solutions containing scattering 

particles. The way to validate the PSICAM was therefore to compare its performance with that 

of other instruments when measuring natural or artificial solutions containing scattering 

particles. The first instrument was the ac-9 (WetLabs), an in situ technique, and the second was 

a laboratory technique for measuring particulate absorption using filter paper. Another solution 

to test the PSICAM efficiency would be to use calibrated beads from which scattering 

characteristics would be calculated through Mie theory for scattering. This technique has not yet 

been tried but could also provide valuable results. 

The sea trial in the Antarctic waters showed that the laboratory version of the PSICAM 

could be successfully deployed at sea. This trial revealed, however, certain practical limitations 

of the system. 

Further work 

There are a number of ways in which the system could be further improved. 
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o The first one would be to use a dual beam system for the Hght source. The initial 

beam coming from the light would be split by means of a beam splitter. One 

beam would be measured as the reference input; the second would go through 

the integrating cavity, to be measured as the output. The transmittance would be 

calculated as the ratio of the two measured signals. This would provide a much 

more accurate system since the output of the light source would be monitored; it 

would also provide a better system of measurement of the reflectivity o f the 

cavity wall. 

o The system used was a laboratory version in which the water samples needed to 

be poured in manually. Another improvement that would reduce the time cost of 

the analysis would be to use a flow-through system. This would also allow 

testing the efficiency of the instrument with the effect of bubbles which scatter 

light. 

o As mentioned previously, the integrating cavity should be made of a material 

easy to clean to facilitate regular use of the instrument. 

For the future of the instrument, two possibilities are suggested 

Measuring particulate absorption is a very complicated task. The PSICAM as a 

laboratory instrument could be further developed as a technique to measure particulate 

absorption. The organic and inorganic fraction could be identified by doing measurements 

before and after photo-bleaching. It would have a major interest in comparison to the filter pads 

technique: samples in their natural physical state would be measured. The experiments 

comparing the PSICAM with the filter pads technique usually showed significant differences. 
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Having no absolute standard of absorbing and scattering solutions, we can only speculate on the 

significance of these differences. 

The instrument is still a long way from being developed as a submersible unit. The 

comparison with the ac-9 spectrophotometer looked promising knowing that neither scattering 

nor temperature and salinity corrections were applied. The temperature effect was, however, 

visible in most of the experiments and this is an obvious correction that wil l need to be explored 

in the future. The second possibility for the instrument before being developed as a submersible 

unit would be to build a deck unit that could measure water samples pumped from below. 
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Chapter 8: Conclusions 
The review of the different techniques to measure the absorption coefficient in sea water 

showed that there is still scope for improvement mainly due to the interfering effect that 

scattering by particles has on the measurements. The complexity of the components present in 

natural waters makes it necessary to develop techniques that can reliably measure the absorption 

of the dissolved and particulate fractions. Among the instruments to measure absorption, a 

promising one appeared to be one based on an integrating cavity. Kirk (1997) published the 

principle and theory of a Point Source Integrating Cavity Absorption Meter (PSICAM). Based 

on this principle, theoretical and experimental work was carried out with the aim of modelling 

and developing a PSICAM. 

I . Numerical modelling using the equation found in the literature was carried out for 

absorbing and non-scattering solutions to investigate the effect of the cavity diameter 

on the system and to carry out a thorough sensitivity analysis. 

The results showed that the diameter of the sphere should be taken into account for an 

optimum efficiency. The size of the integrating cavity should therefore increase from 

turbid to clear waters to allow a significant depletion of the measured radiance in the 

sphere. A radius of 10cm would be recommended for oceanic waters whereas 3 cm 

radius would be recommended for estuarine waters. For our prototype, which was 

destined to be used in coastal wasters, a radius of 5cm was adopted and proved quite 

flexible for various water types. 

Kirk (1997) predicted that a PSICAM would be relatively insensitive to scattering. The 

down side of this concept, however, is that the instrument is extremely sensitive to the 

reflectivity of the cavity wall, which is measured experimentally. The sensitivity 
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analysis carried out for different cavity radii and different reflectivity values showed 

that of the four variables of the system, the PSICAM is most sensitive to the 

reflectivity. To calculate the absorption spectrum of a given solution, the reflectivity 

spectrum needs to be known very accurately. I f not, the calculated absorption could be 

dramaticedly erroneous. The sensitivity analysis, however, showed that using a less 

reflective cavity wall would slightly reduce the dependence of the instrument upon this 

parameter. 

Finally, theoretical calculations showed that the cavity radius chosen for the prototype 

(5cm) would allow accurate measurement from 0.02m'' up to 7m''. 

2. A novel Monte Carlo code was vmtten to model the behaviour of a PSICAM 

with absorbing and scattering solutions and for various cavity diameters. 

The results obtained by Monte Carlo modelling showed that the PSICAM has indeed a 

great potential for measuring absorption regardless of the level of scattering. Monte 

Carlo simulations showed that for a given integrating cavity radius, the effect of 

scattering would affect the measurement only for very high levels of scattering. For the 

scattering ranges encountered in marine waters, the influence on the absorption 

measurement would be insignificant assuming a Petzold scattering function. Finally, it 

was shown through Monte Carlo simulation that the scattering effect on the 

measurement would increase with increasing absorption but also increase with 

increasing cavity radius. 

3. Two integrating cavities made out of round bottomed flasks embedded in barium 

sulphate were built for a first and cheap assessment, and tested with four light sources 
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before a fmal version was adopted. These prototypes were then tested with standard 

solutions of known absorption. 

As predicted by the theory, these experiments showed that great care must be taken in 

the measurement of the integrating cavity reflectivity. To do this, the absorption 

spectrum of the standard solution used for the calibration must be measured very 

accurately. 

4. With the experience acquired with the initial prototypes, a final laboratory 

version of the PSICAM was built using a Spectralon sphere and tested with standard 

solutions. The tests carried out with non-scattering solutions showed that assuming that 

the instrument was carefully calibrated, the PSICAM could equal existing techniques 

in performance. However, the absorption range over which the PSICAM was found to 

be accurate (from 0.02m*' to 2m'') differed slightly from the theoretical prediction. 

5. The final version of the PSICAM was then compared with existing techniques 

for the measurement of artificial or natural solutions containing both absorbing and 

scattering components. The solutions tested were prepared in the laboratory or sampled 

in Plymouth area. The PSICAM was compared with: 

o an ac-9 transmissometer, 

o particulate absorption measured on filter paper 

o Coloured Dissolved Organic Matter measured in a dual beam spectrophotometer. 

The various tests made with natural solutions of dissolved organic components showed 

that the PSICAM could equal the performance of existing techniques assuming that the 

calibration was carefully done. The PSICAM produced remarkable correlation with the 

results of the ac-9 for both artificial and natural water even for solutions of high 
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particulate content. Significant differences did occur however, particularly in the red 

region of the spectnmi, due to the assumptions of the corrections used with the ac-9 

transmissometer. When comparing with the laboratory techniques to measure the 

particulate absorption, once again, similar absorption spectra were obtained with more 

or less important differences. The fact that in this case, the analyses were performed on 

the same samples but in different physical states could explain the differences, keeping 

in mind that the PSICAM calibrations showed greater standard errors at some 

wavelengths than at others. Only an improved version of the PSICAM, particularly one 

with a more stable light source, would give a definitive answer. 

6. As a field experiment, the PSICAM was successfully deployed for a research 

cruise around the Antarctic Peninsula during which total and dissolved absorption 

measurements were performed together with chlorophyll absorption measurements 

af\er pigment extraction in acetone. 
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Appendix 1: Standard Solution 
Experiments 

A Spectralon prototype - least square method 
The results of the experiments carried out with standard solution presented in Chapter 5 

used Kirk's formula to retrieve the absorption coefficient. The results of the same experiments 

using the least square method are presented below. 

A.L Blue solution 
100 

n 40 

400 450 500 550 600 650 700 
Wavelength (nm) 

Figure 1: Transmittance spectra measured with 
the PSICAM for the three blue solutions. 

400 450 500 550 600 650 700 
Wavelength (nm) 

Figure 2: Absorption spectra calculated with the 
PSICAM (solid line) and measured on the 

Spectrophotometer (crosses). 
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Figure 3: PSICAM versus Spectrophotometer for 
C i calculated with the least square technique. 

0.5 1 
Spectrophotometer (m'̂ ) 

1.5 

Figure 4: PSICAM versus Spectrophotometer for 
C2 calculated with the least square technique. 
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spectrophotometer (m"') 

Figure S: PSICAM versus Spectrophotometer for 
C} calculated with the least square technique. 

Table 1: Slope, intercept and regression 
coefficient bet̂ veen the two instruments with the 

least square technique. 

Slope Intercept 

c, 1.0 J -0.05 0.996 
C2 1.03 '0.04 0.997 
C3 1.14 -0.08 0.999 

100 

400 

A.2. Green solution 

« 40 

450 650 700 500 550 600 
Wavelength (nm) 

Figure 6: Transmittance spectra measured with 
the PSICAM for the three blue solutions. 

A 

400 450 650 700 500 550 600 
Wavelength (nm) 

Figure 7: Absorption spectra calculated with the 
PSICAM (solid line) and measured on the 

Spectrophotometer (crosses). 

0.2 0.05 0.1 0.15 
Spectrophotometer (m'') 

Figure 8: PSICAM versus Spectrophotometer for 
C | calculated with the least square technique. 

W 0 . 2 

0.1 0.2 0.3 0.4 

Spectrophotometer (m"') 
0.5 

Figure 9: PSICAM versus Spectrophotometer for 
C2 calculated with the least square technique. 
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0.5 1 1.5 
Spectrophotometer (m'') Spectrophotometer (m"') 

Figure 10: PSICAM versus Spectrophotometer 
for C j calculated with the least square technique. 

Figure 11: PSICAM versus Spectrophotometer 
Tor C 4 calculated with the least square technique. 

Table 2: Slope, intercept and regression coefficient between the two instruments with the least sq 
technique. 

uare 

Slope Intercept 

J.02 -0.006 0.995 
C2 J.06 -0.006 0.996 

LI 3 -0.009 0.987 
C4 L34 -0.09 0.934 

A. 3. Red solution 
100 

400 450 500 550 600 
Wavelength (nm) 

650 700 

Figure 12; Transmittance spectra measured with 
the PSICAM for the three thee solutions. 
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Waveler)gth (nm) 
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Figure 13: Absorption spectra calculated with the 
PSICAM (solid line) and measured on the 

Spectrophotometer (crosses). 
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0.15 

0.15 
Spectrophotometer (m*') 

Figure 14: PSICAM versus Spectrophotomeeer 
for C | calculated with the least square technique. 

Spectnjphotomeier (m'̂ ) 

Figure 15: PSICAM versus Spectrophotometer 
for Cj calculated with the least square technique. 

0.6 0 0.1 0.2 0.3 0.4 0.5 
Spectrophotometer (m*') 

Figure 16: PSICAM versus Spectrophotometer 
for C j calculated with the least square technique. 

Table 3: Slope, intercept and regression 
coefficient between the two instruments with the 

least square technique. 

Slope Intercept 

1.04 -0.008J 0.928 
LOl -0.0 J 26 0.985 

Cs J.04 -0.0034 0.993 

100 

400 

A. 4. Black solution 

<n 40 

450 500 550 600 650 700 
Wavelength (nm) 

Figure 17: Transmittance spectra measured with 
the PSICAM for the six black solutions. 

400 450 650 700 500 550 600 
Wavelength (nm) 

Figure 18: Absorption spectra calculated with the 
PSICAM (solid line) and measured on the 

Spectrophotometer (crosses). 

226 



Appendix 1: Standard Solution Experiments 

0.1 

0.08 

0.06 

wO.04 

0.02 

1 

' o 
^ ^ w ; " — 

^ ^ ^ ^ 

; ^ 
o o 

CO / 

: j 

I 

0.24 

0.1 0 0.02 0.04 0.08 0.08 
Spectrophotometer (m'') 

Figure 19: PSICAM versus Spectrophotometer 
for C , calculated with the least square technique. 
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Figure 20: PSICAM versus Spectrophotometer 
for d calculated with the least square technique. 
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Figure 21: PSICAM versus Spectrophotometer 
for C 3 calculated with the least square technique. 

spectrophotometer (m'̂ ) 
Figure 22: PSICAM versus Spectrophotometer 

for C 4 calculated with the least square technique. 
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Figure 23: PSICAM versus Spectrophotometer 
for C5 calculated with the least square technique. 
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Figure 24: PSICAM versus Spectrophotometer 
for Cfi calculated with the least square technique. 
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Table 4: Slope, intercept and regression coefficient between the t̂ vo instruments with the least square 
technique. 

Slope Intercept 

Ci 0.973 0.013 0.947 
C2 1.004 0.010 0.993 
Cs 0.974 0.007 0.994 
C4 0.992 0.015 0.995 
Cs 1.059 0.021 0.995 
Ce 1.086 0.037 0.989 
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Appendix 2: Laboratory experiments 

The laboratory experiment presented in the Chapter6 was the last o f a series of three. 

The results of the first two experiments are displayed below together with some data of the third 

experiment that was not presented in the Chapters. 

A. Tank experiment 1 
The first experiment carried out to test the instrument with scattering solutions consisted 

of adding suspended sediments to a water tank where the ac-9 was used to measure the water. 

For this first experiment, the tank was initially filled with tap water, which has a significant 

yellow substance signature. For each level of concentration, a measurement was carried with the 

ac-9 and two replicates measurement were carried out with the PSICAM. The sediment used for 

this experiment was first dried and ashed in order to remove any organic component. A solution 

was then made with this sediment fi-om which aliquots were added into the tank so that a 

maximum concentration of 3.5mg.r' was reached. The suspended sediments concentration 

measured were 0.855 (tap water back-ground), 1.45 2.00 and 3.5mg/I, First o f all, because tap 

water was used to fill the tank, the initial signal has a yellow substance signature. The shapes of 

the absorption spectra for the other concentrations also have a typical yellow substance or 

suspended sediment signature. The scattering coefficient range covered goes fi-om about Im"* 

for the tap water background to about 2.5m'* for the highest sediment concentration in the blue 

wavebands. 
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A. 1. PSICAM data 
The absorption coefficients were calculated with both Kirk's empirical equation and 

using the least square technique {Figure 1). No significant differences were observed between 

the two methods. When compared with the ac-9 data in the following sections, the PSICAM 

data used came from calculations using Kirk's equation. 

400 450 500 550 600 
Wavetongth (nm) 

700 

Figure 1: Absorption coefficient with Kirk*s formula (black line) and using the least square method (grey 
line) 

A, 2. Correction 1 
Figure 2 shows the absorption spectra obtained with the PSICAM and the ac-9 when the 

first correction method was applied. 

Figure 2: Absorption spectra obtained with both 
instruments 
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Figure 3: Scattering coefficient spectrum 
calculated with the ac-9. 
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Applying the first correction method, it happens that the PSICAM underestimates the 

ac-9 measurement except in the red region of the spectrum. In Figure 4 and Figure 5 are 

presented the results of both instruments as a function of the Suspended Particulate Matter 

concentration. They show that there is almost a constant difference with increasing sediment 

concentration between the two instruments. 

Figure 4: PSICAM and ac-9 results as a function 
of SPM concentration (412 to SlOnm) 

Figure 5: PSICAM and ac-9 results as a function 
of SPM concentration (632 to 676nm) 

On Figure 6 is presented the PSICAM data versus the ac-9 data. The black straight line 

represents the one to one relationship. Table J gives details of the slope and r̂  for the four 

concentrations encountered. This last graph shows that the data fi-om the two instruments are 

indeed very well correlated (r^ = 0.99 and 0.98 for Co and C3 respectively) but the PSICAM 

systematically underestimates the absorption calculated with the ac-9. 

Table I : Slope and r̂  for the four concentrations 

Slope 

CO 0.8131 0.9926 
C I 0.8002 0.9924 
C2 0.8109 0.9865 
C3 0.7993 0.9849 1 

Figure 6: PSICAM measurement vs ac-9 

231 



Appendix 2: Laboratory experiments 

A, 3. Correction 2 e = 0.18 
The second correction technique was applied with an e factor equal to 0.18 because of 

inorganic particulate content. As previously, the results obtained with the PSICAM are lower 

than the ac-9 results {Figure 7). With this technique, the effect at short wavelengths is very 

similar to the first correction technique. The major difference occurs for the longer wavelength. 
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PSWI _ - i -

• • ' -
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. . \ . 

• ^ ^ ^ ^ ^ ^ 

1 

1 
1 

; 

4U 4 U MO s » eoo 
W n d u g e i tnn) 

eSO TOO 

Figure 7: Absorption spectra of both instruments 
obtained with the second correction method. 

1.445 

-*-2.00Sraofl 
3.435 noi l 

Figure 8: Scattering coefficient obtained with the 
second correction method. 

Figure 9 and Figure 10 show more clearly that the effect of this correction technique 

remains very similar to the previous one for wavelengths from 412 to 510nm. However, the 

difference between the two measurements seems to increase more markedly than previously 

with the suspended sediment concentration. This is more visible for longer wavelength. For 

wavelengths higher than 600nm, the PSICAM data show less increase in the absorption than the 

ac-9 data v^th increasing sediment concentration. 
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Figure 9: Absorption as a function of (he 
sediment content (412 to SlOnm) 

Figure 10: Absorption as a function of the 
sediment content (532 to 676nm) 

On Figure J J and Table 2 are presented the regression of the PSICAM data versus the 

ac-9. The regressions are still very good although the PSICAM underestimate the absorption in 

comparison with the ac-9. In this case however, the regression Hne does not have a zero 

intercept. 

Table 2: Slope, intercept and r̂  obtained from 
Figure II. 

Slope Intercept 

CO 0.9195 •0.0669 0.9986 
C I 0.9009 -0.0758 0.9987 
C2 0.9262 -0.0996 0.9965 
C3 0.9158 -0.1336 0.9949 1 

Figure 11: Regression between the PSICAM and 
the ac-9 with the second correction method. 

A A, Correction 3 
The last correction method provided the best correlation with the PSICAM. hi this case, 

the PSICAM slightly over estimated the absorption in comparison with the ac-9 {Figure 12 to 

Figure 16). 
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Figure 12: Absorption spectra of both 
instruments obtained with the third correction 

method. 
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Figure 13: Scattering coefficient obtained with 
the third correction method. 

Figure 14: Absorption as a function of the 
sediment content (412 to SlOnm) 

Figure 15: Absorption as a function of the 
sediment content (532 to 676nm) 

Table 4 shows that in this case, the one to one relationship is almost obtained between the two 
instruments. 

Table 4: Slope, intercept and H obtained from 
Figure 16. 

Slope 

CO 10551 0.9929 
C I 1.0141 0.9947 
C2 L0367 0.9951 
C3 1.0434 0.9912 1 

Figure 16: Regression between the PSICAM and 
the ac-9 with the third correction method. 
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B. Second tank experiment - River Tamar 
sediments 

A second laboratory experiment was carried out. This time, the tank was filled with 

milli-Q water in which suspended sediment was added. The same procedure as described for the 

experiment presented in the Chapter 6 was followed. During the course of the experiment 

samples of the water were taken to measure the concentration of sediments on filter paper. The 

concentrations measured were 0.045 (pure water background), 0.635, 2.25 and 6.35 mg/l. Water 

samples were also taken for particulate absorption analyzes These sediments where collected on 

the banks of the Tamar River, dried and ashed to remove the organic components prior adding 

in the tank. 

B.l.PSICAMdata 
The absorption coefficients were calculated with both Kirk's empirical equation and 

using the least square technique {Figure 17). No significant differences were observed between 

the two methods. When compared with the ac-9 data in the following sections, the PSICAM 

data used come for calculations using Kirk's equation. 

400 450 500 550 

Wavelength (nm) 
600 650 700 

Figure 17: Absorption coefficient with Kirk*s formula (black line) and using the least square method (gray 
line) 
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The result of each correction technique was compared v^th the measurement o f the 

PSICAM. The e coefficient for the second correction technique was similarly chosen to 0.18 

because of the inorganic particulate content. The general shape of the absorption spectrum is 

decreasing exponential as expected due to the particulate sediment. The measurement o f the 

PSICAM appears to get closer to the ac-9 results for correction 1 and 3, although in each case, 

the PSICAM underestimated the absorption in comparison with the ac-9. The second correction 

technique gives the most important differences with the PSICAM measurement. Because the 

experiment started with pure water, the absorption spectra cover a wider range of absorption. 

The scattering coefficient spectrum varied from 0 to about 3m** depending on the correction 

technique (Figure 19, Figure 24 and Figure 30). 

Correction 1 
With this correction technique, the two instruments gives very similar results {Figure 

18) except around 700nm were the PSICAM measures higher absorptions. 
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Figure 18: Absorption spectra of both 
instruments obtained with the flrst correction 

method. 
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Figure 19: Scattering coefTicient obtained with 
the first correction method. 
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Figure 20: Absorption as a function of the 
sediment content (412 to SlOnm) 
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Figure 21: Absorption as a function of the 
sediment content (532 to 676nra) 
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Table 5: Slope, intercept and r̂  obtained from 
Figure 22 

Slope 

CO 0.6414 0.5758 
C I 0.9002 0.9608 
C2 0.9644 0.9951 
C3 0.9921 0.9843 1 

Figure 22: Regression bet>veen the PSICAM and 
the ac-9 with the first correction method. 

B.3. Correction 2 8=0.18 

Figure 23: Absorption spectra of both 
instruments obtained with the second correction 

method. 
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Figure 24: Scattering coefTicient obtained with 
the second correction method. 
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Figure 26: Absorption as a function of the 
sediment content (412 to SlOnm) 

Figure 27: Absorption as a function of the 
sediment content (532 to 676nm) 

Table 6: Slope, intercept and obtained from 
Figure 28. 

Slope Intercept 

CO 0.5 J 0.0038 0.4196 
C I J.0029 '0.0442 0.9875 
C2 0.982 -0.1077 0.9947 
C3 0.9870 -0.2103 0.9907 1 

Figure 28: Regression between the PSICAIM and 
the ac-9 with the second correction method. 

B,4, Correction 3 
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Figure 29: Absorption spectra of both 
instruments obtained with the third correction 

method. 

Figure 30: Scattering coefTicient obtained with 
the third correction method. 
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Figure 31: Absorption as a function of the 
sediment content (412 to 510nm) 

•E 0 » 

Figure 32: Absorption as a function of the 
sediment content (532 to 676nm) 

Table 7: Slope, intercept and r̂  obtained from 
Figure 33 

Slope 

CO 0.9053 0.7624 
C I 0.9962 0.9877 
C2 0.9918 0.9906 
C3 0.9982 0.9928 1 

Figure 33: Regression between the F S I C A M and 
the ac-9 with the third correction method. 

B.5. Particulate absorption data 
The patterns observed with this data set are similar to the one presented in the Chapter 

6. The pure water background underestimate significantly the results obtained with both the ac-

9 and the PSICAM. For the highest sediment concentration, the spectrum obtained in the 

reflectance mode is biased so that the absorption coefficient of the solution is minimized. 
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Figure 34: Absorption spectra measured with the PSICAM (black line) and with the filter technique (gray 
line). From top left to bottom right: Co, C j , C j and C j . 
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Figure 35: Raw absorbance spectra measured with the dual beam spectrophotometer. Direct beam 
transmittance (thin black), diffuse beam transmittance (thin gray) and refiectance (thick black); from top 

right to bottom left: Co, C„ C2 and Cy 
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Figure 36: Regression between the PSICAM and the filter technique. From top left to bottom left: Q , C ) , C2 
and C 3 . 

Table 8: Slope, intercept and r̂  obtained from Figure . 

Slope Intercept 
Co 9.093 -0.0042 0.878 
Ci 1.302 -0.009 0.990 
C 2 0.723 0.011 0.983 
C3 1.120 -0.003 0.917 

C. Third tank experiment 
C.l. PSICAM data 
Results of the PSICAM calculated with the least square method (black line) and with 

KJrk's equation (grey line) for the six solutions 03, C4, C5 of concentration 1.31, 2.70 and 

8.77mg/l respectively {Figure 37) and CO, CI and C2 of concentration 0.03, 0.10 and 0.21mg/l 

respectively {Figure 38) did not show important differences showing that despite the high 

content of particulate material, the homogenous isotropic assumption was still valid. 
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Wn«tais(htnm) 

Figure 37: PSICAM results with the least square 
method and Kirk*s equation for C3, C4 and C5. 

C.2. Correction 1 

Figure 38: PSICAM results with the least square 
method and Kirk's equation for CO, C I and C2. 

Percentage difference between the PSICAM and the ac-9 with the first correction 

method for the total data set {Figure 39) and without the two lowest concentrations and the 

three red channels 650, 676 and 7\5nm{Figure 40) 

B0.03 (D0.105 • 0.21 S1.31 (D 2.705 38.77 10.21 (01.31 0 2.705 9 8.77 

Figure 39: Percentage error in comparison to the 
ac-9 (all dataset). 

C.3. Correction 2 

Figure 40: Percentage error in comparison to the 
ac-9 (reduce data set). 

Percentage difference between the PSICAM and the ac-9 for with the second correction 

method and an e factor of 0.18 for the all data set {Figure 41) and without the two lowest 

concentrations and the three red channels 650, 676 and 715nm(F/^wre 42). 
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B0.03 • 0.105 S0.21 a 1.31 (D 2.705 • 8.77 

are 71s 

Figure 41: Percentage error in comparison to the 
ac-9 (e=0.18). 
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Figure 42: Percentage error in comparison to the 
ac-9 (e=0.28). 
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Appendix 3: In situ data 

Appendix 3: In situ data 
A. Dissolved Organic Matter and Total Particulate 

Absorption measured atL4 

A.l. 27th May, 2002 

Figure 1: Dissolved and Particulate Absorption 
spectra. 

Figure 2: Particulate Absorption regression. 

A.2. 18th June, 2002 

r- 0 2 

I 0.1 

• CDOU 

.PSKMI-CDCM 
•PSIWM -TotrtPm 

Figure 4: Dissolved and Particulate Absorption 
spectra. 

Table 1: Slope, intercept and regression 
coefficient 

Slope Intercept 

Pahs 1.0593 0.0426 0.948 

DOM 1.004 0.0006 0.966 

Figure 3: DOM regression. 

Table 2: Slope, intercept and regression 
coefficient. 

Slope Intercept 

Pabs 0.9474 0.0136 0.944 

DOM 0.795 -0.0018 _ 0.967 
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BOO 003 OEM OOe OJCa OtO o i l OA* 

Figure 5: Particulate Absorption regression. 

A. 3. 24th June, 2002 

300 S30 
WndtnoVi tun) 

Figure 7: Dissolved and Particulate Absorption 
spectra. 

A.4. 1st July, 2002 

-COOU 

- PSICAM-COOU 

Figure 9: Dissolved and Particulate Absorption 
spectra. 

Figure 6: DOM regression. 

r - i . i t 3 i>Dat3s 
R" - 0 WM 

Figures: Particulate Absorption regression. 

Table 3: Slope, intercept and regression 
coefficient 

Slope Intercept 

Pabs 0.759 -0.002 0.974 

DOM 0.869 0.0057 0.788 

Figure 10: Particulate Absorption regression. Figure 11: DOM regression. 
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A.5. 9th July, 2002 

Figure 12: Dissolved and Particulate Absorption 
spectra. 

0000 ooto 0.030 

Figure 13: Particulate Absorption regression. 

A.6. 15th July, 2002 
1 ! 

1 

L _ 
— tSMPWiBt 
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— PSOUI-Tet 

lU - RSn Bch. 
mu 

— tSMPWiBt 
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— PSOUI-Tet 

1 

030 700 

Figure 15: Dissolved and Particulate Absorption 
spectra. 

A.7. 22ndJuly 2002 

• spKire-cooy 
- TsM P « t a M - Fie«f (MA 
-psicAu.cooy 
-PSKAU-TeM 

Figure 17: Dissolved and Particulate Absorption 
spectra. 

Table 4: Slope, intercept and regression 
coefficienL 

Slope Intercept 

Pahs 1.182 0.003 0.730 

DOM 0.721 0.003 0.977 

000 

DCS 

om 

001 

1 I 1 / i 

' * y ^.^^'^ 
— 1 - -

^iiP^ - - 1 - - T - -

I 1 _ ' _ _ i 

1 1 1 1 

- 1 — 1 — 1 — 1 — 

^iiP^ - - 1 - - T - -

I 1 _ ' _ _ i 

1 1 1 1 

- 1 — 1 — 1 — 1 — 000 0 01 0 02 0 03 O U O U 0 00 

Figure 14: DOM regression. 

1 • t.ODSTi • 0 0 
R* • 07B58 

Figure 16: Particulate Absorption regression. 

Table 5: Slope, intercept and regression 
coefficient. 

Slope Intercept 

Pabs 0.895 0.001 0.971 

DOM 0.791 0.0001 0.9857 
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0M3 

DOID 

Figure 18: Particulate Absorption regression. 

A.8. 29th July, 2002 

500 330 
n a v t l n e n i n m ) 

Figure 20: Dissolved and Particulate Absorption 
spectra. 

A. 9. 5thAout, 2002 

Figure 22: Dissolved and Particulate Absorption 
spectra. 

A. 10. 12th Aout, 2002 

I 0.19 

i 0 to 

- TeU PwWiMi • Fter bch. 
•PSICiUI-COOU 
- PSCAU •Tool P v K i i i A 

Figure 24: Dissolved and Particulate Absorption 
spectra. 

1 X' 
!^_:ty_ _ 

, 

Figure 19: DOM regression. 

r-onui .ooois 
R*-0 0814 

Figure 21: Particulate Absorption regression. 

G 003 y-OMnSi 'OOOIS 
R" - 0.S725 

Figure 23: Particulate Absorption regression. 

J J 

V - 0.7001. . 00 
R*•0 0773 

O.OO 003 0.0S 009 0.12 

Figure 25: Particulate Absorption regression. 
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A.ll. 20th Aout, 2002 
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Figure 26: Dissolved and Particulate Absorption 
spectra. 

A. J2. 28th Aout, 2002 

Figure 27: Particulate Absorption regression. 

V-O BOTi *0 eO3fl 
R'-0flB1« 

Figure 28: Dissolved and Particulate Absorption 
spectra. 

A J 3. 2nd September, 2002 

Figure 29: Particulate Absorption regression. 

r-a.Bizei*o 
R" . O.flTU 

Figure 30: Dissolved and Particulate Absorption 
spectra. 

A. 14. 9th September, 2002 

I 0 1 > 
— ToM PwtaAu - RSir uen 
— P S C J U * - c o o u 
— PSKAU •TeM pBi toMi 

Figure 31: Particulate Absorption regression. 

Table 6: Slope, intercept and regression 
coefflcient. 

Slope Intercept 

Pabs 0,980 0.0052 0.987 

DOM 0.825 0.004 0.988 

Figure 32: Dissolved and Particulate Absorption 
spectra. 

248 



Appendix 3: In situ data 

3 
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Figure 33: Particulate Absorption regression. 

AA5. 16th September, 2002 

I 0 19 

— BpWOo- COOH 
—TeMPw 
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Figure 34: DOM regression. 

Table 7: Slope, intercept and regression 
coefncient. 

Slope Intercept 

Pabs 0.751 0.006 0.98 

DOM 0.786 0.003 0.991 

Figure 35: Dissolved and Particulate Absorption 
spectra. 

Figure 36: Particulate Absorption regression. Figure 37: DOM regression. 

AJ6, 23th September, 2002 

• coou 
- Total P M o M t • 
-POCMi.coay 
-PSCAM.ToU 

Table 8: Slope, intercept and regression 
coefficient. 

500 UO 
W i T « i t n f f i h | 

Slope Intercept 

Pabs J.JI8 0.006 0.979 

DOM J.J78 0.0007 0.989 

Figure 38: Dissolved and Particulate Absorption 
spectra. 
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Figure 39: Particulate Absorption regression. 

A. 17. 30th September, 2002 
Figure 40: DOM regression. 

1 1 
1 1 
1 1 
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1 1 
1 1 
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Figure 41: Dissolved and Particulate Absorption 
spectra. 

A. 18. 7th October, 2002 

S D.IO -

9 OfM s 

-TetUPMEUbU-FSMlKh 
-PSCAy.COOU 
•TOCAU-TaMPirteUia 

Figure 43: Dissolved and Particulate Absorption 
spectra. 

1 1 
I 1 

I ' fjA 

• 1 

r- i .07Bi«»o.ooai 
R* - 0.B801 

nm O M o m 0.13 

Figure 42: Particulate Absorption regression. 

Table 9: Slope, intercept and regression 
coefficient 

Slope Intercept 

Pabs 0.959 0.0102 0.954 

DOM 0.774 -0.0012 0.986 

w uf / 
X \ 

— 1 1 
002 0 0 4 

Figure 44: Particulate Absorption regression. Figure 45: DOM regression. 
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A. 19. 28th October, 2002 

C O O U 
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Figure 46: Dissolved and Particulate Absorption 
spectra. 

0.00 0 03 ODB o n 0.1 

Table 10: Slope, intercept and regression 
coefficienL 

Slope Intercept 

Pabs 1.156 0.013 0.975 

DOM LI 68 -0.0098 0.969 

Figure 47: Particulate Absorption regression. 

A.20. 25th November, 2002 
Figure 48: DOM regression. 

Table 11: Slope, intercept and regression 
coefficient 

Slope Intercept 

Pabs 1.465 0.023 0.988 

DOM 1.024 0.001 0.987 

Figure 49: Dissolved and Particulate Absorption 
spectra. 

B 0.tS 

Figure 50: Particulate Absorption regression. Figure 51: DOM regression. 
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B. Ac-9 in situ profile - Temperature and 
Salinity 
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Appendix 4: Field test around the Antarctic Peninsula 

Appendix 4: Field test around the 
Antarctic Peninsula 

For each station, two depths were sampled: surface and Secchi depth. For each depth, 

total and dissolved absorption were measured with the PSICAM after filtration through 0.2^m 

filters. Chlorophyll-a analyses were performed using the spectrophotometrique method after 

24h extraction in 90% acetone. The chlorophyll-a concentrations were calculated using SCOR-

UNESCO equations (Strickland and Parson, 1972): 

Chl^ = 11.64 * A^, - 2.16A^, + 0.1 OA,,, {pg I ml) 

The chlorophyll-a absorption spectra were then calculated using the parametrisation of 

Bricaudet al, (1995). 

X a 

' yAntarctic 
f-^ continentj" 

JofcivWt 

64° S 

58° w : 

Figure 1: Sampled Stations 
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Appendix 4: Field test around the Antarctic Peninsula 

A. Time Series in Ross Channel 
A, L Total and DOM absorption spectra 

Figure 2: Total and dissolved absorption spectra 
03/03/02 

SCO 3S0 

Figure 3: Total and dissolved absorption spectra 
05/03/02 
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Figure 4: Total and dissolved absorption spectra 
07/03/03 

Figure 5: Total and dissolved absorption spectra 
08/03/02 

Figure 6: Total and dissolved absorption spectra 
09/03/02 
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A.2. Particulate Absorption Spectra 
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Figure 7: Total particulate and Chlorophyll a 
absorption - 03/03/02 

Figure 8: Total particulate and Chlorophyll a 
absorption - 05/03/02 

Figure 9: Total particulate and Chlorophyll a 
absorption - 07/03/03 

Figure 10: Total particulate and Chlorophyll a 
absorption - 08/03/02 
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Figure 11: Total particulate and Chlorophyll a 
absorption-09/03/02 
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Appendix 4: Field test around the Antarctic Peninsula 

B. Antarctic Peninsula 
B.l. 26February 2002 

Figure 12: Total and dissolved absorption spectra 
- morning 

Figure 13: Total and dissolved absorption spectra 
- afternoon 

' • 1 ( 1 

, L — 
— P M i O u t e 

1 

1 1 t * * 

Figure 14: Total particulate and Chlorophyll a 
absorption - morning 

B.2. 27th February 

Figure 16: Total and dissolved absorption spectra 

Figure 15: Total particulate and Chlorophyll a 
absorption - afternoon 

Figure 17: Total particulate and Chlorophyll a 
absorption 
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Appendix 4: Field test around the Antarctic Peninsula 

B.3. 28th February 

Figure 18: Total and dissolved absorption spectra 
- morning Figure 19: Total and dissolved absorption spectra 

- afternoon 

es) TOO 

Figure 20: Total particulate and Chlorophyll a 
absorption - morning 

Figure 21: Total particulate and Chlorophyll a 
absorption - afternoon 

afternoon 

B.4. 1st March 

Figure 22: Total and dissolved absorption spectra Figure 23: Total particulate and Chlorophyll a 
absorption 
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Appendix 4: Field test around the Antarctic Peninsula 

B.5. 2nd March 

Figure 24: Total and dissolved absorption spectra 

B.6. 11th March 

Figure 25: Total particulate and Chlorophyll a 
absorption 
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Figure 26: Total and dissolved absorption spectra Figure 27: Total particulate and Chlorophyll a 
absorption 

Date 
26/02/02 
26/02/02 
27/02/02 
28/02/02 
28/02/02 
1/03/02 
2/03/02 
3/03/02 
5/03/02 
7/03/02 
8/03/02 
9/03/02 
11/03/02 

Table 1: Sampled dates, position, Sea Surface Temperature (SST) and Secchi depth 

Station 

A 
B 
C 
D 
E 
F 
H 
G 
G 
G 
G 
G 
C 

Local Time Positio n SST Seech 
GMT (-4h00) South West (DegC) (m) 

9h00 62 36.07 56 56.08 1.9 105 
I6hI5 63 42.51 56 51.90 1.5 15.5 
8h30 63 47. J6 58 00.06 -0.5 15 
7hJ5 6258.43 59 40.94 1.2 12.5 

18h45 62 58.96 60 33.76 1 7 
J0hI5 6212.27 58 52.00 1.5 5 
UhlS 66 33.89 55 46.83 0.7 
8hI0 64 J2.58 56 57.76 -0.5 15 
8h05 64 07.45 56 54.66 -0.7 10 
8h35 64 04.45 56 40.01 -0.5 11 
8hl2 64 04.73 56 44.69 '0.6 22 
J0hJ4 6405.73 5655.69 -0.8 8.5 
JIhOO 63 4986 58 02.01 -0.9 10 
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Figure 28: Temperature profiles. 
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Abstract 
The different existing techniques for measuring the absorption coefficient are 
presented with their advantages and disadvantages. The recurrent problem 
when measuring absorption appears to be die scattering of light by particles. 
A solution could be a point source integrating cavity absorption meter. In 
such an instrument, the sample is enclosed in a spherical cavity made with 
highly reflective walls. As a result the measurement is not affected by 
scattering. The development and first experiments made with such an 
absorption meter al the University of Plymouth are presented in this paper. 

Keywords: Absorption, scattering, absorption meter, integrating cavity 

1. Introduction 

Absorption is one of the fundamental processes that determine 
the shape and magnitude of the light field in a medium. 
The absorption coefficient is the proportion of flux lost due 
to absorption from a beam normal to an infinitesimally thin 
layer of a medium, divided by the thickness of the layer [ I ] . 
Knowledgeof the absorption coefficient, the volume scattering 
function and the input radiance distribution are necessary 
to solve the radiative transfer equation for the radiance 
distribution as a function of depth. Thus the absorption 
coefficient has a key role in determining any optical property 
that is dependent on the radiance distribution, including 
the remotely sensed reflectance and the diffuse attenuation 
coefficient. The total absorption coefficient of sea water can 
be partitioned into the sum of the absorption coefficients due 
to water, dissolved organic matter, phytoplankton and deyital 
particles. In addition to its importance in modelling radiative 
energy transfer in water, the absorption coefficient is important 
for studies of phyioplankton productivity and taxonomy. The 
spectral characteristics of absorption by phytoplankton result 
from, and can therefore be used to identify, photosynthetic and 
auxiliary pigments characteristic particular of phytoplankton 
taxonomic groups [2]. Investigations and models of primary 
production must include spectral absorption coefficients of 
photosynthetic pigments, which determine the ability of 
phytoplankton to collect light for use in photosynthesis. The 
importance of the absorption coefficient and the difficulty of 

measuring it accurately in low-signal, scattering suspensions 
have led to the development of a variety of measurement 
techniques. Pegau et al [3] reviewed six different insUiiments 
and compared the results obtained from each. The in 
situ measurement techniques under consideration were the 
reflective tube absorption meter (RTAM), a tethered optical 
profiling system (TOPS), the isotropic point source (IPS) and 
the compound radiometer (CR). The laboratory measurement 
instruments investigated were the specu-ophotometer and the 
integrating cavity absorption meter (ICAM). Other techniques 
such as optoacoustic and photothermal measurement and 
reverse methods using reflectance measurement were not 
investigated. The first part of this paper reviews the different 
techniques studied by Pegau et al, and their advantages and 
disadvantages. The second part presents the experiments 
carried out with a prototype point source integrating cavity 
absorption meter (PSICAM). 

2. The existing techniques 

2.1. In situ methods 

An example of a RTAM is typically the ac-9 designed by 
Wetlabs. The RTAM uses a collimated light source and 
encloses the sample in a reflective tube. The reflective tube 
collects the near forward-scattered light so that the radiant 
flux lost due to absorption may be estimated [4). This 
instrument actually measures the absorption coefficient plus 
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a small fraction of the scattering coefficient associated with 
the uncollected scattered light This error should remain 
small. Assuming that the photons follow Petzold's scattering 
phase fimction [5] they should be scattered mainly in the near 
forward direction. The uncorrected absorption coefficient Ou 
is obtained using equation (I): 

( I ) 

where L is the path length of the instrument, 
^s&mfrie the 

signal voltage for the sample and Vpjo is the signal voltage for 
pure water. Note that this is essentially the same approach as 
is used in a spectrophotometer. Rather than using a reference 
cell, the meter is calibrated in the laboratory. The inherent error 
in the RTAM approach is due to the undetected scattered light. 
Various approaches can be used to estimate this undetected 
light; if simultaneous measurements of the spectral absorption 
and beam attenuation coefficient are performed, Zaneveld et al 
[ 6 ] showed thai an error of less than 1% could be obtained. 
Otherwise, an error of ± 5 % is possible with a precision of 
approximately 0 . 003 m"' {3J . Calibration problems were also 
encountered. The first one was an instrumental drift that cannot 
be entirely removed using pure water calibration; the second 
one is cavitation in the flow tube of the instrument [3] . Another 
source of bias common to all systems that use a pure water 
reference is the possibility of contaminated water, and this is 
impossible to estimate. 

The TOPS comprises a string of radiometers to measure 
upwelling and downwelUng radiance and inadiance. The 
TOPS used by Pegau et al [3] consisted of a multiple radiometer 
package. The measurement of £rf(X, z), £u(A., z) and 
^ o ( ^ . z). respectively, the downward irradiance, the upward 
irradiance and the scalar irradiance. allow the calculation of 
/ T E , the net downward irradiance equation (2 ) and A, the 
average cosine equation (3): 

Kp. = 
Ea - £ u dz 

(£rf - E,) 

u = 
Ed~Eu 

Eo 

(2) 

( 3 ) 

These data are then applied to Getshun^s equation ( 4 ) lo 
determine a(X,z). The set of instruments deployed by 
Pegau et al [3] was used to calculate the absorption coefficient 
with an estimated uncertainty of approximately 10%. This 
uncertainty includes up to 7% instrument noise. 

The isotropic point source technique was first proposed 
by Sorenson (1968) , who argued that the attenuation of 
irradiance E from an isotropic source should decay with 
distance following equation (5): 

E{r)a 

(4 ) 

(5) 

wherea is the absorption coefficient and r is the radial distance 
from the source. Thus, by measuring the irradiance from the 
source as a function of r, the absorption coefficient may be 
determined. The vector irradiance (more precisely, the radial 
component of the vector irradiance) from an isotropic point 

source was derived from the steady state radiative transfer 
equation without internal source [7]: 

« ' > - ^ - ( - " r i ) 

where <t>o is the radiant flux emitted by the source and p. is 
the average cosine of the light field from the source, r is the 
radial distance between the source and the detector and dr is 
the path variation due to scattering materials. The assumption 
in equation (6 ) is that the water column within which £ ( r ) is 
measured is homogeneous [3] . The solution to equation (6 ) 
for the absorption coefficient is 

aik,z) = li KE{KZ)-- (7) 
r 

where KE is the diffuse attenuation coefficient for irradiance. 
To avoid errors due to the ambient background light. IPS 
measurements have to be made either at night or in deep water. 
Note that when r oo, we arrive at the Gershun equation 
(equation (4) ) . Errors in the IPS method arise from several 
sources, and all of these errors, except for the assumption 
of water homogeneity, are due to the particular instrumental 
implementation and optical conditions of the water mass. The 
largest sources of errors are: (1 ) the assumption of constant 
radiant output of the isotropic source during each light flash 
since a reference detector is not used, (2 ) variable alignment 
of the source and detectors due to the variability in water 
movement, (3 ) the assumption that p, = 1 since only vector 
irradiance and not scalar irradiance was measured. Errors 
from (1 ) and (2 ) should be random and therefore quantified in 
the standard error of the regression fit. Errors of (2 ) can also be 
systematic if insuumeni misalignment remains constant during 
a measurement. The eaor from the assumption that / i = 1 ( 3 ) 
is systematic and difficult to quantify. Another source of error 
in this method is the approximation that the path length in the 
exponent is the geometrical radial distance r, when, in fact, 
scattering increases the mean path by 8r so that the expression 
should be [3] 

E(r)a—^. ( 8 ) 

USr <c r, the error will be small. The compound radiometer 
estimates the absorption coefficient by measuring the moment 
of a Legendre polynomial expansion of a radiance distribution. 
The absorption coefficient is detemiined by applying the 
measured moments to a form of Gershun's equation [ 8 , 9 ] . 

This device uses a series of reflectors to measure the integral 
moments of the radiance distribution at a number of zenith 
angles. The radiance disuibution is then deduced from a li near 
combination of the measured moments. The moments are 
symmetrical about the vertical axis and optimized to facilitate 
computation of inherent optical properties in the form of the 
D„ series [10] equation (9): 

D„=C-Sn 

(9 ) 

where c is the attenuation coefficient, ^{T]) is the scattering 
function at an angle /*„ is the nth Legendre polynomial and 
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Figure 1. Cross section of the I C A M (from Fry et al 1992). 

S„ the nth harmonic or the scattering function. The zeroth-
order moment (Do) is the absorption coefficient, Doo is the 
beam attenuation coefficient, and the intermediate D„ describe 
moments of the volume scattering function. The compound 
radiometer has an estimated uncertainty of 0.01 m~' in the 
depth range of 12 to 18 m [ 11 ]. This is the range within which 
the radiometer works best. Performances deteriorate in deep 
water, due to lack of light and also in very shallow water [3]. 
Of course, these performances also depend upon the turbidity 
of the water. 

2.2. Laboratory methods 

The theoretical basis of the ICAM was developed by 
Elterman [12]. In an ICAM, a diffuse light field is set up within 
a cavity that has a diffusely reflective wall and is filled with the 
liquid whose absorption properties are to be measured. From 
the measured effect of the liquid on this hghl field, the value 
of its absorption coefficient can be determined. The idea was 
adopted by Fry et al[\3] who describe the theory and design 
of an instrument that could be used to measure the absorption 
coefficient of water. This ICAM has a cylindrical shape and 
consists of an integrating cavity within another integrating 
cavity to ensure that the light inside the inner cavity is isotropic 
(figure 1). Pope et al [14] used an ICAM to measure the 
absorption coefficient of pure water in the wavelength band 
of 380 to 700 nm. The ICAM has two specific advantages. 
First, because of the long path length of the photons as they 
undergo multiple reflections from the cavity wall before they 
are finally absorbed, the insUoiraent can be used to measure 
low values of absorption coefficienL Second, because the 
light field is already totally diffuse, it cannot be made more 
diffuse by scattering owing to particles within the cavity. Thus, 
measurement of absorption is not affected by scattering [13]. 

There are two methods of calibrating the ICAM, one 
described by Fry e/ a/ [13], and one developed by the Naval 
Research Laboratory [15]. The method described by Fry et 
al expressed the absorption coefficient as a Unear function 
equation (10) of the voltage signal measured in different parts 

' ^ ^ ' ^ - ' ' ' 5 b ( X ) " ' ' ^ 

- K ^^^^ K 
( 1 0 ) 

where ^ i . Ki, and KA are calibration constants of the 
instrument and SQ, SI and 52 are the signal voltages at different 
places in the cavity (figure 1). The calibration constant Ki can 
be determined by measuring the known absorption coefficient 
of a dye solution. The algorithm developed by NRL calculates 
an effective path length for the cavity. The effective path length 
is dependent on the geometry of the cavity, the refractive index 
of the sample and the field of view of the sensor [15]. The 
assumptions made with the ICAM are the following: the light 
field within the cavity is isotropic, the light field within the 
sample is isotropic, the change in energy density is due solely 
to the absorbance of the sample, and the absorbance of the 
empty cavity is zero. When an empty cavity reading is used 
as the zero absorbance value, the absorption coefficient can be 
determined from equation (11): 

Vs{>^)J 
( I I ) 

where / is the effective path length (m), and V,(A), V,{X) are, 
respectively, the output signal voltages of an empty cavity and 
a cavity field with a sample. When used in this way, the 
ICAM does not require standardization either by measuring 
known calibration samples with a spectrophotometer or by 
measuring the absorption of clean water to determine the 
total absorption coefficient of the sample. Errors arise from 
the assumption that absorption in an air-filled cavity is zero. 
The assumption of an isotropic field within the cavity is 
also a source of error with this method. The overall error 
with this method is assumed to be around \% [3]. This 
method of calibration is more accurate than the first one 
developed by Fry et al [13] in so far as no calibration with 
standard dye solution is required. With a spectrophotometer, 
water samples are taken and filtered to measure separately the 
absorption coefficient of the particles and gelbstoff, the yellow 
polymers of phenolic and benzenecarboxylic acid produced 
by bacteria during the decomposition of organic matter. The 
total absorption coefficient is then determined by summing 
the component contributions with the absorption coefficient 
of pure water. The low concentration and absorption signal 
of suspended particles in the water column requires that the 
particles be concentrated before their absorption spectrum can 
be measured in a spectrophotometer [16]. The actual quantity 
measured by a spectrophotometer is the absorbance (A) or 
optical density. A beam of monochromatic light passes through 
a quartz or plastic cell of known path length. The measured 
quantity is the intensity (/) of the light that passes through 
the cell. Intensity, / , is equivalent to a radiant flux (<l>) [17], 
and is calculated as / = - *o denoting the incident 
flux on the cell and <l>a the absorbed flux. Two measurements 
are made, one with a cell filled with pure water (/Q), and a 
second one with the water sample under consideration. The 
transmittance T is then calculated as 

T{k) = (12) 
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The absorbance is then calculated as 

The absorption coefficient is then derived from the Beer-
Lambert equation (14) where a (X) is the absorption coefficient, 
/ is the path length of the cell and C is the concentration of 
the sample. This law defines a linear relationship between 
absorbance and the concentration of the sample: 

A{X)=a{X)*UC. (14) 

The most common procedure for a natural water sample is to 
determine separately the absorption coefficients of the different 
components. The value of the absorption coefficient of the 
medium as a whole, at a given wavelength, is equal to the sum 
of the individual absorption coefficients of all the components 
present: 

a{k)=aDOMQ-)+a^y^o{\)-\-a^{k)-¥a^{X) (15) Ps -

whereaooAf flphyio(>.),a^{>-)andau,(A.) are.respectively, 
the absorption coefficients of dissolved organic matter, 
phytoplankton, particulate matter and pure water. With a 
spectrophotometer, a proportion of the light is scattered outside 
the field of view of the sensors. Thus, spectrophotometers 
do not measure the true absorbance but rather the attenuance 
(absorbance plus a fraction of scattering). This might be a 
problem for a solution with a high scattering coefficient relative 
to the absorption coefficient The measurement of the blank 
cell is far less biased by the scattering effect This problem can 
be minimized by placing a layer of scattering material between 
the cell and the incident beam of light, so that both samples 
are measured with diffused light 

Errors in total absorption coefficients estimated from 
spectrophotometric measurements also arise from several 
sources. The first is the unknown error in values of pure water 
spectral absorption [14,18]. Additional errors are associated 
with separate spectrophotomeuic measurements of absorption, 
due to suspended particles and due to dissolved organic matter. 

3. Point source integrating cavity absorption meter 

3.1. PSICAM theory 

The different techniques described previously can be classified 
into two categories. The passive techniques measure the 
apparent optical properties of a water body and then use 
Gershun's equation to derive the absorption coefficient The 
active techniques which regroup both in situ and laboratory 
techniques use an independent source of light to measure 
the absorption coefficient All these techniques present 
advantages and disadvantages depending upon the goal of 
the research. If a quick assessment of a large region is 
needed then most in situ techniques will be suitable. If fairly 
accurate values are required then the RTAM seems to be the 
recommended approach although it can be biased under certain 
conditions. However, of the various instruments to measure the 
absorption coefficient tested by Pegau et al [3], a promising 
one appears to be the instrument based on the ICAM principle. 
Scattering from bubbles due to cavitation should not affect this 

instrument Kirk [19] described the theory of an ICAM in the 
case of a spherical cavity. Like the ICAM used by Fry et al 
[13], this insuiiment consisted of a cavity within another one. 
The sample to be analysed was placed in the inner one where an 
isotropic light field was generated In a later paper [20], Kirk 
further developed the theory of a PSICAM. In this case, the 
instrument is made of a single spherical cavity and the light 
source is a point source at the centre of the cavity. In fact, 
this PSICAM should be more efficient and easier to build than 
an ICAM. IGrk [19] showed that if the cavity is spherical, it 
is possible to derive specific equations for the probability of 
photon survival {Pa), the average numberof collisions with the 
wall per photon ( C / ) , the average path length per photon (//) 
as a function of the absorption coefficient, the diameter of the 
cavity and the reflectivity of the cavity wall (p). Such equations 
were derived (Kirk, 1995, 1997) for both the configuraUon of 
a spherical ICAM equation (16) OCAM) and equation (17) 
(PSICAM): 

1 

Cf = Ps 

[I -exp(-2^2r)(2^2r+ I)] 

\-pPs 
(16) 

/'5 = 2 ^ [ l - e x p ( - 2 . j r ) ( 2 . i r + l ) ] 

exp(-ar) 

\-pPs 

(17) / , = i j l - e x p ( - . . ) [ 2 - p ( ^ ) 

+ exp(—2ar)(ar + 1) 

As for a classic bench specu-ophoiometer, the absorption 
coefficient will be deriveil from the measurement of the 
transmittance relative to pure water calculated as 

Tm = 
exp(-a/-)(l 

exp(-invr)(l - pPs) 
(18) 

where a^ is the absorption coefficient of pure water and P^ 
is the probability of photon survival in a cavity filled with 
pure water. Equation (18) cannot be solved but Kirk [20] 
showed that if we assume that the radiance distribution is 
homogeneous and isotropic within the cavity (referred to as 
the homogeneous energy distribution assumption) then we can 
arrive at the following expression for a{X): 

a{k) = 
P(X))1 I 

. T{X) 

3(1 -/o(X)) 
4r 

(19) 

whereaaj(A.) is known from the literature and p(X) is measured 
with standard dye solutions. The theoretical results showed 
that a PSICAM has the same essential virtues (long effective 
path length, insensitivity to scattering) as an ICAM. At high 
values of a{X) the PSICAM should give rather more accurate 
results. In principle, therefore, a PSICAM could provide 
the basis for a simple absorption meter for natural waters 
regardless of their scattering properties. 
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3.2, Sensitivity analysis 

A sensitivity analysis (figure 2) was carried out using the 
formulae found in the literature [5]. This analysis reveals the 
high sensitivity of the measurements to the reflectivity of the 
cavity wall. Figure 2 shows that an error of 1 % in the value of 
the reflectivity leads to almost 10% error in the calculation of 
the absorption coefficient. 

The second important parameter in terms of sensitivity is 
the radius of the cavity in which an error of 3% leads to almost 
a 10% error in the calculation of the absorption coefficient. 
This parameter will be discussed later as one of the possible 
sources of error for our prototype. The reference absorption 
spectrum and the transmittance can influence the accuracy of 
the measurement. The first one would depend upon the quality 
of the pure water supply. This is, as pointed out previously, 
the inherent problem of all techniques using pure water as a 
reference. The second would most probably be corrupted by 
the stability of the light source. 
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3.3. Laboratory prototype 

3.3.1. The integrating sphere. The first prototype PSiCAM 
(figure 3, left) was made out of a 500 ml round-bottomed flask 
with a 24/29 ground glass neck embedded in barium sulphate 
as suggested by Kirk [20]. The light source was made of a 
small tungsten bulb within a diffusing Delrin sphere located 
at the centre of the cavity by means of a white plastic stem 
passing through the neck of the flask. The light collector 
was a 10" field of view collimated lens looking toward the 
light source and fitted to a fibre optic. The light field within 
the collector was sampled by means of an optic fibre and its 
spectral distribution recorded with a spectrophotometer. We 
used this version for the preliminary PSICAM experiments. 
Taking into account the observations made with the prototype, 
an improved version was constructed with modified design, 
components and light source. 

The improved version (figure 3, right) was based upon a 
two-neck round-bottomed flask in order to have two separate 
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Figure 4. Emission spectrum of a white LED. Figure 5. Emission spectrum of the halogen geiwrator. 

ports, one for the stem of the light source, one for the input and 
output of water. The light source was not removed throughout 
the set of experiments. This prevented any distortion relative 
to the reference measurement As previously, the glass flask 
was embedded in barium sulphate. Again, the sensor was a 
collimated lens so that a radiance ratio and not an irradiance 
ratio was obtained to calculate the transmittance. The sensor 
had a 10° field of view and was positioned at an angle so that 
no direct illumination from the light source was picked up. 
The sensor looks toward the light source in the vertical plane 
and makes a 30* angle with the horizontal looking toward the 
bonom part of the flask (figure 3, right). The flasks used to build 
both integrating cavities were standard chemistry apparatus, so 
were not perfectly spherical. Moreover, the necks added extra 
volume to the sphere. For the experiments, we assumed a 
perfect sphere of 5.25 cm radius. 

3.3.2. Light source. Making a proper point source for the 
instrument was the biggest challenge. This light source needed 
to be small so as not to interfere too much with the cavity, but 
powerful enough to strongly illuminate the cavity. A number 
of illumination systems were tried. 

Ocean Optics Inc. LS-I tungsten light source. Experiments 
were conducted using the halogen tungsten light source (6.5 W) 
provided with the Ocean Optics spectrometer as a Light source 
for our PSICAM. The LS-1 light source was adapted to fit 
a 3 nun diameter fibre bundle. The illuminated side of the 
bundle was a Teflon stem terminated by a Teflon sphere. This 
light source was actually too weak to property illuminate the 
sphere so that excessively long integration times were required 
to obtain usable signals. 

White light emitting diode. Experiments were also carried 
out with white LEDs. Three LEDs were placed in a Teflon 
cylinder and held in the cenue of the cavity by a Teflon stem. 
For practical reasons the point source was cylindrical in this 
case. Again, the illumination of the cavity was rather too small, 
and integration times required to get measurable signals were 
around 40 s (see the emission spectrum in figure 4). 

Halogen generator and fibre bundle. The last light source 
tried consisted of a 75 W halogen generator (sec the emission 
spectrum in figure 5) especially designed to fit a fibre bundle. 

As before, the end of the bundle was held in a Teflon stem 
and terminated by a Teflon bulb. The fibre bundle used was 
6 mm in diameter and could therefore carry a significantly 
higher amount of light. On the other hand, this bundle 
increased the diameter of the stem in comparison with the 
3 mm one. The experiment carried out with this light source 
showed that it was by far the brightest one and allowed a 
significant reduction in the integration time. The stability of 
this halogen generator was investigated with the OOI Si000 
spectrophotometer. The experiment consisted of measuring 
the evolution of its emission spectrum with time. For this 
experiment, a collimated lens fitted to the spectrometer through 
a 1000/im fibre optic was used. One measurement per minute 
was taken over 3.5 h. Figure 6 shows the evolution of the 
percentage change relative to the first measurement, taken 
immediately after the light was switched on. 

These graphs show that the highest variations occur for the 
shorter wavelengths with a significant difference between 400 
and 425 nm. The smallest variations occur for wavelengths 
between 500 and 700 nm. Overall, this graph shows that 
a warming up time of 40 min is necessary to achieve even 
moderate stability (±2%). In order to minimize this problem, 
a reference measurement is taken between each sample 
measurement. 

3.3.3. Calculations of the reflectivity and tlie absorption 
coefficient. To estimate the reflectivity of the sphere, two 
standard black solutions of known absorption coefficient OA 
and OB were used. The transmittance of solution B was 
measured relative to solution A. The reflectivity was then 
calculated from the u^smittance equations (18) and (20): 

P ( ^ ) = 
TAB exp(-aflr) - exp(-fl^r) 

r ^ B C X p ( - a f l r ) / ' / - e x p ( - a ^ r ) / ' / 
(20) 

The instrument measures the transmittance of a water sample 
relative to pure water. Data used for the pure water absorption 
coefficients were taken from Pope et al [14]. The absorption 
coefficient can be calculated in two different ways. The 
first consists of using equation (19) from [20]. There is no 
analytical solution to the equation of transmittance for a{k). 
Equation (19) is obtained assuming a homogeneous energy 
distribution. The second method of calculating the absorption 
coefficient consists of numerically solving the equation of 
transmittance for a(A.), by minimizing the least square function 
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Figure 6. Stability of ihe halogen generator for 13 wavelengths. 

Tbble 1. Set of concentrations used to calculate the linear range of 
the spectrometer. 

F i g u r e 7. Efficiency of the spectrometer's diffraclion grating 
(www.oceanoplics.com). 

G(a(A)) equation (21). A set of transmittances is calculated 
using equation (18) for a given range of absorption coefficients. 
This gives T'oumC^). The reflectivity, the absorption coefficient 
of the reference solution and the radius of the cavity are known 
parameters. The absorption spectrum of the sample is then 
found using the least square method for function C(a(X)): 

C(a(X)) JiT^un^i^)-rE,pik))^. (21) 

3.3.4. Spectrophotometer The spectrometer used with an 
integrating sphere manufactured by Ocean Optics Incorporated 
was a portable fibre optic spectrometer (S2000) fitted with a 
diffraction grating whose characteristics are shown in figure 7. 
Owing to the grating efficiency, it was decided to limit 
absorption measurement to the 400 to 700 nm band. The 
spectrometer was connected to the integrating sphere with a 
1000/im fibre optic. 

3.3.5. Experiments. The best compromise found so far 
between the power and size of the light source was using the 
75 W halogen generator with a 6 mm fibre bundle enclosed in 

Dye Solutions Concentration ( m i l - ' ) 

Blue and Green I 5 10 25 50 
Red 0.5 1 5 10 25 
Black O.I 0.25 0.5 1.0 2.5 

a Teflon stem. This system was used to undertake various 
experiments using dye solutions and Milli-Q water as a 
reference measurement. 

Experiments with standard dye solutions. The first 
experiments with the prototype were carried out with standard 
dye solutions to estimate the efficiency of the instrumenL The 
first step was therefore to calculate the molecular absorption 
of those standard dyes. The absorption coefficients of 
the standard solutions were measured with the PS 2000 
OOI spectrometer using a 1 cm path length cuvette. The 
measurements were carried out using four dye solutions 
(green, blue, red and black) for a set of five concentrations 
(see table 1 and figure 8) in order to estimate the linear range 
of measurement for the cuvette holder. 

The absorbance relative to pure water was measured for 
the five different concentrations of each dye. Among the five 
absorption spectra, the concenu-ations within the linear range 
of the spectrometer were selected to calculate the molecular 
absorbance for discrete wavelengths. For the blue, green 
and red dyes the concentrations were respectively 5, 10 and 
1 ml r ' . The set of concentrations used for the black 
dye remained in the linear range of the instrument. The 
absorbance was calculated from 400 to 700 nm in steps of 
1 nm. Figure 8 illustrates the absorbance spectra from top 
left to bottom right of the black, green, blue and red standard 
solutions. The absorption coefficient for each concentration 
was then calculated using A{k) = a{k) * I * C , where A(X) 
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Figure 8. Absoibancc spectra of the four standard dye soIuUons. From lop left to bottom right: black, green, blue and red. 
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Figure 9. Transmittance spectnim of soluuon C, relative to (top left); absorption spectrum of solution CB and (bottom left); 
reflectivity spectrum of the cavity wall (right). 
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Figure 10. Calculation of the absorption coefficient by the 
analytical method. 
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Figure 11. Calculation of the absorption coefficient by the 
numerical method. 
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Figure 12. Calculation of ihe absorption coefficient of three dye solutions by the analytical method (left column) and the numerical method 
(right column). 

is the absorbance, is the absorption coefficient of the 
solution. / is the path length of the cuvette (1 cm) and C is the 
concentration of the solution (ml 1"'). Measurements carried 
out with the PSICAM were then compared with measurements 
taken in the cuvette holder. The first experiments carried 
out with the sphere were to estimate the reflectivity of the 
cavity wall using the method suggested by Kirk [20]. In this 
case two black standard solutions CA = 0.01 ml 1"' and 
CB ~ 0.03 ml I"' were used. The results for the calculated 
reflectivity are shown in figure 9, and these show a reflectivity 
between 95 and 100% in the visible wavebands except around 
640 nm where the calculated reflectivity is higher than 100%. 
This artefact in the red region is as yet unexplained. 

The dyes used in the experiments did not absorb 
significantly in wavelengths longer than 670 nm, so that we 
could not obtain an accurate estimation in this region. To 
calculate the absorption coefficient of standard solutions, we 
assumed a sphere reflectivity of 96% for all visible wavebands. 

Experiments with food dyes. Before trying to measure natural 
samples various experiments were undertaken with food dyes 
of known absorption coefficient to assess the efficiency of the 
system and the methods adopted to calculate the absorption 
coefficient. Experiments were carried out using green dye 
for the first attempts with the integrating sphere. Figures 10 
and 11 illustrate the calculations of the absorption coefficient 
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of a green solution (C = 0.1 ml 1"') by the analytical 
and numerical methods. Each graph shows the absorption 
spectrum of the standard solution (solid curve) and the 
calculated absorption spectrum. 

These two graphs show that although the analytical 
method assumes a homogeneous energy distribution very 
similar spectra are obtained. The dye solution was a non-
scatiering solution. The results by both calculations would 
probably be different in the case of a more scattering sample. 
The absorption patterns measured by the PSICAM are similar 
to the reference measurement except in the range 600-670 nm. 
Ignoring these wavelengths, it appears that the prototype 
gives fairly acceptable results given the uncertainty of the 
cavity ra_dius, the reflectivity and the instability of the light 
source. The graphs presented in figure 12 show the results 
of measurements by both analytical and numerical methods 
for the other standard dyes. For this set of solutions, 
the analytical and numerical methods give similar results. 
As for the green standard, the blue and black solutions 
displayed the same artefact in the 600-670 nm waveband. An 
artefact also occurs with the red solution centred in the green 
wavelength but is as yet unexplained. A l l the solutions used 
for these experiments have fairly high absorption spectrum in 
comparison to natural samples. It seems that these artefacts 
are related to the magnitude of the absorption spectrum. This 
would suggest that it is a problem of nonlinearity of the 
detector. Further experimentation wil l be implemented to 
assess this phenomenon. 

4. Conclusions 

The different existing techniques used to measure the 
absorption coefficient have both advantages and disadvantages 
but a recunent problem encountered by all methods is the effect 
of the scattering coefficient which depletes the efficiency of 
most existing techniques by overestimating the value of the 
absorption coefficient. In theory, the PSICAM is insensitive 
to this parameter. The first experiments carried out with the 
prototype PSICAM have produced very encouraging results 
despite the simplicity of the design and the unsophisticated 
nature of the components used to build the system. The 
next stage in the development of this instrument must involve 
the use of better materials and components. In particular, 
we must address the problem of the main limitation of Uie 
system: the stability of the light source. The. behaviour 
of the instrument must be investigated with moderately and 
highly scattering samples. Such an experiment will give 
the final answer regarding the reliability of this instrument. 
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