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Abstract

Numerous Human-Computer Interaction (HCI) contexts require the iden-
tification of human internal states such as emotions, intentions, and states
such as confusion and task engagement. Recognition of these states allows
for artificial agents and interactive systems to provide appropriate responses
to their human interaction partner. Whilst numerous solutions have been
developed, many of these have been designed to classify internal states in a
binary fashion, i.e. stating whether or not an internal state is present. One of
the potential drawbacks of these approaches is that they provide a restricted,
reductionist view of the internal states being experienced by a human user.
As a result, an interactive agent which makes response decisions based on
such a binary recognition system would be restricted in terms of the flexibil-
ity and appropriateness of its responses.

Thus, in many settings, internal state recognition systems would bene-
fit from being able to recognize multiple different ‘intensities” of an internal
state. However, for most classical machine learning approaches, this requires
that a recognition system be trained on examples from every intensity (e.g.
high, medium and low intensity task engagement). Obtaining such a train-
ing data-set can be both time- and resource-intensive. This project set out
to explore whether this data requirement could be reduced whilst still pro-
viding an artificial recognition system able to provide multiple classification
labels. To this end, this project first identified a set of internal states that could
be recognized from human behaviour information available in a pre-existing
data set. These explorations revealed that states relating to task engagement
could be identified, by human observers, from human movement and pos-
ture information.

A second set of studies was then dedicated to developing and testing dif-
tferent approaches to classifying three intensities of task engagement (high,
intermediate and low) after training only on examples from the high and low
task engagement data sets. The result of these studies was the development
of an approach which incorporated the recently developed Legendre Mem-
ory Units, and was shown to produce an output which could be used to dis-
tinguish between all three task engagement intensities after being trained on
only examples of high and low intensity task engagement. Thus this project
presents the foundation work for internal state recognition systems which

require less data whilst providing more classification labels.
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Chapter 1

Introduction

1.1 Research Problem

The motivation behind this project was to investigate how artificial agents
and systems might be made able to recognize human internal states based
on observable human behaviours. Within the field of Human-Computer In-
teraction (HCI) there are a wide range of applications where internal state
recognition is potentially beneficial. The utility of this ability is probably best
illustrated by the field of Human-Robot Interaction (HRI). One of the core re-
search problems facing HRI is that of developing autonomous systems which
can interact with humans in an appropriate manner (Dautenhahn and Saun-
ders, 2011). To perform autonomously in interactions with humans, a robot’s
behaviours have to ‘make sense’, both within the situational context and in
regards to the human interaction partner’s actions, behaviours and goals
(Dautenhahn, 2007; Sciutti et al., 2018). In many interaction scenarios, achiev-
ing appropriate autonomous behaviour can be helped by enabling robots to
recognize context-relevant human internal states. For example, when de-
signing a robot to collaborate with a human on some multi-step construction
task, it is useful if the robot is able to recognize their human partner’s in-
tentions, so that the robot can provide either complimentary or corrective
behaviours (Akkaladevi et al., 2016; Palinko et al., 2016). Similarly, in more
social settings, having a robot able to recognize a human’s emotional state
could provide the opportunity for ‘empathetic’ behaviours, such as sharing
in a positive emotion (e.g. happiness), or pausing the interaction in response
to a negative emotion (e.g. discomfort) (Cavallo et al., 2018).

Many solutions to the problem of internal state recognition have been pre-
sented. A large number of these are concerned specifically with emotional-
state recognition, particularly identifying the six basic emotions (happy, sad,
angry, surprise, fear, disgust) from facial expressions (Liu et al., 2017; Barros,
Weber, and Wermter, 2015; Cohen et al., 2003; Bartlett et al., 2003). Liu et al.
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(2017), for example, used facial expression images collected via a Kinect de-
vice to enable a robot to recognize the emotional states of happy, sad, angry,
surprise, fear, disgust and neutral. This was achieved by implementing an
Extreme Learning Machine classifier. Other approaches have utilized vocal
cues (Hyun, Kim, and Kwak, 2006; Song, Han, and Wang, 2014) and physi-
ological information (e.g. temperature) (Latif et al., 2015) as input to classify
emotional states.

Solutions have also been developed for recognizing other human inter-
nal states. These include recognizing dominance and leadership (Beyan et
al., 2016), task engagement (Rudovic et al., 2018; Sanghvi et al., 2011), so-
cial engagement (Kim et al., 2017) and experienced difficulty (Wendt et al.,
2008). For example, Wendt et al. (2008) used heart rate and skin conduc-
tance as input for a classifier to recognize whether participants felt under- or
over-challenged by a construction task. Despite this existing research, auto-
mated recognition of non-emotional internal states is comparatively under-

researched. There is therefore a need for further exploration in this direction.

1.2 Defining ‘Internal States’

The focus of this project is on the recognition of non-emotional internal states.
Here a definition of what is meant by ‘non-emotional internal states’ (here-
after: internal states) is providing along with some examples of their impor-
tance to human-robot and human-computer interactions.

Primarily, internal states are herein defined as states which are experi-
enced, but not considered purely emotional in nature. Whilst the six basic
emotions are important for facilitating appropriate social interactions, there
are other states which may be just as important in providing relevant social
cues. These include states such as task engagement, boredom, friendliness,
cooperation, confusion and discomfort. Many of these states fall under the
definition of ‘complex’ emotions (i.e. any emotion that is an aggregate of two
or more others (VandenBos, 2007)) which differ to basic emotions in how they
are expressed and experienced. That is, their expression relies more on full
body expression, than facial cues (Darwin and Prodger, 1998), and their expe-
rience is argued to involve more self-reflection than basic emotions (Lewis,
2008; Tracy, Robins, and Tangney, 2007). Other states differ from the basic
emotions by being more cognitive than affective (emotional) in nature, such
as task engagement, boredom and confusion, in that these states describe
how someone experiences a task, event or problem (e.g. being bored by a



1.2. Defining ‘Internal States’

lecture, or confused by an instruction). Finally, states which are dependent
on social contexts, such as dominance, cooperation and competition can also
be considered as falling under this definition of ‘internal states’.

Recognizing such states can be useful to a socially interactive agent in
a range of contexts. For example, tutoring contexts where a robot or arti-
ficial tutor contributes to learning by interacting with a human participant
engaging in an educational task. Here the human will experience different
task-engagement states which could be useful for the tutor to recognize (e.g.
bored, engaged). Similarly, in assisted-living contexts where artificial sys-
tems (e.g. smart devices such as the Amazon Echo) provide support to adults
in the home, situations where interactions are required might include pro-
viding reminders for daily tasks. In these cases, having the artificial system
able to recognize confusion (e.g. when the user feels they have forgotten to
do something) would allow the system to appropriately (and autonomously)
offer assistance. Alternatively, some robot applications involve a robot being
situated in public areas and interacting with more than one person at a time.
In such scenarios it may be useful for that robot to be able to recognize when
a human is feeling distressed or when they are seeking assistance.

Given the value of recognizing these states to both social and functional
interactions, the focus of this project is on exploring how such states might be
made recognizable to an artificial agent or system. Moreover, this work ex-
plores how such states might be classified in such a way that more closely re-
flects their experience, and allows for more flexibility in responding. Conse-
quently, this research project draws from several disciplines including Com-
puter Science, Human-Robot Interaction (HRI) and Psychology. Thus, one
of the goals of this project was to demonstrate how knowledge from Psy-
chology can be used to inform research in Computer Science and HRI. The
following sections present different psychological theories on how humans
perceive and interpret the internal states of others. An overview of previ-
ous research where computational systems and robots have been designed
to mimic some of these functions is also provided. The chapter concludes by
highlighting the shortcomings of current techniques in dealing with a wide
range of internal states, proposing an approach to overcoming these limita-

tions and providing an outline of the rest of this Thesis.
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1.3 Human Mind-Reading

First, theories of how humans are able to recognize the internal states of oth-
ers are discussed. This skill is often referred to as ‘mind-reading’, ‘theory of
mind” or ‘folk psychology’. A number of theories have been developed to
explain this ability and many, if not all, posit that humans use observable be-
havioural cues as indicators of internal states (Gallese et al., 1996; Carruthers
and Smith, 1996; Becchio et al., 2017).

For instance, the Simulation Theory posits that humans achieve insight
into the internal states of others via an internal simulation (Shanton and
Goldman, 2010). It is mainly supported by research concerning the pres-
ence of a mirror neuron system (MNS) in primates and humans (Gallese
and Goldman, 1998). Mirror neurons are a type of visuomotor neuron in
the brain which are active both during the performance of an action, and
whilst the subject observes someone else performing that action (Rizzolatti
and Craighero, 2004; Iacoboni and Dapretto, 2006). Thus, it is proposed that
humans infer the mental states of others by mapping observed actions onto
our own motor system, and thereby simulating a representation of the in-
tentions and internal states driving those actions (Gallese et al., 1996). Al-
ternatively, there is the Theory Theory, which posits that humans possess a
collection of explanatory laws that relate internal states to behaviours (Gop-
nik and Wellman, 1994; Gopnik, 2003). This means that, when we observe
an action or behaviour, we are able to apply these laws through a process
of theoretical reasoning in order to identify the intentions or mental states
which might be driving that action (Gopnik and Wellman, 1994; Carruthers
and Smith, 1996).

Ignoring the mechanisms underlying theory of mind, both of these schools
of thought propose that humans infer the internal states of others based on
observable behavioural cues. This idea is also described by the “observability
principle” which argues that humans are able to directly perceive the internal
states of others via differences in observable actions/movements (Becchio et
al., 2017). Support for this argument comes from a range of studies asking
people to identify another person’s internal state after isolating human mo-
tion and body postures from other cues. This is commonly achieved using
point-light versions of video recordings of humans performing behaviours.
Point-light videos generally consist of a series of dots representing joints and

other important landmarks on the human body, presented against a blank
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background. For example, Clarke et al. (2005) filmed pairs of actors perform-
ing a dialogue whilst portraying either fear, disgust or joy. They then pre-
sented participants with point-light versions of these videos and found that
participants were able to identify the portrayed emotional states based solely
on the movement information. Similarly, Atkinson et al. (2004) showed par-
ticipants the point-light and original versions of videos of actors portraying
anger, disgust, fear, happiness and sadness and asked participants to iden-
tify the emotion and rate its intensity. They found that participants viewing
the point-light displays were still able to recognize the actor’s emotion and
the intensity of that emotion. Other studies have demonstrated that humans
are able to recognize intentions (Manera et al., 2010; Manera et al., 2011) as
well as emotions (Alaerts et al., 2011; Crane and Gross, 2007; Pollick et al.,
2001) from just body movement information. In fact, in some cases it has
been shown that body pose and movement information is more informative
than other sources of information. For example, in the study conducted by
Aviezer, Trope, and Todorov (2012) it was found that participants were better
at identifying whether tennis players were experiencing an intense positive
or intense negative emotional state from body pose information than from
just facial expressions.

Ultimately what this suggests is that observable data available to artificial
systems from human interaction partners (e.g. dialogue, vocal prosody, ac-
tions, facial expressions etc.) may be sufficient for recognizing human inter-
nal states. Findings from this type of research are frequently used to inform
the development of artificial internal state recognition systems, and these ap-

proaches are discussed in Section 1.5.

1.4 Recognizing Internal States

Having established that internal states can potentially be recognized from
observable cues, the first task in this project is to identify which observable
behaviours might contain cues to the internal states with which we are con-
cerned. This section is therefore dedicated to an exploration of what types of
human behaviours might lend themselves to this task. A variety of human
behaviours have been shown to be useful in allowing humans and artificial
systems to recognize internal states. The below discussion focuses on some of
the more widely researched behavioural modalities: facial expressions, vocal

prosody and body movements and postures. It explores how both humans
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and artificial systems have been shown to be able to use these data to identify
the internal states of humans.

As part of this project, the question of recognizing internal states and
covert behaviours from overt/observable behaviours was also explored in
the context of diagnosing Autism Spectrum Disorder (see Appendix B) (Bartlett
et al., 2020).

1.4.1 Facial Expressions

A rich pool of research has demonstrated that emotions can be recognized
from facial expressions both by humans (Ekman and Friesen, 1971; Ekman,
Friesen, and Ancoli, 1980) and artificial systems (Bartlett et al., 2003; Wim-
mer et al., 2008; Liu et al., 2017). However, research has also shown that
other, non-emotional internal states can be identified from facial expressions.
Whitehill et al. (2014), for instance, showed human raters video clips of peo-
ple’s faces whilst they were studying and asked them to rate how engaged
these people were. Whitehill et al. (2014) found that human raters showed
high levels of agreement when rating clips as showing either high or low en-
gagement, and moderate agreement when rating the clips on a 4-point scale
of engagement (none, low, moderate, high). Another study by Benedek et
al. (2018) had participants view videos of humans either focusing their at-
tention externally on a task, or internally on an imaginary task. This study
found that participants were able to correctly identify whether attention was
directed internally or externally based on the facial expressions of the people
in the videos.

Artificial systems can also be made to recognize internal states from facial
expressions. Grafsgaard et al. (2013), for instance, demonstrated that facial
movements taken from videos of students interacting with tutors could be
used by a classifier to accurately predict self-reported feelings of frustration
and being rushed or hurried during the learning task. Similarly, Bosch et al.
(2015) recorded students’ facial expressions and head position whilst they
completed a learning game on a computer. This data was successfully used
to classify a range of internal states including boredom, confusion and en-
gagement. Similar studies have further demonstrated that artificial systems
can be trained to recognize internal states such as engagement (Hernandez et
al., 2013; Thomas and Jayagopi, 2017) and frustration (McDaniel et al., 2007)

from facial expression information.
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1.4.2 Vocal Prosody

A second source of internal state information is vocal prosody - the into-
nation, stress and rhythm of speech. Humans have been shown to be able
to recognize intention from prosody (Hellbernde and Sammler, 2016; Bryant
and Barrett, 2007). For example, Hellbernde and Sammler (2016) showed that
participants were able to recognize the intentions of criticism, doubt, naming,
suggestion, warning, and wish from the prosodic features of single word and
non-word utterances.

Artificial classifiers have been trained to distinguish between emotional
states based on prosodic features (Litman and Forbes, 2003; Petrushin, 2000;
Dai, Fell, and MacAuslan, 2008; Li and Zhao, 1998). Prosody has also been
used to classify instances where a human experiences frustration during hu-
man computer interactions (Ang et al., 2002), how certain students feel dur-
ing tutoring interactions (Liscombe, Hirschberg, and Venditti, 2005) and so-

cial attitude during conversation with a robot (Rosis et al., 2007).

1.4.3 Body Pose and Movement

Biological motion and posture behaviour, including gestures, walking and
other movements humans make, have also been shown to communicate in-
ternal state information. This includes emotional states which can be recog-
nized both by humans (Clarke et al., 2005; Pollick et al., 2001; Coulson, 2004)
and artificial classifiers (Castellano, Villalba, and Camurri, 2007; Saha et al.,
2014; Elfaramawy et al., 2017). Clarke et al. (2005) presented participants with
point-light versions of videos of actors performing a dialogue whilst portray-
ing an emotion (e.g. anger, joy and romantic love). Participants were able to
recognize the emotional states anger, fear, joy, sadness, and love from these
displays, suggesting that human movement alone is sufficient to recognize
such states.

Outside of emotion recognition, human movements have been shown to
be useful in the recognition of other internal states. For instance, in a study
by Manera et al. (2011) participants were shown point-light videos of actors
performing a reach-to-grasp action motivated by one of 3 socially-relevant
intentions: (1) cooperation, (2) competition or (3) performing a personally-
relevant action. Participants were able to identify the social intention based
only on this movement information. A number of studies have also shown
that socially relevant internal states and dispositions can be recognized from
movement (Okada, Aran, and Gatica-Perez, 2015; Sanchez-Cortes et al., 2011;
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Beyan et al., 2016; Sanghvi et al., 2011). Okada, Aran, and Gatica-Perez (2015)
found that a classifier could recognize dominance and leadership based on
movements participants made during group interactions. Similarly, Sanghvi
et al. (2011) were able to use the postural behaviours of children to classify

their engagement with a robotic game opponent.

1.5 State of the Art

Having established that a number of human behaviour modalities can be
useful for recognizing internal states, the following section reviews the cur-
rent state-of-the-art in internal state recognition for robots and artificial sys-
tems.

A variety of methods for classifying human internal states from observ-
able behaviours have been developed. Due to the nature of the problem,
most of these, if not all, draw in some way from Psychology in order to in-
form their approach or design. One particular group of methods draw on the
theories surrounding the human “Theory of Mind’. In particular, the Simula-
tion Theory (Gallese and Goldman, 1998; Goldman et al., 2012) which posits
that humans simulate observed actions of others in the motor regions of their
own brain, and thus infer what intentions or internal states might drive those
actions. Taking inspiration from this theory, some approaches for develop-
ing robots able to recognize the internal states of others involve using the
robot’s experiences of the goals which drive their own actions. For exam-
ple, Kelley et al. (2008) used Hidden Markov Models (HMMs) to model five
activities which were performed by a robot. The differences between these
HMMs provided a mapping between observable actions and the driving in-
tentions. Kelley et al. (2008) then demonstrated that the robot was able to
correctly identify which of these five activities were being performed by a
human actor, and the corresponding intentions.

Despite the success of this approach, it does face some limitations. In par-
ticular, it relies on providing a robot or artificial agent with the experience
of the states it is to recognize in others. Whilst simulating action intention
in artificial agents can be done simply by setting an explicit goal, simulating
emotional states is a more complex task. This is largely because emotional
states in humans involve an interplay between physiological responses (e.g.
heart rate, hormone changes) and cognitive factors such as our appraisal
of events in the environment (Moors, 2009). However, providing artificial
agents with models of emotion has a number of potential benefits including
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creating ‘meaningful’ rewards for reinforcement learning systems or provid-
ing artificial agents with mechanisms for adaptive behaviours (Cafiamero,
2005). To illustrate, Hickton, Lewis, and Cafiamero (2017) created a grounded
affective system which utilizes ‘hormone’ responses to simulate fear. These
‘hormones’ alter the robot’s state, i.e. by increasing movement speed and per-
ceptual sensitivity in order to simulate a state of ‘anxiety” and motivate dif-
ferent behaviours. Using this type of approach it could be possible to create a
system which, having experienced this ‘anxiety” state and the accompanying
behaviours, could recognize this state in others by observing the associated
overt behaviours (e.g. increased movement speed) and mapping them to its
own experience.

Thus it is potentially possible to simulate complex/emotional internal
states in artificial systems, and recognize internal states via a Simulation The-
ory approach. However, given that simulating such internal states is not a
trivial task, a Theory Theory approach to internal state recognition is, at least
currently, more straight-forward to implement. That is, rather than relying
on the robot’s experiences, we can imbue a robot or classifier with a set of
causal laws linking observable behaviours to internal states. This approach
characterises the majority of existing machine learning approaches to internal
state recognition. For example, Foster, Gaschler, and Giuliani (2017) applied
a rule-based classifier to the problem of having a robot recognize whether hu-
mans are experiencing an ‘intention to engage’ with the robot. Specifically,
they used a robot-bartender scenario and designed the rules such that hu-
mans would be classified as intending to engage if they (1) stood close to the
bar, and (2) turned their head towards the robot. This study found that, in
an online user experiment comparing a number of methods, the rule-based
method had the best overall performance in recognizing and responding to
humans who intended to engage with the robot. This relatively simple ap-
proach demonstrates that artificial systems can be made to recognize human
internal states from observable behaviours without relying on the ability to
simulate those internal states. However, such a simplistic approach is only
appropriate for more restrictive settings where a robot or classifier is only
required to recognize a limited number of internal states. This is largely be-
cause each rule has to be hand coded which is not only arduous but also
relies on definite knowledge of which behaviours communicate which inter-
nal states. In this particular example, the internal states being recognized are
also fairly clearly communicated by human interaction partners - a person at

a bar is going to actively try to attract the attention of the bartender if they
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wish to be served. A great many scenarios, however, require the recogni-
tion of a wider range of internal states which are not necessarily as overtly
expressed.

This has been achieved using more complex systems, often by drawing on
knowledge of how humans recognize or express internal states. For instance,
Daoudi et al. (2018) developed a new classification algorithm to distinguish
between human reach-grasp-lift-place actions driven by different intentions.
This research was motivated by findings that the movement kinematics of
such actions are altered by the driving social intention (Quesque et al., 2013).
The resultant classifier was able to use observable features of hand and arm
movements, namely trajectories, to correctly identify whether the action was
driven by a ‘social” (give an object to another person) or ‘personal’ (keep the
object for myself) intention. Thus, Daoudi et al. (2018) used evidence about
how humans ‘express’ these motivations to inform the design of their clas-
sifier. Other research takes advantage of human ‘expertise’ in internal state
recognition to justify the use of certain data sources for internal state recog-
nition, and to establish a baseline against which to measure the success of
a classifier. For instance, in the study conducted by Whitehill et al. (2014),
3 different classification approaches were trained to classify students” facial
expressions in terms of engagement, and were compared to human raters
who demonstrated a high level of agreement when rating how engaged the
students were. Namely, they compared GentleBoost with Box Filter features,
support vector machines (SVM) with Gabor features and multinomial logis-
tic regression. Classifiers were given individual frames from videos of stu-
dents studying to label. All three classification approaches were found to
achieve a similar level of accuracy as human raters. This human expertise
can be used to further ‘streamline’ the design process by identifying what
behavioural features human raters find ‘most useful” in interpreting internal
states. This is illustrated by Sanghvi et al. (2011) who aimed to establish an
approach to classifying children’s engagement with a robotic game compan-
ion based on their body posture during the interaction. This study assessed
the performance of a range of different classifiers trained with different fea-
ture sets. The features were selected based on feedback from human coders
who not only rated the children’s engagement levels in the videos but also
provided their reasoning for their decisions, describing what aspects of the
children’s behaviours and postures led to their choice. By using behavioural
cues which were useful to humans in internal state recognition, Sanghvi et al.

(2011) streamlined their design process by identifying what features are most
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likely to provide useful cues. To retain temporal information, the researchers
used first, second and third derivatives of posture features, such as quantity
of motion and body lean angle, over time as input for the classifiers. Sanghvi
et al. (2011) found that the five ‘best’ classifiers, including an alternating de-
cision tree, multi-class classifier and logistic regression, achieved accuracy
scores of 79% or higher on the task of discriminating between ‘engaged” and
‘not engaged’.

These studies are a small sample from the rich pool of research that has
dedicated itself to the automatic recognition of a variety of internal states.
One of the main limitations shared by many of these approaches is that they
tend to provide a restricted number of classification options. That is, many
approaches are limited to simply stating whether or not an internal state
is evident (Sanghvi et al., 2011; Wimmer et al., 2008; Daoudi et al., 2018).
The main drawback of this approach is that it is reductionist; it can limit
the amount of clarity a classifier can provide about someone’s internal state.
One practical repercussion of this is that it limits how flexible an interac-
tive system can be in its responses. It should be noted that there are certain
scenarios where a limited or binary approach is appropriate. For example
in constrained contexts such as the bartender scenario presented in Foster,
Gaschler, and Giuliani (2017). In this context the goal is to develop a robot
able to recognize when someone wants to interact with them and order a
drink. Thus the robot is required to make a binary decision about whether
or not someone is wanting to interact, so having the robot recognize an in-
termediate intention (e.g. somewhat wants to interact/neutral) offers little
potential benefit for the robot in terms of having it successfully perform its
role as bartender.

On the other hand, there are some scenarios where being able to recognize
multiple ‘levels” of an internal state (e.g. not happy, somewhat happy, very
happy) could enhance human-computer /human-robot interactions. For ex-
ample, a tutor robot designed to recognize student confusion in a binary
manner (e.g. whether or not a student is confused by a learning task) would
be limited in terms of their possible responses. For instance, the robot could
be made to provide an easier task when they detect that the student is con-
fused. Whilst this could be appropriate when the student is extremely con-
fused, it is not appropriate if they are only mildly confused and could com-
plete the task with some additional hints or help. In contrast, a robot able

to distinguish between mild and extreme confusion could provide different,
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more appropriate responses to each state (e.g. providing hints when the stu-
dent is mildly confused). Another context in which richer granularity could
be required is in the safety systems of autonomous vehicles. In this applica-
tion, whilst it might be preferable that the human ‘driver” be constantly mon-
itoring the vehicle in order to ensure it is performing as expected, it should
also be acknowledged that humans are likely to perform other, secondary
tasks instead of remaining vigilant. As a result, when the vehicle encounters
scenarios which require that the driver take back control, it might be neces-
sary to first alert the driver and bring their attention back to the driving task.
In such scenarios, evidence has demonstrated that the amount of warning
time needed for drivers to take-over control of the vehicle differs depending
on whether the driver is distracted by a secondary task, and how distracted
they are by that task (Mok et al., 2015; Mok et al., 2017). Thus having an au-
tomated vehicle able to recognize how distracted the driver is would allow it
to provide appropriately timed warnings for initiating a control hand-over,
thereby improving the safety of such systems. Whilst it is possible to achieve
this richer granularity using categorical classification techniques, by intro-
ducing more target categories, this requires a data set which contains train-
ing examples from all of those categories. Such a data set can be difficult and
time consuming to obtain given that the data must not only be collected but
also labelled.

An alternative to categorical classification is regression. Regression meth-
ods, rather than providing a classification from a selection of discrete or cate-
gorical options, produce an output which is a value of a continuous variable.
So, if we consider the current problem of recognizing internal states from
observable human behaviours, a regression model would first require that
the output variable be continuous. In the case of emotional internal states,
a wealth of research indicates that many emotions can be described along a
series of continuous dimensions such as valence and arousal (Fontaine et al.,
2007; Mehrabian and Russell, 1974; Russell, 1980). As will be discussed in
the next section, a number of other internal states might also be described
or characterised by continuous dimensions. Importantly, a regression model
would not require training on all of the possible values along such a con-
tinuous dimension. Instead, one need only provide enough training data to
produce a model of how observable behaviours map onto, for example, va-
lence, and the resultant model should be able to provide accurate predictions
from previously untrained examples of other valence values. Some work has

been done using this type of approach to predict human internal states based
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on observable cues. For example, Nicolle et al. (2012) trained a regression
framework to predict the four dimensions of valence, arousal, expectancy
and power (which have been shown to describe the majority of emotional
states (Fontaine et al., 2007)) based on head movements and facial expres-
sions. However, whilst regressions do not require training on all potential
outputs, it is generally accepted that a good representation of potential out-
puts is required in order to establish an accurate model (Maheswari, 2018,
December 21). Consequently, this type of approach can still have substantial
data requirements.

This section has highlighted the state-of-the-art of internal state recogni-
tion approaches. Whilst it is clear that there is a large variety of successful ap-
proaches, there are certainly some drawbacks, largely characterized by data
requirements and/or limited classification options. This project is primarily
concerned with training a system to provide multiple classification labels for
a single internal state, which could potentially be used by artificial agents in
order to provide more flexible and appropriate behavioural protocols. Im-
portantly, the aim is to achieve this without requiring large amounts of data
for training. The nature of a given internal state, and the way one defines
these multiple labels, may lend itself to a solution which requires less train-
ing data. The following section focuses on answering the question of what

representation of an internal state might be best suited to this task.

1.6 Representing Internal States

As outlined above, many existing internal state classification systems take an
all-or-nothing approach whereby an internal state is classified as being either
present or not (Sanghvi et al., 2011; Wimmer et al., 2008; Daoudi et al., 2018).
However, if one were to use multiple classification options, including “inter-
mediate” states (e.g. no confusion, mild confusion, extreme confusion), one
could achieve a finer-grained view of human behaviour as well as provide
the opportunity for more flexible and appropriate responses from artificial
agents. Achieving this, however, comes with its own difficulties. That is,
classical categorical machine learning approaches require that the classifier
is trained with examples from all classes. Similarly, regression approaches
require training on a data set which provides a good representation of the
possible outcome values. Collecting such a data set is very resource heavy,

so providing a work-around is something worth trying.
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Defining the problem as one of recognizing different intensities of internal
states may lend itself to a solution. There is some evidence to suggest that the
experience of different intensities of internal states and emotions is reflected
in the intensity of their expression. For example, dominance and submission
can be characterised by an energy component such that a dominant person is
more energetic within an interaction than their submissive interaction part-
ner (Burgoon, Johnson, and Koch, 1998). Furthermore, the intensity of facial
expressions has been linked to the intensity of the experienced affective state
(Hess, Blairy, and Kleck, 1997; Cacioppo et al., 1986). It seems reasonable,
therefore, to expect that features of behaviour alter as a function of the in-
tensity of an experienced internal state, at least in some cases. If this is the
case, then it may be possible to train a classifier to recognize intermediate
internal states without training. That is, assuming that the expression of an
internal state varies as a function of the experienced intensity, if a classifier
can be trained to recognize the extreme intensities of an internal state (e.g. no
confusion vs. extreme confusion), then it may be possible to have that classi-
tier produce an output to intermediate states which reflects the fact that these
states are similar to, but also lying somewhere in-between, the two trained
states. This can be achieved by using either discrete output variables or a
continuous output variable.

The choice between these two types of output will often depend on the
specific application for which the classifier is being designed. For example,
consider the case of developing automated behaviour classification systems
to augment the diagnosis of Autism Spectrum Disorder (ASD). The tools that
currently exist to assist clinicians in making diagnostic decisions generally
provide clinicians with a list of symptomatic behaviours which are rated in
terms of a severity scale ranging from 1 to 4 (Lord et al., 2000). In this ap-
plication, it may be preferable to design a classification system which mir-
rors existing diagnostic tools and labels behaviours in a similar, categorical
way. In contrast, when developing a robot able to recognize and respond
to human emotional states, given that emotional states can be described in
terms of continuous dimensions of arousal and valence (Fontaine et al., 2007)
it could be beneficial to have a system produce an output which translates
to arousal and valence scores in order to capture a wide range of emotional
states. The current project chose to focus on producing a categorical classi-
fication for two main reasons. First, most of the existing data sets are anno-

tated in a categorical way, so producing a categorical output allows for the
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outputs to be directly assessed against these ground-truth labels, without re-
quiring that the data be re-annotated. Second, this project was initially part
of the EU FP7 project DREAM!, funded by the European Commission”. The
goals of DREAM were to develop artificial systems and robots for use in the
diagnosis of, and interventions for, ASD. For this project specifically, the fo-
cus was on developing an automated behaviour classification system which
could augment the diagnostic process by providing objective quantifications
of the severity of potentially diagnostic behaviours. As such it was felt that
a categorical classifier would be most appropriate, as this would mirror the
existing diagnostic tools. Once the DREAM project ended, the choice to pro-
duce a categorical classifier was maintained to allow comparison with the
ground-truth labels. Thus the goal of this research was to produce a categor-
ical classification system which could be used to identify multiple classes of
an internal state after training only on the high and low intensity classes.

1.7 Research Question

This research project explored the following question:

How can an artificial system be made to identify human internal states in a way

that requires less data, whilst providing more classification labels?

Specifically, we aimed to be able to recognize and label internal states in
terms of their intensity in order to provide the opportunity for more flexi-
ble behaviours from artificial agents in human-computer interaction settings.

This project was broken down into the following four questions:

1. What representation of internal states best reflects the experience of
those states, and may lend itself to the problem of providing flexible
and appropriate responses from artificial agents?

2. What internal states can be recognized from observable behaviours?

3. How successfully can such states be recognized by an artificial system

using machine learning methods?

4. To what extent can a system recognize intermediate states after training

on only the extremes?

Lyww . dream2020. eu

2grant number 611391
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Success for this project is defined as the successful development of a sys-
tem able to identify intermediate internal states from observable human be-
haviours after being trained only on the extremes of that state.

The first of these research questions has largely been answered by the
literature review presented in this chapter. That is, the representation of in-
ternal states which best reflects their experience, and lends itself to flexible
responses from artificial agents, is one where the state varies along a contin-

uum of intensity.

1.8 The PInSoRo Dataset

All of the studies contained in this Thesis utilize the PInSoRo dataset
(Lemaignan et al., 2018; Lemaignan, Edmunds, and Belpaeme, 2017). I there-
fore provide details about the contents of this dataset here.

The PInSoRo data set was collected by filming children interacting either
with another child, or with a Nao robot. The children were sat at an inter-
active touch-screen table (sand-tray) and were invited to interact and play
games on the sand-tray in a free-play fashion (i.e. they were not provided

- noplay_ ... - ._.no_n_lgy ------ IFHE-B TR IEH
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FIGURE 1.1: Screenshot of the annotation tool used to annotate
the PInSoRo videos showing recordings from the two cameras
recording the children’s faces, the environment camera, and the
recording of the sand-tray. Image taken from Lemaignan et al.
(2018). Permission to reproduce this image has been granted
under the Creative Commons Attribution License CC by 4.0.
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FIGURE 1.2: An image from the PInSoRo data set after post-

processing using the OpenPose library to extract 2D skeletons,

including facial landmarks and hand details. Image taken from

Lemaignan et al. (2018). Permission to reproduce this image has

been granted under the Creative Commons Attribution License
CC by 4.0.

any rules or instructions by the experimenters). As can be seen in Figure
1.1, the children (or child and robot) were positioned so that they were fac-
ing each other, and several cameras were used to film different view-points of
the interaction. Two cameras were attached to the table-top in order to record
the faces of each child, and a third ‘environment’ camera was placed roughly
1.4m away from the table to provide a view of both children and the sand-
tray. The children were allowed to interact for as long as they wanted (with
an upper limit of 40 minutes). A total of 120 children were recorded with
30 children taking part in the child-robot condition, and 90 children in the
child-child condition. As well as the videos of the interactions, the PInSoRo
dataset also contains audio recordings of the interactions, and recordings of
the children’s (and robot’s) activities on the sand-tray.

After the data was collected, the experimenters post-processed the data
in a number of ways in order to generate additional data (Lemaignan et al.,
2018). This included using the CMU OpenPose (Cao et al., 2017) to extract
the xy coordinates of facial landmarks, action units, skeleton keypoints and
gaze estimations for each child in each frame. The OpenPose library was also

used to construct videos showing only the face and skeleton landmarks (see
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Figure 1.2). Additionally, audio features were extracted, including prosodic,
spectral and voice quality features. These data were then collated into the
anonymous version of the data set along with annotations (if the video in
question had been annotated). The videos were annotated with labels falling
under three categories: social engagement, social attitude and task engage-
ment. Five expert annotators were recruited for this task and (at the time
of writing) roughly 75% of the data set has been annotated (Lemaignan, Ed-
munds, and Belpaeme, 2017).

The PInSoRo data set is openly available to researchers with the videos
available on request, and the anonymous data set available for download
from the data set web-page®. The studies reported in this Thesis utilized
either the videos recorded by the environment camera (without audio) or the

anonymous data set.

1.9 Thesis Contents

The remainder of this Thesis is structured as follows. Chapter 2 details the
first study of this project which examined the second research question by
exploring which internal states human observers were able to recognize from
videos of children interacting. Participants were shown either the full visual
scene or a processed version containing only movement and body posture
information and were asked to provide ratings of which internal states they
felt they could recognize from the videos. The results revealed that internal
states relating to task engagement, such as boredom, could be recognized
from both visual conditions. The published version of this study is presented
in Appendix C.

Chapter 3 presents a validation study aimed at establishing whether the
labels ‘goal-oriented play’, ‘aimless play” and ‘no play” available in the PIn-
SoRo data set (Lemaignan et al., 2018; Lemaignan, Edmunds, and Belpaeme,
2017) were reflective of ‘high’, ‘intermediate” and ‘low’ task engagement states
respectively. The results from this study showed that human raters did tend
to rate the children in the ‘goal-oriented play’ videos as showing the highest
task engagement, children in the ‘no play’ videos as showing the lowest, and
children in the ‘aimless play’ videos as showing a level of task engagement
which fell in the middle. The published version of this study is presented in
Appendix D.

Chapter 4 details two classification experiments where videos of children

(sampled from the PInSoRo data set) were classified in terms of engagement.

Shttps://freeplay-sandbox.github.io
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Two approaches were implemented, the first being a conceptor-based ap-
proach and the second being a delay network. Both approaches were trained
using examples of high and low task engagement, and the delay network
was then tested, not only on unseen samples from these classes, but also on
the intermediate task engagement class. Results showed that, whilst perfor-
mance on the trained classes was good, the methods used were not optimal
for recognizing the third untrained class. The published version of the exper-
iment using the conceptor-based approach is presented in Appendix D.

Consequently, a new approach was applied in Chapter 5. Namely, Leg-
endre Memory Units (LMUs) were used as a pre-processing step for an MLP
and a Logistic Regression. The results of this study demonstrated that, when
LMU pre-processing was used, the outputs from these two systems after
training on high and low engagement could be used to distinguish the in-
termediate engagement class without requiring training on that class. The
version of this study which has been submitted for publication is presented
in Appendix G.

Finally, Chapter 6 presents a summary of the works presented here and
their main contributions.

The remainder of the Appendices consist of the following;:

* Appendix B presents a journal paper discussing behavioural modali-
ties and technologies which could be used when diagnosing Autism
Spectrum Disorder (ASD). This discussion focuses on how measuring
overt behaviours via technologies could provide insight into some of

the covert behaviours associated with ASD.

* Appendix E presents a workshop paper discussing how one might rep-
resent behaviours typical of ASD in such a way that would allow a clas-
sifier to quantify those behaviours in a meaningful way for diagnostic

purposes.

* Appendix F consists of a workshop paper detailing the methodology
used in Chapter 2. The proposed methodology is presented as a first
step to any internal state recognition research as a way of guiding the
design of classification systems.

* Appendix G contains the journal paper detailing the study presented
in Chapter 5 which has been presented as a poster.

* Appendix H also presents a journal paper which, at the time of sub-
mitting this Thesis, has been submitted for review. This paper is a
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review of reporting practices pertaining to statistical power in papers
published in the proceedings of the ACM/IEEE International Confer-

ence on Human-Robot Interaction.

1.10 Summary

In this Chapter we have discussed theories of how humans are able to rec-
ognize the internal states of others, and evidence regarding the behavioural
modalities which might express these internal states. We have also discussed
how this knowledge can be, and has been, used to inform the design of artifi-
cial internal state recognition systems. In particular, we have shown how the
definition of internal states as varying in terms of intensity might lend itself
to a novel solution to the problem of providing a non-binary identification of
internal states. That is, by leveraging the assumption that the experience of
internal states can be described along a continuum of intensity, one may be
able to train a system to identify a range of “intensities” without the need for
training examples of every intensity.

Given our definition of ‘internal states” and the evidence showing that
body movements and posture are a rich source of ‘non-emotional” internal
state information for observing humans (Manera et al., 2011; Okada, Aran,
and Gatica-Perez, 2015; Sanghvi et al., 2011) we chose to use body movement
and posture, as well as some facial expression information, as the input for
classification. The next step, then, was to establish what internal states could
be recognized from this modality, and which states might be most readily
recognized. The next Chapter describes the first study in this project, aiming

to address these questions.
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Chapter 2

Study 1 - What Internal State
Information is Available in Human
Motion?

This study was published in Frontiers in Robotics and Al (see Appendix C)
(Bartlett et al., 2019b).

2.1 Introduction

Depending on the situation and task goals, artificial classifiers and social
robotic agents can benefit from being able to recognize a range of different
internal states and social dynamics. Tutor robots, for example, would ben-
efit from being able to recognize task engagement. Assisted living systems
might be improved by being able to recognize when a user is confused or
distressed. A classroom robot designed to mediate child-child interaction
would benefit from an ability to recognize when an interaction is becoming
aggressive or hostile, or when one child is dominating an interaction. Re-
search has demonstrated that a range of internal states such as these can be
recognized by human observers from behavioural cues. These include emo-
tions (Bartlett et al., 2003; Wimmer et al., 2008; Clarke et al., 2005; Pollick et
al., 2001), intentions (Manera et al., 2011; Lewkowicz et al., 2013; Manera et
al., 2010; Iacoboni et al., 2005), engagement (Sanghvi et al., 2011; Thomas and
Jayagopi, 2017; Whitehill et al., 2014), confusion (Bosch et al., 2015) and pride
(Tracy and Robins, 2008). Evidence has also demonstrated that interaction-
dependent states or social dynamics can be recognized, such as dominance
and leadership. This has been shown to be true of both humans and artificial
recognition systems. For example, Beyan et al. (2016) recruited participants
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in groups of four and asked them to complete a decision task. These inter-
actions were filmed and the 3d positional data of facial landmarks was used
as input to a classifier. This classifier was then able to identify participants
who exhibited leadership behaviours based mainly on head pose and gaze
direction information. Similarly, Sanchez-Cortes et al. (2011) had participants
perform the same task as in Beyan et al. (2016) with the aim of training a clas-
sifier to recognize participants who exhibited /experienced states of domi-
nance and competence. This study found that body movement behaviours
were useful for recognizing dominance and leadership, and that head activ-
ity could be used to recognize competence.

The first concern of this project is with identifying which internal states
and social dynamics might be recognizable from body movement and some
facial expression information. In particular, the focus is on states which can
be recognized from body movements produced in naturalistic interactions.
The second concern is to be able to identify internal states which can be de-
scribed in terms of intensity. Consequently, in this first study the aim was
to establish a set of internal states which can be described in this way and
that can be recognized from body movement, posture and facial expression
information.

To this end, participants were presented with short video clips of social
interactions between children. In order to examine which internal states can
be seen from just the body movements of the children, some participants
viewed the original video clips (full-scene condition), whilst others viewed
pre-processed versions containing only movement, body posture and some
facial expression information (movement-alone condition). Participants were
then asked to rate the degree to which they felt certain internal states (e.g.
boredom, frustration) or social dynamics (e.g. cooperation, dominance) were
evident in the children’s behaviours. States which can be recognized from
movement information alone were then identified by comparing responses

in each condition.

Hypotheses and predictions

Based on existing evidence that internal states and group dynamics can be
identified from movement information (Sanchez-Cortes et al., 2011; Manera
et al., 2011; Whitehill et al., 2014) the following hypotheses were proposed:

1. Participants will be able to draw internal state information from the

movement-alone videos (Hypothesis 1).
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2. There will be some internal states which are more readily recognized

from movement-alone information than others (Hypothesis 2).

Specifically, for hypothesis 1 it is predicted that even in the movement-
alone condition, the provided ratings will be sufficient to describe the inter-
nal states and social constructs identified in the observed interaction. This
can be tested by training a classifier to identify clips based on the full-scene
ratings, and assessing its performance when tested using the movement-
alone ratings as input. Additionally, it is predicted that inter-rater agreement
levels amongst participants will be above chance in both conditions (i.e. the
same constructs will be robustly identified in the clips by the participants),
but with higher levels of agreement in the full-scene condition. For the sec-
ond hypothesis it is predicted that a classifier, when trained to identify the
internal state labels assigned to each clip based on participants’ ratings, will
show better performance on some labels than others.

2.2 Method

2.2.1 Design and Participants

This study used a 2x1 between-subjects design comparing the effect of video
type (full-scene vs. movement-alone) on ratings of how evident internal
states and behaviours were in the videos. A total of 284 participants were
recruited from Amazon’s Mechanical Turk (MTurk) for this study. Of these,
85 participants were excluded due to providing incorrect responses to an at-
tention check, and for completing the experiment too quickly. Demographic
information regarding the remaining 199 participants is presented in Table
2.1. Participants were remunerated $1 (USD) for their participation upon
completion of the experiment.

TABLE 2.1: Demographics of participants.

Condition N  Mean Age Gender % American % English First
(Range) (%M, %F) Language
Movement-Alone 100 34.52(22-70) 55%, 44% 75% 80%
Full-Scene 99 33.54 (19-72) 65%, 34% 69% 73%
Both 199 34.03 (19-72) 60%, 39% 72% 76%
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FIGURE 2.1: Captures of one of the twenty video-clips taken
from the PInSoRo data set for this study. Left: version used
for the full-scene condition showing the full visual scene. Right:
version used for the movement-alone condition showing the 2D
skeleton versions as extracted by OpenPose. Written consent
for these images to be shared was obtained during collection.

2.2.2 Materials

Stimuli for this experiment were taken from the PInSoRo (Lemaignan et al.,
2018; Lemaignan, Edmunds, and Belpaeme, 2017) data set which is openly

available to researchers!

. This data set consists of videos (up to 40 min-
utes long) of child-child and child-robot pairs interacting whilst playing on
a touch-screen table-top (sandtray). The children were allowed to engage in
free-play (no defined task or goal) and were able to leave at any time. For
this study only videos of child-child interactions were used. In order to pro-
vide a view of both children at the same time, videos filmed using a camera
positioned roughly 1.4m away from the sandtray, with the sandtray in the
centre of the camera’s view, were selected. This allowed for each child to be
viewed on either side of the frame (see Figure 2.1, left). From these videos,
twenty 30-second clips (video only, no audio) were extracted for stimuli for
this study.

The clip selection process involved two experimenters viewing full-scene
versions of the videos and identifying notable ‘events’ or social dynamics.
In particular, they were instructed to identify clips which depicted at least
one of the constructs listed below. Due to the fact that no ‘ground-truth” of
the children’s internal states was available, i.e. the children were not ques-
tioned about their experienced states during the collection of this data set,
the labels used act as an estimation of what naive observers might infer from
the videos. Importantly, it should therefore be noted that neither these labels
nor the inferences made by participants when responding to the question-
naire can be truly validated. The labels used were defined in terms of the

children’s behaviour as follows:

Ihttps://freeplay-sandbox.github.io
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1. Boredom - at least one child was bored or not engaging with the task
on the touch-screen (e.g. resting head in hand, interacting with touch-

screen in slow /lazy manner)

2. Aggression - at least one child exhibited a physical aggressive action ei-
ther towards the touch-screen or the other child (e.g. hitting the screen,

pushing the other child’s hand away)

3. Cooperation - the children were working together and /or communicat-
ing about how to perform a task (e.g. talking, joint attention (looking at
the same object together), nodding)

4. Dominance - one child was bossy, performing most of the actions on
the touch-screen or clearly in charge (e.g. pointing to touch-screen and
talking at the other child, stopping the other child from using the touch-
screen, being the only child to use the touch-screen)

5. Aimlessness - at least one child was interacting with the touch-screen
in a non-goal-directed manner or without being very engaged in their
task (e.g. sitting slightly away from touch-screen whilst still using it,
slow/lazy movements on touch-screen, not always looking at what

they’re doing)
6. Fun - at least one child was having fun (e.g. laughing, smiling)

7. Excitement - at least one child behaved excitedly (e.g. more dynamic
than just "having fun", hearty laughter, open smiling mouth, fast move-

ments)

The experimenters first extracted and labelled clips independently, and then
discussed their choices together in order to reach a consensus. Both children
in each clip were taken into consideration such that if one child exhibited
‘excitement” and the other ‘boredom’, both labels were applied to the clip
(see Table 2.2).

The original versions of the selected clips made up the full-scene condi-
tion of this experiment. To construct the movement-alone versions, each clip
was processed using the OpenPose library (Cao et al., 2017), an open source
library which can be used extract the locations of joint points and other land-
marks on the human body from a video feed and render them onto a black
background to generate new videos (see Figure 2.1, right).

Participants providing their ratings about the children’s behaviours, in-

ternal states and social dynamics via a questionnaire. The questionnaire was
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designed by considering a selection of internal states and social constructs
which, first, are related to the labels listed above, and second, might be de-
sirable to have an artificial system (e.g. social robot) able to recognize. The
resultant questionnaire consisted of 4 items concerning group dynamics, and
13 2-part items regarding possible internal states experienced by each child
separately. In all cases, participants were asked to rate, on a 5-point scale
ranging from ‘Strongly Disagree’ to ‘Strongly Agree’, how much they agreed
with a statement that the children or a specific child was experiencing a given
social dynamic or internal state. Each of the 13 pairs of questions were pre-
sented together such that participants were first asked about the child on
the left, and then about the child on the right. Apart from this, the order
of question presentation was fully randomized during the experiment (see
Appendix A of Appendix C for the questions and response options).

TABLE 2.2: Labels that experimenters assigned to each clip dur-
ing clip selection.

Clip Label 1 Label 2 Label 3
01 Aggression

02 Aggression  Excitement Aimlessness
03 Excitement Fun

04 Cooperation

05 Boredom  Aimlessness

06 Cooperation

07 Dominance

08 Boredom

09 Cooperation

10 Cooperation Dominance

11 Cooperation Dominance

12 Aggression  Aimlessness

13 Excited Aggression Aimless
14 Aggression Fun

15 Dominance

16 Cooperation Dominance

17 Excitement  Aggression

18 Aggression  Dominance

19 Dominance

20 Excitement
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2.2.3 Apparatus

The experiment script was written using the jsPsych library? and was re-
motely hosted from a private server. MTurk Workers were able to access
the experiment through a link provided in an advert posted on the Amazon
Mechanical-Turk website. Due to the online nature of this study, we were un-
able to control the physical set-up experienced by participants, nor the time
and conditions under which the experiment was completed. A screenshot of
how the questionnaire portion of the experiment was presented can be seen
in Figure 2.2.

2.2.4 Procedure

For each video condition (full-scene and movement-alone) a separate exper-
iment was posted. To ensure that participants only saw one condition, the
experiments were posted one after the other and participants who had seen
the first experiment were not given access to the second.

For both conditions the experiment proceeded as follows. Participants
were first asked to provide their MTurk ID and presented with a welcome
screen. This was followed by a consent form wherein participants were pro-
vided a short description of the experiment and information regarding their
right to withdraw and contact details for the experimenters. Consent could
be given by selecting one of two response buttons (“I do not consent” or “I
do consent”). If the participant selected “I do not consent” the experiment
was automatically closed and participants were returned to the MTurk ad-
vert page. If they instead selected “I do consent” they were provided with a
“Continue” button which took participants to a series of four demographic
questions (age, nationality, first language and gender). Following this partic-
ipants were presented with the following detailed instructions:

“During this experiment you will be shown 4 30-second clips of children inter-
acting. The children are sat either side of a touch-screen table-top on which they can
play a game. Pay particular attention to the way the children interact. After each
video you will be asked some questions about what you have watched.”

This was presented for a minimum of 3500ms to ensure that it could not be
inadvertently skipped. After the 3500ms had elapsed a “Continue” button
would appear which took participants to the experimental trials.

Each participant was presented with 4 trials which each followed the

same series of events. First a 30-second clip, randomly selected from the list

Zhttps://www.jspsych.org/
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How much do you agree with the following statements?

The children were competing with one another.

Strongly Disagree Disagree Not Sure Agree Strongly Agree

The child on the left was sad.

strongly Disagree Disagree Mot sure Agree Strongly Agree

The child on the right was sad.

Strongly Disagree Disagree Not Sure Agree Strongly Agree

The child on the left was aggressive.

strongly Disagree Disagree Not Sure Agree Strongly Agree

The child on the right was aggressive.

strongly Disagree Disagree Not Sure Agree strongly Agree

The children were cooperating with one another.

Strongly Disagree Disagree Not Sure Agree Strongly Agree

The child on the left was excited.

Strongly Disagree Disagree Mot Sure Agree Strongly Agree

The child on the right was excited.

Strongly Disagree Disagree Not Sure Agree strongly Agree

Continue

FIGURE 2.2: Screenshot of the online experimental setup (full-
scene condition) showing the questionnaire, which was pre-
sented after the video clip in each trial. The image displayed
at the top is a static snapshot of the clip. Written consent for the
PInSoRo images to be shared was obtained during collection.
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How much do you agree with the following statements?

Were the people in the video children or adults?

Strongly Disagree Children Not Sure Adults Strongly Agree

What were the people in the video doing?

Playing on Table Disagree Petting a Dog Agree Str

(=]

Q

ngly Agree

Continue

FIGURE 2.3: Screenshot of the attention check questions pre-
sented at the end of the experimental trials. These questions
were presented in the same format as the main questionnaire,
but with only one possible correct answer. Thus incorrect re-
sponses would indicate that a participant was not properly
reading the questions. Incorrect responses to these questions
resulted in the participant’s data being excluded from the anal-
ysis

of 20, was presented. This was immediately followed by the 30-item ques-
tionnaire. In-between each trial participants were presented with a pre-trial
screen instructed them that they must press any key in order to begin the
next trial. After completing the fourth and final trial, participants were pre-
sented with an additional two questions which acted as an attention check.
Responses to these questions were used to assess how attentive participants
were and how diligently they had completed the experiment. They were
therefore designed to be deceptive unless carefully read. That is, the ques-
tions and response options were presented in the same format as the ques-
tionnaire items, but with only two viable response options, and only one
which was correct. For example, one of the questions read “Were the people
in the video children or adults?” and had the response options of “Strongly
Disagree”, “Children”, “Not Sure”, “Adults” and “Strongly Agree” (see Fig-
ure 2.3). Participants who responded incorrectly were excluded from the
analysis.

Once all of the experimental trials had been completed participants were
shown a debrief page which thanked them for their participation, explained

the purpose of the study and attention-check questions, and reiterated the
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contact information for the experimenters in case of further questions or re-
quests to withdraw from the study. Finally, participants were provided with
a unique, randomly generated “survey code” and were instructed to return
to the MTurk page and submit this code. Survey codes were later used by
the experimenters to validate participation and authorize payment via the
MTurk system. The experiment took between 20-30 minutes for each partici-

pant to complete.

2.3 Results

Data analyses were run using the Python pandas and sklearn toolkits in
Jupyter Notebook. The analysis scripts can be found in the accompanying
github repository (see Section 2.6 for details).

2.3.1 Inter-rater Agreement

The first step in the analysis was to examine whether participants in each
condition gave similar ratings across all questions for each clip. This analysis
was conducted to answer the question of whether there were any internal
states or social constructs which were recognizable in both video conditions.
To this end, inter-rater agreement scores were calculated across all 30 ques-
tions for each clip in each condition separately. A high agreement score for a
clip would indicate that similar ratings were given, and therefore that similar
states/behaviours were recognized by the participants viewing that clip.

The fact that there were unequal numbers of participants rating each clip
means that Krippendorft’s alpha (Hayes and Krippendorff, 2007) was the ap-
propriate metric for inter-rater agreement. Alpha scores ranged from 0.058-
0.463, i.e. from “slight’ to ‘moderate” agreement according to the benchmarks
provided by Landis and Koch (1977) (see Table 2.3).

A paired samples t-test was conducted to assess whether agreement scores
differed across condition. This analysis showed that participants in the full-
scene condition had significantly higher agreement scores (M = 0.328, SD =
0.113) than participants in the movement-alone condition (M = 0.252, SD =
0.081) (Paired Samples T-Test: £(39) = 2.95, p = 0.008, d = 0.78). Addi-

tionally, a t-test comparing agreement in the movement-alone condition to
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TABLE 2.3: Table of inter-rater agreement scores for responses
to each clip in each condition

Clip Krippendorff’s Alpha (3 d.p.)
Full-Scene (N) Movement Alone (N)

1 0.446 (16) 0.186 (26)
2 0.181 (24) 0.270 (20)
3 0.393 (22) 0.369 (18)
4 0.444 (22) 0.262 (23)
5 0.328 (23) 0.283 (20)
6 0.463 (19) 0.359 (19)
7 0.091 (19) 0.236 (23)
8 0.339 (19) 0.312 (17)
9 0.097 (20) 0.058 (18)
10 0.396 (18) 0.086 (13)
11 0.280 (17) 0.234 (23)
12 0.368 (25) 0.298 (16)
13 0.334 (20) 0.189 (21)
14 0.310 (17) 0.309 (21)
15 0.422 (26) 0.242 (14)
16 0.192 (16) 0.272 (21)
17 0.273 (17) 0.183 (21)
18 0.334 (16) 0.331 (24)
19 0.415 (22) 0.304 (19)
20 0.451 (18) 0.250 (23)

chance (chance level Krippendorff’s Alpha = 0.0) demonstrated that, de-
spite the significantly lower agreement scores, agreement between partici-
pants in this condition was still significantly above chance (One Sample T-
Test: t(19) = 13.95, p =< 0.001, d = 3.12).

The agreement within each condition suggests that participants in each
condition did report recognizing similar states and social constructs in the
clips. The greater agreement in the full-scene condition likely reflects the fact
that, with full visual information there is less uncertainty about what inter-
nal states and social constructs are being observed than when the view is
impoverished (i.e. just the movement information is visible). Having identi-
fied that participants within each condition did show a tendency to recognize
the same internal states and social constructs in each clip, the next step is to

examine whether there is any overlap in which states and constructs were
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recognized in each condition.

2.3.2 Automatic labelling of internal states

Implementation of the classifiers described below was done primarily by Dr
S. Lemaignan.

The following analyses examined whether there was any overlap in which
internal states and social constructs were recognized by participants in each
condition. This was investigated using supervised machine learning: would
a classifier, when trained to label clips based on ratings from the full-scene
condition, be able to label the clips equally well based on the ratings from
the movement-alone condition? If so, this would suggest that the same in-
formation was reported by, and therefore recognized by and available to,
participants in each video condition.

Pre-processing. The four group-dynamics ratings were excluded from
this analysis. For the remaining questionnaire items, participant ratings were
re-coded with values from 0 (strongly disagree) to 4 (strongly agree). Addi-
tionally, these scores were transformed so that results could be more readily
interpreted in terms what behaviours and internal states characterized each
clip, regardless of which child exhibited those behaviours. First, the abso-
lute difference between scores for each child was calculated for each of the
13 constructs using the following equation:

diffconstruct = ﬂbs(leftconstruct - rightconstruct) (2.1)

This difference score is used to indicate the degree to which the children were
rated as behaving in the same way, or experience the same internal state, for
each construct.

The second score calculated was the sum for both children on each con-
struct (shifted to fall in the range [—2, +2]):

SUMconstruct = (leftconstruct + Vightconstruct) —4 (2.2)

This sum value indicates the strength of the rater’s belief that a given con-
struct was evident in the clip. These pre-processing steps resulted in 26 val-
ues for each clip: 13 difference scores and 13 sum scores.

Multi-label classification. In order to test whether participants reported

recognizing the same constructs in each video condition, we used a classifier
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TABLE 2.4: Classification results. Results are averaged over a
300-fold cross-validation. Values are given as percentages.

Accuracy Precision Recall F1-score

Full-scene 15.1 445 32.0 36.1
Chance 3.7 27.3 14.0 174
Movement-alone 15.8 41.6 32.7 36.3
Chance 3.9 28.2 14.2 17.9

TABLE 2.5: F1 scores for each independent label (Aggressive,
Aimless, Bored, Cooperative, Dominant, Excited, Fun). Values
are given as percentages.

Agg Aimless Bored Coop Dominant Excited Fun

Full-scene 42.2 295 56.6 30.7 379 322 25.1
Chance 18.8 17.3 11.7 18.2 20.0 18.6 114
Movement 43.7 19.4 58.5 29.6 434 31.2 275
Alone

Chance 20.1 16.1 10.7 18.7 19.9 17.3 104

to assess whether the ratings from each condition were sufficient for identi-
fying the internal states or social constructs which had been used to initially
label the clips. A classifier was trained in a supervised manner, using the 26
difference and sum scores as input, and the seven labels assigned during clip
selection (Table 2.2) as target classification labels. Due to the fact that some
clips had been assigned multiple labels, a multi-label classifier (Pieters and
Wiering, 2017) was used, using 7-dimensional binary vectors wherein a zero
value denoted that a label was not present in the clip, and a value of one
indicated that it was.

First, four different classifiers were compared (Random Forest classifier,
Extra-Tree classifier, Multi-Layer Perceptron classifier and k-Nearest Neigh-
bour classifier), all of which were implemented using the Python sklearn
toolkit. Hyper-parameters were optimized using a grid-search where appli-
cable. This comparison showed that the k-Nearest Neighbour (kNN with
k = 3) classifier provided the best overall performance and was therefore
used for the following analyses.

Several metrics were calculated to assess the performance of the kNN in-
cluding accuracy, precision, recall and F1 score (following the recommen-
dations in Sorower (2010) and using the weighted implementations of the
metrics available in the Python sklearn toolkit). Specifically, accuracy was
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calculated as the percentage of instances where the predicted labels exactly
matched with the actual labels (true positives). Precision was calculated as
the ratio of true positives (tp) divided by the total number of predicted labels

(true positives + false positives (fp)):

... tp
precision = P+ fp (2.3)

Recall was calculated as the ratio of true positives over the total number of

labels that should have been found (true positives + false negatives (fn)):

__tp
recall = it (2.4)

The F1 score is the harmonic average of the precision and recall, and was

calculated as: .
2precision - recall

25
precision + recall (25)

Flscore =

Chance levels for each metric were also calculated by training the classi-
fier with randomly generated labels (using the same distribution of labels
as found in the real data set).

In the first stage of this analysis, the kNN classifier was trained with 80%
of the full-scene ratings data, and tested on the remaining 20%. Second, the
classifier was trained with 100% of the full-scene ratings data and tested on
100% of the movement-alone ratings. Results from these analyses are pre-
sented in tables 2.4 and 2.5. Table 2.4 shows that, whilst performance in both
tests was poor to moderate (i.e. 15.8% accuracy for exact predictions of labels
when tested on movement-alone ratings), performance was still markedly
above chance. In fact, calculating permutation-based p-value using the pro-
cedure in Ojala and Garriga (2010) revealed that performance scores on both
the full-scene testing data (p = 0.02) and the movement-alone testing data
(p = 0.01) was significantly above chance.

Importantly, performance scores are very similar in each testing condi-
tion which indicates that, from the perspective of automatic data classifica-
tion, the ratings data from the movement-alone condition contains roughly
as much detail, and the same types of information, as the full-scene ratings.
This, in turn, suggests that the movement-alone clips contain sufficient in-
formation for identifying at least some of the internal states and social con-
structs that can be recognized from the full-scene clips. In order to identify
whether there were certain internal states or social constructs which were

easier to recognize from the ratings data than others, the F1 scores for each
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FIGURE 2.4: F1 scores describing the harmonic average of the

precision and recall of the kNN for each of the 7 target labels

when trained and tested with the ratings from the full-scene

condition (black), and when trained with the ratings from the

full-scene condition and tested with the ratings from the move-
ment alone condition (gray).

label was calculated in each testing condition (see Table 2.5 and Figure 2.4).
Based on these results there are certainly some internal state labels which
appear to have been much easier for the classifier to identify than others.
Namely the labels ‘Bored” and “Aggressive” out-performed all the other labels
in both conditions (full-scene: 56.6% and 42.2%; movement-alone: 58.5% and
43.7% respectively). This suggests that these constructs may be as readily
recognizable from the full visual scene as from an impoverished view con-
taining only body movements and postures. In contrast, the F1-score for the
label ‘Aimless” dropped markedly when the movement-alone ratings were
used as input (19.4%), compared to when the full-scene ratings were used
(29.5%). This could indicate that aimlessness, whilst fairly well recognized
when viewing the full visual scene, is much harder to identify from move-
ment information alone. One possible explanation for this is that participants
in the full-scene condition were able to use behavioural cues (e.g. eye gaze)
which weren’t available in the movement-alone clips. Thus it may be that
there are behavioural cues which are particularly useful for recognizing aim-
lessness but that are unavailable in the movement-alone clips.

These analyses utilized the labels assigned by two of the experimenters
during clip selection, which may not reflect the full range of internal states
and social constructs which participants recognized in the clips. In order to

investigate a broader range of constructs which may have been identifiable
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in each video condition a factor analysis was conducted to identify latent
constructs underlying the ratings data. This analysis was intended to identify
more general constructs which participants may have used to understand the

interactions, and which characterize a wider range of specific labels.

2.3.3 Factor Analysis

An Exploratory Factor Analysis (EFA) was conducted to identify more gen-
eral constructs which describe how participants rated the videos. This anal-
ysis was motivated by the idea that, if similar latent constructs are found to
underlie the ratings from each condition it would suggest that the same types
of information were available to participants in each condition. Furthermore,
identifying what these underlying constructs might be could provide an indi-
cation as to the ‘classes’ or ‘types’ of internal states (e.g. emotions) and social
constructs (e.g. team dynamics such as dominance and leadership) that can
be identified from movement information alone.

EFA. The appropriateness of an EFA was established by running a Kaiser-
Meyer-Olkin (KMO) test which revealed that both the full-scene difference/sum
scores (KMO = 0.88) and the movement-alone scores (KMO = 0.88) were
suited for factor analysis. Additionally the Bartlett’s test for sphericity was
significant for both data sets (full-scene: )(2 = 5219.979, p < 0.001; movement-
alone: x? = 5447.747, p < 0.001). These results indicate that it is appropriate
to use an EFA on these data.

An EFA was carried out on the difference/sum scores from each video
condition separately in order to examine what types of interaction informa-
tion participants were able to draw from the full visual scene compared to
the movement information alone. Specifically, the factor_analyzer Python
module® was used to perform the EFA with promax rotation. Three factors
were identified which explained 44% of the variance in the full-scene data,
and 46% in the movement-alone data. Factor loadings for each of these three
components in each video condition are reported in Table 2.6.

The similarity between the factors found in each condition was assessed
using Pearson correlation tests. These tests revealed strong positive correla-
tions between each pair of factors for Factor 1: r = 0.94, p < 0.001; for Factor
2:r = 0.84, p < 0.001; for Factor 3: r = 0.81, p < 0.001. These results support
the hypothesis that the same latent constructs are evident in the ratings from

Shttps://github.com/EducationalTestingService/factor_analyzer
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TABLE 2.6: Factor loadings for the three-factor solution using
EFA, with factor loadings > 0.35.

Factor 1: imbalance Factor 2: valence Factor 3: engagement
full-scene  mov.-alone | full-scene mov.-alone | full-scene  mov.-alone
Diff Sad 0.41 0.52
Sum Sad 0.72 0.53 0.49
Diff Happy 0.49 0.53
Sum Happy -0.51 -0.55
Diff Angry 0.40 0.62
Sum Angry 0.81 0.85
Diff Excited 0.53 0.63
Sum Excited -0.71
Diff Calm 0.45 0.63
Sum Calm -0.45
Diff Friendly 0.69 0.56
Sum Friendly -0.60 -0.43
Diff Aggressive 0.78 0.79
Sum Aggressive 0.80 0.72 -0.36
Diff Engaged 0.39 0.65 0.52
Sum Engaged -0.64 -0.64
Diff Distracted 0.65 0.63
Sum Distracted 0.63 0.82
Diff Bored 0.44 0.61 0.54
Sum Bored 0.58 0.48 0.83
Diff Frustrated 0.53 0.61
Sum Frustrated 0.70 0.69
Diff Dominant 0.75 0.81
Sum Dominant 0.53 0.52
Diff Submissive 0.68 0.72
Sum Submissive 0.54

each condition. Thus it appears likely that participants in each condition re-
lied upon the same general constructs when rating the clips.

Taking a closer look at the distribution of factor loadings allows us to in-
terpret each latent construct. The first factor consists largely of difference
scores for the emotion items as well as the team-work related items (domi-
nant, submissive) and thus appears to describe how different the children’s
behaviours and internal states were during the interaction. This factor has
therefore been labelled as imbalance as it seems to mostly describe the degree
to which children were rated as exhibiting the same behaviours and internal
states. For example, a high score on this factor would indicate that the chil-
dren were rated as exhibiting very different states and behaviours, e.g. one
child was rated as very happy, and the other as not happy at all.
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TABLE 2.7: Classification results, including classification in
EFA-space. Scores from the classification of clip labels copied
from Table 2.4 for comparison. Values are given as percentages.

Accuracy Precision Recall Fl-score

Full-scene, EFA 11.2 38.3 26.2 30.0
Full-scene, Labels 15.1 44 .5 32.0 36.1
Chance 3.8 28.1 14.2 17.8
Movement-alone, EFA 11.7 35.1 27.0 30.3
Movement-alone, Labels 15.7 41.6 32.7 36.3
Chance 3.9 28.3 14.2 17.9

The second factor has positive correlations mostly with the sum items for
negative emotions and behaviours (e.g. angry, sad and aggressive) in both
conditions. Additionally, in the movement-alone condition, this factor also
has strong negative correlations with the sum scores for positive items (e.g.
happy, calm and friendly). It can, therefore, be interpreted as the valence of
the interaction. To illustrate, a high score on this factor could indicate an
interaction where both children were rated as being very sad or aggressive.
Alternatively, in the case of an interaction which scored highly on the imbal-
ance factor, a high score on the valence factor could indicate that one child
was much more sad/angry than the other child was happy/friendly.

Finally, the third factor shows correlations mostly with items related to
task engagement. Specifically, this factor has a strong negative correlation with
Sum Engaged, and a strong positive correlation with Sum Distracted such that
a high, positive value on this factor would indicate that, overall, the chil-
dren were not very engaged with their task. At the same time, this factor
is positively correlated with items related to the difference items; Diff En-
gaged, Diff Distracted and Diff Bored. Thus this factor also contains information
about the degree to which the children exhibited the same task engagement
behaviours. Consequently, a high positive value on this factor would indi-
cate that, whilst overall the children were mostly rated as being distracted
or bored, there was also a big difference between the children. For example,
such a score could indicate that one child was extremely bored/distracted,
whilst the other child was somewhat engaged in the play task.

Social expressiveness of the EFA-space embedding. As a final step in
this analysis, the same classification methodology as described in Section
2.3.2 was applied to the EFA embedding of participants” ratings. This was
done to examine whether these three factors, by themselves, would allow for
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TABLE 2.8: F1 scores for each independent label, including after
classification in the EFA-space. Scores from the classification of
clip labels copied from Table 2.5 for comparison. Values are

given as percentages.

Agg Aimless Bored Coop Dominant Excited Fun
Fullscene, 37.8 16.2 539 294 29.7 259 20.6
EFA
Fullscene, 42.2 29.5 56.6  30.7 37.9 322 25.1
Labels
Chance 19.1 16.5 11.7  19.0 19.6 17.4 11.0
Movement alone, 36.5 24.0 49.2 24.6 33.7 274 12.2
EFA
Movement alone, 43.7 194 58.5 29.6 434 31.2 275
Labels
Chance 19.8 16.4 10.7  18.9 19.9 17.9 10.5

an effective and meaningful assessment of the ratings in order to describe
the social interactions. To this end, the 26-dimensional ratings (difference
and sum scores) were projected onto the 3-dimensional EFA space according
to the following equations:

EFA _ EFA
Mfullscene - Mfullscene ) Afullscene (2.6)
EFA _ EFA
M, ovementatone = Mmovementalone - Afullscene (2.7)

EFA
Mfullscene

the 396 x 3 matrix of participants’ ratings projected onto the EFA space, and
AEFA is the 26 x 3 matrix of the EFA factor loadings (Table 2.6). Both the

fullscene
full-scene and movement-alone clips were projected onto the same full-scene

where My jiscene is the 396 X 26 matrix of participants’ ratings, is

EFA space (i.e. the space constructed using the EFA factors generated from
the full-scene ratings data).

A kNN classifier (k = 3) was then trained, following the same procedure
as before, to predict each clip’s position in the full-scene EFA space (i.e. its
scores on each factor) based on the difference/sum ratings data. That is, the
kNN classifier was first trained on 80% of the full-scene ratings and tested
on the remaining 20%, and then trained on 100% of the full-scene ratings,
and testing on all of the movement-alone ratings. Tables 2.7 and 2.8 show the
results of this classification test. Whilst we do observe a drop of about 4-6%
in performance, all of the performance scores are still above chance.
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2.4 Discussion

This study set out to identify a set of internal states or social dynamics which
could be identified from body posture and movement information by human
observers. To this end, participants viewed clips of child-child pairs interact-
ing in a free-play setting. Clips were selected based on whether at least one of
the seven labels “Aggression’, “‘Aimlessness’, ‘Boredom’, ‘Cooperation’, ‘Ex-
citement” and ‘Fun’ could be used to describe the behaviour and perceived
internal states of one or both of the children in that clip. Participants ei-
ther viewed the full visual scene, or a pre-processed version showing only
the body movements and postures of the children and were asked to rate
how much they felt each child demonstrated experiencing a series of 17 con-
structs. The full-scene condition was used to approximate a ‘ground-truth’ of
which internal states and social constructs could be interpreted/recognized
from each video clip. Thus, the ratings from this condition could be com-
pared to those from the movement-alone condition in order to establish whether
the same states and constructs could be recognized from just the children’s
movements and postures.

This was done primarily by training a 3-kNN classifier to label the clips
according to the seven original labels. The classifier was trained using the
full-scene ratings and tested on the ratings from the movement-alone con-
dition. Similar levels of performance were achieved by the classifier when
tested with the ratings from each condition, suggesting that the movement
and posture information was interpreted by participants in a similar way as
the information from the full-visual scene. Combined with the inter-rater
agreement scores, these results support the first hypothesis: participants will
be able to draw internal state information from the movement-alone videos.
That is, these results demonstrate that there was some similarity in how par-
ticipants rated the clips in each condition, and thus that there are at least
some internal states and social constructs which can be recognized from hu-
man movements and body postures with a similar degree of accuracy as from
the full visual scene.

After establishing that movement and body posture information is suffi-
cient for recognizing human internal states, this study also examined whether
there were certain states which are more readily recognizable from these data
than others. By calculating the F1-scores for each of the seven original labels,
this study identified that the labels ‘Boredom’, “Aggression” and ‘Dominance’

were most readily recognized regardless of video condition. In contrast, the
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label “‘Aimlessness” was much less successfully classified based on ratings
from the movement-alone condition compared to when the full-scene ratings
were used. These results suggest that endeavouring to train a classifier to rec-
ognize states such as Boredom or Aggression based on raw movement and
posture data will likely be more successful than training a classifier to rec-
ognize Aimlessness. These results provide support for hypothesis 2 which
posits that there will be some internal states which are more readily recog-
nized from movement information than others. Additionally, the results of
the EFA analysis suggest that the constructs of Imbalance, Valence and En-
gagement can be used to describe social interactions and can also be recog-

nized from just movement and posture information.

2.4.1 Limitations

A number of potential limitations are associated with this work. The first to
highlight is that the accuracy of the classifier, whilst above chance, was still
relatively low. This may reflect the fact that the task of rating internal states
from visual information is inherently difficult, and therefore the ratings used
as input for the classifier may not have been the most optimal source of in-
formation. Additionally, the participants” ratings were likely a more noisy
source of data than the video data, especially considering that there were
multiple sets of ratings for each clip, which differed from each other in var-
ious ways. Despite this, the goal of this study was not to train a classifier to
recognize internal states, but to identify which internal states could be most
readily recognized by human observers from movement information alone.
Thus the low accuracy of the kNN classifier is not overly concerning.

Second, participants did not have access to contextual information such
as what game the children were playing, the state of the game and the pre-
existing relationships between the children. The lack of such contextual cues
would have made the task of rating the children’s behaviour more challeng-
ing, and thus the ratings may not be as reliable or accurate as they could be.
This limitation is particularly important to consider given that this study was
motivated by the idea of creating artificial systems able to recognize human
internal states. In most, if not all, applications of such systems or robots, it
would be possible to provide an artificial system with at least some of these
contextual details and have it factor them into its classification decision.

A third limitation which may have impacted the accuracy of the classifier,
and the quality of responses, is that the questionnaire might not have been
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optimal for this task. The questionnaire used was hand-crafted based on
assumptions of what states were present in the interactions, and which might
be useful for a social robot to be able to identify. It is therefore possible that
it was not ideal for capturing a complete view of what participants were able
to recognize from the clips. Consequently, future work would benefit from
the development of a better, validated questionnaire for this type of research.

2.5 Conclusion

The results of this study demonstrate that it would be reasonable to expect
a machine-learning algorithm to recognize certain human internal states and
social constructs from human body movements and postures. Importantly,
this study highlights states such as aggression and boredom, as well as the
constructs of Imbalance, Valence and Engagement as likely to be more read-
ily recognized from such data than others (e.g. aimlessness). In highlighting
these states as more readily recognized, this study provides an answer to the
second research question of this project: what internal states can be recog-
nized from observable behaviours? Consequently, this study establishes a
‘jumping off point” to guide the rest of the studies in this project, particularly
decisions concerning which internal states to attempt to classify, and what
types of data to use as input. Specifically, based on the EFA results and the
finding that “Boredom” was most readily classified from participants’ rat-
ings, the remaining studies focus on the classification of task engagement

from human movement and body posture information.

2.6 Open-Source Resources

The following github repositories contain scripts for the experiment and anal-

ysis.
https://github.com/maddybartlett/Thesis_Notebooks/tree/master/Chapter2_
WhatCanYouSee,
https://github.com/maddybartlett/pinsoro-kinematics-study.
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Study 2 - Data-Set Validation

Parts of this study were presented and published as part of a workshop at
the 2019 ACM/IEEE International Conference on Human Robot Interaction
(see Appendix D) (Bartlett et al., 2019a).

3.1 Introduction

Based on the findings of the first study (Chapter 2; Bartlett et al., 2019b) that
states relating to task engagement (e.g. boredom) are recognizable to humans
from movement and posture information, the rest of this project focuses on
classifying task engagement from observable human behaviours. Consider-
ing that the goal is to establish a method for classifying multiple levels of
intensity of task engagement, it is necessary to establish a data set which
contains examples of humans experiencing such states. We chose to continue
using the PInSoRo data set, specifically the videos of child-child interactions.
The videos had been annotated for a range of behaviours including whether
each child was engaged in “goal oriented’, ‘aimless’ or 'no’ play. The study re-
ported in this chapter was designed to assess the assumption that these labels
reflect 'high’, “intermediate’ and low”’ levels of task engagement respectively.
In order to examine this participants were presented with both the full-scene
and movement alone versions of video clips which had been annotated with
each label, and asked to rate one of the children’s level of task engagement

along a Likert scale.

Hypotheses and Predictions

Based on the assumption that the play labels reflect levels of task engage-
ment, the following hypothesis was made:
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1. Participants will rate children’s engagement differently, depending on
whether they were originally annotated as partaking in goal-oriented,

aimless or no play.

It was predicted that participants” ratings of children’s engagement would
be highest for goal-oriented clips, lowest for no play clips, and that aimless

clips will be rated lower than goal-oriented and higher than no play.

3.2 Method

3.2.1 Participants and Design

This study had a 2 (full-scene vs. movement-alone) x 3 (clip-type/annotation)
design. Five participants (students and employees) were recruited from the
University of Plymouth’s School of Computing, Electronics and Mathemat-
ics on a volunteer basis. Demographic information was not collected. All

participants took part in all six conditions.

3.2.2 Materials

For stimuli, forty-five video clips were extracted from the PInSoRo (Lemaig-
nan et al., 2018; Lemaignan, Edmunds, and Belpaeme, 2017) data set for
this study. Clips were extracted based on the annotations for the "purple
child’, positioned on the left of the frame in the video clips. A total of 15
‘goal-oriented’, 15 "aimless” and 15 'no play’ clips were extracted. Selection
was made semi-randomly whilst ensuring that the clips were of a reasonable
length and that there were no anomalies within the clips (i.e. a third-party
entering the frame). Clip lengths ranged from 12-30 seconds. After clips
were selected, the movement-alone versions were constructed using Open-
Pose (Cao et al., 2017) as described in Chapter 2.

3.2.3 Apparatus

The experiment was written using the JSPsych library. For each participant,
two separate experiment scripts were written, one for the full-scene clips,
and one for the movement-alone clips. Clips were divided across experiment
scripts such that each participant saw 9 examples of each clip-type, and each
clip was rated by at least 3 participants. Each participant saw the same clips

in each video condition.
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The experiment was presented on a desktop computer. Participants were
positioned a comfortable distance away from the screen where they could
still reach the keyboard and mouse to provide responses. Only the experi-
menter was in the room with each participant during the experiment, posi-

tioned so that they were out of sight to the participant.

3.2.4 Procedure

For each participant the experiment was split across two days. Participants
watched the full-scene clips on the first day and were then asked to return the
next day when they would watch the movement-alone clips. Participants all
received the following instructions before beginning the experiment:

You're about to watch several videos of children interacting with a touch-screen
sand-tray. The children were able to either play a specific game on the sand-tray, or
to do whatever they want. After each clip you will be asked to judge the child’s level

of task engagement.

Participants were then given the opportunity to ask the experimenter ques-
tions about what they would be doing and were instructed about their right
to withdraw before beginning the experiment.

At the beginning of the experiment, the instructions were reiterated and
participants were asked to provide consent. The consent form was presented
within the experiment script and participants were given two options at the
end of the form. If participants selected the “I consent” option, the exper-
iment proceeded as normal. If participants selected “I do not consent” the
experiment was terminated. Participants then viewed nine of each type of
clip (a total of twenty-seven clips) presented in a random order. Following
each clip, participants were presented with the question “How engaged was
the child with their task on the touch screen table-top?”. Participants rated the
children’s engagement using a 7-point Likert scale ranging from 1 = “Not at
all Engaged” to 7 = “Highly Engaged”. Once they submitted their rating they
would continue on to the next clip.

At the end of the experiment on the first day, participants were given the
opportunity to ask any questions they may have and were asked to return
the next day to complete the second half. On the second day, the experiment
proceeded in the same way except participants were shown the movement-
alone clips instead of the full-scene clips. At the end of the second session

participants were fully debriefed on the nature and purpose of the study and
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were thanked for their participation. Each session took approximately 10-15

minutes to complete.

3.3 Results

All analyses were run in R Studio. The analysis scripts can be found in the
accompanying github repository (see Section 3.5). The data were analysed
in two main ways; examining inter-rater agreement, and comparing actual

ratings.

3.3.1 Inter-Rater Agreement

Inter-rater agreement was examined in 2 different ways by calculating Krip-
pendorff’s alpha. The first analysis explored whether participants had pro-
vided similar responses for each clip-type regardless of video condition. This
was done by calculating Krippendorff’s alpha across all responses to each
of the 3 clip-types. The alpha scores have been interpreted in terms of the
benchmarks outlined by Landis and Koch (1977). Responses showed “fair”
agreement for the goal-oriented play clips (Krippendorff’s alpha = 0.269) and
the no-play clips (Krippendorff’s alpha = 0.267). Responses for aimless play
clips showed “slight” agreement (Krippendorff’s alpha = 0.171).

Agreement across each clip-type when viewing the full-scene clips com-
pared to the movement-alone clips was then assessed. The results of this
analysis can be seen in Table 3.1. Whilst agreement for the goal-oriented
and no play clips remained fairly stable across video condition, the ratings
for the aimless play clips show a marked drop in agreement in the move-
ment alone condition (from 0.247 in the full-scene condition, to -0.022 in the
movement-alone condition). One possible reason for this may be that par-
ticipants relied more on cues available only in the full-visual scene for rec-
ognizing intermediate engagement. These could include spatial cues such as
the child’s position relative to the sand-tray, or facial expressions/gaze be-
haviours which are more difficult to interpret from the 2D skeleton figures.
Additionally, it is likely that the childrens” behaviours when they exhibited
goal-oriented and no play were more distinctive. That is, when the children
were goal-oriented they were likely more focused on the sand-tray (looking
down) and more expressive in their movements given that they were play-
ing. In contrast, ‘no play’ behaviours likely involved less attention to the

sand-tray (looking away) and less expressive behaviours as the child was not
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FIGURE 3.1: Boxplot of Engagement ratings for Goal-Oriented,

Aimless and No Play clips. Ratings from both conditions were

included in this plot resulting in at least 6 ratings for each clip,
and at least 90 ratings for each clip-type.

TABLE 3.1: Table of inter-rater agreement scores for responses
to each clip-type in each condition

Clip Type Krippendorff’s Alpha (3 d.p.) ‘
Full Scene  Movement Alone
Goal Oriented Play  0.382 (fair) 0.368 (fair)
Aimless Play 0.247 (fair) -0.022 (poor)
No Play 0.126 (slight) 0.202 (fair)

TABLE 3.2: Table of results for post hoc Tukey’s Honest Signifi-
cant Difference test.

Comparison Difference Significance (p adj)

Goal Oriented — Aimless 0.644 p = 0.008
Goal Oriented — No Play 2.378 p < 0.001
Aimless — No Play 1.733 p < 0.001
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playing (sitting still). On the other hand, aimless play likely involved some
attention to the sand-tray, and some playful behaviours but that were less
energetic and expressive than goal-oriented play behaviours. Thus distin-
guishing between the extremes is much easier, whilst the amount of overlap
between the extremes and the aimless behaviours potentially made this class
harder for participants to label.

3.3.2 Ratings

The second set of analyses looked at the how participants rated each type of
video. Overall mean engagement rating for goal-oriented videos was 4.81
(5D = 1.25), for aimless videos was 4.16 (SD = 1.52), and for no-play videos
was 243 (SD = 1.54) (see Figure 3.1). An ANOVA revealed a significant
main effect of clip-type on engagement ratings (F(2,267) = 64.99, p < 0.001,
17% = .329). Importantly, a post hoc Tukey test revealed significant differences
between all conditions (Tukey’s HSD: all differences >0.6, all p’s <0.009; see
Table 3.2).

3.4 Discussion & Conclusion

This study aimed to validate the assumption that the annotation labels re-
garding play style in the PInSoRo data set are analogous to different levels of
task engagement. Participants viewed clips of child-child interactions where
the left-hand child had been annotated as demonstrating goal-oriented, aim-
less or no play behaviour. They were asked to rate these clips in terms of how
engaged they felt the child was with their play task. It was predicted that rat-
ings of children’s engagement would be highest for goal-oriented clips, low-
est for no play clips, and that ratings for aimless clips would fall somewhere
in-between.

It should be noted that there are a number of limitations with this study
which prevent us from drawing strong conclusions. First, the order of con-
dition was not counterbalanced; all participants saw the full-scene clips on
day one, and the movement-alone clips on day two. Thus these results may
have been influenced by order effects. Second, this study used a very small
number of participants and no power analysis was conducted. This is largely
because this study was only intended to assess whether the assumption that
the task-engagement labels in the PInSoRo data-set could be translated in
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this way. As such, this study was intended more as an exploration of seman-
tics in order to provide support for interpreting the existing labels as high,
intermediate and low engagement.

Additionally, the low agreement in ratings given for aimless play clips
in the movement-alone condition are potentially concerning. It may sug-
gest that there is not sufficient information in the movement-alone videos
for recognizing intermediate task engagement. Alternatively, as discussed, it
may be that distinguishing between the extreme behaviours and aimlessness
was more difficult due to the overlapping behaviours (e.g. aimless and goal-
oriented could both involve attention on the sand-tray, and aimless and no
play could both involve less movements). Whilst it is possible that this might
make the task of distinguishing between these behaviours more difficult for a
classifier, it is also possible that a computational system will be able to iden-
tify and utilize objective, quantifiable differences that human observers do
not.

Ultimately, the results do show support for the argument that the existing
play labels reflect three intensities of task engagement; participants rated the
clips such that goal-oriented clips showed the highest engagement scores,
no-play clips showed the lowest, and aimless clips fell in-between these two
extremes. The remaining studies in this project, therefore, continue to utilize
the PInSoRo data set, exclusively using clips of the different play behaviours,
which we henceforth refer to as task engagement.

3.5 Open-Source Resources

The following github repository contains scripts for the experiment and anal-

ysis as well as the final, anonymous data set.
https://github.com/maddybartlett/Thesis_Notebooks/tree/master/Chapter3_
ValidatingDataset
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Chapter 4

Study 3 - Classifying Internal
States from Observable Behaviour

Parts of the work reported in this chapter were presented and published as
part of a workshop at the 2019 ACM/IEEE International Conference on Hu-
man Robot Interaction (see Appendix D) (Bartlett et al., 2019a).

4.1 Introduction

The exploration of psychological studies on the experience of internal states
provided in Chapter 1 has provided one possible answer to the first research
question: what representation of internal states best reflects the experience of those
states, and may lend itself to the problem of providing flexible and appropriate re-
sponses from artificial agents?. That is, representing internal states as varying
along a continuum of intensity allows one to select multiple intensity ‘levels’
for an agent to respond to, thus providing the opportunity for more flexibil-
ity in an artificial agent’s behavioural protocols. The first study in this project
(Chapter 2) has also provided an answer to the second research question by
identifying a selection of internal states which can be recognized by humans
from movement and body posture information. Specifically, the state of bore-
dom and the construct of task engagement were identified as readily recog-
nizable by humans (Bartlett et al., 2019b). The next step in this project is to

explore the third research question:

“How successfully can such states be recognized by an artificial system

using machine learning methods?”

The review of the state-of-the-art in Chapter 1 revealed that a wide variety
of machine-learning methods have been applied to the task of recognizing
internal states. In contrast to existing categorical approaches which require

that each class be trained, the final goal of this project is to be able to train a
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system on the extremes of a state (high and low intensity) and then to have it
generalize to estimate intermediate intensity states without training. The fol-
lowing studies therefore compare two types of approach, one which allows
for interpolation between the trained extremes, and one which produces a
continuous output (i.e. values ranging between -1 and +1) which can then be
categorized into ‘high’, ‘low’ or “intermediate’.

Additionally, given the promising results of the study presented in Chap-
ter 2 (Bartlett et al., 2019b), the following studies focus on using body move-
ment and posture information as input for recognizing internal states. Given
that both internal states and body movements/postures are dynamic and
change over time, and that it is therefore reasonable to expect that the un-
folding of human movements over time carries more information than indi-
vidual moments in time, only those techniques which are able to deal with
temporal data are considered. Within the field of machine-learning a variety
of approaches to classifying temporal data have been developed. These can
be separated into two main classes, the first of which uses single values to
describe a data signal over time, i.e. an ‘average over time’ value. For exam-
ple, Sanghvi et al. (2011) used first, second and third derivatives of posture
features over the course of each clip as input for their classifiers. Other meth-
ods involve having a classifier label individual frames (Whitehill et al., 2014;
Bartlett et al., 2003). Bartlett et al. (2003) applied an SVM to the problem of
classifying emotions from video sequences of people’s faces. Their approach
was to use seven binary classifiers (one for each classification label) and have
each one classify every frame of a video sequence. This was done by giving
each frame a score from 0-1 where 0 = emotion not present and 1 = emotion
present. The classification decision was then made by selecting the classifier
with the greatest overall score across all the frames contained in the video
sequence.

Alternatively, a second set of approaches utilize some form of memory to
deal with dynamic, temporal data. A number of these fall under the class of
recurrent neural networks (RNNs). RNNs retain a memory of previous in-
puts through their internal hidden state (Poznyak, Oria, and Poznyak, 2018,
Chapter 3). RNNs have been successfully applied to the recognition of hu-
man behaviour in a variety of contexts and for numerous purposes. For ex-
ample, Tian, Moore, and Lai (2015) successfully applied a Long Short-Term
Memory (LSTM) RNN to the problem of recognizing emotion in terms of
arousal and valence from vocal cues. Similarly, Echo State Networks have

been applied to emotion recognition from speech signals (Trentin, Scherer,
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and Schwenker, 2015; Scherer et al., 2008). RNNs have also been success-
tully applied to predicting human intentions (Yan et al., 2019), recognizing
emotion from videos of facial expressions (Zhang et al., 2018) and detecting
conversational engagement from video and audio information (Lala et al.,
2017).

Thus, methods such as RNNs which utilize ‘memory’, have proven suc-
cessful at processing temporal data for classification of internal states. How-
ever, few of these approaches have been applied to the problem of estimating
an untrained ‘intermediate’ state after training on two extremes along a con-
tinuum. One approach, however, which shows particular promise for this
task is conceptors (Jaeger, 2014a) which have been shown to be useful for
generating novel ‘intermediate” dynamic patterns based on trained patterns
(Jaeger, 2014b).

4.2 Approach 1 - Conceptors

Conceptors are neuro-computational mechanisms that can be used to charac-
terize the state of a Recurrent Neural Network when it is driven by dynam-
ical patterns (Jaeger, 2014a). For example, suppose an RNN is driven with
the patterns (p) belonging to class P. Each pattern p; will result in a different
‘state” describing the network’s activity. The states associated with a class
of patterns will occupy a particular linear sub-space of the network’s state
space. Conceptors can be used to encode these sub-spaces and thus as maps

or ‘neural filters” associated with trained patterns (see Figure 4.1).

pattern p! pattern p? pattern p?

FIGURE 4.1: Illustration of the ‘state” of an RNN when driven
by three different patterns (p!, p?, p>; black dots). These state
clouds can then be characterized by Conceptors (C!, C2, C3; col-
ored ellipsoids). Image taken from Jaeger (2014a). Permission
to reproduce this diagram has been granted by Prof. H. Jaeger.
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Conceptors have been successfully applied to classification problems. For
example, in Jaeger (2014b) a conceptor-based RNN is applied to the prob-
lem of identifying the speaker from voice recordings (i.e. the Japanese Vowel
recognition task). In this study, after conceptors for each speaker were trained,
testing involved feeding new patterns into the RNN and calculating the pos-
itive and negative evidence scores for each conceptor. These scores indicated
how well the activity generated by a new pattern fits into the subspace char-
acterized by each trained conceptor. A combined evidence score was then
calculated, and the conceptor with the greatest combined score was chosen
as the classification decision. The first study reported in this chapter applies
this same approach to the problem of classifying levels of engagement based
on human movement and posture information.

For this project the main motivation behind using conceptors was the
fact that, once trained, conceptors can be combined together in order to cre-
ate new conceptors which can be thought of as a state lying in-between the
trained conceptors (Jaeger, 2014b). This has mainly been demonstrated in
the use-case of pattern generation for the purpose of smoothing transitions
between two patterns. For example, Jaeger (2017) report a study where a
reservoir network was fed 15 human motion patterns including ‘slow walk’,
‘fast walk’, ‘jog” and ‘run’. Conceptors were trained for each of these patterns
and were then fed back into the reservoir in order to generate the associated
human motion pattern. New conceptors were generated by morphing two
conceptors together, e.g. ‘slow walk” and ‘fast walk’. Smoother transitions
between ‘slow walk” and ‘fast walk’ could then be achieved by using first the
‘slow walk” conceptor followed by the morphed conceptors to control the
reservoir before finally feeding in the ‘fast walk’ conceptor. This morphing
capability, if applied to classification rather than generation, is a promising
solution to the problem of classifying intermediate states without requiring
training.

The first part of this chapter describes a conceptor-based approach to clas-
sifying high and low task engagement from observable human movements.
A conceptor-based network was trained on examples of the extreme levels of
engagement along a continuum of intensity (i.e. high and low). The aim was
to assess the performance of this approach with the eventual goal of com-
bining the resultant conceptors to generate a third conceptor for classifying
intermediate samples without training.

This work was conducted as part of the EU FP7 project DREAM!, funded

Lyww . dream2020 . eu
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by the European Commission?. The goals of DREAM were to develop sys-
tems to support the use of socially interactive robots in the diagnosis of, and
interventions for, Autism Spectrum Disorder. Consequently, one of the aims
of this project was to develop a system which could be implemented in sce-

narios where a child would interact one-on-one with a social robot.

Hypotheses and predictions
This study was guided by a single hypothesis:

1. Conceptors trained on examples of high and low task engagement will
be useful for distinguishing between test samples from these classes

with an above-chance level of accuracy.

4.3 Method

4.3.1 Materials

The data set for this study was taken from the PInSoRo (Lemaignan et al.,
2018; Lemaignan, Edmunds, and Belpaeme, 2017) data set. For the pur-
poses of this study, only the child-robot interactions were used. This was
because the goal was to provide a system which could be implemented by
the DREAM project wherein children would be interacting directly with a
robotic system in a diagnostic setting. Specifically, data was extracted from
the anonymous version of the PInSoRo data set which excludes the video
streams (Lemaignan, Edmunds, and Belpaeme, 2017). This data set was con-
structed by pre-processing clips using the OpenPose library” (Cao et al., 2017)
to extract skeletal and facial landmarks.

From this data set the pose, face and hands keypoints for each frame
where the child had been annotated with the labels “goal-oriented play”
(high engagement) and “no play” (low engagement) were extracted. Each
‘frame’ thus consisted of a 184-dimensional vector of the x and y coordinates
for body, face and hand keypoints. A total of 354 ‘clips” were taken from this
data set such that each clip was an n x 184 matrix. A subset of “high” (62
clips) and “low” (115 clips) engagement clips made up the training data set.

The remaining 177 clips made up the test data set.

2grant number 611391
3https://github.com/CMU-Perceptual-Computing-Lab/openpose/
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4.3.2 Conceptor-Based Network

Implementation and evaluation of the classifier described below was done
by Dr D. Hernandez Garcfa.

Procedure

In order to create a conceptor-based network it was first necessary to com-
pute 2 conceptors, one for each class. This was done by implementing an
echo state network (ESN) with a single hidden layer reservoir. For each class
the network was driven with all the training samples in each class one-by-
one, according to the update equation described in Jaeger (2014a). For this
procedure, each sample consisted of a single clip from the data set. From
here, a conceptor for each class was computed from the state correlation ma-
trix obtained from the ESN (for more details see Bartlett et al. (2019a) and
Jaeger (2014a)).

Once a conceptor for each class had been computed, new samples from
the test set were fed into the ESN. For each test sample a new state vector
was generated, describing the state of the ESN whilst it was driven by this
pattern. These vectors were compared to each of the trained conceptors, and
a “positive evidence” score was calculated to describe the degree to which
the new state vector could be characterized by each conceptor. Classification
decisions were then made such that the conceptor with the highest “positive
evidence” score was selected as the class to which the sample belonged.

4.4 Results

The results of testing the trained conceptors on previously unseen high and
low engagement samples are shown in Figure 4.2 (right). Performance is

above chance for both classes (high engagement: 60%, low engagement: 75%).

4.5 Discussion

The results of this study demonstrate that conceptors were successfully ap-
plied to the problem of distinguishing between high and low engagement
states based on observable human pose information. Based on this and the
studies using conceptor morphing in order to generate intermediate patterns

(Jaeger, 2017), it is reasonable to expect that a new conceptor, generated by
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combining the two trained conceptors, could potentially be used to recognize
intermediate engagement states.

As detailed in Jaeger (2014b), new conceptors can be constructed either
using logical AND, OR and NOT functions, or by mixing the two conceptors

(C1 and () using a scaling factor (u) as in the equation:

Ci=(1-pu)C+ucy) (4.1)

The use of boolean operations may not be appropriate for the task at hand as
they over-simplify the problem. For example, if we were to use the boolean
OR to construct an intermediate conceptor, the features used for classification
decisions are restricted to those shared by both trained conceptors. Thus the
resulting conceptor would be ignoring any features unique to the interme-
diate class. Alternatively, a new conceptor could be constructed by scaling
between the two extremes using equation 4.1. This approach has proven
particularly useful for smoothing the transitions between generated patterns
(Jaeger, 2017) and is arguably more suitable for this project. Unfortunately,
however, this could not be achieved within this project. Whilst an attempt
was started, it could not be completed before the end of the collaboration
with Dr D. Herndndez Garcia.

In parallel with this work, another approach was explored which was

Performance on the training set Performance on the test set

e 1.0

0.8 2

% High Engage ' High Engage 0.6
E 0.6

® +0.5
S 0.4

~ Low Engage 0.2 Low Engage 0.4

0.3

~0.0 -

Predicted label

FIGURE 4.2: Confusion matrices showing classification perfor-
mance of trained conceptors on training data (left) and test data
(right).
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inspired by recent work from Voelker and Eliasmith (2018). Voelker and Elia-
smith (2018) present a biologically plausible dynamical spiking neural net-
work, formulated in terms of the so-called Neural Engineering Framework
(Eliasmith and Anderson, 2003) capable of exactly reproducing delayed time
signals. In contrast with the rate-based approach of Conceptors, the ESN
implemented by Voelker and Eliasmith (2018) uses spiking neurons. Spiking
neurons can run in real-time on neuromorphic hardware and, at least in some
cases, can be more energy efficient (Blouw et al., 2019). This is, therefore, a
promising avenue to explore, particularly when we consider the possibility

of implementing the classifier in a neuro-robotic platform.

4.6 Approach 2 - Delay Network

The approach of Voelker and Eliasmith (2018) allows one to create a spiking
dynamical network which non-linearly encodes its input across a set delay
interval. On one hand, thus, this approach is promising since the mathe-
matical formulation leads us to expect high levels of accuracy and perfor-
mance. However, it has only been demonstrated on very abstract, single-
dimensional input patterns, whereas other approaches, for example, ESNs,
have been shown to easily encode multi-dimensional inputs (such as the lo-
cations of various point-light markers on a human skeleton) (Mici, Hinaut,
and Wermter, 2016; Bozhkov, Koprinkova-Hristova, and Georgieva, 2016). It
is also not clear whether inputs that would be interesting in real-life condi-
tions can be reduced to a smaller number of dimensions and still be mean-

ingful for classification.

Hypotheses and predictions

The primary motive of this study was to examine whether the delay network
could be trained on examples of the extremes of an internal state (i.e. "high’
vs. 'low’ task engagement) and would then be able to recognize intermediate
engagement as being in-between the two trained classes. Additionally, there
are two secondary motives driving this study. The first is concerned with
developing a classifier able to identify human internal states from human bi-
ological motion data. The second aim is to evaluate whether the approach
of Voelker and Eliasmith (2018) can be applied to more realistic input pat-
terns. This study is, therefore, largely exploratory in nature. However, the

following hypotheses were proposed to structure this research:
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1. The resultant classifier will be able to distinguish between high and low

task engagement based on human movement information.

2. When presented with untrained samples of ‘intermediate’ engagement,
the classifier will produce an output which is distinct from that pro-
duced for both trained patterns.

Specifically, for the second hypothesis it is predicted that the output pro-
duced for intermediate engagement can be characterised as being something

in-between the outputs for the trained classes of high and low engagement.

4,7 Method

4.7.1 Materials

The data used in this study was again taken from the PInSoRo (Lemaignan et
al., 2018; Lemaignan, Edmunds, and Belpaeme, 2017) data set. In the study
reported above using a conceptor-based approach we used the child-robot
interactions. However, the present study considers the problem space of
simply being able to recognize untrained states for application in a wider
range of settings. As such, the aim of this study was to develop a more gen-
eral approach and therefore it was appropriate to harness the possibility that
children were more expressive in the child-child interactions. Consequently,
the data was extracted from the child-child interactions within the anony-
mous version of the PInSoRo data set. From this data set each ‘frame” was
a 184-dimension vector consisting of the xy coordinates for the child’s pose,
facial features (including action units and gaze) and hand landmarks.

Within this data set, for annotation purposes, each child was labelled as
either "purple child’ or "yellow child” depending on the color of the vest they
were given to wear. In the vast majority of videos, the "purple child’ was
positioned on the left of the frame. To create the current data set, only the
data from the “purple child’ in each annotated interaction was collected. All
of the facial and skeletal data for the purple child in clips where they had
been annotated with ‘goal-oriented play’ (high engagement), ‘aimless play’
(intermediate engagement) and no play’ (low engagement) were collected.
This gave a total of 248 clips (105, 52, 91 respectively).

The training set was constructed by taking 80% of the clips from each
of the high and low engagement sets, reserving 20% for testing. All of the

intermediate engagement clips were reserved for testing as the goal of this
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Rolling Window/Delay Network
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FIGURE 4.3: Schematic of Delay Network.

study was to see how well, after being trained on examples of high and low
engagement, the classifier would perform on classifying the intermediate en-

gagement clips as examples of an intermediate class.

4.7.2 Apparatus

This experiment used the same recurrent neural network as developed by
Voelker and Eliasmith (2018), which can be thought of as an optimized reser-
voir. The network consists of a single hidden layer, a set of input weights, a
set of output weights, and a set of recurrent weights. For the current study
the delay network was implemented with 3,000 leaky-integrate-and-fire neu-
rons in the hidden layer, and the decoder used the least-squares solver with
L2 regularization (see Figure 4.3)

This approach differs from the conceptor-based method in how the con-
nection weights are calculated. In ESNs (as used in the conceptor-based net-
work) the weights are random, whereas the approach in Voelker and Elia-
smith (2018) involves pre-computing the weights. This results in a network
that is optimal for recording its own input over a period of time. That is,
such a network can be used to approximate functions such as y(t) = x(t — 0),
where 6 (theta) is a scalar indicating how far into the past the network should
remember. For this reason, this network is sometimes referred to as a de-
lay network. This method works for any neuron model, including spiking
leaky-integrate-and-fire neurons, as used here. The result is a a recurrent
neural network where a rolling window is used in order to retain a memory
of the history of the network’s activity. The model is effectively a regression
model where the classification problem is solved using linear least squares

with regularization.
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4.7.3 Procedure

Before feeding any data into the classifier, a Principle Component Analysis
(PCA) model was constructed using the training data. An initial PCA analy-
sis revealed that 2 components explained 64% of the variance, with compo-
nent 1 explaining 40% of the variance, and component 2 explaining 24%. Ad-
ditional components each explained <10% of the variance. Consequently, the
constructed PCA model transformed the 184-dimensional data into 2 compo-
nents. To understand the input to the classifier, the factor loadings for each of
the PCA components were examined. A cut-off was applied such that only
factors with a loading greater than +/- 0.08 were shown on each component.
This revealed that component 1 was mostly correlated with the x coordinates
of facial markers. Component 2, on the other hand, was mostly correlated
with the y coordinates of facial markers. This is probably due to the fact that
the children in the videos were mostly stationary, being in a seated position
next to the sand-tray. Consequently, the majority of movement was likely
in their facial expressions as they were talking and interacting with one an-
other. Additionally, there may have been a lot of variation in the children’s
facial expressions between the two clip types (high and low engagement)
used to construct the PCA, with children potentially being more talkative
and expressive when highly engaged compared to when they demonstrated
low task engagement. In contrast, the children’s body’s were fairly fixed in
space given that the children were seated, and whilst there would have been
some arm and hand movements, these probably showed less variance be-
tween clip types compared to facial expressions. Both training and testing
data was transformed using this model.

The main parameter that required optimization was the theta value for
the rolling window. This value can be thought of as the system’s memory.
As each frame of a clip is fed into the classifier, the rolling window retains a
memory of the preceding frames. Consequently, the classifier does not clas-
sify based on individual frames, but takes into account the activity leading up
to the current frame. Testing showed that a memory of 15-seconds (6 = 15)
produced the best classification results.

The final classifier was tested a total of 20 times. With each iteration (ex-
periment) a new random sample of data was used for the 80% training and
20% testing sets. Additionally, for each experiment, a new set of weights
was generated during the training phase and applied to the testing phases.
The order of training and testing events was as follows: First, the classifier

was trained on a random sample of 80% of the high-engagement data, and
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FIGURE 4.4: Distribution of the outputs given for each train-
ing frame from the high engagement class (left) and the low
engagement class (right) across all 20 experiments.

80% of the low-engagement data. The first test phase involved testing on
the remaining 20% of these data sets. Finally, the classifier was tested on
all of the intermediate engagement data. The classification targets for each
label were -1 (low engagement), 0 (intermediate engagement) and +1 (high

engagement).

4.8 Results

Analyses were conducted using the Python numpy, pandas and sklearn toolk-
its in Jupyter Notebook. The analysis scripts can be found in the accompany-
ing github repository (see Section 4.11 for details).

Before conducting any analyses, the outputs given for the training sam-
ples across all 20 experiments were plotted. These plots show that the dis-
tribution of outputs was generally centred around the target values (+1 for
high engagement, -1 for low engagement) (see Figure 4.4).

Preprocessing: The output from the classifier was such that each frame
was given a classification value between -1 and +1. As we are interested in
producing a classifier which can provide accurate classifications over time,
and not necessarily on individual frames, we applied a median filter to the
data so that we could plot the most common classification within a given time
frame within each clip. Before applying the filter we ‘rounded’ the raw clas-
sification output to its nearest target value. This process was done differently
depending on whether just the outputs for the high and low engagement test
data were being considered, or if the intermediate class was also included.
That is, when examining just the high and low engagement test data, values
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FIGURE 4.6: Distribution of output values given for the high,
intermediate and low engagement testing frames after apply-
ing a median filter. Data taken from all 20 experiments.

< 0 were rounded to -1 (low engagement classification), and values > 0 were
rounded to +1 (high engagement classification). In contrast, when including
the intermediate class, values < —0.3 were rounded to -1, values < —0.3 and
> 0.3 to 0 (intermediate engagement classification), and values > 0.3 to +1.
The median filter was then applied such that the value for each frame was
the median for a window of 99 frames.

Training Data: In order to assess the success of the training phase, the
median filter was applied to the system’s output during the training phase.
Plotting the distribution of this output across all 20 experiments shows that
the majority of clips in the training data sets were correctly classified (see
Figure 4.5).

Testing Data: Examining performance on the testing data was split into
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two sections. First, performance on just the trained classes (high and low en-
gagement) was examined. As outlined above, this involved a larger thresh-
old for values to be classified as either high or low such that any output value
greater than 0 was rounded to +1, and values less than 0 were rounded to -1.
The median filter was then applied and the distribution of outputs across all
20 experiments can be seen in Figure 4.6.

The percent of frames correctly classified in each experiment was then
calculated and averaged across all 20 experiments showing that a mean of
56.13% (SD = 12.91) high engagement frames and 58.04% (SD = 15.26) low
engagement frames were correctly classified in each experiment. This poor
performance (no better than chance), in contrast to the high performance on
samples from the training sets (see Figure 4.5) suggests that the classifier may
have been overfitting to the training data. The large standard deviations,
however, suggest that there may have been some experiments which per-
formed well. Given that new weights were generated for each experiment, it
may then be that within the 20 models there is at least one which produced
an above-chance performance on all of the classes. Furthermore, what is of
most interest is how the classifiers performed on the previously unseen inter-
mediate engagement class. The next analysis therefore looks at performance
on all three testing data sets (high, intermediate and low engagement) for
each experiment separately.

In order to include the outputs from intermediate engagement samples
the thresholds used for rounding the outputs to a classification label were
altered as follows: values < —0.3 rounded to -1, values < —0.3 and > 0.3 to
0, and values > 0.3 to +1. The median filter was again applied to the outputs
from high and low engagement samples in the testing data sets, along with
the values for the intermediate engagement samples and the results were
plotted. Plots showing the distribution of outputs across all 20 experiments
can be seen in Figure 4.6 and the individual plots from all 20 experiments
can be seen in Appendix A. From these plots we can see that there was no
experiment in which the classifier was able to correctly classify the majority
of samples from each class. That is, at least one class is confused for another.

Finally, averaging the percent of frames classified correctly showed that,
37.05% (SD = 12.46%) of high engagement frames, 34.32% (SD = 5.27%) of
intermediate engagement frames and 42.68% (SD = 13.11%) of low engage-
ment frames were classified correctly following the application of the median
filter. These results further suggest a case of overfitting to the training data,

given that no model appears to have performed significantly above chance
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on all three classes.

In an effort to eliminate the possibility that this poor performance was
an artifact of the use of a median filter, the average output per clip was also
calculated. The same performance metrics were examined (i.e. distribution
of classification values for each clip, and average percent correct). Unfortu-
nately, this analysis did not produce better classification performance.

4.9 Discussion

In this study the approach of Voelker and Eliasmith (2018) was applied to the
problem of classifying human movement information into different internal
states. Good performance was obtained when testing on the trained patterns
- demonstrating that a classifier can recognize different internal states based
on human movement information. However, performance on the testing
samples, including the untrained intermediate class, was very poor. Thus,
neither of the hypotheses put forward were supported. Furthermore, the pat-
tern of good performance on training samples but poor performance on test-
ing samples suggests that the model may have been overfitting to the training
data. Whilst feature reduction (i.e. PCA) is often suggested as a method for
preventing overfitting (Defernez and Kemsley, 1999; Liu, 2017; Kumar, 2019),
in this case it may have been providing the wrong data; i.e. there may not
have been enough information available in the PCA components for accurate
discrimination. Indeed, some sources do suggest that using PCA can lead to
poor results in regards to preventing or reducing overfitting (Rebala, Ravi,
and Churiwala, 2019). In the current task, the classifier is trying to distin-
guish between 3 states which are closely related to one another (i.e. levels
of engagement). In terms of behaviour, the differences between these states
are therefore likely to be very small/subtle. That is, the children are in the
same position (kneeling at the sand-tray), performing roughly the same task
(interacting with the sand-tray or their companion sat on the other side of
the sand-tray) in every clip. Therefore, the quantitative differences in how
our subjects move in each state are likely to be much smaller than in cases
where the activities being discriminated are much more distinct (e.g. the acts
of following vs. passing someone as in Kelley et al. (2008)). Additionally,
given that we do not train the classifier on one of our classes at all, we must
consider that there is likely a need for more information from which to draw

distinctions.
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410 Conclusion

This chapter reports two approaches to the problem of classifying different
levels of the human internal state task engagement based on observable hu-
man movement and posture behaviours. The first, a conceptor-based ap-
proach, was successfully trained to discriminate between high and low en-
gagement. However, the step of constructing a new, untrained conceptor
and testing it on the intermediate engagement class could not be carried out
within the scope of this project. In contrast, the second delay-network ap-
proach was tested both on the trained high and low engagement classes, and
on the untrained intermediate engagement class. The results of this experi-

ment showed that the performance was effectively no better than chance.

4.11 Open-Source Resources

The repository containing the work for the Conceptor-based network can be
found at: https://github.com/dhgarcia/conceptorsTest.

For the delay network, the following github repository contains scripts for
the experiments and analysis. https://github. com/maddybartlett/Thesis_
Notebooks/tree/master/Chapter4_DelayNetwork
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Chapter 5

Study 4 - Estimating Untrained
Intermediate States

Parts of this work have been published in the proceedings of the 2021 ACM/IEEE
International Conference on Human Robot Interaction (see Appendix G) (Bartlett,
Stewart, and Thill, 2021).

5.1 Introduction

In the previous chapter a delay network was developed and applied to the
problem of classifying an untrained intermediate class after training on two
‘extreme” states along a continuum. The resultant network demonstrated
poor performance on the trained classes as well as the untrained intermediate
engagement class. Whilst the exact cause of this poor performance is unclear,
a recent development presents a promising alternative.

Voelker, Kaji¢, and Eliasmith (2019) present a recurrent neural network
which uses a novel architecture for dealing with temporal data - Legendre
Memory Units (LMUs). LMUs produce an output which encodes both the
input signal and information about the history of that input. If one wants
to consider all inputs from the last 6 seconds, one can use the LMU function
to convert every 1 value in a d-dimension vector into g new values which
characterises the input over the last 6 seconds. Importantly, the LMU method
improves on existing reservoir techniques in that their structure is derived
from first principles in order to produce optimal reservoir-like behaviour.
Simply put, Voelker, Kaji¢, and Eliasmith (2019) determined mathematically
how an input should be transformed into a higher-dimensional output so
that it best encodes the history of the input for the desired duration before
constructing the RNN to do this transformation. This is in comparison with
other methods, including ESNs such as that used in Chapter 4, which start
with a general architecture and then explore different hyperparameters or
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architectures until the desired behaviour is obtained. Further details of this
approach can be found in Voelker, Kaji¢, and Eliasmith (2019).

Despite their short history, existing evidence demonstrates that LMUs
can achieve state-of-the-art performance whilst being efficient to implement,
with fewer parameters compared to other approaches, such as LSTMs and
the recently proposed Non-saturating Recurrent Unit (Voelker, Kaji¢, and
Eliasmith, 2019). As such, the method shows a lot of promise for dealing
with temporally dependent tasks, whilst being well suited to the constraints
of real-world applications (Blouw et al., 2020). This study, therefore, explores
whether they offer a benefit for the kinds of applications seen in Human-
Computer Interactions and social robotics, such as internal state recognition.
Here the LMU method is used as a pre-processing step such that its output
will be used as input to a system for the task of estimating engagement from
dynamic patterns.

This study primarily investigates whether systems which incorporate the
LMU pre-processing method will, after training on high and low task en-
gagement, provide an output to intermediate task engagement which can be
used to identify this class as being ‘in-between’ the two trained classes. More
specifically, this is an investigation of whether LMU pre-processing will im-
prove the system’s performance, not only on the trained classes, but if it is
also able to generalize to the untrained intermediate class. Three systems
are compared on this task; a Nengo Deep-Learning Network (NDL), a Multi-
Layer Perceptron (MLP) and logistic regression (LR).

Hypotheses and Predictions

Two hypotheses were put forward for this study:

1. The use of LMUs as a pre-processing step will change the performance
of the systems.

2. The systems, after training on examples of high and low task engage-
ment, will produce an output in response to examples of intermediate
engagement which can be used to identify these samples as being re-
lated to, but different from, the extremes without being trained on them.

Specifically, for the first hypothesis, based on previous findings that meth-
ods incorporating LMUs outperform other machine learning methods (Voelker,
Kaji¢, and Eliasmith, 2019; Wang et al., 2020), it is predicted that all three
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systems will show an improved performance on data that has been pre-
processed using LMUs, compared to the raw, unprocessed data. Further-
more, it is expected that this improved performance will apply when exam-
ining the outputs produced by the systems (NDL, LR and MLP) for both in-
dividual frames and full clips. For individual frames, improved performance
is expected because, unlike the raw data, the LMU pre-processed frames will
contain information about the history of the clip and it is assumed that, for
this type of information, the dynamic unfolding of behaviour over time will
contain more information about task engagement than individual snapshots
in time. For full clips, an improvement is expected even when using simple,
naive metrics such as the predominant class of the frames contained in the
clip. Measuring clip-wise performance is particularly relevant for naturalis-
tic data sets, such as the PInSoRo data set, wherein although a clip might be
labelled as a certain class, there is no guarantee that all the frames it contains
are good exemplars of that class.

In regards to the second hypothesis, success is defined under the follow-
ing predictions: (1) it will be possible to distinguish between system outputs
produced when given random data, compared to engagement data, as in-
put during testing, and (2) that sequences from the untrained, intermediate
class will be distinguishable from the two trained classes. It should be noted
that for this second prediction, some overlap between the task engagement
classes is to be expected, particularly given the fact that we use naturalistic
data as stimuli. To test these predictions the trained systems will be fed the
testing clips from both trained classes as well as a new class of intermediate
engagement (not previously seen by these systems) and randomly generated
data. A k-nearest-neighbour classifier will then be used to distinguish be-
tween the outputs of each system based on 4 descriptive statistics (mean,
standard deviation, skew and kurtosis). This analysis is also intended to ex-
amine whether any one of the six approaches best allows us to recognize the

untrained class without sacrificing performance on the trained classes.

5.2 Method

5.2.1 Design

This study took a 3 (NDL vs. LR vs. MLP) x 2 (without vs. with LMUs)
design examining the effect of system and pre-processing step on the perfor-

mance (accuracy) of the system. This resulted in 6 conditions or approaches
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being tested: (1) NDL, (2) LMU-NDL, (3) LR, (4) LMU-LR, (5) MLP, and (6)
LMU-MLP.

5.2.2 Materials

The data used as input for this study was the same as that in Chapter 4. That
is, data was extracted from the child-child interactions within the anony-
mous version of the PInSoRo data set (Lemaignan et al., 2018; Lemaignan,
Edmunds, and Belpaeme, 2017). This gave 105 high engagement, 52 inter-
mediate engagement and 91 low engagement clips wherein each frame was
a 184-dimension vector consisting of the xy coordinates for body landmarks
including joints, facial features and hands.

The training, testing and validation data sets were created by applying
a 70/20/10 split respectively. For this experiment, the systems were only
trained on examples from the high and low engagement sets, so the above
split ratio was only applied to these two classes. Additionally, this split ac-
counted for the number of clips in each set, rather than the number of frames.
When creating the training data set, it was first necessary to account for the
fact that the low engagement set had fewer clips than the high engagement
set. As such, the equivalent of 70% of the low engagement clips was taken
from both the high and low engagement sets to construct the training set.
This same approach was used for constructing the testing and validation sets.
Note that the validation set was only used for the NDL, but the high and low
engagement data was still split 70/20 for the MLP and LR approaches. This
resulted in a total of 126 clips from the low and high engagement sets being
used for training (roughly 175,000 frames on average), and 36 clips for testing
(roughly 50,000 frames). All 52 of the intermediate engagement clips (55,296
frames) were used for testing on untrained patterns.

In regards to the second hypothesis, the goal was to test whether systems
trained to classify high and low engagement could also estimate intermedi-
ate engagement without being trained on any examples from this class. In
order to establish that the systems were recognizing intermediate engage-
ment samples as being related to, but different from the high and low engage-
ment samples, it was necessary to verify that samples from the intermediate
class were being treated as engagement data, and not simply as data which
does not belong to the trained classes. This was done by testing the systems
on random data, generated by creating arrays of random values in the same
shape as the high engagement data (234507 x 184). The result was that there
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were 105 random ‘clips’ in total, or 234,507 ‘frames’. A random selection of

18 “clips’ from this random data set were used for testing in each experiment.

5.2.3 Apparatus
Legendre Memory Units

Before anything else, the raw data (high, intermediate and low engagement,
and random data) was processed using the LMU method. The full architec-
ture presented in Voelker, Kaji¢, and Eliasmith (2019) consisted of a linear dy-
namical memory (Legendre Delay Network, LDN) and a non-linear decoder.
For this study, the non-linear decoder was replaced with the NDL, MLP and
LR systems. As a result, the LMU method applied here involved feeding the
input vectors (frames) into the LDN, the output from which would then be
given as input to the three systems. The weight matrices connecting the in-
put to the linear layer, and for the recurrent connection from the linear layer
back to itself were pre-computed and fixed. Consequently, no training was
required for this step. For further details on LMUs and the LDN see Voelker,
Kaji¢, and Eliasmith (2019) and Voelker, Rasmussen, and Eliasmith (2020).

Setting Parameters: The parameters to be set for the LMU step were g
and 0 (theta). Specifically, 6 values 1, 3, 5 and 7, and g values 2, 3 and 4
were tested. For each combination of these parameters, new high and low
engagement data sets were generated and split such that 70% was used for
training, and 20% for testing. The training data sets were then used as input
to the MLP (with N-neurons = 200) to determine which combination of 8 and
g produced the best accuracy scores on average when tested with the unseen
20%. Each combination of 6 and g values was tested 20 times. The results
shown in Figure 5.1 demonstrate that 6 = 3 and g = 4 produced the highest
accuracy scores on average.

An interesting feature of these results is that lower g values appear to
increase the spread of accuracy scores. When g is 2, for example, there seems
to be an increased probability that some networks will perform poorly whilst
general performance (e.g. mean accuracy) remains similar.

Pre-processing: During the LMU pre-processing step, each clip was pro-
cessed separately. Each clip was presented to the LMU network as a sequence
of the 184 dimensional vectors which made up each frame. The output con-
sisted of 736-dimensional vectors (184 x g) such that each vector contained

information about the current frame, as well as encoded information about
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FIGURE 5.1: Box-plots showing accuracy for each LMU param-
eter combination in the grid search using MLP with LMU pre-
processing. Each combination was tested 20 times.

the preceding 3 (f) seconds. These outputs were saved as NumPy array files
to be used as input for the classification systems (see Figures 5.3, 5.2 and 5.4).

Systems

For this study, 3 different systems were used and compared. Two of these
were out-of-the-box methods. Namely a logistic regression (LR) and a Multi-
Layer Perceptron (MLP) implemented using the sklearn toolkit in Jupyter.
The LR used sklearn’s default settings and a maximum of 1,000 iterations
(see Figure 5.3). When implementing sklearn’s MLP (with one hidden layer),
the following parameters were used: the activation function was the rectified
linear unit function (relu), and the weights were optimized using the stochas-
tic gradient-based optimizer ‘Adam’ (Kingma and Ba, 2014) (see Figure 5.2).

The third approach, hereafter termed NDL, was constructed using the
Neural Engineering Framework (NEF), specifically the NengoDL simulator
(Rasmussen, 2019). This system was a feed-forward neural network with one
hidden layer and ReLU activation functions (see Figure 5.4).

Setting Parameters: Separate grid-searches using the MLP and the NDL
were conducted in order to establish the ‘best” settings for a number of pa-
rameters. The input data for these grid-searches was the raw data without

LMU pre-processing.
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For the MLP, different numbers of neurons in the hidden layer were com-
pared. This grid-search compared 50, 100, 150 and 200 neurons, with each
value being tested 20 times. Interaction plots showing each value for num-
ber of neurons against accuracy reveal that 200 neurons tended to produce
the best accuracy scores (see Figure 5.5).

The grid-search for the NDL examined a range of learning rates (le-01,
1le-03 and 1e-05). Interaction plots of learning rates against accuracy showed
that the learning rate of 0.001 produced the highest accuracy. However, plot-
ting the loss values during training revealed that the network did not reach a
point where it had ‘learnt” the two classes (i.e. the loss value was constantly
decreasing and did not reach a point of stability). The network was then
trained over 5,000 epochs, as opposed to the original 1,000, to see if the loss
value would flatten out after further training. As can be seen in Figure 5.6
this was not the case. Consequently, it was decided that this network would

not be included in the analysis due to how difficult it proved to be to train.

5.2.4 Procedure

Both of the remaining systems (MLP and LR) were trained and tested 20
times (each iteration being referred to as an ‘experiment’). Regardless of the

system being used, an experiment consisted of the following steps. First, the
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FIGURE 5.5: Box-plots of accuracy against each value for the
number of neurons in the MLP hidden layer tested in the grid-
search. Each value was tested 20 times.
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FIGURE 5.6: Plot of loss vs epoch when the NDL network was

trained over 5,000 epochs with a learning rate of 0.001. Graph

is taken from tensorboard and shows loss on the training data
(blue) and loss on the validation data (orange).

high and low engagement data (either the pre-processed versions or the raw
versions) were randomly shuffled and then split into the training and testing
sets. The system was then trained on the training high and low engagement
data and tested on the 20% testing high and low engagement data sets, as
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well as on all of the intermediate engagement and random data.

As it was not possible to introduce a third classification option after train-
ing, the final system outputs (binary classification labels) could not be used.
Consequently, for each system the outputs recorded for analysis were values
produced before binarization into the two output classes. From the LR, the
output used for analysis was the probability estimate denoting how probable
it was that each sample was a member of each of the two trained classes (see
Figure 5.3). From the MLP the final hidden layer’s output (i.e. the output of
the decision function) was recorded for analysis (see Figure 5.2).

All of the experiment and analyses scripts were run on a Lenovo Thinkpad
L380 laptop running Windows 10. Each experiment using LR both with and
without LMU pre-processed data took less than a minute. MLP using the
raw data took roughly 20 minutes and MLP with LMU pre-processed data

roughly 10 minutes.

5.3 Results

Analyses were conducted using the Python numpy, pandas, SciPy and sklearn
toolkits in Jupyter Notebook. The analysis scripts have been made openly
available (see Section 5.6 for details).

The following analysis has been split into two main sections which reflect
the hypotheses. First, the effect of LMU pre-processing on system perfor-
mance (accuracy) when tested on high and low engagement clips is evalu-
ated. The second section of this analysis examines performance on the in-
termediate engagement and random classes with a view to establishing: (1)
whether the untrained classes could be distinguished from the trained classes
based on system output, and (2) whether there was a particular approach
which produced the best overall performance on all 3 engagement classes.

5.3.1 Effect of LMUs on Performance on Trained Classes

In this section the results of training and testing using LMU pre-processed
high and low engagement patterns are compared with training and testing
using the original, raw patterns. It should be noted that the final outputs
of the MLP and LR systems used here were binary classification decisions,
wherein a sample was assigned to either the high or low engagement. How-
ever, because the problem at hand required a way for untrained classes to be
estimated, it was necessary to obtain an output which could fall anywhere
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within a range of values, and can therefore be considered as providing an
estimation of state. This continuous output would then be translated so that
it still reflected the categorical labels in the data. For the MLP approaches,
the decision function was used as the output for analysis. The final output
for the LR was the probability value that the sample belonged to the high
engagement class. For both output metrics an output of >0.95 (rounded to
1) indicated a strong probability that the sample belonged to the high en-
gagement class, and an output of <0.05 (rounded to 0) indicated a strong
probability that it was from the low engagement class.

Frame-by-Frame Estimation

In order to assess performance of the MLP and LR on a frame-by-frame ba-
sis the distribution of estimation values given for test frames from both of the
trained classes for all four architectures were plotted (see Fig 5.7). These plots
reveal that the use of LMUs did improve performance on the trained classes.
Specifically, for both LR and MLP, the use of LMUSs seems to have facilitated
an increase in the frequency of ‘0" or ‘1" classification decisions compared
to the more spread out distribution of values when the data was not pre-
processed. As a result of these plots it was decided that a “‘correct” estimation
for high and low engagement would be values of 1 (>0.95) and 0 (<0.05) re-
spectively; the plots show that most of the estimation values fell into these
bins, and there was therefore little benefit in broadening this threshold in
terms of accuracy. The average percent of frames estimated correctly was
then calculated revealing that LMU pre-processing did indeed improve per-
formance. That is, for LR average percent correct rose from 21.93% (SD =
8.19) to 49.59% (SD = 14.96) for high engagement, and from 41.12% (SD =
15.4) to 76.00% (SD = 9.14) for low engagement. Similarly, for the MLP, cor-
rect estimation of high engagement samples increased from 60.97% (SD =
16.9) to 87.84% (SD = 11.38) and for low engagement from 49.12% (SD = 18.0)
to 85.10% (SD = 85.1).

Clip-Wise Estimation

Whilst performance on individual frames shows promise, this does not nec-
essarily mean that performance will be good on full clips. In particular, con-
sidering that the frames were extracted from clips of varying lengths, the
systems may simply have learned to correctly identify only the frames from

the lengthier clips. This next analysis therefore examines performance on
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FIGURE 5.7: Histograms showing proportion of estimation val-
ues for each frame from the high and low engagement classes.
Estimation value of 0 is treated as a low engagement classifi-
cation, and 1 as a high engagement classification. Sub-figures
display the results of classification using: (A) LR without LMU
pre-processing (total frames: high = 794,184, low = 207,414),
(B) LR with LMU pre-processing (total frames: high = 765,572,
low = 207,405), (C) MLP without LMU pre-processing (total
frames: high = 792,890, low = 226,601), (D) MLP with LMU pre-
processing (total frames: high = 878,720, low = 221,186).

whole clips by calculating the average estimation value across all the frames
in a clip. Figure 5.8 illustrates that performance on full clips was similarly
improved by the addition of LMU pre-processing, and further that, for most
systems, the majority of clips had an average estimation value falling into
either the 1 or the 0 bin (i.e. >0.95 or <0.05). Calculating the average percent-
age of clips in each class identified correctly by each approach supports this
conclusion (see Table 5.1). So whilst clip-wise analysis does demonstrate an
overall drop in accuracy compared to the frame-by-frame analysis, perfor-
mance of the MLP with LMU pre-processing is still well above chance for the
two trained classes.

Effect of system type and LMU pre-processing

To verify whether the differences in performance described above are sig-
nificant, a two-way ANOVA was performed, with system type (LR vs MLP)
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FIGURE 5.8: Histograms showing proportion of estimation val-
ues for each clip from the high and low engagement classes
(360 clips in each plot). Classification value of 0 indicates a low
engagement classification, and 1 is a high engagement classifi-
cation. Sub-figures display the results of classification using:
(A) LR without LMU pre-processing, (B) LR with LMU pre-
processing, (C) MLP without LMU pre-processing, (D) MLP
with LMU pre-processing.

and pre-processing (without vs. with LMUs) as independent variables and
the percentage of correctly estimated high and low engagement clips as the
dependent variable. Both assumptions of normality (Shapiro-Wilk test: W =
0.983, p = 0.354 and equal variances (Bartlett’s test for sphericity: x> = 0.990,
p = 0.804) were met.

The two-way ANOVA revealed a significant main effect of system such
that LR (Mean = 26.74%, SD = 13.44) was significantly out-performed by
MLP (Mean = 57.36%, SD = 20.57) (two-way ANOVA: F(1,76) = 395.244,
p < 0.001, 17;29 = 0.443). Additionally, and of key interest, the main ef-
fect of pre-processing step (with vs. without LMUs) showed that the use
of LMUs (Mean = 57.36%, SD = 20.55) significantly improved performance
compared to when LMUs were not used (Mean = 26.74%, SD = 13.47) (two-
way ANOVA: F(1,76) = 395.244, p < 0.001, 17%, = 0.443). Finally, there was a
significant interaction effect (two-way ANOVA: F(1,76) = 25.040, p < 0.001,
17;2, = 0.028). Figure 5.9 suggests that the interaction effect was such that the
effect of LMU pre-processing on performance accuracy was greater for the

79




0.8 1

=
-l

Ave. Accuracy
(=
h

=
Ly

=
(%]

0.1 -

=
LA

=
=

Chapter 5. Study 4 - Estimating Untrained Intermediate States

# Logistic regression
& MLP

No LMUs LMUs
Pre-Process

FIGURE 5.9: Interaction plot showing the interaction between
classifier and pre-processing step on performance accuracy.

MLP than for the LR. That is, the difference in average performance for the
MLP with vs. without LMU pre-processing (0.383) was significantly greater
than for the LR (0.229). These results demonstrate that LMUs were an ef-
fective pre-processing step for facilitating improved performance on distin-
guishing between high and low engagement. Furthermore, it suggests that
the best approach to use when separating classes on a clip-wise basis was the
LMU-MLP.

5.3.2 Performance on Untrained Classes

Each approach was also tested on a third, unseen intermediate class of en-
gagement. Here the intention was to see whether the LR and MLP would
produce an output which could be used to identify this third class as being
somewhere in-between the two trained classes. It is important, however, to
also establish that the systems produced an output which identifies this class
as still being related to the two trained classes, and not simply as something
that does not belong to either. The systems were, therefore, also tested with
random data as input. The output was analysed in a clip-wise manner.
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The distributions of the average estimation value for each clip in all 20
experiments is presented in Figure 5.10. What can be observed is that the
mean output values for intermediate engagement clips are generally more
spread out between 0 and 1 than for the high and low engagement classes.
Looking at the average percent of intermediate clips identified correctly re-
veals an interesting pattern such that the system with the best performance
on the trained classes (MLP with LMU pre-processing) shows the worst per-
formance on the intermediate class (see Table 5.1). However, this is likely
because the less successful approaches tend to produce ‘0" and “1” estimation
values less frequently for all classes, so the high accuracy on intermediate
classes is likely an artefact of poor performance overall. Interestingly, the
average outputs produced in response to random data are certainly distinct
from all of the engagement classes, with a much greater tendency for an esti-
mation value of or around 0, and much less spread.

To examine this further, the system’s output for each frame was plotted
along the timeline of 18 clips from each class in the first experiment of each
approach. These plots are presented in Figure 5.11. The two effects which
can most readily be seen from these plots are, first, that the outputs across
the duration of each clip appear to differ markedly between classes for all
four approaches, and second that the overall effect of LMU pre-processing
was to stabilize and smooth the outputs of the systems. Of particular interest
is that, where LMU pre-processing was used, the low engagement clips dif-
fer from the random clips in that the output in response to low engagement
clips contains more instances where the output is non-zero. This illustrates

a general difficulty with naturalistic data which is that their content is rarely

TABLE 5.1: Table of mean and standard deviation of percent-
ages of clips that were estimated correctly by each approach in
each experiment.

LR LMU-LR MLP LMU-MLP
M 889%%  27.78%  42.22% 78.06%

High SD (793) (8.78)  (16.70)  (10.46)
Intermediae M 8750%  6452%  43.85%  39.33%
SD (477)  (5.03) (625  (3.87)
M 21.67% 48.61% 34.17%  75.00%
Low

SD (1096) (9.92) (15.04)  (10.17)
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100% in-line with the class label given. However, these results also demon-
strate that this fact can potentially be an advantage for this type of classifica-
tion/estimation, something which will be explored further in the Discussion.

5.3.3 Separating the Classes

The next step, given the observation that the outputs for each class do ap-
pear to be at least somewhat distinct, is to establish whether the outputs for
each clip do, in fact, contain enough information for distinguished between
all the classes. To examine this, the descriptive statistics of mean, standard
deviation, skew and kurtosis of the output given for each clip were calcu-
lated, and a simple k-Nearest Neighbours (kNN) classifier was used to test
whether these were enough to differentiate between the classes. If successful,
this would indicate that the information needed to distinguish between the
classes is readily available in the outputs from each approach. This section
therefore presents four approaches to classification: (1) LR-kNN, (2) LMU-
LR-kNN, (3) MLP-kNN, and (4) LMU-MLP-kNN.

Random vs. Non-Random

This analysis was split into two tests. First it was examined whether the
random clips could be distinguished from the engagement clips, regardless
of intensity level. The intention here was to explore whether the random
data occupied a different region of the four-dimensional space defined by
the descriptive statistics, and are therefore not confused with examples of
various levels of engagement, even if the system was not trained on some of
those levels.

For this analysis a kNN (k=5) was given all 18 random clips from each
experiment, along with 18 clips randomly selected from the high, low and
intermediate test clips from the same experiment. For each of the four ap-
proaches the kNN was run 20 times - once for each experiment - and the re-
sults collated so that mean and standard deviation performance could be cal-
culated. Average performance (percent correct) of each approach were as fol-
lows: for LR-kNN Mean = 0.929, SD = 0.027, for LMU-LR-kNN Mean = 0.782,
SD =0.099, for MLP-kNN Mean = 0.925, SD = 0.034, and for LMU-MLP-kNN
Mean = 0.764, SD = 0.070. Confusion matrices showing the average percent
of random and non-random clips identified correctly are presented in Figure
5.12. Overall, we observe good performance on this task but, interestingly,

LMU pre-processing tends to result in less accurate performance.
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(B) LMU-LR-kNN, (C) MLP-kNN, (D) LMU-MLP-kNN.

High vs. Intermediate vs. Low Engagement

The second analysis looks at how well the three engagement classes could
be dissociated based on the four simple descriptive statistics. Success would
establish that a clip from an unseen intermediate class could indeed be dis-
tinguished from the trained classes even though the system was not trained
on this class.

As with the previous analysis, a kNN (k=5) was used to see how useful
the descriptive statistics were for separating high, intermediate and low en-
gagement clips from one another. The kNN’s were again run 20 times for
each approach, once for each experiment. All 18 high engagement clips,
and all 18 low engagement clips from each experiment were used as in-
put, along with a random selection of 18 of the intermediate clips. Per-
formance scores (percent correct) and confusion matrices were recorded so
that averages could be calculated. The average confusion matrices show-
ing mean percent of high, intermediate and low engagement clips identi-
tied correctly can be seen in Figure 5.13. These plots reveal that best overall

performance, that is, good performance on all three classes, was achieved
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FIGURE 5.13: Average confusion matrices showing mean (and

standard deviation) percent of high vs. intermediate vs. low en-

gagement clips classified correctly by kNN for each approach.

A: LR-kNN. B: LMU-LR-kNN. C: MLP-kNN. D: LMU-MLP-
kNN.

with LMU pre-processing. Specifically, the output from both LR and MLP
with LMU pre-processing resulted in good performance by the kNN both
on the trained classes (high = 71.39%, low = 70.83% and high = 73.61%, low
= 64.17% respectively) and on the untrained intermediate class (40.28% and
43.89% respectively). This conclusion is bolstered by the finding that over-
all mean performance without LMU pre-processing (LR-kNN: Mean = 0.597,
SD = 0.071; MLP-kNN: Mean = 0.560, SD = 0.048) was lower than with LMU
pre-processing (LMU-LR-kNN: Mean = 0.608, SD = 0.058; LMU-MLP-kNN:
Mean = 0.606, SD = 0.058).

In order to explore the separability of these classes further it is useful to
examine how each class clusters in the kNN space. To do this a 3-component
PCA was performed on the descriptive statistics of the output data from each
approach for the three engagement classes, and the same data was then pro-
jected back into the 3D PCA space (which can be more easily visualized than
the original 4D space). Figure 5.14 shows that, for both MLP approaches, the
clips appear distributed along a string in 3D space, with high and low en-
gagement on either end, and intermediate engagement spanning the length
of that line. To examine this further, the 3D strings produced from the data
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Logistic Regression without LMUs Logistic Regression with LMUs
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FIGURE 5.14: Engagement clips projected into 3D PCA space.
(A) LR-kNN, (B) LMU-LR-kNN, (C) MLP-kNN, (D) LMU-
MLP-kNN.

of the MLP approaches are flattened into 1D space, and density estimates for
each class are computed in this new space. These transformations reveal that
the addition of LMU pre-processing both produces a clearer separation be-
tween the two trained engagement classes, and narrows the distribution of
the untrained class in a region that sits in-between the peaks of the trained
classes (see Figure 5.15).

Finally, in order to establish whether the differences in kNN performance
across the four approaches were significant, a two-way ANOVA was con-
ducted with system (LR vs. MLP) and pre-processing step (with vs. without
LMUs) as independent variables, and average performance scores (mean ac-
curacy) as the dependent variable. A Shapiro-Wilk test showed that the resid-
uals were normally distributed (W = 0.987, p = 0.584) and a Bartlett’s test
showed group variances to be equal (x> = 2.916, p = 0.405), indicating that
this analysis was appropriate. The two-way ANOVA revealed that there was
no significant main effect of system (LR: Mean = 0.603 SD = 0.066; MLP: Mean
= 0.583 SD = 0.058) on kNN performance (2-way ANOVA: F(1,76) = 2.152,
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FIGURE 5.15: A & B: Order of clips along a string in 3D PCA

space indicated by colour scale from dark to bright. C & D:

Density plots of indexed engagement clips along this string. X
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the string computed as a cumulative sum of distances between
each point and its preceding point.

p = 0.147, 17‘;27 = 0.026). However, the effect of pre-processing step was sig-
nificant, such that the kNN performed better when the data had been pre-
processed with LMUs (Mean = 0.607 SD = 0.059) than when it had not (Mean
=0.579 SD = 0.064) (2-way ANOVA: F(1,76) = 4.331, p = 0.040, 17% = 0.052).
This result provides support for our first hypothesis that the use of LMUs as

a pre-processing step would improve the system’s performance.

5.4 Discussion

This study was designed to examine two main hypotheses. The first was
that the use of the LMU method, presented in Voelker, Kaji¢, and Eliasmith
(2019), as a pre-processing step would facilitate improved performance on
systems tasked with classifying levels of task engagement from naturalistic

human body movements and postures. This was tested by training a logistic
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regression and an MLP on examples of high and low engagement and com-
paring performance when the input data was pre-processing using LMUs to
when the raw data was used. Results showed that LMU pre-processing sig-
nificantly improved performance such that a higher percentage of clips were
classified correctly by a kNN based on the mean output score given for each
clip. This provides support for the argument that LMUs are an effective alter-
native to reservoir computing methods for providing multiple classification
labels when there is a paucity of data. Furthermore, it demonstrates that the
LMU method, being efficient to implement whilst still achieving good per-
formance on temporally dependent task, may be particularly beneficial in
human-computer and human-robot interaction settings.

The second hypothesis was that the systems (MLP and LR), after training
on high and low task engagement, would produce an output in response to
intermediate task engagement which could be used to identify these sam-
ples as being related to, but different from, the trained extremes without being
trained on them. Testing this hypothesis involved training all four approaches
(LR, LMU-LR, MLP, LMU-MLP) with examples of high and low engagement,
and then testing using unseen examples from the trained classes as well as
two entirely unseen classes: intermediate task engagement and randomly
generated data. After testing, the outputs of each approach were used as in-
put for simple kNN classifiers in order to see whether (1) random data could
be distinguished from engagement data, and (2) the three engagement classes
could be distinguished from one another. The results of these analyses found
support for this hypothesis; all mean accuracy scores were >0.75 when sepa-
rating the random data from non-random data and all mean accuracy scores
were >0.54 for distinguishing between the three engagement classes.

Whilst these results are promising, there are a number of interesting fea-
tures in the results which are worth further exploration. For instance, whilst
LMU pre-processing did improve kNN performance when discriminating
between the three engagement classes, there is a notable decrease in per-
formance accuracy when distinguishing between random and non-random
data. It is likely that this is related to the smoothing effect of LMU pre-
processing (as observed in Figure 5.11). That is, reducing the variation in
the outputs to random data would have impacted the descriptive statistics
which were used as input to the kKNN. For example, standard deviation of
the outputs to the LMU pre-processed random data were likely much smaller

than for the raw random data. Despite this, there are, overall, clear benefits
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to using the LMU pre-processing step, particularly in respect to the first hy-
pothesis. Thus these results demonstrate a trade-off (a smoothing based on
history which may in some cases lose relevant information) that the use of
LMU s entails.

A second finding that should be noted is that, despite the fact that the
outputs in response to LMU pre-processed random data was consistently a
classification of low engagement, these two classes were not overly confused
for one another by the kNNs. One likely explanation for this is that not every
frame of the low engagement data, being from a naturalistic data set, would
be a perfect example of low engagement. On the other hand, every ‘frame’ of
the random data was an example of random. Interestingly, then, the imper-
fection of real data is potentially an advantage for this type of classification.

Third, it should be acknowledged that kNN performance was only
marginally above chance for the intermediate engagement class. It should be
noted that perfect performance on this class was not expected. This is par-
tially because of the use of naturalistic data - it is highly unlikely that all the
samples (frames) were “perfect’ examples of their class, and therefore some
confusion is to be expected when classifying. Additionally, it is likely that
the intermediate engagement class spans a rather large intensity space, with
many samples being similar to samples in the trained high and low engage-
ment classes. This argument is potentially supported by the PCA analysis,
particularly the plots in Figure 5.14, if we assume that the string in 3D space
reflects the intensity continuum. Furthermore, recall that the ‘aimlessness’
label was hardest to recognize from the movement and posture information
for human participants in the study in Chapter 2 (Table 2.5). It was proposed
that this might be because the movement and posture features were not suf-
ficient for recognizing this behaviour. Clips labelled with ‘aimless play” from
the PInSoRo data set were used as the intermediate engagement class. Thus
it could be that, whilst the general motor features are sufficient for recogniz-
ing high and low task engagement, additional input data, such as eye-gaze,

might improve performance on this intermediate engagement class.

5.4.1 Avenues for Future Work

Arguably the most notable finding is that, when the data was pre-processed
using LMUs, the outputs of both the logistic regression and MLP could suc-
cessfully be used to identify a previously unseen class as being intermediate
to the two trained extremes. This has a variety of potential repercussions.
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First, this study shows that training a system to recognize multiple classes,
where the classes are related to one another (i.e. intensities of an internal
state) based on observable human behaviours does not necessarily require
training on all of those classes or intensity ‘levels’. That is, after training on
frames from extremes of the task engagement intensity dimension (high and
low) it was possible to use the system’s output over whole clips to correctly
identify whether unseen testing clips were random data, or belonged to one
of three levels of engagement (high, intermediate or low). Additionally, this
was possible using a simple kNN classifier with basic descriptive statistics
of the clips as input. Thus, whilst the performances of each kNN classifier
on the intermediate engagement clips were only slightly above chance, these
results do show promise that more sophisticated methods may provide even
better performance accuracy. So whilst these results are certainly encourag-
ing, more work is needed to establish the reliability of this finding.

Another potential avenue for future work stems from the plots in Fig-
ure 5.15. These plots demonstrate that each of the three engagement classes
spans a relatively large space even though all of the clips within each class are
given the same label. Whilst it is a necessary feature of labelling naturalistic
data sets into classes that differences within those classes (e.g. intensity be-
tween members of the same class) are lost, the distribution of clips in Figure
5.15 suggests that it might be possible to recover this information. In partic-
ular, figures 5.15A and 5.15B suggest an ordering of individual clips within
classes. Consequently, one potentially interesting avenue for research would
be to verify whether human raters would produce a similar ordering. For
example, raters could be presented with pairs of clips and asked to select the
‘most engaged’ of the two. The resultant ordering could then be compared to
the orderings obtained here in order to test the degree to which they capture
an actual ordering along a continuum of engagement intensity. Furthermore,
these labels could be used to train a more true regression model in order
to develop a more accurate and precise model than the methods developed
here.

Finally, a third route for future work relates to the human expression of
internal states. The results of this study suggest that human movement and
body posture can be used to place examples of task engagement along a di-
mension of intensity (see Figure 5.14). One potential line of questioning, then,
is precisely which movements or postures communicate, first this state, and

second the intensity of that state. For instance, is the intensity of the internal
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state reflected in the intensity of human movements, or are different move-
ments and postures associated with each level of intensity? Answering these
questions would be useful not only for understanding human behaviour, and
potentially shedding light on the human mind-reading ability, but also in
providing more transparency to classification algorithms.

5.5 Conclusion

This chapter presents a study which aimed to answer the fourth and final

question proposed in this project:

To what extent can a system recognize intermediate states after training on only the
extremes?

In order to answer this question, three systems were compared on the task
of classifying three classes of engagement, varying along a dimension of in-
tensity, after training only on the two extreme classes (high vs. low). Of the
three systems used, only the logistic regression and MLP proved trainable.
This study also introduced the novel LMU method as a pre-processing step
in order to transform the input (body position data for each frame of a video
clip) such that each frame also contained information about the preceding
frames.

The results demonstrate that LMU pre-processing provides an advantage
for both logistic regression and MLP systems in this type of task. Further-
more, the LMU-MLP-kNN approach was identified as providing the best
overall performance in estimating the untrained intermediate engagement
examples without sacrificing performance on the two trained classes. Thus it
appears that recognition of untrained classes after training on the extremes of
a continuum is feasible, a finding which has important repercussions when
designing a system to recognize multiple levels of an internal state, without
the associated training data requirements. More work is needed to confirm
these results as well as to develop this approach so that intermediate states

can be more exactly placed along the intensity continuum.

5.6 Open-Source Resources

The following github repository contains scripts for the experiments, data

sets used for analysis, and analysis scripts.
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https://github.com/maddybartlett/Thesis_Notebooks/tree/master/Chapter5_
LMUs
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Chapter 6

General Discussion and

Conclusion

This research project set out to explore ways in which artificial systems could
be made to recognize non-emotional human internal states in a way which
reflects the experience of those states, allows for more accurate classification,
and could potentially be applied to the production of appropriate and flex-
ible artificial-agent behaviours in human-computer interactions. Chapter 2
highlighted that states relating to task engagement can be recognized by hu-
man observers from just human movement and posture information with a
similar degree of accuracy as from the full visual scene. Chapters 4 and 5 re-
port on the evaluations of a number of methods for classifying or estimating
task engagement from human movement information. In combination, these

studies sought to evaluate the thesis of this research:

By leveraging the assumption that the experience of internal states
can be described along a continuum of intensity, one may be able to
train a system to identify a range of ‘intensities” without the necessity

of labeled training examples from every range of states.

This Chapter discusses how the studies within this project provide an-
swers to the research questions posed in Chapter 1, and thus how they ad-
dress the over-arching thesis. The impact of this work is then outlined and
avenues for future work highlighted.

6.1 Research Questions

In order to examine the thesis of this project a series of four research questions
were put forward. Here we will revisit these questions and explain how the

work presented in this thesis addresses them.
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RQ1

RQ2

What representation of internal states best reflects the experience of
those states, and may lend itself to the problem of providing flexible
and appropriate responses from artificial agents? Chapter 1 explored
definitions and characterizations of human internal states, specifically
non-emotional states, and highlighted that they can often be described
in terms of ‘intensity’ (Hess, Blairy, and Kleck, 1997; Cacioppo et al.,
1986; Burgoon, Johnson, and Koch, 1998). That is, at any time, a per-
son’s experience of a given internal state can vary in terms of how
strongly or intensely the state is experienced. For example, it is more
accurate to say that a person can experience low levels, medium lev-
els or high levels of confusion, rather than simply stating that they
are either confused or not confused. Thus, one representation of inter-
nal states which reflects how they are experienced is one which places
states along a continuum of intensity. This is in contrast to most rep-
resentations used in classification which treat internal states as being
discrete, such that they are either present or not (Sanghvi et al., 2011;
Foster, Gaschler, and Giuliani, 2017; Bosch et al., 2015).

What internal states can be recognized from observable behaviours?
Having established that internal states can be thought of as varying in
terms of intensity, and that we wanted to create a system which could
reflect this, it was next necessary to identify a selection of internal states
which could be recognized from observable human behaviours. The lit-
erature review in Chapter 1 revealed that the modality of human move-
ment and posture behaviour has already been demonstrated to be a rich
source of such information for human observers (Manera et al., 2011;
Okada, Aran, and Gatica-Perez, 2015; Sanghvi et al., 2011). Therefore,
Chapter 2 examined which internal states, out of a selection, could be
recognized by human observers from such information. The results of
this study revealed that states related to task engagement, such as bore-
dom, were recognizable even when the observer was viewing videos
containing only movement and posture information. Furthermore, the
study presented in Chapter 3 demonstrated that humans are able to in-
terpret the ‘intensity” of the task engagement state another person is
experiencing. That is, participants viewing both the full-visual scene
and the movement-alone versions of videos of children exhibiting task
engagement behaviours showed agreement when rating the children
in terms of how engaged they were with their task on a 7-point scale of
‘Not at all’ to “Highly”.
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RQ3

RQ4

How successfully can these states be recognized by an artificial sys-
tem using machine learning methods? This third research question
was addressed by the studies presented in Chapters 4 and 5. In Chapter
4 a Conceptor-based network and a delay network were implemented
and trained to identify high and low task engagement from movement
data. Whilst the Conceptor-based network showed good performance
when trained and tested on examples of high and low engagement, the
results from the delay network showed that it was overfitting to the
training data. It was proposed that this may have been due to the use
of a PCA to reduce the number of input dimensions from 184 to 2. This
process may have reduced the quantity of information available to the
point of obscuring features which could be useful for differentiating be-
tween the classes. Thus, whilst the Conceptor-based network demon-
strated that it was indeed possible to train a classifier to recognize states
of engagement, there was arguably room for improvement in order to
provide a classifier with more detailed input data. A very recent de-
velopment presented a promising solution; the Legendre Memory Unit
(LMU) (Voelker, Kaji¢, and Eliasmith, 2019).

In Chapter 5 the LMU approach was implemented as a pre-processing
step to encode information both about the current frame, and the pre-
ceding 3-second’s worth of frames. This LMU pre-processed data was
then used as input for two separate systems, a logistic regression, and
a Multi-Layer Perceptron. Both of these systems were trained on exam-
ples of high and low engagement and demonstrated good performance
when tested on previously unseen samples from these classes. Further-
more, the LMU pre-processing successfully improved accuracy of both
systems compared to when just the original raw data was used.

To what extent can a classifier recognize intermediate states after train-
ing only on the extremes? The delay network presented in Chapter
4 was also tested on intermediate engagement patterns, but unfortu-
nately showed very poor performance due, most likely, to the overfit-
ting. However, the MLP and logistic regression approaches presented
in Chapter 5 provided an output in response to the untrained interme-
diate engagement examples which was shown to be distinct from that
produced in response to the two trained classes. Furthermore, the in-
termediate output was also distinguishable from that produced when
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random data was used as input. Thus it was demonstrated that iden-
tifying an untrained, intermediate class after training on the extremes

along a dimension of intensity is feasible.

6.2 Pushing the State-of-the-Art

6.2.1 Training Requirements

As discussed in Chapter 1 existing approaches to recognizing human inter-
nal states often use categorical classification methods and rely on the use of
training examples for each class that is to be identified (Foster, Gaschler, and
Giuliani, 2017; Wimmer et al., 2008; Daoudi et al., 2018; Whitehill et al., 2014).
As a result of these data requirements, classifiers are often limited to very
few classification labels. For instance, many approaches use an approach
wherein the classifier’s output simply states whether or not an internal state
is present (Foster, Gaschler, and Giuliani, 2017; Wimmer et al., 2008; Daoudi
et al., 2018). Other approaches which do incorporate different ‘levels’ of an
internal state are limited to a binary approach such as in Whitehill et al., 2014
where classifiers were trained to recognize high and low task engagement
based on facial expression information. In contrast, the LMU-MLP-kNN ap-
proach presented in Chapter 5 included three classification options - high,
intermediate or low task engagement. Importantly, this was achieved with-
out requiring training on samples from every class. That is, after data was
pre-processed using the LMU method in order to ensure that each ‘frame’
contained information about the history of the ‘clip’, the MLP and LR were
trained only on high and low engagement. The outputs (a continuous vari-
able) produced by these systems in response to high, low and the untrained
intermediate engagement testing data were then used by a kNN for classi-
fication. Consequently, one contribution of this work is demonstrating how
categorical classification can be achieved without requiring training on every

class.

6.2.2 Legendre Memory Units

Additionally, this project has taken a recently developed method - Legendre
Memory Units - and applied it to a task unlike any that it had been used
for before. LMUEs, first introduced in Voelker, Kaji¢, and Eliasmith (2019),
have been tested on non-dynamic classification problems such as the MNIST
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digital classification task (Voelker, Rasmussen, and Eliasmith, 2020) and on
dynamic problems such as forecasting aortic pressure for clinical purposes
(Wang et al., 2020). However, this method has not (prior to the current re-
search) been applied to the recognition of human internal states, or to the
classification of data taken from video footage of human behaviour. Thus
this project has both extended the potential use-cases for the LMU method-
ology, and has provided further evidence for its effectiveness in encoding

continuous time-series data.

6.3 Future Work

Within this project, there are two main studies which present opportunities
for future work. The first is that presented in Chapter 2, wherein it was
found that human observers were able to recognize a range of different inter-
nal states and social constructs from videos containing only the movements
made by children during interactions. Specifically, an EFA analysis revealed
that there were three constructs underlying participants’ ratings which were
translated as Imbalance, Valence and Engagement (IVE). One potential route
for future research, therefore, is to validate whether these three constructs
are useful for summarising/describing social interactions. If this is the case,
this would provide a basic framework for defining social interactions, which
in turn could aid in the design of, for example, social robotics, by highlight-
ing some simple concepts which are useful for such a robot to be able to
recognize. Verifying this framework can potentially be done in two main
steps. The first being to present humans with a range of social interactions
and asking them to summarise these interactions in both quantitative and
qualitative ways. Participant responses can then be assessed to see whether
the IVE constructs emerge from that data. A second step, to explore the use-
fulness of these constructs, could effectively be a ‘matching game’, wherein
participants are presented with a range of IVE descriptions (i.e. “the people
are behaving in similar ways, being positive and engaged with their task”), and
videos of social interactions, and asked to match them together.

Second, the results presented in Chapter 5 open up a number of directions
for future research. Most immediately, these results should be validated by
replication studies, and the final classification approach (LMU-MLP-kNN)
assessed for its ability to generalize both to other internal states, and to other
populations and contexts. Furthermore, there is certainly room for improve-

ment when it comes to the classification performance. Whilst performance
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of the LMU-MLP-kNN approach was above chance on the intermediate en-
gagement class, a large number of samples were still confused for the two
trained classes. It is possible that this was a result of not all of the sam-
ples being perfect members of their class. However, it may also be that this
confusion was due to the limited amount of training data used. Whilst the
approaches developed here were intended to overcome potential shortages
in data, it cannot be denied that adding more training data would likely im-
prove the classifier’s ability to distinguish between classes, even if that train-
ing data still only consists of the two “extreme’ classes.

It should also be considered that applying this work to other contexts,
internal states and data sets may require that the classification system be ex-
tended to include additional cues and data as input. The experiments re-
ported here focused on a relatively structured interaction where the children
were fairly stationary in space, with limited opportunities for movements
and a common reference point (i.e. the sand-tray). Therefore, applying these
methods to other interactions and contexts, specifically more dynamic inter-
actions, will likely require that the system be provided with additional data.
For example, in an interaction where children are sharing a toy, or are able
to move around more it would likely be useful for the system to have infor-
mation about the position of objects that the children are interacting with or
moving around, as well as about the movements of the children.

Another potential avenue for improvement would be to use a data set
specifically annotated for this task. Whilst Chapter 3 demonstrated that the
annotation labels available in the PInSoRo data set could be mapped onto
levels of engagement, it is likely that having annotators specifically label
the data in terms of high, intermediate and low engagement would result
in clearer class boundaries. Alternatively, the data could be labelled to better
define the intensity continuum, thus providing the opportunity to use regres-
sion models. This could be done, for example, by presenting annotators with
pairs of clips and asking them to select the “‘most engaged’ of the two. Even-
tually this could provide an ‘ordering’ of the clips which can then be used for
regression models or to compare with the ordering of clips in PCA space pre-
sented in Figure 5.15. In terms of application, such a regression model could
be used to provide specific ‘scores’ to describe the intensity levels of internal
states, or one could introduce cut-off points along the intensity dimension to
define as many “intensity categories” as needed.

Another consideration that could be explored in future works is that of

implementing this approach in real-time. A number of human-computer
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interaction settings require real-time analysis of the internal states and be-
haviours of human participants in order to provide appropriate responses
from an artificial agent. For example, the field of social robotics is geared to-
wards developing robots which can interact socially with humans autonomously.
In such settings, the artificial agent must be able to track and interpret their
interaction partner’s behaviour in real-time in order to make decisions about
what behaviours it, the artificial agent, should perform next. As a simple
illustration, when handing over an item to a human, a robot must be able
to track the position of the human’s hand in order to place their own within
an appropriate proximity, and must recognize when the human has securely
grasped the object before releasing it from their own grip. In terms of task
engagement recognition, for example, it would be useful for a tutor robot to
be able to recognize when a student is not engaged with their learning task
so that they can appropriately offer encouragements and draw the student’s
attention back to that task. A series of studies by Blouw et al. (2020) has
demonstrated that the LMU method shows promise for real-world applica-
tions so it seems that implementing the approach developed here in such a
setting is, at least, feasible. Thus future work could explore how viable the
methods developed here are for real-time application, and what improve-

ments are needed for this to be successful.

6.4 Potential Applications

Within the field of Human-Computer Interaction there are a range of con-
texts which can potentially benefit from, or already require, an artificial sys-
tem able to recognize human internal states. The types of internal states to
be recognized, and the usefulness of being able to recognize different inten-
sities of an internal state, differ from case to case. The following section
discusses three examples of contexts where the methods developed in this
project could prove particularly beneficial: security systems, social robotics

and behavioural analysis for diagnosis.

6.4.1 Security Surveillance

One potential application for this technology is in analysing security surveil-
lance footage. In recent years work has been done into developing technolo-
gies for automatically analysing behaviours in CCTV (closed-circuit televi-

sion) footage in order to identify potentially anti-social or illegal activities
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(Singh, Singh, and Gupta, 2020; Saveliev, Uzdiaev, and Dmitrii, 2019; Zulk-
ifley et al., 2016; Ditsanthia, Pipanmaekaporn, and Kamonsantiroj, 2018). If
the methods developed by this project are extended to internal states such
as aggression then they could potentially be used by security technologies in
order to identify individuals whose behaviour is aggressive or threatening.
One of the difficulties faced when developing classifiers to be used in these
settings is the amount of training data required. For example, Saveliev, Uzdi-
aev, and Dmitrii (2019) constructed a data set of 1086 videos to train and test
their networks to recognize aggressive behaviours. Furthermore, much of the
work focused on this kind of machine learning application have looked at the
classification of only one or a few types of anti-social behaviour. To illustrate,
the study by Saveliev, Uzdiaev, and Dmitrii (2019) looked at acts of phys-
ical aggression (fights, scuffles) and the manifestation of riots. In contrast,
Singh, Singh, and Gupta (2020) used a range of 13 behaviours and anomalies
(including abuse, burglary, fighting, shoplifting, road accidents, and vandal-
ism) but required 128 hours of video as the data set. Due to the wide range
of potential behaviours and instances which a comprehensive security sys-
tem would need to recognize, a large data set is unavoidable. Whilst the
methods presented in this Thesis do not negate these data requirements, they
do potentially reduce the total amount of training data needed for recogniz-
ing behaviours which fall along a continuum of intensity. For example, one
could potentially train a system on low-intensity and high-intensity physi-
cal aggression and then be able to identify intermediate-intensity aggression
without training.

This is particularly useful in cases where the classification needs to be
performed in real-time in order to alert a user to a potential disturbance, and
where the level of intensity alters the required response. To illustrate, say the
security system is set up in a shopping centre, if the classifier alerts some-
one to an instance low-intensity aggression, the user already has an indica-
tion of how many responders (i.e. security guards) might be required, which
thus enables them to make decisions more quickly. In contrast, if the system
did not provide an indication of intensity but simply alerted the user to an
aggressive incident, the user would likely take longer to visually assess the
situation before alerting security. So, whilst the classifier would not make de-
cisions about the response needed itself, providing a label of intensity could
allow whomever is monitoring the activity to more quickly judge what kind

of response is required.
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6.4.2 Social Robotics

Another context where the methods developed here could be particularly
useful is the field of social robotics. As has been pointed out, one of the
central goals of human-robot interaction research for social robotics is to de-
velop robots which can interact autonomously with humans (Dautenhahn
and Saunders, 2011). This requires that robots are granted a level of ‘mind-
reading” where they can recognize a human interaction partner’s internal
state and respond accordingly (Dautenhahn, 2007; Breazeal, Gray, and Berlin,
2009; Vernon, Thill, and Ziemke, 2016; Sciutti et al., 2018).

Whilst the reduced training data requirement is also a potential benefit
for this application, a second, and arguably more valuable benefit, is the
ability to provide multiple classification labels per state. Recognize multi-
ple “intensities” of an internal state provides the potential for more flexible
and appropriate robot behaviours. That is, consider the most simplistic case
where single response options are attached to each detected state. In the case
where a robot is only able to recognize whether or not a human partner is ex-
periencing a given state, this leaves the robot with a very limited behavioural
repertoire, which will inevitably lead to inappropriate behaviours such as of-
fering clarification when the human partner is not really that confused, or
offering no clarification when the interaction partner is somewhat confused.
However, if the robot is able to recognize multiple ‘levels” of confusion, then
the repertoire is much richer, and the appropriateness of the robots responses

is likely to be more appropriate.

6.4.3 Behavioural Classification for Diagnosis

A third area where the methods presented in this project could be applied is
that of behavioural diagnostics. A large portion of this project was funded by
the project DREAM!, funded by the European Commission’. DREAM aimed
to develop systems to support therapists in the diagnosis and intervention of
Autism Spectrum Disorder (ASD). Consequently, much of this project was
guided and informed by these goals.

In particular, selecting human internal states as the focus for classification

Ly . dream2020 . eu

2grant number 611391
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was partially influenced by the definition of ASD. The Diagnostic and Statis-
tical Manual of Mental Disorders (DSM-V) (APA, 2013) defines Autism Spec-
trum Disorder (ASD) in terms of difficulties in two behavioural domains: so-
cial communication and interaction, and restricted or repetitive behaviours
and interests (APA, 2013). Many of the individual behaviours which fall into
these domains are covert and therefore rely on human expertise to interpret.
For example, one diagnostic trait listed by the DSM-V is a failure to ask for
comfort when needed (APA, 2013). In order to identify this trait the observer
must be able to recognize whether the individual being assessed is experi-
encing a state of distress, and whether that distress is severe enough that one
would expect them to seek comfort. Thus, having a behaviour classification
system able to not only recognize a state of distress, but also able to provide
a rating of the intensity of that state would clearly be useful in this setting.
Such a system could be used to provide quantitative, objective measures of
diagnostic behaviours in order to inform a therapist’s decision when mak-
ing a diagnosis. This idea of providing behaviour classification to aid in the
diagnosis of ASD was explored in more depth in Bartlett et al. (2020) (see
Appendix B).

6.5 Conclusion

The goal of this work was to develop an artificial system which could classify
non-emotional human internal states from observable human behaviours.
Based on the findings from an initial study exploring what internal states
humans are able to recognize when observing others, it was decided that this
work would focus on designing systems to identify task engagement from
human body movements and posture information. A series of experiments
explored a variety of machine learning approaches including a Conceptor-
based approach, a delay network, an MLP and a logistic regression (LR).
The final systems (LMU-MLP-kNN and LMU-LR-kNN) were successfully
trained to classify high and low intensity task engagement based on move-
ment and posture information extracted from videos of children interacting.
Thus this work lends support to the Observability Principle (Becchio et al.,
2017) by demonstrating that overt, observable human behaviours can act as
cues for recognizing complex, non-emotional human internal states.
Additionally, this project aimed to examine whether the description of in-

ternal states as varying in terms of a continuous dimension, in this case an
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‘intensity” dimension (e.g. from low intensity task engagement to high inten-
sity task engagement), would allow one to create a system able to identify
multiple intensities of an internal state after training on only the extremes.
That is, would a system trained on high and low intensity task engagement
be able to estimate intermediate task engagement without training on that
class. With most classical machine learning methods, creating a system to
recognize these three intensities of task engagement would require that the
system be trained on examples from all of the target classes. However, ob-
taining such data can be difficult, either due to a lack of available existing
data sets, or due to the resources required for creating new data sets. This
is particularly true for certain applications, such as developing systems for
classifying potentially diagnostic behaviours. Collecting behavioural data
in this context often requires recruiting from a limited (and potentially vul-
nerable) population and involving expert clinicians in the recruitment and
collection process. Thus the current project was also an exploration of possi-
ble methods for reducing these data requirements in cases where the target
internal state can be described in terms of an underlying continuous dimen-
sion. In line with this goal, the final systems developed in this project were
able to achieve above chance performance on a wholly untrained intermedi-
ate intensity task engagement class, after being trained only on high and low
intensity task engagement.

In this way, this project has provided support for the main thesis: “By
leveraging the assumption that the experience of internal states can be described
along a continuum of intensity, one may be able to train a system to identify a range
of ‘intensities’ without the necessity of labeled training examples from every range of
states.” Whilst more work is needed to explore potential ways to improve on
the methods presented here, and to test how well the methods can generalize
to other populations and internal states, the work did succeed in developing
a system which can provide multiple classification labels for a single, com-

plex internal state, without requiring more training data.
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