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Binary LDPC Design for Slepian-Wolf Coding of Correlated Information 

Sources 
 

Saeed Anibaba Eleruja 

Abstract 

 

Communication has shifted from simple point-to-point communication to network communication 

with many senders and/or receivers. These networks are distributed in nature and require the 

formation of low-delay and energy-limited communication schemes which make use of correlated 

sources in which common information from the sources is carefully managed to avoid duplication, 

thereby attaining the optimal usage of channel resources. Slepian and Wolf first proposed and 

developed a scheme where multiple information sources can be jointly compressed at a rate greater 

than the sum of their respective rates if compressed separately. The major challenges in existing 

schemes are three, namely, the modelling of a correlation channel; consideration for systems with 

stringent delay restrictions; and the tradeoff between error correction performance and associated 

complexity. 

The aim of this research is to develop efficient means of improving the performance of distributed 

source coding, particularly, the Slepian-Wolf coding schemes. An Additive White Gaussian Noise 

(AWGN) equivalent channel is proposed and implemented. Subsequently, to justify the correlation 

between information sources, a binary symmetric equivalent channel is developed. It is understood 

from Shannon’s theory that block codes of sufficiently large length are asymptotically optimal. 

This justifies the use of binary channel codes like Low-Density Parity-Check (LDPC) codes for 

practical Slepian-Wolf coding. Thus, LDPC codes of block lengths 𝑛 = 512, 100 and 1024 were 

applied on the equivalent channel models and simulation results show improvement over other 

schemes with similar code lengths. Furthermore, to address the problem of systems with stringent 

restrictions on delay, new schemes were modelled to utilize very short, low delay codes like the 

[7, 4, 3] Hamming code, the [15, 7] BCH code as well as the [47, 24, 11] Quadratic Residue (QR) 

code. Particularly, an improved source coding scheme is proposed to correct a single-bit error of 

the [47, 24, 11] QR code based on the modification of the Dorsch decoder without the 

implementation of maximum-likelihood decoding. Finally, a framework is established for 

attaining maximum likelihood decoding and the associated complexity is presented.
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Chapter 1 

Introduction 
 

The origin of coding theory is in the problem of reliable communication over noisy channels 

which, in turn led to the Information theory discipline. The information theoretic problem 

prompted the definition of a mathematical structure called error-correcting code or simply code. 

Information theory and Coding theory originated with Claude Shannon’s famous 1948 paper 

(Shannon, 1949). The channel coding theorem states roughly that good long codes are guaranteed 

to exist, without giving a clue how to construct them. Notwithstanding, Shannon’s paper 

encapsulates five major concepts namely, entropy and information content, channel capacity and 

the noisy-channel coding theorem, formal architecture of communication systems, unification of 

all information media through digital representation of messages over communication channels, 

and source coding or data compression. 

The information age has been revolutionized by Shannon’s fundamental work in 1948. During the 

past decades, communication has shifted from simple point-to-point communication to network 

communication with many senders and/or receivers. The emergence of distributed systems has 

increased the requirements for the efficient and effective use of expensive and limited resources, 

such as bandwidth and power, hence energy efficiency is a major concern. Distributed Source 

Coding (DSC) refers to the compression of multiple statistically dependent sources that do not 

communicate with each other and therefore are encoded in a distributed manner.  

Slepian and Wolf, in 1973 (Slepian & Wolf, 1973) laid the foundation of distributed source coding 

when they proved the counter-intuitive result that separate encoding with joint decoding achieves 

the same compression rate as joint encoding does. This could be achieved by partitioning all 
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possible source outcomes into bins indexed by syndromes of some good linear channel code for 

specific source correlation model (Zixiang, Liveris & Cheng, 2004). The Slepian-Wolf theorem 

deals with lossless compression of two correlated signals. In another pioneering work, Wyner and 

Ziv (Wyner & Ziv, 1976) studied the lossy counterpart of this problem which is a special case of 

distributed lossy source coding named lossy source coding with side information at the decoder. 

The classical communication channel system involves a single source from which information is 

fed to an encoder. However, Slepian-Wolf coding involves two or more sources sending similar 

information to an encoder simultaneously. Common information from the sources is carefully 

managed to avoid unnecessary duplication and obtain optimal usage of channel capacity. Practical 

communication systems make use of correlated sources, for instance smart grid meters. Each smart 

grid meter for a particular grid conforms to certain protocols and this means that certain 

information in the header files will be the same for various meters. Common information from the 

sources is carefully managed to avoid unnecessary duplication and obtain optimal usage of channel 

capacity. Correlation between information sources can be modelled in various ways. According to 

Slepian and Wolf (Slepian & Wolf, 1973), multiple sources can be jointly compressed at a rate 

greater than the sum of their respective rates if compressed separately. Slepian-Wolf coding entails 

lossless coding of a source with the help of some side information available at the decoder only. 

Unlike traditional communication channel systems which have a single source from which 

information is fed to an encoder, Slepian-Wolf coding involves two or more sources sending 

similar, or correlated information to an encoder simultaneously.  
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1.1 Linear Codes: Basic Definitions and Notations 
 

1.1.1 Linear Codes 
 

A linear code is an error-correcting code for which any linear combination of codewords 

is also a codeword. Linear codes could be partitioned into block codes and convolutional 

codes. As the name implies, a block code maps a block of information bits onto a channel 

codeword such that there is no dependence on past information bits. In contrast, 

convolutional codes are highly structured forms of codes designed such that each output 

block depends not only on the current input block, but also on some of the past inputs as 

well. Turbo codes can be seen as a hybrid of these two types of codes. Linear codes are the 

most studied codes from a mathematical point of view because of their algebraic properties. 

An [𝑛, 𝑘, 𝑑]𝑞 linear code 𝐶 is a 𝑘-dimensional vector subspace of 𝔽𝑞
𝑛, where 𝔽𝑞

𝑛 is an 𝑛-

dimensional vector space over a finite field of 𝑞 elements 𝔽𝑞. The codewords of linear 

codes are the 𝑘- dimensional vector subset of 𝔽𝑞
𝑛 which have length of 𝑛 symbols. 

Individual codewords are denoted by 𝑐 = [𝑐0, 𝑐1, … , 𝑐𝑘, … , 𝑐𝑛−1] and the maximum 

number of codewords in 𝐶 is given by 𝑞𝑘. The minimum distance of the code is 𝑑.  

1.1.2  Information Rate 

Also known as the code rate, the information rate of a code 𝑅, is defined as the ratio of the 

number of information bits, 𝑘 in each code block to the number of code bits, 𝑛. 

𝑅 =
𝑘

𝑛
                                                              (1.1) 
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1.1.3  Hamming Distance 

The Hamming distance between two strings 𝑥 and 𝑦 of the same length over a finite 

alphabet, 𝔽𝑞
𝑛, denoted by ∆(𝑥, 𝑦), is defined as the number of positions at which the two 

strings differ. 

∆(𝑥, 𝑦) = |{𝑖|𝑥𝑖 ≠ 𝑦𝑖}|                                                  (1.2) 

The fractional Hamming distance or relative distance between 𝑥, 𝑦 ∈ 𝔽𝑛 is given by 

 𝛿(𝑥, 𝑦) =
∆(𝑥,𝑦)

𝑛
                                                        (1.3) 

1.1.4 Hamming Weight 

The hamming weight, 𝑤𝑡(𝑥) of a string, 𝑥 over alphabet 𝔽𝑞
𝑛 is defined as the number of 

non-zero symbols in the string. Mathematically, 

𝑤𝑡(𝑥) = |{𝑖|𝑥𝑖 ≠ 0}|                                                    (1.4) 

This is also the numbers of ‘1’s in a non-zero codeword or the Hamming distance 

between a codeword and the all-zero codeword.  

It is worthy to note that 𝑤𝑡(𝑥 − 𝑦) = ∆(𝑥, 𝑦). 

1.1.5 Minimum Distance 

The minimum distance, or simply distance, of a code 𝐶, denoted ∆(𝐶), is defined to be the 

minimum Hamming distance between two distinct codewords of 𝐶. Mathematically, 

∆(𝐶) = min
𝑐1,𝑐2∈𝐶
𝑐1≠𝑐2

∆(𝑐1, 𝑐2)                                               (1.5) 
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For every pair of distinct codewords in 𝐶, the Hamming distance between them is at least 

∆(𝐶). The relative distance of 𝐶, denoted 𝛿(𝐶), is the normalized quantity 
∆(𝐶)

𝑛
, where 𝑛 

is the block length of 𝐶. Therefore, any two codewords of 𝐶 differ in at least a fraction 

𝛿(𝐶) of positions. 

1.1.6 Euclidean Distance 

Hamming distance is not always suitable for code design. In general, when a soft decision 

decoder is used at the receiver, Euclidean metric is used as design criteria and coding 

schemes are chosen that maximize the minimum Euclidean distance. More so, the 

Euclidean distance dominates the error bound in Gaussian channels with high signal-to-

noise ratios. 

The Euclidean distance between two strings 𝑥 and 𝑦 of the same length over a finite 

alphabet, 𝔽𝑞
𝑛, denoted by ∆𝐸(𝑥, 𝑦). 

∆𝐸(𝑥, 𝑦) = √∑(𝑥𝑖 − 𝑦𝑖)2
𝑛

𝑖=1

                                                 (1.6) 

 

1.1.7 Parity-Check Matrix and Parity-Check Equation 

The parity-check matrix 𝐻 of a code 𝐶 is an (𝑛 − 𝐾) × 𝑛 matrix that contains 𝑛 × 𝑘 

linearly independent vectors of 𝔽𝑞
𝑛 so that 𝑐𝐻𝑇 = 0 for all codewords 𝑐 ∈ 𝐶. In other 

words, 𝐶is a null space of 𝐻 and thus, 𝐶 is an [𝑛, 𝑘, 𝑑]𝑞 code if and only if there is a matrix 

𝐻 ∈ 𝔽𝑞
(𝑛−𝑘)×𝑛

 of full row rank such that, 
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𝐶 = {𝑐 ∈ 𝔽𝑞
𝑛 | 𝐻𝑐 = 0}                                                  (1.7) 

Every row in the parity-check matrix 𝐻 represents a parity-check equation. The parity-

check matrix may also be expressed in a reduced row echelon form so that the last (𝑛 − 𝑘) 

columns of 𝐻 form an (𝑛 − 𝑘) × (𝑛 − 𝑘) identity matrix denoted 𝐼𝑛−𝑘. 

 

1.1.8 Regular and Irregular Codes 

Codes with parity-check matrices that have a fixed number of non-zero symbols in each 

row as well as a fixed number of non-zero symbols in each column are called regular 

codes. Irregular codes do not have any fixed number of non-zero symbols. 

1.1.9 Generator Matrix 

Let 𝐶 ⊆ 𝔽𝑞
𝑛 be a linear code of dimension 𝑘. A matrix 𝐺 ∈ 𝔽𝑞

𝑛×𝑘 is said to be a generator 

matrix of 𝐶 if its 𝑘 columns span 𝐶. The generator matrix 𝐺 provides a way to encode a 

message 𝑥 ∈ 𝔽𝑞
𝑛 as the codeword 𝐺𝑥 ∈ 𝐶 ⊆ 𝔽𝑞

𝑛.  As in the case of the parity-check matrix, 

𝐻, the generator matrix, 𝐺 may be expressed in a reduced row echelon form by 

elementary row operations. In that case, the first 𝑘 coordinates of would be the identity 

matrix, 𝐼𝑘. A linear code has an encoding map 𝐸: 𝔽𝑞
𝑘 → 𝔽𝑞

𝑛 which is a linear transformation 

𝑥 → 𝐺𝑥. 

1.1.10 Syndrome 

Suppose vector 𝑦 ∈ 𝔽𝑞
𝑛 is some arbitrary vector, the syndrome of 𝑦 is a vector 𝑠 ∈ 𝔽𝑞

𝑛−𝑘 
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defined by, 

𝑠 = 𝑦𝐻𝑇                                                          (1.8) 

In the case where 𝑦 is actually a valid codeword, i.e., 𝑦 ∈ 𝐶, then 𝑠 = 0. Otherwise, at 

least one coordinate of 𝑠 would have a non-zero value and 𝑠 ≠ 0. 

 

1.2 Background to Distributed Source Coding 
 

Slepian and Wolf (Slepian & Wolf, 1973) in the 1973 pioneer paper presented sixteen cases 

depending upon the information available to the encoders and decoders through varying 

configurations of four switches. The first, case-1111 in which all four switches are closed 

contains nothing new and is obtained by regarding the pair (X, Y) as a new discreet random 

variable. The most interesting and novel of case of Slepian-Wolf's paper, however, is the 

case-0011 where each encoder sees only its source. This setup is called asymmetric 

Slepian-Wolf (SW) coding. The results from these cases were presented as an admissible 

rate region in the RX-RY plane and they generalize a similar and well-known result for a 

single information sequence, namely RX ≥ H(X) for faithful reproduction. This paper also 

raised a lot of research questions. These include: 

➢ How the foregoing extends to N correlated sources instead of two.  

➢ How the foregoing extends to a rate-distortion theory of correlated sources.  

➢ How to design block length codes given n to have small error probability for 

correlated sources.  

➢ The theory of variable-length encodings for correlated sources.  

➢ And how the theory extends for correlated sources that are not independent 
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drawings of pairs of correlated variables. 

It is well known that the infimum of achievable rates is given by H(X/Y). This is the 

conditional entropy of X knowing Y and several practical coding schemes have been 

proposed (Coleman, Medard & Effros, 2005), (Zixiang, Liveris & Cheng, 2004). A good 

number of these works is based on channel codes (Coleman et al., 2004), (Stankovic et al., 

2006), and particularly Low-Density Parity-Check (LDPC) codes (Cui et al., 2011), 

(Liveris, Xiong & Georghiades, 2002), (Matsuta, Uyematsu & Matsumoto, 2010). Several 

researchers have worked on channel coding for the design of good LDPC codes. 

Specifically, (Richardson, Shokrollahi & Urbanke, 2001), (Richardson & Urbanke, 2001) 

show that the performance of a code depends on its degree distributions. The degree 

distribution optimization can be obtained from density evolution which constitutes a good 

starting point for practical code design, but the issue of constructing proper coding matrix 

at finite length remain (Dupraz, Savin & Kieffer, 2015). 

 

Ancheta (Ancheta, 1976) proposed the syndrome-source-coding method of using error-

correcting codes to obtain data compression in which the source sequence is treated as an 

error pattern whose syndrome forms the compressed data. He formulated a “universal” 

generalization of syndrome-source-coding which provided robustly effective distortion-

less coding of source ensembles. The fundamental principle is that the source output is 

treated as a channel error pattern e, rather than as the received channel codeword. The 

syndrome s, which is the pattern of parity-check failures, is taken as the compressed data. 

At the user end, an “error-pattern estimator” for the code, which produces a likely error 

pattern ê consistent with s, is used as the source decoder. Ancheta showed that, for a 
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memoryless binary source and for arbitrarily small distortion, the required number of 

transmitted digits per source letter can be made arbitrarily close to the source entropy. 

Theoretically, 

      𝑟 = 𝑥 + 𝑒 

        where r is received word, 

       x is transmitted word, 

      e is the source output which is assumed to be statistically independent of x and where 

the addition is component-by-component in Galois Field (GF) (2). 

The encoder (or compressor, syndrome-former) computes s as, 

      𝑠 = 𝑟𝐻𝑇 

        where H is the parity-check matrix of the code, so that: 

     𝑠 = 𝑟𝐻𝑇 = (𝑥 + 𝑒)𝐻𝑇 = 𝑒𝐻𝑇 

This is because any valid codeword multiplied by the transpose of the H-matrix gives a 

zero vector. 

 

In other words,  𝑥𝐻𝑇 = 0. 

The decoder (de-compressor, error-pattern estimator) takes s as input and outputs the 

estimate ê of e. The corresponding estimate X of x is given by  𝑋 = 𝑟 − ê. 

 

Although, syndrome coding techniques could be developed using a variety of  codes, K. 

Zhang et al (Zhang et al., 2014) showed that the best performance could be achieved with 

codes that are specifically designed for syndrome coding. The authors concluded, among 
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other things, that these codes have the highest value of the equivocation rate, which is an 

information secrecy metric for a given code length and code rate. 

In their 2002 paper, Angelos D. Liveris et al (Liveris, Xiong & Georghiades, 2002) showed 

how LDPC codes can be used as an application of the Slepian-Wolf theorem for correlated 

binary sources. Their approach was based on viewing the correlation as a channel and 

applying the syndrome concept is focused on the asymmetric case of compression with 

side information. They simulated a regular and three irregular rate-half codes of length 

10000 and 100000 for 100 iterations in the decoder. The simulated results show that the 

practical lossless compression achieved by LDPC codes is higher than that of the turbo 

schemes available at the time for binary cases. 

LDPC codes are forward error-correction codes first proposed by Gallager (Gallager, 1962) 

in his 1962 PhD thesis at MIT. As their name suggests, LDPC codes are block codes with 

parity check matrices that contain only a very small number of non-zero entries. It is the 

sparseness of the parity check matrices which guarantees both a decoding complexity 

which increases only linearly with code length and a minimum distance which also 

increases linearly with the code length. 

A good LDPC code for channel coding is not necessarily good for SW coding as pointed 

out in (Bhattar, Ramakrishnan & Dasgupta, 2010) and (Chen, He & Jagmohan, 2009b). 

This is because the source distribution in SW coding is not necessarily uniform and the 

correlation channel is not necessarily symmetric (Cheng et al., 2009), (Toto-Zarasoa, 

Roumy & Guillemot, 2010). The channel coding scheme and the Slepian-Wolf coding 

scheme thus require codes of different rate and code degree distributions. Notwithstanding, 

it has been showed that for a given SW source distribution and a given correlation channel, 
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it is possible to identify an equivalent channel which requires the same coding rate and 

which leads to the same LDPC decoder performance (Chen, He & Jagmohan, 2009a).  

Cover (Cover, 1975) derived a simpler proof for the data compression theorem of Slepian 

and Wolf and also established that the Slepian-Wolf theorem is true without change for the 

arbitrary ergodic processes and countably infinite alphabets. 

Any decoder which accepts soft inputs and delivers soft outputs can be used for iterative 

decoding of two-dimensional systematic convolutional codes using log-likelihood algebra 

(Hagenauer, Offer & Papke, 1996). The authors concluded that iterative decoding is 

possible for convolutional codes in systematic feedback form, for any systematic block 

code or for combinations thereof.  They also observed that the key to achieving nearly 

optimal performance is the proper transferring of extrinsic information from one iteration 

to the next. Optimal and suboptimal decoders with reduced complexity are presented. They 

concluded that very simple component codes such as the 4-state convolutional code and 

the Hamming code are sufficient to achieve surprisingly good results. 

An analysis under the iterative decoding of coset LDPC codes over GF(q) designed for use 

over arbitrary discrete-memoryless channels was presented in (Bennatan & Burshtein, 

2006). They showed that coset GF(q) LDPC codes are a natural extension of binary LDPC 

codes to nonbinary channels by generalization of the analysis that had been developed from 

binary LDPC codes to coset GF(q) LDPC codes. The have also generalized the all-zero 

codeword assumption, the symmetry property as well as channel equivalence due to the 

fact that random coset analysis helps overcome the absence of output symmetry. Although 

they focused on the decoding problem, a by-product of their generalization of the all-zero 

codeword assumption is that no encoder needs to be implemented. Finally, using 
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quantization coupled with the generalization of Extrinsic Information Transfer (EXIT) 

charts, they obtained simulation results for the Additive White Gaussian Noise (AWGN) 

channel within 0.56 dB of the Shannon limit at a spectral efficiency of 6 bits/s/Hz. 

However, the authors could not realize density evolution, instead they resorted to 

permutation invariance for the analysis of stability property as well as approximation. 

Density evolution was implemented in (Dupraz, Savin & Kieffer, 2015) and others. 

The use of LDPC codes for non-uniform sources under distributed source coding paradigm 

was investigated in (Bhattar, Ramakrishnan & Dasgupta, 2010) and it was showed that 

several capacity approaching LDPC codes do approach the Slepian-Wolf bound for non-

uniform sources as well. Their Monte Carlo simulation results show that highly biased 

sources can be compressed to 0.049 bits/sample away from Slepian-Wolf bound for 

moderate block lengths. 

Yong Fang (Fang, 2009) showed that the redundancies in LDPC syndromes can be used to 

estimate the crossover probability between two correlated binary sequences and suggested 

that their proposed algorithm also applies to irregular LDPC codes by means of the mean 

of intrinsic Log-Likelihood Ratios (LLRs) 

In their paper, F. Daneshgaran et al (Daneshgaran, Laddomada & Mondin, 2009) proposed 

a novel iterative joint decoding algorithm based on LDPC codes for compression of 

correlated sources at rates approaching the Slepian-Wolf bound. They also demonstrated 

that significant compression can be obtained, depending on the extent of the actual source 

correlation estimated through an iterative paradigm, relative to the case the decoder does 

not use the implicit knowledge of the existence correlation. They concluded that LDPC 

decoding does not converge when the decoder does not iterate for estimating the actual 
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value of the cross-over probability but uses instead its mean value which is assumed to be 

implicitly known. 

J.J. Micallef, et al (Micallef, Farrugia & Debono, 2011) considered the construction of rate-

adaptive LDPC codes in which the edges of the variable nodes receiving unreliable 

information are evenly distributed among all the check nodes. They attributed sub-optimal 

performance of error correcting codes used for DSC to failure of the assumption of a 

random distribution of errors. This occurs because prediction of the error distribution is 

possible in certain DSC application. The performance these codes so constructed is similar 

to that of the traditionally constructed codes when error prediction fails. However, the gap 

to the SW bounds are reduced by up to 56% with improvements in accurate error 

predictions. 

In contrast to the situation treated by Slepian and Wolf, where knowledge of the side 

information at the encoder does not allow a reduction of the transmission rate, A.D. Wyner 

and J. Ziv in (Wyner & Ziv, 1976), showed that in fact, the knowledge of the side 

information at the encoder permits transmissions at a given distortion level using a smaller 

transmission rate. The authors determined the infimum of rates such that communication 

is possible at an average distortion level. It is interesting to note that, at zero distortion, the 

Wyner-Ziv problem simply transforms to the Slepian-Wolf problem. 

M.J. Wainwright and E. Martinian (Wainwright & Martinian, 2009) described and 

analyzed the source and channel coding properties of a class of sparse graphical codes 

based on compounding a Low-Density Generator Matrix (LDGM) with a LDPC code. 

They established that there exist codes from this ensemble, with all degrees remaining 

bounded independently of block length, that are optimal for both channel and source coding 
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simultaneously with binary data. They also showed that finite-degree constructions can 

achieve any pair on the rate-distortion curve of the binary symmetric channel in the context 

of lossy compression. For channel coding on the other hand, they proved that the same 

finite-degree codes can achieve any pair on the capacity-noise curve of the binary 

symmetric channel. Finally, the authors showed that the compound construction has a 

nested structure that can be exploited to achieve the Wyner-Ziv bound for Source Coding 

with Side Information (SCSI) as well as the Gelfand-Pinsker bound for Channel Coding 

with Side Information (CCSI). 

S. S. Pradhan et al (Pradhan, Chou & Ramchandran, 2003) explored the information-

theoretic duality between source coding with side information at the decoder and channel 

coding with side information at the encoder. They carried out a mathematical 

characterization of the functional duality between the classical source and channel coding 

and formulated the precise conditions under which the optimal encoder for one problem is 

functionally identical to the optimal decoder for the other problem. They further 

generalized the result of Wyner and Ziv relating to no rate loss for source coding with side 

information from Gaussian to more arbitrary distributions. Several examples 

corresponding to both discrete and continuous-valued cases were considered to illustrate 

the formation. Their geometric treatment inspires the construction and dual use of practical 

coset codes for a large class of applications for coding with side information such as 

watermarking, information-hiding communication systems and distributed sensor 

networks. 

In a recent publication, E. Dupraz et al (Dupraz, Savin & Kieffer, 2015) investigated the 

problem of designing good non-binary LDPC codes for Slepian-Wolf coding based on 
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density evolution that gives the asymptotic error probability of the decoder for given code 

degree distribution. Since the correlation channel in Slepian-Wolf coding is not necessarily 

symmetric and source distribution has to be taken into consideration, the assumption of 

symmetry upon which density evolution is developed does not necessarily hold. The 

authors optimized the code degree distribution by means of differential evolution. 

Asymptotic analysis and finite-length simulations illustrated the performance gain at 

considering optimized degree distributions. 

The performance of the normalized BP-based and the offset BP-based algorithms was 

analyzed by means of density evolution (Chen, Fossorier & Ieee, 2002). They showed that 

the performances of these two improved BP-based algorithms are within limits of the BP-

based algorithm with a properly chosen parameter. The simulations were carried out on 

codes with moderately long code lengths and the results obtained validates the proposed 

optimization.   

J. Chen et al (Chen, He & Jagmohan, 2009a), (Chen, He & Jagmohan, 2009b) also studied 

Slepian-Wolf coding with a mismatched decoding metric and established two different 

dualities between Slepian-Wolf coding and channel coding under mismatched decoding. 

These dualities namely, the type-level duality and the linear codebook-level duality, 

provide a systematic framework for comparing linear Slepian-Wolf codes, non-linear 

Slepian-Wolf codes, and variable-rate Slepian-Wolf codes. They concluded that the 

minimum rate achievable with non-linear Slepian-Wolf codes under mismatched decoding 

can be strictly lower than that achievable with linear Slepian-Wolf codes. Precisely, they 

established that each Slepian-Wolf coding problem is equivalent to a channel coding 

problem for binary-input output-symmetric channel under density evolution. 
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S. Cheng et al (Cheng et al., 2009) proposed an adaptive Slepian-Wolf decoder using 

particle filtering based belief propagation. They showed that their algorithm can 

simultaneously reconstruct a compressed source and estimate the joint correlation between 

the sources. Their approach can also achieve higher compression under varying correlation 

compared to the conventional Slepian-Wolf coder based on standard belief propagation. 

Consequently, they have been able to resolve a major difficulty affecting the practical use 

of Slepian-Wolf coding which is that the precise correlation among sources needed to be 

known a priori. Key to their solution is the fact that the error probability of a Binary 

Symmetric Channel (BSC) is updated for each variable node step by step by introducing 

the particle filtering algorithm in the left-hand side of the factor graph in the standard belief 

propagation algorithm. 

In a subsequent paper (Cui et al., 2011), same authors proposed the first adaptive 

asymmetric and non-asymmetric SW coding schemes that can perform online estimation 

of the correlation among sources while decoding. This is essential for practical 

implementation of SW coding since encoders cannot communicate to each other and thus 

cannot perform correlation estimation. 

J. Chou et al (Chou, Pradhan & Ramchandran, 2003) studied the problem of rate-distortion 

efficient constructions for the problem of SCSI. Their work was aimed to reduce the gap 

between theory and practice regarding the Wyner-Ziv theorem from information theory 

that prescribed rate-distortion performance bounds for the SCSI problem. The proposed 

two different frameworks based on a trellis construction and a turbo-based construction 

and obtained impressive results. 
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S. Chung et al (Chung, Richardson & Urbanke, 2001) used a Gaussian approximation for 

message densities under density evolution to simplify the analysis of decoding algorithms 

for memoryless binary-input continuous-output AWGN channels and sum-product 

decoders. They achieved this by converting the infinite-dimensional problem of iteratively 

calculating message densities that was needed to find the exact threshold to a one-

dimensional problem of updating means of Gaussian densities. This made it easier to 

design good irregular LDPC codes for AWGN channels and also allows the quick 

calculation of thresholds and understand the behaviour of the decoder better. They also 

demonstrated how the optimization of degree distributions can be visualized graphically. 

Three new innovations for compression using LDPC codes for the Slepian-Wolf problem 

were introduced in (Coleman et al., 2004). This was inspired by improvements of 

analogous results in multiple access channel coding literature. These three are: a general 

iterative Slepian-Wolf decoding incorporating a graphical structure of all the encoders and 

operates in a turbo-like fashion, a source-splitting to enable low-complexity pipelined 

implementations of Slepian-Wolf decoding at rates besides corner points of the Slepian-

Wolf region, and a linear programming relaxation to maximum-likelihood sequence 

decoding that exhibits the maximum-likelihood certificate property. This is another 

demonstration of the duality between source and channel coding, taking ideas developed 

for channel coding and transforming them appropriately to construct new source coding 

techniques. 

Subsequently in (Coleman, Medard & Effros, 2005) the authors again showed that there 

exist linear codes for which minimum-entropy decoders achieve the same error exponent 

as maximum-likelihood decoders using method of types. They introduced practical 
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approximation algorithms for minimum entropy decoding by exploiting two key 

observations; that the number of distinct types grows exponentially in n and that recent 

results in the optimization literature have illustrated polytope projection algorithms with 

complexity that is a function of the number of vertices of the projected polytope. They 

explicitly demonstrated linear code constructions that admit provable good performance in 

the binary case. 

Authors in (Davey & MacKay, 1998) showed that LDPC codes defined over finite fields 

GF(q) of order q > 2 show significantly improved performance compared to their analogous 

binary counterparts which had been shown to near Shannon limit performance when 

decoded using probabilistic decoding algorithm. They also presented the results of Monte 

Carlo simulations of the decoding of infinite LDPC codes which can be used to obtain good 

constructions for finite codes. 

A practical coding scheme for universal source coding with side information at the decoder 

was developed in (Dupraz, Roumy & Kieffer, 2013). The scheme encompasses the 

determination of the coding rate as well as the design of the encoding process, both 

contributions resulting from the information-theoretical compression bounds of universal 

lossless source coding with side information. They also proposed a novel decoder in which 

the available information regarding the class is considered. Finally, their proposed scheme 

avoids the use of a feedback channel or the transmission of a learning sequence, which 

would result in an increase in rate at a finite length. 

X. Hu et al (Hu, Eleftheriou & Arnold, 2005) proposed a general method for the 

construction Tanner graphs with a large girth by establishing edges between symbol and 

check nodes in an edge-by-edge manner. The novelty in their approach compared to 
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existing constructions is in its simplicity and flexibility. Its complexity is such that it can 

easily be used for constructing codes of very large block lengths and good girth guaranteed 

by the lower bound. Also, it successfully generates good codes for any given block length 

and any rate when using density-evolution-optimized degree sequence. It can also be used 

to generate linear-time-encodable LDPC codes with a slight modification. 

G. Lechner et al (Lechner, Weidmann & Ieee, 2008) studied the optimization of binary 

LDPC codes for the q-ary symmetric channel with moderate alphabet sizes q. They derived 

a factor graph representation of the front-end and showed that it can be processed with a 

complexity linear in the number of bits per symbol, m. They also used extrinsic information 

transfer analysis to optimize binary LDPC codes and showed that these codes perform close 

to the capacity of the q-SC over a wide range. 

T. Matsuta et al (Matsuta, Uyematsu & Matsumoto, 2010) established the existence of a 

universal Slepian-Wolf source code using LDPC matrices in the case where the source is 

stationary memoryless. At the time, the existing LDPC matrices for Slepian-Wolf source 

coding were based on maximum likelihood decoding and thus not universal. Their work 

allowed for arbitrarily decreasing the error probability for all sources whose achievable 

rate region contains the rate pair encoders even if the probability distribution of the sources 

is unknown.  

T. J. Richardson et al (Richardson, Shokrollahi & Urbanke, 2001) designed very good 

LDPC codes from highly irregular bipartite graphs with carefully chosen degree patterns 

on both sides. This work is based on (Richardson & Urbanke, 2001) in which a general 

method for determining the capacity of LDPC codes under message-passing decoding 

when used over any binary-input memoryless channel with discrete or continuous output 
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alphabets was presented. The authors have established three vital proofs; One, that the 

probability densities at the message nodes of the graph possess a certain symmetry, 

assuming that the underlying communication channel is symmetric. Secondly, that 

assuming no cycles, the message densities always converge as the number of iterations 

tend to infinite. And thirdly, a stability condition which implies an upper bound on the 

fraction of errors that a belief-propagation decoder can correct when applied to a code 

induced from bipartite graph with a given degree distribution. Simulation results show that 

the performance of the codes is very close to the asymptotic theoretical bounds. 

Pradhan and Ramchandran (Pradhan & Ramchandran, 2005) introduced a constructive 

approach for distributed binning of two codebooks with applications to many multi-

terminal source representation problems. They employed generalized coset codes 

constructed in a group-theoretic setting for this approach and analyzed the performance in 

terms of distance properties and decoding algorithms.  

Inspired by (Pradhan & Ramchandran, 2005), V. Stankovic et al (Stankovic et al., 2006) 

addressed the problem of practical code design for general multi-terminal lossless networks 

where multiple memoryless correlated binary sources are separately compressed and sent 

while each decoder receives a set of compressed sources and attempts to jointly reconstruct 

them. The novelty in this design is the possibility to approach the theoretical limits with a 

single channel code for ant rate allocation among the encoders. They authors also provided 

a detailed solution for both asymmetric and symmetric Slepian-Wolf coding based on 

partitioning a single channel code (Stankovic et al., 2004). The devised a powerful scheme 

that is capable of approaching any point on the Slepian-Wolf bound by using systematic 
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IRA and turbo codes. They obtained results which are 0.04 bits away from the theoretical 

limit in both symmetric and asymmetric Slepian-Wolf cases. 

V. Toto-Zarasoa et al (Toto-Zarasoa, Roumy & Guillemot, 2010) showed that the problem 

of non-asymmetric Slepian-Wolf coding of two correlated non-uniform Bernoulli sources 

is not symmetric in both sources unlike the case of uniform sources due to the asymmetry 

induced by two underlying channel models namely additive and predictive binary 

symmetric channels. They also developed a joint non-asymmetric decoder of the two 

sources based on LDPC codes and message passing decoding. Finally, they suggested a 

necessary and sufficient condition for the recovery of the two sources, that imposes a 

triangular structure of a sub-part of the equivalent matrix representation of the code. 

Z. Wang et al (Wang, Li & Xu, 2009) proposed an improved decoding algorithm based on 

joint bit-plane decoding for distributed video coding. This coding is based on Slepian-Wolf 

and Wyner-Ziv theorems proposed in 1970s. Their algorithm uses the decoded bit-plane 

results of quantization coefficients as a prior knowledge and decodes the other bit-plane to 

avoid correlation weakening between sources when decoding bit-planes independently. 

They also made full use of the correlation between Wyner-Ziv frames and key frames thus 

enhancing rate-distortion performance of distributed video coding without increasing 

decoding complexity. 

Mina Sartipi and Faramarz Fekri (Sartipi & Fekri, 2005) proposed a scheme for distributed 

source coding that achieves any arbitrary rate on the Slepian-Wolf rate region using a single 

systematic LDPC code. Their method is based on sending fractions of the information bits 

along with a fraction of parity bits generated by the LDPC code. They also proposed to use 

non-uniform LDPC codes for this application and also generalized their approach to any 
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arbitrary rate on the Slepian-Wolf rate region.  Furthermore, they illustrated that the design 

procedure for LDPC codes simplifies to the design of rate adaptive LDPC codes that need 

unequal error protection.  They also showed that the performance of distributed source 

coding at any arbitrary rate is almost the same as that of asymmetric rates. Their approach 

does not suffer from the problems of heavily damaged or propagation of the errors because 

each of the sources is in the decoding algorithm is decoded independently. Finally, they 

did simulations with code block length of 1000, which is similar to that being used in this 

study. This is significant for a fair comparison. 

Serener et al (Serener, Natarajan & Gruenbacher, 2008) introduced highly optimized short-

block-length LDPC codes along with Walsh-Hadamard spreading to Orthogonal 

Frequency-Division Multiplexing (OFDM) systems. The authors showed that the use of 

spreading along with code optimization and girth conditioning improves performance and 

lowers the error floor for short-length LDPC codes. 

Jin et al (Jin et al., 2018) developed a novel LDPC decoding algorithm based on Markov 

Chain Monte Carlo (MCMC) method. They also introduced two improved versions, 

MCMC-S (this version introduces a sort function, 𝑠 = 𝑠𝑜𝑟𝑡(𝑑𝑖, 𝑎) as an alternative to using 

an unreasonably small noise variance for computations) and MCMC-L (L stands for the 

number of preserved optimal paths) which achieve better results. These algorithms 

outperform the traditional BP decoding method. The authors also gave a Very Large-Scale 

Integration (VLSI) architecture of the proposed methods. 

Guo (Guo, 2018) proposed a design of LDPC code via the masking technology and 

progressive optimization. The quantity of short loops in check matrix is reduced by 

masking the elements in the matrix. This also improves the error correcting ability of the 
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code. The authors also showed that the performance of new codes can exceed the capacity 

of LDPC codes generated by randomized construction methods. 

Subsequently, the authors proposed another scheme (Sartipi & Fekri, 2008) which 

improves the performance of distributed source coding of two sources considerably. A 

study was also made of distributed source coding of three sources that are pairwise 

correlated with the same correlation probability. 

Amongst the most common approach to the distributed source coding of continuous-valued 

sources, like audio-visual data, is to first convert them to discrete-valued sources and then 

apply lossless Slepian-Wolf coding (Pradhan & Ramchandran, 2003; Zixiang, Liveris & 

Cheng, 2004). The problem of this approach is the introduction of quantization and binning 

losses by the source encoders. It is understood from Shannon that block codes of 

sufficiently large length are asymptotically optimal. This justifies the use of binary channel 

codes like LDPC and Turbo Codes for practical Slepian-Wolf coding as highlighted above. 

However, the problem arises when low delay is imposed on the system and as such, long 

length LDPC and Turbo Codes are not very useful. On the other hand, analog mapping has 

been used (Akyol et al., 2014; Chen & Tuncel, 2011) in attaining zero-delay source-

channel coding. Although, they have lower complexities, analog mapping techniques do 

not benefit from the advantages of digital communications. 

Several attempts (Vaezi, 2014; Vaezi, Combernoux & Labeau, 2013; Vaezi & Labeau, 

2012a; Vaezi & Labeau, 2012b; Vaezi & Labeau, 2013; Vaezi & Labeau, 2014) have been 

made in finding a balance to these two extremes, that is, sufficiently large length block 

codes and short-length, zero-delay codes. These attempts were based on the original works 

by Marshall (Marshall, 1984) and Wolf (Wolf, 1983) who first proposed the Discrete 
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Fourier Transform (DFT) to tackle the problem of error correction in the real field using 

real-number codes. Subsequently, Marshall also introduced the BCH-DFT codes as an 

important subclass of the DFT codes. Interestingly, Wolf, in collaboration with Slepian 

laid the very foundation for distributed source coding a decade earlier. 

Y. H. Chen and T. K. Truong  (Chen & Truong, 2011) presented a general algorithm for 

decoding the binary systematic QR codes using lookup tables. Although, the proposed 

model is used in decoding either reducible or irreducible generator polynomials, the authors 

suggested that the number of elements in the Galois field would be less than the sum of all 

correctable error patterns provided that the generator polynomial of the QR codes is 

reducible. Simulation results for the (31, 16, 7) QR code and the (73, 37, 13) QR code 

shows reduction in memory requirements up to 92 percent. The problem with lookup tables 

however is the memory requirement increases exponentially with increase in code length. 

Subsequently, Lin et al (Lin et al., 2010) modified the algebraic decoding of the eight 

possible errors of the (89, 45, 17) binary QR code using an efficient determination 

algorithm of the primary unknown syndromes. Their soft decision algorithm modification 

is said to be four times faster in computation time compared to the previous hard decision 

decoding algorithm while maintaining the same error patterns. However, there is a high 

computational complexity associated with simulating this soft decision decoding with the 

hard decoding algorithm of Chase-II (Chase, 1972) in other to obtain performance 

measures for comparison. 

It follows that Yong Li et al (Li et al., 2018) came up with what is considered to be a natural 

generalization of the cyclic weight (CW) algorithm for the (47, 24, 11) QR code developed 

by Lin et al (Lin et al., 2010). The authors developed an algorithm for faster decoding of 
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the binary systematic QR codes based on the Difference of Syndromes (DS) which 

combines the advantages of the syndrome-weight algorithm and properties of the cyclic 

codes. The DS algorithm improves the decoding efficiency and memory usage while using 

the (47, 24, 11), the (71, 36, 11), the (73, 37, 13), and the (89, 45, 17) QR codes as 

examples. The best among all QR codes of lengths less than 100 is the (89, 45, 17) QR 

code and the proposed algorithm improved the decoding speed by 26 times and saved up 

to 76.6 percent memory compared to the best pre-existing decoding algorithm. 

Pengwei et al (Zhang et al., 2015) presented a hard decision scheme to facilitate a faster 

decoding of the (47, 24, 11) QR code that directly determines the coefficients of the error-

locator polynomial by eliminating unknown syndromes in Newton identities and 

simplifying the condition that indicates the occurrence of four errors. A reliability-based 

shift-search algorithm is used to decode weight-5 error patterns while a previous scheme 

is used in decoding up to three errors. This proposed scheme reduces the decoding 

complexity and saves memory while maintaining the same error-rate performance. The 

authors also used the same scheme in decoding the (71, 36, 11) QR code (Li et al., 2015). 

Tsung-Ching Lin et al (Lin et al., 2016) developed a new speed-up approach for decoding 

a binary systematic (71, 36, 11) QR code by simplifying the step of calculating the 

condition and avoiding the calculation of the unknown syndromes. This approach also uses 

the channel measurement information proposed by Chase (Chase, 1972) to sequentially 

invert the bits of the received word until one of the error is cancelled for the five-error case. 

Xuemin Chen et al (Chen, Reed & Truong, 1994) presented a scheme for half rate binary 

quadratic residue (QR) codes using Binary Phase-Shift Keyed (BPSK) modulation and 

hard decoding. Performance measures obtained theoretically and by means of simulations 
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are compared with commonly used half rate convolutional codes with constraint lengths 

from 3 to 7. The authors showed that the binary QR codes of different lengths are 

equivalent in error-correction performance to some half rate convolutional codes which 

have a constraint length that corresponds to the error-control rate and minimum distance 

of the QR codes. 

Gregory et al (Dubney et al., 2009) also developed an algorithm that was based on the an 

idea first developed by Reed (Reed, 1959) in a 1959 MIT Lincoln Laboratory Report to 

facilitate faster decoding of the (47, 24, 11) QR code. This model uses real channel data to 

estimate the individual bit-error probabilities in a received word and then sequentially 

inverts the bits with the highest probability of error until one of the errors is canceled. 

Thereafter, the remaining errors are corrected by algebraic decoding techniques. It is also 

an appropriate modification to the algorithm developed by Chase (Chase, 1972). 

 

1.3 Thesis Aim and Objectives 
  

The aim of this thesis is to optimize the performance of short-to-medium block length 

LDPC codes on the Binary Symmetric Chanel as well as the Additive White Gaussian 

Noise for using Progressive Edge Growth (PEG) algorithm-based constructions. 

Consideration would also be given to both lossless and lossy compression of correlated 

information sources. The lossy scheme would imply the implementation of the concept of 

rate distortion. Furthermore, because capacity-achieving channel codes require unbounded 

complex encoder/decoder with infinite number of signaling degrees of freedom or block-

length, the performance of DSC based on LDPC codes is highly affected in practical real-
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time applications where delay and complexity limitations are stringent. Thus, this work is 

set to investigate the problem of distributed source-channel coding based on QR codes with 

a view of designing optimal codes with short code-lengths. 

 

1.4 Thesis Organization 
  

The remaining part of this thesis is organized as follows. 

Chapter 2 introduces distributed source coding and discusses different schemes under DSC 

systems, including point-to-point source coding, source coding with side information, as 

well as distributed lossless and lossy source coding . It also discusses the different kinds of 

codes and channels implemented in this research such as the Hamming codes and BCH 

codes. 

Chapter 3 discusses the message passing (iterative) decoding of LDPC codes for DSC, 

belief propagation algorithm decoding implementation, as well as the modifications of 

BP/SPA algorithms for the Slepian-Wolf AWGN and binary symmetric equivalent 

channels. 

Chapter 4 highlights the challenges of improving the performance of short-length codes for 

real-time applications, quadratic residue codes, the Dorsch decoder and its modifications 

for DSC, simulations for performance measure, maximum likelihood decoding, and the 

complexity associated with its implementation. 

Chapter 5 summarizes the entire thesis, highlights the contributions to the body of 

knowledge as well as the recommendations for future works.  
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Chapter 2 

Distributed Source Coding, Hamming codes and Bose-Chaudhuri-

Hocquenghem (BCH) codes 
 

2.1 Introduction 
 

This chapter discusses the basics of distributed source coding and identifies the major 

schemes under DSC systems. It also highlights the step-by-step development of a 

straightforward coding model as well as a Slepian-Wolf coding model of two correlated 

binary sources using very simply short length codes, viz-a-viz the [7, 4, 3] Hamming code 

and the [15, 7] BCH codes. 

 

2.2 Distributed Source Coding 
 

Consider a communication system with two separate correlated signals X and Y coming 

from two sources that cannot communicate with each other, as shown in Figure 2.1. This 

arrangement is known as DSC because encoding is done independently or in a distributed 

manner. However, the receiver can perform joint decoding since it can see both encoded 

signals. An example of such a system is a smart metering network composed of spatially 

separated smart meters, sending correlated observations to a common fusion center. The 

problem is to find the minimum required encoding rate such that both signals can be 

faithfully recovered without any loss. 
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Figure 2.1: Block diagram representing Slepian-Wolf coding. 

 

Slepian and Wolf (Slepian & Wolf, 1973) laid the foundation of this problem namely 

separate lossless compression of two correlated sources. They proved the counter-intuitive 

results that separate encoding with joint decoding achieves the same compression rate as 

joint encoding does. Lossless source coding with side information at the decoder is a 

special case of Slepian-Wolf coding where one signal, known as the side information, is 

available at the decoder. Wyner and Ziv (Wyner & Ziv, 1976) extended this special case 

to a more general one, namely lossy source coding with side information at the decoder. 

Intriguingly, when the source and side information are jointly Gaussian and the distortion 

measure is the MSE, Wyner-Ziv coding does not suffer a rate loss compared to the case 

where the side information is also available at the encoder. In other words, separate 

encoding is as efficient as joint encoding in lossy source coding. However, in general, 

Wyner-Ziv coding incurs some loss in rate when compared to lossy source coding with 

side information available at both the encoder and decoder. 

Perfect representation of continuous-valued random variable requires an infinite number 

of bits. This means that any description of such a variable with finite number of bits is 

imperfect and incurs some distortion. Thus, a basic problem in rate-distortion theory is to 

find the minimum expected distortion for a particular rate, given a source distribution and 
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a distortion measure (Cover, 2006). The rate-distortion function 𝑅(𝐷), is defined by the 

infimum of rates 𝑅 such that (𝑅, 𝐷) is achievable (El Gamal & Kim, 2011), for a given 

distortion value 𝐷. 

2.2.1 Point-to-Point Source Coding 
 

Theorem 2.1. Shannon’s Lossy Source Coding Theorem (Cover, 2006) 

The rate-distortion function for a Discrete Memoryless Source (DMS) 𝑋 with a distribution 

𝑝(𝑥) and a distortion measure 𝑑(𝑥, �̂�) is equal to the associated information rate-distortion 

function: 

𝑅(𝐷) = min
𝑝(�̂�|𝑥):𝔼(𝑑(𝑋,�̂�))≤𝐷

𝐼(𝑋; �̂�),                                                (2.1) 

for 𝐷 ≥ 𝐷𝑚𝑖𝑛 ≜ 𝑚𝑖𝑛�̂�𝔼(𝑑(𝑋, �̂�)), where 𝐼(𝑋; �̂�) is the mutual information of 𝑋 and �̂�.  

This means that a rate 𝑅 is achievable with distortion 𝐷 for 𝑅 > 𝑅(𝐷), but it is not 

achievable for 𝑅 < 𝑅(𝐷). When 𝐷 = 0, �̂� = 𝑥; and thus 𝑅(0) = 𝐼(𝑋, �̂�) = 𝐻(𝑋), which 

is the optimal rate for lossless source coding. This shows that lossless source coding 

theorem is a special case of lossy source coding theorem. 

2.2.2 Source Coding with Side Information 
 

Literature has showed that several extensions of Theorem 2.1 have been studied for cases 

when casual or non-casual side information (SI) is available at the encoder or decoder (El 

Gamal & Kim, 2011). The non-casual side information is when the entire side information 

sequence is available. When side information Y is available both at the encoder and 

decoder, the rate-distortion function becomes: 
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 𝑅𝑆𝐼−𝐸𝐷(𝐷) = min
𝑝(�̂�|𝑥, 𝑦):𝔼(𝑑(𝑋,�̂�))≤𝐷

𝐼(𝑋; �̂�|𝑌),                                            (2.2) 

This is known as the conditional source coding problem, usually represented by the 

conditional rate-distortion function 𝑅𝑋|𝑌(𝐷). It potentially decreases the required encoding 

rate to achieve the same distortion (Dragotti & Gastpar, 2009), when compared with the 

case where side information is not available at the encoder or decoder. 

 

Theorem 2.2. Wyner-Ziv’s Theorem (Wyner & Ziv, 1976) 

If (𝑋, 𝑌) are two discrete memoryless sources, the rate-distortion function of 𝑋 with 

distortion measure 𝑑(𝑥, �̂�) when side information Y is available only at the decoder is equal 

to:  

𝑅𝑆𝐼−𝐷(𝐷) = min
𝑝(𝑢|𝑥), �̂�(𝑢, 𝑦):𝔼(𝑑(𝑋,�̂�))≤𝐷

𝐼(𝑋; 𝑈|𝑌),                                           (2.3) 

where U is an auxiliary random variable and 𝑈 → 𝑋 → 𝑌 forms a Markov chain. 

This rate-distortion function is mostly represented by 𝑅𝑊𝑍(𝐷) or  𝑅𝑋|𝑌
𝑊𝑍(𝐷) in literature and 

it can be verified that the difference between 𝑅𝑆𝐼−𝐷(𝐷) and 𝑅𝑆𝐼−𝐸𝐷(𝐷) is understood to be 

in the sense that the minimum is taken over 𝑝(𝑢|𝑥) and 𝑝(𝑢|𝑥, 𝑦), respectively. This means 

that 𝑅𝑆𝐼−𝐷(𝐷) ≥ 𝑅𝑆𝐼−𝐸𝐷(𝐷) and indicates that 𝑅𝑆𝐼−𝐷(𝐷) − 𝑅𝑆𝐼−𝐸𝐷(𝐷) ≥ 0 is incurred 

when the encoder does not know side information. Wyner and Ziv, however proved the 

intriguing result that 𝑅𝑆𝐼−𝐷(𝐷) = 𝑅𝑆𝐼−𝐸𝐷(𝐷) for Gaussian memoryless sources and mean-

squared error distortion. Particularly, without loss of generality, for 𝑋~𝒩(0, 𝜎𝑋
2) and side 

information 𝑌 = 𝑋 + 𝑈 with 𝑈~𝒩(0, 𝜎𝑈
2) independent of X: 
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𝑅𝑊𝑍(𝐷) = 𝑅𝑋|𝑌(𝐷) =

{
 
 

 
 1

2
log2 (

𝜎𝑋|𝑌
2

𝐷
)           

0                                  

if   0 ≤ 𝐷 ≤ 𝜎𝑋|𝑌
2

if           𝐷 > 𝜎𝑋|𝑌
2

                                    (2.4) 

where 𝜎𝑋|𝑌
2 =

𝜎𝑋
2𝜎𝑈

2

𝜎𝑋
2+𝜎𝑈

2 . Although in the quadratic case there is no loss if the encoder does not 

have side information, the underlying coding scheme is very different from the case that 

side information is available to both encoder and decoder. Furthermore, when the side 

information suffers from rate loss, this result does not hold, and the exact solution is 

unknown. 

2.2.3 Distributed Lossless Source Coding 
 

Slepian and Wolf (Slepian & Wolf, 1973) laid the foundation of DSC, where statistically 

dependent signals are encoded in a distributed manner but decoded jointly. They proved 

the counter-intuitive result that separate encoding can be as effective as joint encoding. 

From Shannon’s source coding theorem (Cover, 2006), for probability of decoding error to 

approach zero, the minimum sum rate is simply the joint entropy H(X, Y). Surprisingly, the 

same combined rate is sufficient even if the signals are encoded separately as described in 

the following theorem.  

Theorem 2.3. Slepian-Wolf’s Theorem (Slepian & Wolf, 1973) 

The optimal rate region for distributed coding of two DMS sources (𝑋, 𝑌)~𝑝(𝑥, 𝑦) is the 

set of rate pairs (𝑅𝑋, 𝑅𝑌) that: 

𝑅𝑋 ≥ 𝐻(𝑋|𝑌)  

𝑅𝑌 ≥ 𝐻(𝑌|𝑋)  

𝑅𝑋 + 𝑅𝑌 ≥ 𝐻(𝑋, 𝑌)                                                        (2.5) 
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  Figure 2.2: Achievable rate regions for the Slepian-Wolf coding (solid lines) and separate 
encoding with separate decoding (dashed lines). 

 

Figure 2.2 illustrates the Slepian-Wolf rate region compared to the conventional entropy 

coding. This scheme reduces the rate required for lossless transmission of correlated 

sources. With conventional separate entropy encoding and separate decoding, one can only 

achieve 𝑅𝑋 ≥ 𝐻(𝑋) and 𝑅𝑌 ≥ 𝐻(𝑌); thus 𝑅𝑋 + 𝑅𝑌 = 𝐻(𝑋) + 𝐻(𝑌) which is greater than 

𝐻(𝑋, 𝑌) for correlated X and Y. Slepian and Wolf showed that the corner point A is 

achievable even when the first sender does not know Y. Thus, the sum rate  𝑅𝑋 + 𝑅𝑌 =

𝐻(𝑋, 𝑌) is achievable even though the sources are separately encoded. The limit for 

lossless DSC can be smaller than that of separate coding but the compression is no more 

error free. Notwithstanding, the probability of error can be negligible for long sequences. 
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2.2.4 Distributed Lossy Source Coding 
 

This is an extension of Slepian and Wolf problem in which reconstruction is no longer 

perfect. Two sources X and Y are separately encoded, and the descriptions are sent over 

noiseless communication channels to a common decoder, like the lossless DSC. However, 

in this case the compression is lossy, and the decoder wishes to reconstruct the two sources 

with distortions 𝐷𝑋 and 𝐷𝑌, respectively.  

 

Figure 2.3: Distributed lossy source coding. 

 

The problem is to find the minimum required description pairs (𝑅𝑋 , 𝑅𝑌) that achieve 

distortion pair (𝐷𝑋 , 𝐷𝑌). This problem is more involved, and the solution is not known, 

except for the quadratic Gaussian case. 

2.3 The Hamming Codes 
 

The shortest Hamming code, that is, the [7, 4, 3] code is an example of the quadratic residue 

codes (these are discussed in more details in Chapter 4) where 𝑙 =  2 and 𝑝 =  7 and has 

a generator polynomial (𝑥 + 𝛼)(𝑥 + 𝛼2)(𝑥 + 𝛼4) = 𝑥3 + 𝑥 + 1 where 𝛼 ∈ 𝐺𝐹(23). The 

[7, 4, 3] code has 𝐾 = 4 information bits, 𝑁 = 7 coded bits and (𝑁 − 𝐾)  =  3 parity bits. 
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2.3.1. Trivial Coding of the [7, 4, 3] Hamming Code 
 

In the pioneering paper of Slepian and Wolf (Slepian & Wolf, 1973), sixteen cases were 

considered depending upon the information available to the encoders and decoders through 

varying configurations of four switches. This is illustrated in Figure 2.4. The first, case-

1111 in which all four switches are closed contains nothing new and is obtained by 

regarding the pair (X, Y) as a new discreet random variable. This is implemented in this 

section. The most interesting and novel case of Slepian-Wolf's paper, however, is the case-

0011 where each encoder sees only its source. Case-0011 is discussed in Section 2.3.2 in 

detail. What follows here is an explanation of implementation of the straightforward coding 

of two correlated sources. 

 

Figure 2.4: Block diagram representing the sixteen cases of correlated source coding.  

 

A text file containing the code (H-matrix) was created systematically in such a way that, 

only positions in the array with a '1' are represented while ignoring positions with a '0'. The 

first line of the file shows the dimension of the matrix. In this case, N=3, M=4 indicates 
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that the matrix has three rows and four columns. For ease of decoding, the H-matrix was 

arranged in ascending orders of the column converted to decimals. 

 

Figure 2.5: Block diagram representing straightforward coding of two correlated sources. 

The program generates strings of 7-bit random numbers with the rand () function. Additive 

White Gaussian Noise (AGWN) is then added to obtain a noisy version of the data. The 

purpose of this is to add errors to the data. Because we are dealing with the [7, 4] Hamming 

code, only one bit of error can be corrected each time. Hence, the noise vector to be added 

should have been such that it comprises of an all zeros but one, seven-digit random numbers 

(that is, 1000000, 0100000, 0010000, 0001000, 0000100, 0000010, and 0000001). The 

eighth noise vector is the all zeros seven-digit number. This implies that there can be only 

eight different patterns of noise vector that should added to the original data in other to 

obtain a noisy version that is correctable. 

Subsequently, to obtain the syndromes, the transpose of the difference between the original 

data and noisy version (in other words, the noise vectors) is then multiplied with the H-

matrix. The corresponding syndromes obtained, being just 3 bits are 000, 001, 010, 011, 

100, 101, 110 and 111. Hence, compression is achieved by sending just 10 bits (original 

data [7 bits] plus syndrome [3 bits]) instead of 14 bits that would have been required to 
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send both sources without any compression. 

Finally, at the receiver, since each of the 8 syndromes corresponds to a distinct error vector, 

it would have been sufficient to implement a look-up table in other to achieve a simple 

decoder. However, the disadvantage of such approach becomes apparent when the size of 

the data increases. Particularly, we obtained eight syndromes because each is just three bits 

long. The number of syndromes grows exponentially with the length of the syndromes. 

Avoiding a look-up table, the H-matrix is arranged systematically in ascending orders of 

the columns in decimal. As such, each syndrome, apart from the 000 corresponding to the 

0000000 noise vector, is matched to a particular column position in the H-matrix array, 

ranging from column 0 to column 6. In other words, there is a one-to-one mapping from 

each received syndrome to a noise (or error) vector and finally to the most probable 

codeword that would have been sent. This holds as far as no errors or at most, 1-digit error 

occur between that sent and received messages, in which case, would be detected and 

corrected. This is because the [7, 4] Hamming code can correct at most one error bit. 

 

Figure 2.6: Plot of BER against 𝐸𝑏 𝑁𝑜⁄  for the Hamming code. 
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In the less likely cases where more than one error occurs, the message would not be 

correctly decoded. In fact, it could result in creating more errors in the process of trying to 

correct one. To avoid such situations, this program is designed such that, when computing 

the error vector, once the first error is encountered, it breaks out and ignore subsequent 

error(s) that might be present in any other bits of the 7 bits number.  As a result, even when 

there are more than one errors, one of it is corrected and no situation occurs when additional 

errors are created in an attempt to correct one. 

Functions are created to generate an array of 𝐸𝑏 𝑁𝑜⁄   from 0 to 10 and the corresponding 

BERs are also computed. The relationship between 𝐸𝑏 𝑁𝑜⁄  and the probability of error is 

given by equation 2.6. 

 

𝐵𝐸𝑅 =
1

2
𝑒𝑟𝑓𝑐(√𝑆𝑁𝑅)                                                          (2.6) 

 

The relationship between 𝐸𝑏 𝑁𝑜⁄  and SNR is established in equation 2.7. 

𝑆𝑁𝑅 = 2 × 𝑅 × 𝐸𝑏 𝑁𝑜⁄                                                                (2.7) 

R is the rate of the code. It follows that for a half-rate code, SNR = 𝐸𝑏 𝑁𝑜⁄  

A plot of BER vs 𝐸𝑏 𝑁𝑜⁄  as shown in Figure 2.6. This defines an operating point at 10-3 

gives 𝐸𝑏 𝑁𝑜⁄  of about 5 dB. This implies that, at a random signal-to-noise ratio of, say 5 

dB, only one bit was recorded in error out of 1000 bits that was transmitted. This is quite 

promising at this stage of development of a model. 
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2.3.2 Slepian-Wolf Coding of the [7, 4, 3] Hamming Code 
 

Again, according to Slepian-Wolf (Slepian & Wolf, 1973), even when each source is 

constrained to operate without knowledge of the other source, and the decoder has access 

to both encoded binary message streams, the model can still be coded and transmitted at 

same rate as if the sources communicate, such that they can be faithfully reconstructed by 

the decoder. 

 

Figure 2.7: Block diagram representing Slepian-Wolf coding of two correlated sources. 

 

The main difference between this implementation and the straight-forward coding is that 

both sources do not communicate with each other. Hence, in other to obtain a syndrome, 

which is just three bits, the H-matrix is multiplied by the noisy data at source Y. For 

implementation, this is equivalent to identifying the positions in the H-matrix with non-

zero entries, then adding up the entries of the corresponding positions of the noisy data. 

The random data at source X is transmitted wholly without any compression. As in the 

previous case, a total of 10 bits of data is sent over the noiseless channel. However, at the 

decoder, the syndrome of sources X is also obtained by multiplication with same H-matrix. 
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Subsequently, both syndromes are XOR-ed at the decoder and it becomes interesting to 

note that the result of this XOR operation is same as the syndrome obtained in the previous 

case where the difference between the sources was multiplied by the H-matrix. And as in 

the previous case, the H-matrix is arranged systematically in ascending orders of the 

columns in decimal. As such, each syndrome, apart from the 000 corresponding to the 

0000000 noise vector, is matched to a particular column position in the H-matrix array, 

ranging from column 0 to column 6. In other words, there is a one-to-one mapping from 

each received syndrome to a noise (or error) vector and finally to the most probable 

codeword that would have been sent. 

The [7, 4, 3] Hamming code is an example of the binary QR code that is further discussed 

in Chapter 4 and Chapter 5 of this thesis. 

2.3.3 Implementation on the [7, 4, 3] Hamming Code 
 

An overview of the major steps taken in the implementation of coding and decoding the 

[7, 4, 3] Hamming code over the Slepian-Wolf channel is presented in Algorithm 2.1. All 

algorithms are coded in C/C++ language. 

For the purpose of this implementation, 𝑠𝑖𝑔𝑚𝑎 = √(𝑝𝑜𝑤(10,−0.1 × 𝐸𝑏 𝑁𝑜⁄ )) 

Algorithm 2.1: Algorithm for Coding and Decoding the [7, 4, 3] Code over the 

Slepian-Wolf Channel  

Total-errors = 0 

for blocks transmitted = 1 to maximum number of codewords transmitted in simulation do 

 

begin 

➢ generate a length n random message using rand to determine the values of its 

individual bits for source1. 
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➢ convert the binary message from source1 to signal voltages, that is, bit 0 = -1.0V 

and bit 1 = +1.0V, to represent BPSK modulated signal transmission sj for 0 ≤ j ≤ 

n – 1. 

➢ generate random noise signal of length n to affect converted signal in each bit 

position using a typical uniformly distributed random number generator from C++ 

library. 

 𝑠𝑖𝑔𝑚𝑎 × √(−2 × log (
(𝑑𝑜𝑢𝑏𝑙𝑒)𝑟𝑎𝑛𝑑()

𝑟𝑎𝑛𝑑_𝑚𝑎𝑥
)) × cos (2 × 𝑚_𝑝𝑖 ×

(𝑑𝑜𝑢𝑏𝑙𝑒)𝑟𝑎𝑛𝑑()

𝑟𝑎𝑛𝑑_𝑚𝑎𝑥
) 

➢ add converted vector s to noise vector N to obtain the noisy version of the converted 

signal now, Xj = sj + Nj for 0 ≤ j ≤ n – 1. 

➢ quantize the noise signals of the noisy version by converting positive voltages to 1 

and negative voltages to 0, we call these source2. 

➢ compute the syndrome of the random bits of source2 by multiplication by the parity 

check matrix, these become the side information at the decoder. 

➢ decompress the syndrome by performing an exclusive OR operation of the source2 

and the syndrome. This is the same as the syndrome of the differences in the sources 

in straight forward coding. 

➢ do a one-to-one mapping of all possible error vectors to the decompressed data. 

This mapping is used to decode the correct message sent.  

 

➢ Repeat these procedures over SNRs from 0 to 10. 

end 

 

final error probability, Pe= Total-errors / maximum number of codewords transmitted in 

simulation. 

 

2.4 The Bose, Chaudhuri and Hocquenghem (BCH) Codes 
 

The Bose, Chaudhuri and Hocquenghem (BCH) codes are a large category of powerful 

random error-correcting cyclic codes and are as well, a remarkable generalization of the 

Hamming codes for multiple error correction. Binary BCH codes are the most important 

subclass from both theoretical and implementation standpoints. They were first discovered 

by Hocquenghem (Hocquenghem, 1959) in 1959 and then, independently rediscovered by  

Bose and Chaudhuri (Bose & Ray-Chaudhuri, 1960) in 1960. The simplest form of the 

binary BCH codes which can correct up to two bits of error at any instance is the [15,7] 
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BCH code. In chapter four, a class of cyclic BCH codes known as QR codes would be 

discussed. 

2.4.1 Slepian-Wolf Coding of the [15, 7] BCH Code 
 

Because Hamming codes are only capable of correcting just one bit of error, there is the 

need to implement SW coding to correct up-to two errors using other codes, for instance, 

the BCH code. The BCH codes form a large class of powerful random error-correcting 

cyclic codes. They are a class of codes that is a remarkable generalization of the Hamming 

codes for multiple-error correction. 

For any positive integers 𝑚(𝑚 ≥ 3)and 𝑡(𝑡 < 2𝑚−1), there exists a binary BCH code with 

the following parameters: 

 

 Block length:    𝑛 = 2𝑚 − 1                                                                 (2.8) 

 Number of parity-check digits:    𝑛 − 𝑘 ≤ 𝑚𝑡                                                               (2.9) 

 Minimum distance:   𝑑𝑚𝑖𝑛 ≥ 2𝑡 + 1                                                           (2.10) 

 

This code is capable of correction any combination of t or fewer errors in a block of 𝑛 =

2𝑚 − 1 digits. This is called a t-error-correcting BCH code. In general, entries of the parity-

check matrix H of BCH codes are elements in 𝐺𝐹 (2𝑚).  Thus, the binary parity-check 

matrix for a code is obtained by replacing each entry in H with its corresponding m-tuple 

over GF (2).  For (𝑚 =  4) and (𝑡 =  2), we obtain a (15, 7) code. This is a code of length 

n = 15, the message bits, 𝑘 =  7 while the parity-check bits, 𝑛 − 𝑘 =  8. 
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A text file containing the code (H-matrix) was created systematically in such a way that, 

only positions in the array with a '1' are represented while ignoring positions with a '0'. The 

first line of the file shows the dimension of the matrix. In this case, N=8, M=12 indicates 

that the matrix has eight rows and a maximum of twelve non-zero entries column-wise. For 

ease of decoding, the columns of the H-matrix are converted to decimals and the H-matrix 

is re-arranged in ascending orders of the columns. Also, for ease of coding, a -1 entry 

indicates the end of entries to any row. 

The program is like the previous case of one error-correcting Hamming code (see section 

2.3.3) with the following improvements: 

a)  A function to generate a Look-Up Table, GenLUT.  This function first initializes an 

array of length LenLUT containing integers to zero. Loops are created to search through 

the H-matrix for non -1 entries and convert to decimals. Subsequent loops are created to 

compare all possible combinations of individual columns, taking the modulo two additions 

of each combination (equivalent to XOR operations) and converting same to decimals. The 

results in decimals are stored in a systematic form comprising a quotient and its remainder 

(i+iLen*j). A total number of 2𝑛−𝑘 = 256 possible syndromes were considered. Finally, 

an equation cleverly inverts the addresses in the LUT and the entries in each address for 

decoding. 

 

b) The decompression function has the LUT added to the other augments namely, 

Data1, Data3 and the Syndrome. Furthermore, equations are defined to correct one error 

and two errors accordingly. 
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c)  The main program subsequently calls the GenLUT function and continues with the 

execution of other functions as described in the case of the Hamming code (see section 

2.3.3). 

2.4.2 Implementation on the [15, 7] BCH Code 
 

An overview of the major steps taken in the implementation of coding and decoding the 

[15, 7] BCH code over the Slepian-Wolf channel is presented in Algorithm 2.2. All 

algorithms are coded in C/C++ language. The algorithm is similar to that in section 2.3.3 

save for the introduction of a look-up table. 

Algorithm 2.2: Algorithm for Coding and Decoding the [15, 7] BCH Code over the 

Slepian-Wolf Channel  

Total-errors = 0 

for blocks transmitted = 1 to maximum number of codewords transmitted in simulation do 

 

begin 

➢ generate a length n random message using rand to determine the values of its 

individual bits for source1. 

➢ convert the binary message from source1 to signal voltages, that is, bit 0 = -1.0V 

and bit 1 = +1.0V, to represent BPSK modulated signal transmission sj for 0 ≤ j ≤ 

n – 1. 

➢ generate random noise signal of length n to affect converted signal in each bit 

position using a typical uniformly distributed random number generator from C++ 

library. 

 𝑠𝑖𝑔𝑚𝑎 × √(−2 × log (
(𝑑𝑜𝑢𝑏𝑙𝑒)𝑟𝑎𝑛𝑑()

𝑟𝑎𝑛𝑑_𝑚𝑎𝑥
)) × cos (2 × 𝑚_𝑝𝑖 ×

(𝑑𝑜𝑢𝑏𝑙𝑒)𝑟𝑎𝑛𝑑()

𝑟𝑎𝑛𝑑_𝑚𝑎𝑥
) 

➢ add converted vector s to noise vector N to obtain the noisy version of the converted 

signal now, Xj = sj + Nj for 0 ≤ j ≤ n – 1. 

➢ quantize the noise signals of the noisy version by converting positive voltages to 1 

and negative voltages to 0, we call these source2. 

➢ compute the syndrome of the random bits of source2 by multiplication by the parity 

check matrix, these become the side information at the decoder. 
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➢ decompress the syndrome by performing an exclusive OR operation of the source2 

and the syndrome. This is the same as the syndrome of the differences in the sources 

in straight forward coding. 

➢ generate a look-up table with same dimension with the parity-check matrix of the 

[15, 7] code. 

➢ do a one-to-one mapping of all the possible 256 error patterns to the 

decompressed data. 𝑳𝑼𝑻[𝑻𝒎𝒑[𝒊]]  =  𝒊; Tmp becomes the address of LUT while 

its address i becomes the content of LUT. This mapping is used to decode the 

correct message sent.  

 

➢ Repeat these procedures over SNRs from 0 to 10. 

end 

 

final error probability, Pe= Total-errors / maximum number of codewords transmitted in 

simulation 
 

2.5 Summary 
  

An overview of DSC and its major schemes has been discussed in this chapter with 

emphasis on Slepian-Wolf coding of two correlated binary sources. An efficient algorithm 

for correcting the single digit error of the [7, 4, 3] Hamming code was developed. Finally, 

the chapter concluded by extending the algorithm to correcting to bits of error of the [15, 

7] BCH code. The performance achieved by the [15, 7] BCH is similar to that of the [7, 4, 

3] Hamming code, (see 2.3.1, Figure 2.6). Hence, no need of repetition of the plot. 
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Chapter 3  

Message-Passing (Iterative) Decoding using LDPC codes for DSC.  

3.1 Introduction 
 

This chapter introduces the iterative decoding of LDPC codes for DSC. If further discusses 

the step-by-step implementation of the belief propagation decoding algorithm and its 

modifications for the Slepian-Wolf channel. Two new channels were modelled: the AWGN 

and binary symmetric equivalent channels. Comparison is also made with the performance 

of other scheme with similar block length and code rate. 

3.2 Low-Density Parity-Check Codes 
 

LDPC codes are linear block codes defined by parity check matrices which contain mostly 

0’s and a very small number of 1’s. It is because of this attribute of the parity check 

matrices, i.e. the relatively very small number of 1’s compared to 0’s, that they are 

described as sparse or low-density. These codes are most commonly decoded using the 

low-complexity probabilistic decoding method known as Belief Propagation (BP) or Sum-

Product (SP) Algorithm. The main advantages of this decoding scheme lies in its simplicity 

as the computation per digit per iteration is independent of the code’s block length. In 

addition, compared to other decoding schemes, it has a low computational time, very small 

memory requirements and generally lower implementation costs. 
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3.3 Message-Passing (Iterative) Decoding 
 

Perhaps, the most significant difference between LDPC codes and classical block codes is 

the way they are decoded.  Classical block codes are generally decoded with Maximum 

Likelihood (ML) like decoding algorithms and are therefore, usually short and designed 

algebraically to make the task less complex. Conversely, LDPC codes are decoded 

iteratively using a graphical representation of their parity-check matrix and thus, are 

designed with the properties of the parity-check matrix as a focus. Also known as message-

passing decoding, iterative decoding operations basically involve the passing of messages 

along the edges of a Tanner graph. In other words, the messages are passed back and 

forward between the bit and check nodes iteratively until either a result is achieved, or the 

process is halted.  

Different message-passing algorithms are named with respect to the type of messages 

passed or the type of operation performed at the nodes. For instance, in bit-flipping 

decoding, these messages are binary. This research is however, focused on belief 

propagation decoding, where the messages passed are probabilities that represent the levels 

of belief about the value of the codeword bits. Furthermore, it is often convenient to 

represent probability values as log likelihood ratios and decoding algorithms implemented 

thus are referred to as sum-product decoding algorithms. 
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3.4 Belief Propagation or Sum-Product Algorithm (BP/SPA) decoding 

implementation. 
 

A Belief Propagation decoding is referred to as Sum-Product Algorithm (SPA) decoding 

because the use of log likelihood ratios allow for the calculations at the bit and check nodes 

to be computed using sum and product operations. One such algorithms presented in 

(Abdu-Aguye, Ambroze & Tomlinson, 2016b) and (Abdu-Aguye, Ambroze & Tomlinson, 

2016a) which is implemented using the GNU/Linux based C programming language, is 

adopted and modified to take side information into consideration (see 3.4.1). The BP/SPA 

decoder reads the contents of a text file which contains an LDPC matrix. The first line of 

the configuration file contains important information about the LDPC matrix which is used 

for reading the parity check matrix correctly.  These include the code length, i.e., the 

number of symbol bits in each block of the encoded message, the parity length, i.e., the 

number of parity-check bits in each block of the encoded message, the number of rows of 

parity-check equations in the configuration file, the signal-to-noise ratio, in decibels, at the 

receiver and the maximum number of decoding iterations to be executed in the Sum-

Product Algorithm decoder.  

The subsequent rows in the configuration file contain parity-check equations; from parity-

check equation 0 to parity-check equation Z - 1 in sequence, where Z is the number of rows 

of parity-check equations in the configuration file. The serial numbers of all the symbol 

nodes involved in each parity-check equation, from parity-check equation 0 to parity-check 

equation Z - 1 in sequence, are listed in the corresponding row (from the second row of the 

configuration file which represents parity-check equation 0 to the Z-th row of the 

configuration file of the LDPC matrix configuration file. The symbol nodes in each parity-
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check equation are also listed with one or two spaces placed between consecutive symbol 

node numbers. The numbers in each row indicate the position of the ‘1’ bits in the 

corresponding row of the parity check matrix. A ‘-1’ is used to terminate each row of parity 

check equations after all the symbol nodes in it have been completely listed. 

An all-zero parity-check matrix with number of rows equal to rows and number of columns 

equal to the code length, code length as specified in the first line of the configuration file 

is created order to read the parity check matrix in the configuration file into memory. 

Subsequently, the positions of the ‘1s’ in each line of the LDPC parity-check matrix are 

determined from the contents of the corresponding line of the parity-check equations in the 

configuration file and the changes from 0 to 1 are made in the corresponding positions in 

the all-zero parity-check matrix created in memory. 

Going forward each time a ‘-1’ is encountered it is interpreted as the end of that line of the 

LDPC matrix configuration file and the program proceeds to read the contents of the next 

line in the configuration file until it reaches the final row’s ‘-1’, when the number of rows 

of parity-check equations, rows, specified in the first line of the configuration file has been 

exhausted. At this point, it is determined that the LDPC matrix configuration file has been 

fully read into memory. 

Subsequently, the program checks to ensure that the parity-check matrix (or H matrix) does 

not have any redundant rows or columns. A redundant row is a row with less than two 

symbol nodes. On the other hand, a redundant column is an all-zero column or a column 

without a single ‘1’ bit; that is, the corresponding symbol node is not involved in any of 

the parity-check equations. If any these is found in the configuration file, a corresponding 
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error message is displayed, the redundant row or column number is specified, and the 

program terminates. 

If no errors are found in the configuration file, the program proceeds to obtain the codeword 

generator matrix corresponding to the parity-check matrix read from the configuration file 

by performing the Gaussian elimination procedure on the parity-check matrix to convert it 

into its row echelon form. The row echelon parity-check matrix is further converted, using 

additional Gaussian elimination, to the reduced row echelon parity-check matrix in which 

the parity-check bits are expressed as explicit sums of information bits.  

The presence of one or more all-zero rows in this reduced row echelon form of the parity-

check matrix is an indication of the presence of linearly dependent parity-check equations. 

The configuration file must be manually edited to conform with the parity length specified 

in the first line of the parity-check matrix. If the parity length is less than the number of 

rows in the parity-check matrix, then the code rate is slightly higher than initially intended 

in the code design. 

If the correct parity length of the code has been specified, at this stage the program proceeds 

to apply some elementary matrix manipulation techniques on the parity-check matrix in its 

Gaussian reduced row echelon form to arrive at the codeword generator matrix. The 

Gaussian H matrix is compared with H = [A | In-k], where n is the length of the code and k 

is the information/message length, so that A is an (𝑛 − 𝑘)  ×  𝑘 binary matrix and In-k is an 

identity matrix of order 𝑛 − 𝑘, that is it is an (𝑛 − 𝑘)  ×  (𝑛 − 𝑘) matrix. 

The A part of the matrix is extracted from the reduced row echelon parity-check matrix and 

a matrix transpose operation is carried out on it to produce another matrix, AT, which is a k 
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× (n-k) matrix. Next, an identity matrix, Ik, of order k is generated. These two matrices are 

merged to form a codeword generator matrix given by G = [Ik | A
T]. If column swapping 

operations were carried out in the process of obtaining the row echelon form of the parity-

check matrix, the swapped columns would have to be unswapped in the reverse order in 

which they were originally swapped in order for the generator matrix to correspond to the 

original parity-check matrix read from the configuration file. It can be observed that the 

row space of the generator, G, is orthogonal to the original parity-check matrix, H. For any 

generator matrix, G, for a code with parity-check matrix H, the following relationship holds 

true; GHT = 0.  

The BP/SPA decoder program is designed to decode signals received over the Binary Input 

Additive White Gaussian Noise (BIAWGN) channel using BPSK modulation. Each 

transmitted 0 bit is assigned a voltage of magnitude -1.0V while each 1 bit is assigned 

+1.0V. For random variables, the SNR can be defined as X = s + N, where s is a constant 

signal and N is a random variable having an expected value of zero. The SNR = s2/σN
2, 

where s2 is the signal power’s mean squared value, and σN
2 is the variance of N. σN

2 

represents the noise power and is equal to its variance since the noise has zero mean. The 

signal-to-noise ratio, SNR, at which the iterative decoder carries out the code performance 

simulation, is given in decibels and is easily converted to linear SNR from the relationship, 

SNR (dB) = 10log10 SNR. Thus, SNR = 10(SNR (dB) / 10). 

Consequently, with s = ±1.0V, s2 = 1, which also implies that SNR = 1 / σN
2. Solving for 

σN, we obtain σN = 1 / √SNR. The standard deviation of the noise, σN, is used to determine 

the amplitude of the AWGN influence on the received signal in commensurate measure to 
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the SNR of signal reception. All transmitted messages/code words have the same messages 

energies.  

Two functions obtained from (Seiler & Seiler, 1989) are utilized to properly characterize 

the effect of noise at any given signal-to-noise ratio on the sequence of bits transmitted 

through the BIAWGN channel using BPSK modulation. These are the ran2 and the gasdev 

functions. The ran2 function is a random number generator which returns a uniform 

random deviate between 0.0 and 1.0 every time the function is called. Within the limits of 

its floating-point precision, ran2 provides perfect random numbers. The gasdev function 

returns a normally distributed deviate with zero mean and unit variance, using the ran2 

function as a source of uniform deviates for its operation. The gasdev function perfectly 

simulates the influence of additive white noise with a Gaussian distribution which is used 

to affect the BPSK modulated signals. Algorithm 2.1 summarized the algorithm of the core 

part of the software designed for Monte Carlos simulations for performance evaluation of 

PEG LDPC codes constructed in this study. It entails the repetitive aspects of the program 

execution including the BP/SPA decoding algorithm and excludes the aspects of the 

program which are executed only once and have already been explained in the preceding 

text. An illustration of this procedure is also presented in Figure 3.1. 

3.4.1 Implementation of BP/SPA using LDPC Codes. 
 

An overview of the major steps taken in the implementation of BP/SPA using LDPC codes 

over the conventional channel is presented in Algorithm 3.1. LDPC codes of block lengths, 

𝑛 = 512 and 𝑛 = 1024 are used in this section. All algorithms are coded in C/C++ 

language. 
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Algorithm 3.1: Algorithm for LDPC Code Performance Simulations using BPSK 

Modulation over the AWGN Channel and BP/SPA Iterative Decoding. 

Total-errors = 0 

for blocks transmitted = 1 to maximum number of codewords transmitted in simulation do 

 

begin 

➢ generate a length k random message using ran2 to determine the values of its 

individual bits, where message length (k) = code length (n) – parity length (p) 

➢ multiply the random message with the codeword generator matrix to obtain the 

binary codeword corresponding to the message. 

➢ convert the binary codeword to the transmitted codeword signal, that is, bit 0 = -

1.0V and bit 1 = +1.0V, to represent BPSK modulated signal transmission sj for 0 

≤ j ≤ n – 1. 

➢ generate Additive White Gaussian Noise signal of length n to affect transmitted 

signal in each bit position using; Nj = σN × gasdev, for 0 ≤j ≤ n - 1 and a new 

function call is made to gasdev for all j. 

➢ add transmitted vector s to noise vector N to obtain the received signal, Xj = sj + Nj 

for 0 ≤ j ≤ n – 1. 

➢ calculate the received probabilities, P(1)j, for all the bits in the received signal to 

obtain a received probability matrix, say RP(1)j, for 0 ≤ j ≤ n – 1. 

➢ create and initialize a probability matrix, HP, from the original parity-check matrix, 

H, in the configuration file such that bit 0 → 0.00 and bit 1 → 0.50. 

 

for iterations = 1 to maximum number of iterations do 

  begin 

execute the sum-product algorithm decoding on the received 

probabilities using the probability matrix, HP as a workspace. 

   end 

 

➢       convert the final bit value probabilities, P(1)j, into bits, using if P(1)j ≥ 0.5 

then sj = 1, else sj = 0, ∀ 0 ≤ j ≤ n – 1. 

➢       compare the bit values of the decoded output to the original message 

codeword transmitted, if they are the same then error = 0, and if they are 

different error = 1. 

➢       if error = 1, increment the Total-errors count. 

➢       calculate and display the block error rate, Pe, at regular intervals. This is the 
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ratio of the present number of unsuccessfully decoded codewords to the  

present total number of codewords processed by the sum-product algorithm 

decoder. 

 

end 

 

final error probability, Pe= Total-errors / maximum number of codewords transmitted in 

simulation 

 

 

  

 (a)  

 

(b) 

Figure 3.1: The conventional decoder (a) workflow (b) block diagram. 
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3.5 Modifications for Slepian-Wolf Decoding 
 

SW coding involves two or more sources sending similar information to an encoder 

simultaneously. Common information from the sources is carefully managed to avoid 

unnecessary duplication and obtain optimal usage of channel capacity. One method of 

using error-correcting codes to obtain data compression is syndrome source coding 

(Ancheta, 1976). The source sequence is treated as an error pattern whose syndrome forms 

the compressed data. 

3.5.1 The Slepian-Wolf AWGN Equivalent Channel  
 

The Classical Communication Channel code which has been described  above is modified 

to implement a Slepian-Wolf AWGN channel. Here, the focus is on the major 

modifications made, as the original channel has been described in section 3.4. From the 

onset, the entire block length consists of randomly generated binary digits as against the 

former case, where, for a rate half code, half of the block length consist of message bits 

while the other half is parity bits. In other words, there are no codewords per se, rather 

there exist, random bits of length n. 

The random bits so generated is denoted as source1. One way of defining the correlation 

between the sources is by making the second source (source2) a noisy version of the 

source1. To achieve this, additive white Gaussian noise is added to the random bits from 

the first source to form the second source. Then, the syndrome of source1 is obtained by 
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multiplication with the H-matrix, this being just half in length of the original source. 

Finally, the syndrome of source1 and the noisy version (source2) are transmitted separately 

over a noiseless channel to the decoder. It could be observed that compression is achieved 

by sending the syndrome of one source instead of the original source which is twice as long 

as its syndrome. And according to Slepian and Wolf, these sources can be faithfully 

reconstructed at the decoder. 

Another major modification to the classical channel is with regards to the syndromes. In the 

classical channel, the syndrome necessarily has to be zero to ensure that a codeword was 

sent and received. But, as earlier highlighted, technically there are no codewords in the case 

of the Slepian-Wolf channel. Hence, there exist syndromes which are a combination of zeros 

and ones. These syndromes are used as side information at the decoder to obtain the 

messages that have been transmitted at any particular instant. Simplification of Gallager’s 

equations leads to instances where the calculation of the probability of a message bit 

received to be a one. For the purpose of illustration, we consider the k = 2, n = 3 even parity 

check code. However, the discussion is similar for codes of any length. Assume the values, 

ri were received and the probabilities of the received vectors are computed from (3.1). 

𝑝𝑖
𝑐 = 𝑃(𝑐𝑖 = 𝑐|𝑟𝑖) = 𝑎𝑒

−
(𝑟𝑖−𝑣

𝑐)2

2𝜎2                                             (3.1) 

where a is a constant, v0 = -1.0, v1 = +1.0 and SNR = 1/σ2. i is the bit position and c is the 

bit value, i = 0, 1, 2. The probability of each codeword is computed as shown in Table 1.    
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Table 1: MAP decoding of the SPC by codeword enumeration. 

210 ccc  )|( rcP  

000  0

2

0

1

0

0 ppp  

011  1

2

1

1

0

0 ppp  

101 1

2

0

1

1

0 ppp  

110  0

2

1

1

1

0 ppp  

 

To determine the probability of output bit ci being c, we sum the probabilities of all the 

codewords for which ci = c. For example, the output probability of c1 being 1 is: 

)( 0

2

1

0

1

2

0

0

1

1

0

2

1

1

1

0

1

2

1

1

0

0

1

1 pppppppppppp o +=+=                                       (3.2) 

The quantity 
1

1p  is known as intrinsic information and was known before decoding the 

Single Parity Check (SPC) code. The quantity: 

0

2

1

0

1

2

0

0

1

1 ppppp e +=                                                                  (3.3) 

is known as extrinsic information and was produced by decoding the SPC code. It can be 

observed that the extrinsic information for bit i to be 0, 
e

ip 0
 is the sum of all products of 

the other bit probabilities for which the sum of the bits is even. Also, the extrinsic 

information for bit i to be 1, 
e

ip1
 is the sum of all products of the other bit probabilities for 

which the bit is odd.  

Gallager observed that if we calculate, for example, for bit i = 1, we obtain the following 

products: 
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(𝑝0
0 + 𝑝0

1)(𝑝2
0 + 𝑝2

1) = 1 = 𝑝0
0𝑝2

0 + 𝑝0
0𝑝2

1 + 𝑝0
1𝑝2

0 + 𝑝0
1𝑝2

1                               (3.4) 

(𝑝0
0 − 𝑝0

1)(𝑝2
0 − 𝑝2

1) = (1 − 2𝑝0
1)(1 − 2𝑝2

1)  = 𝑝0
0𝑝2

0 − 𝑝0
0𝑝2

1 − 𝑝0
1𝑝2

0 + 𝑝0
1𝑝2

1          (3.5) 

Adding (3.5) to (3.4), we obtain twice the sum of all even terms, that is 
ep0

12 . However, 

subtracting (3.5) from (3.4) gives the sum of all odd terms, that is 
ep1

12 . In equation form: 

1
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1

0
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2
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1
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=                                  (3.6) 
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−−−
=                                   (3.7) 

  In another example, 

2

)21)(21(1 1

1

1

01

2

pp
p e −−−

=                                                  (3.8) 

  And in general, 

 
2

)21(1 1

0
 

−+
=

ij je

i

p
p                                                      (3.9) 

 
2

)21(1 1

1
 

−−
=

ij je

i

p
p                                                       (3.10) 

In the classical channel, the syndrome should always be zero, thus the conversion of 

received signals to probabilities is done using (3.10). However, we introduce an additional 

computation for the cases where syndromes in the Slepian-Wolf channel are a combination 

of odd and even syndromes. Hence, we implement a second formula (3.9) for cases where 

the syndrome is a one (or odd). 
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3.5.2 Implementation of BP/SPA for SW AWGN-equivalent Channel. 
 

An overview of the major steps taken in the implementation of BP/SPA using LDPC codes 

over the Slepian-Wolf AWGN-equivalent channel is presented in Algorithm 3.2. LDPC 

codes of block lengths, 𝑛 = 512 and 𝑛 = 1024 are used in this section. This summarizes 

the core part of the software designed for Monte Carlo simulations for performance 

evaluation of PEG LDPC codes constructed for the Slepian-Wolf AWGN channel. An 

illustration of this procedure is also presented in Figure 3.2. 

Algorithm 3.2: Algorithm for LDPC Code Performance Simulations using BPSK 

Modulation over the Slepian-Wolf AWGN Equivalent Channel and BP/SPA Iterative 

Decoding 

Total-errors = 0. 

for blocks transmitted = 1 to maximum number of codewords transmitted in simulation do 

 

begin 

➢ generate a length n random message using ran2 to determine the values of its 

individual bits for source1. 

➢ convert the binary message from source1 to signal voltages, that is, bit 0 = -1.0V 

and bit 1 = +1.0V, to represent BPSK modulated signal transmission sj for 0 ≤ j ≤ 

n – 1. 

➢ generate Additive White Gaussian Noise signal of length n to affect converted 

signal in each bit position using; Nj = σN × gasdev, for 0 ≤j ≤ n - 1 and a new 

function call is made to gasdev for all j. 

➢ add converted vector s to noise vector N to obtain the noisy version of the converted 

signal now called source2, Xj = sj + Nj for 0 ≤ j ≤ n – 1. 

➢ compute the syndrome of the random bits of sources1 by multiplication by the 

parity check matrix, these become the side information at the decoder. 
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➢ calculate the received probabilities, P(1)j, for all the signal received from source2, 

according to the corresponding syndrome (either odd or even). A received 

probability matrix, say RP(1)j, for 0 ≤ j ≤ n – 1 is hereby obtained. 

➢ create and initialize a probability matrix, HP, from the original parity-check matrix, 

H, in the configuration file such that bit 0 → 0.00 and bit 1 → 0.50. 

 

for iterations = 1 to maximum number of iterations do 

 begin 

execute the sum-product algorithm decoding on the received probabilities 

using the probability matrix, HP as a workspace. 

  end 

 

➢ convert the final bit value probabilities, P(1)j, into bits, using if P(1)j ≥ 0.5 then sj 

= 1, else sj = 0, ∀ 0 ≤ j ≤ n – 1. 

➢ compare the bit values of the decoded output to the original message of source1, if 

they are the same then error = 0, and if they are different error = 1. 

➢ if error = 1, increment the Total-errors count. 

➢ calculate and display the block error rate, Pe, at regular intervals. The block error 

rate, Pe, is the ratio of the present number of unsuccessfully decoded codewords to 

the present total number of codewords processed by the sum-product algorithm 

decoder. 

end 

 

final error probability, Pe= Total-errors / maximum number of codewords transmitted in 

simulation. 
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(a) 

 

(b) 

Figure 3.2: The proposed SW decoder (a) workflow (b) block diagram. 

 

3.5.3 The Slepian-Wolf Binary Symmetric Equivalent Channel 
 

The BSC is a binary channel in which the input symbols are complemented with probability 

p. It is the simplest model of a channel with errors and captures most of the complexity of 

the general problem. When an error occurs, a 0 is received as a 1 and vice versa. 
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Figure 3.3: The Binary Symmetric Channel. 

 

At the initial stage, the decoder is designed with the correlation channel being an AWGN 

channel. This implied that one source consists of bit strings while the other consist of real 

numbers representing the voltages transmitted over the channel after addition of noise. 

These voltage values are converted into probabilities in the decoder. However, the set back 

of this arrangement is the deficiency in defining the correlation between the sources. An 

ideal justification for the correlation between the source would require both sources to be in 

the same form. Therefore, we proceed by implementing the correlation channel as an 

equivalent BSC.  Consequently, the received vector probabilities are replaced with the 

crossover probability, p of the BSC.  

)( SNRQp =                                                                  (3.11) 

3.5.4 Implementation of BP/SPA for SW BSC-equivalent channel. 
 

An overview of the major steps taken in the implementation of BP/SPA using LDPC codes 

over the Slepian-Wolf BSC-equivalent channel is presented in Algorithm 3.3. LDPC codes 

of block lengths, 𝑛 = 512 and 𝑛 = 1024 are used in this section. It summarises the core 
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part of the software designed for Monte Carlo simulations for performance evaluation of 

PEG LDPC codes constructed for the Slepian-Wolf BSC equivalent channel. A major 

difference between the convention and proposed SW decoder is the availability of side 

information at the decoder in the later. Moreover, syndromes are calculated for each random 

bit sequence generated in the proposed model as opposed to the conventional case where 

the syndrome is only computed in the event of failure in decoding a codeword correctly. 

This leads a more complex computational overhead in the proposed model. Furthermore, 

although AWGN is added to obtain the second source in the proposed model, both sources 

are transmitted noiselessly to the joint decoder while the conventional channel is usually 

noisy, hence the need for error correction by forming codewords. Finally, there are no 

codewords present in the proposed model but a sequence of randomly generated bit strings 

of data.  

Algorithm 3.3: Algorithm for LDPC Code Performance Simulations using BPSK 

Modulation over the Slepian-Wolf Binary Symmetric Equivalent Channel and 

BP/SPA Iterative Decoding 

Total-errors = 0. 

for blocks transmitted = 1 to maximum number of codewords transmitted in simulation do 

 

begin 

➢ generate a length n random message using ran2 to determine the values of its 

individual bits for source1. 

➢ convert the binary message from source1 to signal voltages, that is, bit 0 = -1.0V 

and bit 1 = +1.0V, to represent BPSK modulated signal transmission sj for 0 ≤ j ≤ 

n – 1. 

➢ generate Additive White Gaussian Noise signal of length n to affect converted 

signal in each bit position using; Nj = σN × gasdev, for 0 ≤j ≤ n - 1 and a new 

function call is made to gasdev for all j. 

➢ add converted vector s to noise vector N to obtain the noisy version of the converted 

signal now, Xj = sj + Nj for 0 ≤ j ≤ n – 1. 
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➢ threshold the voltage signals of the noisy version by converting positive voltages 

to 1 and negative voltages to 0, we call these source2. 

➢ compute the syndrome of the random bits of sources1 by multiplication by the 

parity check matrix, these become the side information at the decoder. 

➢ using equation 2.3, calculate the received probabilities, P(1)j, for the signal received 

from source2, according to the corresponding syndrome (either odd or even). A 

received probability matrix, say RP(1)j, for 0 ≤ j ≤ n – 1 is hereby obtained. 

➢ create and initialize a probability matrix, HP, from the original parity-check matrix, 

H, in the configuration file such that bit 0 → 0.00 and bit 1 → 0.50. 

 

for iterations = 1 to maximum number of iterations do 

 begin 

execute the sum-product algorithm decoding on the received probabilities 

using the probability matrix, HP as a workspace. 

  end 

 

➢ convert the final bit value probabilities, P(1)j, into bits, using if P(1)j ≥ 0.5 then sj 

= 1, else sj = 0, ∀ 0 ≤ j ≤ n – 1. 

➢ compare the bit values of the decoded output to the original message of source1, if 

they are the same then error = 0, and if they are different error = 1. 

➢ if error = 1, increment the Total-errors count. 

➢ calculate and display the block error rate, Pe, at regular intervals. The block error 

rate, Pe, is the ratio of the present number of unsuccessfully decoded codewords to 

the present total number of codewords processed by the sum-product algorithm 

decoder. 

end 

 

final error probability, Pe= Total-errors / maximum number of codewords transmitted in 

simulation 

 

3.6 Performance of LDPC Codes 
 

LDPC codes are most commonly decoded using the low-complexity probabilistic decoding 

method known as Belief Propagation (BP) or Sum-Product (SP) Algorithm. The main 

advantages of this decoding scheme lies in its simplicity as the computation per digit per 

iteration is independent of the code’s block length. It also has a low computational time, 

very small memory requirements and generally lower implementation costs compared to 
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other decoding schemes, for instance, building a look-up table (see section 2.4.1). The 

disadvantage of the BP/SPA decoding is that it is not optimal in the artificial sense of 

minimising the probability of decoding error. However, for most practical 

implementations, its simplicity adequately compensates for this perceived sub-optimality. 

As a result of their capacity-approaching performance using low-complexity iterative 

decoding, error correction code design based on graph theory, mainly LDPC codes, have 

continued to attract a lot of research effort. 

What follows are plots of results obtained from simulation of LDPC codes on the 

conventional AWGN channel, the Slepian-Wolf AWGN equivalent channel as well as the 

Slepian-Wolf binary symmetric equivalent channel. These simulations are run for block 

lengths of 1024 and 512. Also, comparisons are made between the three named models. 

The following observations were made: 

a. The conventional AWGN model in which all syndromes are zero is a sub-set of the 

Slepian-Wolf AWGN equivalent model which contains both odd and even syndromes. 

Hence, the very close performance of these two models. 

b. As expected, the performance of the Slepian-Wolf binary symmetric equivalent model 

lags behind that of its AWGN counterpart as these codes were originally optimized for 

the AWGN channel. 

c. Even with the sub-optimal performance of the Slepian-Wolf binary symmetric 

equivalent channel, the model still competes very closely with models obtained in 

(Sartipi & Fekri, 2005), which are of similar block length and code rate.  
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Figure 3.4: Plot of FER against 𝐸𝑏 𝑁𝑜⁄  for conventional and Slepian-Wolf channels (n = 512). 

Figure 3.4 is a plot of the frame error rate (FER) against the 𝐸𝑏 𝑁𝑜⁄  ratio of the conventional 

and the Slepian-Wolf AWGN equivalent channels for LDPC codes of block length, 𝑛 =

 512. The Slepian-Wolf binary symmetric equivalent channel is only super-imposed to 

show the relative performance of the models. For the conventional (red plot) and AWGN 

equivalent (blue plot) schemes, it defines an operating point at 𝐸𝑏 𝑁𝑜⁄  equals 4 dB of 1 × 

10-7 frame error rate. This implies that, at 4 dB, only one frame was recorded in error out 

of 10,000,000 frames that was transmitted at the particular 𝐸𝑏 𝑁𝑜⁄ . In contrast, the binary 

symmetric equivalent channel (black plot) recorded a frame in error after only 1,000 frames 

were transmitted. In general, the lower the curve, the better the performance at any 

particular 𝐸𝑏 𝑁𝑜⁄ .   
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Figure 3.5: Plot of FER against 𝐸𝑏 𝑁𝑜⁄  for conventional and Slepian-Wolf channels (n = 1024). 

It is understood from Shannon’s theory that the performance of codes generally improves with code 

length.  Thus, the error probability tends to zero as the block length tends to infinity. For this reason, 

simulation are repeated with LDPC codes of twice the block length (𝑛 = 1024) and the results are 

presented in Figure 3.5. For the conventional channel (green plot) and the AWGN equivalent 

channel (blue plot), it can be observed that, at a lower 𝐸𝑏 𝑁𝑜⁄  of 3.5 dB, only one frame was 

received in error out of 10,000,000 frames that were transmitted. This same result was achieved at 

𝐸𝑏 𝑁𝑜⁄  of 4 dB when the block length was 512 (see Figure 3.4). There is also a corresponding 

improvement of the binary symmetric equivalent channel in Figure 3.5 accordingly. 
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Figure 3.6: Plot of FER against 𝐸𝑏 𝑁𝑜⁄  for Conventional and Slepian-Wolf Channels (n = 512, 1024) 

Figure 3.6 is a superimposition of Figure 3.4 and Figure 3.5 in order to have an overview 

of all three models over block lengths, n = 512 and n = 1024. Generally, the lower curves 

show a better error performance than the higher ones. 

However, in literature, the standard for showing the performance of the Slepian-Wolf binary 

symmetric equivalent models is to plot the BER against the joint entropy of the sources as presented 

in Figure 3.7. Even though it has been shown that the AWGN equivalent channels performs better 

than the binary symmetric equivalent channels, the correlation of the former is not an ideal 

correlation because one source is binary digits while the other consist of voltages in decimals. In a 

bid to properly justify the correlation between the sources, the existing AWGN equivalent 

channel is replaced with the binary symmetric equivalent channel, effectively using the 

crossover probabilities for the formation of the received probabilities matrices.  



 

69 
 

 

Figure 3.7: Plot of BER against Joint Entropy (n = 1000) 

Figure 3.7 shows the results of the bit error rate averaged of the proposed model over the 

two sources X1 and X2 as a function of the joint entropy for asymmetric rates alongside 

with asymmetric and symmetric rate models in (Sartipi & Fekri, 2005), (Pradhan & 

Ramchandran, 2000) and (Sartipi & Fekri, 2004). All four models have a block length, n = 

1000 and code rate of half. The Slepian-Wolf theoretical limit for this scheme is 1.5 bits 

for ideal channels. Thus, the curves closest to the H(X1, X2) = 1.5 line are the best in terms 

of performance. It can be observed that for the most part, the proposed model (brown plot) 

trails that of (Sartipi & Fekri, 2005) {blue plot} and (Sartipi & Fekri, 2004) {green plot} 

until around H(X1, X2) = 1.42, at which point, there no bits received in error out of 100 

bits transmitted. (Pradhan & Ramchandran, 2000) however lags behind compared to others 

and thus has the least performance. 
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Figure 3.8: Distributed source coding using LDPC codes of block length, n = 1000 at 

symmetric and asymmetric rates. 

 

The key objective of digital audiovisual coding technologies is to compress the original 

audiovisual information into a much smaller number of bits without adversely affecting the 

decoded signal quality and following a set of requirements depending on the target 

application. Consequently, and in contrast to previous works, the proposed model has been 

extended (up to H(X1, X2) = 1.25) to reflect the error floor performance as presented in 

Figure 3.8. This would be necessary in applications requiring such level of operation, for 

instance, in distributed video coding, watermarking and dirty-paper applications. 
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3.7 Summary 
 

A scheme for distributed source coding to correct multiple errors, using LDPC codes to 

compress close to the Slepian-Wolf limit for correlated binary sources has been 

developed.  Two novel equivalent channels were modelled, namely the additive white 

Gaussian noise equivalent channel and the binary symmetric equivalent channel. The 

performance achieved is seen to be better than previously published schemes for similar 

block length and code rate. 

As an initial step to modifying the conventional decoder to the proposed SW decoder, the 

syndrome concept is incorporated to serve as side information available at the decoder 

only. One source is transmitted at full rate without any compression whatsoever and the 

other source is transmitted at half rate (for the half-rate code); the syndrome is half the 

block length of the code. Although, the correlation between the sources at this stage is not 

ideal, a very good compression was achieved with no apparent loss in performance 

compared to the conventional decoder. The same set of codes were run of both models and 

Figure 3.4, Figure 3.5 and Figure 3.6 show that this model has more or less the same 

performance as that of the conventional channel. 

A framework for the complexity associated with the proposed binary symmetric equivalent 

channel is established. It is shown that although the proposed scheme seems to have 

additional computational overhead due to the formation of syndromes each time random 

bit sequences are generated; this overhead is offset by the absence of encoding operation 

all together in the proposed scheme.  
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Chapter 4 

Challenges to improving the performance of short-length codes for real-

time applications. 

4.1 Introduction 
 

This chapter highlights the challenges of improving the performance of short-length codes 

for real-time applications. It further discusses QR codes, the Dorsch decoder and its 

modifications for DSC. It concludes with the complexity associated with it the  

implementation of the various schemes. 

It is understood from Shannon that block codes of sufficiently large length are 

asymptotically optimal. This justifies the use of binary channel codes like LDPC and Turbo 

Codes for practical Slepian-Wolf coding as highlighted in chapter three. However, for 

practical systems and in real-time applications, where delay and complexity limitations are 

stringent,  long length LDPC and Turbo Codes are not very useful. Consequently, the 

performance of DSC systems based on long block length codes is highly impaired. This 

motivates our choice of a short-length, powerful, low-delay and very efficient QR codes. 

4.2 Quadratic Residue (QR) codes 
 

The quadratic-residue (QR) codes are cyclic codes of prime block length, p over a field 

GF(l), where l is another prime which is a quadratic residue modulo p (MacWilliams & 

Sloane, 1977). Examples of quadratic-residue codes are the binary [7, 4, 3] Hamming code 

(treated in chapter 2), the binary [23, 12, 7] and the ternary [11, 6, 5] perfect Golay codes. 

In the important case of binary quadratic residue codes (𝑙 =  2), the block length, p has to 
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be a prime of the form (8𝑚 ± 1). The binary QR codes introduced by Prange (Prange, 

1985) are a family of cyclic BCH codes with code rates greater than or equal to one-half 

and generally tend to have large minimum distances, at least if the block length is not too 

large (MacWilliams & Sloane, 1977).  

Because we are particularly interested in block codes of short code lengths, there are eleven 

binary codes with code length less than 100. These are codes with block lengths; 7, 17, 23, 

31, 41, 47, 71, 73, 79, 89 and 97. Although, our algorithm is applicable to any of these, this 

work focuses on the [47, 24, 11] code with generator polynomial 𝑥23 + 𝑥19 + 𝑥18 + 𝑥14 +

𝑥13 + 𝑥12 + 𝑥10 + 𝑥9 + 𝑥7 + 𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥 + 1.  

There has been a variety of decoding methods (Chen et al., 1994; Dubney et al., 2009; 

Reed et al., 1992) developed to decode QR codes which involve algebraic decoding 

techniques that require many complicated computations in a finite field. These also lead to 

a time delay and becomes unrealistic for real-time applications. 

4.3 The Dorsch Decoder 
 

 This decoder was initially introduced by Dorsch (Dorsch, 1974) in 1974. It was designed 

for linear binary block codes using soft decisions quantised to J levels, although applicable 

to any linear block code.  Particularly, it does not rely upon any features of the code such 

as being a concatenated code or having a sparse parity-check matrix. The decoder also 

features hard decisions being derived from the soft decisions using standard bit by bit 

detection, choosing the binary state closest to the received coordinate.  
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More so, codes with relatively high minimum distances generally tend to improve the 

overall performance of DSC systems. On the other hand, LDPC codes are largely decoded 

iteratively, which is not well suited for codes with high minimum distances. Consequently, 

attempts have been made (Tomlinson, Tjhai & Ambroze, 2007; Tomlinson et al., 2017) to 

address this constraint by modifying the Dorsch decoder such that the most likely 

codewords were derived from a partial correlation function of low information weight 

codewords and which leads to an efficient fast decoding. Specifically, works have also 

been published on the number of erasures that are correctable by a linear code (Tomlinson 

et al., 2007) and how to decode serial concatenated codes using erasure patterns 

(Tomlinson & Ambroze, 2010). 

4.4 Implementation of Dorsch decoding 
 

Aside the difference in the parity-check matrices used, the encoding parts of this 

implementation is largely same as done for the Hamming code (section 2.3.3), BCH code 

(section 2.4.2) and LDPC codes (section 3.4.1). This section discusses the entire encoding 

and decoding operations and highlights the modifications made on the decoding part. The 

Dorsch decoder entails producing a new parity-check matrix by re-ordering the columns of 

the original parity-check matrix according to likelihood of each candidate codeword. An 

illustration of the original parity-check matrix of the [47, 24, 11] QR code is shown in 

Figure 4.1. This parity-check matrix is initially saved as a text file from where it is read 

from within the C++ program. Also, along with the parity-check matrix, the code length, 

number of parity-check bits, number of rows, SNR and number of iterations are also read 

from the text file. These can be changed according to the parity-check equation in question. 
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Figure 4.1: An illustration of the parity-check matrix of the [47, 24, 11] QR code. 

 

The resulting parity-check matrix is then reduced to echelon canonical form by elementary 

row operations followed by the evaluation of several candidate codewords and the 

codeword with the minimum soft decision metric is output from the decoder. 

The algorithm is based on the premise that most codes, on average can correct almost (𝑛 −

𝑘) erasures. Meanwhile, the guaranteed number of correctable erasures is (𝑑 − 1) and the 

guaranteed number of correctable hard decision errors is (𝑑 − 1)/2. However, correction 

of any combination of 𝑛 − 𝑘 erasures is only possible for Maximum Distance Separable 

(MDS) codes. This led to the development of the Modified Dorsch Decoder (Tomlinson, 

Tjhai & Ambroze, 2007) that solves (𝑛 − 𝑘) erasures for a non-MDS code. This modified 

decoder uses alternative columns of the parity-check matrix without the need for column 

permutations and was unnecessary to keep calculating each candidate codeword and its 

associated soft decision metric in order to find the most likely codeword. 

Furthermore, an incremental correlation approach is adopted which features low 

information weight codewords and a correlation function involving only a small number 
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of coordinates of the received vector. Maximum likelihood is realised provided all 

codewords are evaluated up to the bounded information weight.  

The decoder lends itself to a low complexity, parallel implementation involving a 

concatenation of hard and soft decision decoding. Near maximum likelihood is achieved 

for codes as long as 1000 bits provided the code rate is high enough. 

The correlation between two sources is achieved by adding AWGN to the randomly 

generated bits of one source, X to form the other source, Y, with unity noise variance, 𝜎2. 

Subsequently, the syndrome of source, X is obtained by multiplication with the parity-

check matrix of the code. Finally, the syndrome of source, X and the correlated source, Y 

are transmitted separately over a noiseless channel to the decoder. Because the block-length 

of any information source is  larger than the length of its syndrome, sending the syndrome 

in place of its original ensures compression.  

To implement this, random bits of length, (𝑛 = 47) are generated using the ran2 function. 

This is the first source. The random bits are converted to voltages and additive white 

Gaussian noise with variance, 𝜎2 is added to obtain the second source. 

The amount of white noise added is a function of the signal-to-noise ratio. Because the 

guaranteed number of correctable hard decision errors is (𝑑 − 1)/2, thus the [47, 24, 11] 

QR code can only correct up to 5 bits of error. Several random bits were generated, and 

varying amount of white noise added. 

Subsequently, Figure 4.2 illustrates the procedure as follows. The original string of random 

bits is coined Codeword. This is converted into voltages of type double coined 

Encodedword by converting zeros to -1.000000 and ones to 1.000000. Additive white 
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Gaussian Noise of type double is generated and added to the Encodedword to obtain the 

Distorted also of type double. Two types of data are obtained from Distorted, namely 

AbsDistorted and Received. The AbsDistorted of type double is simply the absolute values 

of the Distorted data while the Received is the result of the quantization of Distorted. 

Consequently, the two sources are correlated in that the second source is a noisy version 

of the first. In other words, Codeword and Received are correlated in that they differ in 

only a few bit positions. These are illustrated in Figure 4.2. It could be observed that at a 

particular instance, the first entry codeword was a ‘1’, converting to voltage gives 

1.000000, a random noise of 0.324900 was generated and added to get a distorted signal 

of 1.324900. The absolute distorted value in this case remains the same and this is 

quantised to give a binary digit of ‘1’. 

 

 

Figure 4.2: Evaluation of the most reliable bits of the received word. 
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Basically, the k most reliable bits that are received from the encoder are initially taken as 

correct and the (n – k) least reliable bits are taken as erasures. The parity-check matrix is 

used to solve for the erased bits and a codeword is obtained which is either equal to the 

transmitted codeword or needs only small changes.  

Depending on the code, the (n – k) least reliable bits usually cannot all be considered to be 

erasures. This is dependent on two key factors: the positions of the erased coordinates as 

well as the power of the code. As a matter of fact, maximum distance separable (MDS) 

codes are the only codes that can solve (n – k) erasures irrespective of positions of the 

erasures in the received codeword. Unfortunately, there are no binary MDS codes apart 

from trivial examples.   

Notwithstanding, a set of  (n – k) erasures can always be solved from the (n – k + s) least 

reliable bit positions, where s is usually a small integer depending on the code. In order to 

obtain the best performance, the very least reliable bit positions are solved first. For any 

received coordinate, the priori log-likelihood ratio of the bit being correct is proportional 

to the magnitude of the absolute value of the received bit |r|.  The received vector with 

coordinates ranked in order of reliability is defined as follows: 

(𝑟𝜇0 , 𝑟𝜇1 , 𝑟𝜇2 , … , 𝑟𝜇𝑛−1)                                                             (4.1)   

where  

|𝑟𝜇0| > |𝑟𝜇1| > |𝑟𝜇2| >  … > |𝑟𝜇𝑛−1|                                               (4.2)   

Figure 4.2 shows the steps of the initial generation of random bits of length 47, denoted by 

column named ‘Codeword’. The second column shows the random bits converted to 

voltages before the addition of additive white Gaussian noise to form the ‘Distorted’ 
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column. As indicated in equation (4.2), the most reliable bits are those that have the highest 

magnitude of the absolute value of the received word. A plot of the absolute values of the 

received word is showed in Figure 4.3. It can be observed that at 𝐸𝑏 𝑁𝑜⁄  = 4 dB, amongst the 

47 randomly generated bits, the most reliable bit had an absolute magnitude of 2.4 while the least 

reliable bit had an absolute magnitude of about 0.2. In any case, the 23 least reliable bits are 

considered as erased and then recalculated.  

 

Figure 4.3: Illustration of received coordinate magnitude in their solved order for the (47, 24, 11) code. 

This summarises the entire encoding operation. The noisy vector along with the associated 

syndromes are sent over a noiseless channel to the decoder.  

4.5 Modification for Distributed Source Coding (DSC) 
 

The conventional method of ensuring that any vector received at the decoder is indeed a 

codeword sent from an encoder over a transmission channel is by computing its syndrome. 

If an all-zero syndrome is obtained, it shows that that the received vector is at least, a 

codeword, but not necessarily the exact codeword sent. The minimum distance plays a vital 

role in telling how many errors a received vector may contain and still be decoded correctly. 
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The higher the minimum distance, the more errors it may contain and still be decoded 

correctly.  

However, in contrast to convention, this scheme, does not deal with codewords in the 

technical context. Instead, we have strings of randomly generated bits. Thus, for all intent 

and purposes, the formed syndromes of the received vectors are a combination of zeros and 

ones. Consequently, these syndromes are used as the side information at the decoder along 

with the messages transmitted at any instant.   

Again, for maximum distance separable (MDS) codes, this is quite straightforward as 

codewords are formed directly from the received vector, r.   

 (𝑥𝜇0 , 𝑥𝜇1 , 𝑥𝜇2 , … , 𝑥𝜇𝑛−1)                                                                (4.3)   

The (n – k) coordinates are considered erased and derived from the most reliable 

coordinates using the parity-check matrix, H. A maximum distance separable code is 

classified as one of the pivotal class in error correcting codes that meet the singleton bound, 

(𝑑 = 𝑛 − 𝑘 + 1). But for non-MDS codes as in this scheme, (n – k) coordinates cannot be 

solved from the parity-check matrix, H because it is not a Cauchy or Van der-Monde 

matrix. An order that is slightly different from equation (4.3) is defined. 

 (𝑥𝜂0 , 𝑥𝜂1 , 𝑥𝜂2 , … , 𝑥𝜂𝑛−1)                                                         (4.4)   

𝜂𝑛−1 is set equal to  𝜇𝑛−1 and  𝑥𝜂𝑛−1
 is solved first by flagging the first parity-check 

equation that contains  𝑥𝜂𝑛−1
  and then subtracting this equation from all other parity-check 

equations containing  𝑥𝜂𝑛−1
 .  𝑥𝜂𝑛−1

 is then only contained in one equation, the first 

flagged equation. 
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The label of the next coordinate 𝜂𝑛−2 is set equal to 𝜇𝑛−2 and an attempt is made to solve  

𝑥𝜂𝑛−2
 by finding an unflagged parity-check equation containing  𝑥𝜂𝑛−2

.  𝑥𝜂𝑛−2
 is set equal 

to 𝜇𝑛−3 if there is not an unflagged equation containing  𝑥𝜂𝑛−2
. The procedure is repeated 

until an unflagged equation contains  𝑥𝜂𝑛−2
. This is subtracted from all other parity-check 

equations containing  𝑥𝜂𝑛−2
. 

This procedure continues until all of the (n – k) codeword coordinates 

(𝑥𝜂𝑛−1 , 𝑥𝜂𝑛−2 , 𝑥𝜂𝑛−3 , … , 𝑥𝜂𝑘)  have been solved and all (n – k) equations have been flagged. 

The remaining k ranked received coordinated are set equal to (𝑟𝜂0 , 𝑟𝜂1 , 𝑟𝜂2 , … , 𝑟𝜂𝑘−1)  in the 

most reliable order.  (𝑥𝜂0 , 𝑥𝜂1 , 𝑥𝜂2 , … , 𝑥𝜂𝑘−1)  are then determined using the bit decision 

rule;  [𝑥𝜂𝑖 = 1  𝑖𝑓  𝑟𝜂𝑖 < 0,   𝑒𝑙𝑠𝑒   𝑥𝜂𝑖 = 0]. 

Figure 4.4 highlights all 23 flagged equations of the [47, 24, 11] QR code parity-check 

matrix. It can be observed that every other entry aside the highlighted ‘1’s (circled in red) 

in each column is a zero. These 23 columns which just a single ‘1’ and all other entries ‘0’ 

are used to recalculate the erased bits according to equation 4.8 to equation 4.11. 

 

Figure 4.4: Illustration of the 23 Flagged Equations in the [47, 24, 11] Parity-Check Matrix 



 

82 
 

4.5.1 Evaluation of the Erased Bits 
 

Going forward, once all the parity-check equations have been flagged, what follows is the 

evaluation of the erasures. Now the flagged parity-check equations are in upper triangular 

form and thus, would be solved in reverse order starting with the last flagged equation. The 

evaluating of the last flagged equation gives the solution to 𝑥𝜂𝑘. This is followed by 

evaluation 𝑥𝜂𝑘+1  and back substituting the solution and so on with coordinate  𝑥𝜂𝑛−1 solved 

at the end. We denote the set of e erasures as a list of erased bit positions defined as fi 

where: 

0 < 𝑖 < 𝑒   𝑓𝑖 ∈ 0…𝑛 − 1                                                 (4.5) 

Again, in contrast to convention where an all zero syndrome suggests that the received 

vector is a codeword, in this case, a codeword 𝒙 = 𝑥0, 𝑥1, … , 𝑥𝑛−1 satisfies the parity-check 

equations of the parity-check matrix H: 

𝐻𝑥𝑇 = 𝑠                                                                                     (4.6) 

Furthermore, a codeword with e erasures is defined as 

𝑥 = (𝑥𝑢0 , 𝑥𝑢1 , … , 𝑥𝑢𝑛−1−𝑒|𝑥𝑓0 , 𝑥𝑓1 , … , 𝑥𝑓𝑒−1)                      (4.7) 

where 𝑥𝑢𝑗 are the un-erased coordinates of the codeword, and the set of e erased coordinates 

is defined as 𝑓𝑒. There are a total of (n – k) parity-check equations and the erased bits may 

be solved using a parity-check equation, provided that the erased bit positions correspond 

to independent columns of H. 
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Mathematically, unique parity-check equations were obtained for each of the erased bits. 

The parity-check equations may be used to solve each erasure as shown in equations (4.8) 

to (4.11): 

 

𝑥𝑓0 = ℎ0,0𝑥𝑢0 + ℎ0,1𝑥𝑢1 + ℎ0,𝑛−𝑒−1𝑥𝑢𝑛−𝑒−1 + 𝑠0                        (4.8) 

𝑥𝑓1 = ℎ1,0𝑥𝑢0 + ℎ1,1𝑥𝑢1 + ℎ1,𝑛−𝑒−1𝑥𝑢𝑛−𝑒−1 + 𝑠1                        (4.9) 

𝑥𝑓2 = ℎ2,0𝑥𝑢0 + ℎ2,1𝑥𝑢1 + ℎ2,𝑛−𝑒−1𝑥𝑢𝑛−𝑒−1 + 𝑠2                     (4.10) 

     …                              …… ..                            …… 

𝑥𝑓𝑒−1 = ℎ𝑒−1,0𝑥𝑢0 + ℎ𝑒−1,1𝑥𝑢1 + ℎ𝑒−1,2𝑥𝑢2 + ℎ𝑒−1,𝑛−𝑒−1𝑥𝑢𝑛−𝑒−1 + 𝑠𝑒−1                (4.11) 

 

where ℎ𝑖,𝑗 is the coefficient of row i and column j of H and 𝑠𝑖 is the value of the syndrome 

at bit position i.  

The decoded codeword is denoted as �̂� and the mapped version is denoted as �̂�. The 

codeword most likely to be transmitted, �̆� has the smallest squared Euclidean distance, D 

(�̆�) between the mapped codeword and the received vector. This is the case for soft-

decision decoding. As for hard decision decoding, the Hamming distance is used in place 

of the Euclidean distance. 

   𝐷(�̆�) = ∑ (𝑟𝑗 − 𝑐�̆�)
2𝑛−1

𝑗=0                                                       (4.12) 

𝐷(�̆�) < 𝐷(𝑥) for all other codewords, x. 
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4.5.2 Implementation of a Modified Dorsch Decoder for SW Channel. 
 

An overview of the major steps taken in the modification of the Dorsch decoder using QR 

codes over the Slepian-Wolf channel is presented in Algorithm 4.1. QR codes of block 

lengths, 𝑛 = 47 are used in this section. All algorithms are coded in C/C++ language. 

Algorithm 4.1: Algorithm for QR Code Performance Simulations using BPSK 

Modulation Over the Slepian-Wolf Channel for a Modified Dorsch Decoder  

Total-errors = 0 

for blocks transmitted = 1 to maximum number of codewords transmitted in simulation do 

 

begin 

➢ generate a length n random message using ran2 to determine the values of its 

individual bits for source1. 

➢ convert the binary message from source1 to signal voltages, that is, bit 0 = -1.0V 

and bit 1 = +1.0V, to represent BPSK modulated signal transmission sj for 0 ≤ j ≤ 

n – 1. 

➢ generate Additive White Gaussian Noise signal of length n to affect converted 

signal in each bit position using; Nj = σN × gasdev, for 0 ≤j ≤ n - 1 and a new 

function call is made to gasdev for all j. 

➢ add converted vector s to noise vector N to obtain the noisy version of the converted 

signal now, Xj = sj + Nj for 0 ≤ j ≤ n – 1. 

➢ threshold the voltage signals of the noisy version by converting positive voltages 

to 1 and negative voltages to 0, we call these source2. 

➢ compute the syndrome of the random bits of sources1 by multiplication by the 

parity check matrix, these become the side information at the decoder. 

➢ obtain the absolute values of the noisy version and rearrange same in descending 

order to determine their reliability, vector named order [xj] for 0 ≤ j ≤ n - 1 is 

created.  

➢ each of the least reliable bit positions is used to flag a unique parity-check equation 

(or column) in the H-matrix by elementary row operations and then considered as 

erased. 

➢ the most reliable bit positions are quantized and compared with the corresponding 

entries in the original random message.  

➢  
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for iterations = 1 to maximum number of iterations do 

 begin 

flip all the different bit patterns in the received vector until there are no 

errors in the most reliable bits. 

  end 

 

➢ the most reliable bits are used to calculate each erased bit as per the flagged 

equations. 

end 

 

final error probability, Pe= Total-errors / maximum number of codewords transmitted in 

simulation 

 

4.5.3 Simulations for performance evaluation 
 

To ensure the reliability of results, a million blocks per noise seed across ten seeds of 

codewords was transmitted for a range of signal-to-noise ratios Eb/No. The algorithm 

developed was implemented in C language and all codewords were transmitted over the 

AWGN channel and binary phase shift keying BPSK modulation is applied.  

Meanwhile, the theoretical bound of bits in error is first computed for each signal-to-noise 

ratio from a Q-function table. As an illustration, we know the error probability is obtained 

from equation (4.13) 

𝑃𝑒 = 𝑄(√𝑆𝑁𝑅)                                                            (4.13) 

The signal-to-noise ratio (SNR) is obtained from equation (4.14) 

𝑆𝑁𝑅 = 100.1×𝑆𝑁𝑅(𝑑𝐵)                                                     (4.14) 

For 0.5dB, 

𝑆𝑁𝑅 = 100.05 = 1.122018454 
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Hence,  

𝑃𝑒 = 𝑄(√1.22) = 1.4686 × 10−1 

This translates to approximately 15 errors in a hundred or 7 errors in 47. A plot of the 

theoretical upper bound of bits received in error is shown in Figure 4.5. A plot of the actual 

average number of errors obtained before the correction of any of the errors is also 

presented in Figure 4.6. It can be observed that at 𝐸𝑏 𝑁𝑜⁄  = 5 dB, the theoretical bound foe 

average number of errors in the entire block (green bar) is about 1.75 in Figure 4.5 while 

the actual average number of errors before any error correction at the same 𝐸𝑏 𝑁𝑜⁄  = 5 dB 

is about 0.1 in Figure 4.6. This is quite impressive considering the fact that error correction 

had not taken place. 

On the other hand, at 𝐸𝑏 𝑁𝑜⁄  = 0.5 dB, the theoretical bound for the number of bits in error 

from the most reliable bits is 6.9 while the actual average recorded for the most reliable 

bits before error correction is about 0.8. 

The actual average number of bits in error is very relevant in estimating the number of 

times searches need to be made to correct an error (more on this in section 4.5.7). 

 

Figure 4.5: Theoretical upper bound of number of bits received in error for the (47, 24, 11) code. 
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Figure 4.6: Actual number of bits received in error for the (47, 24, 11) code before error correction. 

4.5.4 Comparison with state-of-the-art LDPC codes 
 

It is understood from Shannon theorem that the error probability of a code tends to zero as 

the block length tends to infinity. For this reason, long length LDPC codes in particular, 

have good performance. However, this work proposes a model with short length codes and 

the highest known minimum distances for a given number of information symbols, a 

situation not suitable for iterative decoding. Simulation results are compared with those of 

LDPC codes of block lengths 1024 (Serener, Natarajan & Gruenbacher, 2008), 32 (Jin et 

al., 2018) and 512 (Guo, 2018; Serener, Natarajan & Gruenbacher, 2008). Although this 

code is of length 47, it performs better than some of the longer LDPC codes as shown in 

Figure 4.7. The lower the curve, the better the performance. Take for instance, at 𝐸𝑏 𝑁𝑜⁄  = 

10 dB, (Serener, Natarajan & Gruenbacher, 2008) of block length, 𝑛 =  512, recorded a 

bit in error after less than 100,000 bits were transmitted. Both (Serener, Natarajan & 

Gruenbacher, 2008) of block length, 𝑛 =  1024 and the proposed model of block length, 

𝑛 =  47 recorded a bit in error after almost 1,000,000 bits were transmitted. The proposed 
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model of block length, 𝑛 =  24 (the most reliable bits) recorded just one error bit after 

1,000,000,000 bits were transmitted. 

 

Figure 4.7: Performance comparison of the proposed model with other LDPC codes. 

4.5.5 Correction of a Single Bit of Error of the [47, 24, 11] QR Code 
 

Maximum likelihood decoding involves the evaluation of several candidate codewords and 

the codeword with the minimum decision metric (Euclidean distance for soft decision and 

Hamming distance for hard decision) is output from the decoder. Furthermore, maximum 

likelihood decoding is realised provided all codewords are evaluated up to a bounded 

information weight. As an initial step towards maximum likelihood decoding, a single bit 

of the [47, 24, 11] QR code was corrected. This is achieved by  randomly flipping each bit 

of the most reliable bits, one at a time and then, the erasures are recalculated. The results 



 

89 
 

obtained before any error correction and after correcting a single bit of error are as 

presented in Figure 4.8 and Figure 4.9. 

        

                                         (a)                                                                  (b) 

Figure 4.8: Plots of (a) FER and (b) BER against 𝐸𝑏 𝑁𝑜⁄  for the [47, 24, 11] code 

Figure 4.8 is plotted alongside the performance from the same [47, 24, 11] code reported 

from (Zhang et al., 2015) without determining the unknown syndromes. It was observed 

that the frame error rate is mostly the same for the reliable bits and the entire codelength 

whereas the is a significant difference in the bit error rate of the two. Furthermore, Figure 

4.9 compares the performance with LDPC codes reported in (Jin et al., 2018). It could be 

observed that, for the proposed (1 bit corrected), at 𝐸𝑏 𝑁𝑜⁄  of 6dB, only 1 bit was received 

in error from 1,000,000 bits that was sent and received over the channel. This is quite 

impressive compared to other schemes as shown. 
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Figure 4.9: Plots of BER against Eb/No for different schemes shows the superiority of the 

proposed model. 

4.5.6 Maximum Likelihood Decoding 
 

Maximum likelihood decoding is realized provided all codewords are evaluated up to a 

bounded information weight. As far as this implementation is concerned, this would 

translate to correcting all possible error bits in the received vectors. To do this, the number 

of errors in each vector is first ascertained. Consequently, Figure 4.10 shows typical 

instances of the average number of bits received in error over different noise levels. The 

relevance of this plot is that it indicates the number of times a search is needed to correct 

any bits received in error.  As an illustration, within the entire block-length (green plot), 
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there was an average occurrence of more than one bit and more than three bits in error at 

1.0dB and 0.0dB respectively. 

 

Figure 4.10: Average number of error bits after single error correction for the [47, 24, 11] 

QR code. 

On the other hand, within the most reliable bits (purple plot), a maximum of one bit was 

received in error across all the Eb/No. This means the number of times that the decoder 

would search and attempt to correct errors in the received vector is proportional to the 

number of bits received in error. It is pertinent to note that within this decoder, error bits 

are searched for only within the most reliable bits (24 bits in this case). The erasures (the 

remaining 23 bits) are recalculated only after the errors in the most reliable bits have been 

corrected. Subsequently, an equivalence of maximum likelihood decoding was 

implemented by means of brute force to ensure there are no errors whatsoever within the 
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most reliable bits, and the erasures were recalculated. The result obtained is presented in 

Figure 4.11. It could be observed that, at Eb/No of 7dB, not a single error was detected 

after running 10 million blocks of code. 

 

(a) 

 

(b) 

Figure 4.11: Plots of (a) BER and (b) FER against Eb/No for the (47, 24, 11) code 
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4.5.7 Complexity of Maximum Likelihood Decoding 
 

The associated complexity of correcting all five bits of error in the [47, 24,11] QR code at 

Eb/No = 1dB is presented in Figure 4.12. To illustrate this, the number of searches that is 

necessary to correct a single bit of error would be the number of combinations of one bit 

that can be drawn from the twenty-four most reliable bits of a received vector.  

That is, 

(24
1
) = 24                                                               (4.15) 

The corresponding error probability is based on the actual results obtained from 

simulations. This implies that the complexity associated with extending this scheme to 

correct multiple error bits is also a function of the number of error bits to be intended to be 

corrected. Because the [47, 24, 11] QR code can correct up to five bits of error, the 

complexity associated with correcting all five bits of error is given by 

 (24
5
) = 42504                                                           (4.16)  

As stated earlier, maximum likelihood decoding is achieved using brute force to ensure 

there were no errors whatsoever within the twenty-four most reliable bits then, 

recalculating the erasures. Simulation results indicative of the corresponding bit error 

probabilities are also presented in Figure 4.12. 
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Figure 4.12: Error probability versus complexity associated with maximum likelihood decoding. 

 

4.6  Summary 
  

An improved distributed source coding scheme is presented to correct a single-bit error of 

the (47, 24, 11) QR code based on the modified Dorsch decoder without implementation 

of maximum-likelihood decoding.  Although, this model corrects just one out of the five 

correctable error bits of the (47, 24, 11) QR code, simulation results show that it 

outperforms other schemes for decoding the same code. 

Finally, a framework for attaining maximum likelihood decoding in addition to the 

complexity associated. 
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Chapter 5 

Conclusion and Future Work 
                                                                                                      

5.1 Contributions to Knowledge 
 

➢ A simplified and detailed explanation of distributed source coding with emphasis on Slepian-

Wolf coding of correlated information sources has been given. {Chapter 2} 

➢ An efficient algorithm for decoding correlated information sources using very short, low delay 

[7, 4, 3] Hamming code that corrects up to a single bit of error. As a by-product, a speed-up to 

the algorithm is created for the less likely cases where more than one error occurs. This speed-

up breaks out and ignore subsequent error(s) that might be present in any other bits of the 7 

bits codelength once the first error is encountered. {Section 2.3.3}   

➢ An extension of the Slepian-Wolf coding algorithm to correct two up to two bits of error of the 

[15, 7] BCH code by the introduction of look-up tables to store all possibilities of error vector 

patterns. {Section 2.4.2} 

➢  A scheme for distributed source coding to correct multiple errors, using LDPC codes to 

compress close to the Slepian-Wolf limit for correlated binary sources. A conventional BP 

algorithm LDPC decoder which takes the syndrome information into account was developed. 

Subsequently, two novel equivalent channels were modelled; namely the additive white 

Gaussian noise equivalent channel and the BSC equivalent channel. The received probabilities 

in the conventional channel were replaced with the cross over probabilities. The performance 

achieved is seen to be better than previously published schemes for similar block length and 

code rate. {Chapter 3} 
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➢ It has been established that the proposed AWGN equivalent channel has approximately the 

same performance as that of the conventional AWGN channel for iterative decoding. Even 

though, the correlation between the sources at this stage is not ideal, a very good compression 

was achieved with no apparent loss in performance compared to the conventional decoder. 

This re-enforces the fact that quantisation error had not been introduced prior to the formation 

of the binary symmetric equivalent channel. {Section 3.5.2} 

➢ A framework for the complexity associated with the proposed binary symmetric equivalent 

channel is established. It is shown that although the proposed scheme seems to have additional 

computational overhead due to the formation of syndromes each time random bit sequences 

are generated; this overhead is offset by the absence of encoding operation all together in the 

proposed scheme. The scheme does not entail the formation of codewords in the technical 

sense, only randomly generated bits are formed. {Section 3.5.4} 

➢  Extension and presentation of error floor performance of the proposed binary symmetric 

equivalent channel as may be necessary for applications requiring such level of operation, for 

instance, in distributed video coding. {Section 3.6} 

➢ An improved distributed source coding scheme is presented to correct a single-bit error of the 

(47, 24, 11) QR code based on the modified Dorsch decoder without implementation of 

maximum-likelihood decoding.  This scheme is also best adapted for codes with the highest 

known minimum distances for given codelength and number of information symbols, and as 

such, are not suitable for iterative decoding. Although, this model corrects just one out of the 

five correctable error bits of the (47, 24, 11) QR code, simulation results show that it 

outperforms other schemes for decoding the same code. {Section 4.5.2} 
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➢ Establishment of a framework for attaining maximum likelihood decoding in addition to the 

complexity associated. {Section 4.5.6} 

5.2 Conclusions and Recommendations for Future Work  
 

This thesis focused mainly on developing efficient schemes for distributed source coding in 

general with special interest for Slepian-Wolf coding in particular. The challenges around schemes 

available in literature are centered around three major issues namely, the correlation channel 

model, the problem of systems with stringent delay restrictions and the complexity  associated 

with the solutions offered.  

The correction between sources has been modelled in various ways in literature. This thesis has 

proposed and implemented the AWGN equivalent channel which is not an ideal representation of 

the correlation between sources but, not withstanding, establishes the performance of the model in 

relation to the conventional channels. The proposed binary symmetric equivalent channel is an 

ideal correlation channel, and its efficiency has been established in this thesis. 

It is established from Shannon’s theory that the performance of codes generally improves as the 

code length approaches infinity. This explains why a whole lot of work has been carried out on 

iterative decoding for LDPC codes in literature. This research has implemented a scheme using  

medium-to-long length LDPC codes with iterative decoding. Furthermore, this scheme has also 

been implemented on very short, low delay codes like the [7, 4, 3] Hamming code, the [15, 7] BCH 

code and the [47, 24, 11] QR code. 

The problem of striking a compromise between performance and complexity has been well 

research in literature. This thesis has also established the relationship between improving 

performance and the associated complexities. 



 

98 
 

Several new problems have emerged in the course of this research. This is in addition to the 

challenges that predates this work. A few suggestions to improve the performance and applications 

of the algorithms presented in this thesis include: 

➢ It has been argued that a good channel error correction code constitutes a good source code. 

However, there is a need for thorough investigation on the extent of this claim as to 

establish if the reverse is also true. The question is, does a good source code automatically 

constitute a good channel code? 

➢ All the schemes implemented in this work are based on the Slepian-Wolf coding, which is 

essentially a noiseless channel, although additive white Gaussian noises were introduced 

to establish a correlation between sources. It would be of interest to introduce an error 

correction element into the model. 

➢ An interesting application of the DSC scheme would be in dirty-paper coding. This 

application is particularly interesting because, even with known interference (denoted as 

noise in this research) within the channel, digital data could still be efficiently transmitted 

and received. This could be achieved through source-splitting of the parity-check matrices, 

which are already pretty much, separable into the information part and the parity-check 

part. 

➢ Although, this research has laid down the foundation for achieving maximum likelihood 

decoding using the Dorsch decoder by brute force, it would be interesting to push forward 

by means other than brute force, bearing in mind that, ideally information about the exact 

message transmitted is not available at the decoder. 
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