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Abstract 

There is growing awareness across the neuroscience community that the replicability 

of findings about the relationship between brain activity and cognitive phenomena can 

be improved by conducting studies with high statistical power that adhere to well-

defined and standardised analysis pipelines. Inspired by recent efforts from the 

psychological sciences, and with the desire to examine some of the foundational 

findings using electroencephalography (EEG), we have launched #EEGManyLabs, a 

large-scale international collaborative replication effort. Since its discovery in the early 

20th century, EEG has had a profound influence on our understanding of human 

cognition, but there is limited evidence on the replicability of some of the most highly 

cited discoveries. After a systematic search and selection process, we have identified 

27 of the most influential and continually cited studies in the field. We plan to directly 

test the replicability of key findings from 20 of these studies in teams of at least three 

independent laboratories. The design and protocol of each replication effort will be 

submitted as a Registered Report and peer-reviewed prior to data collection. 

Prediction markets, open to all EEG researchers, will be used as a forecasting tool to 

examine which findings the community expects to replicate. This project will update 

our confidence in some of the most influential EEG findings and generate a large open 

access database that can be used to inform future research practices. Finally, through 

this international effort, we hope to create a cultural shift towards inclusive, high-

powered multi-laboratory collaborations.  

 

Keywords: EEG, ERP, Replication, ManyLabs, Open Science, Cognitive 

Neuroscience. 
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Introduction 

A cornerstone of science is replicability, a fundamental issue that has been at the heart 

of an intense scientific debate in recent years. An influential report from the Open 

Science Collaboration (2015), which attempted direct replications of 100 studies from 

Psychological science in three major journals from the field, indicated that only 36% 

showed statistically significant findings in the same direction as the original studies, 

and an average shrinkage of effect sizes by about half. These findings are consistent 

with a high degree of publication bias (Francis, 2012; Ioannidis, 2005; Kühberger et 

al., 2014; Sterling, 1959). There are growing concerns that the closely related field of 

cognitive neuroscience suffers similar issues (Brederoo et al., 2018; Button et al., 

2013; Poldrack et al., 2017). Indeed, problems may be even more pronounced in this 

area, as cognitive neuroscience studies often have small samples and inflated effect 

sizes (Schäfer & Schwarz, 2019). Further, they are characterised by the use of rich, 

but also noisy, multi-dimensional data sets, which allows for a multitude of analytical 

choices (Szucs & Ioannidis, 2017), and thereby the “garden of forking paths” (Gelman 

& Loken, 2013). Given this context, there is a need to address the replicability of 

cognitive neuroscience research.  

Early work on human electrophysiology presents an interesting anecdote for the 

value of replication. The recording of electrical oscillations on the surface of a 

nonhuman primate’s cortex was first reported in 1875 (Caton, 1875) and, to the 

astonishment of the scientific community, in 1929 Hans Berger published the first 

account of human scalp electrical brain activity (Berger, 1929). From 1929 to 1933, 

Berger published a series of seminal works showing electrical activity similar (albeit 

attenuated in comparison) to measures directly from the cortical surface, suggesting 

that the scalp-recorded signal reflects a genuine activity of human brain function 
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(Davidson et al., 2000). However, the novel signals recorded by Berger showed 

marked discrepancies with signals recorded from nonhuman animals reported in the 

literature. Electrical activity recorded from nonhumans was neither as regular as 

Berger’s demonstrations, nor did it show the 10 Hz signal so prominent in Berger’s 

recording of human participants. Thus, hesitation in believing Berger’s findings 

abounded in the scientific community, and indeed, Berger himself remained somewhat 

skeptical. Ultimately, a key breakthrough for the use of EEG to study human brain 

function came in 1934 from Adrian & Matthews (1934; see also Biasiucci et al., 2019) 

who set out to examine this novel 10 Hz “Berger rhythm”. These authors wrote (p. 

356):  

“We found it difficult to accept the view that such uniform activity could occur 

throughout the brain in a conscious subject, and as this seemed to us to be 

Berger's conclusion we decided to repeat his experiments. The result has been 

to satisfy us, after an initial period of hesitation, that potential waves which he 

describes do arise in the cortex, and to show that they can be explained in a 

way which does not conflict with the results from animals”. 

 

This independent replication of results was a key contribution to the acceptance 

of Berger’s reports and laid to rest the initial skepticism surrounding the recording of 

human EEG.  

EEG now stands as one of the oldest and the most widely-used investigation 

techniques in human cognitive neuroscience, with over 6000 publications per year 

(Pernet et al., 2020; Pernet et al., 2019). Yet, while novel EEG findings continue to be 

generated, replications of such results are scant. The recent fall-out from the Open 

Science Collaboration has reinvigorated interest in revisiting some landmark studies 

(e.g., DeLong et al., 2017; Ito et al., 2017; Nieuwland et al., 2018) and inspired a 

renewed interest in replicating core findings from the cognitive neuroscience literature.  
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Cognitive neuroscience research is resource-intensive because of equipment cost 

and complexity, elaborateness of data collection procedures, and computational 

requirements of data analysis and curation. This often results in studies with small 

sample sizes and, consequently, with low statistical power. Button et al. (2013) 

extracted data from 48 meta-analyses across the neurosciences and estimated the 

average statistical power to be between ~8% and ~31%.  Potential consequences of 

low statistical power include overestimation of effect sizes, and a reduction in the 

likelihood that a statistically significant result represents a true effect (Button et al., 

2013; Gelman & Carlin, 2014; Vasishth, Mertzen, Jäger, & Gelman, 2018). Ultimately, 

this produces a situation where results likely have low replicability. A recent 

examination of 26,841 statistical records reported in 3,801 papers from psychology 

and cognitive neuroscience indicates that power in cognitive neuroscience is lower 

than in psychology broadly, with median statistical power to detect small (Cohen’s d = 

.20), medium (Cohen’s d = .50), and large effect sizes (Cohen’s d = .80) being 0.12, 

0.44, and 0.73, respectively. This suggests that the rate of false positives is likely to 

be in excess of 50% (Szucs & Ioannidis, 2017). A review of 150 randomly selected 

ERP studies from 2011 to 2017 indicated that the average sample size per group was 

21 participants and the statistical power was conservatively estimated as ~.15 for 

small, ~.50 for medium, and ~.80 for large effect sizes (Clayson et al., 2019). Hence, 

low statistical power in cognitive neuroscience research casts doubts on the 

replicability of many research findings.  

Another challenge to replicability is known in the literature as “experimenter 

degrees of freedom” (Simmons et al., 2011). Specifically, analyses can be conducted 

and the statistics can be computed in many different ways, which allow for “fishing 

expeditions'' to find statistical significance. While these challenges are not specific to 
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cognitive neuroscience nor EEG research, such expeditions are facilitated by the 

multidimensional nature of neuroimaging data and the multitude of analytical steps 

involved. For example, in preprocessing signals, a researcher has a high degree of 

flexibility in decisions about how to deal with artifacts, which filters to apply, and which 

exclusion criteria to use. Variations in these decisions create opportunities, be it 

explicit or implicit, to select the processing route that produces the most “preferable” 

results. A striking demonstration of the impact of analytic flexibility comes from fMRI 

research, which has similarly multidimensional data as EEG, together with investigator 

freedom in filtering procedures and other preprocessing steps. When 70 different 

research teams analyzed the same fMRI dataset with the same hypotheses, they 

arrived at conclusions that varied dramatically by team (Botvinik-Nezer et al., 2019). 

For EEG and ERP experiments, it has also been shown that results are sensitive to 

seemingly subtle differences in preprocessing routines (Robbins et al., 2020). Given 

this fact, it is surprising that only 63% of data processing pipelines are even reported. 

The dependence of the results on subtle details of the data processing routines may 

hinder replication efforts. Furthermore, lack of detail in reporting allows for analytical 

flexibility to remain hidden (Clayson et al., 2019).  

The consequences of analytical freedom in ERP studies were put in the spotlight 

by Luck and Gaspelin (2017). They presented a detailed analysis of how spurious 

results can result from choosing specific regions and time windows for analyses based 

solely on visual inspection of grand average ERP waveforms. This problematic 

process is referred to as SHARKing, or  “Selecting Hypothesized Areas after Results 

are Known” (Poldrack et al., 2017). Problems are magnified when results from such 

practices are presented as hypothesis-driven steps - a process often referred to as 

HARKing, or “Hypothesizing After the Results are Known” (Kerr, 1998). Other potential 
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degrees of freedom include a number of statistical decisions that can influence the 

results, such as deciding on the p-value threshold (Benjamin et al., 2018; de Ruiter, 

2019; Lakens et al., 2018; see also Amrhein et al., 2019) or the plausible effect size 

(Altoè et al., 2020), and choosing between frequentist and Bayesian approaches (van 

de Schoot et al., 2017). In summary, best practices should limit the possibility to steer 

results in the desired direction, willfully or not, by post-hoc decisions on data 

processing, outcome selection, and statistical procedures.  

Two options to limit undisclosed degrees of freedom are pre-registration and 

registered reports. Pre-registration specifies a research plan in advance of 

undertaking the research and uploading these plans to a publicly available registry. 

Registered reports are study proposals that are peer-reviewed before the research is 

undertaken. New forms of scholarship and publishing, in which data are shared along 

with the publication, or directly embedded in manuscripts to allow analysis and re-

analysis on the spot (Maciocci et al., 2019) also address some of these issues. It 

seems inevitable that such approaches will see an increase in popularity in the coming 

years, but we expect delayed adoption for data-intensive areas of science such as 

EEG research, due to logistic constraints on voluminous data storage, transfer and 

online computational power. 

Pre-registration and registered reports, coupled with direct replication and 

systematic documentation of analytical steps, however, remain primary means of 

assessing the robustness of a given effect (Clayson et al., 2019; Clayson & Miller, 

2017; Obels et al., 2020). These same steps, when coupled with larger sample sizes, 

also allow more stable and precise estimations of effect sizes (Schönbrodt & Perugini, 

2013), which are required when translating basic science findings to clinical practice 

or technological applications. A recent study on the replicability of social-behavioural 
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findings by four coordinated laboratories demonstrated that when original studies and 

their replications followed methodological transparency and coupled it with higher 

statistical power and pre-registration, a high rate of replication was achieved (86%; 

Protzko et al., 2020). 

There are a number of barriers towards undertaking replications. Some of these 

barriers are prevalent across the sciences - it is well-documented that publication 

pressure tends to incentivise novel effects over incremental research, direct 

replications (Bradley, 2017) and null findings (“In Praise of Replication Studies and 

Null Results,” 2020). Similarly, research funding bodies have historically prioritised 

funding for high risk and breakthrough programmes. These issues are compounded 

by the resource-intensive nature of EEG research. In comparison to most behavioural 

studies, EEG experiments typically require more resources, such as hardware, taking 

longer to conduct and analyze. Pooling resources across different laboratories is a 

potential way to reduce these barriers, but requires establishing shared protocols for 

equipment preparation and data acquisition, given the potential effects of these 

variables on ERP phenomena (Melnik et al., 2017).  

Over the last decade, major collaborative efforts to increase replicatibility have 

taken place in the psychological sciences and beyond (Errington et al., 2014; Frank et 

al., 2017; Klein, 2014; Moshontz et al., 2018). As the name of this project 

(“#EEGManyLabs”) reveals, we have been particularly inspired by the “Many Labs” 

model popularised by Klein et al. (2014), as well as from the examples set by projects 

such as the Psychological Science Accelerator (Moshontz et al., 2018). This initiative, 

a large-scale, international replication effort, takes on many replication challenges and 

aims to test the replicability of some of the most seminal EEG findings. Specifically, 

we will use a collaborative, multi-site approach and standardized protocol to achieve 

https://www.zotero.org/google-docs/?broken=m0uqto
https://www.zotero.org/google-docs/?broken=m0uqto
https://www.zotero.org/google-docs/?broken=qVoe0o
https://www.zotero.org/google-docs/?broken=dzvinK
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this aim. In the following sections, we outline our approach, including study selection, 

sample size determination, and definition of the evaluation process, as well as the 

expected utility of this project.  

Project Coordination 

Given that the burden on any single individual or research group can be high 

(particularly with the need to collect larger than average samples) while the incentives 

can be low (e.g., publication biases, lack of funding), this #EEGManyLabs project aims 

to circumvent barriers to replicating influential EEG studies. Through central 

coordination and distribution of effort across a large network, we will reduce the 

resource demands on individual researchers. As illustrated in Figure 1, to date we 

have recruited a number of labs distributed across several continents that are willing 

to participate in this collaborative replication effort.  

 

Figure 1 - #EEGManyLabs Network. Data collection sites include individual researchers or 

lab groups who have volunteered to collect data for the #EEGManyLabs project. At the time 

of writing, we have >200 potential data collection sites.  
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To overcome many of the administrative issues that come with “big science”, we 

have established an organisational structure (see Figure 2). The Core Team 

comprises: (i) Project Coordinators – responsible for general management of the 

project, oversight and strategic support for all Replication Teams, including planning 

and establishing communication with and between members of the project; (ii) An 

Advisory Board of EEG experts –– who support the Project Coordinators and provide 

input on a variety of areas including analyzing EEG, reviewing code, programming of 

experiments, conducting power analysis, reviewing registered reports, obtaining 

institutional review board/local ethics committee approvals, applying for funding, and 

other tasks; (iii) Lead Replicating Labs – individuals or research teams who will take 

ownership for coordinating a specific target replication. The PI of that lab will be 

responsible for preparing the registered report for that particular study. In addition to 

the Lead Replicating Lab, a minimum of two additional Replicating Labs will be 

included in the Replication Team. The Replicating Labs will be responsible for 

collecting an agreed upon number of samples and (if possible) analyzing the collected 

data.  

Many of the important decisions made in the creation of this project are described 

in the following sections and a complete list of all project related decisions and 

resources is available online (https://osf.io/yb3pq/).  

https://osf.io/yb3pq/
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Figure 2 - Organogram. The Core Team comprises: the Project Coordinators, the Advisory 

Board and the Lead Replicating Labs. The Replication Teams are formed for each study by a 

minimum of three labs. 

Selecting studies for replication  

The #EEGManyLabs project aims to assess the replicability of a set of highly influential 

studies. Given the limited resources and the voluntary nature of the collaboration, we 

made a pragmatic decision to prioritise investigating highly cited works instead of 

randomly sampling the literature. Selecting highly cited studies for replication comes 

with increased interest and motivation from potential replicating labs and followers - 

key for a community-driven project and consistent with other major replication 

attempts (Ebersole et al., 2016; Errington et al., 2014; Klein et al., 2018; Klein, 2014; 

Klein et al., 2019).  
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Figure 3 - Flow chart of the study selection procedure illustrating how we arrived at the final 

list of 27 of the most influential EEG studies to be replicated in this project. 

 

To identify the most highly cited studies in the EEG literature, we first undertook a 

systematic search in the Web of Science database, where we extracted the number 

of citations and normalized by the age of publication (see Figure 3 and full systematic 

search protocol at https://osf.io/8qkr3/). To maximise inclusivity and minimise data 

collection demands, we aimed to include only psychological studies in healthy adult 

populations using common instrumentation (e.g., no EEG-fMRI), without any special 

intervention (e.g., no transcranial stimulation, pharmacological manipulation), that 

could be conducted in a single session (e.g., longitudinal studies were excluded). 

Furthermore, we advertised the project on social media (hashtag #EEGManyLabs), 

https://osf.io/8qkr3/
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inviting the EEG community to nominate studies they deemed worthy of replication. 

Through social media advertising, we also aimed to identify potentially impactful, 

recent studies that had not yet had time to accumulate a high number of citations. A 

more detailed description of the procedure for replication study selection is available 

online (https://osf.io/8qkr3/). This process resulted in a sample of 268 initial papers for 

the long list. 

To reduce the number of studies considered, the members of the project at the 

time of study selection (i.e., potential data collection sites – members of the project 

who expressed willingness to collect data in the future) were asked to cast their votes 

for the studies they thought to be most influential and worthy of replication. The poll 

was open to all members, and it was possible for original authors to nominate their 

own studies. To help researchers identify the studies within their scope of interest, for 

each of the initially selected papers, a group of volunteers led by the first author 

(Y.G.P.) manually added keywords describing the main outcome variable (ERP 

component or EEG measure), studied psychological construct, and other descriptors, 

including behavioural paradigm used or extra equipment required (e.g., force 

transducers, eye-tracker). This step was deemed necessary because keywords found 

in the original published papers lacked consistency across studies.  

Seventy-nine out of 158 representatives from laboratories expressing a desire to 

collect replication data at the time of study selection cast their votes. In a third step, 

the 32 studies that received the highest number of votes (8 or more) were finally 

selected. The number of votes needed by a study to be selected was arbitrary. It was 

established to increase the chances of reaching the desired target of at least 20 

replications: selecting 41 studies (7 votes or more) would spread the labs thin and 

https://osf.io/8qkr3/
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selecting 25 studies (9 votes or more) would make the options too scarce. Thus, thirty-

two studies entered the feasibility analysis and data extraction stage.  

Data extraction and sample size estimation 

A subset of our team (led by Y.G.P.) was involved in data extraction (e.g., specific 

hypothesis tests, effect size reached) from the 32 studies selected, to confirm that they 

all satisfied the minimal criteria for replication. Specifically, we confirmed that (i) each 

of the key results could be examined through inference tests; (ii) the study employed 

an experimental or correlational design; (iii) the study examined a topic linking EEG 

activity and behaviour; and (iv) EEG was used as the primary neuroscience method.  

To facilitate replication, the effect of interest needed to be identified and described 

as precisely as possible in two key ways. First, given that EEG findings are a 

combination of spatial, frequency, and temporal features, the primary effect of interest 

needed to be recognized in all relevant dimensions (e.g., “Gamma coherence between 

visual and somatosensory electrode sites in the 37-43 Hz band was significantly 

greater during CS+ trials than during CS- trials (p ≤ 0.06) for the 250-ms time window 

just before UCS onset”; Miltner et al., 1999). Second, we asked the data extraction 

team to describe the results in plain-language (e.g., following with the previous 

example based on the Miltner et al. (1999) study: “Gamma-band coherence increases 

between regions of the brain involved in an associative-learning procedure in 

humans”).  

To determine the upper bound on the sample size required for each replication 

(the maximum sample size), we extracted the effect sizes from the results reported in 

the original papers. We assumed the original effect size to be twice as large as it could 

be in a highly powered study. This assumption is supported by a recent study showing 
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that the effect size in pre-registered studies is about half the size of that in studies 

without pre-registration (Schäfer & Schwarz, 2019), as well as by the results of large-

scale replications (Open Science Collaboration, 2015). To counteract overestimation 

of the true effects due to publication bias and uncertainty (Brysbaert, 2019), we 

decided the sample size needed to have 90% power to detect 50% of the original 

effect size (100% in case of null findings) at a 2% significance level for a one-sided 

test (see Camerer et al., 2018; Lewis et al., 2020; Schäfer & Schwarz, 2019).  

In adopting this approach, studies reporting small effect sizes would require a very 

large sample size, which could prohibit data collection for many laboratories. At the 

start of this project, we had asked researchers who were willing to serve as a 

Replicating Lab how many participants they could contribute to the project. The 

median number was 50 participants (where range was reported, the maximum number 

was taken) with only a few labs defining the highest end of the range to be more than 

150 participants. Based on this information, we decided to exclude experimental 

studies that would have required a sample size of more than 200 participants. This led 

to the exclusion of one experimental study. One further study was excluded because 

no inference test could confirm or reject the descriptive claim made by the authors. 

Three studies, focussed on alpha asymmetry, were deemed to be more appropriate 

as a “spin off” project (see Legacy). Following data extraction, 27 potential replication 

studies remained (Figure 4).  

From a starting position of 27 replication studies, our goal is to conduct replications 

of at least 20 - a number we deem to be a reasonable target that will allow us to 

generate sufficient data to explore replicability between studies. If we are unable to 

reach that goal, e.g., due to infeasibility, insufficient number of replicating labs, or 

rejection at the review stage, we will add the next five studies to the pool from the long 
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list (available at https://osf.io/js7u4/). This procedure will be repeated until the target 

of 20 replications is met. 

 
Figure 4 - Summary of the final list of studies, with associated number of citations according 

to Google Scholar as of 01 October 2020. Color indicates the domain of the study. It is 

important to note that while some studies could have been allocated to multiple domains, we 

made an arbitrary decision purely for the purpose of visualisation. 

Prediction Markets 

Having seen the final list of studies in Figure 4, many readers familiar with these 

studies will have their own perspective about the likelihood of individual studies 

replicating. To what extent they are correct in these beliefs will be the focus of the 

prediction markets element of this project. Before we collect any data, we will advertise 

our plans to EEG researchers (including and beyond the #EEGManyLabs network; 

e.g., social media (#AcademicEEG) and cognitive neuroscience mailing lists) and 

request their perspectives on the replicability of our target studies in a survey by 
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inviting them to participate in prediction markets. Prediction markets function as a tool 

to aggregate private information - in this case participating researchers’ beliefs about 

which studies replicate - by giving participants monetary incentives to “bet” on the 

replication outcomes of the target studies. Previous studies using prediction markets 

on replications find that they perform better than chance in predicting outcomes and 

can be considered as an imperfect replication indicator (Camerer et al., 2018; Dreber 

et al., 2015). We intend to use prediction markets to predict the outcomes of the target 

replications. At the end of this project, we will be able to examine how closely internally 

held beliefs in the EEG community map on to the replication results. 

Modes of participation 

There are a number of ways in which individuals and research laboratories can engage 

with this project. The most critical element of this project is the collection of data. In 

this section, we detail how we intend to optimise the distribution of data collection 

across laboratories. Where replications require relatively “large” sample sizes (i.e., 

>40 participants with analyzable data), a Replicating Lab can decide to collect a 

smaller sample but distribute the total sample collection among partner labs (“lab 

buddies”) that use the same equipment (with the expectation that, at a minimum, the 

model of the amplifier and type of electrodes used are identical). Labs with the same 

amplifier and electrodes will merge their data and form an independent sample to 

calculate the effect size for internal meta-analysis (the hypothetical study#2 in Figure 

5). For correlational studies, which typically require larger samples, we expect that the 

distribution of data collection across laboratories will be the default approach. For 

experimental studies, we require at least three independent samples, whereas for 

correlational studies, we require at least two independent samples, with a minimum 
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sample size per replicating lab to be at least equal to the sample size of the original 

study.  

If the required sample size is relatively low (n<=40), we expect the Replicating 

Labs to collect the full sample. However, where the sample size expectations are 

large, it is possible for laboratories to implement a Bayes factors (BF) sequential 

testing approach (see Schönbrodt & Wagenmakers, 2018), where the target Bayes 

factor size is specified in the registered reports Stage 1 submission for individual 

projects, with a maximum sample size and BF > 6 recommended to balance feasibility 

constraints and the level of evidence (Schönbrodt et al., 2017). Once the Bayes Factor 

indicates sufficient evidence in favor of or against each relevant hypothesis or, 

alternatively, once the predefined maximum sample size is reached, data collection 

can be stopped. By offering this flexibility, we aim to minimize any unnecessary use of 

lab resources and maximize the number of labs willing to contribute.  
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Figure 5 - Modes of participation for the Replicating Labs. In sample study 1, the agreed-upon 
number of participants in the study is less than 40, and all labs proceed independently, until 
the meta-analysis step in which results are combined. In sample study 2, where more than 40 
participants are required for each replication study, labs can collaborate and create a joint 
dataset. 

Conducting the replications 

Below, we briefly describe the steps each study will go through (see Figure 6), leaving 

specific details to the publicly available Project Plan (https://osf.io/yz23p/).  

 

https://osf.io/yz23p/
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Figure 6: A simplified example timeline of a single replication. M indicates month. We expect 

that there will be considerable variation in timelines for individual replications but that they will 

follow each of the steps laid out here. 

 

The first step in the replication process is to establish the Replication Team for a 

particular study. Lead Replicating Laboratories will be self-nominated by filling in a 

form that will need to be confirmed by the Project Coordinators. After approval, the 

Lead Replicating Lab will issue a call for Replicating labs, listing all necessary details, 

such as technical requirements, the expected duration of the experiment, and the 

planned sample size. After recruiting at least two Replicating labs, the study will 

proceed to the next stage - development of the study protocol.  

The most critical step is to make sure that the replications' methodology closely 

follows the original and allows the Replication Team to conduct a fair and high-

powered test of the main findings from the original study. The Replication Team will 

prepare the materials (e.g., presentation and analysis scripts) for the replication 

studies to mirror the methodology used in the original paper. This process will be 

based on the data extracted from the articles at the stage of selecting experiments for 

replication and, preferentially, with the original authors' help. The Lead Replicating Lab 

will have primary responsibility for the development of the new stimulus presentation 

code in the form of carrying out the task (or identifying suitable people in the 

Replication Team or wider network who wish to support this activity) and verifying the 
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resulting code. The Replicating Labs will translate the code for stimuli presentation for 

use in their labs if necessary (e.g., the original is written in E-Prime and provided by 

the original author, but a Replicating Lab uses/has access to Psychtoolbox; Kleiner et 

al., 2007). When possible, an attempt will be made to write task code using free open 

source tools (e.g., PsychoPy; Peirce, 2007). The Replication Team will develop the 

protocol for data collection and analysis based on the available materials and pilot 

data collected in each of the Replicating Labs. For the sake of transparency and 

reproducibility, we will give preference to use open source toolboxes (e.g., Brainstorm 

(Tadel et al., 2011), EEGlab (Delorme et al., 2011), FieldTrip (Oostenveld et al., 2010), 

SPM (Litvak et al., 2011)) and free open source software (e.g., MNE Python; Gramfort 

et al., 2013) in combination with custom-made scripts.  

Next, the protocol will be supplemented with an introduction section, including 

description of the key findings and a rationale for the original study selection, with 

clearly stated hypotheses to be tested. The introduction will cover the current evidence 

for the findings of the original study, paying most attention to any existing studies 

replicating the original findings, including conceptual replications. The introduction will 

also stress the impact of the original study and the importance of its replication.  

A draft of the manuscript will be reviewed internally by selected members of the 

Advisory Board for approval. Such a review process is designed to ensure accurate 

replication of the methods and procedures. Once the manuscript has been internally 

reviewed, it will be submitted to Cortex as a RR Stage 1. Given that a number of 

notable replications were followed by refutations and criticism from the original authors 

(e.g., Moran et al., 2020; Baumeister & Vohs, 2016), at this stage in the process, the 

replicators may wish to have the original authors explicitly endorse interpretations of 

potential results and confirm the suitability of the planned protocol (Nosek & Errington, 
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2020). The Lead Replicating Lab can decide to include the original authors as co-

authors or to acknowledge their contribution, depending on their level of involvement 

in the preparation of the RR. To mitigate concerns over the independence of a 

replication, including biases in the interpretation and discussion of the results, the 

original authors are allowed to participate only in Stage 1 of the RR.  

After in principle acceptance (IPA) and prior to data collection, all methodology, 

materials, and plans for analysis will be posted in the OSF study registry. The call for 

Replicating Labs will open up again for research teams who were unable to join the 

replication team earlier in the development of protocols but have capacity to collect 

data. Data collection will proceed asynchronously in all Replicating Labs. Replicating 

Labs will be expected to complete data collection within 1 year of the IPA after 

obtaining ethics approval from their local ethics committee. If the minimal criterion of 

having three samples from three independent labs has not been reached, data 

collection will be extended beyond one year. 

The data analysis protocol developed earlier will be used by the Replication Team 

to analyse the data. All analysis steps will be documented to facilitate re-analysis, and 

the code will be made publicly available. The analysis scripts in EEG research 

frequently involve manual artifact identification, correction, and rejection which 

introduces subjectivity to the process. And while a fully automated preprocessing 

pipeline has the potential to be more reproducible than one involving manual 

processing, today’s automated algorithms also require some subjective decision 

making (e.g. defining a numerical threshold for rejection). Given that there is no clear 

consensus on which approach is superior, we recommend employing the method used 

in the original study. This should avoid potential non-replications due to deviations in 

the preprocessing procedure. Where this means manual pre-processing, laboratories 
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will be asked to store trial level data with information on their artefact correction 

process. In these instances, we also stress that Replication Teams may run 

supplementary analyses using state-of-the-art automated approaches. In all cases, 

the teams pledge to abide by a preregistered analysis script. Beyond individual 

replications, a spin-off team (“#EEGManyLabs Automation”) will implement automated 

analyses to investigate differences between manual and automated coding. Each 

Lead Replicating Lab will consider whether additional blinding is required during the 

analysis; e.g., by having manual analyses conducted by researchers who are blind 

with respect to the experimental conditions. Such blinded analyses will need to be 

reported as such in the replication attempt. The replicators will be expected to execute 

the previously agreed analysis script, which will provide an effect size for the meta-

analysis. Preprocessed data will be provided to the Lead Replicating Lab for 

supplementary analyses of the aggregated dataset.  

The Lead Replicating Lab will conduct the meta-analysis. The Lead Replicating 

Lab will report the median and distribution of the weighted and unweighted effect sizes, 

corresponding 95% confidence intervals, and the number of Replicating Labs 

successfully replicating the original effect. Effect sizes found by individual Replicating 

Labs within a Replication Team will be visualized in a forest plot. In addition, the Lead 

Replicating Lab will delineate the proportion of studies/samples that rejected the null 

hypothesis in the expected and unexpected direction. Any deviation from the protocol 

approved at RR Stage 1 will be reported and justified. The contributors of each project 

will have the opportunity to review and edit the replication manuscript before it is 

submitted to Cortex. Participating labs will also comment on possible explanations for 

successful/unsuccessful replication. 
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Replication success is defined operationally as a statistically significant random-

effects meta-analytic estimate (at p < .02) combining the results from the different 

laboratories, in the same direction as in the original study. To quantify the variation in 

effect sizes across samples and settings, the Lead Replicating Lab will further conduct 

a random-effects meta-analysis and establish heterogeneity estimates to determine if 

the amount of variability across samples exceeded the amount expected as a result 

of measurement error.  

Data Output & Management 

We intend to share all study materials, complying with FAIR principles, making the 

material Findable, Accessible, Interoperable, and Reusable (Wilkinson et al., 2016). 

The study materials will be shared on OSF (https://osf.io/yb3pq/). All Replication 

Teams will share their analysis pipelines, preferably in the form of reproducible scripts 

that include artifact annotations (e.g., visually or automatically identified artifacts, 

rejected channels, ICA weights, rejected components). 

We will inform research participants of the aims of the project, of the experimental 

procedures, and will explain that research data will be shared. The consent of 

participants, including to the sharing of their data, is required for their participation. We 

will use the Open Brain Consent form (Bannier et al., 2020) as a template, which will 

be adapted to each lab’s needs according to their local laws and regulations. Before 

sharing, raw data will be curated and organized by the Replication Teams following 

the Brain Imaging Data Structure (BIDS) (Gorgolewski et al., 2016; Pernet et al., 

2019), ensuring the removal of any directly identifiable information such as name, 

address, birth date, etc. By default, minimal demographic data will be requested from 

each lab (i.e. age, gender, handedness and education including total years and 

https://open-brain-consent.readthedocs.io/en/stable/ultimate.html


Running Head: #EEGManyLabs 

highest qualification; Pernet et al., 2020) but additional information (e.g. IQ, health or 

psychological characteristics) might be collected, which will be determined by the 

Replicating Labs and contingent upon approval from the respective local ethics review 

boards. Datasets will be shared using a suitable repository (e.g., FigShare, Zenodo, 

Dataverse) and linked to OSF. We aim to share the data as openly as possible, but 

depending on requirements imposed by the Replicating Labs local ethics review 

boards and their institutional and national regulations, the access to shared data may 

require controlled access, i.e., external interested researchers may have to register 

and request access. Labs that do not have permission for sharing data cannot 

participate in data acquisition, but can still contribute to the analysis.  

Summary Report 

Once the individual replications of the different studies are completed and published, 

we will collate and summarise the findings into a summary report, to be published in 

Cortex, that will mark the closing of the direct replication component of the 

#EEGManyLabs project. This publication will aim to highlight specific and general 

conclusions from the replicated studies, provide a unified dataset, describe the 

lessons learned in running this community-driven initiative and ultimately derive 

recommendations for future EEG research. 

While the nature of each replication and their theoretical implications will be dealt 

with in the individual replication reports, the summary report will focus on aspects that 

are common across our studies. Our central repository (https://osf.io/yb3pq/) will 

contain (i) a document summarizing details of the recording setups and data collection 

according to COBIDAS standard (e.g., the amplifiers used; the number, composition, 

and layout of sensors; acceptable and observed impedances; recording reference and 

https://osf.io/yb3pq/
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ground; sampling rates; and acquisition filter bandwidths; see Pernet et al., 2020); (ii) 

environmental information such as lighting, sound attenuation, and electromagnetic 

shielding; (iii) pre-registered analysis codes and procedures, accompanied by test 

data collection videos; and finally (iv) links to all data repositories of the individual 

replication attempts. Based on this information, we will evaluate how similar the 

procedures of the replication attempts were to those reported in the original studies 

(e.g., with regards to sample size; subject and trial-level artifact rejection rates). 

Replication outcomes will be summarized with a hierarchical forest plot to illustrate 

all replication studies' effect sizes. We will also illustrate effect sizes across Replicating 

Labs for a single study and heterogeneity of effect sizes across labs (i.e., addressing 

a common “hidden moderators” argument; Bavel et al., 2016). These effect sizes will 

be directly contrasted with the original papers' effect sizes, and supplemented by 

reports on p value distributions, Bayes factors, and Standardized Measurement Error 

(SME) measures.  

Given the multi-laboratory and multi-experiment nature of this project, we also 

expect methodological differences across sites and studies to contribute to a 

proportion of the variance in the results. We will accordingly make a concerted effort 

to identify the extent to which these factors indeed influence replicability. The impact 

of these covariates will be examined with respect to the (i) original effect size; (ii) 

original study design (e.g., within-group vs. between-group, trial number per condition, 

sample size, amplifiers used); (iii) data collection parameters (e.g., number of trials, 

number of channels); (iv) original analysis pipeline/parameters (e.g., reference 

channel, the complexity of the processing pipeline, how the data were reduced to a 

univariate inferential test such as averaged quantification across chosen time window 

and channels vs. massive univariate testing of all time points and channels with cluster 
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test); and (v) publication characteristics including year of the original studies and 

journal impact factor, to see whether advances in EEG research practice have 

improved replicability over the years and whether the profile of the original journal has 

any relationship with the replicability of a finding. The impact of these factors (and their 

interactions) will be crucial in recognizing and recommending best practices. 

The summary report will also include the outcomes of our prediction markets. The 

prediction markets will indicate how well researchers in the field can predict the 

outcomes of the replication studies and whether they under- or overestimate the 

percentage of studies that replicate. Prediction markets in psychology generally, and 

neuroimaging (e.g., fMRI) specifically, have been leveraged to provide an index of 

researchers’ ability to judge the replicability of findings in individual subfields (Dreber 

et al., 2015), but this has yet to be applied to EEG research. By comparing the 

replicability of EEG studies estimated with prediction markets to actual replicability, we 

will provide unique commentary on the ability of EEG experts to accurately judge 

currently published findings as well as the potential of using prediction markets as a 

future tool to assess the face validity of EEG research. 

Finally, we expect to close our summary report with recommendations for further 

research (both replication and original research), based on the above analyses and 

the experience gained across the many labs participating in this large-scale project. 

We expect to identify the minimum number of trials and participants needed to detect 

some of the most common EEG phenomena (e.g., N2pc, N2 in go/no-go tasks, ERN, 

P3b) with the help of a sensitivity analysis, and more generally, to make suggestions 

about recommended parameters in data collection and analysis protocols. 
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Project Outcomes 

EEG/ERP research on human cognitive processes has been built upon a vast body of 

data collected over approximately six decades. One of the main strengths of this field 

is that key effects have been widely replicated (e.g., the P300 responsiveness to 

infrequent trials in the oddball task), enabling researchers to use ERPs as biomarkers 

of cognitive processes. However, it is still unclear if many essential findings in this field 

will withstand the test of direct independent replications, and how much effect sizes 

differ across laboratories and with larger sample sizes. #EEGManyLabs will help to 

address these questions by providing a perspective on past work while suggesting 

tools to improve future research.  

This project will provide an initial estimate of the replicability of a set of key findings 

from studies that were selected by the EEG research community because of their 

impact on the field. By investigating covariates and moderators of replication 

successes versus failures, this project can provide knowledge that enhances the 

replicability of future EEG studies. Outcomes from the replication studies that are 

consistent with those of the original studies will increase confidence in the original 

studies’ findings and their robustness; conversely, outcomes inconsistent with those 

of the original studies will decrease confidence in these outcomes and the related 

conclusions (Nosek & Errington, 2020) and launch a search for explanatory factors 

contributing to discrepancy between initial and replication studies.  

We must also stress the importance of what will not, or cannot, be learned from 

this exercise. Given the nature of the studies that are to be replicated, it is clear that 

the conclusions from this project will not apply to all EEG/ERP research. We selected 

influential (i.e., highly-cited) studies for this project and, as such, this project can only 

provide an estimate of the replicability of a subset of EEG/ERP research – not the field 
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at large. Indeed, it is possible that the most influential studies might be more or less 

replicable than studies that have been cited less often. For example, one may make 

the argument that as highly influential studies often introduce new or exciting findings 

(i.e., are not incremental), they may be less likely to replicate than studies that advance 

the field more slowly because they are more closely tied to prior work. Thus, the 

original Many Labs replications found little difference in replication as a function of 

citation rate (Altmejd et al. 2019). Another factor to consider here is that our selection 

process involved a nomination and voting process - perhaps some study selections 

were based on skepticism. We expect that our prediction markets will uncover these 

subjective beliefs amongst the EEG community for this set of studies, but alternative 

approaches will be needed to provide an estimation of the replicability of EEG research 

more generally. 

Legacy 

Beyond the specific outcomes related to the individual studies, we expect this project 

to have a long-lasting legacy on EEG research across a broad number of domains. 

We also hope that this project can provide a canvas for future replication projects of 

EEG/ERP studies that were not included in the current project. We describe some of 

the expected legacies of this project next.  

As a starting point, we will allow researchers outside the #EEGManyLabs network 

to access all our replication data and materials to perform future re-analyses in an 

open and transparent way. We hope that future work will be able to better understand 

the optimal characteristics of a replicable study. To this end, we will make all the raw 

and processed EEG replication data available using Brain Imaging Data Structure 
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(BIDS) guidelines, as well as analysis scripts, experimental stimuli, stimuli 

presentation scripts, lab notes, video recordings, and other research materials.  

One longer term benefit of this project will be empirically well-justified 

recommendations for sample sizes for EEG studies of particular phenomena. Effect 

sizes will be computed for specific components across a wide range of tasks. 

Researchers will thus have a database to use when considering how those measures 

may vary across stimulus characteristics, response demands, trial numbers, and other 

task parameters. Such data should help inform sample size planning for future 

EEG/ERP studies. 

The #EEGManyLabs project will also result in a series of broader 

recommendations and practice guidelines on how to conduct multi-site EEG studies 

in the domain of EEG. The superficially simple task of merging two EEG signals 

acquired from different amplifiers is far from trivial. By providing data on how variability 

in the collection of data across sites affect the result, we hope #EEGManyLabs will 

help future researchers to plan their multi-lab studies and set the scene for future 

collaborative science.  

At the time of writing this manuscript, #EEGManyLabs has already inspired several 

ongoing and planned projects. One subproject (“spin-off”), #EEGManyLabs 

Asymmetry, will leverage community engagement to record additional resting-state 

EEG data, and a set of personality questionnaires together with the replication 

attempts. In doing so, it will shed light on the replicability of asymmetries in EEG alpha 

power (Reznik & Allen, 2018) and their relation to personality traits. Another spin-off 

(#EEGManyLabs Automation) will compare the outcomes of analyses conducted by 

the #EEGManyLabs Replication Teams with a fully automated analysis pipeline 

developed by a group of analysts. This project aims to evaluate the within-study effect 
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of manual vs. algorithmic artifact removal in the replication context to investigate the 

role of subjective biases associated with manual coding discussed above. The project 

will also investigate whether the original studies that implemented automatic artifact 

rejection algorithms are more often successfully replicated than those that used 

manual coding methods. In this way, we will be able to address the question of whether 

automation can help to improve replicability. The datasets generated from this project 

will also allow us to study the effects of analytical flexibility on EEG findings' robustness 

in another ongoing project - #EEGManyPipelines. Here, researchers will be invited to 

analyse the replicated datasets using their preferred analysis pipelines and will then 

analyze variation in analysis pipelines and the resulting diversity of results.  

Inclusivity and Collaboration 

Since the start of the project, we have aimed to establish a wide network of 

researchers and data collection sites, with diverse scientific interests and skill sets. 

The current #EEGManyLabs Network represents 33 countries on 4 continents (with 

hopes to further expand membership - particularly in under-represented countries), 

and approximately 30% of researchers currently involved are women (identified based 

on given names using genderize.io database). However, the studies selected for 

replication all come from Western Europe and North America and are overwhelmingly 

authored by men. While the selected studies reflect a broad issue with lack of diversity 

in research, we are hopeful that the current project will bring much needed 

diversification to EEG by conducting transparent research, producing open data and 

materials, and promoting global collaboration. 

This brings us to the final goal of this project. Through demonstrating the feasibility 

of large-scale multi-site projects involving a large, diverse body of EEG researchers, 



Running Head: #EEGManyLabs 

we hope to facilitate a cultural shift away from small-scale single laboratory 

experiments towards high-powered, community-driven collaborations, creating a 

stronger foundation for the future of EEG research. 

Conclusions 

In an international effort spanning multiple research institutions and numerous 

researchers, the #EEGManyLabs initiative promises to yield high-fidelity replication 

attempts of influential EEG/ERP experiments. Following the Many Labs model (Klein, 

2014), each experiment will be replicated in several labs to collect a large sample of 

data for each study, allowing the assessment of replicability through internal meta-

analyses. To ensure a high scientific standard is maintained across all replications, 

this concerted effort is centrally coordinated. Each replication will pass quality control 

through being reviewed by members of the advisory board, will use standardised 

experimental and analysis protocols across labs, and involve registered reports that 

will be published irrespective of the outcomes. A final meta-analytical report will 

synthesize outcomes from across all replications and will mark the end of this initiative. 

We expect this project’s legacy will rest in pushing the field towards higher replicability 

standards and facilitating an open science culture of high powered, large-scale multi-

site collaborations.  
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