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One of several irregular, plagioclase-phyric felsic veins in the Lillevik ophiolite fragment (Gratangseidet 
Igneous Complex) in Narvik, northern Norway, yielded a U–Pb zircon age of 494 ± 5 Ma. The veins cut  
deformed, compositionally layered, light REE-depleted gabbros that arguably constituted part of the 
now-dismembered ophiolite stratigraphy. The felsic veins were themselves deformed, probably during 
Silurian Scandian deformation, but the cross-cutting relationships suggest that they post-date initial  
deformation of the ophiolitic rocks. The felsic veins are strongly depleted in heavy REE and have  
moderately juvenile Lu–Hf zircon compositions, with εHf494 between 6.2 and 9.9. By analogy with  
felsic rocks in other Caledonian ophiolites and supported by cross-cutting relationships, the chemical and  
isotopic data can be interpreted to reflect formation by partial melting of basaltic rocks in the presence of 
residual garnet. In this case, the felsic veins probably post-date ophiolite formation and obduction onto a 
continental margin. We therefore interpret the age of 494 Ma to represent the minimum age of formation 
of the Lillevik ophiolite fragment. Previously published age, isotopic and chemical data from the region  
document an at least 20 Myr-long complex magmatic evolution following ophiolite obduction. The new 
data show that Late Cambrian to Early Ordovician ophiolite fragments extend along most of the length 
of the Scandinavian Caledonides. The tectonic significance of a previously published age of 474 Ma from 
the Gratangseidet Igneous Complex and 481 to 469 Ma ages from a tonalite sheet in the nearby Lyngen  
ophiolite, both interpreted to reflect ophiolite formation, needs to be tested by obtaining whole-rock 
geochemical data from these units.

 Introduction
The Scandinavian Caledonides formed during Late Cambrian through Ordovician convergence and 
closure of the Iapetus Ocean, followed by Early Silurian (c. 440–430 Ma) continent-continent collision  
between Baltica and Laurentia. This long-lived convergence resulted in complex nappe stacks that were  
assembled partly prior to collision and partly during southeastward thrusting onto Baltica during collision.  
An important tenet in studies of Caledonian geology is that seemingly correlative units can be traced for 
hundreds of kilometres along the length of orogen (Gee et al., 1985; Roberts & Gee, 1985). Although recent 
studies have found that certain components of Caledonian geology can indeed be correlated for hundreds 
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of kilometres (Slagstad & Kirkland, 2018), it has been argued that such a general scheme is likely to be 
too rigid and simplistic (Corfu et al., 2014) or difficult to test (Slagstad & Kirkland, 2017). 

Late Cambrian to Early Ordovician ophiolite complexes are common from the southwestern  
Scandinavian Caledonides up through the Trondheim Region (Fig. 1). These complexes variably  
preserve evidence of changing tectonic environments, e.g., from subduction-influenced, oceanic  
back-arc basin to mid-ocean spreading ridge (497 Ma Leka ophiolite; Furnes et al., 1988), or from  
ocean-floor formation followed by establishment of an island arc (487–482 Ma Løkken ophiolite;  
Grenne, 1989). Other ophiolites, such as the 486 Ma Bymarka ophiolite (Slagstad, 2003; Slagstad et 
al., 2013), preserve a complete record from ocean-floor spreading (486 Ma) through convergence (481 
Ma) and post-obduction magmatism (468 Ma). The results from the Bymarka ophiolite show that dating 
felsic rocks in ophiolites can lead to a range of ages, and that some consideration of petrogenesis is 
needed in order to interpret the tectonic significance of those ages.     

Figure 1. (A) Simplified map of the Scandinavian Caledonides, modified from Roberts & Gee (1985), with locations and 
formation ages of ophiolites and ophiolite fragments.
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In the northern Scandinavian Caledonides, ages derived from ophiolitic rocks include deformed  
tonalites from the Lyngen ophiolite yielding ages of 481 ± 6 and 469 ± 5 Ma (Oliver & Krogh, 1995;  
Augland et al., 2014), a tonalite from the Gratangseidet Igneous Complex, about a kilometre from the 
Lillevik ophiolite fragment, yielding an age of 474 ± 0.7 Ma (Augland et al., 2014), and the Ruggevik 
tonalite yielding an age of 479 ± 1 Ma (Northrup, 1997). These ages were interpreted to reflect the ages 
of ophiolite formation but are younger than plagiogranites in other Caledonian ophiolites that typically 
yield ages between c. 497 and 480 Ma and are shown to be comagmatic with the mafic rocks making 
up the ophiolites based on geochemical and isotopic data (Dunning & Pedersen, 1988; Slagstad et al., 
2013).

Here, we present new U–Pb zircon age and Lu–Hf isotopic data and whole-rock geochemistry from 
a felsic vein in the c. 50 m-wide Lillevik ophiolite fragment in the town of Narvik (Fig. 1), northern 
Scandinavian Caledonides, and briefly discuss its significance for the pre-Scandian magmatic evolution 
of the Gratangseidet Igneous Complex and correlation with ophiolites elsewhere in the Scandinavian 
Caledonides.

 Regional geology
Since the seminal works of Gee et al. (1985), Roberts & Gee (1985) and Stephens et al. (1985), 
the Scandinavian Caledonides have typically been described in terms of four allochthons, each  
comprising a series of nappe complexes (Fig. 1). The Upper and Uppermost allochthons are generally  
inferred to be exotic to Baltica, probably of Iapetan and Laurentian heritage, respectively, whereas 
the Lower and Middle allochthons are assumed to represent the outer continental margin of Baltica,  
telescoped during the Silurian Scandian orogenic event. There is, however, ample evidence for a long, 
complex and as yet poorly constrained, Neoproterozoic through Ordovician, tectonometamorphic and  
magmatic history in all allochthons but the Lower (e.g., Kirkland et al., 2007; Gasser et al., 2015; Jakob et 
al., 2017; Slagstad et al., 2020). The evidence, however, is generally overprinted by c. 440–430 Ma high- 
grade metamorphism related to initial nappe assembly (e.g., Kirkland et al., 2018; Bender et al., 2019;  
Faber et al., 2019), and further structural reorganisation associated with final thrusting over Baltica at 
c. 420–400 Ma (e.g., Hacker & Gans, 2005; Froitzheim et al., 2016). 

The Caledonian geology of the Ofoten area is dominated by a major Scandian structure, the Ofoten 
synform, located between the Rombak tectonic basement window to the east and the Vesterålen–
Lofoten basement complex to the west (Figs. 1 & 2A). The dominant unit in the study area, which 
lies along the southeastern limb of the Ofoten synform, is the Narvik Nappe Complex, in turn  
structurally overlain by the Ofoten Nappe Complex (Steltenpohl et al., 1990). The Narvik Nappe Complex  
constitutes the Upper Allochthon in this area, whilst the Ofoten Nappe Complex constitutes the lower 
part of the Uppermost Allochthon (Gee et al., 1985). Both consist of several thrust sheets although  
the precise internal tectonostratigraphy is debated (Augland et al., 2014). The Narvik Nappe  
Complex comprises amphibolite-facies garnet-mica schists, calcareous mica schists, biotite schists  
with minor amphibolite and other metamfic rocks (e.g., Hodges, 1985). The overlying Ofoten Nappe  
Complexconsists of at least three lithotectonic units: from bottom to top, the Gratangseidet  
Igneous Complex, the Evenes Group and the Bogen Group (Augland et al., 2014) 
The Gratangseidet Igneous Complex consists of variably deformed metaign us rocks  
several of which are interpreted as being ophiolitic in character, including the Lillevik  
ophiolite fragment, which is the focus of this study. U–Pb zircon dating of an isotopically primitive  
(εHf474 = 9.57) tonalite from the Gratangseidet Igneous Complex yielded an age of 474 Ma 
(Fig. 2A), interpreted by Augland et al. (2014) to represent the age of ophiolite formation. The  
contact to the overlying Evenes Group is interpreted either as a deformed depositional contact  



4 of 19 5 of 19

T. Slagstad et. al                                  The >494 Ma Lillevik ophiolite fragment near Narvik

_̂

_̂

Gratangseidet
tonalite

Snaufjellet
granite

_̂

Kartverket, Geovekst, kommuner - Geodata AS

Garnet-mica schist,
Narvik nappe complex

Lillevik ophiolite fragment,
Bjerkvik Nappe

0 30 60 90 120
m

Narvik
Lillevik

O f o t f j o r d e n

Evenes

Bjerkvik

0 5 10 15
km

Uppermost Allochthon

Upper Allochthon

Niingen Nappe Complex

Bogen Group

Evenes Group

Narvik Nappe Complex

(Par)Autochthonous basement

Abisko Nappe Complex

Råna intrusion (437 Ma)

Middle Allochthon
E E E E

E E E E

E E E E

_̂ Geochronology sample

Dominantly dolerite dykes

Dominantly layered gabbro

Feldspathic grit with thin greenschist bands

Phyllite, greenschist, greenstone

I I I I
I I I I
I I I
I I I

D D D

D D D

~ ~ ~
~ ~ ~
~ ~ ~
~ ~
~ ~

A

B

Ofoten Nappe Complex

Gratangseidet Igneous Complex

Figure 2. (A) Simplified regional map of the Ofotfjorden area. Modified after Gustavson (1974), Zwaan et al. (1998) and 
Melezhik et al. (2003). The locations of two previously published ages from the region have been indicated as black stars, 
both from Augland et al. (2014). The isotopically juvenile Gratangseidet tonalite (474 Ma) is from the same unit as our 
sample from the Lillevik ophiolite fragment. The isotopically evolved A-type Snaufjellet granite sill (Augland et al., 2014) 
is located in the Bogen Group. (B) Geological map of the Lillevik ophiolite fragment, modified after Boyd (Boyd, 1983), 
with the red star marking the location of sample 133119.
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(Steltenpohl et al., 1990; Andresen & Steltenpohl, 1994) or a purely tectonic contact (Melezhik et al.,  
2002a; Melezhik et al., 2002b). The Evenes and structurally overlying Bogen Group consist predominantly  
of a variety of schists and marbles. Isotope chemostratigraphy (Sr, C) on the marbles has been  
interpreted in terms of a complex nappe stack comprising both Neoproterozoic and Ordovician– 
Silurian marble units (Melezhik et al., 2002a; Melezhik et al., 2002b). The same method has been used to 
determine similar Neoproterozoic depositional ages for other marble occurrences elsewhere in the  
Uppermost Allochthon (Slagstad et al., 2006; Melezhik et al., 2015; Melezhik et al., 2018), whereas  
younger, Cambrian–Ordovician depositional ages have been determined for marbles in the Upper  
Allochthon, suggesting that the Ofoten Nappe Complex may comprise components of both allochthons.  
Alternatively, as discussed by several authors, the distinction between the Upper and Uppermost 
allochthons may be somewhat diffuse (Meyer et al., 2003; Corfu et al., 2014; Slagstad et al., 2020).  
An age of 474 Ma from an isotopically evolved (εHf474 = -6.22) A-type granite sill in the Bogen Group has 
been presented by Augland et al. (2014).

 Geology of the Lillevik ophiolite fragment
The lithologies and field relationships of the Lillevik ophiolite fragment were described in detail by 
Boyd (1983). The fragment is only about 50 m wide (Fig. 2B) and appears to form a tectonic lens  
within a sequence of sulphide- and graphite-bearing phyllites and some mafic rocks that were 
tight to isoclinally folded followed by more open folding. The dominant rock type is layered  
hornblende gabbro (Fig. 3D), which consists dominantly of hornblende and saussuritised  
plagioclase and is characterised by either faint, centimetre- to decimetre-scale, medium-grained modal 
layering, or decimetre-scale layers of harrisitic hornblende with grains up to 30 cm long, alternating with  
plagioclase-dominated layers. The layered gabbros are cut by several generations of fine-grained  
dolerite dykes, gabbro dykes and plagioclase-phyric felsic veins (Fig. 3). These features were interpreted 
by Boyd (1983) to reflect the transition zone between the cumulate gabbros and sheeted dyke complex,  
commonly observed in ophiolite complexes. In dtail, two generations of dolerite dyke cut the layered 
gabbro, with younger mafic and gabbro dykes cutting all felsic veins in their immediate vicinity. The  
compositionally layered gabbros are localy deformed, shown by alignment of fine-grained mafic  
minerals. The tectonic foliation is clearly different from the compositional layering, which is largely made  
up of variable proportions of mafic and felsic, unoriented minerals. At least two generations of felsic 
veins and one or more generations of mafic dykes postdate the deformation of the layered gabbros  
(Fig. 3A–D). We note that due to the nature of the outcrop, we were unable to sample demonstrably 
cross-cutting felsic veins and had to settle for a vein with indeterminate relationships to its host rock, 
but with a similar plagioclase-phyric texture and appearance to the oldest generation of cross-cutting 
veins. In the following discussion we will refer to five lithologies: (1) ‘layered gabbros’, representing the 
oldest rocks in the Lillevik ophiolite fragment; (2) ‘mafic’ dykes, representing mafic magmatism that 
is either coeval with or younger than that forming the layered gabbros; (3) ‘felsic veins’, including the 
sample dated by us, that clearly cut the layered gabbros; (4) ‘gabbroic dykes’ that post-date the felsic 
veins; (5) ‘cross-cutting dolerite dykes’ that post-date deformation of the ophiolite fragment.
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Figure 3. Field photos from the Lillevik ophiolite fragment. (A, B, C) Irregular, deformed felsic vein cutting  
compositional layering in gabbro and superimposed tectonic foliation. (D) Dolerite dyke cutting compositional layering in 
gabbro. The dolerite dyke contains an injected felsic vein, followed by strong deformation and boudinage of the vein. (E) Dated  
felsic vein. Cross-cutting relationships are difficult to identify for this particular vein due to a dense cover of algae. Inset: 
Close-up of the dated felsic vein showing that it is plagioclase phyric. (F) Two generations of felsic veins in the Lillevik 
ophiolite fragment; an older generation of light-coloured veins cut by younger, grey veins and dykes. The dated sample 
represents the older generation of dykes. The younger generation could not be sampled. (G, H) Coarse-grained gabbro 
dyke cutting tectonic fabric in dolerite.
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 Methods

 U–Pb zircon geochronology

Zircon grains were separated from crushed and sieved (<250 μm) rock samples using standard  
water-table, heavy-liquid and magnetic (Frantz) techniques. U–Pb zircon geochronological analyses 
were carried out at the Geological Survey of Norway (NGU) on an ELEMENT XR single collector, high- 
resolution ICP–MS, coupled to a UP193–FX 193 nm, short-pulse, excimer laser ablation (LA) system 
from New Wave Research. The analyses were conducted in two rounds. First, the zircon grains were  
placed on double-sided tape and ablated twice, the first time with a 30 μm-wide line, at a laser fluence 
of 1 J/cm2 and frequency of 10 Hz, to remove the outermost surface of the grain, followed by ablation 
along the earlier track using a 15 μm-wide line, laser fluence of 3 J/m2 and frequency of 10 Hz. The 
purpose of this procedure was to analyse potential thin rims on the grains that would be difficult to 
analyse in a sectioned grain. Some grains were also cast in epoxy and polished to reveal internal zoning 
and imaged by back-scatter electron (BSE) and cathodoluminescence (CL) prior to LA–ICP–MS analysis. 
The laser was set to ablate single, up to 60 μm-long lines, using a spot size of 15 μm, a repetition rate 
of 10 Hz and an energy corresponding to a fluence of 3 J/cm2. In both rounds, each analysis included 
30 s of background measurement followed by 30 s of ablation. Masses 202, 204, 206-208, 232 and 238 
were measured. The reference material GJ–1 (Jackson et al., 2004) was used for fractionation and drift 
corrections for isotopic ratios, whereas 91500 (Wiedenbeck et al., 1995), Temora (Black et al., 2003) 
and an in-house standard (OS–99–14; 1797 ± 3 Ma; Skår, 2002) were used to evaluate accuracy and  
repeatability. The OS–99–14 reference zircon demonstrates variable degrees of discordance (Skår, 
2002) and is thus used here to evaluate the accuracy and repeatability only of 207Pb/206Pb dates. The  
reproducibility (mean ± 2 SD) of the 206Pb/238U ages (excluding the discordant OS–99–14) of  
quality-control reference zircons is as follows: 91500: 1072 ± 51 Ma (n = 28); Temora: 417 
± 16 Ma (n = 28). The reproducibility (mean ± 2 SD) of the 207Pb/206Pb ages for OS–99–14 is 
1799 ± 30 Ma. To account for excess variance in the 206Pb/238U dates, an additional 1.5 % was  
quadratically added to the internal uncertainty of 206Pb/238U dates from individual analyses, as this  
was the magnitude required to yield an MSWD = 1 for a weighted-mean 206Pb/238U age for Temora. 
No additional uncertainty propagation was required for the 207Pb/206Pb dates (i.e., MSWD = 0.57 for 
the weighted-mean 207Pb/206Pb age for OS–99–14). The data were not corrected for common lead but  
monitoring of the signal for 204 allowed exclusion of data deemed to be influenced by common Pb from 
further calculations. The data were reduced using GLITTER® (Van Achterbergh et al., 2001). All U–Pb 
zircon geochronological data were plotted and ages calculated using IsoplotR (Vermeesch, 2018).

 Lu–Hf isotopes in zircon

The Hf isotope compositions of the dated zircons were determined by LA–MC–ICP–MS at the  
Geological Survey of Norway (NGU) using a Photon Machines Analyte Excite 193 nm excimer laser 
connected to a Nu Plasma 3 MC–ICP–MS. Forty µm-diameter spots were placed overlapping the tracks 
ablated for U–Pb dating, or in the same textural domains identified in CL images. Ablations were carried 
out in a two-volume laser cell in a He atmosphere using a laser fluence of 4 J/cm2 and a repetition rate 
of 8 or 9 Hz. The sample aerosol was transported in He to the plasma torch, and Ar was added to the He 
carrier gas in a glass mixing bulb ~1 m ‘upstream’ of the torch. Baseline, ablation, and washout times 
were 35, 45 and 10 s, respectively. The following isotopes were measured on Faraday cups with 1011 Ω 
resistors in static mode: 171Yb, 172Yb, 173Yb, 174(Yb, Hf), 175Lu, 176(Hf, Yb, Lu), 177Hf, 178Hf, 179Hf and 180Hf. The 
following reference zircons were measured throughout the analytical session: Plešovice (176Hf/177Hf 
= 0.282482, Sláma et al., 2008), MUNZirc 1, 3, and 4 (176Hf/177Hf = 0.282140, Fisher et al., 2011), 
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Mud Tank (176Hf/177Hf = 0.282140, Woodhead & Hergt, 2005) and 91500 (176Hf/177Hf = 0.282308,  
Blichert-Toft, 2008). Plešovice and MUNZirc 4 were analysed at the beginning and end of each sequence, 
as well as between every 8–10 measurements of samples and other reference zircons.

Data reduction was done using a custom data reduction scheme in Iolite v. 3.71. Hafnium mass bias (βHf) 
was calculated relative to 179Hf/177Hf = 0.7325 (Patchett & Tatsumoto, 1980, 1981). Ytterbium mass bias 
(βYb) was calculated relative to 173Yb/171Yb = 1.130172 (Segal et al., 2003). The exponential mass-bias law 
was used throughout. Interferences from 176Yb and 176Lu on 176Hf were subtracted from the total 176(Hf, 
Yb, Lu) signal using 173Yb and 175Lu signals, and canonical 176Yb/173Yb and 176Lu/175Lu ratios. For analyses 
with relatively high Yb/Hf (176Yb/177Hf > 0.055), the internal βYb was typically used for the 176Yb and 176Lu 
interference corrections. For analyses with lower Yb/Hf, the internal βHf was scaled by a factor (‘Xbeta’ = 
βYb/βHf)––determined from bracketing measurements of MUNZirc4––and applied to the 176Yb and 176Lu 
interference corrections. This approach was adopted because of the poor precision on the internally 
determined βYb in low-Yb zircons. Interference- and mass-bias-corrected 176Hf/177Hf ratios were then 
normalised to 176Hf/177Hf = 0.282482 for the Plešovice reference zircon.

The reproducibility (mean ± 2 SD; n) of the 176Hf/177Hf for each secondary reference zircon calculated 
with internally determined βYb was as follows: MUNZirc 1, 3, and 4 (0.282139 ± 45; 45), Mud Tank 
(0.282495 ± 31; 15) and 91500 (0.282304 ± 34; 11). For 176Hf/177Hf calculated with the scaled βHf, the 
reproducibility was as follows: MUNZirc 1, 3, and 4 (0.282135 ± 34; 45), Mud Tank (0.282513 ± 20; 15) 
and 91500 (0.282310 ± 35; 11).

Initial 176Hf/177Hf (176Hf/177Hfi) was calculated using the corrected 176Hf/177Hf and 176Lu/177Hf,  λ176Lu=1.867 
x 10-11 yr-1 (Söderlund et al., 2004), and the U–Pb date of the corresponding zircon domain. Initial εHf was 
calculated relative to CHUR (Bouvier et al., 2008) at the mean age determined for the dyke. 

 Results
U–Pb zircon geochronological data are presented in Electronic Supplement 1 and Lu–Hf data from 
the same grains in Electronic Supplement 2. Whole-rock geochemical data are presented in Electronic  
Supplement 3.

 U–Pb zircon geochronology

Zircon was separated from a fine-grained, plagioclase-phyric felsic vein (Fig. 3E, F). The analysed  
zircon grains are between 100 and 200 μm, brownish-grey and equidimensional, with poorly developed 
crystal faces, to short prismatic (Fig. 4A). The interior textures of the grains range from well-developed  
oscillatory zoned, through somewhat irregular or sector zoned, to chaotic (Fig. 4B). Many of the grains 
have CL-bright (U poor) rims that are typically only a few microns thick, or similar CL-bright material 
invading the grains along thin fractures that truncate the internal zoning in the grains. 

Ten analyses were performed on the tape-mounted grains and 12 analyses on the epoxy-mounted 
grains, the latter targeting oscillatory-zoned grains. Apart from one strongly discordant analysis, the 
tape-mounted zircons yield ages that trend along a discordia with an upper intercept near 500 Ma 
(Fig. 4C); however, most of the analyses are within 2σ of the Concordia making it difficult to obtain a  
reliable age. In contrast, the analyses performed on the oscillatory-zoned, epoxy-mounted grains yield  
concordant data that cluster around 500 Ma and yield a weighted average 238U/206Pb age of 494 ± 5 
Ma (2σ, MSWD = 1.3). A regression through all 21 analyses (one strongly discordant analysis excluded) 
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mounted (black) zircons. The final, weighted average 238U/206Pb age (inset) is based on all the analyses of epoxy- 
mounted zircons, 12 in all.
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yields a discordia with upper and lower intercepts of 487 ± 11 and -21 ± 200 Ma, respectively (MSWD 
= 1.5), i.e., within error of the weighted average age of the oscillatory-zoned zircons. We therefore take 
494 ± 5 Ma to be the best estimate of the crystallisation age of the tonalitic dyke cutting the Lillevik  
ophiolite fragment. Most of the analyses from the the tape-mounted zircons yield younger ages than the  
oscillatory-zoned interiors and with lower U concentrations (average 260 vs. 614 ppm, respectively). 
Most likely, the analyses of the tape-mounted zircons represent mixes of U-poor rims and oscillatory- 
zoned interiors of the grains. Considering evidence for both Early Ordovician and Silurian meta- 
morphism from other parts of the Scandinavian Caledonides (Slagstad et al., 2020), it appears likely that 
the U-poor rims and transecting veins formed within a few tens of million years after crystallisation of 
the dyke, and result in a discordia nearly parallel to the Concordia.

 Lu–Hf isotopes in zircon

Eleven analyses of grains that yielded near-concordant, c. 494 Ma ages returned εHf494 values between 
6.2 and 9.9, with an average of 8.1, intermediate between depleted mantle (DM) and chondrite uniform 
reservoir (CHUR) at that time (Fig. 5).
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Figure 5. Zircon Lu–Hf isotopic composition of sample 133119. 
Pink circles show individual analyses, red circle shows average. See  
Fig. 3B for location of individual analyses (numbers in  
parentheses); data are presented in Electronic Supplement 3. The 
Hf isotopic composition of the 474 Ma Gratangseidet tonalite  
(Augland et al., 2014), a 486 Ma plagiogranite and a 467 Ma 
post-obduction tonalite dyke from the Bymarka ophiolite, in the  
central Scandinavian Caledonides ((see Fig. 1A for location, Slagstad 
et al., 2013), are shown for comparison.

 Whole-rock geochemistry

Only one new geochemical analysis – of the dated felsic vein – is presented here, rendering detailed 
interpretations of petrogenesis and tectonic environment impossible. For reference and completeness, 
the various plots shown in Fig. 6 also include data presented by Boyd (1983). The dated felsic vein plots 
in the quartz-monzonite field in the SiO2 vs. Na2O+K2O diagram of Middlemost (1994) and classify as 
calc-alkaline in the AFM diagram of Irvine & Baragar (1971), similar to the ‘felsic veins’ of Boyd (1983). 
The alkali-rich compositions of these rocks are mainly caused by very high Na2O (between 9.1 and 10.6 
wt.%), which may reflect secondary metamorphic processes rather than primary igneous compositions, 
a process also alluded to by Boyd (1983). The dated felsic vein displays a chondrite-normalised REE  
pattern that is strongly depleted in heavy REE (HREE), with a (La/Yb)N ratio of 60, somewhat higher than 
Boyd’s felsic veins ((La/Yb)N = 28 and 31). In the Primitive mantle-normalised diagram, the dated felsic 
vein displays a negative Nb–Ta ratio, along with low K. The latter may reflect alteration rather than a 
primary igneous composition.

Geochemical data from the mafic rocks – the dominant rock type in the Lillevik ophiolite  
fragment – are only available from the work of Boyd (1983) and briefly reiterated here. The  
compositionally layered gabbros appear to be the oldest rocks in the Lillevik ophiolite fragment and  
classify as tholeiitic to calc-alkaline basalts. The three samples plotting in the calc-alkaline field in the 
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Figure 6. Whole-rock geochemistry of sample 133119 from the Lillevik ophiolite fragment along with data compiled 
from Boyd (1983). For comparison, data from greenstones and associated 486 Ma plagiogranite and 467 Ma post- 
obduction tonalite dyke from the Bymarka ophiolite, in the central Scandinavian Caledonides (see Fig. 1A for location), 
are shown. Data from Slagstad et al. (2013). (A) Total alkali vs. silica plot (Le Bas et al., 1986), (B) AFM diagram (Irvine 
& Baragar, 1971), (C, D) chondrite-normalised and (E, F) primitive mantle-normalised spider diagrams, with normalising 
values from Sun & McDonough (1989).

AFM diagram are characterised by enrichment in Na2O relative to the samples plotting in the tholeiitic  
field (2.6–3.8 vs 1.5–2.6 wt.%), so may have been affected by secondary enrichment in Na. The layered  
gabbros display flat REE patterns with a small depletion in light REE (LREE, (La/Yb)N = 0.4–1.2)), consistent  
with derivation from depleted mantle and similar to ophiolitic rocks elsewhere in the Scandinavian  
Caledonides (e.g., Slagstad et al., 2013). The layered gabbros are cut by at least two generations of 
basaltic tholeiitic dolerite dykes that display a range of trace element compositions, from LREE  
depleted, similar to the layered gabbros, to LREE enriched, with (La/Yb)N between 0.3 and 5.8.  
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This range of compositions may indicate changing tectonic environments, as observed in the 497 Ma 
Leka ophiolite (Furnes et al., 1988) and 486 Ma Bymarka ophiolite (Slagstad et al., 2013). At present 
we are unable to link chemical composition to the relative age of the dykes; however, two dolerite 
dykes that post-date early deformation of the ophiolite fragment (Boyd, 1983), shown as black stars in  
Fig. 6, plot among the most LREE-enriched mafic dykes, supporting an interpretation of changing  
tectonic environment with time. The gabbro dykes have tholeiitic basaltic compositions but are strongly  
enriched in LREE and other incompatible minor and trace elements such as P2O5 (0.93–2.07 wt.%) and 
Zr (146–311 ppm), even more so than the most enriched dolerite dykes.

 Discussion
The age of 494 ± 5 Ma for a felsic vein in the Lillevik ophiolite fragment is one of the oldest ages  
obtained from ophiolites in the Scandinavian Caledonides, similar to an age of 497 Ma for a  
plagiogranite at Leka and 495 Ma for a trondhjemite sheet on Ytterøya, near Trondheim (Roberts &  
Tucker, 1998). As discussed by Slagstad (2003) and Slagstad et al. (2013), isotopic and geochemical data  
show that magmatic rocks from ophiolites may reflect very different stages in the host ophiolite’s history,  
from ocean-floor spreading through establishment of a convergent active-margin setting that eventually  
results in obduction of the ophiolite, to establishment of an active continental margin following  
obduction. The best example of such an evolution comes from felsic, ophiolite-hosted rocks in the  
Bymarka and Løkken ophiolites in the central Norwegian Caledonides, near Trondheim (Fig. 1). Here, 
Slagstad (2003) and Slagstad et al. (2013) argued that 487–486 Ma felsic rocks (plagiogranites) with 
LREE-depleted, flat REE patterns and near-depleted-mantle Sm–Nd and Lu–Hf isotopic compositions 
(εNd486 = 6.2–6.3, εHf486 = 8.2–12.4) represent ophiolite formation at an oceanic spreading centre, most 
likely in a back-arc setting. Slightly younger, granodioritic intrusive rocks dated at 481 Ma are enriched 
in LREE with flat M/HREE patterns and evolved isotopic compositions (εNd481 = -2.6 – -4.0, εHf486 = 3.8– 
6-4), and were interpreted to reflect a convergent arc setting associated with subduction of  
continentally derived sediments. Finally, tonalitic veins and dykes dated at 467 Ma have strongly  
fractionated (HREE depleted) REE patterns, consistent with partial melting of mafic rocks in the  
presence of garnet. Slightly more evolved isotopic compositions (εNd467 = 3.0–3.9, εHf467 = 4.4–10.2) 
than the plagiogranites and spatially and temporally associated calc-alkaline magmatic activity  
interpreted to represent an active continental-margin setting (Grenne & Roberts, 1998), suggest 
that these younger felsic dykes formed by partial melting of a mafic thrust stack following ophiolite  
obduction and oceanic-arc accretion onto continental crust. Thus, the Bymarka and Løkken ophiolites 
represent c. 20 Myr of magmatic activity spanning a range of tectonic settings reflected in significant 
variation in isotopic and chemical composition.

Only sparse geochemical data are available from the Lillevik ophiolite fragment, limited to 28  
analyses presented by Boyd (1983) and one new analysis of a felsic vein presented here. The latter is 
the only sample where a full suite of trace elements and isotopic data are available. Unfortunately, the  
sparsity of data hampers a detailed discussion of the tectonomagmatic evolution of the Lillevik ophiolite  
fragment and the Gratangseidet Igneous Complex. Field relationships suggest that the layered gabbros 
are the oldest rocks in the Lillevik ophiolite fragment, possibly along with some of the multi-generation 
dolerite dykes. The layered gabbros and some of the dolerite dykes display LREE-depleted compositions  
typical of mid-ocean ridge basalts found in ophiolites elsewhere in the Scandinavian Caledonides (Fig. 6).  
The younger mafic rocks, including gabbro dykes and post-deformation dolerite dykes, are strongly 
LREE enriched. Boyd (1983) interpreted this compositional change to reflect a change to ocean island- 
basaltic magmatism. In other ophiolites in the Scandinavian Caledonides, with larger geochemical  
datasets available, a similar evolution from LREE-depleted to -enriched is observed (Slagstad et al., 
2013). Here, this change has been interpreted to reflect a change from ocean-floor spreading to oceanic 



12 of 19 13 of 19

T. Slagstad et. al                                  The >494 Ma Lillevik ophiolite fragment near Narvik

subduction and establishment of island arc systems or, alternatively, new continental active margins 
following ophiolite obduction. We note, however, that the HREE enrichments associated with the latter 
process are significantly smaller than that observed in the Lillevik ophiolite fragment.

The felsic veins, with their strongly fractionated REE patterns, are very different from typical  
plagiogranites characterised by flat, slightly LREE-depleted patterns (Fig. 6D). Thus, the geochemical 
data suggest that the 494 Ma age obtained from one of them does not date ocean-floor spreading 
and ophiolite formation. Felsic veins and dykes of similar composition have been described from the  
Bymarka ophiolite (Fig. 6), where they were interpreted to have formed by partial melting of  
mafic rocks in the presence of garnet, following ophiolite obduction and stacking onto a continental  
margin (Slagstad et al., 2013). The Lu–Hf isotopic data from Lillevik are consistent with this inter- 
pretation, yielding slightly less juvenile, but overlapping, composition than observed in plagio- 
granites (Fig. 5). The observation that felsic veins, compositionally identical to the dated vein, cut 
an older tectonic fabric in the host rocks supports such an interpretation. We, therefore, tentatively  
interpret the 494 Ma felsic vein in the Lillevik ophiolite fragment to provide a minimum age of ophiolite  
formation and obduction. We note that Lu–Hf isotopes alone cannot distinguish ophiolite-related felsic 
rocks from post-obduction felsic rocks, as both are likely to be relatively juvenile. In contrast, the low- 
pressure melting conditions during ophiolite formation are likely to produce melts with different trace  
element compositions compared to those formed during higher-pressure melting following obduction  
(Slagstad, 2003; Slagstad et al., 2013). Thus, chemical data are critical for determining the relationship  
between and tectonic significance of felsic rocks and their associated mafic host rocks. For these  
reasons it is also difficult to assign a tectonic significance to dated felsic rocks from the Gratangseidet 
Igneous Complex and the Lyngen ophiolite, which yield ages of 474 and 481 to 469 Ma, respectively 
(Oliver & Krogh, 1995; Augland et al., 2014). Rather, the very evolved isotopic compositions of the 
481 Ma Holten tonalite in the Lyngen ophiolite (εHf481 from -2.3 to -16.8, Augland et al., 2014) show  
involvement of continental crust, apparently incompatible with ocean-floor spreading. Similar,  
large isotopic variations have been documented from felsic rocks in ophiolites in the Caledonides in  
Trøndelag, interpreted to reflect post-ophiolite-obduction magmatism (Slagstad et al., 2013). Although 
currently undated, a younger generation of felsic vein in the Lillevik ophiolite fragment (Fig. 3F) may 
correspond to the 474 Ma felsic veins dated by Augland et al. (2014), only about a kilometre away, in 
the Gratangseidet Igneous Complex, thus attesting to the complexity of this unit.

Cross-cutting relationships suggest that the gabbro dykes are younger than the felsic veins and that 
some of the dolerite dykes post-date deformation of the layered gabbros (Boyd, 1983). Although more 
geochronological, isotopic and geochemical data are needed, the currently available data and field  
relationships are consistent with the Lillevik ophiolite fragment preserving a yet poorly defined, complex 
magmatic history following ophiolite obduction, but prior to Scandian continent-continent collision and 
penetrative deformation at c. 430 Ma. 

The available geochemical data and crystallisation ages of 494 Ma for a felsic vein in the Lillevik  
ophiolite fragment, 474 Ma for an isotopically juvenile (εHf474 = 9.57) tonalite in the  
Gratangseidet Igneous Complex and 474 Ma for an isotopically evolved (εHf474 = -6.22) A-type granite sill  
(Snaufjellet granite) in the Bogen Group (Augland et al., 2014), attest to a long-lived, tectonically varied  
magmatic evolution. Late Cambrian to Early Ordovician ophiolites have compositions indicative of  
formation above a subduction zone (e.g., oceanic back-arc, rifted island arc), consistent with new 
data from the Rödingsfjäll Nappe Complex (Uppermost Allochthon) in Central Norway documenting 
Late Cambrian active-margin processes in rocks currently residing at tectonostratigraphically high  
levels (Slagstad et al., 2020). Ophiolite formation was, in some cases, followed by at least 20 Myr of  
chemically and isotopically highly variable magmatic activity, probably reflecting the establishment of 
an active margin following obduction. The available data from the Lillevik ophiolite fragment appear 
consistent with a similar evolution here.
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The new data call into question the interpretation that the 481 to 469 Ma tonalites from from the  
Lyngen ophiolite, Gratangseidet Igneous Complex and Ruggevik (Oliver & Krogh, 1995; Northrup, 1997; 
Augland et al., 2014) represent the age of ophiolite formation (i.e., sea-floor spreading). The tectonic 
significance of these rocks needs to be tested geochemically. 

 Conclusions
A felsic vein in the Lillevik ophiolite fragment, dated at 494 ± 5 Ma, provides a minimum age of ophiolite 
formation and most likely of obduction of the ophiolite. The available chemical data from the Lillevik 
ophiolite fragment and U–Pb zircon geochronological and Lu–Hf isotopic data from the Gratangseidet  
Igneous Complex and other, nearby units suggest a complex magmatic history, possibly with several 
stages of ophiolite formation, lasting at least 20 Myr, similar to ophiolite complexes farther south in 
the Scandinavian Caledonides. The new age also shows that Late Cambrian ophiolites, which are well  
documented in the southwestern and central Norwegian Caledonides, extend to the northern-
most parts of the orogen, and that processes related to ophiolite formation and obduction were  
diachronous, but probably restricted to a c. 30–40 Myr period of time in the Late Cambrian through Early  
Ordovician. Ages of felsic units within ophiolites are generally taken to represent ocean-floor spreading and  
ophiolite formation, but such interpretations need to be corroborated by chemical data; many  
ophiolites preserve evidence of later felsic and mafic magmatic activity that may be completely  
unrelated to ophiolite formation.
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