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Abstract

Author: Lewis William Lloyd Sampson

Title: Estimating the background error for variational data assimilation of an

ocean model using a binless analysis of innovations.

In order to create the cost function for variational data assimilation one needs

to compute the background error covariance matrix, and this in turn requires

information on the true state of the physical variables being modelled. This in-

troduces a large difficulty which is often overcome by estimating the background

error and then using this behaviour of the error to model the entire covariance

during assimilation. A common approach for the estimation is the Hollingsworth

and Lönnberg method, whereby the model forecasts subtracted from the obser-

vational data, known as the innovations, are manipulated using assumptions of

correlation. This method requires the spatial binning of the innovation data and

a curve fitting scheme that is applied to these bins.

During my research I have produced a new method based on the general idea of

“analysis of innovations” similar to the Hollingsworth and Lönnberg. The new

method is referred to as a binless analysis of innovations this is because I have

removed the need for spatial binning. Instead the innovations are used at their

exact latitude and longitude, with the error covariance model and form functions.

The method then minimizes a norm of differences to find a best approximation

to the background error covariance. This is done using an interpretation of the

minimization for the norm which involves inner products and produces a solvable



series of equations.

The accuracy of our methods has been compared against an implementation of

the Hollingsworth and Lönnberg method, and then assessed in multiple ways;

first using qualitative analysis of the background standard deviation and length-

scale ratio, secondly by the assessment of assimilated forecasts, and finally by

reducing the observations used in the methods to represent the affect of applica-

tion to sparsely observed systems. In all cases the binless analysis of innovations

is similar or better then the results from currently used methods.

The positives of our method can be summarised by being able to produce an

error estimate with competitive accuracy, without the use of spatial binning and

requiring less free parameters leading to a small increase to the range of appli-

cations. The additional range of applications comes from the binless methods

innate flexibility towards other covariance modelling scheme, as there is no spatial

restrictions we are not required to use the isotropic assumption. We have been

able to use the binless analysis of innovations method for a simple anisotropic

application but for any operational case this would require more research and a

larger set of observations. We have included our anisotropic research to demon-

strate the potential use for multi-dimensional error covariance models.
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Chapter 1

Introduction

The main aim of ocean modelling is to be able to use our knowledge and under-

standing of the physical processes and climatology associated with oceanography

to produce an optimum prediction of the true ocean state. This requires opti-

mum inputs, well defined computations and an efficient analysis; “An analysis is

the production of an accurate image of the true state of the dynamic state at a

given time, represented in a model as a collection of data [Bouttier and Courtier,

1999].” Ocean models are reliant on the most advanced methodology to give a

reliable forecast, and one of the main advancements for an effective operational

system, is the use of data assimilation (DA).

DA is an approach taken within forecasts to create improved outputs using obser-

vations and a-priori information. Currently assimilation is used in meteorology

and oceanography, but there are theoretical applications for many areas of sci-

ence with statistical predictions. DA is used to calculate initial conditions for

dynamic models, which provides a more accurate representation of the real life

system by calculating uncertainty with available data [Bin et al., 2000].

The basic concept of DA is the combination of observation and background data

with the respective errors of each, these are used as weighting factors for a cost

function, see figure 1.1. When this cost function is minimized we can produce
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Figure 1.1: Schematic of how DA adds value to observational and model information.
The data shown are various representations of the ozone distribution at 10 hPa (∼30
km) on 23 September 2002, each of which has errors [Lahoz and Schneider, 2014].

an improved restart file to begin a new model run and produce a more accurate

forecast [Holm, 2008]. For a more complete view, DA has numerous variations to

the methodology which fit different situations or different computational abilities.

These variations can change core components such as the handling of observa-

tional and background data, or more subtle changes to scaling parameters within

smaller equations, as a tweak to the assimilation suite definitions.

Forecast data from the model gives us background information with spatial and

temporal coverage over the entire domain on its own, but is generally filled with

uncertainty and larger than ideal deviations from truth. As for observational

data, its not possible to get an observation for every grid point when you are

looking at a potentially global domain, as will be the case for meteorological and

oceanographic models [Lahoz and Schneider, 2014]. If one only used observa-

tional data, the result will be accurate information at sparse data points to then

be extrapolated and cover the model area. In this case our accuracy is purely

dependent on the quality of interpolation [Bouttier and Courtier, 1999], this is

limited by definition and will always decrease general accuracy.
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Many different methods of DA address each component of the analysis in a unique

way. Two large variations for DA include sequential or variational approaches,

the distinction is determined by the form of the output, which is connected to

how the observations are included into the analysis [Bouttier and Courtier, 1999].

Sequential assimilation uses each observation at the time it occurred, as well as

the previous observations in the assimilation window. This produces a model

output that updates regularly with individual analysis increments and this series

of equations is discontinuous in time. On the other hand variational data as-

similation (Var) considers all observations that occur during the prescribed time

window. After evaluating all of the observations, calculating observational and

background error, and then minimizing the resultant cost function, the initial

conditions for the analysed model are calculated [Anderson et al., 1996].

DA is used with ocean modelling to ensure that the forecast created by the

model is as accurate as possible. Observations for these models are taken from

the ocean via in-situ instruments for specific areas or globally for larger scale

models using remote sensing. In-situ stands for “on site” and refers to any ob-

servations collected using an instrument in the environment. Remote sensing

describes observations collected “remotely” from something like a satellite or an

aircraft [Schowengerdt, 2006].

A popular ocean model NEMO (Nucleus of European Modelling of the Ocean),

combines its model forecasts with a NEMO variational data assimilation (NEMOVar)

system. Which produces forecasts for temperature, salinity, sea surface height

(SSH), and wave velocity (in two latitude-longitude components). This is a

package that includes many different variational DA methods (3D-Var, 4D-Var

and 3D-Var FGAT) [Mogensen et al., 2012]. This then requires observations
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(as a compilation of in-situ and remote sensing observations) as well as climato-

logical information and boundary data. Using previous forecasts from NEMO,

NEMOVar and the observations, an improved model output with a more accu-

rate forecast can be produced. NEMO is the model of choice for the Plymouth

Ocean Forecasting Centre (POFC) at the University of Plymouth (UoP) and is

therefore the model that has been used during my research, more specifically the

Arabian Sea 1/20 degree (AS20) model.

The targets for our research has been an evolving process, the original target

was to review current DA and find a way to improve the state-of-the-art meth-

ods. As is typical for some PhD researchers, I would need to study the current

methodology, find areas with important shortcomings, and then find solutions to

these issues to improve the general understanding. What I did know about our

research was that I wanted to be able to create improvements for a Var approach

with a regional model. The main problem that my supervisors and I discovered

inside this was the use of the isotropic assumption in the background error co-

variance matrix (ECM) for all operational applications of DA.

The isotropic assumption means that the background error covariance values are

reliant on the 1D relative distance and assumes that there is no deterministic

directional affect in the background error. This in turn led us to wonder, (1)

What is the effect of applying the isotropic assumption on the accuracy of the

assimilation analysis for a regional model with active flow?

After beginning my research to answer the previous question, I found that the

addition of an anisotropic background error covariance model would require large

scale changes and multiple specific research to implement operationally. This is
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a topic that is of interest to many researchers, [Deckmyn and Berre, 2005],[Ku-

cukkaraca and Fisher, 2006], [Cao et al., 2010], [Weaver and Mirouze, 2012], and

there would be no easy way to give a definitive answer. In order to answer the

question (1) I was first required to ask (and hopefully answer), (2) What de-

velopments would be needed to implement an anisotropic background ECM into

NEMOVar? and (3) Would the cost of developing a fully anisotropic background

ECM be worth the improvement in the final analysis?

One of the first steps that would require changes, is the error estimation process

of either Hollingsworth and Lönnberg (H-L) [Hollingsworth and Lonnberg, 1986],

National Meteorological Centre (NMC) [Parrish and Derber, 1992] or Analysis-

Ensemble method (A-E) [Fisher, 2003]. Error covariance modelling takes place

during the assimilation cycle and is initiated with some values for background

error; the standard deviation (SDV) and length-scale ratio (LSR). My research

into these methods has resulted in the production of a novel ”binless analysis of

innovations” (BAI) method, which is able to produce an anisotropic error esti-

mation process. Once this was created I then needed to be able to give an answer

to, (4) What are the benefits and potential applications from the error estimation

being replaced with an anisotropic option?.

I have hereby posed a series of questions (1-4), and have attempted to give solu-

tions and improve the knowledge of these queries. However some of the questions

posed here are too difficult and I have not been able to solve them. During this

thesis I have hopefully been able to prove that I have elevated the knowledge

and understanding to help provide solutions for some of the questions. With the

hope that some more complete answers can be provided by bringing in previous

research attempts with ours in future investigation.

6



In general, the aim for this research was to produce a novel method that can

lead to the production of an anisotropic background ECM. This overall target

required me to first research the current methodologies and then be able to re-

produce them. Error estimation methods exist to produce the background error

SDV and LSR, which is the ancillary component of the background ECM in op-

erational cases. I wanted to create an analysis of innovations method for error

estimation without using spatial bins, the BAI. With the principle assumptions

of the general analysis of innovations and changes to statistical analysis, which

uses a unique method of solving for the background error. Despite the aim being

to produce an improved anisotropic representation of background error, the BAI

method is also able to improve upon some of the other short-comings of the H-L

analysis of innovations method.

My research lead to some public scientific documentation, the first was the Shar-

ing Geosciences Online as part of the European Geosciences Union general as-

sembly of 2020. The original intentions were to present our research at the

conference, but due to the Covid-19 pandemic this was held entirely online with

a new format. The online session was called: An improved variational Data As-

similation method for ocean models with limited number of observations. Lewis

Sampson, Jose M. Gonzalez-Ondina, and Georgy Shapiro. The scientific con-

cept to investigate the background error covariance of variational data assimila-

tion methods was posed by Prof. Shapiro. Georgy also supervised the develop-

ment of ideas, gave crucial feedback on early stage theory, and reviewed/edited

the joint research. Dr. Ondina and I worked together on the experimental the-

ory, refining methodology and software development of the research. In addition

to what was mentioned above I was also the main contributor for the initializing
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and testing of the software, creating multiple versions of the error estimation

program for each methodology. Then taking the outputs of these methods into

the data assimilation suite, producing the assimilation forecasts and presenting

the findings. I was responsible for creating the initial conclusions with feedback

from Georgy and Jose. Since I was the key author I was assigned to be the sole

presenter and create the online conference presentation.

An additional research paper has been prepared for submission to the Quarterly

Journal of the Royal Meteorological Society, and will be under review during the

submission and examination of this thesis. The paper is also titled: Estimating

the background error for variational data assimilation using a binless analysis

of innovations approach. Mr Lewis Sampson, Dr Jose, M. Gonzalez-Ondina,

Professor Georgy Shapiro. The work within this paper is a re-factoring of the

presentation and the thesis, and the contributions for this follow the same as was

EGU presentation.

The thesis is broken down into three main chapters, bookended with this intro-

duction and a conclusion, which discusses the outcomes from our research and

the possible work to follow on from here. Chapter 2 is the review of any relevant

literature that has been studied during the research degree, with this record being

created over the past 4 years with consistent additions and subtractions. The

first section describes terminology and general knowledge for the observations

that can be used in DA, section [2.1]. Then I have described the DA methods

currently used with their positive and negative factors, section [2.2]. This is

followed by the operational methods for producing the background ECM using

error estimation approaches with the covariance modelling of NEMOVar, section

[2.3]. Then finally, I have discussed some practical operations that surround the
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use of the cost function, and some required optimization for operational use,

section [2.4].

The third chapter of this thesis is titled Methods and Materials, and will give

details for the practical uses of the DA theory and the ocean model. I have used

an operational DA suite that has been compiled with the AS20 ocean NEMO

model, which has a brief technical definition in section [3.2]. This is then followed

with the application of both the H-L and NMC methods of error estimation for

our assimilation suite, section [3.3], where I have also devoted some time to jus-

tifying our choices for the overall uses of the error estimation methods, section

[3.4]. With the final part of the methods section describing the mathemati-

cal derivation and statistical justification of the Binless Analysis of Innovations

(BAI) approach, section [3.5].

I have then shown the results in chapter 4, where I have used a variety of criteria

to assess the ability of the BAI approach in comparison with other operational

methods. The first step is a brief description of the specific set up for our ex-

periments and the dataset used, section [4.2]. Then I begin comparing the H-L

and BAI methods, first on the coarse grid, section [4.3], and then after inter-

polation onto the model grid, section [4.4]. The next comparison for the two

methods uses a reduced observational dataset to create the error estimates, this

assess their potential with smaller or less observed domains, section [4.5]. I have

also included our attempt with the sea level anomaly (SLA) observations for

both the H-L and BAI methods, section [4.6]. The final assessment is then on

the assimilated forecasts using the error estimates as input files for NEMOVar,

section [4.7]. At the end of this chapter I have shown the start of my research

into anisotropic error estimation, with the initial results and findings that I have
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made on this area of research, section [4.8].

This then leads into the conclusion, where the general findings of my research

are presented. With references back to the original research questions that have

been posed, and where my supervisors and I believe there has been answers or

increased understanding. I will also discuss where future research would be re-

quired to fully investigate the possibilities of operational anisotropic DA, section

[5].
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Chapter 2

Literature Review

This literature review is a documentation of the areas I have been studying dur-

ing my PhD research. The focus has primarily been on the DA methods currently

in use, from my readings I have found that the field is highly populated with a

lot of good mathematics and statistics and the methods are effective, but there is

no such thing as a perfect. With assimilation being a computationally expensive

addition to model forecasts and with many complex components, there are still

areas where improvements are available, either by resulting in better represen-

tation of the errors or the faster processing of the background error covariance

and minimization of the cost function. I’ve tried to represent both the positive

and negatives on the methods where applicable, and give a general overview of

my knowledge of the field.

The main topic for my literature review has been the methods of DA, in section

[2.2], and the second largest topic covered is the methods of estimating error co-

variances, section [2.3]. With other research into the use of observations, section

[2.1], and the possible optimization of operational DA, section [2.4].
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2.1 Satellite data and in-situ observations

For any ocean model that uses DA it requires observations, these can be derived

from multiple sources, the two main classifications being satellite and in-situ ob-

servations, as mentioned above. In-situ methods of measurements usually con-

tain ground-based stations, buoys or a conductivity-temperature-depth profiler

[Talley et al., 2011]. Satellite observations are taken from orbit or geostationary

satellites and often referred to as remote sensing due to there being no physical

contact with the observed [Schowengerdt, 2006].

“In terms of number of observations, satellite data dominate by far the volume

currently ingested by NWP DA systems” [Thépaut, 2003]. The main providers

of Earth observation satellite systems are the American, European and Japanese

space agencies [Thépaut, 2003]. Due to the size of these observation datasets

provided, and the ease of access, there is a preference for observations via remote

sensing. More information is often considered beneficial for statistic or stochas-

tic analysis like in DA, however there is a decrease in accuracy associated with

satellite observations. Volume of observations is a good characteristics however

using satellite observations is not without noticeable error and uncertainty.

Remote sensing is used in many different areas and has been much more popular

in meteorology and topography than it is in oceanography [Schowengerdt, 2006].

In oceanography satellites are usually only used to measure the SSH and Sea

Surface Temperature (SST), and would be difficult to accurately observe other

aspects. If one wanted to model these variables on a global scale then remote

sensing would be an ideal observation technique, despite remote sensing being

limited to a 2D field of surface values, this is normally enough for most assimi-
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lation schemes. Most assimilation schemes will create the surface layer and then

extrapolate for depth using diffusion equations. However you include a possibil-

ity to create large errors, as well as generally having larger instrumental error

compared to in-situ observations.

In-situ observations are usually considered to be more accurate but is a much

more expensive method for gathering data of the true state. This is due to the

limited amount of data each in-situ instrument can record in comparison with a

satellite, increasing the cost per observation and limiting the total observations

available in each dataset. The most common approach for acquiring the necessary

information is to use both satellite and in-situ observations in tandem.

2.2 Methods of data assimilation

As mentioned before DA is the cumulation of observations (from either in-situ

or satellite instruments) and background information, which will originate from

previous model forecasts or knowledge of the system dynamics [Bouttier and

Courtier, 1999]. There are many approaches to DA and the main character-

istic that separates them is the real time assimilation or retrospective analysis

more commonly referred to as variational and sequential methods of DA. Sequen-

tial assimilation only considers observations made prior to the time of analysis,

where as variational (or non-sequential) methods consider all observations over

the assimilation window and reduces an appropriate cost function to calculate

the analysis [Bouttier and Courtier, 1999].

The main 3 methods of DA used are Optimal Interpolation (OI) [Gandin, 1965],

Kalman filtering (KF) [Kalman et al., 1960] and variational methods (3D-Var

and 4D-Var) [Dimet and Talagrand, 1986]. 4D-Var is the most complex of the
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methods as it involves time evolution of the 3D system, this method returns

the most information about the dynamic ocean with a smooth output [Bouttier

and Courtier, 1999], sequential methods do have expansions that can increase

the complexity and include temporal advances, but at standard it does not.

As a whole, variational methods have a more favourable output due to natural

smoothness of results [Lahoz and Schneider, 2014]. Since all observations are

considered during the assimilation window, the new forecast created is inherently

smooth but this comes at a computational cost, which will be explained properly

in section [2.2.3].

2.2.1 Optimal interpolation

OI is considered one of the computationally cheap but relatively powerful meth-

ods of DA. Most weather centres around the world used OI throughout the 1970’s

and 80’s [Daley, 1993]. However there has been a shift in popularity of chosen

methods since then, and nowadays variational methods are more widely used.

Since OI is comparatively simple its makes sense to understand OI and use this

to progress ones understanding of DA.

In this section we will describe OI as it was originally founded, and how it is

understood in modern terms. OI was first introduced by L.S. Gandin, during his

original paper he stated “Optimum interpolation is here understood to mean in-

terpolation in which the mean-square interpolation error is a minimum.”. This

means that the necessary condition for the approach to be optimal, is the re-

quirement of the complete minimization of the mean-square error term [Gandin,

1965]. However this is only considered theoretical as the final result will unlikely

be 100% optimal and instead is more often considered a statistical interpolation

[Daley, 1993].
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Gandin had a common starting point for interpolation, using a linear combi-

nation with unknown weighting coefficients to determine the desired point, an

analysis fo. Sometimes the interpolation used deviations by subtracting from

each element of f the value of its norm at the corresponding point, this resulted

in a linear combination of deviations from the norm as follows.

f ′i = fi − fnormi (2.1)

f ′0 =
∑n

i=1 pif
′
i (2.2)

In these equations fi are model elements and pi are weighting factors. To solve

(2.2), Gandin used the square-mean error, which also allows us to minimize this

error and obtain the OI.

E = (f ′0 −
∑n

i=1 pif
′
i)

2 (2.3)

Before Gandin minimized the error, he expanded the RHS of the equation, and

added the auto correlation terms.

E = m00 − 2
∑n

i=1 pim0i +
∑n

i=1

∑n
j=1 pipjmij (2.4)

mij represents the autocorrelation function of element f, this describes how grid

point i is connected to grid point j for a specific parameter. This function

has useful characteristics if certain assumptions are made (these assumptions

apply to most current assimilation schemes), the assumptions of isotropy and

homogeneity. Isotropy means that direction is unimportant for correlation, and

homogeneity means that if the entire system is rotated the correlation values will
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remain the same, mathematically speaking;

m0i = mf (|
⇀
r i −

⇀
r 0|) (2.5)

mji = mf (|
⇀
r i −

⇀
r j|) (2.6)

m00 = mf (0) = f 2′ (2.7)

Gandin then normalizes the autocorrelation function in (2.4) to become a di-

mensionless quantity.

ε =
E

m00

(2.8)

ε = 1− 2
∑n

i=1 piµ0i +
∑n

i=1

∑n
j=1 pipjµij (2.9)

At this point it is important to notice that with the change to a dimensionless

quantity we now have a different notation and associated name. ε is known as the

interpolation error, where as E is the mean-square error. In order to minimize

this we find the partial derivative with respect to pi.

∂ε

∂pi
= −2µ0i + 2

∑n
j=1 pjµij = 0 (2.10)

and hence

µ0i =
∑n

j=1 pjµij (2.11)

Gandin used (2.11) to then calculate values for a system of equations from i=1..n

for the weighting coefficients which are then used in equation (2.2) to determine
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the deviations at the chosen point (f ′0). The above equations and algorithm for

OI are taken from [Gandin, 1965]

In more recent literature OI is described differently due to changes in the algo-

rithm and in notations, I have included this because it is important to be able

to understand how OI compares (in processes) to modern methods.

[Ide et al., 1997] describes the general notation used within DA in the modern

day, starting with a gridded field of the state vector, x, one can interpolate the

field at the location of the observations with the observation operator [Barth

et al., 2008]. This operation is explained by the matrix H, when H is applied to

x it returns the original field value in model space, for both time and position,

Hx.

For OI the vector xt is the true state, xb is the background data and yo represents

the observation vector [Barth et al., 2008]. A common equation to represent the

errors in background and observation data is:

xb = xt + ηb + bb (2.12)

yo = Hxt + ε+ bo (2.13)

Where η is the background/forecast error, ε is the error associated with our

observations (via satellites, or in-situ instruments) and b is the bias of the back-

ground or observation errors. Originally the errors were not explicitly considered,

observations were assumed to be perfectly taken. However in current assimilation

schemes we use the observations error covariance and bias correction. The error
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covariance is a statistic term used to quantify the background and observational

errors, the specifics of which are detailed in section [2.3].

Before the analysis certain assumptions are necessary with relation to the error

terms. We must have some knowledge about the expected values of the ob-

servational and background error terms, we use the ECM to characterize these

assumptions [Barth et al., 2008].

E[ηbηb
T

] = Pb (2.14)

E[εεT] = R (2.15)

E[ηbεT] = 0 (2.16)

This expresses the assumption that the background error is completely uncorre-

lated to the observation error and that Pb and R fully describes the distribution

of error for background and observations respectively.

OI analysis is also known as the best linear unbiased estimator (BLUE) of the

true state xt. The linear unbiased combination of the background xb and the

observations yo to produce an analysis vector xa , :

xa = xb + K(yo −Hxb) (2.17)

This introduces a new component called Kalman gain, which largely determines

the analysis from the covariances. From equation (2.17) an estimation of analysis
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error is drawn using knowledge of the analysis equation.

Pa = Pb −KHPb (2.18)

In order to produce a reliable evaluation of K, we must find a representation

with the lowest uncertainty. By minimizing this error covariance we are able

to calculate an optimal gain, which is an equation for the Kalman gain with

minimal error and is the BLUE [Barth et al., 2008] :

K = PbHT(HPbHT + R)−1 (2.19)

The background ECM in the previous equations is a highly dimensional matrix,

with approximately 1014 components. Therefore in operational optimal interpo-

lation analysis, usually only the computation of the diagonal variance elements is

done in order to maintain applicability. This topic of error covariance estimation

is recurring and is discussed in detail in [2.3] as well as some other sections.

2.2.2 Sequential methods

As mentioned earlier, the defining factor for a sequential method is that it uses

assimilation at the time an observation occurs, resulting in a real-time analysis,

which is then repeated any time a new observation enters the system. Sequen-

tial methods have many options, but the common approach for any operational

assimilation is the use of KF [Holm, 2008].

For an operational system the model will run, and then during the assimilation

window when the next observation occurs the DA will use the current and the

previous observations to perform an analysis. KF and OI have a lot of similarities

when it comes to the construction and algorithms used, however a key difference
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to note is that OI does not include a dynamic evolution of the model or model

error through time [Holm, 2008].

The Kalman filter is summarised as follows:

The first step for KF is a forecast step from time n-1 to n using the previous

analysis:

xf
n = Mn−1x

a
n−1 (2.20)

Then we are able to calculate the forecast error covariance for the current time:

Pf
n = Mn−1P

a
n−1M

T
n−1 + Qn−1 (2.21)

The next step is to calculate the analysis and analysis ECM for time n, using

the previous analysis:

xa
n = xf

n + Kn

[
yn −Hnxf

n

]
(2.22)

Pa
n =

[
I−KnHn

]
Pf

n (2.23)

K is the Kalman gain and is described by:

Kn = Pf
nHT

n

[
Rn + HnPf

nHT
n

]−1
(2.24)

[Lahoz and Schneider, 2014]

The superscripts used, f , a and T represents the forecast, analysis and transpose

respectively. The subscripts describe which time step the component is at, and

P, Q and R are the ECM for the forecast/analysis, the model and the observa-
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tional data [Lahoz and Schneider, 2014].

M and H are non-linear model and observation operators respectively, M car-

ries out an evolution forward in time and H has the same properties as in OI,

interpolating from model space to the observation space [Lahoz and Schneider,

2014].

The method is described as sequential because the process is recursive. During

the next analysis the system will use the forecast quantities xf and P f to form

the background state xb and the background ECM P b. The analysis terms in

the equation will also change to include background data.

Xa
n = xb

n + Kn

[
yn −Hnxb

n

]
(2.25)

Pa
n =

[
I−KnHn

]
Pb

n (2.26)

Kn = Pb
nHT

n

[
Rn + HnPb

nHT
n

]−1
(2.27)
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Figure 2.1: The difference between the Kalman filter and 4D-VAR. The Kalman filter
performs an analysis at each model time step. 4D-VAR analyses all observations within
a larger assimilation window simultaneously [Holm, 2008].

Nudging is a word commonly linked to DA, using the plots in figure 2.1 we can

see how the analysis update can be considered a nudge for the forecast towards

observations. A factor of these updates can be seen as a weakness of the KF

approach by comparing the two graphs in figure 2.1. 4D-VAR is a continuous

curve, whereas the KF makes a sudden jump each time an observation occurs.

Since the output for KF is a sequence there are multiple discontinuities over the

assimilation window. This result is generally unwanted as the known system

properties don’t allow for such large sudden changes, it is difficult for a model

to explain a rise of 5◦C in one time step without an anomaly [Holm, 2008].

There are many different approaches to KF, Extended KF (EKF), Ensemble KF

(EnKF) and Smoother KF algorithms, are all improvements on the standard

approach. With either more accurate error calculations or a smoothed output to

better fit climatological expectations, and each with an increase to complexity

by a relevant amount.

To give a brief example of one of these adaptations, the EnKF is a more statisti-

cal solution to the previously mentioned KF algorithm. EnKF creates a sample
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of analyses by running the system several times for a given window, using slightly

varying background data and observations [Fisher, 2001c]. Using this data an

approximation for the covariance of analysis error is created reducing the need

for matrix inversions, which is usually computationally expensive. We then have

the covariance of background error which is used in the position of the forecast

error for the next observation time and analysis [Lahoz and Schneider, 2014].

EnKF has developed into its own branch of assimilation algorithms, which aims

to generate spatially and temporally varying forecast-error using Monte Carlo

methods to produce ensembles [Houtekamer and Mitchell, 1998]. The variations

under an umbrella of EnKF depend on their specific applications judging the

different aspects of the system accordingly, and many of these families coexist in

modern DA with unique use cases. Some systems will use stochastic filter for the

observation errors, where as other prefer a more expensive deterministic filter to

obtain the optimal gain via analysis-error covariance [Houtekamer and Zhang,

2016].

A second set of variations includes either using a sequential algorithm by assimi-

lating the observations in sequence, or splitting the domain into a number of local

areas with independent solutions. These two options are created as an approach

to further reducing the numerical cost associated with the matrix inversion. The

sequential option is used when the observations are considered to have entirely

independent errors, whereas the local filter is more suited to a large scale appli-

cation, with computational efficiency based on parallel computing architectures

[Houtekamer and Zhang, 2016].
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Figure 2.2: Schematic showing the main elements of the EnKF, as implemented during
the assimilation window (tn−1,tn).The blue unfilled circles to the left represent the
range of the ensemble of analyses at time tn−1; the full blue lines represent the range
of ensemble forecasts using the ensemble of analyses at tn− 1 as the initial states; the
dashed red line represents a linear combination of the forecasts (using the red star as
the initial state) used to provide the final state—the analysis, at time tn. The red stars
filled in yellow color represent the observations used during the assimilation window.
The blue unfilled circles to the right represent the range of the ensemble of analyses at
time tn used for the next assimilation window. The spread of the ensemble members
represents the forecast error. Based on material in [Kalnay and Yang, 2010]. Image
from [Lahoz and Schneider, 2014]

2.2.3 Variational methods

For any assimilation that does not use real-time analysis, and instead uses all

observations within a time period, it is referred to as a variational method. The

frame work for the cost function used in variational assimilation stems from the

use of Bayes’ theorem as well as Gaussian statistics for probability. Bayes’s

rule is defined by Merriam-Webster as, “The probability that an event x occurs

given that another event y has already occurred is equal to the probability that

the event y occurs given that x has already occurred multiplied by the probability

of occurrence of event x and divided by the probability of occurrence of event y”

[Webster, 2020].

P (x|y) =
P (x)P (y|x)

P (y)
(2.28)

In terms of DA this translates to predicting the state vector x given that an

observation y has been recorded, this is what forms the framework for variational
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assimilation. In a more statistical nature we call P (x|y) the posterior, P (x) is

the prior, P (y|x) is the likelihood, and P (y) is the normalizing constant. With

a massive difficulty introduced here since we cannot know the true state vector,

instead a deviation from this vector is used instead , x − xb, where xb is the

model data [Bocquet, 2014]. We now assume that the deviation is distributed

according to a normalised Gaussian distribution;

f(x− xb) =
1√

2πσ2
exp

[
−(x− xb − (x− xb))

2

2σ2

]
(2.29)

Since we are dealing with a large state vector, and hence deviation from the state

vector are also large, the variance is then interpreted as a highly dimensional

ECM, B or R for background or observational error respectively. We use the

ECM to represent σ2, and hence define the prior and likelihood probabilities

using Gaussian distribution;

P (x) =
1

(2π)n/2|B|1/2
exp

[
− 1

2
(x− xb)TB−1(x− xb)

]
(2.30)

P (y|x) =
1

(2π)p/2|R|1/2
exp

[
− 1

2
(y −Hx)TR−1(y −Hx)

]
(2.31)

For the above equations y is observational data and H is the observation op-

erator which maps the state vector, x into a vector of observation space to be

comparable with y. We have also applied assumptions for unbiased error for

observations and background data [Bocquet, 2014], where;

x− xb = 0 (2.32)

y −Hx = 0 (2.33)
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According to Bayes’ rule of probability (2.28), we are then able to make a pro-

portionality equation using (2.30) and (2.31). [Bocquet, 2014]

P (x|y) ∝ exp

[
− 1

2
((x− xb)TB−1(x− bb) + (y −Hx)TR−1(y −Hx))

]
(2.34)

In order to find the optimum solution, we need to calculate the maximum of the

posterior, the maximum conditional probability. This is equal to the minimum

of the negative logarithm applied to the posterior probability (2.34), written as

a cost function of x [Gandin, 1965].

J[x] = (x− xb)TB
−1

(x− xb) + (y −Hx)TR−1(y −Hx) (2.35)

∇J(x) = 2B−1(x− xb)− 2R−1(y −Hx) (2.36)

J[x] is the cost function and ∇J[x] is the functions gradient. The superscripts

()−1 and ()T represents matrix inversion and the matrix transpose respectively

[Ide et al., 1997]. We also remove the common multiplier of 1
2
, as this factor will

not affect what value of x that minimizes J[x].

B is a weight matrix for the background error, this describes statistically the

difference between the priori knowledge and the true state. In order to run the

assimilation we need to calculate B exactly, this proves difficult as we can never

know the exact value of the true state of the ocean. Many approaches are used

for this calculation including; The H-L method [Hollingsworth and Lonnberg,

1986], The NMC method [Parrish and Derber, 1992] and the analysis-ensemble

method [Fisher, 2001b](A-E), they are explained in detail in section [2.3].
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The observation ECM R statistically describes the difference between the ob-

served values and the true state, created from instrument error or error in repre-

sentativity. However this is easier to calculate since we know certain properties

of the observation instrument, also in most DA schemes we assume that the ob-

servations are spatially uncorrelated.

The cost function J[x] is comprised of 2 parts. Jb quantifies the misfit to the

background data and Jo is the misfit for the observations.

Jb = (x− xb)TB−1(x− xb) (2.37)

Jo = (y −Hx)TR−1(y −Hx) (2.38)

In order to minimize the cost function we perform several evaluations of the

gradient, initially starting at J[xb], using the background data, and iteratively

reducing the equation till the gradient equals zero, ∇J[xa] = 0. The value of x

where the minimum occurs is then our definition of the analysis xa [Bouttier and

Courtier, 1999]. There are many different methods that approach the problem

of minimizing the cost function, and it is an area that has had a lot of interest

over the evolution of assimilation schemes. The primary strategies for minimiz-

ing J[x] are the steepest descent method and the conjugate gradient, which are

briefly described in the 2.4.1.

Figure 2.3 represents a 4 dimensional variational method (4D-Var). The separate

components of the cost function are demonstrated as well as the background

data, which is sometimes referred to as the forecast data, since it is formed from

a previous forecast. The model will run for the time of the assimilation window,

27



apply the assimilation and then continue with a corrected forecast which is more

representative of the true state [Lahoz and Schneider, 2014].

Figure 2.3: Schematic diagram illustrating 4D-Var. The most recent observations are
marked as blue stars, the previous forecast is used as the background (black dots, the
background state xb is the initial condition). This updates the initial model trajectory
for the subsequent forecast (red dots), using the analysis xa as the initial condition.
The box to the left identifies the special case of 3D-Var [Lahoz and Schneider, 2014].

The popularity for variational methods comes from its continuous outputs, with

its relative computational ease compared with the quality of the output. 4D-

Var/3D-Var also allows us to use complex observation operators, since only the

operators and the adjoint’s are needed [Bouttier and Courtier, 1999].

The two main forms of variational methods are 3D-Var and 4D-Var. 4D-Var

includes the evolution of time within its assimilation where as 3D-Var, like OI,

only applies to one time. Using figure 2.4 we can see the differences between

how 3D-Var and 4D-Var interpret observations. The observations in 3D-Var are

interpolated from nearby time to the average of the assimilation window.
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Figure 2.4: Shows a graphical representation of the difference between 3D-Var and 4D-
Var, the y-axis on these graphs is a 3-dimensional model space vector. [Holm, 2008].

Figure 2.4 also shows a discontinuity for the 3D-Variational method, despite

variational approach being a smooth assimilation method there is a single dis-

continuity per assimilation window. Whenever the assimilation wants to improve

the forecast there will have to be an analysis update, this is an unavoidable part

of the assimilation. However there is post-processing possibilities to smooth the

output, or only apply the assimilation increments gradually to reduce the impact

of applying to analysis [Bloom et al., 1996].

We will use the vector of xa as the new initial condition for the model to then

run in free mode with a singular update, similar to KF in this sense but with a

single discontinuation instead of per observation.

4D-Var has an additional advantage over 3D-Var other than the propagation

through time, it also considers a model error term. The cost function for 4D-

Var can include an extra term for the model errors associated with the models

time evolution. Typically Q is the notation used to represent the model error

covariance in the cost function and the construction of this component is still
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under research [Lahoz and Schneider, 2014].

2.3 Estimating error covariance

In DA we use the fact that the probability distribution function of an unbiased

Gaussian distribution is completely described by its covariance function, in the

form of a matrix [Holm, 2008]. Due to the nature of the system being predicted,

using error covariances and the Gaussian assumption is necessary to determine

any error statistics, and we can use the covariance matrix to represent these for

the model state vector. The error covariance is described by [Weisstein, 2020]

as:

cov(x, y) = E[(x− E[x])(y − E[y])] (2.39)

For our use, the error covariance is a term to quantify how the error values of one

grid point or parameter varies from the others. It is also worth noting that by

definition the covariance for one variable with itself (cov(x, x)) is the variance.

For DA we use an ECM where the i,j elements of the matrix are the covariance

between the errors of elements xi and yj [Barth et al., 2008].

P = E
[
(x− E[x])(y− E[y])T

]
(2.40)

There are four main covariance matrices used in DA; B (Pb or Pf in sequen-

tial methods) is the background or forecast ECM describing the variances of

the background data to the true state. R is the observations background error

including the effects of measurement errors, errors in design and representative-

ness. A (Pa) represents the analysis error covariance, which is often an output

of the assimilation that is used to measure the improvement of the analysis or

provide an estimate of the error for the next assimilation. Then the final error

30



covariance that is sometimes used (whether weak or strong constraint assimila-

tion), is Q the model error covariance, which describes the covariance between

two errors in the model at any two locations [Holm, 2008].Q differs from B,

as Q is in charge of measuring how accurate the model propagation in time is

in, rather than B which will predict how accurate the model is at a specific

time, usually stored as a seasonal average. Q is more likely to be used to better

understand how the model will deviate without further assimilation [Holm, 2008].

The error covariance used in DA uses an average over the time to calculate the

expected value. However for most uses of the covariance in error estimation, we

will not use the E[x] and E[y] terms, as we have previously assumed the Gaussian

statistics to have zero mean. The individual error value for multivariate or spatial

covariances, would be noted as;

B12 = 〈εf1ε
f
2〉 =

1

n

n∑
k=1

(e1i − e1)(e2i − e2) = lim
n→∞

1

n

n∑
k=1

εf1iε
f
2i (2.41)

[Wikipedia, 2017]

In the above equation subscript 1/2 denotes which variable it pertains to, and

an under-bar represents the sample mean.

There are many issues with using a covariance matrix for statistical weighting, the

primary mathematical issue is that we cannot know the value of the true state.

This means we cannot possibly calculate the error of the model/observations

and hence their covariance. Current approaches to solving this problem, for

the background ECM is separated into two categories; inferring error covariance

from ‘innovations’ (y0 −Hxb) and creating proxies from previous forecasts and

perturbations [Fisher, 2001a].
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The main innovations approach was created by [Hollingsworth and Lonnberg,

1986]. The H-L method looks at the spatial covariance of differences between

observations and the background, known as the innovations. Using a common

assumption that the observation errors are spatially uncorrelated this method

separates the observation error from the background error.

There are two mains schemes for determining background error covariance ma-

trices by using previous forecasts and perturbations. The original is the method

designed by the NMC [Parrish and Derber, 1992], this was the leading method in

large operational assimilation until the analysis-ensemble method became an ac-

cessible approach. With appropriate assumptions the NMC uses the correlation

of differences between 48h and 24h forecasts to predict the spatial background

correlations.

The more modern and expensive approach for error covariance estimation, is the

A-E method [Fisher, 2003], which involves running an ensemble of independent

analysis experiments. For each experiment, the observations are perturbed by

adding random noise drawn from the assumed distribution of observation error,

however in comparison the computational time is much greater when you have

to calculate multiple runs, 10+, for each day and is only usually implemented in

operational systems that can afford the additional costs.

2.3.1 Hollingsworth and Lönnberg method (H-L)

The original method for determining background error covariance was provided

by A. Hollingsworth and P. Lönnberg in 1986. Using radiosonde data over North

America the method was applied in operational meteorological assimilation at
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the ECMWF, using the homogeneous and isotropic assumptions. [Hollingsworth

and Lonnberg, 1986].

The H-L method is an analysis of innovations method. This is based on calcu-

lating the difference between the observations and the background information

after it has been interpolated into observation space yoi −Hixb = di where di is

the innovation vector at observation station i. A core assumption for the H-L

method to be possible, is that of spatially uncorrelated observation error, as well

as observational and background error being fully uncorrelated [Bormann and

Bauer, 2010].

〈εoj εoi 〉 = 〈εfjεoi 〉 = 〈εoj εfi 〉 = 〈εoi εfi 〉 = 〈εfjεoj 〉 = 0 (2.42)

Here the angular brackets represent an averaging over time. These assumptions

allow us to adapt the statistics of innovations, as a function of separation dis-

tance, in order to isolate the indicators or causes of the total error [Hollingsworth

and Lonnberg, 1986]. We are able to use the innovations and manipulate the

mathematics to create an estimate for the model forecast and observation errors

independently, using the following:

yo(v, r)) = xt + εo(v, r) (2.43)

xb(v, r) = xt + η(v, r) (2.44)

yo(v, r)− xb(v, r) = εo(v, r)− η(v, r) (2.45)

Equation (2.45) represents the errors for a specific variable v at relative distance
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r. The background error covariance between variable 1 at position r and variable

2 at position r+ δr can be determined as a product of innovation vector. When

computing this covariance the relative distance will be set to 0 (r = 0).

〈{yo(v1, 0)− xb(v1, 0)} × {yo(v2, δr)− xb(v2, δr)}〉 =

〈εo(v1, 0)εo(v2, δr)〉+〈η(v1, 0)η(v2, δr)}〉−〈εo(v1, 0)η(v2, δr)〉−〈η(v1, 0)εo(v2, δr)}〉

(2.46)

The result is quite a long equation but by using the assumptions of correlation

we can begin to simplify the equation, and result in a situation where for any

case with different variables (v1 6= v2) or for non-zero separation, the first part

of the equation is assumed to be zero, and that any remaining error is cause by

the background error [Bannister, 2008].

For example, when δr = 0 and v1 = v2 we simplify (2.46) to:

〈{yo(v, 0)−xb(v, 0)}×{yo(v, 0)−xb(v, 0)}〉 = 〈εo(v, 0), εo(v, 0)〉+〈η(v, 0), η(v, 0)}〉

(2.47)

However, since the observations are spatially uncorrelated when δr 6= 0, the

resulting error is purely that of background error:

〈{yo(v, δr)− xb(v, δr)} × {yo(v, δr)− xb(v, δr)}〉 = 〈η(v, δr), η(v, δr)}〉 (2.48)
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Figure 2.5: Graphical representation created to help demonstrate the process of the H-
L method. The x-axis represents separation distance and the y-axis is the innovation
covariances, which in turn estimates forecast and observational error.

Figure 2.5 represents the Hollingsworth-Lönnberg method for covariances, the ad-

denda on the plot give some information for the components individually and how

they combine together. However to further explain, the innovations are binned

based on separation distance and ignoring the value at zero separation. Which

innately uses the isotropic assumption, the covariance curve is then extrapolated

to zero separation where the only innovation statistic has been removed. The

value that the curve estimates at zero is purely based upon the forecast error,

and the difference between this and the innovation statistic at zero separation is

the observation error. The comments on the vertical axis help explain how the

data of forecast error and observation error is represented.

For an operational system to include this approach; they begin by collecting in-

novations over a 2 year period, and then separate the information into seasons

(winter, spring, summer, autumn), and for each season they bin the data and
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apply a curve fitting scheme to the remaining covariance. The curve fitting can

be a difficult part of the process due to the flexibility allowed and is often at

the discretion of the scientist in charge [Bannister, 2008]. As we assume that

each variable is uncorrelated in the assimilation suite it is important to remove

the balanced component, in which we are referring to the climatological corre-

lation between variables. We define the different variables within the DA suite

to include correlation, typically all variables are balanced other than tempera-

ture which is treated in totality. The balanced components are calculated from

knowledge of climatology and model forecasts, making assumptions about how

the variables are correlated and the current state of the ocean, which in turn

obtains the uncorrelated components. The effect of balanced and unbalanced

error is present in all error estimation processes [Weaver et al., 2006].

This is an effective method, however it is uncertain whether it is acceptable to

make the assumptions of spatially uncorrelated observations, it is specifically

dubious in the case of observations like satellite radiance’s where correlation or

bias is possible [Lahoz and Schneider, 2014]. However, [Heilliette and Garand,

2007], and others, have used bias corrections to reduce the affect of the bias from

observations, this will aim to weaken the negative affects of the assumption for

uncorrelated observations. Even with the improvement H-L is still rarely used on

its own in operational assimilation and is more likely to be paired with another

error estimation approach.

2.3.2 National Meteorological Centre method (NMC)

The NMC method is a process of using model forecasts to simulate values for

background error. After being published by [Parrish and Derber, 1992], the
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NMC method has been implemented into some operational systems with differ-

ent specifications and has the ability to produce error variances at a relatively

low computational cost, the more complications added the more expensive the

processes become [Waters et al., 2014].

In an operational case, the NMC method creates the error SDV using differences

between 24h and 48h forecasts (which are valid at the same time) for each grid

point independently. The algorithm for the NMC method is as follows [Parrish

and Derber, 1992]:

x48 = M48←0x
a(t = 0), (2.49)

x24 = M48←24x
a(t = 24), (2.50)

x48/24 = xt + η48/24 + b48/24, (2.51)

2B = 〈(ηηT )〉 (2.52)

B ≈ 1

2
〈(η48 − η24)(η48 − η24)T 〉 (2.53)

δx = x48 − x24 = η48 − η24 (2.54)

B ≈ 1

2
〈(x48 − x24)(x48 − x24)T 〉 (2.55)
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The assumption is that the difference between 48h and 24h model runs, is a

valid approximation to the background error variance. Which when we assume

zero mean and constant bias, reflected in equation (2.51), the simplification from

equation (2.53) to (2.55) becomes a stable relation. This means that we are

able to extract only the background error SDV values from the model differences

[Parrish and Derber, 1992].

This does not create a full background error covariance, this is only the diagonal

components, the variances, of the full background error matrix, 1/nth the size

of the full matrix (where n is the number of grid points). Only the diagonal

components are stored to reduce the size of ancillary files, however during the

assimilation the covariance can be modelled using a variety of equations. Pri-

marily either Gaussian distributions or some form of autoregressive function is

used [Martin et al., 2007]. This is the same as within the H-L method, when one

needs to decide on the curve fitting scheme, they will also decide the estimated

structure of the innovation covariance. However, due to the H-L method using

a curve fitting scheme more weighted error correlation functions can be used as

the scheme will estimate the optimum weighting as well.

Using this process creates some computational advantages, operational schemes

will always contain extremely large error covariances, only storing the diagonal

elements improve efficiency, and using the correlation model when it comes to

assimilating without attempting to store the complete 1017 components main-

tains quality and makes the arithmetic’s plausible.
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2.3.3 Analysis-ensemble method (A-E)

This method was presented by [Fisher, 2003], and the basis for this method is

the same as the NMC scheme, to find a surrogate quantity whose error statistics

are very similar to the unknown background error. If it is safe to assume the two

statistics have identical forms then we can use the surrogate to determine the

correlations of background error components. In the NMC approach for this it

uses a 24h and 48h forecast to create this surrogate, but it is difficult to justify

that its similarity to true error is accurate.

The A-E method begins with a perturbations on every input in the analysis sys-

tem, which will result in a disturbed analysis from truly random perturbations.

The idea is that the analysis displacement will purely rely on the analysis error

statistics. A short forecast is run from this perturbed analysis, which is the pro-

cess to obtain a background field for future analysis. This component will have

the statistical structure of short term forecast error, if we assume the model error

itself is null [Fisher, 2003].

Figure 2.6: Schematic illustration showing how a perturbation analysis and forecast may
be generated by perturbing the inputs to the analysis system [Fisher, 2003].

With this approach it is possible to use the perturbed background field for an-

other analysis, this gives us a second perturbed analysis. A benefit of this is that

after a few days (in terms of the assimilation) of repeated analysis-forecast the

statistical characteristics will no longer depend on the initial perturbations that
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we created at random. [Fisher, 2003] then suggests running the analysis-forecast

system twice, each with statistically independent perturbations, and multiple

iterations. The differences between these pairs will have the statistical structure

of the differences between background error fields. They will have the correlation

structure of background error, with twice the variance.

Figure 2.7: Schematic illustration of the analysis-ensemble method of generating fields
of background difference [Fisher, 2003].

This approach gives a global field of model variables on the model grid, which

is better than the output of the innovation schemes for background error co-

variances, specially for areas that do not have dense observations. As mentioned

before it also uses a more reliable statistical assumption than the NMC methods,

so it is considered the state-of-the-art method for determining background ECM,

and is currently used in many operational ocean models including ECMWF (Eu-

ropean Centre for Medium-range Weather Forecast) [Mogensen et al., 2012]. The

main flaws with this scheme is the danger of feedback or the large increase in

computational costs when compared to the H-L or NMC approaches. As for

the feedback, there is a chance that we will introduce a bias error from the per-

turbations, as they are random we could possibly have an unbalanced ensemble

creating an inaccurate estimate that will then compound over the numerous rep-

etitions.
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Unlike the H-L and NMC method, we have not processed the A-E method in our

research, mainly due to the computational costs associated with the ensembles.

2.4 Optimization of the data assimilation suite

The operational application of DA has a large computational cost associated

with even the simplest of assimilation suites. As an addition to an ocean model

anything that does not improve the forecasts with minimal additional expense is

generally unwanted. In order to make DA functionally accepted all costs must

be reduced and accuracy increased. Two parts of an assimilation suite that

help with this are; the optimized minimization of the cost function, and the

preconditioning of the analysis process.

2.4.1 Minimization of the cost function

Obtaining the cost function for the 3D/4D-Var is a very expensive part of the

assimilation scheme but it is not the final step for producing the necessary anal-

ysis. We need to find the minimum of the prescribed cost function. J[x] has the

possibility to be highly non-linear, with multiple minimums and maximums, this

complicates finding the analysis value [Fisher, 1998].

Typically assimilation schemes will include simplifications to lower the order of

J[x], most operational assimilation uses only linear observation operators, result-

ing in a maximum order of two [Bouttier and Courtier, 1999]. In this section we

will talk about the approach for minimizing the cost function, with linear and

non-linear cost functions, as well as preconditioning methods for computational

ease. It is considered logical to apply preconditioning to the minimization algo-

rithms to increase the rate of convergence.
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Mike Fisher, a prominent figure in the world of DA, published a paper in 1998,

[Fisher, 1998], covering the main minimization algorithms used in operational

DA. This paper focuses on solving strictly quadratic cost function, as well as

a section on nearly quadratic. [Shewchuk, 1994] wrote a large article covering

the minimization and preconditioning methods in great detail, as well as some

operational experiments to document accuracy and applicability.

Purely quadratic cost functions are particularly important, since they appear as

the functions minimized during the inner iterations of the incremental method

and whenever the analysis depends linearly on the observed and background data

[Fisher, 1998].

When we attempt to minimize a cost function for DA we should aim to use

conjugate gradient or Newton methods for quadratic (or nearly quadratic) func-

tions. However we need to remember we have high dimensionality as a result

of the control vector, this can make storing the Hessian matrix, ∇J[x] close to

impossible, and will require numerical methods rather than analytical methods,

or potentially one would need to produce an estimated Hessian [Bouttier and

Courtier, 1999].

The minimization is generally separated into two sections; direct solution meth-

ods and iterative solution methods [Fisher, 1998]. For most DA schemes direct

solutions are not possible, unless the problem is split into a set of smaller prob-

lems. The separation always leads to an inaccuracy as it introduces artificial

boundaries and data selection errors, however the method has been used in pre-

conditioning DA [Fisher, 1998]. This leaves iterative solution methods as the

42



only successful approach for incremental variational DA.

The most popular methods for the iterative approach is the method of steepest

descent, and the more accurate method of conjugate gradients [Shewchuk, 1994].

The method of steepest descent, starts at an initial condition and takes a large

step, this will produce a parabola (by cutting across the 2D “dip” created by the

cost function, Figure 2.8(a), we then decrease to the bottom of the paraboloid

until we reach the required accuracy and take another step [Bocquet, 2014]. The

direction of descent is chosen in which f decreases most quickly, which is the

opposite direction of f ′(x(i)), where i is the current step, starting at f ′(x(0)).

[Shewchuk, 1994] describes this as −f ′(x(i)) = b − Ax(i), where A and b are the

solutions for the minimization of f(x) = 1
2
xTAx− bTx+ c, where the ideal solu-

tion is Ax(i) = b.

For the first step of the iterations, the direction of the steepest descent will fall on

the solid line in figure 2.8(a), which will be a point following x(1) = x(0) + αr(0).

The issue is how large a step is needed per iteration, putting importance on the

value of α. Using calculus and minimizing directional derivatives [Shewchuk,

1994] arrives at:

α =
rT(0)r(0)

rT(0)Ar(0)
(2.56)

Whereby α describes the size of the step with the aim that it will produce an

orthogonal gradient for the next step. The best descent direction is iteratively

described with the residual, r(i) = b − Ax(i), and the overall algorithm of the

steepest descent method becomes:

r(i) = b− Ax(i) (2.57)
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α(i) =
rT(i)r(i)

rT(i)Ar(i)
(2.58)

x(i+1) = x(i) + α(i)r(i) (2.59)

Figure 2.8: The method of steepest descent for a single iteration. (a) Starting at
[−2,−2]T , take a step in the direction of steepest descent of f. (b) Find the point on
the intersection of these two surfaces that minimizes f. (c) This parabola is the in-
tersection of surfaces. The bottom most point is our target. (d) The gradient at the
bottommost point is orthogonal to the gradient of the previous step [Shewchuk, 1994].
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Figure 2.9: An illustrations of the complete method for the steepest descent, starting at
[−2.− 2]T and converges at [2,−2]T , [Shewchuk, 1994].

The conjugate gradient algorithm is explained in-depth by [Shewchuk, 1994] and

used in practice by [Fisher, 1998]. This is the method of choice when the Hes-

sian, of J[x], is symmetric and positive definite as it usually is in the case for

incremental variational DA [ECMWF, 2018].

The conjugate gradient algorithms is very similar to the steepest descent ap-

proach, but with less complexity per iteration. The direction of the first step is

defined differently, instead of using the residual we use a search vector d(i). If

the error was known we could define the search vector to perfectly converge to

the minimum within two steps, however knowing the error would imply knowing

the solution already.

In order to still apply this ideology, we say that the search directions d(i) are
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all A-orthogonal instead of just orthogonal, if d(i) and d(j) are A-orthogonal this

means d(i)Ae(j) = 0, [Shewchuk, 1994]. We then follow a very similar iterative

method as before:

d(0) = r(0) = b− Ax(0) (2.60)

α(i) =
rT(i)r(i)

dT(i)Ad(i)
(2.61)

x(i+1) = x(i) + α(i)d(i) (2.62)

r(i+1) = r(i) − α(i)Ad(i) (2.63)

β(i+1) =
rT(i+1)r(i+1)

rT(i)r(i)
(2.64)

d(i+1) = r(i+1) + β(i+1)d(i) (2.65)

The derivation of the algorithm, and the Gram-Schmidt constants β(i+1) can be

found in detail in [Shewchuk, 1994].

The overall algorithm is iterated for n iterations, with n the number of nonzero

entries of A. This is based on the dimensions of our system or cost function,

and hence for a quadratic cost function we can expect to be able to find a min-

imum within two iterations. This is reliant on picking the perfect polynomials

and maintaining conjugacy of our search directions even in the cast of rounding

point errors [Shewchuk, 1994]. This was notably an issue when the method was

first proposed in 1960, but is accepted much more in modern operational sys-
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tems, and is commonly the minimization of choice.

2.4.2 Preconditioning of the analysis process

A fast convergence is highly sought after for numerical modelling methods, like

the above minimization algorithms. Using some preconditions will decrease the

computation time needed for obtaining the required accuracy. As the minimiza-

tion is needed for every single assimilation cycle, an increase in the convergence

rate will greatly improve the overall timing for an operational assimilation. Some

preconditions that are currently implemented into the assimilation cycle include;

a linear transformation of the control variables in the cost function, complex

conditioning of the correlation structure in the background error matrix or by

measuring the Hessian matrix, of the cost function, to then assess the sensitivity

of the solutions (minimization of the cost function) [Haben et al., 2011].

In operational DA minimization is very expensive with regular 3D/4D-Var, how-

ever [Courtier et al., 1994] introduced the incremental approach for assimilation.

An incremental approach replaces the analysis vector within the cost function

with that of an analysis increment. If we say, x = xb + δx, we can simplify the

background part of the cost function. We then linearise the model and observa-

tion operators, to have a strictly quadratic cost function:

J [δx0] = δxTB−1δx +
M∑
i=0

(H′iδxi − di)R
−1
i (H′iδxi − di) (2.66)

This linearisation allows us to more easily minimize the function, as it is the

ideal condition for the minimization algorithms. We also reduce the resolution

of the adjoint linear model, with these two differences the total operations of

the assimilation is much less. The adjoint linear model reverses the model prop-

47



agation in time for the analysis increment, this is required for minimization of

4D-Var or ensemble prediction systems but has not been used in our research.

[Courtier et al., 1994] states that the incremental formulation changes time con-

tributions of cost functions to be higher from the observations at 0 time but

rapidly decreases, with the cost contributions from calculating the background

components low and slowly increasing. This is because he chooses δx = 0 as the

initial iteration on the minimization, so the background component is equal to

zero initially. The findings show that the incremental application is not an opti-

mal approach for reducing computational costs, in regards to a control variable

transform (CVT), but the method still improves processing.

The Hessian matrix A; A = (B−1 + ĤT R̂−1Ĥ), is used as an analysis matrix

for the cost function. By using the Hessian matrix we can compute a condition

number and investigate its dependencies. A has the same structure as B and R,

assuming linear H, A will therefore be a positive semi-definite matrix and the

condition number we are seeking from A is:

k(A) = ||A||2||A−1||2 =
λmax(A)

λmin(A)
(2.67)

This definition comes from [Haben et al., 2011], who also explains a large amount

of the functionality that can be drawn from this Hessian matrix. Haben goes on

to say “We expect that the conditioning of the Hessian will be dominated by the

condition number of B.”. For my research this reinforces the idea that an im-

provement to the background error is much more likely to yield an improvement

on the analysis forecast. In terms of preconditioning, the Hessian can be used

to analyse the cost function and, from one cycle to the next, improve the rate of

convergence by altering components. The exact specifics of this preconditioning
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is mainly for 4D variational assimilation, and is not something that I explicitly

used in my research.

To precondition using a change of variable, the entire cost function is expressed

in terms of a CVT defined by δx = Uv. The method currently used in many

operational analysis system uses the CVT to then define the background error as

B = UUT . This will always be possible if we follow previous assumptions that B

is defined as a semi-positive definite matrix, and hence has an adjoint available

[Weaver et al., 2006]. This alters the background component of the cost function

such that;

Jb =
1

2
vTUTB−1Uv (2.68)

J(v) = J b+Jo =
1

2
vTv+

1

2
(yo−H(xb)−HUv)TR−1(yo−H(xb)−HUv) (2.69)

The cost function is solved to determine the analysis in terms of the new variable,

after which the inverse of the change of variable matrix U is applied, to deter-

mine the analysis in terms of model variables. Even with the preconditioning

the process of minimization is time consuming relative to the other factors of the

assimilation. When it comes to an operational assimilation cycle the majority

of the cycle is minimization, as a large amount of the other factors required to

produce the cost function can be prescribed.
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2.5 Summary

“DA adds value to the observations by filling in the observational gaps, and adds

value to the model by constricting it with observations” [Lahoz and Schneider,

2014]. In general DA is the process of using the observations and a priori data

to create a forecast for a complex dynamical system. In this introduction I have

shown some of the components for DA that I have been studying during the

postgraduate research. These methods used with DA have influenced the path

of my progression and my final research findings. For the DA methods I have

found the most popular interpretations that are used or have been used in op-

erational systems, and investigated some of the notable differences between them.

I have spent a large amount time researching the general methodologies of DA;

the approaches to estimating ECM’s, the minimization algorithms, and the pre-

conditioning approaches, as well as the positives and negatives for each of these

assimilation components. I have also spent some time researching the general

oceanography which relates to DA, such as the ancillary climatology and the

observations used within the analysis. This is only a portion of the total lit-

erature researched, and specifically only components that I believe have ended

up influencing my final research outcomes. There are other aspects of DA, and

specifics for operational variational suites that have not been described, such

as; definitions of balance operators, covariance normalisation methods, and bias

correction schemes. This is because despite being adjacent to what we have been

researching we do not at any point repeat these methodologies directly and they

do not have any explicit affects to the methods we have produced independently.

Sequential methods are mainly known for the popular KF method, which takes
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analyses of each observation at the time they occur, with the previous obser-

vations and the relevant error covariances. KF is a recursive process and gives

sequential solutions as an output, and the result can be a discontinuous curve. As

KF is a real time analysis, meaning that every time a new observation becomes

available the assimilation can occur. The only delay to the analysis from the real

time is how long it takes to process the observations. KF is used for on-going

forecasts when observations become available over time, but is less beneficial in

reanalysis forecasts. This method is often used when trying to create DA suite

for smaller operational systems. For large ocean modelling or numerical weather

predictions (NWP) the computation expense is too much, this is due to the

analysis process and the propagation of the covariance matrix [Fisher, 2001c].

There are many alterations that can be applied to the sequential methods that

do improve the quality of the outputs, by smoothing the output or improving

the accuracy of the error predictions. If the computational power is available

KF methods can produce assimilated forecasts with accuracy matching that of a

full 4D-Var suite, and has an implicit evolution of the ECM which is sometimes

desired [Fisher, 2001c].

Variational methods are popular in meteorology and oceanography due to the

continuous curve output from the analysis system, but also because of the way

it interprets observations. When analysing a global dynamic model any process

that can use the abundance of observations available is highly valuable, this is the

case with any application of DA to ocean models or numerical weather predic-

tion. Global dynamic DA can produce difficult observation operators, however

fortunately for 4D-Var/3D-Var, these have the ability to compute complicated

observation operators, and has multiple ways to handle any observation data.

The variational assimilation methods use a minimization of the cost function,
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created from background and observational data with their respective error co-

variances, to produce a robust and temporally smooth assimilated forecast. For

operational suites variational DA often uses a incremental analysis update (IAU)

to ensure that the inclusion of the assimilated forecast into the original dynamic

model is relatively seamless. It has been agreed, between me and my supervi-

sors, that due to the availability of NEMOVar (and the NEMO model) and other

previously mentioned factors, that the best method for me to use during my re-

search is the 3D-IncVar with the AS20 ocean model. This assimilation suite and

model were produced by the POFC and the MO, in collaboration for a research

project with the United Arabian Emirates (UAE) ocean’s team.

My research has shown me many operational components and methods for ocean

modelling with DA. The methods are accurate and efficient, however they are

not without room for improvements. There are many assumptions made dur-

ing the variational DA, which are weakly justified for dynamic systems. The

focus for my work has been to create an assimilation scheme which does not

assume isotropy, where our method will use the distance and direction to deter-

mine background ECM. I feel that including a horizontal component for flow-

dependent background error will improve the rigidity of the scheme. This is not

without difficulties, the majority of the background error covariance is created

using isotropic assumptions and this would need to be replaced with functional

anisotropic components.

In order to achieve this one would need to be able to create and alter the back-

ground ECM that is used in an operational assimilation. After in-depth re-

search into DA, operational methods, and the ECM, we had decided the first

step would be to replace the isotropic part within the error estimation with an
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approach that has no need to assume isotropy. The second step would then

be using the anisotropic error estimation with an altered background covari-

ance flow-dependent diffusion to produce a fully anisotropic background ECM.

However, there is many difficulties associated with this, mainly due to the re-

quirements of operational assimilation systems; positive semi-definite background

ECM, balance operators, and the definitions of correlation diffusion. During our

applications of H-L, NMC, and the creation of the Binless Analysis of Innova-

tions (BAI), I have been aiming to create a method that satisfies the first step,

anisotropic error estimation, with the hope that this would help us progress to

the second stage. In my studies I have only be able to provide an alternate anal-

ysis of innovations approach, due to the systematic restraints of NEMOVar more

time and research is required to produce a fully anisotropic background ECM.

Table 2.1 summarizes the key positives and weaknesses of the error estima-

tion methods that we have discussed throughout the literature review. Some of

these points can be seen later on when I apply the H-L and NMC method to the

AS20 model. Theses results from my implementations of operational methods

and the notes from this literature review guided the direction of my research and

will be justified in-depth in section [3.4].

Some details of the NEMOVar suite that has been use are described in the next

chapter [3] for Methods and Materials. Only certain specifications have been

defined, the majority of the AS20 assimilation suite has not been documented in

this section since it has not directly or in-directly been altered by me during my

research. Once we have defined the AS20 and NEMOVar suite, we will discuss

the applications of the NMC, and H-L methods. Early experiments were run to

apply these methods to our operational system, the result were used to influence
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Table 2.1: Summary of background error estimation methods for the error covariance
matrix.

H-L NMC A-E

S
tr

en
gt

h
s

Accurate source data
(observations).
Strong history of oper-
ational applications.
Low computational
cost.
Able to estimate SDV
and LSR.
Strong statistical jus-
tification for inferring
background error.

More accessible data
source (model fore-
casts).
Method uses only the
forecast to produce es-
timate, no untangling
of statistics.
Low computational
cost.
The output is already
in model grid space.

Accessible data source
(model forecasts).
Ensemble application
increases statistical ac-
curacy.
Removes initial pertur-
bations by nature of
the methodology.
The output is already
in model grid space.

W
ea

k
n
es

s

Reliant on assumptions
of correlation.
Requires binning of
spatial data to analyse
covariance.
Needs large availability
of data from observa-
tions.

Often recorded to un-
derestimate the back-
ground error.
Unable to produce es-
timate of LSR without
additional methods.
Operational applica-
tions use scaling, cre-
ating dependence on a
second method.

Slower analysis due to
ensembles.
Possibility for feedback
error due to undiag-
nosed bias.
Often an inaccessi-
ble method for re-
gional models due to
increased cost versus
improvement in results.
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the remainder of my research, and eventually assisting in the development of the

BAI method. The methods and operational information will be included in the

following section but the most of the results for these experiments will be left

until chapter [4]. After this we will then summarise the results, and the general

research findings in our conclusion, chapter [5].
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Chapter 3

Methods and Materials

3.1 Introduction

In the previous section I have shown some of the research and theories that I

have studied as part of my postgraduate degree. In this section I aim to show

how I have used this knowledge, with the applications and experiments that I

have conducted. This will include our initial uses of the H-L and NMC methods,

the ocean model and DA that we have used, and then I will describe the novel

methodology for the BAI approach.

My research supervisors are, or have been, members of the POFC, this research

centre aims to provide ocean forecasts of SST and SSH with high resolution re-

gional models, and hence they have been able to supply me with full access to

the Arabian Sea 1/20 degree (AS20) NEMO ocean model. This ocean model,

as well as the accompanying NEMOVar suite, is the framework for my research

into DA. The assimilation was produced as a collaboration between the Mete-

orological Office (MO) and the POFC for their research project with the UAE

ocean’s team. Details for this ocean model and assimilation suite can be found

in section [3.2.1] and [3.2.2].
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Previously, in section [2.3] we briefly defined the theory behind both the NMC

and H-L methods, we have since applied these methods to our ocean model and

assimilation to produce a new error covariance estimate. This application pro-

cess revealed some details that were hinted at within previous literature and the

effective use of these error estimation processes, mainly for the operational uses

of both the NMC and H-L. Section [3.3], will describe the differences between

the theory and application of these methods, and show our initial results.

After these experiments certain decisions were made regarding the future plans

for our research, we decided that focussing on using only the H-L method as a

comparison for our improvements was the best idea. Our results had justified

this decision, further details as well as some key results for how we came to this

conclusion have been shown in section [3.4].

From here we began to work on our own novel methodology, where we have

created a statistically robust alternative analysis of innovation method, which

attempts to improve upon many of the known negatives of the H-L method.

The derivation for the BAI method is given in section [3.5], as well as a detailed

description of the fundamental differences between the H-L and the BAI. The

results from these methods are then compared in the following chapter.

3.2 Ocean modelling with assimilation

Operational ocean modelling is often accompanied with data assimilation to take

advantage of the observations and additional statistical influence that is available.

In this section we will discuss the ocean model and assimilation suite that I have

used for my research. These components were produced prior to the start of the

research, developed to be used at the POFC for operational assimilated forecast
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and not exclusively for my studies. As an operational model and assilation suite

it is considered to be state of the art for context of comparing. We also discuss

some of the exclusive tools and modelling procedures that are in place, this

gives the reader and understanding of what was used to produce the assimilated

forecasts and background error components in the later sections.

3.2.1 Arabian Sea 1/20 Model

The original aim for my research was to use the AS20 ocean model as a base,

and then include a Var suite. Once the suite was correctly compiled, we planned

to add an anisotropic component for the background error covariance, with the

hope that this would improve the forecast analysis. The early steps for this were

to study the DA theory, and to then get familiar with the AS20 modelling sys-

tem. Since assimilation aims to use model and observational data to improve

forecasting ability, its important to begin with a high quality ocean model.

The AS20 model is a high resolution regional ocean model focussed on the Ara-

bian Sea, producing forecasts for temperature, salinity, SSH and velocity. The

domain for the AS20 model covers the majority of the Arabian Sea, the Arabian

Gulf, the Gulf of Oman and the Gulf of Aden. The model is fed ancillary data

from rivers, tides, previous model runs and boundary data interpolated from

the Indian Ocean 1/12 degree NEMO model (IND12). The model grid contains

224775 (405x555) grid points horizontally, and 56 depths levels with ∼ 80000

wet cells, and a resolution of ∼ 5 km.
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Figure 3.1: AS20 ocean model domain in terms of latitude and longitude, displaying the
wet cells in dark blue and land in beige. The white ocean areas are not covered by the
AS20 ocean model.

3.2.2 NEMOVar

While I was becoming familiar with the AS20 model, the POFC were beginning

to work with the Meterological Office (MO) on a joint research project with the

UAE ocean’s team. Overtime this project lead to the production of a Var suite

for the AS20 ocean model. Using interpolated ancillary files from the IND12

ocean model an initial assimilation suite was created, and eventually updated as

more model and observational data became available.

The assimilation suite itself was a complied collection of Fortran 90 scripts taken

from the MO’s operational DA suites. This package included many options for

different assimilation methods, for the AS20 a specific form was prepared to run
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operationally at the UoP and also at the UAE ocean’s head quarters in Abu

Dhabi. This assimilation is a multivariate three-dimensional incremental Var

method (3D-IncVar), using some of the aspects described in section [2.2]

3D-IncVar is commonly used for regional ocean models and operational suites

which are unable to afford the computational costs of 4D DA, or those of high

resolution which would not benefit enough compared to the cost associated. For

high resolution models, the relative data availability is low and hence they tem-

poral component for the observational data will have a minimal affect on the

overall cost function and analysis vector.

The incremental assimilation was briefly mention in section [2.4.2], and uses a

cost function as follows,

J [δx] =
1

2
δxTB−1δx +

1

2
(d−Hδx)TR−1(d−Hδx). (3.1)

Where we define the increment δx = x− xb, as the difference between the state

vector x and the model forecasts xb. Then the innovations, d = y−H(xb), are

the observations y minus the forecasts translated into observation space by the

linear operator H.

This cost function is then minimized using an iterative preconditioned conjugate

gradient method, parts of which have been mentioned in section [2.4.1]. As part

of this preconditioning we apply a CVT, from section [2.4.2], this is so that the

minimization requires matrix-vector calculation with B instead of the inverse.

The CVT is Uv = δx, with B = UUT , this places a requirement on B to be
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positive semi-definite so that U exists. The cost function then becomes;

J [v] =
1

2
vTv +

1

2
(d−HUv)TR−1(d−HUv). (3.2)

Overall the incremental and control variable components are required to reduce

the cost of assimilation. The operational suite also includes additional com-

ponents for improving the accuracy and rigidity of the analysis vector, which

includes the balance operator and the IAU. An IAU is used to introduce the

analysis into the current ocean model without creating a large discontinuity be-

tween days, instead the analysis is added slowly over a period of time.

The balance operator is used within all multivariate assimilation suites, and

this allows for covariances between different ocean variables to be accounted

for. The balance operator K will transform the mutually correlated state vector,

x = (T, S, η, u, v), into an unbalanced vector of uncorrelated state variables, xU =

(T, SU , ηU , uU , vU) [Waters et al., 2014]. By accurately defining this operator we

are able to treat each state variable independently within the assimilation and

then calculate the cross-correlation component after and combine the unbalanced

and balanced components. The sequence of balance operators for the incremental

assimilation has been defined by [Weaver et al., 2006] as;

δT = δT,

δS = KST δT + δSU ,

δη = Kηρδρ+ δηU ,

δu = Kupδp+ δuU ,

δv = Kvpδp+ δvU .

(3.3)
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Where we have introduced two new variables, the seawater density ρ, and the

pressure p. With there increments defined as;

δρ = KρT δT +KρSδS

δp = Kpρδρ+Kpηη.

(3.4)

The balance operator itself defines the transformation from variable j to i, Ki,j.

Temperature is chosen to be the variable at the center of the balancing, and hence

is treated in totality for the cross-correlations. The specific transformation from

one variable to another requires climatological knowledge, [Waters et al., 2014]

summarises the specific definitions for each balance operator.

In application, the balance operator is used within the production of the back-

ground ECM as so;

B = KBUKT , (3.5)

Where BU is the block diagonal matrix of unbalanced variables. Then K will

apply the transform into full background error covariance. The unbalanced error

matrix itself is produced using another series of matrix multiplication;

BU = D1/2CD1/2. (3.6)

Here D is a diagonal matrix of background error variance, and then C is the

full correlation matrix. Instead of directly calculating the correlation matrix it

is instead modelled using a normalized diffusion operator;

C1/2 = Γ1/2L1/2W−1/2. (3.7)
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Where we have introduced the normalisation matrix Γ, the diffusion operator

L and the diagonal matrix of volume elements W. The normalisation matrix

ensures that the overall correlation matrix has only ones on the diagonal and

decreases elsewhere. The production of this matrix is computationally expensive

to calculate explicitly and instead an implicit definition from diffusion within

the model is used. The estimation operationally used requires an ensemble of

diffusions in a Monte Carlo statistical analysis [Weaver and Courtier, 2001]. This

approach is known as the randomisation method and is relatively cheap in com-

parison with explicit solutions, but still takes a lot of computational power. The

diffusion operator is based on a prescribed length-scale with a fixed time-step,

matching that of the assimilation window. More details on how this diffusion

operator is produced can be found in [Weaver and Courtier, 2001]. The volume

elements represent the co-ordinate system of our ocean model, since we are using

a 3D model this will be the component directions x, y, and z.

In order to run the operational suite, workflow and task configuration tools are

used. For the NEMOVar suite we use the Rose and Cylc system, the specifics of

this toolset are briefly described in the appendix C.

There are many files that the suite requires the users to supply before any as-

similation can be run, and for my research the main focus of these has been

the background error covariance files. Inside NEMOVar the B matrix is mod-

elled using equation (3.6), which requires some value for the variance, and some

length-scale for the diffusion. In practice, the diffusion uses a weighting between

two fixed length-scale operators, this means that we do not need to continually
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recalculate the normalisation. The diffusion operator is hence defined by;

C = αCMes + (1− α)CSyn (3.8)

The length-scales are chosen to represent synoptic scale and mesoscale error cor-

relations, denoted with the subscripts Syn and Mes respectively. The user is still

required to supply the LSR, α, this is given as a 3D network common data

form (netCDF) file for each season. The rose suite will then interpolate between

the seasons for the current date in the assimilation. The same is done for the

background error variance file, except that this is 2D, and the depth variance is

parameterized during the production of the background matrix.

A varying ratio is used as opposed to changing the length-scales themselves as

any change in the length-scale requires recalculation of the normalization fac-

tors. However, when changing the ratio the diffusion and hence normalisation

will only be weighted by a changing scaler, the LSR. As the ratio is much easier

to change, it is often used to represent seasonal changes that could originally be

computed using a change of length-scale.

We first calculate the 2D surface values using SST observations from assimi-

lated trials and then extrapolate for depths. As part of the H-L method for error

estimation a curve fitting scheme is used to estimate a Gaussian with two length-

scales to approximate the background error. As we are using this length-scale to

model the background error with the exact same Gaussian functions, the values

that the H-L uses to weight the function is stored and used as a surface layer for

the ratios. In the BAI method a very similar procedure can be used to extract

the LSR aswell.
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Since the LSR is supplied as a 3D matrix we must also have a vertical profile,

this is more difficult to approximate because we do not have the same availability

of observational data to use for depth profiles. We cannot accurately estimate

temperatures behaviour at depth from our observations and it is more accurate

to use alternate approximations. What we want to be able to do is to understand

how the correlations will change with depth and hence what changes in the LSR

is an accurate representation of the error at all levels.

[Mogensen et al., 2012] talks about specifications for background error param-

eters in three dimensions, using model data depth profiles and affects from the

mixed-layer and other oceanographic limitations, a parameterization for temper-

ature is proposed. We use this definition to create a depth gradient for the LSR,

and apply this to our surface values of LSR to create the full 3D netCDF file.

The parameterization is as follows;

σbT =

 max{σ̂bT , σ̂mlT } if z ≥ Zml

max{σ̂bT , σ̂doT } if z < Zml

(3.9)

Where;

σ̂bT = min{|(∂T b/∂z)δz|, σmaxT } (3.10)

In the above, σ is the error SDV and Z denotes depths for do and ml, the deep

ocean and mixed layer respectively, with subscript T for temperature. The SDV

factors σmaxT , σmlT and σdoT are all previously defined according to research of [Mo-

gensen et al., 2012]. σmaxT = 1.5◦C, σmlT = 0.5◦C, σdoT = 0.07◦C.

We are then able to apply this approximation for depth using a year long assimi-
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lated model forecast, this will allow us to then calculate |(∂T b/∂z)δz|. The global

average depth profile from this parametrisation of model data is included below.

This profile was applied to the long-length, and the inverse was applied to the

short length-scale. Despite the parameterization suggested above by [Mogensen

et al., 2012] being for the error SDV, we believe that the gradient in depth for

the error LSR will behave similarly. Since we have very few observational data

points below the surface, we cannot produce innovations or estimate a depth

profile from other sources, and this is one of our only options to create a depth

profile. By using the same gradient file for all of our experiments we expect that

any inaccuracies that this profile may introduce will be consistent for all meth-

ods, and that in general we have used an appropriate estimate for the behaviour

in depth. However, if the error estimates were to be compared with externally

produced versions this definition could be the cause of some discrepancies.
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Figure 3.2: The global average profile view of LSR parameterization in depth. This plot
is for the long synoptic scale weighting parameter in winter.

3.3 Current error estimation methods

In the previous section we have highlighted the processes of operational DA, and

how the users are required to be able to supply NEMOVar with some netCDF

files for the background error covariance.

There are many methods for estimating background error variance and LSRs,

some of which have been mentioned in the previous chapter, in section [2.3].

Since my studies of these methods, I have been able to reproduce the two most

popular methods, the NMC and the H-L approaches. The details of our applica-

tions have been described in the following section, with some preliminary results.
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After our first practices with the two methods, we then reviewed the results and

the applications. This lead to us forming decisions about our future research

and the way we want to compare our new approach with previous methods.

This decision and the justification has been given with our results, before we

then describe how the BAI method has been developed.

3.3.1 NMC Method

The NMC method has been described in more detail in section [2.3.2]. I do not

feel the need to recover the entire method, but the main equation that is used

to calculate the background error variance is as follows;

B ≈ 1

2
〈(x48 − x24)(x48 − x24)T 〉. (3.11)

After the initial ECM had been interpolated from IND12 to our model domain, a

year of assimilated AS20 forecasts has been produced by the MO. We have used

these files to facilitate the NMC method. The files supplied were 2-day forecasts

with hourly time steps, which could then be split into 24/48 hour model runs

when needed. The basis of the NMC algorithm is that for each day in the time

window, we compare the 24h and 48h forecasts and store the difference, at the

end of the time window an average of the square is taken.

Figure 3.3 shows a graphical representation of the NMC algorithm, the mention

of assimilation as the starting point is because there should be a clear distinction

from assimilated model forecasts and original model forecasts, this distinction is

based on whether an assimilated restart file is used. The interpolate flowchart

box represents the process from the assimilated analysis vector into an assimi-

lated restart file for the ocean model. The result of this process is the background
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Figure 3.3: NMC operational application graphic.

variance in a 2D surface field over our domain.

Due to the balance operator the only variable we can do this for is sea sur-

face temperature (SST), since the others require post-processing to remove any

balanced component of the error and temperature is treated in totality. This

additional step uses ocean dynamics and climatology to determine the expected

correlation between variables, unfortunately I was unable to dedicate time dur-

ing my research to create this. The general consensus from my supervisors was

to only use temperature for any assimilation trials, we can produce background

error for other variables but including them into NEMOVar is where the difficul-

ties of balanced and unbalanced error occurs.

A common flaw of the NMC method is that it has a tendency to underestimate

the background error, this is due to the increase in accuracy and resolution of

ocean models the resulting difference between model runs after only one day is
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reduced. Due to this trend, the NMC error variance is scaled to accommodate

for the underestimation, often the H-L method can be used to determine what

scaling factor the NMC needs. Since the NMC method will require scaling, and

as it does not innately produce a LSR estimate it will be heavily reliant on the

addition of another method for complete error estimation.

Figure 3.4: Background error SDV estimate from the NMC method using SST model
forecasts during the winter season (December-January-February).

Figure 3.4 is an example of our applications for the NMC method, without

applying any scaling factor. The range of variation for the NMC is very low,

and the general average estimate is below 0.15 degrees Celsius and the maximum

below 0.25. This seems to be a visualisation of the underestimate for background

error that had been noted by other researchers [Bannister, 2008].
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3.3.2 H-L Method

The H-L method has also been described in depth within the previous chapter,

section [2.3.1], and this method has also been applied to the AS20 ocean model

and assimilation. However, one of the main differences between the NMC and

the H-L, is that the basis for this estimation is the use of innovations as opposed

to model forecasts. The general assumptions associated with this method is

that we are able to separate the background error and observational error since

the observations are uncorrelated, and they will have zero error covariance at

non-zero separation. The H-L method also requires assumptions about cross-

correlation between observation and background errors, and between variables,

where they are also considered to be zero. The result is that the innovations;

yo(v, r)− xb(v, r) = d(v, r) = ε(v, r)− η(v, r), (3.12)

Can be used to produce an equation for background error and observation error,

at zero separation, and just background error at non-zero separation,

(d(v,0))(d(v, r)) =


εε+ ηη r = 0

η(v, r)η(v, r) r 6= 0

. (3.13)

In the above equations, r is the relative position vector, which is relative to

the current grid point of error estimation, and the observational error and back-

ground error are ε and η respectively. We use the overbar to represent an average

in time, where we are assuming ergodicity, this means the left hand side of equa-

tion (3.13) is synonymous with the innovation covariance since we also assume

that innovations are unbiased.

d(v, r) = 0 (3.14)
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Cov(d(v,0),d(v, r)) =
(
d(v,0)− d(v,0)

)(
d(v, r)− d(v, r)

)
(3.15)

The steps between equations (3.12) and (3.13) have been described in section

[2.3.1], where we have now combined the zero-separation and non zero-separation

equations in one piecewise function. These equations justify how the H-L method

is able to extract the background and observational error from the innovations,

however in operational applications of the method, so long as sufficient data is

supplied, there is no need to do any additional steps.

For our application, the first step is to create the innovations from the assim-

ilation feedback files. These files include observational data and model data

interpolated into model space, these are one of the natural output files from a

NEMOVar run. We were supplied with a year of feedback files from the AS20

assimilated model runs to produce the relevant statistics that we required.

Once we have this data we create a loop over all grid points on a coarse grid, of

∼30 km grid resolution and for each point calculate the innovation covariance.

The innovations are then placed into 30 km bins of relative distance r, this is the

one dimensional magnitude of their relative position. We must bin the innova-

tions in order to be able to calculate the covariance, as the observations location

changes per day and we would not have enough data consistently located to pro-

duce a robust statistic in this way.

When the innovation covariance has been made we can then apply a curve fitting

scheme. In order to do this we need to supply the scheme with a function to fit

the data to, for this we use an interpretation of the diffusion operator. A common
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assumption is the background error covariance is accurately approximated by two

Gaussian functions for mesoscale and synoptic length-scales.

f(r) = V

(
αe

r2

2L2
Mes + (1− α)e

r2

2L2
Syn

)
(3.16)

This function is used to apply a curve fitting scheme to the innovations, but

ignoring the innovation covariance from r = 0. Using equation (3.13) and only

innovation covariances from non-zero separation, the assumption is that the func-

tion that is estimated will be done so from the background error. Then this curve

is extrapolated to r = 0, and hence returns an estimate for background error vari-

ance and LSR, as well as the observational error variance.

This curve fitting process can be seen in figure (3.5), where the large spread of

data still has an average within each bin that seems relatively consistent with the

concurrent bin. This demonstrates the application of H-L and the assumptions

working effectively, this can be seen as a manifestation of the central limit the-

orem where we may consider the innovations to be independent random variables.
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Figure 3.5: A graphical representation of the H-L method using real innovation data
(small green circles), binned average (large black circles) and curve fitting (red line).

Figure 3.6: Background error SDV for temperature, produced using the H-L methods,
using observations from the winter season (December-January-February.)
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The H-L method has a noticeably higher average error SDV than the NMC

method, since we do not know the true background error we do not know which

is the best approximation. Following on from the literature review we do expect

the H-L average to be higher than that of the NMC, as the common weakness of

the NMC is to underestimate error. This may be positive evidence for the use

of innovations to infer background error as a more reliable statistic.

It is important to note that this error was produced on a coarse grid, and then

interpolated to this model grid using simple linear interpolation and a general

smoothing filter. Despite this the SDV is able to show trends of high error and

low error for different locations within the domain, and this is an expected be-

haviour of the background error.

3.4 Justification

As was mentioned in the introduction to this section, after our initial experimen-

tation with the error estimation methods, we came to a general decision about

the future of our research. Despite being able to produce the NMC error SDV,

we do not think that the comparisons for this method yields enough benefit to

further refine the method. Instead, for the remainder of my studies I focused on

only comparing the H-L method with our novel method.

Table 2.1 in chapter 2 gives an overview of the positives and negatives of the

methods in theory, but for our practical applications we had other contributing

factors to our choice. The main cause of this was that we did not feel that the

error estimation achieved by the NMC method was suitable for our assimila-

tion with a high resolution regional model. The original result was very low,
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suggesting that the background error from model forecasts was minuscule, and

if true we would not need to apply the assimilation to improve model forecast.

This would be a very unlikely situation and instead we think that the method is

greatly underestimating the error. The only option for using the NMC would be

to scale the result appropriately, which would require a method like H-L anyway.

Another cause for this change was due to our plan for our novel method, we were

aiming to use the innovations to estimate the model error since the mathemat-

ical justification felt more grounded. By comparing one analysis of innovations

method with another we are expecting to better see the benefits of our changes.

If we were to compare with the NMC method some of the difference could be

explained by the sources of data.

After this point in my research I continued to further develop the code for the

H-L method, while working on the production of the novel method. I have op-

timized the code for computational cost and improved the functionality of the

script by including options for the use of SLA observations and varying sizes of

innovation datasets. We also made some changes to the binning procedure, as we

had been binning the innovations as soon as possible for the covariance function,

as this had sped up the run time, however computing d(v,0)d(v, r) and then

binning led to more accurate results. The newer version of this method is used

when we mention the H-L in the results section, this is why there are differences

in some of the future plots for H-L.
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3.5 Binless Analysis of Innovations (BAI)

Now we will discuss the novel research, how we have created an analysis of inno-

vations method for error estimation without using spatial bins, the BAI method.

With the principle assumptions of the general analysis of innovations, and our

changes to statistical analysis and unique method of solving for the background

error. Even though the use of the H-L as an analysis of innovations method

is still widely useds there are still some weaknesses; Firstly, it requires one to

spatially bin the observational data, where we may be reducing the accuracy of

our innovation statistics. The H-L method requires the use of bins to reduce

the computational costs significantly, when using the binned data instead of the

exact locations there are simplifications for the curve fitting scheme.

The H-L method also requires sufficient data in each bin to obtain a statistically

robust entry for the curve fitting [Bannister, 2008]. If the there is not enough

data in most of the bins, then the fitting of the model function might produce

spurious values. This means we require a large amount of observational data and

can make the method unstable in areas of the domain with sparse observations.

The following plots show how important sufficient data is, and how outliers begin

to weaken the statistical justification of the H-L when there is less innovation

data.
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Figure 3.7: A graphical representation of the H-L method using innovation data (small
green circles), binned average (large black circles) and curve fitting (red line).

The third weakness of the H-L method is that it is inherently one dimensional

and currently there is no way of extending it to multi-dimensional anisotropic

cases. This limitation is an extension of the previous two comments, even if a

2D extension for the curve fitting scheme was made, it will still require a large

enough dataset to sufficiently fill the additional bins.

For the BAI method we do not use any spatial bins, and instead use the combina-

tion of inner products and basis functions to create a robust statistical analysis,

which can be solved for the error variance and length-scale ratio. A specific

example is used to describe the BAI method, however the method itself has

applications to any general covariance modelling function, including anisotropic

functions. For this example we use an isotropic covariance model with a dual

length-scale Gaussian correlation, the same as was used for the H-L method. We

are able to produce an error estimation, without the use of bins, and the curve

fitting scheme, which generally reduces the free parameters required for analy-

sis. However, our method still uses statistical components and there is similar

requirement for the amount of available observations.
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3.5.1 Innovation covariance statistics

As a base for all analysis of innovations approaches, the covariance of innovations

is defined as a function of relative position between each point and all other

locations [Bannister, 2008]. The innovations contain information for both the

forecast and observational error such that;

d = y −Hxb = (xt + ε)− (xt + η) = ε− η (3.17)

The model and observational data can be seen as the true state, xt, plus forecast

error, η or observational error ε. The innovations allow us to remove the true

state leaving only information on the respective errors. The terms forecast error

and background error can be used interchangeably for our experiments, as our

only source of a-priori information is our assimilated model forecasts.

To calculate the covariance some assumptions must be made for the innovation

errors. The first assumption is that both the observations and forecast error are

not biased. This simplifies the equation of covariance for innovations to;

F (r) = d(t,0)d(t, r) (3.18)

Where the overbar represents an average in time or the expected value, which

are equivalent due to the application of the ergodic condition. We say F (r) is

the innovation covariance statistics, where r is the n-dimensional relative posi-

tion vector from the target gridpoint at 0, and finally d(t, r) is the innovation at

a certain location, for time t, in the range of all the days we have observations, T .

In practice, it is generally safe to assume that the forecast error and observational

error are unbiased, since most advanced DA schemes include a bias correction
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[Mogensen et al., 2012]. Our datasets for innovations have passed through a qual-

ity control and bias correction process before we received them, so the specifics

are not known.

When we substitute equation (3.17) into (3.18) the result is;

F (r) = (ε0 − η0)(εr − ηr)

= ε0εr − η0εr − ε0ηr + η0ηr

(3.19)

By assuming the covariance of observations and forecast error are uncorrelated,

and that for non-zero separation the observation errors are also uncorrelated, we

get;

η0εr = ε0ηr = ε0εr|r6=0 = 0 (3.20)

F (r) =


ε0ε0 + η0η0, for r = 0

η0ηr, for r 6= 0

(3.21)

As the number of observations increase the innovations statistics converge in

equation (3.18) to a function for forecast error covariance. Notice that from

(3.21), this function is not continuous at 0, where error variances include both

forecast and observation at zero separation [Hollingsworth and Lonnberg, 1986],

[Bannister, 2008].

The above equations and any definitions regarding the innovation covariance are

the same for the H-L method in section [3.3.2]. We have redefined them, with

some additional details, to be consistent with our notation for the remainder of
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the mathematical derivation. This is also to be consistent with the notation used

within our scientific publication for the BAI method.

3.5.2 Modelling the covariance function

In order to use the innovations to find a model for the background error we must

choose an estimate form function for the covariance error. An operational error

covariance modelling function is already used within NEMOVar to produce the B

matrix, and in this section we will use the same approach. However, our method

can be used in more general situations, if a better model for background error

is suggested (for instance, an anisotropic model). We will be using our method

for a covariance model defined by a linear combination of two isotropic Gaussian

functions;

f̃(r) = m1φ1(r) +m2φ2(r) (3.22)

With the basis functions;

φn(r) = e
−r2

2L2
n , n ∈ [1, 2] (3.23)

L1 and L2 are the short and long length-scales respectively. In practice, the basis

functions φn(r), are implicitly computed as solutions of the diffusion equations

with their respective length-scale, and were represented by matrix L in equation

(3.7) [Weaver and Courtier, 2001].

There are some practical difficulties when computing innovation covariances, for

the observations the summation over time in the covariance is impossible since

the observation locations constantly change. With the H-L method, this is where

the binning process occurs.
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For the BAI method, we use the observations at their exact location which can

change in time, as a result we cannot produce an error covariance for these

locations. Instead, we delay any statistical computation until the very end when

the statistics are performed for all data simultaneously, independently of their

locations.

3.5.3 Minimizing the norm

In order to produce the background statistics without spatial binning, we need to

find another process to find our function f̃ . A solution is found by first defining

a subspace Ṽ this is a subspace of the continuous function space spanning all

possible one-dimensional continuous functions. The subspace is defined as a

combination of two basis functions φ1 and φ2;

Ṽ = m1φ1(ri) +m2φ2(ri), m1,m2 ∈ R (3.24)

The purpose of this equation is to find the best form of function f̃(r) within the

subspace Ṽ that can approximate our background error covariance from F̃ (r).

With the main difference between and the subspace being that (3.24) is for a

subspace with all possible values for m1 and m2. The modelling function f̃ is

the particular function and values that best approximates F̃ . In a mathematical

form this is equivalent to finding a function that will minimize the following

norm;

∥∥∥f̃(r)− F (r)
∥∥∥ (3.25)

This minimization is with respect to the internal weighting factors m1, m2 Our

definition for the norm uses the inner product, ||x|| =
√
〈x, x〉, and hence we can
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use a natural definition of the inner product, such that;

〈g(x), h(x)〉 =
N∑
i=1

g(xi)h(xi) (3.26)

With N being the total number of inputs, which for our operational case is the

number of innovations, and then xi is the location for the innovation i. Now,

from appendix [A] we have that the minimisation of the norm is equivalent to

solving the following equation;

〈f̃ , φn〉 = 〈F, φn〉, for n ∈ {1, 2} (3.27)

Since in this case we are looking at a covariance we will use the relative position

ri for each grid point, instead of the location x, and we will replace g and h in

(3.26) with our components in (3.27), and hence;

N∑
i=1

f̃(ri)φn(ri) =
N∑
i=1

F (ri)φn(ri), for n ∈ {1, 2} (3.28)

Additional difficulties occur if we try to begin solving equation (3.28), as we know

all the components of the left hand side, except the unknowns we are solving for,

but we do not know the right hand side. Since F (r) represents the innovation

error covariance, this requires knowledge of f ′(ri, tj) = d(0, tj)d(ri, tj) for all

time tj, due to equation (3.18);

F (r) = d(0, t)d(r, t) =
T∑
j=1

d(0, tj)d(r, tj) (3.29)

Since we are limited here to the available observations and their locations, we

cannot compute F (r) exactly, it must be estimated by other means. We are

already assuming our innovations are independent in time when we use equa-

tion (3.18), due to ergodic conditions for the covariance. So we are able to use
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Kolmogorov’s strong law of Large numbers, see appendix [B];

N∑
i=1

f ′(ri, tj(i))φn(ri)
N→∞−−−→

N∑
i=1

F (ri)φn(ri) (3.30)

Where we have introduced a new term, tj(i), this is a random time in the range

from 0 to T for the specific index i, which makes f ′(ri, tj(i))φn(ri) also random.

The law also guarantees that the variance of the average of n random variables is

σ2/n. Where sigma is the SDV of the random variables, the variance will decrease

towards zero as the sample size increases towards infinity.

From (3.28) and (3.30);

N∑
i=1

f̃(ri)φn(ri) =
N∑
i=1

f ′(ri, tj(i))φn(ri) for n ∈ {1, 2} (3.31)

In order to compute the summation on the right hand side of equation (3.31) we

choose tj(i) to be times for which we have observations. By doing this we make the

statement that our choice for tj(i) is a random time, as this is completely unbiased.

Now, since the left-hand side can be separated into its known components, we

have;

m1

N∑
i=1

φ1(ri)φn(ri) +m2

N∑
i=0

φ2(ri)φn(ri) =
N∑
i=1

f ′(ri, tj(i))φn(ri) for n ∈ {1, 2}

(3.32)

Where we can create a matrix representation for (3.32);

Mn,m =
N∑
i=1

φn(ri)φm(ri), Tn =
N∑
i=1

f ′(ri, tj(i))φn(ri) (3.33)
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m1

m2


M1,1 M1,2

M2,1 M2,2

 =

T1
T2

 or

m1

m2

 =

M1,1 M1,2

M2,1 M2,2


−1 T1

T2

 (3.34)

By solving (3.34) for m1 and m2, we can then calculate the variance and length-

scale ratios by manipulating the covariance modelling function (3.22),

m1φ1(r) +m2φ2(r) = V
(
αφ1(r) + (1− α)φ2(r)

)
, (3.35)

and hence we can rearrange for V and α in terms of m1, m2.

V = m1 +m2, α =
m1

m1 +m2

(3.36)

3.5.4 Anisotropic BAI

As we have mentioned previously, the original goal was to be able to improve

the background error to include anisotropy, so once our method had been tested

and proven successful in isotropic conditions we moved to the anisotropic options.

Since the current method is able to weight multiple diffusion operators, and we

are able to freely define the covariance function f̃ , we decided to experiment with

alterations to the basis functions to express anisotropy. The first logical step for

this was to use the current length-scales in alternating combinations. We had

tested the isotropic function with separate x and y for relative location, such

that;

f̃(r) = m1e
x2

2L2
1 e

y2

2L2
1 +m2e

x2

2L2
2 e

y2

2L2
2 , (3.37)

Which was able to return the same values for m1 and m2 as the isotropic version
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of the covariance function. This then proves that we are able to separate the

relative distance into relative location, without invalidating the method. We

then created our first attempt at using a simple anisotropic covariance function;

f̃(x,y) = m1φ1,1(x,y) +m2φ2,2(x,y) +m3φ1,2(x,y) +m4φ2,1(x,y), (3.38)

φn,m(x,y) = e
x2

2L2
n e

y2

2L2
m , n,m ∈ [1, 2]. (3.39)

We have been able to use our BAI method with this anisotropic covariance model

to produce the error coefficients. We can then use this equation to extract values

for SDV and a variety of LSRs, as follows,

f̃(x,y) = V
[
v
(
w1φ1,1(x,y)+(1−w1)φ2,2(x,y)

)
+(1−v)

(
w2φ1,2(x,y)+(1−w2)φ2,1(x,y)

)]
.

(3.40)

Where we say that; V is the error variance, v is the anisotropic-isotropic weight-

ing, w1 is the short-long LSR, and w2 is the longitudinal-latitudinal LSR. We

show the anisotropic results in the next chapter, when we discuss the general

results of both the H-L and BAI method.

This is one specific option we have for defining the covariance function f̃ , but

there is many different combinations that could be used. We have attempted a

few examples and found that much further research would be needed to find the

best format for quantifying anisotropy. We also found that our original aim to

create an anisotropic background ECM would not be do-able within our time
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frame, we feel our BAI method is a good first step to solving this, as it allows for

anisotropic quantification of error, but research for an appropriate anisotropic

background error covariance functions is required before we can implement this

into DA.

3.6 Summary

In this chapter of the thesis we have described our operational use of data as-

similation to create an improved ocean model forecasts. Where we are using

the observational and model data in combination to create a cost function, with

weightings based on the inverse of their respective error. This process was de-

scribed in more detail in the introduction chapter, including how Var was origi-

nally created from Bayes theorem.

We have used the NEMOVar analysis, with our NEMO model, the AS20, to

successfully improve the forecasting ability. This was created in collaboration by

the POFC and the MO, with their research project for the UAE oceans team,

and then I was given access to this system.

The assimilation system itself is controlled by the Rose and Cylc task configura-

tion and work flow scheduler. Once available I have familiarised myself with this

system and translated my knowledge from the theory of DA to the operational

suite, noticing where the methods deviate from standard DA into the more spe-

cific 3DIncVar. Although NEMOVar has options for other types of DA methods,

our plan was to try and improve the representation of the background error and

not assess the abilities of different DA methods.
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The original plan for our research was to create appropriate anisotropic repre-

sentation within the background ECM, this task has been of interest to many

researchers as the isotropic assumption is known to not be fully justified in all

areas. For us to be able to do this we needed to understand the process of

creating the background ECM for NEMOVar. The typical operational process

for creating the background ECM will use stored error SDV and LSR to model

the full matrix during the assimilation cycle. This process contains many com-

ponents, including; balance operators, diffusion operators, normalisation factors

and error estimation. We have spoken about this and how these components are

connected to our research.

While studying these components, we began replicating the two most common

operational approaches for error estimation, the NMC and the H-L methods.

The NMC is a method of using model differences to create a statistical proxy

and infer the background error. The H-L is known as an analysis of innovations

method, where observations minus model data is used to predict the background

and observational error variances, as well as the LSR for the background covari-

ance.

Once we were able to replicate the method and produce results, we quickly found

that there was a large preference for us to use the H-L method, as the analysis of

innovations gave a much more appropriate estimate for the error SDV and LSR.

This also led us to begin creating our own method using the basis for an analysis

of innovations approach. We aimed to use the method of error estimation to ex-

pand the covariance function into two dimensions, and produce an error estimate

that was able to consider anisotropic diffusion. With the overall plan for this to

then lead to the production of an anisotropic diffusion operators that could be
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used in the creation of the background ECM, and be weighted by the results of

our 2D error estimation.

The BAI method is able to estimate the error SDV and LSR, similar to how the

H-L method would, but we are using the exact locations of the observations as

opposed to the binned distances. By doing this we do not produce an innovation

covariance as the H-L does, but we are able to create a framework in which a

minimization of the norm between the covariance function and the innovation

statistics is able to lead to a solution for the error coefficients, and hence the

SDV and LSR.

We have not shown any results for our BAI method as this is reserved for the

results section [4], but we have been able to show the mathematical derivation.

This derivation shows how robust the statistics of the BAI method are, and how

we are able to use the general assumptions of the analysis of innovations to sepa-

rate the background and observational error. Our derivation uses a specific case

for the current NEMOVar assimilation that we are using, however the method

is flexible to use any background covariance modelling function, and this is how

we aimed to include anisotropy.

The general benefits of the BAI method over that of the H-L are due to; the

reduction in free parameters, avoiding the need to use spatial binning, and having

a straightforward option to include anisotropic components. The results will

show how the methods perform when compared with each other.
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Chapter 4

Results and Discussions

4.1 Introduction

During this section we want to evidence the benefits of our method in compar-

ison with the H-L method for estimating background error variances and LSR.

Previously we have mentioned in a few cases the shortfalls of the H-L method;

with binning the data, applying curve fitting algorithms, and being fundamen-

tally one dimensional.

Our focus for this thesis will be on the first two complaints of the H-L approach,

while our method does allow for additional dimensions, the benefits from this

will take future research to complete. We have included our experiments with

anisotropy in section [4.8], but the first step is proving the standard results and

validity of the BAI. We want to be able to show that by removing the data bin-

ning aspect, we are able to maintain a consistent comparison of computational

time for large observational datasets, while also creating a more reliable method

by removing unnecessary averaging or interpolation.

The second change that our method applies is the removal of any curve fitting

processes, this is the how H-L minimizes the norm and estimates the background
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error statistics, however it can be unreliable. From our examples we can some-

times create outliers from basic curve fitting schemes, and the result may require

some smoothing to create a usable error estimate. Another option would be to

use a more complex curve fitting algorithm, the downside to this is additional

computational costs and domain specific research of the innovation statistics. By

avoiding the curve fitting and instead using the inner product and basis functions

in equation (3.27), we are able to produce a robust solution and avoid the issues

mentioned.

Some of the issues with H-L are also issues with the BAI, we do also produce

some statistical outliers, and the BAI method may suffer in accuracy if we are

unable to provide a sufficient amount of observational data. In our experiments

we have used a year of 24-hour forecasts and observations due to the availability,

but most likely in fully operational models multiple years worth of data are used.

However, we believe that the fundamental mathematics of our method is able

to improve the reliability of the statistics, with the benefit of there being fewer

subjective parameters to define in order to estimate the error. In the remainder

of this section we hope to be able to show this by comparing the results of both

methods in a few scenarios including, subsets of observations and assessing the

differences in NEMOVar assimilated forecasts.

The evidence for our claims are based upon the following results; we have pro-

duced spatial plots for both the forecast SDV and LSR in section [4.3] for the

coarse grid and section [4.4] for the model grid. Then we have experimented

with the performance of the two methods using subsets of innovations in section

[4.5]. A mention for the results of both the H-L and BAI methods using the SLA

innovations is done in section [4.6]. The next result shown is the RMSE and

91



mean of assimilated model forecasts from NEMOVar runs, section [4.7]. Finally

we have given results for our anisotropic investigations in section [4.8]

4.2 Operational methodology

Our research has been purely focused on the Arabian Sea (AS), this is the area

of interest for the POFC due to their research project with the UAE ocean’s

team. This meant that models were produced, using the Nucleus for European

Modelling of the Ocean (NEMO) framework, for 1/20 and 1/60 degree resolu-

tion, this is the AS20 and AG60 ocean models respectively. For this research we

have only used the AS20 model and a 3D-Var suite NEMOVar. The DA compo-

nent was produced as a collaboration between the POFC and the Meteorological

Office (MO), under the same research project, and the innovation datasets that

we have used for our estimates of the error covariance, were provided by James

While and Isabella Ascione from the MO, using this same assimilation suite.

The original NEMOVar suite used interpolated (from the Indian ocean assimila-

tion IND12) SDV and LSR to compile the assimilation, then using this as a first

approximation for a year of 24-hour assimilated forecasts were produced and a

second set of error estimations was created using these forecasts. For an accu-

rate error estimation method, assimilated forecasts are required as this affects

the model data that will be used, and hence the model error we wish to estimate

will change. In the later sections we use the second iteration of error estimates

that were supplied by the MO as a comparison for our methods on the model

grid. The problem with using the MO error is that we do not know the exact

methods of production, and hence it cannot be used to comment on the specific

methodology.
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The AS20 ocean model covers; the Gulf of Aden, the Arabian Gulf, the Gulf

of Oman, and a large percentage of the Arabian Sea. The AS20 is a multi-

variate model and outputs temperature, salinity, SLA and velocity, which means

that the NEMOVar assimilation is also multi-variate and also produces improved

forecasts for these variables. A multi-variate assimilation suite, requires an addi-

tional step to balance the variables and account for any cross-correlation between

variables, as within the assimilation suite they are all assumed to be uncorre-

lated. The exception for this is the temperature variable, as this is considered

the control model variable that the other variables are balanced around. For this

reason, and due to the much larger availability of observations, the majority of

our experiments are for predicting background error covariances for temperature

only.

We have produced a background error estimate for the SLA as well, as our obser-

vational dataset includes SLA. However we are slightly limited, since we cannot

run NEMOVar with the result due to the balance operator. Despite this limita-

tion we are able to see some additional results for the efficiency of our method

with different observations, which is described in section [4.6].

The total observations available per season have been shown in the following ta-

ble, this is used to show some perspective on potential causes of changes within

the final results. The reason different seasons have a different number of ob-

servations available is usually down to the available satellites, but may also be

due to the quality control that is applied to the observations for that parame-

ter. Any outliers in the observational data are removed before being used in the

assimilation or the error estimation processes.
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Table 4.1: Number of available observations for SST and SLA per season.

SST SLA
Winter 4736992 29194
Spring 5230179 36038

Summer 2003976 37790
Autumn 4250507 41025

The background error covariances have all been estimated using a series of python

scripts that follow the literature in sections [2.3.1] and [2.3.2], and further de-

tails of operational applications for them has been given in the methods section

[3]. For the reasons of computational costs an additional coarse grid has been

produced, which is the same as the model grid of AS20 except that the grid

resolution is reduced from 5km to 30km. This reduces the complexity of the al-

gorithms (from ∼ 80000 to ∼ 2500 grid points) while maintaining an appropriate

level of accuracy. These results were then interpolated into the model grid for use

in NEMOVar, and both model and coarse grid results are shown in the following

sections. For both methods the same coarse grid and spatial interpolations were

used.

The error variance and LSR that are used within NEMOVar have a specific

format due to the restraints that are applied by the assimilation suite itself.

NEMOVar uses netCDF file format for both error estimation components, and

when we interpolate from coarse grid to model grid, we also convert from .npy,

saved Python array, to .nc, netCDF format. Other restrictions are applied so

that we can decrease the cost for production and minimization of the cost func-

tion, the details for this were mentioned in the literature review [2]. Since the

cost function uses the CVT, the background ECM must be have a real square

root matrix and as a result must be positive semi-definite.
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NEMOVar requires the error SDV and square-root of the length-scale ratios,

instead of our variance and ratios. Before we use our error estimation outputs

in any operational assimilation we must make changes to allow for this. First is

that we square root the error variance, which means that we cannot allow for

any negative values, and the second is to square root the LSR which is more

restricted. Since both weights need to be square rooted, neither weight can be

less than zero or greater than 1. These limitations are applied when converting

to the model grid, but the coarse grid represents the results directly from our

application of the methods before any interpolation.

4.3 Spatial comparisons - Coarse grid

The results of both methods are shown below, for each method they are split

into the four seasons, and then also split into the error variance, and error LSR.

These are the two defining parameters for the entire background ECM which

cannot be stored, and instead the values of the full matrix will be modelled by

the assimilation suite when required.

The outputs shown in this section are on the coarse grid for the AS20, this is

the raw data that is produced from our methods. Then the general limitations

briefly mentioned in section [4.2] is applied as well as some simple smoothing,

this is to prepare them for use within the NEMOVar assimilation suite. It is

apparent in figures 4.1 and 4.3 that both of the methods produce similar re-

sults, due to the fact that the fundamental mathematics have the same aim. To

produce a statistical representation of the innovation error, and then minimize

any differences between the statistics and a covariance function representing the

background error. By assuming both methods are working correctly they should

produce similar results, since the statistics and the aims are the same. Any differ-
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ences in the spatial comparisons will be due to the computational differences or

differences between statistical reliability of the methods for the BAI and the H-L.

The following plots have been produced using all the available observational

datasets for satellite data and the respective model runs, which will produce a

set of innovations statistics. As we have mentioned earlier, we must be prepared

to consider domains and variables which will not have this large data availability,

and still produce a reliable estimate for the background error variance and LSR.

We will discuss innovation subsets and their affect on productivity in section [4.5].

Figure 4.1 represents the SDV from both the BAI and the H-L method on the

coarse grid, for there respective seasons. After creating the error covariance

model we have solved for both the error variance, V , and LSR w1. Since in

NEMOVar the SDV are used instead of the variance, we have plotted the SDV
√
V . The contour range has been set with a minimum of 0.2 and a maximum of

0.8, this is then kept consistent throughout for all error SDV plots. Any areas

which do not have observational data have been masked, as we cannot produce

values for them, and any negative values have also been masked, since negative

values cannot be square-rooted.

Figure 4.2 is the LSR for the short length-scale diffusion, the long length-scale

weight will therefore be 1 minus the plots. I have not included this here as the

important ratio between the two can be inferred from just the one image, per

method, per season. In essence, for the plots in figure 4.2, where the values are

closer to 1 more weight is being placed on the short scale diffusion and for the

lower values the long scale diffusion has more influence. In practical covariance

modelling, there is no reason we cannot support a negative weight, (or one of the
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weights being greater than 1) for either short or long scale, however the current

functionality for NEMOVar prohibits this. Despite this the images here have

not been limited, instead we have just plotted the weightings between 0 and 1.

We have done this because it makes it much easier to visualize the long scale

weighting as one minus the image, 1−w, than the square root of one minus the

values that are plotted being squared,
√

1− w2. The depth profiles for the LSR

of both the BAI and the H-L were estimated using a year of model data with

the parameterisation mentioned in section [3.2.2].
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(a) Winter : H-L (b) Winter : BAI (c) Winter : BAI - H-L

(d) Spring : H-L (e) Spring : BAI (f) Spring : BAI - H-L

(g) Summer : H-L (h) Summer : BAI (i) Summer : BAI - H-L

(j) Autumn : H-L (k) Autumn : BAI (l) Autumn : BAI - H-L

Figure 4.1: The forecast error SDV on the coarse grid for AS20. Produced by either
the H-L or BAI methods with SST, for each season. The third plot in each row demon-
strates the BAI minus H-L, and it is important to note the unique colour bar for these
which is centered around zero.
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(a) Winter : H-L (b) Winter : BAI (c) Winter : BAI - H-L

(d) Spring : H-L (e) Spring : BAI (f) Spring : BAI - H-L

(g) Summer : H-L (h) Summer : BAI (i) Summer : BAI - H-L

(j) Autumn : H-L (k) Autumn : BAI (l) Autumn : BAI - H-L

Figure 4.2: The short forecast error LSR on the coarse grid for AS20. Produced by
either the H-L or BAI methods for SST, with four independent seasons. The third plot
in each row demonstrates the BAI minus H-L, and it is important to note the unique
colour bar for these which is centered around zero.
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For SDV the seasonal trends are very consistent through both methods, suggest-

ing a rise of SDV for error in the warmer seasons, specifically summer. This is

supported by the general increase in temperature for these months, as we would

expect an increase in error to follow. This increase in error is only true in an

absolute sense and would not be the case if we were to normalise the data or use

a Coefficient of Variation (CoV). The CoV is a relative error and would remove

any component of our estimation that may be dependent on the seasons, other

than that which is due to the data availability shown in table 4.1. However,

NEMOVar is configured to use the SDV and LSR to estimate error and hence

we have shown these statistic instead of producing the CoV.

There is also large peaks of error SDV in the coastal regions and these areas can

be more difficult to model accurately. Due to the addition of ancillary river and

tide data as well as a requirement for optimum boundary conditions, there is

more complexity in the model in these areas. We also believe that with less data

availability in the summer months, both methods will struggle to produce an es-

timate for the error with the same reliability, due to the weakening of statistical

justifications. This affect is expected to be minimal for the SDV, and to have

greater affect on the LSR estimates as it is more sensitive to the accuracy of the

statistics.

The LSR plots show a higher variability throughout the domain, again showing

peaks of obscure behaviour in warmer seasons, and noticeable changes in the

coastal regions. It is difficult to justify some of the changes that we can see

here, but they are again generally consistent between the two methods. The

model differences show that the largest deviations between the methods often

occur at the high and low peaks. The initial assessment is that these represent
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the sensitivity to the availability of data for the LSR, as there is less data the

methods fluctuate from the ideal solution in different ways. This is support by

again noting the seasonal trend, whereby the seasons with less observations have

increased peaks and troughs, but also larger model differences.

The higher spatial fluctuations can be justified as still providing an optimum

answer for the models error LSR, as there is no definitive reason that the 1-

dimensional error covariance for a specific grid point should be approximately

equal to its neighbours. Despite an assumption that the error correlation is in

some way caused by an underlying error within the model, which should be re-

lated to position or model inputs, this is not a necessity and the error correlation

weights can be spatially sporadic. It is also worth nothing that the dark red and

dark blue colors do continue to show a relative consistent rate of change outside

of the plotted range and not extreme rapid fluctuations. Although this may be a

result of the manifestation of the sensitivity to data availability noted in table 4.1.

There are multiple locations where we do see some domain specific trends, like

a higher weighting on the shorter length-scale for; the north-east coast, the Gulf

of Oman and towards the Gulf of Aden. Which does suggest that some physical

boundaries can influence the estimated optimum LSR, which we do expect in

some way. However it’s important to remember that due to the statistical na-

ture of boths methods, a lack of observations will have a negative affect on the

accuracy. This will explain some of the obscure behaviour that can be seen in

the summer and autumn seasons or in isolated coastal regions which do not have

much surrounding observations.

In the first two seasons, it is clear to see that both methods suggest a higher
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weighting for the longer length-scale within the open ocean areas. However this

does not seem to be the case on the southern border of the plot, where the Ara-

bian Sea would continue to more open ocean, both approaches weight the short

scale diffusion more. It is likely that this is due to the interpolation of lower

resolution model data into the Arabian Sea on this border. In order to run the

model, ancillary data is drawn from IND12 (Indian Ocean 1/12 degree NEMO

model), and the integration of this data may be the source of the weight on the

short scale error diffusion here. Assessing the AS20 model and its ability is not

the scope of this research, but I wanted to justify connections where we can to

comment on the accuracy of our implementations of the H-L and BAI methods

for error estimation.

Table 4.2: Mean and root-mean-square-error for the deviations of H-L minus BAI spa-
tial plots for SDV. (Degrees Celsius)

SDV Winter Spring Summer Autumn
Mean 0.01 0.02 0.04 0.02
RMSE 0.06 0.08 0.12 0.07

Table 4.3: Mean and root-mean-square-error for the deviations of H-L minus BAI spa-
tial plots for LSR. (Degrees Celsius)

LSR Winter Spring Summer Autumn
Mean -0.01 -0.01 0.01 0.01
RMSE 0.10 0.08 0.10 0.10

Using tables 4.2, 4.3, we can see that the differences between the two methods

are relatively small, and it is difficult to say whether any of the changes will be

an improvement or a hindrance to the estimate of the background error covari-

ance. In general it seems that the BAI estimates lower levels of error SDV than

that of the H-L, and a significant amount of these differences are visible near the

northern coasts and within the Arabian Gulf. This is clearer to see by looking at

the model differences in the previous figures, consistently for each season in the
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SDV the coastline stands out. These changes are continuous and do not seem

to be overtly reliant on the season, this is more likely to be some reflection of

how the methods use the innovation error, and the inference of background error.

We can also see a general increase for the BAI method in the LSR, with the model

differences gives more dark blue colours, which means that the BAI method is on

average giving more weight to the shorter length-scale. Although, it can be seen

in the spring and summer seasons that the BAI has an overall larger range for

its weightings. This range is due to the more negative values in the south-west

sea and larger positive values in the Gulf of Oman or north-eastern coasts. Some

more seasonal trends can be seen in the differences plots, in which we can see the

evenly spaced dark blue spots become more densely located towards the south-

west. We believe this is due to a decrease in data availability in these regions

over the seasons and is demonstrating a divergence between the methods based

on this availability.

It does appear that an increased overall range and notable seasonal differences

are a poor estimate from the BAI method however, there is no physical limi-

tation stating that the weightings should be positive, and it is the NEMOVar

assimilation that places restriction on the error LSR files. As a result we cannot

be certain which trend is a better representation of the true background error

SDV and LSR, and instead will need to produce some more diagnostics to judge

the methods.

4.4 Spatial comparisons - Model grid

In this section will show the model grid results for SDV and length-scale ratios,

to further support the similarities between the methods. We have also included

103



the set of error estimates that was given to the POFC by the MO as part of their

collaborations. Figures 4.3 and 4.4 are the same as Figures 4.1 and 4.2, but for

the model grid, and with the addition of the MO error estimates for compari-

son. For our implementations of the methods, the translation from coarse grid

to model grid begins by removing any outliers, removing all values outside the

allowed range and then interpolating the remaining values into the model grid

domain. For the variance the allowed range is any positive value, and for the

LSR the only allowed values are between 0 and 1.

After this change the same trends that were mentioned before can be seen, how-

ever the interpolation has smoothed some of the variability, by looking at the

LSR its clear that we have much less fluctuations than we did previously and

instead the results seem to have more location general formations. This is an

expected outcome from smoothing the raw data and removing the outliers. A

similar procedure is run by the MO when they convert from their coarser grid

to the model domain, but the specifics are unknown.

Now that a lot of the noise has been filtered out the remaining results show

only the more influential trends of the error estimation results, these have been

mentioned before but it is slightly easier to visualize them on the model grid. It

is also easier to see the similarities of the methods, where they both seem to be

highly in agreement with each other for important features of the background

error.

There is no new conclusions that can be drawn from the model grids, but due to

the uses of them its important that the reader is able to fully understand how

the conversion from coarse grid to model grid affects the SDV and LSR. These
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outputs are the ones that will be directly input into NEMOVar to produce the

background error for the assimilation forecasts in section [4.7].

The error estimates we have produced are similar to each other but stark differ-

ences can be seen between our results and those provided by the MO. The most

immediately noticeable of these is the difference in range, for both length-scale

and SDV. It is possible that this is caused by applying a harsher smoothing filter,

or by differences in application of the H-L method (we believe the method used is

a combination between H-L and NMC). However, since we do not know the exact

methodologies used in its production, we will mainly be comparing the results

of H-L and BAI with each other. When we assess the NEMOVar assimilation,

the current operational suite at POFC uses the MO error estimates, and we will

use this operational procedure as a control experiment.

It is not possible to claim that any method outperforms the other as we do not

know the true state of the model error, at this point we can only comment on

general trends and similarities. In general the spatial comparisons here strongly

suggest that we are able to successfully produce both SDV and LSR error with the

original analysis of innovation approach, H-L. With the changes to this method

that we have implemented to create the BAI method we are able to maintain

accuracy, computational costs and can improve upon the reliability of the math-

ematics used. Further experiments have been completed to view the capabilities

in areas of sparse observations and how the assimilation with input files from

each method compares.
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(a) Winter: H-L (b) Winter: BAI (c) Winter: MO

(d) Spring: H-L (e) Spring: BAI (f) Spring: MO

(g) Summer: H-L (h) Summer: BAI (i) Summer: MO

(j) Autumn: H-L (k) Autumn: BAI (l) Autumn: MO

Figure 4.3: The forecast error SDV on the model grid for AS20. Produced by either the
H-L or BAI methods, with comparison to the MO error. Using SST observations for
each season.
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(a) Winter: H-L (b) Winter: BAI (c) Winter: MO

(d) Spring: H-L (e) Spring: BAI (f) Spring: MO

(g) Summer: H-L (h) Summer: BAI (i) Summer: MO

(j) Autumn: H-L (k) Autumn: BAI (l) Autumn: MO

Figure 4.4: The short forecast error LSR on the model grid for AS20. Produced by
either the H-L or BAI methods, with comparison to the MO error. Using SST observa-
tions for each season.
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4.5 Innovation subsets

We have applied our methods of error estimation to the AS20 model by using

satellite observations and assimilated model forecasts. Both of the methods we

have applied use statistical representations of innovation covariances to estimate

the model error. Due to the use of statistics both methods have a reliance on the

availability of observations within the domain to strengthen the statistical inter-

pretations. In order to evaluate the methods and there abilities we have used a

subset of innovation to re-calculate our error estimates, using only a percentage

of the available observations.

Within these samples only a percentage of random observations per day are kept

and the same procedures are applied, this could be representing another domain

with less observations or potentially a system with stricter observational quality

controls. Both of which are possibilities and it is important to know that when

applying the BAI to new domains or variables we are able to maintain accuracy.

When we are using more than 50 percent of available observations the overall

results do not change much and the statistical approximations still hold well.

However when we begin to use a very small percent of our available data, we see

an increase in range for both methods. we have an increased number of negative

variance estimates, which will become invalid values in the SDV, and there is

also higher estimates of error in all the coastal regions.

Both methods maintain their trends for reduced percentage of observations, but

begin to create more noise as we use less data. The statistical analysis may

deviate from the true model error as the averages are computed over a smaller
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amount of inputs. This indirectly give the outliers a higher affect on the final

output, and generally weakens the reliability of our statistics for innovation co-

variances.

As we aim to compute averages over the seasons, and we predict that this average

will tend towards the true model error during this time window, then we will

wish to use all the observations that we can. It is safe to presume that for the

larger amount of observations the error estimates are closer to the true model

error, and we use this to create a discordance plot shown in figure 4.7 and 4.8.

The discordance will show us the rate of change, based on size of innovation

dataset, and give us information on the capabilities of the H-L and BAI method.
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(a) 100%: H-L (b) 100%: BAI

(c) 50%: H-L (d) 50%: BAI

(e) 30%: H-L (f) 30%: BAI

(g) 1%: H-L (h) 1%: BAI

Figure 4.5: Forecast error SDV plots after applying the error estimation methods, H-L
or BAI, with a percentage of the available SST observations. Producing error for the
winter season December-January-February.
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(a) 100%: H-L (b) 100%: BAI

(c) 50%: H-L (d) 50%: BAI

(e) 30%: H-L (f) 30%: BAI

(g) 1%: H-L (h) 1%: BAI

Figure 4.6: Short forecast error LSR plots after applying the error estimation methods,
H-L or BAI, with a percentage of the available SST observations. Producing error for
the winter season December-January-February.
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In order to mathematically assess the quality of both methods with reduced ob-

servational datasets, we use the discordance correlation coefficient ρ(p, q). Equa-

tion (4.1) uses the results from the full dataset, p, and each subset of innovations,

q, with the spatial covariance sp,q, and variance s2p. This is then shown in figures

4.7 for the SDV and 4.8 for the short LSR of our error estimation methods

ρ(p, q) = 1− sp,q
s2p + s2q + (E[p]− E[q])

. (4.1)

Figure 4.7: Average seasonal discordance for the SDV produced by either analysis of
innovations method. This seasonal average is for the year 2014, with only SST observa-
tions.
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Figure 4.8: Average seasonal discordance for the short length-scale weighting produced
by either analysis of innovations method. Seasonal average is for the year 2014, with
only SST observations.

The discordance has a negative relationship with the subset percentage, as the

percentage increases, the discordance decreases. This is to be expected, and re-

flects what can be see from the spatial plots of varying different samples. The

important factor is the steepness of the regression, and how the gradient changes.

A steep gradient suggests that a small increase in data set, will largely decrease

the discordance, and vice versa. When the gradient is shallow, we have a plateau

and we can assume that the estimates are approaching the true model error, as

there is only a small increase when using more data.

Both methods have a very similar gradient curve and this means that neither

can be considered to have a more rigorous statistical approximation. They both

appear to be using the innovation data to produce error estimates that are con-

verging towards the true value. It is also possible for us to state that the stronger

gradient with respect to the percentage of data, for the BAI curve, that it is ex-

pected to respond faster to an increase in data availability. Both methods have

a shallower gradient for SDV than the LSR as they approach the 100% dataset.
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Extrapolating the curves above 100% suggests that the error estimates have be-

gun to converge to the optimum forecast error, with the SDV converging faster

than the LSR. Suggesting that by using more data we would achieve a closer

estimate, but with very little change relative to the increase in data availability.

We also use the root mean square differences (RMSD) and bias of differences

to compare the results from varying innovation subsets, figures (4.9, 4.10). The

differences are between the results for the full innovation dataset and the ones

produced using subsets of observations. For this statistical analysis the BAI

method appears to perform better or equally well in comparison with the H-L,

with the only exception in the length-scale ratios in the 1% subset. We believe

that a possible reason behind an improvement in the results for our BAI method

is due to reducing the impact of outliers by no longer using the isotropic binning

of the innovations.

The bias results show some interesting characteristics of the error estimation

methods, and how despite the similarities in final results, for smaller subsets of

innovations the H-L begins to over estimate and produces a positive bias and the

BAI method produces an underestimate. These can be seen in figure 4.10 where

the points for BAI and H-L diverge.
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Figure 4.9: Annual RMSD for the error
SDV and short LSR produced by either
analysis of innovations method for
SST. This annual result is for the year
2014, with only SST observations.

Figure 4.10: Annual bias for the error
SDV and short LSR produced by either
analysis of innovations method for
SST. This annual result is for the year
2014, with only SST observations.

Table 4.4: Table of average RMSE
for NEMOVar innovations with each
season. (Degrees Celsius)

RMSE H-L BAI MO
Winter 0.3665 0.3659 0.3633

Summer 0.8244 0.8228 0.7924

Table 4.5: Table of average mean
for NEMOVar innovations with each
season. (Degrees Celsius)

Mean H-L BAI MO
Winter -0.0097 -0.0084 -0.0144

Summer -0.2359 -0.2325 -0.2057

4.6 SLA analysis

To further emphasize the impact of subsets of innovations, we have applied both

the H-L and BAI method to the SLA innovations. This dataset is much less,

at more than 100 times smaller dataset than the SST, which is similar to the

smallest of our subsets. We use this example to demonstrate how the data size

can affect the ability of the statistical analyses, when applying error estimation

techniques to sparsely observed variables.

The general results from the SLA analysis are a worse estimate of the model

error since a much smaller dataset is used and that the statistics will be a weak

representation of the true model error. This occurs when we are approximating

the background error covariance model to the innovations covariance, while we

115



have infinite data the statistics are an appropriate interpretation of the back-

ground error, but this is not the case for limited observation availability.

Within the SDV results, it is immediately noticeable that the SLA error esti-

mates contain more NaN values (white cells) within the wet grid points. These

NaN values are either a result of the limited data, or an issue with the analysis

of innovations approach. When there is no observational data for certain grid

points we cannot estimate the variance, but also, neither method aims to limit

the model to only positive values of variance. Both methods will only try to find

the best fit for the model to the statistics, which means that despite the majority

of the error variances values being a valid, when the error is small both methods

can return negative estimates. This error is more common with smaller datasets

since the statistical analysis fluctuates around the true error more.

We can also see that the range for SLA error is much lower, as the error variance

approaches zero there is an increased chance of NaN values. For the SLA analy-

sis we have set the range as 0 to 0.3, this is much smaller than the temperature

error variance, based on the nature of the variable. Temperature is measured in

Celsius, 20-30 ◦C, which has a much higher range respective to the changes in

SSH, which will be in metres and often less than 1 m.

The more interesting result from the SLA analysis is the short-length scale

weighting, this output has many differences to our result for temperature and has

a very large positive and negative weight. For us to include this into NEMOVar

assimilation, the majority of the values would be removed as they are outside

the range that NEMOVar accepts. The limitations for operational DA are set

up so that any background covariance model that is created is guaranteed to
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be positive semi-definite, and from our error estimates for SLA we would not

be able to produce this without post-processing. In general it appears that the

both of the error estimation methods have struggled to produce an acceptable

error variance and LSR, and this will primarily be due the limitations in data

availability.

There are also areas within the SLA results that have NaN values, before any

post processing, and this is a case of grid points where we have no observations

over the three month season. Without any data for certain locations its impossi-

ble to produce any error estimates here, the BAI and H-L are able to manipulate

the data to produce some error here, but interpolating as part of post processing

will give us a similar accuracy.

The LSR appear to be more sensitive to the availability of data, producing high

fluctuations when there is insufficient statistics. The seasonal trends of the SST

and SLA analysis proves this as they are consistent with the number of available

observations seen in the table in section [4.2]. Further evidence can be seen by

comparing the discordance plots for LSR. The gradient is generally very steep

and suggests it is not converging towards the true model error LSR with small

datasets. The inverse could be said for the error variance, the gradient of the

discordance is still relatively steep towards the lower percentages, but appears

to converge better than the LSR discordance.

4.7 NEMOVar assimilated runs

The aim for producing these error SDV and the LSR, is to then be able to run the

NEMOVar assimilation. The model grid results are the graphic representation

of the exact files that will be used to prepare the operational suite for AS20. We
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(a) Winter: H-L (b) Winter: BAI

(c) Spring: H-L (d) Spring: BAI

(e) Summer: H-L (f) Summer: BAI

(g) Autumn: H-L (h) Autumn: BAI

Figure 4.11: The forecast error SDV on the coarse grid for AS20. Produced by either
the H-L or BAI methods for SLA, with four independent seasons.
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(a) Winter: H-L (b) Winter: BAI

(c) Spring: H-L (d) Spring: BAI

(e) Summer: H-L (f) Summer: BAI

(g) Autumn: H-L (h) Autumn: BAI

Figure 4.12: The short forecast error LSR on the coarse grid for AS20. Produced by
either the H-L or BAI methods for SLA, with four independent seasons.
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have run two four-week NEMOVar assimilated model runs, one for the summer

and one for the winter. This produces feedback files with observational data

and model data interpolated into the observation space, allowing us to compute

the innovations, and we use these innovations as an assessment of forecast error.

Since the observation error will be consistent for each method, any change in

results between the methods will indicate a change in the forecast accuracy.

The NEMOVar runs we have done are for three types of error estimation, the

two methods mentioned so far in the results section, as well as the an error SDV

and LSR from the MO that is currently being used operationally at the POFC.

This acts as a control result, but since we do not know the exact methods of

production for this error, there is a limitation on the effective use of a compar-

ison. The two assimilation runs are for 19/12/2017 to 16/01/2018 (winter) and

14/06/2018 to 12/07/2018 (summer), which each uses a consistent model restart

file for each season with all 3 methods.

After the assimilation suite is run we use the innovations to produce a spatial

mean and root mean square error (RMSE) for each day. Since the first day is

produced from the same restart file all three methods will return the same fore-

casts. As time progresses each model run will produce its own restart for the

next day, and they begin to deviate from each other.
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Figure 4.13: RMSE and mean of innovations for temperature from a four week winter
NEMOVar assimilated forecast.

Figure 4.14: RMSE and mean of innovations for temperature from a four week summer
NEMOVar assimilated forecast.
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RMSE H-L BAI MO
Winter 0.3665 0.3659 0.3633

Summer 0.8244 0.8228 0.7924

Table 4.6: Table of average RMSE
for NEMOVar innovations with each
season. (Degrees Celsius)

mean H-L BAI MO
Winter 0.0097 -0.0084 -0.0144

Summer -0.2359 -0.2325 -0.2057

Table 4.7: Table of average mean
for NEMOVar innovations with each
season. (Degrees Celsius)

We have shown the average RMSE and mean in tables 4.6 and 4.7 respectively.

By comparing the summer and winter seasons we can see that the average fore-

casting ability decreases significantly. Since the innovations have non-zero bias

and the RMSE, or variability, of our error is much greater. This trend is mimicked

by all three methods, and is likely a representation of our model and assimila-

tions ability to produce forecasts. By revisiting figure 4.1, we can see that both

the H-L and BAI method predicted an increase in error for the summer season,

so this result supports the accuracy of our error estimation methods.

According to the average of the RMSE results over the two NEMOVar runs, the

error produced by the BAI and H-L perform similarly well, with the BAI being

slightly ahead. Both methods seem to be slightly worse than the MO error esti-

mation in general, but since we do not know the exact methods or datasets used

it is hard to determine the cause of this. We can also see on certain days that

the differences fluctuate and sometimes this is more, since the forecast errors are

based on the use of a seasonal average it is likely that the methods will more

closely resemble the true error on certain days, and be less representative on

other days, so a slight change in average does not discredit any method of error

estimation. Instead we believe it is safer to say that the binless approach is still

able to produce the error coefficients with the similar accuracy as operational

error estimation methods.
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4.8 Anisotropic BAI method

The original plans for our development of a novel error estimation method was

to be able to create a system that would produce anisotropic background ECMs.

This has been the aim of many researchers, as the isotropic assumption for back-

ground error is known to not be fully justified everywhere. However, there is

significant difficulties in altering the Var system to allow for flow-dependent com-

ponents. This is a result of the various preconditioning factors and normalisation

components, as well as the outcome from the use of the diffusion scheme within

the error covariance model which can become very complex when anisotropic.

We have described how we produced the anisotropic BAI method in section

[3.5.4], where we create a covariance function for relative position as follows;

f̃(x,y) = V
[
v
(
w1φ1,1(x,y)+(1−w1)φ2,2(x,y)

)
+(1−v)

(
w2φ1,2(x,y)+(1−w2)φ2,1(x,y)

)]
.

(4.2)

In this we have said, V is the error variance, v is the anisotropic-isotropic weight-

ing, w1 is the short-long LSR, and w2 is the longitudinal-latitudinal LSR. For

higher values of v there should be more weight on the isotropic covariance, the w1

ratio is the same as before where the closer to 1 the more weight is placed on the

short-scale, and finally for w2 the larger results suggest weighting a latitudinal

stretch higher.
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Figure 4.15: The background error SDV produced using the BAI method with four 2D
basis functions to include anisotropy. This plot is using the SST observations for the
winter season. V

Figure 4.16: The background error long-short length-scale weight produced using the
BAI method with four 2D basis functions to include anisotropy. This plot is using the
SST observations for the winter season. w1
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We are able to produce the SDV and long-short LSR with reasonable similari-

ties to the isotropic version. The biggest differences are noticeable within figure

4.16 when comparing this to figure 4.2b, despite there being some consistencies

there are also stark differences. The changes to the long-short LSR suggests that

the BAI method is taking consideration for the anisotropic components of the

background error when we alter the covariance modelling function. This can also

be seen when we look at the anisotropic weight and the longitudinal-latitudinal

LSR, in figures 4.17 and 4.18 respectively.

In these plots it becomes much more difficult to make any positive conclusions

for the anisotropic variation of the BAI method. The results look very sporadic,

with almost no consistent shape across the domain. They also seem to show

peaks that are outside the typical accepted range for weighting, and even with

an extension to this range, as we have done for figure 4.18, there is still no location

specific trend. This does suggest that the method is incorrectly quantifying the

anisotropic weights, but we cannot say this for certain. There is a large possibility

that background error anisotropy does not follow a consistent shape, and is in

truth sporadic. We also have to remember that this is a simple application of

anisotropy to our covariance model using equation (3.5.4), and we do not know

how close to the true function this anisotropic version is.
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Figure 4.17: The background error anisotropic weight produced using the BAI method
with four basis functions to include anisotropy. This plot is using the SST observations
for the winter season. v1

Figure 4.18: The background error longitudinal-latitudinal length-scale weight produced
using the BAI method with four basis functions to include anisotropy. This plot is using
the SST observations for the winter season. v2
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V w1

v w2

Figure 4.19: The background error coefficients produced using the BAI method with
four basis functions to include anisotropy. This plot is using the SST observations for
winter 2014.
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Spring: V Spring: w1

Spring: v Spring: w2

Figure 4.20: The background error coefficients produced using the BAI method with
four basis functions to include anisotropy. This plot is using the SST observations for
spring 2014.
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Summer: V Summer: w1

Summer: v Summer: w2

Figure 4.21: The background error coefficients produced using the BAI method with
four basis functions to include anisotropy. This plot is using the SST observations for
summer 2014.
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Autumn: V Autumn: w1

Autumn: v Autumn: w2

Figure 4.22: The background error coefficients produced using the BAI method with
four basis functions to include anisotropy. This plot is using the SST observations for
autumn 2014.
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We have repeated the anisotropic application of the BAI method for all seasons

and shown them in the above figure, and there are some more trends that can be

noticed by viewing these results for each season. The first is the the short-long

LSR seems to have a strong relationship with the anisotropic-isotropic weighting.

The peaks in w1 seems to coincide with low points in v. If our method is produc-

ing accurate estimates for the true error covariance, this relationship suggests

that for a higher weight on shorter length-scales that there is a higher weight on

the anisotropic error basis functions. This would then suggest that the affects of

anisotropy are more applicable for shorter length-scale error covariances, due to

the fact that the flow-dependent components of error will have a larger impact on

localised covariance. What this means for the application of the anisotropic error

covariance is still unknown and is something that will be developed in the future.

What we have shown is that our method is able to produce an estimate of this

form, and this is a potential approach for future anisotropic error covariances.
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Chapter 5

Conclusion and future work

5.1 Conclusions

During the course of this thesis, and my research into DA techniques, we have

been able to investigate some of the state-of-the-art methodologies and produce

a novel error estimation approach. This required research into the core DA ap-

proaches of variational and sequential assimilation, alongside error estimation

and optimization components for the NEMOVar operational suite. Gaining an

understanding of the current systems used in advanced NWP for many research-

ing institutes around the world, has allowed us to find weaknesses and limitations

in the operational methods.

Once we had begun to grasp some of the core ideas and practical limitations

of DA with ocean modelling, we moved onto being able to replicate some of

these methods. Originally a simple DA suite was going to be independently con-

structed by the author, however the MO and POFC were working on a research

project that was able to supply a 3DIncVar suite with the AS20 ocean model.

From here we worked on understanding the suite, and becoming familiar enough

with it to alter some namelist definition, and reproduce some of the input files.

Specifically we wanted to be able to fully understand the background error SDV
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and LSR, which are used during the assimilation suite to model the background

ECM.

At this stage, while learning about the background error covariance modelling

procedures of DA our general research questions began to change. Our original

question we wanted to be able to answer was (1) What is the affect of apply-

ing the isotropic assumption on the accuracy of the assimilation analysis for a

regional model with active flow? The isotropic assumption is used within Var,

specifically for producing the background ECM using an isotropic diffusion op-

erator. By improving the representation of this modelling process to include

anisotropic error, we had hoped to improve the model forecast accuracy via DA.

However, we discovered that there are restrictions on the background ECM, due

to the construction process, that do not currently allow for anisotropic diffusion.

If we wished to produce a fully anisotropic ECM we needed to ask (2) What de-

velopments would be needed to implement an anisotropic background ECM into

NEMOVar?

We were able to subtly answer this question based on our studies of the AS20 op-

erational NEMOVar; the largest development would be creating the anisotropic

diffusion operator, this operator would then need to be able to produce positive

semi-definite ECM or find an alternate method of preconditioning that didn’t

require this. The likelihood being that multiple diffusion operators are in a

weighted combination is required for this, similar to how short and long length-

scales are currently used. This diffusion scheme would need to be able to use

a non-diagonal diffusion tensor, and the values of the tensor would require an

appropriate anisotropic quantification. This definition for anisotropy within dif-

fusion has been researched by [Weaver and Mirouze, 2012], where the process
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of using anisotropic and homogeneous diffusion is studied. Following this, we

then need to be able to normalise the diffusion. The normalisation matrix is

mentioned within [3.2.2] as well, but we do not describe the details of the op-

erational methods, as we did not replicate this. In principle, the normalisation

factors do not need to change unless the diffusion operator changes. Once these

were available, the next job is to estimate the error for anisotropy using a method

that can calculate multi-dimensional error weightings and variance (such as the

BAI). While we were investigating the required changes for a fully anisotropic

ECM we began to realise the expense connected to including anisotropy, and then

began to wonder, (3) Would the cost of developing a fully anisotropic background

ECM be worth the improvement in the final analysis? This was an important

aspect since there was no guarantee that the investment of time and research

would result in a more accurate model forecast. To definitively answer question

(3), the full anisotropic ECM would be needed, but this does not mean that

we cannot provide initial results which can then suggest a positive or negative

outcome.

These questions, and the evolution of our research led us to studying the current

error estimation methods, section [2.3], and asking (4) What are the benefits and

potential applications from the error estimation being replaced with an anisotropic

option? As we have mentioned, the background ECM is modelled using error

SDV and LSR. If we wished to progress the first step would be to create a novel

approach for error estimation that allowed for two dimensional analysis, as both

the NMC and H-L are fundamentally 1D and isotropic. This led to the develop-

ment of the BAI method in section [3.5], the isotropic application and then in

turn the experimentation with simple anisotropic options for error estimation.

We then ran experiments in chapter [4], where we tried to show how our alter-
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nate method of error estimation is a viable option. We have removed some of

the components from the H-L method, such as spatial binning and curve fitting

schemes, and hence created a more flexible option for error estimation. We are

able to use almost any definition for background error covariance modelling, in-

cluding multi-dimensional and anisotropic.

The results for isotropic BAI method are comparable with the H-L method, (fig-

ures 4.15 and 4.16) however the anisotropic results are more interesting, (figures

4.17 and 4.17) and help us answer question (4). We can see a similar value

for the error SDV and LSR from the anisotropic method, with some changes

in the extremes for LSR. When we view the anisotropic weights we struggle to

see any consistent shape. This could suggest that either; anisotropy is sporadic

and hence will be very difficult to model with a single seasonal value, our simple

anisotropic representation is not appropriate for the true background error, or

that the Arabian Sea and AS20 background error has no flow-dependence.

By investigating the error estimation methods and producing the BAI approach

we have begun to answer (4). We can see that the possibilities of anisotropic

error estimation is flexible and equal on computational costs. The difficulty with

the application of this is that we need to define the anisotropic covariance model,

and there is freedom to define this however best suits the true background error.

We have been able to state some of the requirements for the anisotropic back-

ground ECM in our answer to question (2).

In our attempts to answer question (3), we have discovered that it is very difficult

to have only one answer. Since there is multiple ways to develop anisotropy into

the background ECM, there may be other options that do not require the same
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costs. For our approach, with anisotropic BAI, we believe that there is a high

cost in terms of research to fully understand the optimum anisotropic covariance

modelling. However, if this research is done then there should be visible improve-

ments in the representation of the background error, and hence the accuracy of

the forecasts. The positive impact from anisotropy will be purely based on the

flow-dependence of the background error, if a domain and ocean model does not

contain flow-dependence then the cost will not be worth the improvement in

analysis.

This brings us to our attempts to answer question (1), this is a large question

with multiple difficulties. Once an anisotropic assimilation is created the answer

would be much clearer but without a working option our answers can only be

from our experiences and practices. I believe that the largest affect would be an

increase in cost, as I have mentioned. Despite the error estimation being compu-

tationally comparable if additional diffusion operators are required then this will

increase the processing time of NEMOVar. We must remember that it is gener-

ally known in the DA community and is stated in previous research, that the use

of the isotropic assumption is not justified, and still no anisotropic approach has

been developed for operational use. Since this is the case, then we would have

to expect that including anisotropy in specific cases will improve analysis, but

the cost of researching and developing this is known to be large. This is then

devalued by the fact that there is still the possibility that the background error

of any specific ocean model will only have a minor or negligible flow-dependence.
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5.2 Future works

Since we are claiming that the BAI method is valid, then the assumption is that

the weights which we receive are the best for the covariance model, but a differ-

ent anisotropic covariance model could be used. We have kept in mind during

this thesis that we may need to expand our research to investigate the potential

for other anisotropic covariance models. which would then be implemented into

the diffusion operator (the model and diffusion need to be consistent).

If the BAI method is producing the best weights for the covariance model, and

we can be sure that this model is the best for the background error then we

may need to investigate the application of the BAI in other regional models. By

experimenting with other domains we may find evidence for the positive use of

anisotropic weightings, and it may just be our domain which does not showcase

flow-dependence. If the results are consistent for multiple domains and more

appropriate error covariance models, then the third and final option, is that

including anisotropy for the background error will not reduce the differences be-

tween our estimated ECM and the true ECM.

There is another potential research following this thesis, the first is to spend

more time investigating the background error covariance of the AS20 model. If

we were to spend more resources into determining an optimum anisotropic back-

ground error covariance model then this we may show more evidence of using

anisotropy for error. Which will lead to us being able to improve the potential

for including anisotropic diffusion into NEMOVar with the improved covariance

model.
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If we cannot not find any evidence for flow-dependence in the AS20 model, then

anisotropy may not improve our forecast accuracy. It would be good to expand

our research so that an assessment process is created to determine the flow de-

pendence of the background error within current models. I believe that there is

potential for this to be done by adapting the current stage of BAI. Since it is

possible for us to quantify some aspect of the flow-dependence for background

error, we could determine the anisotropy that may be represented. Using this

we might find new ocean models and domains where including anisotropy would

greater improve the DA forecasts.

Since question (1) specifies that it is for a regional model with active flow, One

final option for would be to expand the application to a global models. The

anisotropy in a global model will likely be less deterministic, however since the

global resolution is lower, then the margin of background error is likely to be

higher and this may lead to more visible anisotropic trends. An early option for

this experimentation would be to use a global model and limit it to the domain of

the AS20, and then compare the results for the BAI method and its anisotropic

weightings.
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Appendix A

Equivalence in minimizing the norm

During section 3.5.3, we need to minimize a norm of innovation covariances, in

order to find the forecast error SDV and LSR. The minimization of the norm,

equation (3.25), is equivalent to solving the inner product of the innovations,

(3.27). Below is the proof for this equivalence.

min
m1,m2

∥∥∥f̃(r)− F (r)
∥∥∥ (A.1)

〈f̃ , φn〉 = 〈F, φn〉, for n ∈ {1, 2} (A.2)

From calculus we know that the local minimum occurs when the partial derivative

with respect to m1 and m2 are both equal to zero;

min
m1,m2

∥∥∥f̃ − f∥∥∥ ≡


∂
∂m1

∥∥∥f̃ − f∥∥∥ = 0

∂
∂m2

∥∥∥f̃ − f∥∥∥ = 0

(A.3)

Hence by solving both derivatives we can achieve an expression for our error

variance and length-scale. Before we can solve a derivative with respect to mn,

we use the naturally defined norm for inner product spaces, where;

‖x‖ =
√
〈x, x〉 (A.4)
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Therefore;

∂

∂mn

∥∥∥f̃ − f∥∥∥2 =
∂

∂mn

〈f̃ − f, f̃ − f〉 (A.5)

Which we use to solve equation (A.1) since;

min
m1,m2

∥∥∥f̃ − f∥∥∥ = min
m1,m2

∥∥∥f̃ − f∥∥∥2 (A.6)

Since we are not going to directly compute the inner product in this proof, we

will not define any dependencies of f or f̃ as it is not necessary, but they must

be treated as if they are consistent for the inner product to be well defined. In

order to solve the derivative we can expand f̃ , since the form function is a linear

combination of m1 or m2, but the statistics F are not;

〈f̃ − f, f̃ − f〉 =m2
1〈φ1, φ1〉+m2

2〈φ2, φ2〉+ 2m1m2〈φ1, φ2〉

− 2m1〈φ1, F 〉 − 2m2〈φ2, F 〉
(A.7)

∂

∂m1

〈f̃ − F, f̃ − F 〉 = 2m1〈φ1, φ1〉+ 2m2〈φ1, φ2〉 − 2〈φ1, F 〉 = 0 (A.8)

〈m1φ1 +m2φ2, φ1〉 = 〈F, φ1〉 (A.9)

We can then do the same for m2;

∂

∂m2

〈f̃ − F, f̃ − F 〉 = 2m2〈φ2, φ2〉+ 2m1〈φ1, φ2〉 − 2〈φ2, F 〉 = 0 (A.10)
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〈m1φ1 +m2φ2, φ2〉 = 〈F, φ2〉 (A.11)

Which when compared with the system of equations (A.2);

min
m1,m2

∥∥∥F − f̃∥∥∥ ≡

〈m1φ1 +m2φ2, φ1〉 = 〈F, φ1〉

〈m1φ2 +m2φ2, φ2〉 = 〈F, φ2〉
(A.12)

Our method is then a problem of finding m1 and m2, such that both equations

in (A.12) are satisfied. This creates a pair of simultaneous equations which can

be solved, for simplicity we write this as the following inner product;

〈f̃ , φn〉 = 〈f, φn〉, for n ∈ {1, 2} (A.13)
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Appendix B

Kolmogorov’s strong law of large

numbers

In section 3.5.3 we use the strong law of large numbers with the Kolmogorov’s

condition. There are many mentions of this theorem and proofs online, but we

have included a description of the main principles to potentially help the reader

understand our use of the law.

The law of large numbers is a probability theorem that helps describe the results

from performing an experiment a large number of times. The average of the

results obtained from a larger number of trials should be close to the expected

value and will tend to become closer as more trials are performed.

The law’s general principle is formed for the case where X1, X2,... is a sequence

of independent and identically distributed random variables, with a constant

expected value. For both the strong and weak law they state that the sample

average;

Xn =
1

n
(X1 +X2 + ...+Xn) (B.1)

will converge to the expected value. Xn → µ for n→∞. The strong law adds
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an additional component, saying that the sample average converges strongly to

the expected value;

Pr

(
lim
n→∞

Xn = µ

)
= 1 (B.2)

If the summands are independent but not identically distributed, then;

Xn − E
[
Xn

] a.s.−−→ 0 (B.3)

Provided that each Xk has a finite second moment and;

∞∑
k=1

1

k2
Var[Xk] <∞ (B.4)

Strong convergence is also called Almost Sure (a.s. for short), this version of the

law of large numbers is called the strong law because random variables which

converge strongly are guaranteed to converge weakly, in probability.
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Appendix C

Rose and Cylc

Rose is a toolkit for writing, editing and running application configurations. A

Rose suite is compiled to control each assimilation run, defining nameslist pa-

rameters and specifications for the high performance computing (HPC) to use

parallel processing, as well as any required task definitions. Using this configu-

ration Cylc takes control of the workflow, ensuring that no jobs begin processing

if their requirements are not met. Cylc is a workflow engine, a system that

automatically executes tasks according to their schedules and dependencies.

Figure C.1: Example Cylc workflow control for AS20 NEMOVar rose suite.

Rose also defines the jobs that will be run through the suite. Either by using
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the shell scripts for each job, or by building an application using flexible con-

figuration management (FCM). FCM is a modern Fortran building system, and

will create executables for parallel processing on the HPC. The larger jobs like

the ocean model and assimilation are built from Fortran scripts and then runs

as single applications.

Our operational suite begins by running pre-processing scripts preparing the data

and building the applications, then the first large job to be run is the NEMO

observation operator. Preparing the cost function requires the observation oper-

ator and background data, so the job of this NEMO observation operator is to

prepare both of these. From here the NEMOVar application is run, after some

smaller processes for bias correction and pre-processing of the error covariance

files. This application creates the full background ECM when needed, and then

is able to produce the cost function from the rest of the data. Once the cost func-

tion is minimized the NEMOVar task outputs the analysis increments, which are

systematically added to the model restart file over a specific time-period, IAU,

and finally the last job is the running of the ocean model with the new restart file.
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