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Optimal Hidden Markov Models 

Bill Frederick McKee 

Abstract 

In contrast with training algorithms such as Baum-Welch, which produce solutions that 

are a local optimum of the objective function, this thesis describes the attempt to develop 

a training algorithm which delivers the global optimum Discrete ICdden Markov Model 

for a given training sequence. 

A total of four different methods of attack upon the problem are presented. First, after 

building the necessary analytical tools, the thesis presents a direct, calculus-based assault 

featuring Matrix Derivatives. Next, the dual analytic approach known as Geometric 

Programming is examined and then adapted to the task. After that, a hill-climbing 

formula is developed and applied. 

These first three methods reveal a number of interesting and useful insights into the 

problem. However, it is the fourth method which produces an algorithm that is then 

used for direct comparison vAth the Baum-Welch algorithm: examples of global optima 

are collected, examined for common features and patterns, and then a rule is induced. 

The resulting rule is implemented in *C' and tested against a battery of Baum-Welch 

based programs. In the limited range of tests carried out to date, the models produced 

by the new algorithm yield optima which have not been surpassed by (and are typically 

much better than) the Baum-Welch models. However, far more analysis and testing is 

required and in its current form the algorithm is not fast enough for realistic application. 
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L Introduction 

1.1. Overview^ 

Since their development more than 30 years ago, IBdden Markov Models (HMMs) have 

remained one of the most successful tools for carrying out Automatic Speech 

Recognition [1-6]. They provide a mathematically rigorous approach to developing 

robust statistical speech models during the training phase, and then classifying unknown 

utterances at the recognition phase [7,8]. 

Training consists of finding a set of model parameters which maximize the probability of 

reproducing the training data. With this probability as the objective function, and the 

model parameters as the domain variables, training algorithms (such as the classic 

Baum-Welch) operate by hill-climbing fi-om an arbitrary starting location in the domain 

to a local maximum of the objective. 

Because the probability fiinction is particularly non-linear in the model parameters, little 

effort has been made in the past to search for the set of parameters which is globally 

optimal. The lack of literature suggests that authors may indeed have given up on the 

possibility, believing that "given any finite observation sequence as training data, we 

cannot optimally train the model" [9]. (See also [10,11]) 

The aim of the current research has been to challenge that view, by attempting to 

develop a procedure by which optimal Hidden Markov Models can be identified. 

This goal is, admittedly, very ambitious, so to keep the problem more manageable work 

has focused on the simplest possible case, in which a Discrete H M M is optimized for a 

single observation sequence. The following chapters survey some of the in-roads which 

have been made in this undertaking. 



1.2. HMMs and Speech Recognition 

Roughly speaking. Automatic Speech Recognition (ASR) is the attempt to have 

computers identify human utterances. One visualizes a 'phonetic typewriter" style of 

solution, where a human speaks into a microphone and the computer displays the correct 

string of words on a screen. 

This is an old subject of research [12], but the progress to date is still very Umited. The 

difficulties can be summarized in terms of the two 'dimensions' shown below (Fig 1.1). 

Where the characteristics of only a single speaker are involved, and the words are 

separated by clear gaps, recognition systems can achieve high levels o f success. But as 

the number of speakers or the fluency o f the speech increases, recognition accuracy falls 

ofiF dramatically. 

Historically, there have been two main approaches to ASR (see Fig 1.2). In the 

cognitive or Knowledge-Based approach [13], one attempts to elicit and then automate 

the rules used by knowledgeable experts. However, successfully capturing all of the 

complex interrelationships of speech redundancies in one comprehensive structural 

model has proved extremely difficult [14]. 

Alternatively, in the information-theoretic or Template Matching approach [15], a 

collection of prototypical patterns are collected into a reference memory. Then a sample 

utterance is compared against the complete set o f patterns, and a classification is made 

based upon the "best' match. This brute force approach is limited by the size of the 

reference memory and the complexity o f the comparison algorithm. 

Recently, Neural Network recognizers have come along [16] which bridge the gap 

between the older approaches. The neural network performs a type of matching based 

upon features that it 'learns' by itself from the training data. 
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Hidden Markov Models (HMMs) belong to the template matching approach, but are 

generally superior to the other members of that family. Within template matching, the 

usual procedure is for the training data to be clustered into classes, after which the 

centroid of each class is determined. Template matchers then retain the collection of 

centroids, which forms the reference memory, but discard the other available 

iirformation, such as the distribution of the clusters about their centroids. On the other 

hand, HMMs are able to incorporate this extra information and, consequently, tend to 

achieve better results. In fact, HMMs currently ofFer the best performance available for 

isolated word/single speaker recognition [17] and form the basis of almost all successful 

commercial and laboratory recognition systems. 



1.3. HMM Fundamentals 

A Hidden Markov Model can be regarded as a special type of finite state machine, with 

two important differences (Fig 1.3) . Unlike the standard finite state machine, the output 

fi-om states and the transition between states do not depend upon external inputs. 

Instead, the transition between states is a random process which satisfies the (first order) 

Markov property, whereby the choice o f state at time / depends only upon the previous 

state. Secondly, the sequence of states through which the model passes is not directly 

observable (hence the term 'hidden'). However at each discrete time / , upon entering a 

state, the model emits a signal which is observable. The choice of signal to emit is also 

made randomly, with the decision governed by a different random process for each state. 

Thus, a Hidden Markov Model represents a doubly-embedded stochastic process, with 

an underlying stochastic process which is not observable, but which can be sensed via 

another set of stochastic processes that produce a sequence of observations [18]. 

In using an H M M to model a body of data, one assumes that the process which 

generated the data was itself an H M M , and then attempts to identify the parameters of 

that underlying H M M (i.e. the parameters of its component probability distributions). 

According to the usual criterion, the best model (set of parameters) for a body of data is 

the one which exhibits the greatest likelihood of having generated that data. 

Thus while standard template matching techniques reduce each class o f training data to a 

single average, or prototype, with HMMs each class of training data is instead used to 

produce a stochastic model o f the process which was responsible for generating the 

training data. 

To carry out speech recognition, a library of HMMs is constructed, with a model for 

each item (word, syllable, phoneme, etc.) in the vocabulary. A test pattern comprising a 

sequence of observations is then compared against the reference HMMs by computing 
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the probability that each H M M might have generated that sequence. The H M M which 

displays the highest probability of having produced the test pattern is deemed the nearest 

match, and the pattern is so classified. 



1.4. Types of HMMs 

As per the above discussion, the elements which make up a Hidden Markov Model are 

(1) N, the number of states in the model. 

(2) m N X N matrix of transition probabilities, A , where element a,̂  
gives the probability of moving from state / to state J 

(3) an TV X 1 initial state distribution vector, n , where element TC, 
gives the probability that the model begins in state / 

(4) a set of observation probability distributions, one for each state, 

which give the probability of generating a given observation from 

within state j . 

Note that the actual connections between model states in the state diagram are realized 

by the A matrix. For example, when element a.j = 0 this indicates that no transition is 

possible (i.e. no path exists) from state / to state j, while a non-zero a., implies that a 

connection does exist. 

Starting from this basic specification, numerous variations of HMM are possible 

reflecting, for example, the topology (i.e. pattern of connections) of the state diagram, 

the form of the observation probability densities, the modelling of state durations, etc. 

Here we focus on the form of the observation probability densities. 

Perhaps the simplest such variation is the discrete density HMM (DHMM), in which the 

set of possible outputs are restricted to a finite set, or alphabet. Under this assumption, 

the state output distribution fiinctions are then discrete probability densities, and it 
becomes possible to replace the collection of N output distributions v^th a single N x 
M matrix, B , where M is the length of the alphabet, and where gives the 

probability of generating the alphabet entry while in state J . 



However, while there are physical systems where a discrete alphabet of observations is 

entirely appropriate, other systems (such as the speech signals under discussion) wouldn't 

normally be restricted to a finite set of outputs. For example, an observation 

might consist of a Z)-element vector of LPC coeflBcients derived from a fi-ame of 

speech samples. Then the components of the observation would be 

continuous-valued (within the precision bounds of the hardware involved), and the set of 

possible outputs would constitute a continuous Z)-dimensional space. 

In order to approximate a continuous system of this sort by a discrete HMM, two vector 

quantization steps are necessary. First, during model building, the continuous vector 

space has to be replaced by the finite alphabet, or 'codebook', mentioned earlier. 

Typically, the training data might be clustered, and the centroids of the clusters chosen to 

make up the codebook. Second, during model use, a preliminary pattern matching 

operation occurs, whereby each continuous-valued observation is compared with the 

codebook entries and replaced by the index of its nearest match. 

But in general, when the continuous-valued observations become quantized, the 

modelling of the physical system may become degraded [19]. Consequently, an 

alternative to the discrete HMM is the continuous-density HMM (CDHMM), in which 

the observations are not quantized but instead remain continuous-valued. This means 

that, for the D-eiement observations described above, each of the M state observation 

probabiUty distributions must take the form of a continuous density fijnction defined on 

the D-dimensional vector space. 

To model these continuous density fianctions, a result by Kolmogorov [20] is commonly 

invoked which states that a continuous function can be approximated to an arbitrary 

accuracy by a sum of suitably sized and positioned "bumps'. Any elliptically symmetric 

fimction (i.e. contours are ellipses) constitutes a suitable bump, and Z)-dimensional 

multivariate Gaussian shapes are typically used for the purpose. A sum of M of these 

shapes is referred to as a 'mixture*. Each Gaussian in the mixture can be described in 



terms of a Z)-element means vector and a Z) x Z) covariance matrix. Finally, a vertical 
scaling factor is required for each Gaussian to ensure that the total volume enclosed by 

the mixture equals 1 (as per a probability density) . 

In summary, one observes a trade-ofiF at work between the two diflferent types of 

HMM . The CDHMM offers a more precise model of the physical system, leading 

(hopefully) to greater recognition accuracy. This is oflfset by greater complexity, plus a 

larger number of parameters to be estimated from the finite body of training data. 

Over the course of time, many other types of HMM have been introduced [21,22,23] 

which attempt to refine the balance point of this trade-ofiF and/or provide additional 

features. But today almost all. applications aimed at speech recognition employ some 

form of continuous H M M . 

10 



1.5. HMM Calculations 

Regardless of the type of HMM under consideration, the literature identifies three basic 

problems that must be solved in order for the Hidden Markov Model to be useful in 

real-world applications [24]. Let the vector O = o^o^.. Oj represent a sequence of 

observations made over T consecutive time steps, and let Q = ^, ^ 2 •• represent a 

sequence of states. Then the three problems are : 

Explanation Given the observation sequence O and model M = (/I, B, n), compute 

the sequence of states, Q, most likely to have taken place as the 

observations were generated 

Classification Given the observation sequence O and model A/ , compute P{P\M), 

the probability of the observation sequence given the model. The model 

for which P(P \ M) is largest is generally taken as the best 'match' for the 

sequence of observations. 

Training Given the observation sequence O, compute the model parameters 

M= (A, B, n) which maximize P(0 \ M) 

The third of these tasks is by far the most challenging, and several solution methods have 

been suggested, although the favorite for most applications seems to be the classic 

Baum-Welch algorithm. This estimates the state transition probabilities by calculating 

expected number of transitions fi'om state / to state j 
Qjj = expected number of transitions fi-om state / (1.1) 

and similarly for the other parameters, depending upon the form of the model (discrete or 

continuous). 

11 



The Baum-Welch algorithm owes its popularity to several advantages : 

(a) It is mathematically sound, and is guaranteed to arrive at a solution 

to the task. 

(b) It is reasonably efficient. By employing a device (the doubling-up 

procedure) fi-om the mathematical toolbox known as Dynamic 

Programming [25], it is able to streamline an otherwise prohibitive 

amoxmt of computation to a manageable level. 

(c) It is readily adapted to handle multiple sequences of observations, 

which are typically necessary in order to provide sufficient data to 

make reliable estimates of all the model parameters. 

On the other hand, the Baum-Weich algorithm displays one potential disadvantage : 

namely, it may not produce the 'best' possible model for the given training data. To carry 

out the model-building calculations, the algorithm must be given an initial set of 

parameter values, which are then Ve-estimated' with each iteration of the formulas. In 

this way, the algorithm performs a type of hill-climb fi-om the initial set of parameter 

values to the final guaranteed solution. However, the final solution is only a local 

optimum of the objective fiinction P{0 \ M) , which may or may not be the global 

optimum depending upon whether the initial parameter values were located on the 

highest hill. In general, unless something of the 'landscape' of the objective fiinction is 

known, there can be no way of being certain that the global optimum has been achieved. 

12 



1.6. Goal of the Research 

As an alternative to the standard Baum-Welch algorithm, the goal of the current research 

is to develop a training procedure which is guaranteed to produce the global optimum to 

the objective fiinction for the given training data. 

This is no easy task. The problem of finding the global optimum has received little or no 

attention in the speech recognition literature in the past 30 years, presumably on account 

of its difficulty. Accordingly, the scope of this research project was limited initially to 

the case of finding the global optimum of P{0 \M) for a discrete H M M and a single 

observation sequence as training data. 

13 



1.7. Value of this Analysis 

Given that discrete HMMs are generally viewed as yesterday's technology, and that 

ahnost all real applications employ continuous HMMs with multiple training sequences 

per model, is there any point to an analysis of discrete HMMs with a single observation 

sequence? 

We believe so, for several reasons : 

First is the very practical reason that devising an algorithm for the global optimum HMM 

is a diflBcuh problem to solve. As suggested in the previous section, it makes sense to 

simplify the problem as much as possible in order to maximize the chances of finding a 

solution. 

A second reason is the possibility that insights gained during this analysis will shed light 

on the general situation involving continuous HMMs and multiple sequences. From this 

simple 'fruit fly* case, we may be able to make inferences about the more complicated 

cases. 

A third reason is the prospect of extending the solution in ways which turn it into a 

useful product. For example, the Global-Optimum algorithm (could it be found) might 

be extended for muhiple traiiiing sequences in much the same way that the Baum-Welch 

algorithm has been extended for multiple training sequences. Baum-Welch accomplishes 

this by calculating the numerator and denominator values of equation (1.1) for each 

individual training sequence, using the same set of model parameters (i.e. the current 

re-estimation) across all of the training sequences. Those numerators and denominators 

are then accumulated separately, after which the division step is performed as normal, 

and the process is repeated until convergence of the model parameters occurs. Imagine 

now that the Global-Optimum algorithm has been employed to produce the optimal set 

of parameters for each individual training sequence. Then the numerator and 

14 



denominator values of equation (1.1) are calculated for each training sequence, using 

the same forward-backward calculations employed by Baum-Welch—except that this 

time, the model parameters used with a sequence are the optimal set for that sequence. 

Finally, the numerators and denominators are accumulated, after which the division step 

is performed. In this way, multiple sequences can be used to produce an 'average* model, 

via a process which resembles a single iteration of Baum-Welch 

A final reason for carrying out the analysis is that this is a worthwhile problem in its own 

right. The lessons to be learned transcend HMM technology to include pattern 

recognition in general. For example, a global optimum HMM which has been derived 

for a sequence provides a very useful description of the amount and type of 'pattern' 

which may be present in that sequence. In addition, it is interesting to note that 

Discrete HMMs share certain similarities with quantum mechanics and with 

Superstring Theory (see Section 3.5.), so that progress within the context of Hidden 

Markov modelling might help to illuminate those disciplines also. 

* Making the assumption that different observation sequences are conditionally 
independent given the model, then 

Theoretically, this should provide a more satisfactory objective fiinction to be 
maximized for multiple training sequences-although no known algorithm 
actually uses it. 

15 



1.8. Value of the Global Maximum 

A similar question is, why bother with the global optimum, anyway? 

Levinson et al [26] appeared to raise this question in their 1983 paper, in which a known 

Hidden Markov Model was employed to generate observation sequences which were 

subsequently used to train other HMMs . They implied that 

(a) the original source model represents the 'best' model of the data, and that 

(b) the failure of the secondary models to share the parameter values of 

the original did not degrade their performance significantly 

Once again, we feel there are several reasons why the global optimum is worth finding 

and using : 

The use of global optimum models should help at recognition time by increasing the 

resolving power between speech models. Recognition accuracy requires that the 

probability of the test sequence given the correct model should be high, while the 

probability of the test sequence given an incorrect model should be low. Because the 

global optimum models are more highly focused on their respective training data, they 

should demonstrate correspondingly greater powers of discrimination. 

Secondly, i f the underlying mechanisms which relate observation sequences to HMMs 

can be understood, it may be that the global optimum is actually the easiest (most 

computationally efficient) to find-in the way that the highest, most visible, peak in a 

landscape is usually the easiest to spot*. The result could be an algorithm which is more 

computationally efficient than Baum-Welch. 

* As a second example, compare the effi^rt in finding the longest path through 
a network with, say, finding the second longest path. 

16 



Finally, the global optimum model may be necessary in terms of resolving a certain 

theoretical issue connected with model training : 

Model training has traditionally consisted of optimizing the objective function P{0^d) = 

Probability(0|A/), where M = {A,B,n) is the given model, and where the otimization 

is perfiarmed over the space of possible models. This objective function is amenable to 

mathematical analysis, yet perhaps a more appropriate objective is P{OM) (<•©• the joint 

rather than the conditional probability fiinction), for this reason-

When an HMM is Tdck-started' into action, it will generate a sequence of outputs [27]. 

The exact sequence will vary fi-om trial to trial as per the stochastic nature of HMMs, 

and yet one expects that, for a well-trained model, the training data will be typical of the 

outputs in the sense that the mean of the population of outputs will equal the training 

data. 

In other words, one wants a model M which satisfies two maximizations 

simultaneously-

it maximizes the likelihood of the training sequence over the space of models 

it maximizes the likelihood of the training sequence over the space of training 
sequences 

17 



Clearly, this is accomplished by optimizing the joint probability distribution, F(OM) > 

since 

^ ^ ^ / ^ ~ ^ handles the first condition 

^^^dO^ ^ ^ handles the second condition 

and the optimization of P(PM) performs both of these simultaneously. 

Assuming this reasoning is correct, bear in mind also that since 

PiOM) = Piom X pm 

then optimizing P(OM) requires both a large P(0\M) and a large PiM)-

Global optimum models ofiFer the largest possible P(0|A/) . If, in addition, one argues 

that , being the most Visible' (prominent), they naturally merit a larger likelihood of 

occurrence, P(M) , then the global optimum models also become the likely candidates 

for optinuzing P(OM) • 

18 



1.9. Organization of the Thesis 

This thesis discusses a variety of different attempts to solve the global optimization 

problem. To date, none of these has been wholely successfiil. To arrive quickly at the 

most promising attempt, the reader should skip directly to Chapter 5 . On the other 

hand, the less developed attempts do make indirect contributions, and so are included 

here for completeness. 

The first attempt was a straight-forward attack upon the problem using standard methods 

of calculus. The intention was to develop formulas for uncovering the complete set of 

optima and selecting the largest fi'om among them. 

The initial difficulty with this calculus approach is the very large number of partial 

differentiations which must be carried out *, and the equally large system of simultaneous 

equations which must be solved. Therefore, preliminary to this line of attack, 

mathematical tools were sought which could perform the differentiations as a block for 

all the elements of A simultaneously (and likewise for B and for n ), and which could 

also assemble those derivatives into appropriate matrix equations ready for solution. 

Suitable tools were eventually found, and are collected together under the title of 

"Matrix Derivatives" in Appendbc A . By and large, these tools were 'discovered* 

empirically without knowledge of existing source materials and, while many were later 

verified when sources came along, some have yet to be found in any other source. The 

exposition in Appendix A reflects this empirical development and makes little attempt 

at mathematical rigor, but merely presents the results as a primer for the mathematical 

operations carried out in other parts of the thesis. 

* one each for the elements of A ,the N xM elements of B, and the 
N elements of n 

19 



Armed with Matrix Derivatives, the way was clear to carry out the differentiations and 

attempt to solve the matrix equations. Chapter 2 presents some of the initial headway 

which was made with this analysis. Chapter 2 also establishes an upper bound on the 

solutions which occur within the interior of the solution space, given by 

m) 
where ^ = 2 

and where records the number of occurrences of codebook symbol k 
over the given training sequence. 

However, a shortcoming of calculus-based optimization is that it tends to focus on 

interior solutions only, and to ignore endpoint extrema on the boundaries of the solution 

space. Chapter 3 opens with a demonstration that the global optimum solution must 

occur on a boundary of the solution space, where the different boundaries correspond to 

parameter sets in which one or more of the elements of ^ , 5 or TI equal zero. 

Chapter 3 then goes on to show that these boundaries 

are equivalent to fi-agments of the original objective function 

include terms which reflect the state sequences the HMM might pass 
through as it generates the training sequence 

have differing dimensions (vertex, edge, plane, etc) according to the number 
of non-zero elements of A , B and n 

display a natural hierarchy (as a vertex can belong to an edge, an edge to a 
plane, etc) 

The final contribution of Chapter 3 is a mechanical procedure for identifying the list of 

fi^gments which is relevant for a specific model size and training sequence. 

20 



Having established the need for optimizing the boundary fi'agments, and having learned 

how to identify those fi-agments, what follows is a succession of attempts to determine 

the global maximum of a given fi^agment. 

The first of these is the Matrix Derivatives approach, now extended to deal with 

Segments. 

The second attempt involves a relatively recent optimization technique known as 

Geometric Programming, which is naturally suited to objective fiinctions of this form, 

and which turns out to be the 'dual' of the derivatives approach (as with 'primal-dual' 

methods in Linear Programming, for example). 

The third attempt uses a new hill-climbing procedure. Unlike the previous calculus-

based methods, hill-climbing cannot normally be relied upon to deliver a global optimum, 

unless the 'landscape' of the objective is reasonably well understood (the approximate 

location or, at least, the number of hills is known in advance). The intention here was to 

investigate certain formulas for nominating the initial starting point, to determine whether 

this new hill-climbing procedure, in conjunction with the 'right' starting point, would 

consistently yield the global optimum of the fi^gment. 

All three of these approaches threw up intriguing insights worthy of fiirther investigation, 

and all three were useful to what followed in the thesis. On the other hand, none of them 

could be developed sufficiently to achieve their stated goal of globally optimizing the 

fi^gment. Furthermore, their developments are quite 'dense', mathematically. For the 

latter two reasons, the thesis chapters which describe these approaches have been 

relegated to Appendices B , C and D , to be replaced by a summary in Chapter 4 . 
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The three methods of attack just described were all basically deductive in nature, and 

equally applicable to either the complete objective fianction or any of its Segments. The 

approach taken in Chapter 5 was the opposite of these : First, to collect examples of 

the global optimum solution for the complete objective function, and then attempt to 

induce the rules for finding them. 

Based upon the body of examples, usefiil patterns did indeed appear. It seems that, in 

the great majority of cases, the global optimum solution is given by a single-term 

Augment, generally of lowest possible dimension. But even when the optunum is 

produced from a multi-term fi^gment, this fragment contains a 'singleton' at its nucleus 

together with terms which are related to it in a distinctive way—much as a crystal grows 

around a 'seed'. 

Chapter 5 describes how these observations were converted into an algorithm for 

generating Hidden Markov Models, including the critical procedure for identifying the 

single-term 'seeds' from among the exponentially large number of candidate terms. It 

then describes a series of four tests which were carried out in order to help confirm that 

the new algorithm produces global optimum solutions. 

Finally, Chapter 6 offers a summary plus recommendations for fiiture work. 
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2. Interior Solutions 

2.1. Analysis using Matrix Derivatives 

Here we begin the search for Markov matrices A B & n which globally maximize the 

probability of reproducing the given training sequence, represented by P{o^ o^-.Oj) . 

The general plan of attack used within this chapter is the standard calculus optimization 

strategy, involving differentiation, etc. However, in order to cope with the large number 

of independent variables involved, the approach taken here is to express the objective 

function and the necessary manipulations in terms of matrices. The reader is referred to 

Appendix A for a tutorial on the differentiation of matrices and their use in expressing 

the relevant constraints. 

The objective is to 

Maximize 1' Diag(BZ)j.) A\.. A' BlzgiBD^) A' Diag(5£),) n 

- > . , ( 7 i ' l . l ) - V ( 5 1-1)-V(^ 1-1) 
IxN Nxl IxN N x M M x l N x l IxN N x N N x I N x l 

The first term equals P{o^ ..Oj) [28] and the remaining terms are Lagrange terms 

which express the constraints that n B & A respectively must equal Markov matrices. 

Note that 

Z), i s a n M x l column vector of zeros with a single 1 to mark the 

codebook symbol which occurred at time t 

Therefore BD^ extracts the A:* column of B, where symbol k 

occurred at time t 
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and D\2ig(BD) represents the diagonal matrix which contains BD^ 

along the major diagonal 

Note also that 

1 is a column vector (of appropriate size) consisting of all Ts 

the expression A!" 1 - 1 = 0 

or ^ XI = 1 

demonstrates that the rows of X each sum to 1 

and the X. are appropriate Lagrange multipliers 

To maximize P(o^02..0j) we 

perform a partial differentiation of the fiiU expression with respect to 

each unknown array, 

set each result equal to zero, 

and attempt to solve the simultaneous system of matrix equations 

for the unknowns 
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DifFerentiating-

w.r.t. n 

w.r.t. B 

w.r.t. A 

Diag(5D,) A DiagiBD^ A ... A D'lagiBD^) 1 

- X, 1 = 0 

Diag[l' Diag(5D^) A'.,. A' D'izg(BD^) A'] x nD,' 

+ Diag[r Diag(5Dr) ^V. . /4'] x ^ ' Diag(5D,) nZ)^' 

+ Diag[ ! • ] X ^ ' . . . A' Diag(5Dj) ^ ' Diag(5£>,) nD^ 

- X j l ' = 0 

Nxl IxM 

Diag(5£>,) 71 X 1' I)\ag(_BD^) A'... A' Diag(5£»j) 

+ DiagiBD^) A' Diag(BD,) nxl' UiagiBD^) A'... A' D\&g(BD^) 

+ Diag(5Z)rJ A\.. A' D'lagiBD,) n x V Di^g(BDj) 

- X 3 1 ' = 0 

NxlIxN 
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w.r.t. X, 

- ( T C ' 1 - 1) = 0 or 7t' 1 = 1 

w.r.t. ^2 

- (5 1 - 1) = 0 or ^ 1 = 1 

w.r.t. 3̂ 

- ( ^ 1 - 1 ) = 0 or Al = 1 

We have 6 equations in the 6 unknowns n,B ,A , X, , , 

From here, the standard procedure [29] is to : 

solve first for the Lagrange multipliers 

then substitute their values to get a reduced system of equations 

m A B Sc n 
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First the n equation-

Transpose... then post-multiply by n 

r Diag(5£)r) A'...A' DiagCBJDJ A' Diag(5£),) n = X, V n = X, 
scalar 1 

The left hand side equals P(o,..Oj.) , which we are trying to maximize. 

Therefore equals the (sought for) maximum value of the objective function 
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Next the B equation-

Post-multiply by 1 
Mxl 

Diag[r Diag(5Z)j.) A\„ A' Dizg(BD^) A'] TCZ);1 

+ Diag[l' Diag(5Z)r) A\.. A'] A' Diag(5£),) nD^'l 
• 

+ Diag[ 1" ] A'... A' Diag(5£>j) A' Diag(5D,) 7 t £ > / 1 = ^ 1' 1 

scalar I scalar M 

or 

Diag[l' DiagiBDj) A\.. A' DiagC^DJ A'] n 

+ Diag[ r Diag(BDj) A'... A' ] A' D'mg(BD,) n 

+ Diag[ 1' ] A'... A' Diag(5Dj) A' Diag(5D,) n = MX^ 
Nxl 

Now pre-multiply by 1' 
IxN 

1' Diag[r BiagiBDj) A'... A' Diag(5Z)j) A'] n 

r Diag[l' Diag(5£)^) A'... A'] A' Diag(5D,) n 

r Diag[r] A'... A' Diag(BZ)j) A' Diag(5D,) n = MVX, 
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or 

1' Diag(BD,) A'... A' Diag(5£>j) A' n 

+ r Di&g(BD;) A'... A' A' Diag(BD,) n 

• 

+ r A\.. A' DiagC^Dj) A' D\^g(BD,) n = MVX^ 
IxN Nxl 

The right hand side is M times the sum of the elements of X^. 

The left hand side is a series of objective fiinctions with successive occurrences of 

Diag(fiDj.) removed (or replaced by the identity matrix I ) . Missing out the proof, this 

is P(o, Oj-.Oj.) with successive removed 

—i.e. 

P(o,..o^) + no^o,.o,) +. . . + P(o,..o,.,) = MVX, 
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Now the A equation— 

Post-multiply by A' 

Diag(5Z),) 71 X rDiag(5Dy) A\.. A' DiagC^D^) A' 
Nxl IxN 

Diag(j5Z)2) A' Diag(5Z),) n x 1' DiagC^D^) A ... ^'DiagC^D,) ^• 
Nxl IxN 

+ Diag(5Z)r.,) ^'DiagC^DJ 7C x 1' DiagC^D^) A 

= y^vA' = 
Nxl IxN 

Q I f two matrices are equal, then their traces are equal 

(B ) The trace of a sum equals the sum of the traces 

(c) The trace of the outer product of two vectors equals their inner 

product: 

Tx{XY') = Y'X 
Nxl IxN IxN Nxl 

Consequently, 

r Diag(5D^) A' Diag(iBZ)2) A' x Diag(5D,) n 

+ 1' Diag(5Dr) A... A' \^\z%{BD^^ A x DiagC^DJ A Diag(5Z),) TI 

+ r Diag(5Z> )̂ A X Diag(5Dj..,) A ... A Diag(5£),) ic 

= 
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The right hand side is the sum of the elements of 7^ . 

The left hand side is / - 1 copies of the objective function. 

Thus 

or 
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2.2. Optimal Feasible Solutions 

The analysis can (and will) be continued along these lines. But for now, returning to the 

71 equation... 

Let L = Diag(J?Z),) A DiagC^Z)^) A ... A Diag(J?Dr) 1 = { LHS } 

Then the n equation states that 

L = \ l (2.1) 

which is a constant vector, whose value 

\ = the max. value of the objective function P(o, o^..o^) 

Up till this point, the solution space has been defined as the set of (A,B,n) triples 

which are Markov. 

Now, based on equation (2.1), a feasible solution might be defined as a triple for which 

L = Diag(5Z),) A D\?ig(BD^) A ... A Dl^giBD^) 1 

produces a column vector consisting of identical values. I f this L calculation doesn't 

yield a constant vector, the (A^ByU) triple must be ruled out as infeasible (i.e. not a 

stationary point). 

Finally, an optimal feasible solution is a feasible solution for which the constant value 

produced is the largest one possible (because that constant equals the value of P(o^ 

..Oj.) , which is to be maximized). 
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The remaining sections of this chapter will demonstrate that, within the interior of the 

solution space, 

an upper bound exists on the value of the feasible solutions 

(and, consequently, the stationary points), which is equal to 

M 
Y - n (?)'•* 

where T = 

and where the R vector is calculated as 

R = Z^r 
t 

and records the number of occurrences of codebook symbol k 

over the given symbol sequence. 

In other words, within the interior of the solution space, no {A, n) triple exists 

which possesses a constant vector L (feasible) which is greater than y (optimal). For 
any triple, either the L vector is not constant or, i f it is, that constant value is < y . 

(Technically, the proof is carried out over the interior of the 7i-space, which includes the 

interior of the {A,B,n) space as a subset.) 
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2.3. Proof o f the Conjecture 

2.3.1. Preliminary Problem 

The proposed proof relies upon the solution of a related, but simpler, optimization 

problem: 

Maximize the product x ̂  ̂  • • • 

n 
subject to the requirement that 2 ^j t ~ ^ 

For the special case « = 2 , this product can be written 

y f f = x^( l -x ) ' ' 

Dififerentiating 

pyr'{\ - x y - ^ x ^ ( l 'XY' = 0 

x ^ ^ ( l - x r ^ [ p ( l - x ) - ^ x ] = 0 

p ( l - x ) - ^ x = 0 ( f o r O < x < l ) 

(p + q)x = p 
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For the case when all of the r̂^ = 1 , we invoke the Arithmetic-Geometric Mean 

inequality [30], which states that the arithmetic mean of a set of numbers is never less 

than the geometric mean : 

for > 0 k = \ io n 

a^> 0 

and 2 *^jt ~ ^ 

then a j X j +a2X2 + ...+ anXn X2 - Xn 

with equality iflf x, = = ... = x„ 

Accordingly, let = ^ and invoke the constraint S ^ 1 

i i i 

Then ^ ^ 2 •-^^ ^ H E ^ y = H 

Raising both sides to the power n 

The upper bound is achieved i f f x, = X2 = ... = x̂  which, with 2 ~ ^ > 

impUes x, = = .. .= x„ = ^ 

In summary, to maximize xjX2 - xn where 2 ^j t ~ * 

set each x̂^ = ^ , yielding the maximum value (j^ 
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For the general case, we can apply the techniques of matrix differentiation 

Let ^ _ / 1 / 2 rn 
^ " 1 2 ' ' 

Then the task is to maximize 

e - X ( ^ ' l - l ) 

where 

and X is the Lagrange multiplier 

Differentiating with respect to X 

- X I = 0 

or 

^1 

xn 

= XI (2.2) 

Then 

eX' 
^1 

= XX'l 

e T = X where 7" = ^ ' ' i 
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Substituting for X in equation (2.2) , 

e DiagCA!) 

^1 

xn 

^1 

rn 
Xn 

''1 

rn 

= eTl 

e TD\3igiX) 1 

= eTX 

and 

X = i 
''1 

rn 

So in general, to maximize 

subject to 

where 

the solution is 

/ 1 / 2 rn Xj X2 -xw 

X = 

which gives the maximum value I I 

Note aJso that = 0 is permissible, provided that 0° is defined to equal 1 
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2.3.2. Special Cases 

To re-cap fi-om Section 2.2., an optimal feasible solution is one for which the calculation 

L = Diag(5Z),) A \^\^%{BD^)A ... A Diag(5Z)y) 1 

produces a column vector of identical values which are the largest possible. 

It is conjectured that, within the interior of the Ji-space (and, therefore, the interior of 

the solution space), no {A, B, K) triple exists which is both feasible (rows of L are 

equal) and produces an objective value X, > y . 

This section provides some special cases for which the conjecture is easily proved. 
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As a first example, let 

and make the substitutions 

T = 

BD, = 

ED, = 

3 

X 

Y 

Z 

Now, consider A = I (the NyiN identity matrix) 

Then L = Diag(A:) I Diag(}0 I Diag(Z) 1 

The A" y & Z were drawn from the columns of B and may (or may not) include 

repetitions of columns. We can replace the terms x^ y^ Zj by the equivalent formulation : 

/ I / 2 
*11 *12 

where some ofthcr^ may equal 0 

Clearly, each element of L is of the form optimized in Section 2.3.1. They all share 

the same maximum value, which can be attained for all elements simultaneously by 

setting b^= r^lT. In this way, the objective value equals 

and it is clear no objective value could be higher. Therefore, the conjecture holds for the 

special case A = I . 
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Consider next the class of triples where the columns of B are constant (rows of B are 

identical) —i.e. 

B = 1 [b,b^...bj^] where [b,b^...b^] 1 = 1 

Make the substitutions 

BD, = X = X 1 

BD^ = Y = y 1 

BD^ = Z ^ z I 

Then L = Diag(-Y) I Diag(]0 I Diag(Z) 1 

= ( x l ) ^ ( y I ) A ( z l ) 1 

= xyz 1 

= xyz 1 

- b^ b^ . . .Z»^ 1 

which, as before, is both feasible and optimal iff b^ = r^l T , regardless of the value of 

A ( provided only that it is Markov). 
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As a third special case, consider the class of triples where the rows of A are identical 

"i.e. 

A = 1 [a,a,...a^] where [a,a^...a^] 1 = 1 

After substituting as before, 

L = Diag(;!O^Diag(}0^Diag(Z)l 

Note also that 

implies 

Z = X, 1 

AL=k^Al = X , l = L 

so that 

L = A Diag(-Y) A Diag(}0 A Diag(Z) 1 

= 1 [a, a,... a^] D i a g ^ 1 K ... a^] Diag(y) 1 [a, a, ... a j Diag(Z) 1 

= 1 [a, ... a^] X [a, ... a^] Y [a, ... a^] Z 

= Avg(^ Avg(r) Avg(2) 1 

= [AvgC^Cl)]''^ [Avg(5c2)]''2 - [Avg(Bc^)]''M i (2.3) 

where hyg{X) is the weighted average of the elements of column vector A" 

performed by pre-multiplication with [a, ... a^] 

and B^j is column J of the j9-matrix 
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In this case L is automatically feasible (rows equal). To optimize its constant value, 

note that 

Avg(5eJ + Avg(5^) + ... + Avg(5^) = Avg(^ei+^c2+-- -+-»GJ 

= Avg(Bl ) 

= [a,CL,...a^] 1 

= 1 

so that the expression for the constant value of Z. in equation (2.3) again matches the 

form and conditions of Section 2.3.1. Consequently, its value can be no greater than y , 

which can be attained provided the elements of B can be chosen so that 

Avg(5^) = rJT 
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As a final example, consider the class of triples where A is upper triangular (the HMM 

is left-to-right). 

Note that a product of upper triangular matrices is also upper triangular. Consequently, 

the calculation 

L = Diag(A:)^Diag(10^Diag(Z)l 

produces the result (details omitted) 

L = 

Suffice it to say that the elements of L are quite complicated except for the final 

element, which is 

^^yu ÂTv = ^NyN (siHce the rows of A sum to 1) 

/ I J l JM 

As previously, this bottom row of L is maximized by ĵ̂ ĵ  = r^/ T 

which produces the value = Y 

Furthermore, the other rows of L can't exceed it and still remain feasible. 

Therefore the class of solutions with an upper triangular A also obeys the conjecture. 
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2.3.3. The General Case 

«« 

The previous seaion whittled away several special cases, each of which obeys the 

conjecture that no feasible solution can exhibit an objective value greater than y. 

What remains is the class of solutions for which the rows of A and B are completely 

general. Here, the optimization of 

L = Diag(AO A Diag(}0 A Diag(Z) 1 

is a true generalization of the optimization problem 

maximize the product x ^ x^ -^n 

n 
subject to the requirement that 2 ^jt ~ ^ 

in two ways: 

( A ) Non-constant vectors (AT, 7, Z) are involved now, rather than scalars 

(5) The elements of Z aren't allowed to multiply the elements of 7 , etc. 

without first being averaged by the rows of A 

In other words, an intervening step takes place between the usual scalar multiplications. 

The application of A calculates weighted averages of Z which, because Z isn't 

constant and A doesn't have identical rows, wont necessarily have equal values. 

The argument for the general case follows along geometrical lines— 
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Since 

^ 1 = 1 1 
Nxl Nxl 

it is apparent that every Markov matrix has the eigenvalue 1 and eigenvector 1. 

Somewhat less obvious is the fact that none of the other eigenvalues of a Markov matrix 

can exceed 1 in magnitude (the 'spectral radius' of every Markov matrix is 1 [31,32]). 

Assume that the A matrix can be diagonalized, —i.e. 

A= QDQ' 

Here D is the diagonal matrix consisting of A's eigenvalues 

and Q is the matrix of corresponding eigenvectors, arranged as 

column vectors 

A can always be diagonalized if its eigenvalues are all distinct or, failing that, if the 

eigenvectors corresponding to repeated eigenvalues are linearly independent [33]. 

(For example, if an eigenvalue occurs with multiplicity 2 , can its corresponding 

eigenvectors span 2-Space? ) 

Writing L = Diag(-Y) A DlagiY) A D\ag(Z) 1 

= m^g(X)QDQ-'D\^giy)QDQ'Z 

and with the aid of the diagram, we can visualize the evaluation of L proceeding from 

right to left : 
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0 

© 

0 

Q-'Diag(Y) AZ 
> 

Diag(Y) AZ 

o 

D Q ' Z 



(7) —(?) The multiplication Q '^ Z doesn't move Z relative to the 

origin, but simply establishes a new coordinate system around 

them [34]. The new basis vectors are the eigenvectors of A , and the 

multiplication Q '^ Z calculates the coordinates of Z within 

this new system. 

(2)—(T) The application of D scales each coordinate of Q Z its 
respective diagonal entry in D which, because the eigenvalues 
of i4 are < 1 , always results in a contraction towards the 
origin. 

( 7 ) - * ( 4 ) The application of Q simply re-establishes the original 
rectangular coordinate system, calculating the coordinates of 

Z) Q Z in this system. 

( 4 ) — ( 5 ) Y represents a selected column of the B matrix, whose 
elements are likewise < 1 . Multiplication by Y therefore 
produces a similar contraction towards the origin. 

® ~ * © continue cycling around the lower loop, eventually halting 
at ( 5 ) . With each transit of the loop, two contractions take 

place—first along the eigenvector basis vectors, and then along 

the rectangular basis vectors-the point migrating towards 

the origin with each contraction, until we arrive at the final set 

of coordinates, which is L . 
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Now compare 

L = D\ag{X)QDQ'Di^gir)QDQ'Z 

with the expression 

Diag(^ QIQ ' Biag{Y) QIQ'Z 

where D has been replaced in each case by the identity matrix. 

This alteration effectively removes half of the contractions, i.e. those occurring within the 

eigenvector coordinate system. 

Therefore L = T>\2ig{X)QDQ-'I>\2ig{Y)ODQ'Z 

< Diag(^ e I e ' Diag(7) e I e ^ 

= Diag(^ I Diag(>0 I Z 

But the first special case fi-om Section 2.3.3. has already established that 

Diag(A) I Diag(P) I Z < 7 I 

Consequently, it is apparent that general {A^B.n) triples cannot exceed y. 
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3. Boundary Solutions 

3.1. Introduction 

Chapter 2 presented the first applications of Matrix Derivatives for finding global 

optimum HMMs. The main result of the chapter was that, within the interior of the 

solution space, an upper bound exists on the value of the stationary points of P{0) , 

which is equal to 

4 ^ f f i \ 

ifc=l 

where T = 2 /"j^ 

and where the equal the number of occurrences of codebook symbol k 

over the given training sequence. 

Furthermore, an assortment of {A^B^Tt) triples were displayed which attain that upper 

bound—among them, the class of triples where the rows of B are equal, with element 

b^ = r^l T , and the A and n are otherwise fi*ee to assume any values (provided only 

that they are Markov). 

However, a limitation of calculus-based methods is that they focus on interior solutions 

and tend to overiook possible endpoint extrema at the boundaries of the solution space. 

In most cases where a specific training sequence is given, it is quite easy to find an 

endpoint solution which surpasses the upper bound of the interior. Clearly, a procedure 

to identify the global optimum must include a systematic search of the boundaries. 

This chapter gives a simple proof that the global optimum HMM must indeed occur on a 

boundary of the solution space, followed by a description of what searching the 

boundaries entails. 
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3.2. Focxis on the Boundary 

The boundaries of the solution space are those triples (A, B, n ) in which any one or 

more of the individual matrix elements equals zero. 

It is simple to show that the global optimum must reside on a boundary, as follows : 

From the 7c-equation and Section 2.2., the objective can be re-written as 

PiO) = L n 

= V Diag(5£)r) A'... A' Di^g{BD^) A' Diag(5£),) n 

where the fiiA.B) are functions of A and B only. 

Since 2̂  = 1, can be viewed as a weighted average of the f^AyB) . 

The greatest value which a weighted average can attain is that of its largest element. 

Therefore, to maximize P it is suflBcient to 

(1) find the largest possible maximum among the f^AyB), and 

(2) assign a 1 to that position in 7t and O's elsewhere. 

In summary, the global maximum of P resides on the boundary, since all but one of the 

elements of TU equal zero. 

Furthermore, the task of optimizing P reduces (slightly) to finding the global maximum 

among the f X A ^ ) . 
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Finally, it is shown in Section 3.7. that the are isomorphic to each other (identical to 

within a renaming of variables) and so share the same 'landscape' and the same global 

optimum values (though not at the same time). So without loss of generality we can take 

J 1. /=1 
= < 

I 0, otherwise 

and attempt to optimize / , {Afi^. 
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3.3. Revised Objective 

The previous section managed to reduce the problem to one of globally optimizing 

/ (A,B) , a function of A and B only. To proceed with this new task, it is necessary to 

consider the nature of / , , 

By expanding the equation 

L = Dhg(BD,) A D\^g(BD^) A ... A Diag(BDr) 1 

for the individual elements of L , one finds : 

Given N states and T observed symbols, then /, = / , (A^) is the sum of A'̂ '̂ "* terms, 

where each term corresponds to one of the possible state sequences (beginning fi-om 

state 1 ) which the model could undergo while producing the outputs. 

To focus on a concrete example, consider a simple 2-state model and the observation 

sequence kk I k , where those symbols simultaneously represent indices fiom a finite 

alphabet of outputs, as well as columns from the j5-matrix. 

Then there are N"^'^ =2^* = 8 possible state sequences 

!-.> i - > 1 

l - > l - > l - > 2 

! « > i - > 2 -> 1 

l - > l - > 2 ->2 

l - > 2 - > l - > 1 

l - > 2-> l - > 2 

l - > 2-> 2 -> 1 

l ->2->2- ->2 
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A term of / j is derived fi^om each of those state sequences in two steps : 

(1) Use consecutive pairs of states to form the subscripts of the factors 

fi'om A 

(2) Pair ofiT the states with the indices kklk to form the subscripts of the 

factors fi-om B 

So in the present example 

= °u * u bu 

+ Ou On On bu bu 

+ On 02X *u 

+ °M On * u b^ 

+ ^2, On bu * u 

+ °n «21 On b^ bu 

+ °n Oil b^ b^ * u 

+ On On On b^ ^2, b^ 

+ OnOn02iMb^,b^ 

+ On02iOj,Mbj,b^ 

+ a,,{a^fb,,(bj'b^ 
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Note that, for all possible training sequences of length T = 4 , the i4-halves of the 8 

terms will remain the same, as only the B-halves are sensitive to the actual sequence of 

symbols observed. 

Note also that, considered in isolation, each term is of the form which can be trivially 

optimized by the result of Section 2.3.1., reproduced here as 

Theorem A 

The maximum of ' ' l '"2 rn 
^1 ^2 '^^ 

n 
subject to the constraint S ^jt ^ ^ 

occurs at = — 

and takes the value fli'A'" 

n 
where ^ ^ 2 ''jt 

For example, applying this theorem to a single term of / , (say term 4 , which is a„ a^^ 

Z>i/ b^b^^^ the optimizing values can be found by 

recording the exponents of a^^ and b^^ in the appropriate 

positions of auxiliary matrices A* and B* 

54 



1 1 

0 1 

Row 
Sum 

2 

1 
B* = 

Row 
Sum 

2 

2 

and then normalizing each row by the row sum, to give 

A = 
1/2 1/2 

0 1 
B = 

1 0 

1/2 1/2 

For the isolated term, this optimum is also the global optimum, because the term is a 

unimodal "hump' on a domain whose dimension corresponds to the degrees of freedom 

present within the term. To continue the example of term 4 

a, I ' ' l l 2̂2 * U *2i 

since each row of A and B must sum to 1 , then 

°21 = 

"n = 

1 

1 

l - a „ 
1 - ft 7k 

and term 4 is a hump on the two-dimensional ( a , , x ftj^) space (see page 70) 
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But whereas the individual terms are easily optimized, the present task is to optimize a 

sum of those tenns. 

That task is further complicated by the fact that there are many such sums to consider, 

corresponding to the various boundaries of / , , along with / , itself. 
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3.4. Boundary Fragments 

Once again, to globally maximize / , (-4^) requires searching the boundary 'planes' as 

well as the interior of its solution space. As before, when dealing with PiO\ a boundary 

o f / , arises when any one or more of the elements of A and/or B equals zero. 

To understand what searching these boundaries entails, consider again the simple case 

where the number of states / / = 2 , the number of symbols received T = 4 , and the 

sequence kklk names the codebook indices of the observed symbols. 

With only 2 distinct symbols received, the optimal B matrix wil l contain (at most) 2 

non-zero columns, so the A and B matrices are both 2 x 2 . 

Observing the requirement that the rows of A must sum to 1 , the set of A matrices 

can be partitioned into 9 classes 

X 
X 

X 
X 

X 
X X 

X 
X 

X 
X 

X 
X 

X X 
X 

X X 
X 

X X 
X X 

where X indicates a non-zero entry 

and blank indicates a zero 

Similarly, observing the requirement that each symbol must issue from at least one of the 

states, the B matrices can also be partitioned into 9 classes 

X X X 
X 

X X 
X X X 

X 
X X 

X X 
X 

X 
X X 

X X 
X X 
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In theory, each A class can be paired with each E class, and the resulting 81 

combinations represent the complete set of possible boundary 'planes' for / , . There are 

8 zero-dimensional boundaries (vertices) 

32 one-dimensional boundaries (edges) 

30 two-dimensional boundaries (planes) 

10 three-dimensional boundaries (cubes) 

1 four-dimensional interior space 

In practice, however, not all of these pairs will be relevant to a particular training 

sequence, since many* combinations will not actually be capable o f generating the 

sequence. For example, the combination 

X 
X B = 

X 
X 

can only produce the alternating sequence k I k I 

* Here, at least one third of the total number can be ignored. In general, the 
ratio is at least 2^*'- 1 in 2^- 1 
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X 
X 

X 
X X 

X 
X 

X 
X 

X 
X X 

X X 
X 

X X 
X 

X X 
X X 

X X 

X 
X 

X X 
X 

X 
X 

X X 

X 
X X 

X X 
X 

X 
X X 

X X 
X X 



In order to determine which of the 81 combinations are relevant and which can be 

ignored, notice that an ^4-class with a blank (zero) at position ( /, J) nulls out any term 

of / , (/I, E) which includes a., as a factor. Thus 

X 
X 

eliminates terms 2 through 8 
and preserves term 1 

X 
X 

eliminates terms 2 through 8 
and preserves term 1 

X 
X X 

eliminates terms 2 through 8 
and preserves term 1 

X 
X 

eliminates terms 1. 2. 3, 4, 5, 7, 8 
and preserves term 6 

X 
X 

eliminates terms 1 through 7 
and preserves term 8 

X 
X X 

X X 
X 

X X 
X 

X X 
X X 

eliminates terms 1 through 5 
and preserves terms 6, 7, 8 

eliminates terms 4, 7, 8 
and preserves term 1, 2, 3, 5, 6 

eliminates terms 3, 5, 6, 7 
and preserves term 1, 2, 4, 8 

preserves all terms 
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Likewise, a 5-class with a blank at position {J, k) nulls out any term of / , {A, B) 

which includes as a factor. Thus 

X X eliminates terms 2 through 8 
and preserves term 1 

eliminates terms 1. 2, 4, 5, 6, 7, 8 
and preserves term 3 

X X 
X 

eliminates terms 2, 4, 5, 6, 7, 8 
and preserves terms 1, 3 

X eliminates all terms 
X 

X X 

X 
X X 

X X 
X 

X 
X X 

X X 
X X 

eliminates all terms 

eliminates all terms 

eliminates terms 3, 4, 7, 8 
and preserves terms 1, 2, 5, 6 

eliminates terms 1, 2, 5, 6 
and preserves terms 3, 4, 7, 8 

preserves all terms 

* Note that the details on the previous page are independent o f the training 
sequence, and are common to all 15 possible sequences of length 4 . 
Only the B preservation sets on this page are sensitive to the particular sequence 
of symbols. A similar situation holds among symbol sequences o f other lengths. 
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Finally, for each of the 81 pairs consider the list of terms which are preserved by both 

A- and B-classes simultaneously ( i e., the intersection of their preservation sets) . 

The pairs whose intersection is non-empty represent the combinations which are capable 

of generating the sequence kklk ... while the pairs whose intersection is empty can be 

ignored. 

The fore-going explanation serves two useful purposes: 

(1) I t provides a method for identifying which boundary planes are 

relevant to a given observation sequence. 

(2) I t also demonstrates that the boundary planes are equivalent to 

fragments of the total objective function / , {A, B) 

...and that searching the boundary planes is accomplished by 

optimizing each of those Augments. 
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kklk 

X 
X 

X 
X X 

X 
X 

X 
X 

6 7 8 

X 
X X 

1 2 3 5 6 

X X 
X 

1 2 4 8 

X X 
X 

1->8 

X X 
X X 

X X 

X 
X 

1 3 

X X 
X 

1 3 1 3 

X 
X 

X X 

X 
X X 

1 2 5 6 

X X 
X 

1 2 5 6 1 2 1 2 5 6 

3 4 7 8 

X 
X X 

7 8 4 8 3 4 7 8 

1_>8 

X X 
X X 

6 7 8 1 2 3 5 6 1 2 4 8 1->8 



3.5. Geometric Interpretation 

Appendices B, C & D explore three different methods for optimiong the boundary 

fragments of / , . However, before considering those methods, a few more observations 

will be helpful. 

The collection of fragments from the previous page are listed (without duplication) 

below: 

(1) 

(3) 

(6) 

(8) 

(1 2) 

(1 3) 

(4 8) 

(7 8) 

(6 7 8) 

(1 2 4 8) 

(1 2 5 6) 

(3 4 7 8) 

(1 2 3 5 6) 

(1 ~ > 8) 
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The simplest o f these fragments are the 'singletons', consisting of only a single term from 

/ , (.A, B) : 

(1) = i<^u)' <J>J K 
( 3 ) = a,,a,,a,,(bjb^ 

( 6 ) = W'^2, J ' 
(8) = a,,{a^^bMb, 

As explained on page 55 , these can be viewed as one-dimensional in the sense that each 

contains only one free variable. The requirement that the rows o f A and B sum to 1 

implies that within ( 3 ) , for example, a^^ = b^^= = 1 , with only a „ free to vary 

(since = 1 - a „ ) . 

In this way 

Term ...represents the one-dimensional boundary (edge) 

0) with O n 1 0 

(3) 0 < a i j < 1 with 1 ^ = 0 

K = I 0 

K 0 K = 1 

(6) 0 < A i i < l with = 0 « 1 2 = 1 

a., 1 « 2 2 = 0 
K 1 0 

(8) 0 S ^2* - 1 with = 0 « 1 2 = 1 

°^^ = 0 <hl = 1 

K 1 K - 0 

(Terms (1) and (6) represent different (parallel) edges 
-the first at a „ = 1 , and the second at a^j = 0 ) 
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More accurately, it is the free variables which comprise the boundary planes, whereas the 

fragments are functions defined on those boundary planes—and invariably produce 

uni-modal curves (surfaces): 

0.15 

0.05 \ -

(8) 
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As mentioned above, these functions are easily maximized using Theorem A on page 

54 , with the position of the mode determined by 

recording the exponents of a.^. and in the appropriate 

positions of auxiliary matrices A* and B* (given here for (3 ) ) 

A* = 

Row 
Sum 

2 

1 
B* = 

Row 
Sum 

3 

1 

and then normalizing each row by the row sum, to give 

A = 
1/2 1/2 

1 0 
B = 
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Finally, Appendix section D.4. uses the area (volume) under the uni-modal surface. This 

can be expressed in terms of the 'beta' function of advanced calculus and statistics, 

which is defined as 

(p-1)! {q-\)\ for p and q integers 

It seems the single terms of / , can be interpreted as generalized (i.e. multi-dimensional) 

Beta random variables, which otherwise have applications [35] 

(a) as order statistics within probability theory 

(b) and also within Superstring Theory. 
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After the singleton fragments, the next in complexity are the compound fragments 

(1 2) = ( a „ ) ^ ( f t j ^ ^ , + Ma,MH,,b^ 

(4 8) = a „ a,, (A + a,, (a^f b,, (b^^ b^ 

(7 8) = a,, a „ (A.^^ b^ b^ + a,, {a^f b,, (b^^ b^ 

Viewed in isolation, terms 2 4 and 7 are two-dimensional, each possessing two free 

variables. 

Term ...represents the two-dimensional boundary plane 

2 0 < a i i < l with b^ = \ = 0 

0 < a i i < 1 with ^21 = 0 <222 = 1 

Q<a2i<>\ with a „ = 0 = 1 
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Regarded as functions defined on those free variables, the terms 2 4 and 7 are 

uni-modal surfaces: 

0.4H 

0.H 
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Once again, the position of the mode can be computed by dividing the auxiliary 

exponents matrices by the relevant row sums : 

A* = 

Row 
Sum 

B* = 

Row 
Sum 

3 

1 

4 : * = 

7 : A* ' = 
0 1 

1 1 

Row 
Sum 

2 

1 

Row 
Sum 

B* = 

B* = 

Row 
Sum 

2 0 2 

1 1 2 

Row 
Sum 

2 0 2 

1 1 2 
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Note, however, that terms 2 4 and 7 never actually occur in isolation, but always 

appear (in the list of valid fragments) joined with a 'satellite' term : 

joined with 1 

joined with 8 

joined with 8 

This is because the factors which comprise the satellite term are a proper subset of the 

factors in the main term-so that whenever those factors are non-zero (the main term is 

'activated'), the satellite is activated also. 

Finally, where the main term represents a two-dimensional boundary plane, the satellite 

term always occurs along an edge of that boundary. Therefore, within the context of the 

current fragment*^ the main term is classified as an 'interior term* and the satellite as a 

Tjoundary term'. 

6^=1 5„ = 0 

* However, what serves as a boundary term in a 2-D fragment will, within the 
context of the 1-D edge, appear as an interior term. 
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A second type of two-dimensional fragment is the simple union 

(1 3) = M ( b j b „ 4- a„a,,a,,(bj'b^ 

Each of the component terms is a one-dimensional singleton 

Term 

0) 

(3) 

...represents the one-dimensional boundary (edge) 

with a,, = 1 a., = 0 12 

with 
b.. K = 1 

Ik 0 b^, = 21 

0 
0 
1 

In term (1) a,, is fixed and is free, while in term (3) is fixed and a,, isfî ee 

(i.e., the edges are orthogonal). Maximizing the sum of the two terms entails relaxing 

the value of a,, in term (1) and the value of in term (3) . In this way, the 

fi-agment comes to represent the two-dimensional space spanned by the pair of 

orthogonal edges : 

Fragment 

(1 3) 

represents the two-dimensional boundary plane 

0 < a i i < 1 with ^21 

b^ = 0 
= 0 

'21 

The result is a plane with two boundary terms and no interior terms 



The fragment (1 2 5 6) is a more general type of compound fragment. 

The two-dimensional interior term 5 activates a second interior term 2 , as well as the 

two boundary terms 1 and 6 . 

5 2 
O O 

One might say that the interior term(s) activates multiple satellite terms around the 

edges. 

Alternatively, one might say that the space spanned by the boundary terms is not empty 

(as with a simple union), but contains interior terms. 
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Fragments (6 7 8) and ( 1 2 4 8) are three-dimensional examples of the simple 

union. 

Fragment (6 7 8) represents the three-dimensional space spanned by the planar 

fragment (7 8) and the orthogonal edge (6). 

Fragment (1 2 4 8) represents the three-dimensional space spanned by the two 

orthogonal planar fragments (1 2) and (4 8) . 

/ 
1 

7 
•21 

a „ « 0 a , , « l Oj, = 0 = 1 

In each case, all of the participating terms are boundary terms—there are no interior 

terms. 
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The fragment (1 2 3 5 6) is also a three-dimensional simple union. However, unlike 

the previous examples, the lower-dimensional components (1 2 5 6) and (3) are not 

orthogonal, but lie parallel and opposite. 

'2k 
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Fragment (3 4 7 8) is a three-dimensional union spanned by a trio of fragments 

(4 8) , (7 8) and (3) 

^,,= 1 ^ , = 0 

(3) is orthogonal to (7 8) and parallel and opposite to (4 8). 

(4 8) and (7 8) share the edge (8) 
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Finally, the four-dimensional 'fragment' (1 ~> 8) is a simple union of the two 

three-dimensional fragments (1 2 3 5 6) and (3 4 7 8) . 

An alternative combination is (1 2 5 6) , (6 7 8) and (3 4 7 8) . 

In neither of these unions is an interior term present. 
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3.6. Summary 

Having examined the complete list of fragments, these observations follow : 

(1) The fragments fall into distinct categories: 

(A) Compound fragments, where the space is spanned by interior term(s), 

which may also activate lower-dimensional boundary plane(s) 

(B) Unions, where the space is spanned by the lower-dimensional 

boundary planes, and contains no interior terms 

(C) Singletons, defined as atomic compound fragments composed 

of a lone interior term 
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(2) A natural hierarchy exists among the fragments, with the smaller firagments 

serving as lower-dimensional boundary planes for the larger fragments* 

1-D 

2-D ((1) (3)) (7 (8)) (4 (8)) 

3-D (((1) 2 5 (6)) (3)) ((3) (4 (8)) (7 (8))) ((6) (7 (8))) (((1) 2) (4 (8))) 

4-D (((1) 2 5 (6)) (3) (4 (8)) (7 (8))) 

* A number without enclosing brackets denotes an interior term~e.g., the 2 
in ((1) 2) 
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(3) Each of the terms of (A, B) appears as an interior term in exactly one 

fi-agment* —which is either a compound fi^gment or a singleton. 

Note that in subsequent appearances, the fi-agment in question forms part of the 

boundary of some (higher-dimensional) fi^gment—so that what was once an interior term 

now serves as a boundary term. 

* There are minor exceptions, where a term may appear as an interior term more 
than once. Such terms are invariably 'incomplete', in the sense that at least one 
row of i4 or B fails to contribute any factors to the term-
so that there is an unspecified 'floating' dimension that is neither fixed nor fi-ee. 
In the present example, term 2 is incomplete since it includes neither a^y nor 
However, such exceptions to the 'rule' cause no difificulty in what follows. 
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These observations, and particularly the fact that the non-zero boundaries of a fragment 

are merely the lower-dimensional fragments in its hierarchy, inspire the following 

recursive formulation for locating the global optimum of a fragment (including, of 

course, the complete ) : 

r e s u l t <-- Optimuituof (fragment) 

i f fragment i s a s i n g l e t o n 
a p p l y Theorem A 
r e t u r n r e s u l t 

e l s e 
l e t r e s u l t equal l a r g e s t i n t e r i o r s o l u t i o n (*) 
w h i l e unexamined boiindary p l a n e s e x i s t 

r e s u l t = Max { r e s u l t , 0ptimum_of (next bouncaary p l a n e ) } 
r e t u r n r e s u l t 

The chief praaical difficulty is that, as yet, there is no automatic procedure to identify 

the global optimum within the interior of a fragment, as required on line (*). Appendices 

B, C & D describe three difiFerent eflForts to achieve this. 
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3.7. Isomorphic Functions 

The purpose of this brief appendix section is to support the claim made in Section 3.2. 

that the / are isomorphic to each other, being identical to within a renaming of 

variables, and therefore share the same landscape and the same global optimum values 

(though not at the same time) . 

Since the terms of / , correspond to the state sequences which begin at state 1 , it is 

unsurprising that the terms of correspond to the state sequences wluch begin at state 

2 , and so forth. Then 

+ a^^a^^a^^b^^b^^b^b^^ 

+ 0,2^022^ * * 2*^2/^2* 

+ ^ ^ l ^ ' l l ^12*2**1**1 /^2* 

+ 021^12^21*2**1**2/*!* 

+ ^2* * 1 * *2/*2* 

+ 022^1^11*2**2**1/*!* 

+ a22^2!^!2*2**2**i/*2* 

+ 022^22^21*2**26*2/*!* 

+ O22 O22 O22 *2* *2* *2/*2* 

etc. 
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A visual inspection will confirm that, by re-labelling state 2 as state 1 and vice versa, the 

terms of are transformed into terms of / , (in reverse order). 

The transformation can be illustrated with the aid of the network diagram below, which 

represents all possible state sequences which the model could undergo : 

state 
1 

state 
2 

State 
3 

t = 1 

t = 2 

t = 3 

t = 4 

t = 5 

t = 6 

Imagine that this network was once drawn on the surface of a cylinder, which was 

subsequently flattened. The transformation basically consists of rotating the cylinder by 

one (or more) nodes before flattening it again. Clearly, the new network would be 

identical to the first. In this way, (or / ) is essentially identical to / , . 
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4. Summary of Boundary Optimization Methods 

4.1. Introduction 

The previous chapter has demonstrated that for a single training sequence, at least, the 

global maximum of P{0 \ M) must reside on a boundary of the solution space—namely, 

that sub-space where the first element of n equals 1 and all of the remaining elements 

of n equal 0 . On this boundary, P{p \ M) can be replaced by a simpler objective 

function given by / , {Afi) , which corresponds to the collection of possible state 

sequences that the HMM might have undergone (in the course of generating the 

outputs) which begin from State 1. However, as with attempting to optimize P{0 \ M), 

the interior maxima alone are not sufficient to guarantee the global maximum of / , . 

and it is also necessary for the boundaries of this new objective function to be examined 

for endpoint extrema. This is equivalent to optimizing all the many fi^gments of / , 

which result when one or more elements of A and/or B are set equal to 0 . Chapter 3 

also showed how to narrow down the complete list of fragments to include only those 

relevant few which are capable of generating the given training sequence. Finally, when 

globally optimizing an individual Augment, it seems that the interior maxima alone are 

sufficient in this case. This is because the boundaries of a fragment are merely those 

lower-dimensional ones which fall below it in the hierarchy of fragments, so that the 

endpoint extrema belonging to a fragment will be examined in due course when the 

lower-dimensional fragments are themselves optimized. 

Having established the need for optimizing the boundary fragments of / , , and having 

learned how to identify the relevant ones, the obvious next step is to develop a method 

for performing the necessary global optimization of a single fragment. From among the 

numerous different attempts to find such a procedure, three have been selected for 

inclusion in the thesis as Appendices B, C & D . 
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Appendix B revisits the calculus approach first introduced in Chapter 2 . Calculus is a 

viable strategy here because only interior maxima are sought, so that the shortcoming 

noted in Section 3.1. concerning endpoint extrema does not apply. Appendix B 

contains a more thorough analysis using Matrix Derivatives, in which the constramts 

have been adapted in a way which focuses on the fragments of / , (A^B) . 

The appendix chapter begins with the same basic formulation as Chapter 2 , but with 3 

extra Lagrange terms added to the objective function that constrain chosen elements of 

n B & A to equal zero, and thereby focus the analysis on a specific boundary 'plane' of 

the solution space. Then the tools of Matrix Derivatives are exercised in order to 

partially differentiate the objertive fiinction with respect to the 3 principle matrices n 

B & A , and the 6 Lagrange multiplier matrices. The 9 derivative equations are set to 

zero, and matrix algebra is brought to bear in an effort to solve first for the Lagrange 

multipliers and then substitute their values to arrive at a reduced system of equations in 

n B &, A . The chapter includes a section for each of the 6 Lagrange multipliers 

which details the progress achieved in solving for that unknown. 

Appendix C describes a second attempt at globally optimizing the fi-agments, which 

employs the optimization technique known as Geometric Programming. This is a 

relatively new technique which is well suited to objective functions of the present form, 

and which is essentially the 'dual' of the derivatives approach. 

Geometric Progranuning was devised in the 1960s to carry out unconstrained 

minimizations on a certain class of objective function. Appendix C presents the theory 

and nomenclature of the original formulation, and then describes how the techniques 

have been extended to cope with a wider range of problems, including more general 

objective functions, maximization as well as minimization, and the application of 

constraints. The boundary Augments of f^ appear to require the more complicated 

treatment of the extended formulation but, fortunately, thanks to the special features of 

these functions, their handling can be greatly streamlined, and the appendbc presents a 
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novel algorithm for automatically transforming a boundary fragment optimization 

problem into the appropriate G.P. equations. Unfortunately, there still remains the task 

of solving the G.P. equations. The strategy adopted is to systematically reduce the 

equations by dividing out some of the easily-found roots. The later sections of the 

appendix describe the progress achieved with this strategy, including some representative 

examples. 

Appendix D makes a third attempt, using a new hill-climbing algorithm. The chapter 

first shows the mathematical development of the recurrence formulas. Next it gives 

evidence that the formulas will actually converge to local maxima. Finally it explains 

why it is necessary to select a starting point which is within the interior of the fragment's 

domain, and introduces an assortment of schemes for providing such a starting point. 

What is innovative here is not so much the algorithm. Rather, the significant work 

consists of an exploration of the various schemes to nominate a starting point for the 

hill-climb—to determine whether the new algorithm together with the 'right' starting point 

is consistently able to produce the global optimum. 

Unfortunately, none of these three attempts were successfijl in achieving a solution to the 

optimization task. In addition, their developments are heavily mathematical, and they 

contribute only indirectly to the remainder of the thesis. For these reasons, and in order 

to avoid interrupting the flow of the thesis, they have been relegated to the ^pendix. 

On the other hand, these different attempts represent a substantial body of work. 

Furthermore, all three attempts have produced some interesting patterns and 

observations. The purpose of the present chapter is to give a brief summary of the 

progress made, together with a few of the more notable insights achieved. 
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4.2. Equivalence of the Methods 

Although, superficially, the three solution methods appear to be very different, in feet, 

they are quite closely related. The connection between the methods is that they all 

depend, ultimately, upon the feet that at any interior optimum of the objective function 

the derivatives all equal zero. 

This connection can be observed with the aid of the recurrence relations fi-om Appendix 

D , which are reproduced here 

L 
D Pijk 

= ^-(T}—i— ( /= l .J^)a=l .JK) 
L 

^Pijk 

(4.1) 

where x̂ .. is an element of either A or B 

is the A* term of the objective, equal to 

and is the exponent of x^. in term k 

hi Section D,2., these recurrence relations are derived directly fi*om that observation (i.e. 

derivatives equal to zero). 

The Geometric Programming methods in Appendbc C exploit the observation indirectly. 

Nevertheless, the above recurrence relations could also be reached through a re-working 

of the general ('full blown') orthogonality conditions in Section C.2. 
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Finally, to see the connection with the Matrix Derivatives approach, let 

Then the denominators of recurrence relation (4.1) can be expressed in terms of Matrix 

Derivatives as 

which has the precise form of the Lagrange multipliers for the Markov constraints on A 

and B (See Sections B.4.1. and B.5.1.) 

In short, it seems that (primal) analysis, Geometric Programming and hill-climbing are all 

closely related, with the difference being that 

analysis seeks the optimal A & B , which are then used to calculate the 

G.P. seeks the optimal , which are then used to calculate A & B 

hill-climbing seeks the optimal A & B and the optimal simultaneously 
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4.3. Progress with the Matrix Analysis 

The matrix analysis strategy was to 

(a) express the objective plus the additional Lagrange (constraint) terms 

using matrices 

(b) differentiate with respect to the 3 primary independent variables 

(AyByU) plus the Lagrange muhipliers 

(c) solve the derivative equations for the Lagrange multipliers 

(d) substitute those results to get a reduced system of equations in (^4, JB, TC ) 

(e) solve this reduced system 

The analysis got halfway through step (c) . 

As observed in Section 4.2., the Lagrange multipliers for the Markov constraints are 

equal to 

{ X O ^ ) l for X = AOTB 

which also equals the collection of denominator values appearing in the recurrence 

relations for the hill-climbing algorithm. These Lagrange multipliers also have a physical 

interpretation as sensitivity factors (or 'shadow prices*). This says that i f the Markov 
constraint = I could be allowed to slip by one additional unit (i.e. sum = 2), then 

J 
the value of the objective would be increased by 
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The other set of Lagrange multipliers, which focus the analysis on a specific boundary, 

could only be solved to within a sum of their elements. However, what is intriguing is 

that the three sums all take the same form regardless of the manner in which the 

associated primary variables A , B and 7t enter into the objective expression. In all 

three cases, ^ times the sum of the active Lagrange muhipliers equals the negative of 

the difference between 

k copies of P(0) at the optimum 

and another k copies in which one occurrence of X per copy is replaced by ̂  11* 

(where k is the number of occurrences of X in P{<J) ). 
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4.4. Progress with Geometric Programming 

Progress in performing the optimizations using Geometric Programming can be 

summarized as follows: 

(1) A procedure was developed which automatically maps the (primal) 

fi-agment and constraints into a (dual) G.P. system of equations 

ready for solution. 

(2) Evidence was found suggesting that the dual equations could be reduced 

into a set of simpler sub-systems, each of which contains at most one 

interior solution of the original system—permitting the complete set 

of solutions to be found by hiU-climbing/descent. 

(3) No way has yet been found for reliably identifying the set of simpler 

sub-systems. 

92 



4.5. Progress with Hill-Climbing 

The investigation into hill-climbing was to determine whether the recurrence formulas 

together with the 'right' starting values could consistently produce the global optimum 

for a given fragment. 

Six schemes for generating the starting values were examined. The results can be 

summarized as follows: 

(1) When the global maximum occurs within the interior of the fragment, 

virtually any starting point which is also within the interior will find i t -

including the modal position of interior term(s) as well as the outputs 

of any of the six schemes. 

(2) When the global maximum occurs at a boundary of the fragment, none 

of the six schemes was 100 percent effective in finding it. 

Observation (1) tends to suggest that the landscape' of the fragments is not as 

complicated as might be assumed. Taken with other evidence (see Sections 5.3.2. and 

5.3.3.), it appears that the conditions under which a fi^gment has an interior peak are 

sufficient to guarantee that it has only one interior peak. 
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5. Rule Induction 

5.1. Overview 

The methods described in Appendices B , C & D share certain features in common : 

(1) They are basically deductive in nature, attempting to derive a rule 

which is founded upon theory and logic. 

(2) They seek local maxima, and rely upon finding the complete 

set in order to identify the global maximum fi-om among them. 

(3) They draw no distinction between / j and its fi^agments, applying 

equally well to all. 

The approach described in this chapter is the opposite of these. First, by analyzing a 

variety of different training sequences and model sizes using all available mathematical 

tools, one searches specifically for the global maximum of / , in each case . Then, by 

studying the resuhing body of examples for common themes and patterns, one tries to 

induce a rule (or rules) which account for the examples, and by which all global maxima 

can be found*. 

The chapter begins by describing some of the more striking observations derived fi-om 

the body of examples. Afterwards, those observations are amalgamated into an 

algorithm for identifying the global maximum HMM, and finally the results of applying 

the new algorithm are presented. 

* Finally, one hopes to be able to confirm those rules by deduction. 
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5.2. Collecting the Examples 

Before proceeding with the observations, however, first a word about how the examples 

themselves were collected. For the purpose of gathering a body of examples for carrying 

out rule induction, the method for finding the global maximum did not have to be 

efiScient or even systematic. Any technique or combination of techniques was allowed 

for any / , , provided only that the true global maximum was located. The question is, 

how can one achieve certainty that an optimum is actually the global optimum for the 

given/ . 

In general, this is a very diflBcuh question, and even for the smaller examples (small 

number of states and short training sequences) it is not always easy to be absolutely 

certain. Nevertheless, there are certain techniques by which the task can be made easier. 

One important technique depends upon the following observation, which is introduced 

by example: 

For the training sequence kkl and the 2-state model ( ^ = 2 ) , / , equals 

Notice that this can be expressed as the inner product of two vectors. 

[ ^ n ' ^11^12 ^ 1 2 ^ 2 1 « 1 2 ^ ] * lit *2/ 

which might be described as the '̂ 4-contributions' and the '5-contributions' of the four 

terms. 
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Finally, evaluate the .4-contributions at various points around the solution space. For 

example, at the modal position for term (1) , which is 

1 0 

°2l °T1 
B = 

2 i 
3 3 

*2/ 

the vector of ^4-contributions equals 

[ ( l y ( 1 ) ( 0 ) ( 0 ) ( a „ ) ( 0 ) ( a ^ ) ] = [ 1 0 0 0 ] 

At the modal position for term (2), which is 

A = 
1 i 
2 2 

"21 "22 
B = 1 0 

0 1 

the vector is 

( ^ X ^ ) (^X^: , ) ] 

At the modal position for term (3), which is 

A = 0 1 
1 0 

B = 
1 i 
2 2 
1 0 

the vector is 

[ ( 0 ) ' ( 0 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 0 ) ] = [ 0 0 1 0 ] 

96 



At the modal position for term (4), which is 

0 1 
0 1 

B = 
1 0 
1 i 
2 2 

the vertor is 

[ ( 0 ) ^ ( 0 ) ( 1 ) ( 1 ) ( 0 ) ( 1 ) ( 1 ) ] = [ 0 0 0 1 ] 

In all of these cases, the .4-contributions sum to 1 . And, in general, the sum of the 

^-contributions for / , equals 1 at every point of the solution space. Furthermore, with 

a minor qualification, this holds true for the firagments of / , also. 
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A proof of this result can be sketched out as follows : 

Recall fi-om Section 3.2. that the function / = / j (A, B) which is a sum of terms made 

up of various a-factors and ^-factors is also the first element of the vector L , whose 

definition is given by 

L = D\3g{B,)ADi^g{B^)A ...ADiag(B;)l 

where L'n = P = P ( o, O j O j . ) 

To sum just the ^-contributions of / , it is sufficient merely to evaluate / , with all of 

its ^-factors 5^ = 1 . 

Accordingly, imagine that the matrix B consists of all I's . This makes 

Diag(5,) = Diag(5,) = ... = Diag(^,) = I 

the identity matrix. 

And 

L = lA I A ...A I 1 

= A'-' 1 

= 1 (using the Markov property of i4 ) 

which indicates that all of the elements of I (including / ) equal 1 , regardless of the 

value of A . 
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Finally, by employing a simple device it is possible to extend this result to include the 

firagments of also. The fi-agment has to be augmented with additional terms to bring 

it up to the fiill complement of terms required by the proof But because the 

.B-contributions of these extra terms are zero, the value of the fragment is not altered. 

Consider the Segment (2 4 ) 

^11^12 \ + ^12 ^22 ^\k^2kK 

which is the boundary Augment defined by = A„ = 0 

At the interior point given by 

A = 
i 1 
3 3 
0 1 

B = 
1 0 

i 1 
3 3 

0 0 ^ 

the i4-contributions sum to only 9 + 3 = 9 • in general, the .4-contributions of 

a typical fragment do not sum to 1 at each point of its domain. 

On the other hand, by including term (1) 

the i4-contributions will sum to 1 and, since for ^„ = 0 the ^-contribution of term 

(1) equals 0 , the value of the fragment is unchanged. 

The trick is to include all the terms of / j which result from setting â , = 0 (in this 

example). In the language of Chapter 3 , this is the smallest i4-preservation set which 

contains the fragment. When ( 2 4 ) is expressed (quite legitimately) as the inner 

product 
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it is in a form whose i4-contributions always sum to 1 
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To describe how this observation can be applied to the task of determining the global 

maximum of / , , note that since / , is the inner product of its i4-and ^-contributions, 

and since the i4-contributions always sum to 1 , it follows that / , can be viewed as the 

weighted average of its .^-contributions. 

Recall that this idea was used in Chapter 3 to de-couple the n vector firom the original 

optimization problem. With 

P(0) = V n 

and ~ »̂ it follows that P is a weighted average of the f.(A,B). The greatest 

value which a weighted average can attain is that of its largest component. 

Therefore, to maximize P it is sufficient to 

(1) find the largest possible maximum among the / ( i4 , B) , and 

(2) assign a 1 to that position in TC and O's elsewhere. 

This naively suggests that / might be easily optimized via similar reasoning : 

Since / , is the weighted average of its .S-contributions, the way to maximize / , is to 

(1) find the largest possible maximum among the ^-contributions 

(2) assign values to the a., to make the corresponding ^-contribution 

equal to 1 
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Furthermore, the ^-contributions fi-om step (1) are trivially maximized using Theorem A 

(reproduced below), which states 

Theorem A 

the maximum of the function x ^ ̂  x^^ ... x^ 

n 
subject to the constraint 2 " ^ 

is achieved at x^ - ^ 
^k^l 'k 

and takes the value x Y \ where T = ^ 

However this time, unlike the 7c-vector, the i4-contributions are not free to assume just 

any value. There are upper bounds upon them which, again, follow from Theorem A . 

(The table below gives the maximum value of each i4-contribution for ^ = 2 and 

symbol sequences of length four and five.) As a consequence, it is generally not so easy 

to optimize / . 

Nevertheless, in the fortuitous case when the largest possible ^-contribution does fall to 

a term whose i4-contribution can be made to equal 1 , this simple approach will indeed 

produce a guaranteed global maximum for / , . 
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1 n i l K) ' 

2 1 1 1 2 {fl„)'fl„ 

3 1 1 2 1 

4 1 1 2 2 flnfl.jflj: 

12 11 flnfl.^flj, 

7 1 2 2 1 a,,a,,a^ 

8 1 2 2 2 

1 
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27 

i 
4 

i 
4 

i 
4 

6 12 12 (O'fl^. 1 

1 1 1 1 1 1 

8 1 1 2 2 2 a „ f l n ( 0 ' 

12 12 1 2 2 (a,^^a^,a. 

14 1 2 2 1 2 (O'^^ii^a 

1 

2 1 1 1 1 2 K ^ a , , ^ 

3 1 1 1 2 1 {a,,fa,,a,, ^ 

4 1 1 1 2 2 (a„ )^a«f l^ ^ 

5 1 1 2 11 ^ 

6 1 1 2 12 ^ 

7 1 1 2 2 1 a„ fl.j fl„ fla T Z L 
16 

9 1 2 1 1 1 {a,,fa,^a^, ^ 

10 12 1 1 2 a „ ( f l , j ' f l , i ^ 

11 12 12 1 (^ij'K)' 1 

13 1 2 2 1 1 fl„a,2«'iifl22 7 7 
1. 

16 

15 1 2 2 2 1 a,,a,,{a^' ^ 

16 1 2 2 2 2 a.̂ Cfla)' 1 



More commonly, where this observation does prove usefijl is in helping to eliminate 

various fragments o f / , as the possible source o f its global maximum. 

Suppose that a threshold has been given, above which the global maximum of / , is 

known to lie. In this case, let the threshold equal the largest modal value exhibited 

among the singleton fragments of / . 

I f the global maximum is to exceed this threshold, it must result from a sum of terms 

(since the single-term fragments have been exhausted) and, consequently, is the weighted 

average of two or more ^-contributions. 

Assuming that a global maximum of this sort (i.e. multi-term) does exist, consider the 

values of those ^-contributions as calculated at the location o f the global maximum. 

Since a weighted average can never exceed its largest component, there must be present 

in the sum at least one 5-contribution, BCon^^^ , which is at least as large as the 

global maximum 

global max s BCon^^j^ 

Finally, unless that global maximum coincides with the modal position of one o f the 

(interior) terms, all of the global ^-contributions will be less than their modal, or 

theoretical maximum, values as given by Theorem A . Therefore 

global max s BCon^t^^ ^ B C o n ^ ^ 

The conclusion is that, for a global maximum of / , to exceed a given value, there must 

be present within the sum a term whose modal .^-contribution also exceeds that 

threshold. And, by the contrapositive, i f a fi-agment contains no such term, it has no 

hope of providing an improvement over the threshold, and so can be eliminated as a 

possible source of the global max. 
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Thus, a useful first step in locating the global maximum of can be sketched out as 

follows: 

(1) Identify the valid fragments of for the given model size and training 

sequence using the procedure described in Section 3.4. and worksheet 

similar to page 63 . 

(2) From this list of fragments, pick out the single-term fragments 

(singletons) and use Theorem A to calculate their modal values. 

The global maximum of must be at least as targe as the largest 

of these (call it FMax) . 

(3) No fragment of / can exceed FMax which does not include 

a term k for which 

FMax < B C o n ^ ^ 

Therefore, find the terms of / , with such a j3-contribution, and 

discard all fi^gments which lack such a qualifying term. 

From here, the task calls for globally optimizing the surviving fi^gments and then 

selecting the greatest maximum from among them. Any of the techniques from 

Appendices B, C & D or elsewhere can be applied. I f the fragment is one or 

two-dimensional, graphical methods (e.g. MathCAD) can be used to locate its maxima 

visually. Where the dimension exceeds two, Geometric Programming can sometimes 

lower the dimension-provided the number of distinct terms in the fragment does not 

exceed three. Calculus and/or Geometric Programming can be used to provide the 

interior maxima (bearing in mind that any boundary extrema will come to light among the 

lower-dimensional fiagments in its hierarchy—see page 80) . Hill-climbing which is 

initiated from closely-spaced points in the domain of the Segment is the next recourse. 
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A variety of different regimes for carrying this out are described in Section 5.7. Finally, 

one tends to develop a Teel' for the likely maximum, based upon the presence or absence 

of interior terms, the pattern of the exponents (see page 279), and resemblance to 

previous examples. 

As a very simple illustration, consider the problem which opened this section, consisting 

ofthe training sequence kkl and the 2-state model (N=2), for which / , equals 

Completing the procedure for identifying relevant fragments, the worksheet is shown on 

the following page, and the fragments are found to include : 

(1) 

(2) 

(3) 

(4) 

(1 2) 

(1 3) 

(2 4) 

(3 4) 

(1 2 3) 

(1 2 4) 

(1 2 3 4) 

Each ofthe four terms comprise a singleton, and their modal values are gjven below : 
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k k l 

X 
X 

X 
X 

X 
X X 

X 
X 

X 
X 

3 4 

X 
X X 

1 2 3 

X X 
X 

1 2 4 

X X 
X 

1->4 

X X 
X X 

X X 

X 
X 

1 2 

X X 
X 

1 2 1 2 1 2 

X 
X 

none 

X X 

X 
X X 

1 3 

X X 
X 

1 3 1 3 

2 4 

X X 
2 4 2 4 

1->4 

X X 
X X 

3 4 1 2 3 1 2 4 1_>4 



Term 
k 

1 

2 

3 

i4-contribution ^-contribution 
ACon i:;modal BCon 

_ 1 
27 

Modal Value 
FMod 

A_ 
27 

i 
4 

i 
4 

i 
4 

The largest modal value, FMax , is ^ and only one term (2) has a ^-contribution 

which exceeds this, so only fragments which include (2) have any chance of providing 

an improvement: 

(1 2) 

(2 4) 

(1 2 3) 

(1 2 4) 

(1 2 3 4) 

Fragments (1 2) and (2 4) are each 2-dimensional, defined on the ( a „ x ft,^ ) and 
the ( a „ X Ajĵ  ) spaces respectively, and are easily optiniized by inspection using a 

graphics package. The first contains no interior maximum, but the second is found to 

have a maximum at the point 

A = 
i 2 
3 3 
0 1 

1 0 
i 2 
3 3 

Q 

The value at the peak is ^ , which exceeds FMax , and is a contender for the global 

maximum. 
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Fragments (1 2 3) and (1 2 4) are each 3-dimensional and so beyond visual 

inspection. However, using Geometric Programming (see Appendix C) each of their 

optimizations can be transformed into two equations in two unknowns : 

for ( 1 2 3 ) -

u, ( l - u , ) ( l - u , - U 2 ) ( 2 + U2) = ( l + u , . u , ) ( u , + U 2 ) ( l - u , ) ( l . u , - u , ) 

u, ( 1 + U , - U , ) ( 2 - U 2 ) ( 1 - U , - U , ) = u , ( U , + U , ) ( 2 - U 2 ) ( l - U , - U 2 ) 

for (1 2 4 ) -

u, ( 1 - u , ) ^ (2 + u , - U 2 ) = u, ( 1 + U , - U , ) ( 1 - U , + U , ) ( 1 - U , - U 2 ) 

u, ( l + u , - u , ) ( 2 . U 2 ) ( l - u , + u , ) = u, ( 2 - u , ) ( 2 + u , - U 2 ) ( l - u , - U 2 ) 

MathCAD finds 9 solutions to the first system, of which only 2 are interior critical 

points, and neither of which exceeds FMax . MathCAD finds 8 solutions to the 

second system, none of which is an interior point. 

The remaining fragment (1 2 3 4) is 4-dimensional. To search for maxima, one 

option is hiU-climbing which is initiated from closely-spaced points in the domain (see 

Sections.?, and AppendbcD), However, in this case Geometric Programming can be 

employed to transform the problem into a system o f 3 equations in 3 unknowns, which 

MathCAD can then solve. 

In this way, it is found that the maximum of fragment (2 4) provides the global 

optimum for this example. With hindsight, this solution might have been anticipated, 

since the two terms display a special (symmetrical mirror-image) relationship which is 

absent from the other fragments. More about the importance o f synunetry in a later 

section. 
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5.3. The Observations 

5.3.1. Observation One 

Having amassed a body of examples of the global maximum of / , derived from a variety 

of different training sequences and model sizes, the next task was to examine them for 

common themes and patterns. Among the several points raised in this way, three 

observations seemed most significant. 

The first of these states that for the global maximum of / , to result from a sum of terms 

(a simple union or compound Augment) is comparatively rare... in the great majority of 

known cases, the global maximum is provided by a single term (or, more accurately, by 

the modal position of a single term) . 

The general explanation for this phenomenon seems to be that (a) single-term fragments 

tend to occupy the smallest possible number of dimensions, and (b) low dimensions are 

conducive to a high objective value. 

Stated another way, note that each of the terms of / is a product of matrix elements 

( 7-1 factors from A , T factors from B ) where the factors range from 0 to 1 . A 

high value for the term demands that all of its factors are as close as possible to 1 . 

However, when x̂ . = 1 this forces the other elements from row / of the matrix to equal 

0 . Consequently, the terms of / which can achieve the highest value are those which 

include the smallest number o f elements (preferably no more than a single element) from 

any row of A and B . Finally, with so few elements present from A and B , these 

terms have little opportunity to 'activate' other terms (see page 72), so tend to constitute 

the single-term fragments (singletons). 

Of course, there are exceptions to this observation, in which the global maximum does 

result from a sum of terms. One becomes aware of a trade-off at work, between a single 

term offering a large value thanks to its low dimensions, and a sum of many terms each 

offering a more modest contribution as a consequence of their higher dimensions. 
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The equivalence between terms and state sequences has already been described (see page 

53) . The i4-contribution o f a state sequence seems to measure the consistency with 

which exit paths are selected from the states. For example, i f a sequence is such that 

from State / the model always (or nearly always) proceeds to a particular State J, this 

will be reflected in a larger ^-contribution for the term. 

In a similar way, the jB-contribution seems to measure how strongly output symbols can 

be identified with states. For example, i f a sequence is such that a particular Symbol ^ 

always (or nearly always) seems to occur whenever the model is in State j , this will be 

reflected in a larger ^-contribution for the term. 

The .^-contributions are strongly dependent upon the observation sequence, while the 

^-contributions are independent o f the sequence. Consequently, a symbol sequence 

which promotes a large 5-contribution may not necessarily lead to a large 

^-contribution, and vice versa. 

For example, note that when there are N states and N or fewer distinct symbols, it is 

always possible to find a term whose ^-contribution is a perfect 1. Taking the sequence 

kklk, 

i f we assign k generation to state 1 

and assign / generation to state 2 

the result is the state sequence 1-->1->2~>1 , corresponding to the term a „ a^^ 

( ^ 1 * ) ^ • In case, the 5-contribution is a maximum possible 1 , but the modal 

value of the term is eroded by the relatively poor i4-contribution o f ~ . 

It is cases like these (where the A- and ^-contributions are out o f step) that the balance 

of the trade-oflF described above becomes tipped away from the single term in favor of a 

sum o f terms. Nevertheless, even when the global maximum is given by a sum, it is 

notable that the sum seems to tend towards a minimum number of dimensions. 
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5.3.2. Observation Two 

Although the landscape of / may in general be quite complicated, the fragment which 

provides its global maximum seems always to be a simple unimodal hump. 

Clearly this is true when the fragment in question is a singleton, since these are unimodal, 

with the location and modal value given by Theorem A (page 54, see also the 

discussion on page 55) . Remarkably, it seems to hold in the case of multi-term 

fragments also. 

Consider the problem defined by an N = A state model together with the training 

sequence kkkkl. The global optimum for is found to occur at the point 

A = B = 

i 1 
5 5 

which is the resuh of optimizing the 4-dimensional fragment 

a „ a,2 h,^ b^^ b^, + a , j b,^ b j b^ b^ + a,2 a^^ b,^ b^ b^ b^ 

+ a,2 b^^ b^ b^ b^ b^, 

The unimodal shape of this fiinction can be argued on the basis o f the symmetry which 

exists among its terms. When the exponents matrices for the four terms are written 
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1 1 

A* = B* = 

A* = 

1 
1 1 B* 

A* = 1 
1 1 

B* = 

A* = B* = 

1 
1 
1 
1 1 

it is clear that each term is 1-dimensional, and when the fi^gment is re-written using x, y, 

zand -w to distinguish those dimensions, 

x ( l - x ) ( l - ; / ) ( l - z ) ( l - M ' ) + {y-x)y{\-y){y-2){\-w-) + (1-x) ( l - ; ' ) 2 (1-r) (l->f) 

+ (1-x) (1-;^) (1-2) w ( l -w) 

one can observe the equal and symmetrical interactions between each term and the 

remaining three. 
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This symmetry, and the consequent unimodal shape, are further suggested by the fects 

that 

44 • 
(a) at the global maximum, each term contributes the same value, equal to . 

(b) the global maximum is a simple average o f the four sets of exponents matrices 

(as in appendix Section D.4., described there as the 'pseudo-mode') 

Finally, it is instructional to note what happens when fewer than four terms are included 

in the sum: 

When any three of the terms are combined, the resulting 3-dimensional function is also a 

bona fide fragment of / , , and represents a cross-section of the original 4-dimensional 

fi-agment. For example, the first three terms represent / , after it has been sectioned 

along the b^{ = w) = 0 hyper-plane. 

The new fragment is also unimodal, exhibiting the same sort of symmetry between its 
33 

terms, but is slightly smaller, with the peak given by three times — and the modal 
4^ 

position found by averaging the three sets of exponents matrices. 

This process can be continued to give a number of 2-dimensional and, finally, 

1-dimensional functions. Each is a fiagment o f / in its own right, and each is 

unimodal, but having a reduced peak compared with the previous (higher-dimensional) 

sur&ce. 
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5.3.3. Observation Three 

The third observation appears to be related to the second and may help to account for i t : 

In the case when a sum of terms (simple union or compound fragment) provides the 

global maximum, that sum invariably 

(a) includes at least one term, k, which is a singleton o f / , , 
and 

(b) consists of one or more 'nearest neighbors' of the term k 

--where a nearest neighbor is defined as a fragment which shares all the same dimensions 

as term k, but has exactly aoe additional dimension. 

As a simple example, consider an ^ = 2 state model together with the training sequence 

kllkk. The global optimum is given by maximizing the fragment (14 15 16 ) : 

Term k in this case is the third of these, for which 

and 

ACon 

BCon, 
16. modal = 1 

'16, modal 

FMod = FMax 
16 
J . 
16 

and whose single dimension is evident from the profile 

' l 6 5 ,6 = 
X 

X X 

Consistent with Observation Three, the fragment (14 15 16 ) is a nearest neighbor of 

term 16 , the extra dimension caused by the presence of factor a^^ : 

A = X 

X X 
B = X 

X X 
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As a second example, consider the four-term fi^gment described in Observation Two. 

Here, each of the terms constitutes a valid singleton of , and each term is also a 

nearest neighbor of all the others, as is evident when the fragment is written in the form 

x ( l - x ) (!->;) ( l - r ) ( l .>v) + ( l - x ) ; ; (1-^) (1-z) (I -M^) + (\-x) i\-y) z {l^z) {\-w) 

where x,y,z,w are again used to distinguish the 4 dimensions. 

Term 1 is coupled with term 2 by the presence of the factor x in term 1 and the factor 

y in term 2 , and the sum of those two terms is exactly one dimension larger than either 

term individually. 

When the fragment consists of multiple nearest neighbors of k such as this, it appears to 

be essential also for each of those to be a nearest neighbor o f each other : 

Term 1 Term 2 

Term 4 Term 3 

For example, it is possible to exhibit similar fragments whose terms constitute a chain of 

nearest neighbors 

Term 1 Term 2 

Term 4 Term 3 



but where the terms on the diagonal are not nearest neighbors. In those cases, the global 

maximum is no larger than that provided by maximizing the sum o f term 1 plus term 4, 

for example. 

Observation Three reflects the apparent necessity for two terms to be quite close to each 

other geometrically before they can combine into a single hump. (See also the discussion 

in >^pendix D, pages 278-279) This is also reflected in the unimodal shape of the 

global maximum fragment, as noted in Observation Two. 

Consider the hypothetical fragment 

Notice there are two 1-dimensional terms which are coupled to each other across two 

dimensions, so that the sum forms a 3-dimensional fragment. Because there are two 

additional dimensions rather than one, the terms are not nearest neighbors. 

Notice also that the exponents have been selected to make the terms symmetrical mirror 

images of one another. This symmetry confers two advantages : 

(1) First, the position o f the interior critical point is known— 

(2) Second, the value at the interior critical point is as large as possible, 

in comparison with fragments whose terms are not symmetric. 
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To expand upon this second point, consider the alternative (non-symmetrical) fragment 

g(x,y,z) = x?-(l-xy {l-yy (l-zy + {\-xy y(l.yy f 

Let s = Minimum{ t , u } 

Then ( l - j / ) ' S (1-;̂ )* and {l-yY S (1-^)"* 

from which (l-xy {\-yy i\-zy ^ xF (l-xy (l-yy (l-zy 

and (1-xy / (l-; ;)^ > ( l - x ) ' y ^ (1-^)" 

or h(x,y,z) = x'il-xy (l-yy ( l -z) ' + ( l - x ) ' y (1-^)" (l-zy > g{x,y,z) 

Finally since 1 > (l-^*) 

then 1 > (l-yy 

y 0-yr 

(i-xy / TF {\-zy ^ ( l - x ) ' / (i->.)'' f {\-zy 

Ax,y,z) > h(x,y,z) > gix,y,z) 

In other words, for any non-symmetrical fragment g(x, y, z) a symmetrical fragment 

having the form of fix, y, z) can be found which serves as its upper bound on the 

domain. Note also that along the z = 0 boundary, the fijnctions are equal. 
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Finally, back to the landscape of J[x, y, z) , with its symmetrical terms. The value of / 

at the modal position of its first tenn is 

and the value of / at the position of the interior critical point is 

We ask, for what values of p, q, r and s does the fijnrtion value at the interior critical 

point o f / exceed the boundary peak? (When do the symmetric mirror-image terms 

combine to produce an interior maximum?) 

After algebra, that condition can be re-expressed as 

The following printout gives selected values of the left-hand expression for values of p, 

q and r ranging from 1 through 10 . We see there are numerous combinations for 

which the expression on the left o f the inequality is less than 2 , but none where it is less 

than 1 . In other words, the condition can be satisfied provided s = 0 , but is not 
satisfied for s > 1 . However, when s = 0 , we observe that the two terms making up 

fix, y, z) are nearest neighbors, while for s > 1 they are not. So the symmetrical 

mirror-image terms can combine to form an interior hump only i f they are nearest 

neighbors. 
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Furthermore, this situation must be roughly true also for the non-symmetrical cases. For 

every non-symmetrical sum of terms there exists a symmetrical upper bound such that its 

(equal) boundary peaks are comparable to at least one of the peaks of the 

non-symmetrical sum. When the interior critical point of the upper bound falls below its 

boundary peaks (i.e. when the synrunetrical terms are not nearest neighbors), then the 

interior critical point of the non-symmetrical sum must do so also, since the 

non-symmetrical surface cannot exceed its upper bound. 

This little demonstration has aimed to show that two terms cannot form an interior 

maximum unless they are nearest neighbors. While still a far cry from a rigorous proof 

of this, it does seem to add some credance to Observation Three and the suggestion that 

terms need to be quite close geometrically before they form a hump. 
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5.4. New Algorithm 

Assuming the above three observations to be typical of the general situation, it is possible 

to adapt them into a process for finding the global maximum of / , . 

This process is basically the reverse of that described in Section 5.3.2. , where the 

maximizing hump was repeatedly sectioned into lower and lower dimensions until an 

(atomic) single-term fi-agment was reached : 

Find the set of singletons / , 

For each singleton, identify the fi^gments which are its nearest neighbors 

Find the nearest neighbors of those Segments, and continue expanding 

the fragments by one additional dimension in this way for as long as 

each expansion produces a taller hump than the last 

More formally: 
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For a given model size N and training sequence O = o^o^., Oj 

(1) Find the set of single-term fragments of / , and calculate their modal values 

(2) For each singleton from step (1) 

(A) Identify the fragments of / which are its nearest neighbors 
(i.e. differ from it by having one extra dimension) 

(B) Perform a hill-climb of each nearest neighbor from some convenient 
interior point, and retain those which result in an improved interior 
maximum (i.e. higher than the end-point maximum provided by the 
singleton) 

(C) Pairing the survivors from (B) with the fragments found in (A), 
identify new combinations which result in one additional dimension. 
Then hill-climb these larger fragments, again retaining only those 
which show an improved maximum over their components. 

(D) Continue the process of building fragments which are one dimension 
larger than theu* components, hill-climbing, and retaining those 
which show an improvement. 

(E) The process terminates when 
no new combinations are possible, or 
none of the new combinations show improvement 

The resulting set of peaks essentially constitute the landscape of / , . The highest of 

these peaks represents the global maximum. 

(jiven the list of nearest neighbors from , step (2A) , the intention is to examine every 

possible combination of 1 , 2 , 3 , etc neighbors to see at what point the objective 

improvement halts. The process resembles crystal-growing, where the singleton 

fragments of step (1) provide the 'seeds*, and where a fragment is allowed to grow 

another dimension only when doing so produces an improved maximum. 
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5.5. Finding the Singletons 

Although step (2) , the process of identifying and combining the nearest neighbors, may 

appear very laborious, the fact that most global maxima are given by singletons 

(Observation One) generally means that this part of the algorithm runs quickly. Instead, 

it is step (1) , the identification of the singletons, which poses the more serious 

bottleneck. 

On the face of it, the number of terms to be investigated as possible singletons must 

increase at the rate N ''̂  , where each investigation then requires testing the candidate 

term against all of the remaining terms (in the worst case) for possible activation. 

Clearly, such an eSbrt could render the algorithm a non-starter for all but the smallest 

problems. 

Fortunately, it is possible to 'grow* the set of singletons for / , on a symbol-by-symbol 

basis as the successive elements of the observation sequence become known. This also 

opens the door for constructing the globally optimum HMM on an incremental basis. 

The key observation which makes this possible goes as follows : 

I f a state sequence (i.e. term) 'eclipses' some other sequence, and i f both 

sequences share the same final state, then not only is the eclipsing sequence 

not a singleton, but also none of the sequences which can be formed by 

appending additional states to that sequence can ever by singletons, either. 
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To elaborate, consider 3n N=2 state model, the observed symbol sequence kl I k , 

and the proposed state sequence l->l->2->l . This produces the term a„ a,2 flji 

^„ whose modal position is computed by dividing the exponents matrices 

A* = 1 1 
1 0 

Row Sum 

2 
1 

B' 2 1 
0 1 

Row Sum 

3 
1 

by their row sums as described already on pages 54-55 . 

Also, consider the second state sequence 1->1->1->1 . 

Sequence 1 1 2 1 is said to 'eclipse' sequence 1 1 1 1 in the sense that, when their 

silhouettes are compared 

A = 
X X 

X 
B = 

X X 

X 

versus 

A = B = 
X X 

all of the marked positions for 1 1 1 1 are covered by the marked positions for 112 1. 

Clearly, when sequence X eclipses sequence Y , X 'activates' F (in the sense 

described on page 72 ) since the elements of A and B which are required to produce a 

non-zero Y are provided by X, Thus, whenever X is active (non-zero), Y is also • . 

* However, the converse is false. Sequence X can activate Y without eclipsing 
it. The exceptions always involve terms of the sort (i.e. unspecified rows) 
described in the footnote on page 81 . 
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Now consider two state sequences X = x^x^,. x,., / and Y = j ' , ^ 2 •• > n ' which 

both terminate in the same final state, / , and assume that X eclipses Y. 

Then X is not a singleton (single-term fi^gment), since it activates another term so can 

never appear in isolation. Furthermore, assume that the next observed symbol (at time 

/4-1) is k. 

Whatever state j this next symbol is assigned to, 

X, .. X,., j j activates y^y^ ..y„, i j 

since the only possible changes to their silhouettes, i.e. 

a.j becomes marked in A 

becomes marked in B 

will be the same for both terms—and consequently the updated X silhouette will 

continue to eclipse the updated Y silhouette. 

Finally, this argument can be extended to any number of additional states appended to X 

and Y . Thus, none of the descendents of X can be singletons, since there always 

exists a term (namely, the corresponding descendent of Y) which it activates (eclipses). 

Based upon this result, the procedure for locating singletons as required in step (1) of 

the new algorithm can be illustrated using the tree diagram below. Starting from state 1 

and symbol k, for each successive observed symbol in the training sequence there are 

N possible states it could have been issued from, resulting in A'̂  children for each of the 

ab*eady existing state sequences, and the gjven 7̂ -ary tree. 

126 



state 1 

State 1 State 2 

State 1 state 2 State 1 state 2 

1 1 1 2 

state 1 state 2 S a o 1 

1 2 1 2 

State 2 State 1 

1 2 2 2 1 2 2 1 

Slate 1 state 2 



At each level t there are iV"* state sequences, any one of which is a potential singleton. 

However, noting that sequence 1 1 2 1 eclipses 1 1 1 1 , then 1 1 2 1 fails the 

singleton test. Furthermore, since 1 1 2 1 and 1 1 1 1 both terminate in 1 , then by 

the above result none of the descendents of 1 1 2 1 can be singletons either, so this 

branch may be pruned from the tree. The same holds for sequences 112 2 and 12 11 

(which eclipse 1 2 2 2 and 1 1 1 1 , respectively) . 

The sequence 1 1 1 2 presents a third possibility. This eclipses the sequence 1 1 1 1 , 

however the two sequences don't share the same final state. While 1 1 1 2 is not itself a 

singleton, some of its descendents may be singletons, so the branch beginning from 

1112 cannot be pruned from the tree. 

Thus at each level the state sequences fall into three categories : 

Singletons 1 1 1 1 
12 12 
122 1 
1222 

Disposables 112 1 
1 122 

12 11 which can be pruned, and 

Reserves 1112 

which must be carried forward until the nature of their descendents can be established. 

The process of generating, classifying and pruning the N offspring of the survivors at 

level / is repeated for each successive observed symbol in the training sequence. 

Finally, after the last symbol, the list of singletons (but not the reserves) is passed on to 

step (2) of the algorithm. 
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5.6. Algorithm Efficiency 

At each level of the tree on page 127, as another observed symbol is received, the 

singletons and reserves carried forward fi-om the previous level each generate N 

ofiFspring whose type (singleton/disposable/reserve) must be ascertained. Fortunately, 

thanks to the pruning action which is possible, the rate of growth of the tree is 

significantly less than the value N''^ it would be otherwise. 

It is difficult to state the new rate of growth precisely, since it depends very closely upon 

the particular sequence of symbols observed. However, in tests the number of state 

sequences carried forward to the next level remains roughly constant from level to level, 

and is some small multiple of 

^ + B , f o r M < A r 

where N is the number of states 

M is the number of distinct symbols received at that point 

and is the n*̂  Bell number, equal to 

B„ = S * + + .. + Ŝ '̂  
n a n • 

where S„" are Stirling numbers of the second kind, defined recursively as 

= s ; = 1 

= S„-» + m S," 1 < m ^ n 

Sq" = 0 otherwise 

A table showing Stirling and Bell numbers for small values is given on the next page. 
See also [36,37]. 
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1 

1 1 

1 2 1 

1 3 3 1 

1 4 = 1 + 3 6 = 3 + 3 4 = 3 + 1 1 3x610 

Stirling numbers of the second kind represent a generalization of PascaTs Triangle in which, 
rather than compute an entry by merely summing the two numbers above it, the right-hand 
number Is first muttipDed by the appropriate value of m . 

m 

6 H-

5 + 

4 + 

3 + 

2 + 

1 + 1 1 

15 

10 65 

25 90 

15 31 

\ 
1 

1 
2 

1 
3 

1 
4 

1 
5 

1 
6 

n 1 2 3 4 5 6 

n̂ 1 2 5 15 52 203 



The first term of K represents the number of ways in which a unique exit path can be 

assigned to each of the N states (page 111, paragraph 1) . For 3 states, this 

number stabilizes at six, as follows : 

11 111 1 1 1 1 

121 1 2 1 2 

12 ^ 1 22 1 2 2 2 

1 2 3 1 

1 2 3 ^ 1 2 3 2 

1 2 3 3 

In a similar way, the second term of K represents the number of ways in which the M 

distinct symbols can be identified with one of the N available states (see page 111, 

paragraph 2) . 

The sum of the two terms provides a lower bound on the number of singletons, since it 

represents those state sequences for which there is (at most) one non-zero value along 

each row of the ..4-matrix or one non-zero value down each column of the .5-matrix, 

which state sequences are trivially confirmed as singletons. However, sin^etons other 

than these usually exist, and the actual number carried forward is roughly some small 

integer multiple of K . This number grows exponentially (in the second term), but only 

with M , not 7 . Thus, the number of survivors (width of the Tseam', in the parlance of 

tree searching [38]) remains roughly constant from level to level, until a previously 

unobserved symbol is received, whereupon that number makes a quantum jump. 
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Finally, at the next level of the tree the number of offspring is Nx K. However only K 

X (K-l) tests for activation (eclipsing) need to be carried out (in the worst case), since a 

state sequence only needs to be tested against other sequences which end in the same 

state. Thus, the total number of tests conducted during Step (1) of the algorithm is 

roughly proportional to 

A : x ( i : - i ) x ( r - i ) 
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5.7. Test Procedure 

The algorithm has been programmed in 'C , to run on a Sun SPARCstation 5 

workstation. A listing of the program (known as NHB, for New H M M Builder) has 

been included as Appendix E . 

The program requires two inputs : 

a single training sequence in the form of a character string 

(commencing with the letter 'a' * ) , where the characters symbolize 

members of a finite alphabet of possible outputs (see Section 1.4.) 

the required number of HMM model states, N 

NHB then generates two results based upon those inputs : 

the parameters {A and B matrices) of the proposed 'globally* 

optimum HMM 

the probability P = P(o^o^..Oj) that the proposed HMM would 

produce the given training sequence 

As a preliminary test of the algorithm's effectiveness in returning models which are 

globally optimal, the body of examples for which a 'known' globally optimum solution 

was available were presented to the computer program. NHB succeeded in reproducing 

all of those solutions. However, this was not entirely surprising, since the algorithm was 

constmcted around those examples in the first place. 

•The first received output is allocated the letter 'a* and, as previously unobserved 
outputs are received, they are allocated the letters *b\ 'c', *d , etc. in order 

133 



So, in order to conduct a more independent test, a set of test data was then collected. 

These consisted of randonily selected character strings, ranging from T = 5 to 15 

characters in length, generated according to the following (pseudo-code) instructions : 

Symbol [1] < - 1 
H < - 1 
for i = 2 to T 

choose Symbol [i] randomly among the 
integers from 1 to H 

if Symbol [i] = H , then H < - H + 1 

The collection of sequences generated in this way are shown on the following page. 

Next, these test sequences were input to NHB five times, once for each value of N 

ranging firom 3 to 7. However, due to the long running times of the program for larger 

values of .Â  and T, many of the trials had to be aborted prior to completion. The 

number of input combinations for which results were successfijlly recorded are shovm in 

the table on page 136 . 

Finally, efforts were made to confirm that the results generated by NFffi were globally 

optimal. As noted earlier, to conclusively identify the global optimum solution for a 

particular objective flmction is generally veiy difficult. To make a 'reasonable' attempt to 

achieve this, a fiirther series of computer programs were written which performed 

various systematic searches of the parameter space for each of the trials successfully 

conducted above. I f a point within the parameter space could be found for which the 

value of P exceeded the value exhibited by NHB at its proposed solution, this would 

certainly disprove the ability of NHB to provide the global maximum. Alternatively, i f 

no such point were ever found, this would add credence to (but not prove) its 

effectiveness. 
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T = 5 T = 6 T = 7 T = 8 T = 9 T=10 T = l l 

ababb aabbcb abacded abaaaabb abccbdaeb aabacccabb abaccbcdadb 
abccc aaabaa aaaabbc abbbbbbb abcbabcdb abbbbcaabd aaaabbcadda 
ahead aaabca abbaaaa aaabbaba abcbbabcb abaabbbcca abcadbaabac 
abbaa ababcb abaacaa abbaacdb aabbcddec aababaaabc aaaababacde 
aabac abbbba aaabaca aaaaabcb aabcbadda aaabacccdc abcbdbbcacd 
aabaa abbacb aabbcbc aaaabbbc ababbbbcc abcdecebca aaabcbaaacd 
aaaab aabaaa aaabcac abcdbdeb aabbacaad aabcbdefdg ababacdbccd 
aabca aaaabc abbcdda abcdedee abbcbcddc abccaaddae abacbaccaaa 
ababc ababbb aabbbac abcacccd abbaacbba aabaabacab abcbcabddcd 
abbac aabccd abcbdea aaabacdc aabcbbdba abccbdccdb abbbccdeabe 

abbaaabbaa 

T - 1 2 T=13 T=14 T=15 

aaaaaaabbaba 
aaaabcacabab 
aabaabaccabb 
abacdbdabbce 
aaaabacccbdc 
abacccbddddb 
abccddbcebce 
abaccdefefcb 
abcccaaadadd 
abcccaccccad 

abcccaccdeaec 
aaabccacadace 
aaabcdeabcbdc 
aabbbaccacaba 
aabaaaccbdcee 
aaabbbbcbacac 
abcaaaadebfeb 
aabbcdbeacbed 
aaaababcabcda 
abcbdddeceefb 

aabbbababcacdb 
aaaaaaaaaababa 
abcacabdaeafce 
abbbaacacacacd 
aabcbbdabbbbdc 
aabaabbabaacda 
abacdaecacdfeb 
aabcadaeefafeg 
abccdabeeebcbe 
ababcbddefadgf 

abaccdaaeffeecd 
aabcbbcdbeaeffb 
abacaddbbbaccad 
aaaabbbbbaaacbd 
abbcccccdddbacc 
aabcbdabcdbbcbb 
abbacaabcdccaab 
aabacbaddccccee 
abbbbcdbefdeccg 
aabbabaabbcbbac 



The table below indicates the amount of data gathered per model size and training 

sequence length T : 

N 
3 

>• 

4 5 6 7 

5 10 10 10 0 0 

6 10 10 10 2 0 

7 10 10 10 4 0 

8 10 10 4 2 2 

9 10 10 2 0 0 

10 11 6 0 0 0 

11 10 2 0 0 0 

12 10 0 0 0 0 

13 10 0 0 0 0 

14 6 0 0 0 0 

15 0 0 0 0 0 
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The first program in this series performed a Baum-Welch style hill-climb fi-om the 

geometric center of the solution space, along with hill-climbs fi-om the geometric center 

of each boundary 'plane' of the solution space. This strategy was, in part, guided by the 

possibility (see Sections D.5. and 5.3.2.) that the landscape o f the objective function may 

be fairly simple (even uni-modal) in the vicinity of the global max. I f this were true, a 

hill-climb conducted within the 'right' boundary plane should certainly find it. 

Unfortunately, this strategy quickly became overwhelmed by the size of the task. With 

N states and M distinct symbols in a test sequence, that could require a possible 

( 2 ^ - l f x ( 2 ^ . i r 

number of hill-climbs to complete the trial for that sequence. I t was soon found that only 

the A'^= 3 set of trials were amenable to this kind of search. 

The second program in this series also performed multiple hill-climbs. This time they 

were initiated from equally spaced starting locations v^thin the interior of the solution 

space only (i.e. the boundaries were not included). The intention was that, i f the grid of 

starting locations was suflBciently fine, some of the climbs would occur near enough to 

the boundary planes to detect any end-point extrema. Once again, however, the sheer 

enormity of the search task for reasonable grid densities rendered this strategy unusable 

for the larger values of N. 

The third program in this series o f tests abandoned the idea of hill-climbs, and simply 

carried out evaluations o f the objective function, P, at the same grid o f equally spaced 

locations that were used in Program 2 . This met with better success, and Appendbc F 

presents the results of that test, showing the highest located peaks for each trial, plus the 

elapsed computer time taken to complete each trial. 
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Eventually, however, even the third program became too slow to use. At that point. 

Program 3 was replaced by a battery of four H M M model-building programs, all 

performing classic Baum-Welch re-estimation (i.e. a single hill-climb), but differing in the 

model architecture and choice of starting point: 

Fully-connected Left-right 
(2 skip sUtes) 

Initialized 

uniformly B W l BW2 

Initialized 
randomly BW3 BW4 

Using these faster, but far less thorough, Baum-Welch programs, a full set of 

comparisons was eventually achieved. 

Finally, the results of the various tests can be stated qualitatively as follows : 

(1) No counter-example was ever found which dis-proved the ability 

of NHB to find the global maximum solution. 

(2) The peak value for P supplied by NHB is often several orders o f 

magnitude larger than fi-om the other programs. 

(3) However, for all but the smallest values of model size and sequence 

length, NHB is relatively slow (orders of magnitude slower than 

the Baum-Welch programs). 
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6. Conclusions 

6.1. Review 

In this final chapter we review the contents o f the thesis before giving a brief summary of 

the contributions of the research. 

In the Introduction we presented the fundamentals of Hidden Markov Model technology 

within the setting o f Automatic Speech Recognition. We then attempted to make a case 

for employing the globally optimum H M M , as opposed to the locally optimum models 

which are produced by the Baum-Welch algorithm. We also tried to make a case for 

analyzing Discrete HMMs trained using a single training sequence as a first step towards 

understanding how to generate these globally optimum models. 

In Chapter 2 we launched into a straight-forward attack upon that analysis using the 

standard optimization strategies of calculus, where the objective function to be optimized 

was the probability, P(0) , that a Discrete H M M would produce the given training 

sequence, and the independent variables were the parameters of the model, given by the 

elements of ^ , 5 and n . The intention was to develop formulas for finding the 

complete set of optima and then choosing the global optimum from among them. EflForts 

were complicated by the large number of (scalar) domain variables involved, so tools 

were developed for treating the optimization problem in matrix form. 

Part-way through this analysis, we were able to prove that an upper bound exists on 

those optima of the objective function which occur within the interior of its domain 

(parameter space). However, a shortcoming of calculus-based optimization is that it 

tends to overtook possible endpoint extrema, which occur on the boundaries o f the 

domain. It was fairiy easy to show that, in the case of a single training sequence at least, 

the global optimum is not to be found in the interior but must reside on a boundary of the 

domain-namely, that sub-space where the first element o f n equals 1 and all the other 

elements of TC equal 0 . 
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As a consequence of this finding, we were able to replace the original objective function 

with a slightly simpler function o f A and B only, namely y j {A^ B) , which corresponds 

to the set of possible state sequences which the model might pass through beginning 

fi-om State 1. However, as with the earlier objective function, it was still necessary to 

optimize / , over each of its boimdary planes as well as the interior of its domain. 

It became evident that optimizing over each of its boundary planes is equivalent to 

optimizing the many fi-agments of / , which result when one or more o f the elements of 

A and/or B equal zero. Not all o f the possible combinations are actually capable o f 

reproducing the given training sequence, however, so a procedure was given which can 

identify the relevant fi'agments for a particular training sequence. 

Next came a brief examination into the nature of these fi-agments. The boundaries to 

which they correspond differ in their dimensions (e.g. vertex, edge, plane) depending 

upon the number of fi'ee variables the fi^agment contains (which is similar to the number 

o f non-zero elements in A and B ) . This situation leads to a natural hierarchy among 

the fi^gments—larger fi-agments are found to contain smaller fi-agments, in the way that 

planes contain edges, which in turn contain vertices, etc. 

In addition, the Augments are observed to fall into distinct categories. The simplest are 

the atomic 'singletons', consisting o f only a single term of / i , while those containing 

multiple terms can be classified as either 'simple unions* or 'compound fi-agments', 

depending upon whether the fi-agment consists entirely o f smaller fi-agments, or whether 

it also includes additional 'interior* terms. 

On their domain, the singleton Augments are uni-modal humps. These form the most 

basic features ofthe'landscape'of Jy : must contain at least as many peaks as there 

are singletons. The question is, as more dimensions are added (as fragments are 

combined to create larger fi-agments), how many additional peaks are introduced? The 

situation can be pictured (very crudely) in terms o f a square sheet o f stififened tent canvas 

supported by a set o f poles, where the terms of the fragment constitute the tent poles and 
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their modal positions provide the locations of those poles. Under what conditions do 

terms combine with each other to produce a new hump in the canvas which is taller than 

the participating poles... or when does the canvas merely sag down between the poles? 

This is one o f the central questions o f the research. 

In pursuit of an answer, the research became directed towards finding a mechanical 

procedure for optimizing the individual fi'agments o f / , . Except in simple cases, this 

would not be sufficient, by itself; to globally optimize / since there are at least as many 

fi^gments as there are terms o f , a number which grows exponentially as N^'^ . On 

the other hand, such a procedure would clearly be useful in its own right, and could shed 

light on the mechanics of peak creation. In this way, it might also help to predict which 

among the many fi-agments are the likely ones to provide the global maximum. 

Among the many different attempts which were made to develop such a procedure, three 

are described in the thesis. The first of these used the Matrix Derivatives approach, 

revisited fi'om Chapter 2 and now adapted to optimize the objective over one of its 

boundaries. This attempt became 'stuck' while trying to solve for the Lagrange 

muhipliers which are used to enforce the constraints upon the domain variables. 

Next came a promising new tool known as Geometric Programming, which had been 

developed specifically to optimize functions of the present form. This is also 

calculus-based and is shown to be the 'dual* of the standard approach. Within the thesis 

it was discovered how to automate the transformation from the primal to the dual G.P. 

equations, but there was only partial success with automating the solution o f the dual 

equations. 

The third attempt investigated a new hill-climbing method, which was applied to six 

different schemes for selecting the starting point. Unless the landscape of the objective 

function is sufficiently well known in advance, hill-climbing cannot normally be relied 

upon to deliver its global maximum. The intention was to learn whether the new 

recurrence relations used in connection with one of the six starting schemes would be 

consistentiy effective in doing so. Unfortunately, none o f the six schemes passed the 
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test. On the other hand, the investigation tended to shed still more light on the nature of 

peak creation. 

In short, none of these attempts to globally optimize the individual fragments o f / 

could be sufBciently developed, although all of the attempts were indirectly useful. 

Finally, rather than contend with the landscape of / j in its full generality, the research 

now took a different tack. The new approach was to collect examples of the global 

optimum of / and then study the landscape in the immediate vicinity of that peak. 

With enough examples, it might be possible to learn by induction the rules which account 

for the global peak (versus the many lesser peaks), as well as identify those Segments of 

/ , where it is likely to occur. 

This rule induction, of course, requires that examples of the global optimum be available 

for study and, in general, such examples are not easy to come by. The thesis describes 

some useful tools for helping to locate the global optimum, but the application o f those 

tools is largely ad hoc. Unless the number of model states is low and the length of the 

training sequence is small, it is difiGcult to achieve absolute certainty about a candidate 

optimum-although continued experience does guide one in forming a reasonable 

certainty. 

As hoped, once a body of examples had been collected, it was possible to discern certain 

patterns among them. First, for the global maximum of / , to result from a fi^gment 

containing multiple terms is fairly unusual... in the great majority of known cases, the 

global maximum is given by optimizing a singleton. The explanation appears to be that 

singletons tend to be associated with the minimum number of dimensions, which is also 

conducive to a large objective value. 

Second, the fragments which contribute the global maximum all seem to have unimodal 

landscapes. This is trivial to demonstrate when the Augment in question is a singleton, 

but seems to hold true also for multiple terms. Bearing in mind that each term of / is a 

cpritinuous-valued unimodal function Cbump*), and that each fragment of is a 
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'mixture* of such bumps (in the way that Continuous HMMs employ a mixture of 

Gaussian bumps), we find that the mixtures associated with the g.o. are particularly 

simple. It is as i f only a single bump is required to optimally model a single training 

sequence. 

Third, even when the globally optimum Augment is not a singleton, it contains a term 

which is a singleton... while the remaining terms are related to that one in a distinctive 

way. That is, the Augment invariably comprises one or more 'nearest neighbors' of the 

singleton term, where a nearest neighbor shares all the same dimensions but has exactly 

one additional dimension. Furthermore, when the Augment consists of multiple nearest 

neighbors of the singleton term, those must be nearest neighbors o f each other also. 

Assuming those three observations to hold for all cases, the thesis went on to construct 

an algorithm for producing the globally optimum H M M for a given training sequence. 

The algorithm works by identifying the single-term Augments of / j and then, for each 

of those singletons, finds their nearest neighbors and pieces them together to create 

larger and larger fragments, halting when a taller unimodal hump eventually fails to 

result. The process resembles crystal growing, where the singletons provide the 'seeds', 

and where extra dimensions are accumulated until the objective no longer shows an 

improvement. 

The chief practical difficulty with the new algorithm is in identifying the single-term 

fi^gments of / , . With N^'^ candidate terms in , an exhaustive search is usually out 

of the question. Fortunately, it is possible to 'grow* the list of singletons on a 

symbol-by-symbol basis, by considering the successive elements of the training sequence 

in their turn. This implies a further advantage to the new algorithm in terms of the 

potential for building the H M M incrementally as each of the training symbols is 

received. 

The key result which makes this possible is the realization that i f term (i.e. state 

sequence) A 'eclipses' a second term (sequence) B , and i f both end in the same state. 
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then none ofthe descendants of term A which derive firom subsequent training symbols 

can be singletons-so these can be pruned fi-om the next generation of candidates. 

Finally, the new algorithm was implemented as a 'C program, and this was then 

subjected to various tests to try to confirm or refute the optimality of its outputs. 

The tests consisted of independent computer searches of the objective landscape to try to 

locate the highest peak, which was then compared with the peak produced by the new 

H M M building algorithm. Different tests were necessary due to the inherent difficulties 

(e.g. excessive run-times) of conducting searches over a large space. As the test 

examples increased in difficulty, new strategies had to be devised. For example, 

according to one strategy, each relevant boundary plane of the objective function was 

identified, and a hill-climb was then initiated fi-om the geometric center o f that boundary, 

with the highest hill over all of the boundaries providing the results of that trial. In a 

later search strategy, the hill-climbs were initiated from a grid of equally-spaced starting 

locations limited to the interior of the parameter space. The intention was that, i f the 

grid o f starting locations was sufficiently fine, some o f the climbs would start near 

enough to the boundaries to detect any end-point extrema. Later, as the test examples 

became even more difficult, that same grid of starting locations was retained, but the 

hill-climbs were replaced by a one-off function evaluation at each grid point. 

Each trial explored the landscape unique to a given randomly-generated training 

sequence (ranging firom 5 to 15 symbols in length) and model size (ranging fi-om 3 to 7 

states). Due to the finite number of those trials, and the inability o f the computer 

searches to guarantee the global peak, it is still impossible to be conclusive about the 

efifectiveness of the new algorithm. But, to date, no counter-example has yet been found 

which shows it failing to provide the global optimum model. On the other hand, a 

serious drawback of the algorithm is that it runs very slowly, typically several orders of 

magnitude slower than the Baum-Welch algorithm. 
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6.2. Contributions 

The contributions of this research fall roughly into three categories, listed in increasing 

order o f importance. 

In the first categoiy are some low-level innovations and insights, including : 

(a) various tools for Matrix Differentiation and constraint expression 

(Appendix A) 

(b) a generalized geometric progression formula (Section A.6.) 

(c) a procedure for identifying the relevant fi-agments o f / , (Section 3.4.) 

(d) the theoretical conneaions between the three deductive solution methods 

(Section 4.2.) 

(f) mathematical insights into the values o f the constraint sensitivity factors 

(Section 4.3.) 

(g) the automatic primal-to-dual transformation procedure (Section C.4.) 

(h) insights into the reducibility of the dual G.P. equations (Section C.5.) 

(i) the global effectiveness of the six search initiation schemes (Section D.5.) 
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In the second category are various insights into 

the nature of the problem 

the objective landscape 

and the process o f peak formation 

as follows— 

Nature of the Problem : 

(a) the objective fiinction P{0) viewed as a generalization of x-^X2 - x^ 

(Section 2.3.3.) 

(b) the individual terms of / , as generalized Beta random variables (Section 3.5.) 

(c) at least as many relevant fragments as there are terms of / , (Section 3.6.) 

(d) the different classes of fragments, and the natural hierarchy among the fragments 

(Sections 3.5. - 3.6.) 

(e) sum of the i4-contributions for / , equals 1 (Section 5.2.) 

The Objective Landscape: 

(a) the upper bound on the peaks within the interior of P(0) (Sections 2.2. - 2.3.) 

(b) in the case o f a single training sequence the global optimum must fall on a 

boundary of P{0) (Section 3.2.) 

(c) the f.{A,E) are isomorphic and have essentially the same landscapes 

(Section 3.7.) 
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(d) at least as many peaks in as it has singletons (Section5.4.) 

(e) a lower bound for the global maximum is easily established as that of the tallest 

singleton (Section 5.2.) 

(f) the global maximum is nearly always equal to the tallest singleton (Section 5.3.1.) 

(g) a simple mixture (unimodal hump) is adequate to model the global optimum for a 

single training sequence (Sections 5.3.2. - 5.3.3.) 

Peak Formation : 

(a) the link between low dimensionality and high objective value, 

which is reflected in 

the large number of singleton solutions (Section 5.3.1.) 

the nearest neighbor phonemonon (Section 5.3.3.) 

(b) the necessity of geometrical closeness (Sections D.3., D.5., 5.3.3.) 

(c) the conditions under which a fi-agment has an interior peak seem to be suflBcient 

to ensure that it has only one interior peak (Sections D.5. and 5.3.3.) 

Finally, in the third category of contributions are the NHB model-building algorithm 

itself; including the critical procedure for identifying the singletons of / , , and the body 

of test results. 
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6.3. Future Work 

The goal of the project was to develop a procedure by which globally optimal Hidden 

Markov Models can be identified. On a very modest level, it seems as though the project 

has been at least partially successful in achieving that goal. I t has produced some 

intriguing insights and an algorithm which appears to do the job, but which requires far 

more evaluation and refinement before it can be of practical use within speech 

recognition. 

A principle weakness of the work is that, despite the attempted use o f mathematics 

where possible, the finished product is still largely descriptive and far more qualitative 

than quantitative. To some extent, this is a reflection o f the fact that the genesis and 

testing of the new H M M building algorithm represent only the final sbc months or so of 

the research period, while the bulk of the research effort is tied up in the other chapters 

(particularly those of the Appendbc). Also, with few other recorded efforts in the 

literature to build upon, the work was naturally very exploratory. 

In order to bring the research onto a more solid footing, far more analysis and testing is 

required, including as a minimum: the collection of still more global optimum examples, 

the use of the new algorithm on more complicated cases, as well as &ster and more 

thorough searches of the parameter space by way of verification. Unfortunately, much of 

this demands more computing 'muscle' than is currently available to the author. 

In the long run, however, there is an even greater need for the development of some 

theory capable of supporting a deductive proof o f the algorithm's adequacy... since 

otherwise the cycle o f 

rule induction —> counter-examples —> refinement 

may never terminate. 
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Appendices 



A. Matrix Derivatives 

A.I . Introduction 

Our ultimate goal is to find Markov matrices ( A, B, n ) which produce the global 

maximum for 

P ( o , 02-. Or) 

the probability that the training sequence will occur. As Levinson, et al point out [28], 

that objective function can be expressed compactly in matrix notation as 

P = r Bj. A\..A* B^ A' B, n 

where 1 is a column matrix of I's 

and Bj is a diagonal matrix derived fi^om the appropriate column of B 

To maximize this according to the methods of calculus requires that we 

perform a partial differentiation ofthe objective with respect 

to each individual matrix element 

set each of those derivatives equal to zero 

solve the massed system of equations simultaneously 

for the matrix elements. 
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In place of this daunting task, consider for now the FIR filter below 

( n ) e ( n ) 

and the somewhat simpler job of computing the vector of filter coefficients which 

minimizes the error signal (as per Linear Predictive Coding, for example). 
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Here the objective (for minimization) is 

N N 
/= E = Z 

n=l n=l 

K 
(A.1) 

This can also be expressed in matrix form, as follows 

Let H = [A, h, ... h,]' 

E = [e(l) c(2) ... e(AO]' 

Y = W l ) x(2) ... xm' 

and let A' equal \hs NxK matrix where element («, A) is X(M - A) * 

Then E = y - j r / f 

and f = J(H) = E'E 

= Y'Y ' Y'XH - / f ' J i r ' y + H'X'XH (A.2) 

* I f jc(w - A:) = 0 for negative arguments, this corresponds to the Autocorrelation 
Method. 

for n<k, x(n- k) is available from the previous windov^, this leads to the 
Covariance Method [39]. 
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Dififerentiating the scalar form (A. 1) with respect to each of the unknown coeflBcients 

dh 

N 
x [ - x ( n - 0 ] 

xin-i) 
K 

x(n) - 2 hj^x{n-k) 

= 0 at a stationary point 

from which 

K N N 
2 x(n-i)x{n-lc)\ = ^ x(p-i)x{ji) 

n=\ 

i = 1 . ^ (A.3) 

Finally, it is possible to combine the complete set of results expressed by (A.3) into a 

single matrix equation which can be solved for H: 
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In matrix terms, the right hand side is 

N 

rt=l 

where X, is the / * column of X 

Similarly, the left hand side is 

K 

k=l 

N 
2 xin-Ox(n-k) 

k=\ 

K 

And therefore 

= X;XH ii=l.JC) 

X;Y = x;xH 

Combined into a single equation, this becomes 

X'Y = X'XH (A.4) 

from which finally 

H = {X'XfX'Y 
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To summarize, we have 

(a) taken an objective function (A.1) which is expressible in matrix 

form (A.2) 

(b) diflferentiated it K times to produce a system of simultaneous 

equations (A. 3) , and 

(c) bundled those equations into a matrix equation (A.4) for solution. 

In the case of the FIR filter the amount of work required to do this was quite modest and 

manageable. However, in the case of maximizing P ( O j . . o^) this requires 

differentiations for the elements of A 

NxM " • * B 

N " " • 7 C 

which then need to be assembled into 3 matrix equations for solution. 

Clearly, it would be useful to be able to miss out the piecemeal differentiations and the 

bundling, and go directly fi-om (A.2) to the derivative equation(s) (A.4) , ready for 

solution. The following sections develop the rules by which this can be accomplished. 

The treatment of the subject is necessarily incomplete, but is sufiBcient for the work 

carried out in the remainder of the thesis. 
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A.2. Product Rule 

We confine our attention to scalar-valued functions of a matrix (or matrices). 

The result of differentiating a scalar-valued function with respect to each element of its 

argument, and then assembling those derivatives into a new matrix conforming to the 

argument, is one definition of a matrix derivative (for others see [40.41]) : 

dX 

df 5 / 

df 
5x^1 

Let A represent an Nx N matrix. As a first example of a scalar function of A , 

consider the sum of its elements : 

fiA) = VAl 

where 1 is the A'̂ x 1 column vector of I's 

For the simple case oi N=2 

Then 5 / 
da = 1 ( / = i . j ^ ) , 0 = 1 . ^ ) 

u 

Finally, bundling these results into a matrix produces 

^ = 
dA 

1 1 
1 1 

= 1 1' 
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As a second example, consider 

Then f[A) = I'AAl 

= riAc^A^] R l 
'R2 

= [VA^^VA^] 

where i4c. = the / * column of matrix A , etc. 

And for general A'̂  

AA) = rA^,A^,l + I'A^A^l +..+ I'A^A^l 

Now 

5 / _ 

since a. appears exactly once in exactly one row of A 

and " M I I I I " column of A 

After bundling. 
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iL = 
dA 

^ R l l ^ R 2 l 

The first matrix can be written as the outer product 

I ' ^ C l I ' -^ci 
lMc2 l ' ^ C 2 1MC2 . 

1' 

= ( 1 ' ^ ) ' r 

= ^ ' 1 1 ' 

The second matrix can be written as the outer product 

^ R l 1 ^R2 1 
^ R l 1 ^R2 1 

= 1 ^ R l l 
XR2 1 

= 1 ( ^ 1 ) ' 

Finally 

dA -rh = ^ • 1 1 ' + IV A' 
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By similar methods, it can be shown that 

for 

then dA ^ = WA'A' + A'IVA'+A'A'IV 

and likewise 

for AA) = VA'l 

then dA 
^ = l l ' ( / l ' ) ' + / 4 ' i r ( ^ ' ) ' + (/i')'ll'/4' + (^")'ll' 

For a slightly different problem, consider A.A) = 1'A A' 1 

Then AA) = rA A'l 

CI 
/ 
C2 

^C2 ^ 

from which 

= rA^,A,:i + I'A^A^l 
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a / _ 
da V 

l'Acj+ A^!l 

and 

dA = 2 

= 2 1 [ ^ • ! ^ c ' l ] 

= 2 1 4 i i 
^ 2 1 

= 2 I (A'l)' 

= 2 1 I M 

Finally, from Section A. 1. the function 

A f f ) = V'Y - Y'XH - H'X'Y + H'X'XH 

has the matrix derivative 

dA =Th = -IX'Y + 2X'XH 
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What rule, if any, can account for these various examples? 

Where the function includes more than one term (as immediately above) there is an 

obvious Addition rule, analogous to the rule of scalar calculus, whereby the derivative of 

a sum equals the sum of the derivatives. 

For differentiation of a single term, the following empirically derived rule does the job : 

Each occurrence of the independent (matrix) variable wthin the term will 

give rise to a separate term in the derivative expression, as follows— 

Consider the occurrence of that variable, v^ f , along with the factors 

which appear to the left of it (call them L collectively) and the factors to 

the right (call them R ) 

(Note than in some cases either L ox R may be the scalar 1 ) 

I f this occurrence of X is being transposed, create the derivative term by 

simply swapping the order of i & i?, and omitting the X 

term = RL 

If, on the other hand, the X is not being transposed, keep the order of L & R 

the same but transpose them (again omitting the X) 

term = V R* 
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Thus, exactly one operation is performed upon the L, R pair 

either their order is reversed, or they are transposed 

And exactly one category of factor undergoes transposition : 

i f the A' appears transposed, then the {L, R) isn't 

i f X isn*t transposed , then the {L R) is 

X L. R 
transposed order reversed transposed 

yes yes no 

no no yes 
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Let's see how this rule works in connection with an earlier example. Take 

J(A) = VAA'l 

The first (lefl-most) occurrence of A has 

L = r and R = A'1 

Since this A is not transposed, the Z. & /? will be—while their order remains 

unchanged. The appropriate contribution to the derivative expression is then 

r R' = ( I ' ) ' ( - 4 ' ! ) ' = 1 VA 

The second occurrence of A has 

L = VA and R = 1 

Since the A is transposed in this case, the L & R wont be—however, their order will 

be reversed. The required contribution is 

RL = 1 1 ' ^ 

In this way, 

as deduced earlier. 
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Note that the rule applies, regardless of the dimensions of the independent variable (i.e., 

not necessarily square), or its position within the expression. 

For example, consider 

^1 

^3 

= A'X 

Differentiating with respect to A', we note that 

L = A' and R is the scalar 1 

Since X is not transposed, the rule gives 

^ = LR^ = {A^y\ = A 

which is clearly correct. 
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A.3. Determinant 

A second scalar-valued function of a (square) matrix is its determinant, / = Det(^) . 

This value can be computed by forming the inner product of any row (or column) of A 

with the cofactors of those elements : 

Det(^) = a,, Cof[a , , )+a^Cof(a„) + ..+a.^Cof(a,0 

= a,. Qof{a,) + a,. Cof(a,; + + a^, Cof(a^; 

The cofactor of element a^j is (-1) '̂' times the minor of a^- , computed as the 

determinant of A after row / and column j have been removed. Therefore, the 

cofactor of a., does not include any element fi-om row / or column j in its calculation. 

Consequently 

^ [ Det(^) ] = [a,, Cof(a,,) + .. + a, Cof^a,) + .. + a,̂  Cof(a^)] 

= Cofi;a^) 

since none of the cofactors present in that sum use a. 

Assembling these derivatives into a matrix. 
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^ = 
dA 

= [ A d j ( ^ ) ] ' = A d j W 

where the transpose of the cofactor matrix of A is known as the adjoint of A 

Finally, from Matrix Algebra 

A-' = ^ T - ^ A d j ( ^ ) 
Det(^) 

Therefore 

^ [ D e t ( ^ ) ] -1 \ < = D e t ( ^ ) ( ^ ' ) 

Other variations of this rule from the literature [42,43] include 

^ [ { D e t ( ^ ) r ] = r{Det(^)r(^ ' ) ' 

and 

^ [ l n { D e t ( ^ ) } ] = {A') 
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Apart from the sheer elegance of these results, determinants are also helpful in 

formulating a Markov constraint upon A for use within the method of Lagrange 

Multipliers: 

The method requires that we include a term in the Lagrangean function whose value 

equals the scalar 0 when ^ is a Markov matrix. 

Consider Det(XI - 4̂) = 0 , which is the characteristic equation of the matrix A , and 

whose roots are its eigenvalues. 

When A is a. Markov matrix, the one definitely known eigenvalue of -4 is X = 1 . 

Therefore, Det(I - A) provides the required term, and it merely remains to be able to 

differentiate it with respect to 4̂ ... 

By analogy with the Chain Rule of scalar calculus, one might expect that 

^ [ D e t a - ^ ) ] = ^ [ D e t a - ^ ) ] x ^ ( I - ^ ) 

= [Adj(l-A)]'x -1 

Application of our derivative definition confirms this to be correct. 
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Having differentiated Det(I - A) in the Lagrangean to produce 

. [ A d j a - ^ ) ] ' 

it may then become useful to eliminate this term from the analysis. 

To do so, post-multiply through by ( I - i4 ) ' : 

Using the result 

or 

Det I = ^ Adj (X) 

then 

[ A d j a - ^ ) ] ' = [ a - ^ ) A d j a - ^ ) ] ' 

= [ D e t ( I - > i ) I ] ' 

= 0 

since Det ( I - ̂ ) = 0 when 4̂ is a Markov matrix. 
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Likewise, it may be useful to realize that the columns of [ Adj ( I * ^ ) ] ' are identical, so 

that summing downwards produces 

r [Ad] (I-A)]' = constant x 1' 

That the columns of [ Adj ( I - ^4) ] ' are identical can be demonstrated as follows : 

Since, as above 

[Adi(i-A)r a - ^ ) ' = 0 

then 

[ A d j a - - 4 ) ] ' r = [Adi(l-A)]^A^ 

or 

A Ad}(l-A) = Ad}(l-A) 

This shows that the matrix A preserves Adj (L - A) unaltered. This can only happen 

when each column of Adj Q.- A) is a multiple of the eigenvector associated with the 

eigenvalue 1 -which is 1 . 

Transposing, each row of [ Adj ( I - ^4) ] ' is now a multiple of 1 ' , implying that the 

columns are identical. * 

* Alternatively, the columns of [ Adj ( I - .4) ] ' must be identical in order to 
remain consistent with the other possible way of handling the Markov 
constraints-which is to use a separate Lagrange multiplier for each row of A , 
differentiate, and bundle the results into a matrix. 
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Finally, for purposes of the Langrangean, one needs to know how to handle non-square 

Markov matrices (such as the NxM B-matrix), for which a determinant is not normally 

defined. 

The answer is to augment B by M - N additional rows (converting it into a square 

matrix), where the extra rows are duplicates of the column averages o f B , computed as 

IxN NxM 

Alternatively, this can be achieved by pre-multiplying B with the A/ x ^ matrix J 

whose first N rows are the NxN identity matrix, and whose final M - N rows are 

filled with the scalar value 4? 
N 

J = 1 
N 

Nl 

r 

r 

Then the rows of this new square matrix JB sum to 1 as required 

JBl = 

NI 
V 

V 

Bl 

1 
N 

NlBl 
I'Bl 

VBl 
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1 
N 

NBl 
VBl 

VBl 

1 
N 

Nl 
N 

N 

1 
M x 1 

Invoking our definition for matrix derivative, it can be shown that 

^ [ B e t a - ^ 5 ) ] [Ad](l-JB)x - J]' 

This is further evidence of a Chain Rule within matrix differentiation. Note also how the 

order of 7 ' in this expression adheres to the rule fi-om the "Product Rule" discussion : 

Since B doesn't appear transposed in D e t ( I - J 5 ) then Z, (equal to -7 ) and (equal 

to the scalar 1 ) appear in their same order (i.e., L before the main result, R after) but 

transposed. On the other hand. 

^ [ D e t a - In')] [ Adj ( I - 1 It*) ] X - 1 
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A.4. Trace 

Another useful scalar-valued function o f a (square) matrix is the trace, / = TT(A) , 

defined as the sum of the diagonal elements. 

Clearly, 

da:, 
1 i f a.j is on the diagonal (i.e. i = j ) 

0 otherwise 

Bundling the partial derivatives into a matrix as per the definition ^ves 

dA 
the identity matrix I 

Next, let B equal a second A''x matrix. 

Then 

AB = 
^ R l - ^ C l • • ^Rl^CAT 

^RAT^Cl • • ^CN^CN ] 

Summing down the diagonal 

Tx{AB) 
N 

/=1 

N N 

7=1 j=\ 
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and 

so that 

^_[TriAB)] = fc. 

£[TKAB)] = B' 

Likewise 

^[TriAB)] = A' 

Furthermore, building on these last two results 

a A 

•^[TriABQ] = (AB)' = B'A' 

Also, it can be shown that 

^[TriABQ] = ^ ' C 

Finally, 

^[iTiAB'O] = ^ m { A B ' C y ) ] 

= ^ m C ' B A ' ) ] 

= ( C ' ) ' ( ^ ' ) ' 

CA 
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The point to note is how all of these examples uphold the rules fi-om the "Product Rule" 

discussion ("same order, but transposed" or "reverse order, not transposed"«depending 

upon whether or not the independent variable appears transposed vwthin the expression). 

As a final useful result, recall that 

^ [ T r ( ^ ) ] = I = r 

In a similar way. 

j j m A ' ) ] = ^ m A A ) ] - A'+A' = 2A' 

- ^ m A ' ) ] = -^mAAA)] = A'A'+ A'A'+ A'A' = 3iA'y 

and, in general [44,45] 

d ^ [ T r ( ^ 0 ] = riA-')' 

providing the equivalent of the Power Rule fi-om scalar calculus. 
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Where Trace can be especially helpful is in converting a statement given in matrix form 

into a scalar, ready for differentiation. In particular. Trace is good for expressing 

element-wise constraints upon a matrix, for inclusion in a Lagrangean function. 

For example, to impose non-negativity constraints upon the elements o f A , define 

_ ^11 s i g n ( a i i ) a i ^ s i g n ( a i ; ^ ) 

Abs(^) = 

which replaces each element of A by its absolute value. 

Then the elements of A are non-negative provided 

A = Abs(A) 

and a suitable scalar term to reflect this statement within the Lagrangean is 

T r ( M ' [ ^ - A b s ( ^ ) ] ) 

where M is a matrix of Lagrange multipliers. 

Differentiation with respect to M leads to 

A = Abs(^) 

as required, while differentiation with respect to A produces 

Sign(^) = i r 
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Notice that M and A don't have to be square, provided that they share the same 

dimensions. 

Note also that TT(M'A) is equivalent to 

r ( M O ^ ) i 

where O denotes Hadamard (i.e. element-wise) multiplication. 

As a second example of the use of Trace , imagine that one or more elements of A 

must equal zero (e.g. perhaps A is supposed to be upper-triangular). 

Define the matrix H to have the dimensions of A , and to consist of I's to mark the 

positions where a,., is required to equal 0 , and O's elsewhere : 

1 0. a, = 1 

Then a suitable term in the Lagrangean consists o f 

T T [ M ' { H Q A ) ] 

Note that 

^{Tv[M'{HOAm = HQA 

and 

^ { T r [ M ' ( i / 0 / l ) ] } = HQM 
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A. 5. Diagonal 

At the heart of all this effort is the objective function 

P = V B^ A\„B^A' B, n 

where B^ is a diagonal matrix made from the 1^ column of B , assuming codebook 

symbol k was the one observed at time / ( o, = v̂ )̂ . 

Let represent the A^x 1 column vector consisting of O's , except for a single 1 at 

position k. 

Then B^ can be written in matrix form as 

D i a g ( 5 A ) 

where T)iag' embeds its argument along the major diagonal of a matrix o f O's, and 

P = V Diag(5Z)j.) A\.. D i ag (5Dj ) A' D i a g ( 5 A ) 7t 

The differentiation of P with respect to both 7i and 4̂ can be handled as per the 

discussion under "Product Rule". 

In addition, we need a rule to cope with B , buried as it is within the Diag operator. 

The required rule, derived empirically, goes as follows : 
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As before, each occurrence of B within the objective will give rise to a 

term in the derivative expression. 

Focusing on a particular occurrence o f B, designate everything to the 

left of the Diag as A", and everything to the right as Y. 

Then 

- ^ [ j r ' D i a g ( 5 D ) 7 ] = D i a g ( ^ y £ ) ' 
aB 

Finally, note for convenience that 

r Diag(Z) = X' and Diag(A^)l = X 

r D i a g ( X ' ) = X' and D i a g ( ^ » ) l = X 
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A.6. Geometric Progression 

This section generalizes the scalar formula for the sum o f a geometric progression. 

Strictly speaking, this efifort has little to do with Matrix Differentiation, but is included 

here because of a connection with other results in this chapter. 

Assume that A is an NxN Markov matrix. Also, assume that A is diagonalizable * 

A = QDQ' 

As a Markov matrix, 

Al = I 

which indicates that the equation 

AX = KX 

is satisfied for the eigenvector X=l and eigenvalue X = I . 

Therefore, A has at least one eigenvalue equal to 1 . Furthermore, fi-om the literature 

the magnitudes of the remaining eigenvalues are all < 1 . {A has a 'spectral radius* of 1 

[31,32]) 

* I f the eigenvalues o f A are distinct, then D is the diagonal matrix consisting 
of the eigenvalues of .4 , and the columns of Q are the respective eigenvectors 
[46,47] 
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Split D into the two diagonal matrices 

where JD, contains the 1 eigenvalue(s) (and O's elsewhere) 
and contains the eigenvalues ^ 1 (and O's elsewhere) 

Clearly, x is the matrix of O's 

Then 

1 \ f A' = ( QDQ-') 

= QDQ'^ QDQ-'x QDQ'x...x QDQ' 

QD I D I D D Q' 

i n -1 = QD'Q 

since the mixed terms must equal 0 as above. 
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Forming the sum. 

^ - 1 

/•=o 7=0 

k-l k-l . 

;=0 1=0 

. -1 

l-b 1-1 

1-c 

using the geometric progression rule for scalars. 

Finally, since 

I - A 

l-b' 
1-c' 

1 -6 
1-c 

1 
l-b 

1 
1-c 
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the sum can be written 

k-\ 

i=0 

kQD.Q' + {l-QD.Q'ni-A') 

Notice how this generalizes the scalar case : 

I f all of the eigenvalues equal 1 , then D = D^ = I and the second term disappears, 

leaving 

kQD.Q' = kQDQ' = kA 

corresponding to the scalar result E = ka for a = 1 
1=0 

I f none of the eigenvalues equal 1 , then D = and the first term disappears, 

leaving 

(l-QD,Q'yil-A') = {I'QDQ-^ril-A') 

= iuAni-A') 

k-l , 
corresponding to the scalar result E ^ ' " " j ^ " ^ ^ ' 

i=0 

182 



FinaUy, a connection apears to exist with the earlier work on determinants : 

Let X and Y be right and left eigenvectors of A for the eigenvalue X-X 

i.e. AX ^ X and A = F ' { o x A Y ^ Y ) 

(We ah-eady know that 1 is a solution for ^ ) 

It is known from the literature [48] that 

A d j ( I - ^ ) = constantx D e t ( I - i : ) 2 ) ^ ^ XY^ 

where the constant equals 1 when 1 is a simple (unrepeated) eigenvalue o f A 

In addition, there is evidence that * 

A d j ( i - y i ) = D e t ( i - D 2 ) e^e* 

* What the evidence suggests : 

Det(I-A) = I ' J ' = 

A d j ( I - v 4 ) = 1 7 ' 

[ A d j ( I - ^ ) ] ' = r 1' 
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A.7. Miscellaneous Results 

For an intriguing result from the literature [49] : 

let A be a real synunetric NxN matrix 

X be a simple eigenvalue of A 

X be the normalized eigenvector for X 

then ^ ^ XX' 
dA 

Also from the literature [50], 

let y4 be an TV̂ x A'̂  matrix 

X,Y be i ^ x 1 column vectors 

then ^ [ J S r M ' 7 ] = ' l A ' Y X ' A - ^ y 
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A.8. An Exan^le 

One important application of Matrix DifTerentiation appears within Section 2.3. of the 

thesis, where it is used to help demonstrate that 

the maximum of the function / ( X p X j , " , J ^ J = x^^x^ 

n 

subject to the constraint 2 ~ ^ 

occurs at • ~ 

As a second instructive example, we apply it to the following optimization problem 

taken from Operations Research (3rd Ed), Hamdy A. Taha, p. 748 [ 5 1 ] : 

minimize z = + + 

subject to 4x, + + 2x3 - 14 = 0 
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Let 

X = 
^1 

^3 

7 = 
4 

2 

Then the objective function can be written 

f { X , \ ^ = X'X . -K^X'Y - 14) 

with the scalar Lagrange multiplier X . 

Note that, unlike before, Y is neither a simple variation of X nor a scalar (i.e. 

independent of A " ) . The differentiation of A " 7 requires 

(a) the derivative o f a vector-valued function of A' , as well as 

(b) a more general form of Product Rule 
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First, to differentiate one vector with respect to a second vector, the dependent vector 

must be arranged at right angles (transposed) with respect to the independent vector. 

For example, one can differentiate Y' with respect to A' , or Y with respect to A" ' . 

To differentiate Y' with respect to X , 

arrange Y' across tfie top and X down one side 

then differentiate each element at the top (as a scalar function) 
with respect to the elements down the side 

and fill in the columns accordingly : 

[ 4 X, 2 ] 

" 0 0 0 ' 

^2 0 1 0 

^3 0 0 0 

Alternatively, to differentiate Y with respect to -Y* , 

arrange X' across the top and Y down one side 

differentiate the elements of 7 as scalar functions 

and fill in the rows accordingly : 

4 '000" 
0 1 0 

2 0 0 0 

Clearly, 

dX VdX') 
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Second, to achieve this 'right angle* orientation, it may become necessary to rearrange 

the term being differentiated. This means that i f , while working t rough the list of 

factors, the factor currently being processed fails to display the correct orientation, 

simply transpose the term temporarily. In practice, this causes no problem since the 

term as a whole is scalar-valued and, hence, unaffected by transpose, i.e. 

X'Y is equal to Y'X 

This requirement appears related to the earlier version of the Product Rule (Section 

A.2.) whereby i f the current variable is already transposed, the left and right factors 

aren't, and vice versa. 

In what now appears very much like the Product Rule for scalar calculus, we find 

(differentiating with respect to X ) 

dX dX 

I 0 0 4 
0 1 0 ^2 
0 0 1 _ 2 

' 4 ' 0 

^2 + ^2 
2 0 

+ 
0 0 0 
0 1 0 
0 0 0 

' 1 
^2 
^3 

4 

2 

which is clearly correct. 
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Armed with this new procedure, we address the problem 

minimize f = X'X - \{ X'Y - U ) 

Differentiating 

w.r.t. X 

dX 
= 2X-X 

4 
2 X 2 

2 

= IX - \Z = 0 (A.5) 

w.r.t. X 

^ = -{Y'X- 14) = 0 (A.6) 

The usual strategy is to solve for X and then substitute to find X 

Pre-multiply (A.5) by Y' 

2Y'X = XY'Z 

Applying (A.6) 

2 x 1 4 = X[4 2] 
4 

2^2 
2 

= X ( 2 0 + 2 x j ^ ) 

Then 

X = 14 

10+x; 
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Substituting this back into (A.5) 

2A^ = X Z = 14 

10+x; 

4 
2 X 2 

2 

and 

X = 14 

10+x: 

2 

^2 
1 

Note that when 

X, = 2 . 14 

X, = - 2 . 11 
14 

2 

- 2 

1 

^ 2 = 0 , X = ^ 11 
10 

In this way, all of the solutions from Taha are accounted for. However, the Matrix 

Derivative method is more simple and elegant by far, and also appears to provide a 

more complete solution set. 
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B. Matrix Analysis 

B . l . Formulation 

This appendix returns to the theme of analysis using Matrix Derivatives begun in 

Chapter 2 , now adapted to optimize over specific boundary planes of the solution space. 

The objective is to 

Maximize 1' Diag(5Dr) ^ ' . . . A' D'mgiBD^) A' Diag(5D,) n 

• \ { n ' l - l ) - X , ' i B l - l ) - \ ' i A 1 - 1 ) 

IxN Nxl IxN N x M M x l N x I IxN N x N N x l N x l 

IxN Nxl Nxl MxN NxM NxM NxN NxN NxN 

The formulation is the same as Chapter 2 , with the addition of an extra row of 

Lagrange terms. Once again, the expression appearing on the first line is the matrix 

representation of P(o^o^ ..Oj) . Note that 

Z), isan A / x l column vector of zeros with a single 1 to mark the 

codebook symbol which occurred at time i 

Therefore BD^ extrarts the column o f B, where symbol k 

occurred at time / 

and U\dig(BD) represents the diagonal matrix which contains BD^ 

along the major diagonal 

The terms appearing on the second line express the constraints that n B 8L A 

respectively must equal Markov matrices. Note that 
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1 is a column vector (of appropriate size) consisting o f all I's 

the expression 

or 

= 0 

XI = 1 

demonstrates that the rows of X each sum to 1 

and the X. are appropriate Lagrange multipliers 

Finally the terms appearing on the third line, o f the form 

Tr[X^(HQX)] 

are used to constrain chosen elements of TI ^ and A to equal zero, and thereby focus 

the analysis on a specific boundary 'plane' of the solution space. 

Once again, X is an appropriate Lagrange multiplier. Matrix H has the same 

dimensions as X, and consists o f O's with scattered I's to indicate where x,̂ . is 

intended to equal zero 

0, 1 

Thus, for example, setting 

forces n = 

with the optimization carried out over this restricted domain. 
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To maximize P(0|02 -^T) subject to the constraints, we 

perform a partial difiFerentiation of the fiiU expression with respect to 

each unknown array, 

set each result equal to zero, 

and attempt to solve the simultaneous system of matrix equations 

for the unknowns 
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B .2. Derivative Equations 

DifiFerentiating-

w.r.t. 7C 

w.r . t B 

w.r.t. A 

Diag(5Z)J A Diag(5D2) A ... A Diag(5£)^) 1 

- X, 1 - iy40>-4 = 0 
scalar Nx l Nxl Nx l 

( B . l ) 

D i a g [ l ' Diag(5£»^) ^ ' . . . A' T>\2.g{BD^) A'] x J iD, ' 

+ Diag[ r D\^g(BDj) A'... A'] x A' D'mg(BD,) TID^ 

+ Diag[ 1'] X A'... A* D'lagiBD^) A' Diag(5D,) nD^! 

Nxl I x M NxM NxM 

(B.2) 

Diag(5£»,) 7t X 1' Dlag(5£)^) y i ' . . . A' DiagC^D^) 

+ Diag(SZ)j) A' Diag(BD,) n x 1' Diag(J?£»,) ^ ' . . . A' TH&giBD,) 

+ Diag(fi£)j..,) y l ' . . . /!• Diag(5D,) 7t x 1" Diig(BDj) 

^ 1' - H,OX, = 0 
N x l IxN NxN NxN 

(B.3) 
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w.r.t. ^, TC'I = 1 (B.4) 

w.r.t. 5 1 = 1 (B.5) 

w.r.t. X3 ^ 1 = 1 (B.6) 

w.r.t. X, ^ 4 0 7 i = 0 (B.7) 

w.r.t. ^ s G ^ = 0 (B.8) 

w.r.t. X, H,OA = 0 (B.9) 

From here, the standard strategy [29] is to : 

solve first for the Lagrange multipliers 

then substitute their values to get a reduced system of equations 

in .4 5 & 71 
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B .3. The 71 Equation 

B.3.1. Solving for X, 

Transpose (B . l ) ...then post-multiply by n 

r Diag(BD^) A'.,.A' DiagC^DJ A' Diag(j5£>J n = X.Vn {H^QXJn 

The left-hand side is P{o^ o^ .Oj) , while on the right-hand side 

I'TC = 1 using (B.4) 

Also 

(H^OKy^ = Tv[(H^QX^yn] since it is a scalar 

= Tr[ ( 7 1 ' 0 ^ 4 ' ) K ] see Magnus & Neudecker 
p46, theorem 7(a) 

= T r [0 ' using (B.7) 

= 0 

Therefore X, equals the value of the objective function at the stationary point. 
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B.3.2. Solving for 

Define L = Diag(5Z),) A Dmg(BD^ A ... A Diag(5Dy) 1 = {LHS} 

Then from ( B . l ) 

In the interior o f the n space, 

and 

which implies that, at interior stationary points, £ is a constant vector. 

Otherwise, ^AOK = L - X^l 

Alternatively, premultiply (B . l ) by 1* 

l 'Diag(5£) , ) A DiagC^Dj) A ... A Diag(5D^) 1 = X, T l - 1' {H^OK) 

NxN scalar N 

Transposing and rearranging, this becomes 
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j^(H,OXJ 1 = 1' Diag(5£)r) A'... A' D\ag(BD^) A' Diag(5D,) x - ^ l - X, 

= 1' Diag(5Z)r) A'... Diag(5D2) A' Diag(^D,) x l l -

r Diag(5Z)̂ ) Diag(5D2) A' Dmg(BD,)n 

= r X f . l - r 7t 
N 

This states that ^ times the sum of the active Lagrange multipliers equals the negative 

of the difference between 

P(p,o,..o;) 

and the same calculation with n replaced by ^ 1 . 

This is also the negative of the difference between 

the maximum value of L 

and the average value of L 

when the stationary point corresponds to the global maximum * 
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Applying the definition for L, the objective P = P{0) can be written 

P{0) = Z- 7t 

Since 2 ^ 7 ^ » ^ viewed as a weighted average o f the elements o f L 

The greatest value which a weighted average can attain is that of its largest 
element. 

Therefore, to maximize P it is sufiBcient to 

(1) find the largest possible maximum among the , and 
(2) assign a 1 to that position in it and O's elsewhere. 

This implies that at a global maximum, n consists of O's and a single 1 , 
and that L n gives the maximum value (i.e. maximum possible element) of L . 
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B.4. The B Equation 

B.4.1. Solving for 

Post-multiply (B.2) by B* 

Diag[r Diag(5£)y) A'... A' Diag(5£»j) .4 ' ] 7t£),'5' 

+ Diag[ 1' Diag(5Dr) A'... A' ] A' Diag(5Z),) 7tZ)j '5' 
• 

+ Diag[ r ] A'... A' DiagC^DJ ^ ' Diag(5Z),) nD^E 

= X^r + (HOX,)B* 
using (B.5) 

Then take the trace of both sides. On the right-hand side 

Trik^V] = V \ trace o f outer product 
equaJs inner product 

Also 

= Tr[ X, (H.'QF) ] M & N . p46, 7(a) 

= Tr[X,iH,QBy] 

= TT[X^O] usmg(B.8) 

= 0 
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On the left-hand side : 

The trace of a sum equals the sum of the traces. The result is a sum of terms of the form 

T r [ D i a g ( A ) y ] 

Invoking Magnus & Neudecker, p46, theorem 7(b) 

where I \stht NxN identity matrix 

In addition, Y is itself an outer product 

Y = Z W 
Nxl IxN 

Therefore, 

> ' l l ^11 
(lOY)l = 1 = = 

y33 . .^33 . 23^2 

= Diag(WO Z 

Pulling together these various results, the equation becomes : 
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!• Diag(5D^) A'... A' Diag(S£)j) A' x Diag(5£),) n 

+ r Diag(£D^) A'... A' Diag(BD^) A' x Diag(BDj) A' Diag(5£»,) TT 

+ 1' X Diag(5£)r) ^ ' . . . ^ ' Diag(5Dj) ^ ' Diag(5Z),) TI 

= 1 % 

The left-hand side is T copies of the value of the objective fijnction at the stationary 

point. 

Therefore 

or 
TP(o,o,..o,) = rx . 
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Alternatively, the 5-equation can be written 

NKI IxM NxM NxM 

where P = P{o^o^..o^ 

Hadamard-multiply through by B 

= Diag(X2)5 + 0O>^5 

Now post-multiply by 1 

( B G ^ ) l = D i a g ( > ^ ) S l 

Diag( 7^) 1 
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B.4,2. Solving for 

Post-multiply (B.2) by 1 
M x l 

Diag[ 1' Diag(5Z)r) A'... A' Diag(BDj) A' ] nD;i 

+ Diag[r Diag(BD^) A'... A'] A' Diag(5D,) KD^'I 

+ Diag[ 1' ] A'... A' Diag(BDJ A' Diag(5Z),) rtD; 1 
scalar 1 

scalarM 

or 

Diag[r Diag(5Z)^) A\.. A* Diag(5Z),) A'] n 

+ Diag[ 1' Dmg(BDj) A'... A' ] A' Diag(5Z),) n 
• 

+ Diag[ 1'] ^ ' . . . ^ ' Diag(5£»,) ^ ' Diag(BD,) n 

= M X , + (H,QX,)1 
Nxl 

Now pre-multiply by 1' 
IxN 

r Diag[ r Diag(5£),) A'... A' Diag(5DJ A' ] 7t 

+ 1" Diag[ r Diag(5Dy) /4'... ^ ' ] / I ' Diag(5jD,) TC 

+ 1' Diag[ r ] A'... A' Diag(5Dj) A' Diag(5D,) it 
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which becomes 

1* Diag(BZ)y) A\,. A' DiagC^DJ A' n 

+ r Diag(5Z)j.) A\.. A A' Diag(5£»J n 

+ 1' A... A DiagCBDJ ^ ' Diag(5Z)J n 

Omitting the proof, the left-hand side represents T copies of the objective function 

with successive occurrences of Dmg(BD) replaced by the identity matrix I , and is 

equal to 

P(p,..o;) + P(o, o,..o^) + ... + P(o,..Or.,) 

Also, from Section B.4 .1 . , 

And 

V{H,OK)^ = Tr[ / f5 ' X,] 

= the sum of the active Lagrange multipliers 
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Alternatively, this can be written 

r Diag(5£»^) A\.. A- Diag(5Z)j) A' } ^ I ^ 

+ !• Diag(5£)j.) A'... A' A' Diag(B£>,) n 

• 

+ 1' ^ I -4'... A' DiagC^A) A' Diag(BZ),) 7i 

This states that -7 times the sum of the active Lagrange multipliers equals the negative 

of the difference between 

T copies of P(p^Oy.Oj) 

and another T copies in which one occurrence of B per copy is replaced by ^ 1 1' 
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B.5 . The A Equation 

B.5.1. Solving for \ 

Post-multiply (B.3) by A' 

Diag(5Z),) n X l 'Diag(5Dr) A'... A' Bi^gjBD^) A' 

+ D'mgiBD^) A' Diag(5D,) n x 1' DiagC^g^r) ^ ' • • ^ ' D i a g ( ^ A ) 

+ Diag(5D^.,) A\.. A'D\^g(BD,) n x rDiag(5Z)j .) X' 
N5I IxN 

using (B.6) 

Then take the trace o f both sides. Since 

( A ) I f two matrices are equal, then their traces are equal 

( B ) The trace of a sum equals the sum of the traces 

(c) The trace of the outer product of two vectors equals their inner 

product: 

Tr(J!r7') = Y'X 
Nxl IxN IxN Nxl 

this becomes 
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r Diag(5£),) A\.. A' D\ag(BD^) A' x Diag(5£),) n 

+ r Di&g{BDj) A'... A' DiagiBD,) A' x Diag(5£ij) A' Diag(flZ),) 7t 

+ 1" Diag(B£)r) A' x Diag(5Z),.,) ^ ' . . . ^* Diag(5£),) n 

= r X 3 + T r [ ( / f , O X J ^ ' ] 

The left-hand side is 7-1 copies o f the value of the objective function at the stationary 

point. 

On the right-hand side 

= Tr[ X, ' O ^ ' ) ] M & N . p46, 7(a) 

= Tr[KiH,OAy] 

= Trt 0 ] using (B.9) 

= 0 

Therefore 

or 

( r - 1 ) = I'K 
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Alternatively, the i4-equation can be written 

Nxl IxN NxN NxN 

where P = P{o^o^..o^ 

Hadamard-multiply through by A 

AO^ = AO(^X,r) + AOiH.OX,) 

Now post-multiply by 1 

dA 

/ l G P i a g ( ^ ) i r ] + (AOH,)OX, 

BmgiX,)A + OQX, 

T>iag{X,)A 

i A O ^ ) l = D iag (X3)> l l 

Diag( X , ) 1 
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B.5.2. Solving for 

Post-multiply (B. 3) by 1 
Nxl 

Diag(5D,) n x rDiag(5D^) A'... A' DhgiBD^)! 

+ DiagCBDJ A' Diag(BD,) TC x 1' I>\ag(BD^) A'... A'Diag(BD^) 1 

+ Diag(5£>j..,) A'... /4'Diag(5D,) it x 1' D\ag(BD;) 1 

= X 3 1 - 1 + ( ^ , 0 > ^ J 1 
scalar N 

Now pre-multiply by V 
IxN 

1' DiagC^Z),) TC X l'Diag(BZ)r) A\.. A' Dizg(BD^) 1 
scalar scalar 

+ 1' Diag(B£»j) ^ ' Diag(5£),) nxl' Diag(5D;.) .4'... >4'Diag(BD3) 1 

+ 1' Diag(5Dj.,i) A'... A'D\?LgiBD,) n x V Diag(5Dj.) 1 
scalar scalar = NVX,-^ r(H,OX,)l 

Since the multiplication of scalars is commutative, this can be re-arranged as follows 

210 



1' Diag(B£)^) A\.. A' Diag(5£)j) ^ 1 1' Diag(5D,) TI 

+ 1' Diag(i?Z)j.) A'... A' D\ag(BD,) jj. 1 1' Diag(5£>j) ^ 'DiagC^D,) n 

+ r Biag(BD,) i 1 r Diag(5Dr.,) A'... A' Diag(5Dj) A'Ding(BD,) n 

Just as with n and B earlier, this states that times the sum o f the active Lagrange 

multipliers equals the negative of the difference between 

T-l copies of P(o,Oj..Oj.) 

and another T-l copies in which one occurrence of A per copy is replaced by ^ 1 1 ' . 
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B.6. Summary 

The previous sections have revealed some interesting patterns. For example, despite the 

different ways in which the principal unknowns A , B and TC enter into the objective 

expression, there is remarkable similarity between the forms assumed by their respective 

Lagrange multipliers. 

Unfortunately, the analysis is still fer from complete. Of the sbc Lagrange multipliers, 

several are known only to within a sum of their elements. New insights are necessary 

before these can be determined and a reduced system of equations in .4 5 & TT can be 

solved. 
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C. Geometric Programming 

C.l . Origins 

This appendix presents a second approach to optimizing the boundary fragments o f / , 

described in Chapter 3. Geometric Programming is a calculus-based optimization 

technique which is particularly well-suited to functions of that form [52,53,54]. 

The name derives from a connection with the Arithmetic-Geometric Mean Inequality 

(also known as Cauch^s Inequality [55 ] ) , which states that the arithmetic mean o f a set 

of non-negative numbers is never smaller than the geometric mean : 

a j X j +a2JC2*^- - ^^nxn^x-^ X2 •Xn (with equality iff = X j = . . = x J 

provided S 0 ( ^ = l . . w ) 

a, > 0 ( J t = l . . w ) 
n 

and 2 ^Jt ~ ^ 

Historically, the original motivation for the technique was to carry out unconstrained 

minimizations on a certain general class of objective function* : 

M 

n \ where x. > 0 
;=1 

* Since a minimum is sought, one can regard these as 'cost' functions 
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These functions resemble normal polynomials, with two important differences 

(1) The exponents p^j are allowed to assume any real value 

(not restriaed to the non-negative integers) 

(2) The coefiBcients must be positive 

As a consequence of (2) , the functions were christened 'posynomials*. 

Let t. = c,-x^^-^X2^- .̂..x^^^ 

= the y * term of y 

and consider the situation when y is at a minimum point: 

^ _ P\\-^Pl\ PNl ^ ^ ^ PlM-^P2M 

M 

^llPlj^j (since X, > 0) 

= 0 (derivative vanishes) 

and, in general 

M 

ij^^Pu'j = ^ ( / = 
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The classical method for optimizing y is to solve this system of N simultaneous 

equations in the N unknowns . As an alternative to this, define a new set of variables 

which represent the relative contribution of the j * term to the total cost. 

Then w. > 0 

and 
M 

/=1 

M 

- y ^ - j 
= = \ (C.l) 

Furthermore, at the minimum point for y 

M 

7=1 

M 

7=1 7=1 

X.-
= y - x O = 0 

(C.2) 

Then, using (C. l ) and (C.2) 

y = y' = y 
M 

U y 
> i 

M n 
7=1 

K^JJ 

^ ( , ^ Pa] 

7=1 W /=1 J 
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M n 

ft ( ^ j ^ ^ -

n 
( N 

ft [ ^ ) ^ ^ -

ft 

M 
n 

n 

[y=i v/=i 

A/ n n-; 
/=i \j=i 

P i f j 

ft terl |n ̂ p̂ -̂ -̂i 
/=1 ^ •'^ /=1 

-

> • 

. '=1 
at the minimum point 

= u r n ' ' 

Finally, consider the new function defined on the variables ŵ . 

M 
z = ^ / ( W p W j , . . . = n 

It can be shown (using the Arithmetic-Geometric Mean Inequality) that the values of w. 

which maximize this function subject to the constraints 
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M 

and 
M 
^Pijwj = 0 ( / = l.Jsf) (C.2) 

7=1 

are exactly those which minimize the original function 

y = A^)* ••• ̂ y) (and vice versa) 

An intuitive 'proof of this can be sketched out as follows : 

Using the Arithmetic-Geometric Mean Inequality, one can show that z is a lower bound 

for y, with equality at the stationary points of y (equivalent to the constraint set of r ) 

y = 2 ^ 2 ^1 w" ^ n invoking equality condition 

M 

n 
= z (constrained) 

since ^ = j ' for all 7 

at the stationary 

points of y 

Furthermore, as a concave function subject to a set of convex constraints, the 

constrained z has a unique maximum... while has a unique minimum. 

Therefore, the constrained maximum for z must equal the minimum for y . 
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In summary, by introducing the new variables , the primal problem of minimizing y is 

transformed into the dual 'Geometric Programming' problem of maximizing z , which is 

often easier to solve. 

The constraints (C.I) and (C.2) are known as the normality and orthogonality 

conditions, respectively. 

There is one dual variable Wj for each term in the primal function y . There is also one 

orthogonality equation (C.2) for each primal variable . 

In the case when the primal problem contains one more term than variable (M= ^+1), 

the result is a system of M linear equations in the A/ unknowns w^., which can be 

solved uniquely. From this solution, the optimum y is calculated using 

The primal variables x. are then recovered using the relations 

^ 7 = .7 1 2 ••^N 
y y 

This task is generally easier than the form of the relations suggests and often can be 

accomplished by simple inspection. However, i f necessary, one can take logarithms and 

solve the resulting simultaneous equations, which are now linear in log x,. (see [56]). 
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More typically M > N+\ , in which case additional steps are employed to find the 

optimum set of weights w. from among all those sets which satisfy (C.l) and (C.2) : 

The difference, D, between M and N-^l, which is conventionally called the number of 

degrees of freedom, is here referred to as the 'degrees of difiBculty*. 

The linear system of equations consisting of ( C I ) and (C.2) is solved for M of the 

variables in terms of the remaining D variables. Then the results are substituted back 

into the expression for z ...which is either differentiated with respect to the D 

unknowns to produce a second system of (non-linear) equations for solution, or is 

maximized directly via hill-climbing. Either way, thanks to the nature of z as a concave 

function under convex constraints, a unique constrained maximum for z (minimum for^') 

is guaranteed. 
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c.2. The General Problem 

It must be emphasized that the formulation presented above only applies when 

(1) the objective function contains positive coefiGcients, 

(2) a minimum is sought, and 

(3) there are no side conditions. 

In time, the theory of Geometric Programming was refined and extended to cope with 

inequality constraints of either sense, as well as negative and/or positive coeflBcients in 

either the objective function or the constraints. 

This permits a maximum to be found, for example, by minimizing the negative of the 

objective function. 

The price to be paid for this generality, however, is that [57] 

(1) The dual function z no longer has a unique stationary point 

which is a maximum, but may also exhibit stationary points 

which are minima or points of inflection. 

(2) The optimal set of weights may now occur at any type of dual 

stationary point (not simply the maxima)—which rules out 

hill-climbing as a solution method. 

(3) Stationary points in the dual function no longer guarantee 

a minimum in the primal function y 

(could yield a saddle point or a maximum). 
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The full-blown Geometric Programming problem can be summarized as follows : 

Take the word 'signomial' to indicate a posynomial which is permitted negative 

coefficients, and use the new subscript k to distinguish among a collection of such 

fimctions. 

The general signomial can be written 

y, = / , ( J C p X , , . . . x^) 

P\\kPl\k Pmk ^ P\2k Pl2k PNlk , 

( M j terms) 

E ^jk '^jk ^ 
>=1 1=1 

S ^jk *jk 
> 1 

where c^^ > 0 

and = ±1 
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Next assume that, along with the objective, there are L constraints. All of these 

constraints are inequalities, and are expressed as either 

y , ^ \ or y , ^ \ {k=l.X) 

where the y^ are signomials. For each constraint, define an auxiliary variable 

+1. y.^ 1 

1. y,^ 1 

Assume that the problem is stated as a signomial to be minimized, and use yQ to denote 

the objective function. Define 

J + 1 , i f a positive minimum (positive 'cost') is expected 
° I - 1 , i f a negative minimum (positive 'profit') is expected 

Finally, define Z+1 sets of dual variables, > 0 , 

with a set of variables for each signomial, including the objective function 

(A = 0 . i ) 

and a variable per set for each term of the respective signomials 

where (as before) ^fi ^ ^ (y = 1 - M ) ) 

and in addition ~ 'jk ^jk^jk O = 1-A^t)(*= 1-^ ) 

(C.3) 
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Then the dual Geometric Programming problem (see [58]) is to maximize 

k=0 7=1 

^0 

subject to the normality condition 

M, 

and the N orthogonality conditions 

L 
L 2 ^jkPijk^jk 
k=0 j=\ 

with > 0 ( * = 1 . X ) 

and = 1 00 

The main difference with Section C.l . is that all terms from all of the primal signomials 

contribute to the dual objective fimction and the orthogonality equations-no distinction 

is made between terms from the primal objective and terms from the constraints [59]. 
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C.3. Application to Boundary Fragments 

Fortunately, by exploiting the special features of / , and its fragments, and also by 

employing a useful 'trick', much of the complexity of the general formulation evaporates 

off and the optimizations assume a simpler form. 

To illustrate, consider the observation sequence kkl k and the task of maximizing the 

fragment (6 7 8) , or 

First, let ^21 = 

K = ^ 4 

K = ^5 

and, of course, a,j = 1 

Then the fragment looks like 

^ , ^ 3 ^ 4 ( ^ 5 ) ' + ^ , ^ ( ^ 3 ) ' ^ 5 ^ 6 + ( ^ 2 ) ' ^ ( ^ 5 ) ' ^ . 

To maximize this function is equivalent to minimizing its negative. The primal problem 

is therefore 
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Minimize = - [ J^i ^3 + ^ 1 ^ 2 ^5 + W ^ ^ a W ^ ^ e l 

subject to ^ 1 ^ 2 ^ 1 
X3 + X , ^ 1 
Xs + X , ^ 1 

Notice that 

(A) There are 6 variables and a total of 9 terms. Therefore, the dual problem 

will have D = 9-(6+1) = 2 'degrees of difficulty* (free variables) . 

(B) The use of inequality constraints instead of the (more accurate) equalities 

causes no difficulty. The optimization will certainly drive them to equality 

anyway, and meanwhile they keep the form of the problem simpler. 

If, alternatively, is replaced by 1 - X j , etc. and the results substituted, 

the objective would split into 10 (mbced positive and negative) terms 

in the 3 variables, leading to 6 degrees of difficulty in the dual. 

(C) All of the p^j^ and the are whole numbers. (In tlus case, all = 1 ) 

The constraints are already in the proper form : <y*̂ t ^ 

with a, = 1 ( i t=1 . .3 ) 

and also = 1 (y = 1, 2), ( * = 1..3 ) 

As -1 times the sum of probabilities, the objective wiU certainly take a 

negative minimum: ^ 0 ~ 

And, of course, ^jo ~ " ̂  ( 7 = 1 - 3 ) 
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Now here's the "trick' (inspired by [60] ) : 

Factor out x, (x^f X j fi-om the objective function* to give 

- X, X, ix,f X, X, [ {x^-\x;) ' X, X, {x^ ' + 1 + (x,r X, ix^ ' X, ] 

and introduce an additional variable, Xy 

I f X , < {x^-\x,r X , X , (x -̂» + 1 + (xy X, (x,r X, 

then - X , X 2 ( x 3 ) ^ X 5 X g X 7 > 

- X , x̂  (x^' x, X, [ ix;f \x^ ' X, x, ix^ ' + 1 + (x,)'^ X , (xO ' X , ] = y, 

and minimiang the upper bound - x, x^ ( X j ) ^ x̂  Xg x, will minimize 

Therefore, replace y^ with the simplified objective function 

'X,x^{x,yx,x,x, 

and append the additional constraint to the list: 

7̂ - ix^'\x,r X, X, (x^ ' - (x,y X, (x,r X, < 1 

* Any of the 3 terms will do, but for simplicity choose one with the maximum 
number of different factors—e.g., an 'interior* term, if one is available 
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The revised problem becomes : 

Miniinize y^^ = -x^x^ix^'^ x^x^x^ 

subject to ^ 1 + ^ 2 ^ 1 
X3 + X, ^ 1 
X5 + X , < 1 

X, - (x^ \x;) ' X , X, ( x j » - (x,)-^ X, (x,r X, < 1 

Note that 

(D) The number of terms and variables each increase by 1 , so that the degrees of 

difficulty is unchanged, 

(E) With only one term in the objeaive fiinction, the normality condition becomes 

trivial: 

- W i o = -1 (or ^10=^) since a^o = O Q = -1 

(F) The 'interesting' terms are the objective expression plus the final (Z) = 2 ) 

terms of the final constraint. These are also the terms for which = -1 . 
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Now, writing down the orthogonality conditions 

f o r / = l : ( * = 0 ) 

+ ( + l X l ) M ' „ + ( + l ) ( 0 ) M ' „ ( * = 1 ) 

+ (+l)(0)>.„ + (+l)(O)H.^ ( * = 2 ) 

+ ( + l ) ( 0 ) H ' , 3 + (+l)(0)w^ ( * = 3 ) 

+ (+1)(0) + (-1)(0) + (-1)(-1) ( * = 4 ) 

= 0 

f o r / = 2 : ( - l ) ( l )H ' ,o (A :=0) 

+ (+ l ) (0)M'„+(+l ) ( l )> .„ ( A = l ) 

+ (+l)(0)^, j + (+l)(0)w^ ( * = 2 ) 

+ ( + l ) ( 0 ) M ' , 3 + (+l)(0)>i'^ ( * = 3 ) 

+ (+1)(0) + (-1)(-1) ^ « + (-1)(1) ^ 3 . ( * = 4 ) 
= 0 

etc., or 
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W,( , W „ W j , W , j W „ W,3 W j , w„ w^ w„ 

i = l (-l)(l)w,„ + (+l)(l)w„ +(- l ) (0)Wj4 + (-l)(-l)w„ = 0 

i = 2 (-l)(l)w„ +(+l ) ( l )w„ + ( - l ) ( - l ) W j 4 + (- l)( l)w„ = 0 

i = 3 (-l)(2)w,o + ( + l ) ( l ) w , j +(- l ) ( - l )w„ + (-l)(-l)w„ = 0 

i = 4 (-l)(0)w,o +(+l ) ( l )w„ + ( - l ) ( l ) w „ + (-l)(0)w„ = 0 

i = 5 (-1)0) w,o +(+l ) ( l )w„ +( - l ) ( l )w„ +( - l ) ( l )w„ = 0 

i = 6 (- l)( l)w,o +(+l ) ( l )w„ +( - l ) ( - l )w„+ (-l)(O)w„ = 0 

1 = 7 (-l)(l)w„ +(+ l ) ( l )w„ +(- l ) (0)w„+ (-1)(0)W3, = 0 



Using the fact that w^^ is always 1 (see Note E above), it becomes simple to solve for 

the {N=7) diagonal variables in terms of the remaining ( Z) = 2 ) variables : 

^11 = 1 -
= 1 - + 

= 2 - - >^34 

^ 1 3 = 1 4- + 

^ 2 3 = 1 -
^ 1 4 = 1 

Ml 
Then w„, = CT^ J!) 

> 1 

= ( 1 + ( 1 - ^ 2 4 + ^ 3 4 ) 

2 - w „ 

2 - W j ^ 

^ 0 3 = > « ' I 3 + >^23 

= ( 1 + ^ 2 4 + ^ 3 4 ) + ( l - > * ' 2 4 ) 

2 + ^ 3 4 

M4 

^ 0 4 = S 0/'4 7̂4 

= •«' l4 - - •»«'34 
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For future ease, substitute = w, and = . Then the dual function becomes* 

«'12 I. >*'22 

f^l3 ^03^^13^13 rc23 ^^03^^23*^23 
I ^13 V ^23 

(^£14^04 >) a 14^14 / ^ C ^ ^ H ^ ^ ^24^24 [̂ 3̂4 ^04") ^34^34 
"̂1 ^14 J I, ^24 ) V W34 ; 

r2-ui^('-"2) r 2-»i ^('-"l+"2) 

r 2-U2 ^(^-"l-"2) r2-u£\i"\) 

f 2+U2 ^('-^"l+"2) f2+U2]i^-"i) 

n - m - » 2 y Y i - " i - " 2 V ^ " ' ^ r i - " i -"2l"^"2) 
" [ i J I "1 J I "2 , 

X I 1 + u j +«2 
^ - ( l ^ l ^ j ) ( . . ^ J - O - l ) (2^„^)-(2-^''2) 

,„_(,) ^"1) •'("2) / ^+(l-''l-''2) 
x(l) '̂̂  V-''l-''2j 

k = 4 

Maximizing O Q "2) °^=-^ ''("I-"2) is equivalent to maximizing 
</(u„Wj) 
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Taking logs 

V = log i/^)] = - (1 - U j ) log (1 -

- (1 - + 1/2) log (1 - Wi + Wj ) 

+ (2 . u,) log ( 2 - u,) 

- ( 2 - w , - W j ) ! o g ( 2 . i / , - i / 2 ) 

- log li^ 

+ ( 2 - ^ 2 ) log(2-1 /2 ) 

- (1+ U , + l / 2 ) l 0 g ( l + W j + W z ) 

- ( l . w , ) l o g ( l - u , ) 

+ (2 + 1/2) Jog ( 2 + W2) 

- l og l 

+ w, log I / , 

+ Ujlog 1/3 

+ ( l - w r ^ z ) log (1 - I / , - 1 / 2 ) 
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Taking partial derivatives, and equating to zero 

Or 

dv ^ - 10] 

-(-1)[1+ l o g ( l - « , + t / j ) ] 

+ ( - l ) [ l+ log(2-w, ) ] 

- ( - l ) [ l + l o g ( 2 - « , - « ^ ] 

- (+1) [1+ log u,] 

+ [ 0 ] 

- ( + l ) [ l + 1 0 g ( l + t / , + M j ) ] 

-(-1)[1+ log( l -w,) ] 

+ [ 0 ] 

- [ 0 ] 

+ ( + 1 ) [ 1 + log «,] 

+ [ 0 ] 

+ ( - l ) [ l + l 0 g ( l - W , - M ^ ] 

= 0 

log(l - M , + I / j ) - l 0 g ( 2 - W , ) + l 0 g ( 2 - M , - t / j ) - l 0 g «, 

log (1+ w , + U j ) + log ( 1 - I / , ) + w, log u , - log (1 - I / , - I / j ) = 0 

since the constant terms always cancel [61]. 

233 



Similarly, 

^ = - ( - l ) [ l + l o g ( l - « 0 ] 

Or 

.(+1)[1+ l o g ( l - i / , + « 0 ] 

+ [ 0 ] 

- ( - l ) [ l + l o g ( 2 - i / , - « ^ l 

- [ 0 ] 

+ ( - 1 ) [ l + l o g ( 2 - « 0 ] 

-(+1)[1+ l o g ( l + « , + « 0 1 

- [ 0 ] 

+ (+!)[!+log ( 2 + 1/5)] 

- [ 0 ] 

+ [ 0 ] 

+ (+! ) [ !+ log «J 

+ ( - l ) [ l + l o g ( l - i / , - W 2 ) ] 

= 0 

log (1 - U j ) - log (1 - u,+ Wj) + log (2 - u, - i / j ) - log (2 - W j ) 

- log (1+ W , + « j ) + log (2 + M j ) + log U j - log (1 - W , - M j ) = 0 
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Rearranging and taking exponentials, the final system of equations is 

(1 - W , + W2)(2-W, - W 2 ) ( 1 - U , ) W , = ( 2 - W , ) U i ( l + U , + W 2 ) ( l - W , - « j ) 

( l - W 2 ) ( 2 - t / , - i / 2 ) ( 2 + i/2)w2 = ( l - « , + W 2 ) ( 2 - W 2 ) ( l + W i + t / 2 ) ( l - w , - i / 2 ) 

Note fiirther that 

(G) Geometric Programming offers a reduction in complexity in this case, since 

applying calculus to the primal problem would produce 3 non-linear 

equations in 3 unknowns instead of the 2 x 2 above. 

(H) Once this system is solved, the form of the problem makes it simple to recover 

the original variables. Using definition (C.3) fi-om page 222 and the terms 

fi-om the first 3 constraints 

- - m . ^21 

h = r = ^ h = ^ ^ 
'* *3 " '* ^02 
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(I) Although non-linear, each equation contains only linear factors. 

There are equal numbers of factors on either side of the equation. 

Each ofthe factors is non-negative since they equal the w^, which must be ^ 0 

Also, the final factor in each equation is always ofthe form 

( 1 - I / , v^) 

The non-negativity of the factors can be used to deduce bounds on the 

unknowns ... . In particular, 

u^ + . . . + Up < 1 

Therefore, Geometric Programming has transformed the problem from a 

(primal) domain of x's where several small groups of unknowns satisfy 

j 

to a (dual) domain of u's where all of the unknowns simultaneously 

satisfy 

w, + ... + «B 2 1 
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C .4. Automating the Transformation 

Finally, thanks to the special features of these boundary fragment problems and to the 

trick' presented earlier, it is possible to automate the process of transforming from the 

primal to the dual problem, and so proceed directly to the final system of dual equations. 

Consider the annotated tableau' shown below : 
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kklk (6 7 8) 

M A„ 6„ (6 + a,, a„ {bj' b^ + a „ (q^f A„ (AJ^ 

0 Let «2. 
= ^̂ 2 

K = 

K = ^5 
K = ^6 

"12 = 1 

0 X, X, (X3)^ X3 X, [ ( X , ) '(X3)•• X,X3 (X, ) - • + 1 + (X, )-• X , (X3)-' X3 ] 

© 

© 

© © © 
= 1 - «2 

^21 = 1 - + U, 

^12 = 2 - - "2 

= 1 + + u. 

^23 = 1 -

^ l A = 1 
= 

^34 — - "2 

[ = 2 - M , 

\ >̂ 03 = 2 + «2 

^ 0 4 = 1 - I / , - M j 

0 ( l - t / , + i / 0 ( 2 - t t , - « 3 ) ( l - i / , ) i / , = ( 2 - w , ) t / , ( l + u , + U j ) ( l - i / , - i / ^ 

( l - M ^ ( 2 - « / , - « j ) ( 2 + i /3)Mj = ( l - w , + « j ) ( 2 - w O ( l + " . + " 2 ) 0 - ' ' . - " 2 ) 



(T) List the variables and group them by Markov constraint. 

Rename them using x's, and substitute into the original fragment. 

( 2 ) Factor out one term from the expression. For later ease, this term 

should include a maximum number of different factors 

(e.g., an 'interior* term if one is present). 

( 3 ) List double-subscripted variables ( 'w^ = ' ) 

and group them exacly as per step (7), 

with the k subscript indicating the number of the group 

and the j subscript indicating position within the group. 

(7) Below this list, include an additional group consisting of the equations 

where (as above) L = number of Markov constraints 

D = degrees of diflficulty = M - ( i V + l ) 

(7) In the constant column, list the exponents of the x. (/ = 1. JV) 

from the factored term (outside the brackets) of step ( 2 ) . 

(7) In the w, column, multiply by the exponents of the x. from 

the first 'interesting* term (i.e.. not equaling 1 ) inside the brackets. 

In this way, generate D columns based upon the interesting 

terms within the brackets. 

( 7 ) To the right of the braces, define to equal the sum of the 

expressions in group k. 
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(7) There will be D equations, each having the form 

- [ L ] = +[R] 

where L and R are products of the linear expressions generated 
in steps ( 3 ) through ( 7 ) . 

The equations are derived fi-om those expressions, as follows : 

In the area to the left of the braces— 

If an expression contains preceded by a positive coefficient 
then include the expression, raised to the absolute value of that 
coeflBcient* , within the R side of equation d ...alternatively. 

I f the expression contains preceded by a negative coefficient 
then include the expression, raised to the absolute value of that 
coefficient, within the L side of equation d. 

To the right of the braces, these rules are reversed— 

The expression goes into the L (R) side if the sign is positive (negative) 

( 9 ) A final adjustment is necessary if any of the terms inside the brackets 

in step ( 2 ) include a coefficient other than 1 . Such a coefficient 

will derive from duplicate terms in the original fi^gment, and 

therefore must be a rational number. 

Referring again to 'interesting' term d, include the numerator of the 

coefficient in the R side of equation d and the denominator in the 

L side of equation d. 

In the present example, all coefficients happen to equal 1 
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C. 5. Solving the Dual Equations 
C.5.1. Description 

Being able to generate the dual equations automatically is one thing... being able to solve 

them automatically is another matter. The purpose of the present section is to review the 

(modest) progress which has been made in this direction. 

The basic thrust has been to mimic the strategy for polynomials whereby, once roots are 

known, they can be factored out to leave a simpler polynomial which is more easily 

solved for the remaining roots. 

To see how this might be accomplished, refer once more to the observation sequence 

k k I k and fragment (6 7 8) whose 'tableau' and dual equations were presented in the 

previous section. 

Mathcad PLUS version 6.0 identifies ten solutions for this system-

(1) = 0 u, = 1 

(2) I / , = 0 1/2 = 2 

(3) u, = 2 u, = 1 

(4) = 1 1/2 = 0 

(5) t/j = 1 r/2 = .2 

(6) z/, = - 1 + ^2 t/2 =6-4j2 

(7) l / j = - l - j 2 1/2 = 6 + 471 

(8) z/, = 1,2999 r/2 = -0.9387 

(9) = -0.4833+j 0.1512 t/ j = 0.8027+j 1.4820 

(10) = -0.4833 - j 0.1512 W2 = 0.8027-j 1.4820 
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The first point to note about these ten solutions is that most of them (in &ct, all but 

three: 1, 4 & 6) M to provide a feasible solution, when mapped back to the primal 

domain. 

The linear factors which comprise the dual equations are merely the dual variables 

expressed in terms of v^ and (which are themselves the dual variables Wza+i ) -

^(ZHi) cL+i) ) • variables must be ^ 0 since, otherwise, the original primal 
variables won't fall between 0 and 1 , as required. 

To satisfy simultaneously all the non-negativity requirements forces and to 

inhabit the (hyper) triangle bounded by 

u, = 0 id=\.D) 

and by w, + . . . + = 1 (see Note (I) above) 

Furthermore, it appears that under the Geometric Progranuning transformation : 

infeasible primal points map to the exterior of the triangle 

interior primal points " " " interior " " " 

boundary points " " " boundary " " 

Finally, only those dual solutions which are interior to the triangle (solution 6) are of 

immediate interest, since the solutions on the boundary ( 1 & 4) will be identified in the 

course of processing the boundary ft-agments lower down the hierarchy—while the 

infeasible solutions can be ignored* . 

Complex solutions appear to have no physical interpretation within this problem 
and are treated as infeasible. 
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The second point to note about the Mathcad solutions is that several of them are readily 

identifiable. 

One simple strategy for solving an equation (or system of equations) given in the form 

^ 1 ( " i > ̂ 2,-) - Szi^x * " 2 » " ) is to look for values which cause both sides of the equation 

to simultaneously equal zero. The fact that the dual equations are already expressed in 

linear-factored form makes the process even simpler. The following plot shows the set 

of lines in the ( w,, 1/3) plane which result when all of the linear factors contained in the 

dual equations are equated to zero. Appearing among the points of intersection are 

Mathcad solutions (1) through (5) because corresponding to each of those points there 

exists a set of factors which makes both sides of all dual equations equal to zero : 

X = 0 
\-y = 0 
1 .x-y = 0 

(1) 

X = 0 
2-y = 0 
I'X-y = 0 

(2) 

2 - x = 0 
1 - ^ = 0 
1 - X + ; ; = 0 

(3) 

1-x = 0 
y= 0 
I'X-^y = 0 
1 - X - ; ; = 0 

(4) 

1-x = 0 
2 + ^ = 0 
1 + x + >' = 0 

(5) 
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1 - x = 0 2 - x = 0 

1 -x + y = 0 

2 - y = 0 

1 -y = 0 

y = 0 

2+y = 0 

2 - x - y = 0 

1 - x - y = 0 

1 +x + y = 0 



The rule which finds these solutions is : 

I f a pair of factors 

(a) are not parallel, and 

(b) either they or their sum or difference appear on opposite sides 

of all equations 

then their intersection will provide a solution. 
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Another simple approach to finding solutions is to examine the lower-dimensional 

Segments which fall within its hierarchy. The lower-dimensional fragments form the 

boundaries, and therefore constitute special cases, of the fi^gment. For this reason, 

solutions to the dual equations of the sub-fi^gments might be expected to Vork' for the 

larger fi^gment also. 

Again, the expression for the fragment (6 7 8) is 

M b,, b,, {bj^ + a „ a „ {b,^' b^ + a,, {a^' b,, (b^^ b^ 

and the sub-tree attached to (6 7 8) looks like 

(8) 

(6) (7 (8)) 

((6) (7 (8))) 

Analysis confirms that information about those lower-dimensional fragments is 'encoded' 

in the equations for (6 7 8) . For example, what distinguishes the terms 7 & 8 within 

the above expression is 

= 1 and b^j = 0 

W i o Woo 
which implies that = 1 and = 0 

or = and "^22 ^ ^ 

2 - w, -1/3 = 2 -1/2 and w, = 0 

= 0 
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Substituting this into the pair of dual equations produces 

(1 +1/2) (2 - (1) (0) = (2) (0) (1+ 2/2) (1 -1 /2 ) 

(1 - W2) (2 -1 /2) (2 + z/2) 1/2 = ( l + t / 2 ) ( 2 - t / 2 ) ( l + t / 2 ) ( l - w ^ 

The first of these is trivially satisfied for any value of . The second (minus the factors 

(2 - 1 / 2 ) ) turns out to be the dual equation for the Augment (7 8) : 

(1 - ( 2 + " 2 ) «2 = ( l + " 2 ) ( l + " 2 ) ( l - " 2 ) 

And, conversely, any solutions of this equation for (i.e. any solution ofthe fragment 

(7 8 ) ) , coupled with i / , = 0 , will clearly satisfy the equations for ( 6 7 8 ) . 

This example demonstrates that 

(1) The equations for a fragment contain the lower-dimensional component 

fragments as special cases, and that 

(2) These special cas^ contribute solutions to the higher-dimensional 

fi^gment. 

This offers a second bootstrap approach for finding solutions to the dual equations. 
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Now it is well known that, given a single polynomial in one unknown, plus a knowledge 

of some of its roots, it is possible to 'divide out' the associated factors and thereby 

produce a simpler polynomial for which the remaining roots are more easily found. 

This prompts the question : Given a system of polynomial equations as per Geometric 

Programming, plus a knowledge o f some o f its solutions derived by either of the two 

methods above, is it likewise possible to somehow divide out those solutions to provide 

a reduced system? 

The answer seems to be, 'Yes*. Even more promising, based upon a series of examples it 

appears that: 

For each interior solution which a system of dual equations possesses, a 
reduced system of equations can be found which contains only that solution 
—plus, at most, a minimal collection of infeasible (possibly complex) conjugates. 

In this way, it seems possible to isolate the interior solutions into their own simplified 

systems. 

For example, by a judicious pruning of factors, the system of equations for ( 6 7 8 ) is 

reduced to 

which has only the interior solution (6) (plus the infeasible conjugate (7) ) for solutions, 

and ignores the other eight original Mathcad solutions. 
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From Higher Algebra [62,63], a 'polynomial over a field F (or a ring R ) in the 

indeterminate x* is an expression of the form 

p(x) = a, + a^x + a,^+.,.-^a„x" 

where all of the coefiBcients a. belong to F . Such a polynomial is said to be 'reducible' 

[64] i f it can be expressed as a product of polynomials of smaller degree, all of whose 

coefficients also belong to F . Similar to the prime factor theorem for integers, it seems 

that every polynomial can be expressed as a product of irreducible factors [65] and, for a 

field F , the factorization is unique [66] (while for a ring R it is not [67]). Also, it can 

be shown that irreducibility over the integers is equivalent to irreducibility over the 

rationals [68]. Finally, when a polynomial over the integers has been split into its 

irreducible factors and these factors are then individually equated to zero and solved for 

their complex roots, the factors which are linear will yield a single rational root, while the 

higher factors will yield a cluster of (irrational and/or complex) conjugate roots. 

In some kind of analog which is not very well understood, it seems that the system of 

dual equations fi-om G.P. can be split into various 'irreducible' sub-systems. When solved 

for their complex roots, these produce non-overlapping subsets o f the original solutions. 

These subsets may contain either a single rational root, or a cluster of irrational and/or 

complex conjugate roots. Furthermore, it appears (based upon limited evidence) that 

each sub-system will contain at most one solution which is interior to the feasible region. 

Thus, while a system of dual equations may have more than one interior solution, each of 

these interior solutions can be identified by solving an appropriate sub-system. 

Unfortunately, at this stage, the procedure for creating these sub-systems is still largely 

trial-and-error. The body of successfiil examples referred to above depend upon a 

variety of techniques, all of which require a prior knowledge o f the solutions. 
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C.5.2. Examples 

The purpose of this section is to record some representative examples o f dual equations 

being split into sub-systems, along with the technique(s) by which it was accomplished : 

The observation sequence kklk and fragment (4 8) has the dual equation 

+ = ( l + i / , ) ( 2 - « , ) ( l . u , ) 

with the three solutions w, = ± / l ^ ) 

Quite obviously, removing the factor (1 - w,) from both sides eliminates the i / , = 1 

root and leaves just the interior solution - and its conjugate. 

Not so obviously, splitting the equation into either of the two simpler equations 

w, = 2 ( l + t / , ) ( l - r / , ) 

2 (1 - (2 + = (2-z/,) 

also has the same result. 
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Our old femiliar example consisting o f the observation sequence kklk and fragment (6 

7 8) has the pair of dual equations 

( l - t / , + i / 2 ) ( 2 - i / , - W 2 ) ( l . | / , ) u , = ( 2 . i / , ) r / , ( l + u , + t / 2 ) ( l - t / , . | / ^ 

(1 - Wj ) ( 2 - w , - t / 2 ) ( 2 + 1 / 2 ) 1 / 2 = ( l - w , + t / 2 ) ( 2 - u ^ ( l + w , + t / j ) ( l - w , . | / 2 ) 

with the ten solutions listed above. 

The simplified system of equations (also seen earlier) 

( l - i / , + i / ^ i / , = ( 2 . w , ) ( l - i / , - i / ^ (C.4) 

( 2 . « / , - 2 / 0 ( l - u , ) = u,{\^u,^u^ (C.5) 

is generated by splitting just the first of the original equations-

equating the two outer factors from both sides to produce (C.4) , 

and then equating the two inner factors from both sides to produce (C.5) . 
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The observation sequence kikk and fragment ( 1 2 4) has the pair of dual equations 

tt, (1 - w,) (2 + + (2 + 2u, + u^f = (1+ 2w, + u^)" (1 - i / , - t/^) 

i / j (2 + I / , + Wj) (2 + 2w, + r/^)^ = (1+ 2i/,+ i / j ) ^ (1 - w,- Wj) 

which has six solutions, including the interior solution 

u, = 0.7181 1/2 = 0.1107 

Divide these equations and rearrange to get 

Then split this into the two simpler equations 

w , ( 2 + 2 r / , + W 2 ) = ( l + 2 i / , + W 2 ) 

( l - i / , ) = « 2 ( l + 2 i / , + t /2 ) 

These capture the interior solution plus two other complex conjugate solutions. 
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Thefi^gment kkll (\ 2 3) has the dual equations 

I / , (1 - u,) (2 + I / , + i / ^ (3 + I / , ) = (1 + 2u, + (1+ u,) (1 - 1 / , - i / ^ 

" 2 ( 2 + w,+ W 2 ) = (1 + 2 i / , + i / j ) ( l - « , . « j ) 

Among the four solutions from Mathcad is the single interior solution 

. 1 . . . - 1 ( 5 - 3 /5 

This system is typical of a class of problems where several of the linear factors are 

conjugates of one another. For example, 

( 1 + 2 « , + w^ = i ( 5 + 375") = [ - « J * = - [ « , * ] 

In addition. 

and 

« , ( l + 2«;,+ t/^ = I 

= [ « , ( 2 + t/,+ « ^ r 

= (2 + u, + U j ) (1 + 2i/, + Wj ) (1 - " i - " 2 ) 

(using the 2nd equation of the original pair) 
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Then 1 = (2 + w, + Mj) (1 - 1 / , - Wj) 

and the reduced system consisting o f this plus the second original equation, i.e. 

W2(2 + w , 4 - W j ) = ( l + 2 w , + u2 ) ( l . t / , - i / 2 ) 

(2 + u ,+ W 2 ) ( l - W j - W j ) = 1 

captures just the interior solution (and its conjugate). 
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Clearly, what is needed are some unifying principles linking these and the other 

examples. 

The ultimate goal is a procedure for splitting the dual equations into their simple 

sub-systems without prior knowledge of the solutions. Another worthy goal is a 

procedure to first test whether the equations possess an interior feasible solution. I t is 

hoped that progress might follow from Group Theory (or Galois Theory), which 

currently ofifer tests to determine whether a polynomial is reducible [69]. 
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D. Hill-climbing 

D.l. Overview 

Appendices B & C have explored two optimization methods which are based on 

calculus. Methods like these are sometimes classed as 'indirect' approaches [70], in the 

sense that they seek their optimum via the solution of what is actually a different (though 

related) problem—in this case, the solution of derivative equations. The chief advantage 

o f such methods is that they offer the means o f achieving the global optimum-provided 

all of the auxiliary solutions can be found. The chief disadvantage (as evident from those 

appendices) is that often finding even a single auxiliary solution may prove to be very 

difficult. 

In contrast, hill-climbing is a 'direct' approach which employs a recurrence formula to 

make successive improvements to the objective function, until a local optimum is 

reached. Unless the objective 'landscape' is sufficiently well known, it is impossible to 

say whether that local optimum is also the global optimum-but at least a result is always 

forthcoming. 

This chapter presents a simple but useful hill-climbing algorithm which is well-suited to 

/ and its fragments. Its description includes (1) the recurrence formula, (2) its 

convergence properties and (3) the choice o f starting point. Afterwards, its 

effectiveness in capturing the global maximum is also briefly discussed. 
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D. 2. Recvurence Formula 

Consider the highly simplified objective 

Maxmuze X j ^ X2 +^1 ^2 

subject to ^ 1 + ^ 2 ^ 1 

Define the fiinction 

where X is a Lagrange multiplier for the constraint. 

After differentiating with respect to the three unknowns x, , and X , and equating to 

zero, a stationary point occurs where 

„ / n - l / 2 1 _ ^ „ / 1 2 - 1 / 2 2 _ . 

P2l^l ^2 '^P22^l ^2 " ^ ^ - ^ ^ 

X, + X3 = 1 (D.3) 

Multiplying (D . l ) by x, gives 

/ ' l l ^ l ^2 "*"^12^1 ^2 " ^ 
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Likewise, multiplying (D.2) by X j gives 

„ P n P 2 \ . „ P12P22 _ ,^ 

By (D.4) 

„ P\\P2\.„ / 1 1 / 2 1 

However, by adding (D.4) and (D.5) , and invoking (D.3) 

X = X ( x , + X 2 ) 

Therefore, 

„ / 1 1 / 2 1 . „ / 1 2 / 2 2 
X -' r„ v ^ i i / 2 i Y , „ "1 /12/22 

^/'ll^^'21>l ^2 +1^12+^22j^l ^2 

Similarly, 

„ / 1 1 / 2 1 ^ „ / 1 2 / 2 2 
/'21^1 ^2 "^ 2̂2̂ 1 ^2 

L ' lv^ l lv^2 lY ^ „ ^ / l 2 / 2 2 
l./'ll+;'2i;^l ^2 +l.''l2+^22j^I ^2 
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Equations (D.7) & (D.8) define recurrence relations for x, and . By substituting old 

values for these variables 

are produced on the left. 

values for these variables, i.e. Xj^^, into the formulas on the right, new values x ^ ^ ^ ^ 

There are two schemes by which the values may be substituted [71]. According to the 

Gauss-Jacobi scheme, the values from generation (h) are used for calculating generation 

(/i+l) only after the complete set of x j ^ ^ are computed. 

According to the Gauss-Seidel scheme, new values are substituted into the right as soon 

as each becomes available. 

Using similar reasoning to that above, formulas (D.7) & (D.8) can be extended in various 

directions-

(A) To go from 2 to Z, terms : 

v ^ - / l l / 2 1 . / 1 2 / 2 2 . ^/^LP2L A ^ j . x J - X j X 2 + X j X 2 + - - + X J X2 

where x, + X 2 = 1 

Then 

^ ~ ( . n - P 2 l K " ' f Kp12-P22)x^^^x5^^--(.U-/'2.>?^^?^ 
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(B) To go fi-om 2 to M variables 

/Tv r r ^ - / 2 1 Pm ,Pl2 P22 PMl ^ x , , x , . . . x ^ ) - X j X2 . . . x ^ + X j X j . . . x ^ 

where + ^ ^ 2 + . . . + X J ^ ^ = 1 

Then 

P11 /21 PM\ ^ „ 12 / 2 2 / A ^ 

\Pn^P2\^'-^PM\)^l^2 -''M AP\1^P11^'^PM1)^1 ^2 
12/22 Pm 

PuPn PMi_^„ P12P22 PM2 

( ^ ^ ^PnP2i P m j „ ^„ ^ ^„ '\P12P22 jMi 
V ' l l + / ' 2 1 + " ' + ^ A / l j ^ l ^2 - ^ A / +lPl2+/'22+- - + / ' A ^ j *1 ^ 2 " ' A / 

(C) To go fi-om 1 to A'" sets of variables 

/Tv V V V >! - / 2 1 ^11 ^21 . / 1 2 / 2 2 ^ ^ 1 2 / 2 2 
A^\. y\> - 1̂ ^2 -̂ 1 -̂ 2 ' ^ ' ^ i ^2 -̂ 1 ^2 

where ^ = 1 

Then 

„ / 1 1 / 2 1 911 ^21 ^ „ PnP22jnJi22 
_ Pn^i '2 ^1 ->'2 +^12^1 ^2 y\ y2 

Xi /' "1 Pu P21 911 921 > Pn P22 912 922 

260 



yz = 
P l l ^21 911 921 / 1 2 / 2 2 912 922 

921^1 ^2 ^^l •>̂2 +922^1 ^2 ^ ' l -̂ 2 
( \ Pn Pl\ 9 l l 921 ( \ Pl2 P22 912 922 
l 9 l l + 9 2 1 > l S H 9 l 2 + 9 2 2 j ' l ^2 >'l ^̂ 2 

Extending the problem in all three directions simultaneously, i.e. for N sets of variables, 

M. variables per set ( / = l.JV^) and L terms, one arrives at a formulation which 

matches and its fragments : 

L N n 

Maximize 21111^/^* (D 9) 
k=\ 1=1 > 1 

subject to the constraints 

Mi 

> 1 

for which the recurrence formulas are 
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y 

L 
1 

,=1 7=1 J 

L 

> 1 
(» = 1.JV) 

0 = i.JK.) 

(A) 

• 

S /'//A: 

(D.IO) 

where represents term k of the objective, 

consisting of a product of powers of 

the _;" ^ unknown in 

constraint / 
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D.3. Convergence 

The convergence properties of the recurrence formulas (D. 10) have yet to be worked out 

in fiill detail. But there is evidence that the regions over which they converge are also 

the regions over which the objective fimction (D.9) is concave down... suggesting that 

the recurrence formulas carry out hill-climbing upon those functions. 

To keep the analysis simple, we restrict the discussion to functions o f a single variable : 

Let the general recurrence formula for a single variable be written 

x(^+l) = ^ x W ) 

and let a represent a point of intersection between the functions y=x and y = g(x) . 

Then according to the theory [72], the iterations will converge to the point a, provided 

g(x) performs a contraction mapping in a neighborhood of a . The 'staircase' and 

'cobweb' diagrams (a) and (b) below illustrate that this condition is satisfied provided 

I ̂ (a) I < 1 . On the other hand, diagrams (c) and (d) illustrate that divergence occurs 

whenever | ̂ (a) | > 1 . (Illustrations reproduced from [73] ) 
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g{Xo) 
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5(̂ 3) r 
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y=x 

y=g(x) 



Now consider the original simplified objective function fi-om Section D.2. Upon making 

the substitution = 1 - (and choosing simpler variable names), this objective can be 

written in terms of a single variable, as 

fix) = x ^ ( l - x ) ' + xr{\-xy 

and the recurrence formula of Section D.2. becomes 

p x P ( l - x ) ^ + r x ^ ( l - x ) ^ 
(p^) xP (1 -x)^ + (r+5) x^ (1-x) ' 

From the derivation of this formula it is clear that, i f a is a stationary point of fix), then 

a = g(a). 

implying that a is a point of intersection between the functions = x and y = g{x) . 

Therefore, what we would like to show is that if) in addition, 

/ " (a ) < 0 (i.e. fix) is concave down, or max, at a ) 

then 

1^(^)1 < 1 . 

Below we prove something close to that. 
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First, consider the landscape of ^ x ) . 

Assuming that the exponents ^, r, 5 are all ^ 1, then f[x) is a sum o f two unimodal 

humps 

/.(X) = x ^ ( l . x y and / , ( x ) = x ' ( l . x ) ' 

with modes at ^ and ^ , respectively. 

Furthermore, assume < ^ (i.e. / . to the left of ), 

in which case the separation between the modes is equal to 

1 [qr-ps] 
(/H^)(r+5) 

Clearly, the function J{x) 

either has a single stationary point (single max) 

or has three stationary points (a min between two max's) 

depending upon the separation between and . 

Al l of these stationary points (however many) 

lie to the right of (where has a negative slope) 

and to the left of ^ (where has a positive slope) . 
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I f there are three stationary points, the left one lies near to a first approximation, 

and the right one lies near . 

To approximate the middle (or the single) stationary point a, assume that it occurs near 

the point where / . and ft, cross each other* 

Then 

and also 

approx 

0 = f ( a ) 

fi*oni which 

p^r approx g+s 
a - (1-a) 

and 

approx p^r 

* The approximation is only exact when / , and are symmetrical mirror images. 
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In addition, consider f"(x) . This is 

/"(X) = x^(l.x)^ 

""^U' (l-x)J {l-xA 

and, after manipulation, the requirement that f \ d ) < 0 at some stationary point a 

becomes equivalent to 

[ K l - a ) - : . f l ] [ M l - a ) . ^ a ] ( [ § - ^ ] - [ j - ^ ] ) < [^-p^] 

Assuming that the middle stationary point occurs at (and not merely near) 

a - ^ 

then, after substitution, /"(a) < 0 iff" 

qr-ps 1^ < 1 ipHj-H^s) 

It has always been intuitively clear that / has a single maximum provided the modes o f 

and / i , were sufficiently close, and now this result gives an idea of how close-

namely, i f their separation is less than 

1 QH^+r+s)OHr){q+s) 
2 iqr-'ps)(p+q)ir+s) 
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Finally, consider | g{x) \. 

After more pages of manipulation, it can be shown that | ^ ( r ) | is a Auction with 

numerator 

{ / . W f,Xx) - / / ( r ) / , ( x ) }[qr-ps] 

= x ^ ( l . x ) ^ x ^ ( l - x y { [ ^ ^ ] - [ f - ^ ] ) [ ^ . / . . ] 

and denominator 

s ^2 [(p^q) x^(l-x)^ + (/H-5)x '(l-xy] 

Using the two facts that, at any stationary point a 

and also 

pJ'{\-a)^+ra'' (\-aY a = ipHi) aP ( 1 ^ ) 9 + (r+s) a'' {l-aY 

the condition that | g{a) \ < 1 becomes 

m f,\a) [qr-ps] < [/7 a^' (1 - a) ' + r cf' (1 - a)' ]^ 
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Staying with the middle stationary point (which is the interesting one), and assuming 

once more that it occurs at (and not merely near) 

Then, after substitution, | ̂ ^(a) | < 1 i f f 

qr-ps 
(p^r){q-\-s)\ 2 ( ^ ) ( ^ s ) 

which is identical to the criterion for f \ a ) < 0 . 

In summary, the middle stationary point is either a maximum or a minimum depending 

upon the separation of the humps. In those cases, at least, where the humps are 

symmetrical mirror-images, so that the location of the stationary point is given accurately 

by 

then 

\g{a)\ < 1 i f f fXa) < 0 

which implies that the recurrence formula converges when the stationary point occurs on 

a hill rather than a valley. 
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D.4. Starting Points 

The third main issue connected with any iterative optinuzation scheme is the choice of 

starting point. 

A hiU-climbing algorithm which is applied to a closed, bounded solution space is 

guaranteed to produce a locally optimum solution by climbing to the nearest hill-top or 

to the nearest boundary [74,75]. But whether this solution is also the global optimum 

depends upon whether the starting point was fortunate enough to be located on the 

tallest hill. In general, unless the objective landscape is sufficiently well known (i.e. the 

location or, at least, the number of hills), it is impossible to be confident of a global 

maximum [76]. 

The purpose o f this section and the next is to describe a number o f possible schemes for 

generating starting points, along with their effectiveness in providing the global 

maximum. 

Recall from Chapter 3 how each fragment o f corresponds to a subset o f the solution 

space, and how that sub-space is spanned either by interior term(s) in the case o f a 

compound fragment or by boundary terms in the case of a simple union. One 

characteristic* of recurrence formulas (D.IO) is that, while a starting point which is 

within the interior of the sub-space may converge to the boundary, a starting point which 

is on the boundary can never move into the interior. Once a boundary point, always a 

boundary point. Consequently, in optimizing these fragments it is necessary to choose a 

starting point from the interior. 

In the case where a fragment includes interior term(s), a natural choice o f starting point 

is the modal position o f one o f these. Below we consider different options when the 

fragment includes no interior term and a starting point must be nominated. 
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* The reasoning goes like this : 

A starting point lies on a boundary of the sub-space i f it assigns the value zero to a 

variable that appears in at least one term o f the fiagment. Moving fi-om the boundary 

into the interior requires that this variable subsequently assume a non-zero value. 

Now consider the recurrence formula 

(/H-l) 
4 

I 
1 

E 
• 

^Pijk 

where is the A* term of the fi-agment. 

I f a variable equals zero, then only the terms which don't include that variable can escape 

being zero also... but for these terms = 0 . One way or the other, the numerator of 

the formula is destined to remain a sum of zeros. 
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(a) The easiest̂  and perhaps most obvious, starting point is at the simple center of 

the full solution space, where all of the matrix elements are equal. 

For example, i f A is an 7^x7/ matrix and B is 7^xA^. then simply let 

all o f the a. = ^ , and all o f the = ^ . 

(b) Another easy option is the simple center of the sub-space spanned by the 

fi-agment. This is similar to (a), except that the fi-actions are adjusted 

to reflect the number of elements from each row which participate in the 

fragment. 

For example, take the input sequence kklk and fragment (6 7 8) : 

M K K M + ^ 2 , K K + ^12 (^22) ' K M K 

Mark position (/,_/) of the auxiliary matrix with a 1 i f x .̂ appears anywhere 

in this expression, or with a 0 otherwise... 

Row 
Sum 

1 

2 

1 1 

1 1 

Row 
Sum 

2 

2 

...then divide each element by its respective row sum. 

(c) A second refinement is to mark each position, not with a 1 or 0 as in (b ) , 

but with a tally o f the times x^ appears throughout the fragment. Note that 

this is identical to the procedure for finding the modal position o f a single term 

explained in Section 3.3., except that now all of the terms are included in the 

count instead of just the one term. 

This scheme actually has several features to recommend it 
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(i) There is a ^natural' connection with the given recurrence formulas in the sense 

that, i f 1 is substituted for each of the x̂ . in those formulas, this is the set of 

values that results. 

This implies that the simple center given by option (a) (and usually the local 

center of option (b) also) are transformed into the 'pseudo-mode' o f option (c) 

after a single iteration of the formulas, anyway. 

(ii) Even more interesting, recall from the discussion wthin Geometric Programming 

how a primal solution space where 

T^Xy<\ ( / = 1 . J ^ ) 

J 

becomes transformed into a dual z/-space where all o f the unknowns satisfy a 

single constraint of the form 

+ i / ^ < 1 

This 1/ solution space is a Z)-dimensional (hyper-)triangle whose centroid, 

or center of gravity, occurs at 

I f these values for Uj are back-substituted, one discovers that the primal values 

which map to the dual centroid are those given by our 'pseudo-mode' I 

(iii) In actual trials, a critical point o f the objective function (fragment) seems to 

occur at the pseudo-mode an impressive number of times. 
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(d) We have just observed that the pseudo-mode values can be derived from the 

recurrence formulas 

L 
1 2 Pijk 

^Pijk 

by substituting = 1 for all ifc . 

A further option is to substitute the value of each term (height of the uni­

modal hump) at its modal position. 

This produces a type of weighted pseudo-mode. 
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(e) A somewhat different approach is to regard each term as a 'point mass' 

which is located at the mode of the hump and which has a mass equal to the 

peak value of the hump (the value of the weight used in (d) ) . 

The starting point is then calculated as the center of gravity o f this 

discrete system along the lines of the classic formula [77] 

X -

^ { (x-coordinate o f point /)x(mass of point /) } 

2 (mass of point/) 

The result is 

L z Pijk 

E Pijk 
7=1 

Pijk 

L z 
A=l 

x̂>v 

where is the peak value of the 1^ term 

n n 
;=1 > 1 

Pijk 

fijk 

Z Pijk 
[7=1 
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(f) The previous formula only approximates the center of gravity of the fiagment 

since it replaces a continuous shape (hump) with a point (mode o f himip), 

and a continuous density with the peak value of the hump. 

Starting from the classic formula for a continuous system [78] 

x = 

the true center o f gravity looks similar in form to the discrete result 

L s 
k=\ 

.(0) 

However, this time 

N 
n B ( ( i + p , „ ) , ( i + p ^ ) , . . . ) list o f M elements 

where ^{P\,P2-Pu) is the generalized "beta' function found by integrating 

over the hyperplane x^+x^ + . . . + X j ^ = 1 

nfc-0 
r ' M Z pj - 1 

> 1 J 

(compare with 

Section 3.5.) 
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D.5. Global Effectiveness 

Finally, a word about these starting points relative to the global maximum : 

In tests, it is observed that 

(1) When the global maximum occurs within the interior of the fragment, 

virtually any starting point which is also within the interior will frnd i t -

including the modal position of interior term(s) as well as any o f the 

schemes (a) through (f) above, whereas 

(2) When the global maximum occurs at a boundary of the fragment, 

none of the schemes (a) through (f) above is 100 percent effective 

in finding it. 

Result (2) is disappointing but perhaps not surprising. However what is somewhat 

surprising is result (1) . I t tends to suggest that the 'landscape' o f the fragments is not as 

complicated as might be assumed. For example, there is evidence that 

(3) No fragment ever exhibits more than one interior peak, even though 

the fragment contains more than one interior term, and also 

(4) I f an interior peak is present, it provides the global maximum 

To shed some light on these observations, recall the simplified objective fimction of 

Section D.3. 

Ax) = x ^ ( l - x ) ' + x ^ ( l . x y 
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consisting of the two unimodal humps 

Mx) = x ^ ( I - x ) ' and / , ( x ) = x ^ ( l - x ) ' 

The function 

either has a single stationary point (single max) 

or has three stationary points (a min between two max's) 

depending upon the separation between and 
as manifested by the difference between their exponents. 

Now consider the observation sequence kkkl andfi-agment (2 4 8 ) : 

This firagment has an interior maximum coincident with the modal position of its middle 
i 
2 term, at a „ = Z>2t= ^ • 

Re-writing this fi'agment for clarity as 

x ^ ( l - x ) ( l - y ) + x(\^x)y{\^y) + ( l - x ) y ( l - ^ ) 

observe how, as one moves fi-om term to term, there is a smooth progression 

(increase/decrease) in the exponents o f x (and likewise for y ). 

This situation is typical of all known Segments containing interior maxima. The terms 

form a sort of continuous chain in the sense that, relating each consecutive pair of terms 

to and above, there is not enough 'daylight' between their exponents to permit two 

separate humps to appear. 
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E . Source Code for New HMM Building Algorithm 
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/• NHB.c : New HUM b u i l d i n g a l g o r i t h m which cxaminoa the noighbora '/ 
/• of tho si n g l o t o n s '/ 
/• D.F. McKoe 09/11/98 */ 

Include ANSI C otnndard l i b r a r i e s 

i i n c l u d e 
I i n c l u d e 
§include 

<3Cdlo.h> 
<3tring.h> 
<atdlib.h> 

/• Include l o c a l header i n f o 

s t r u c t anode 
( 

i n t 
s t r u c t snode 

•sequence ; 
•next ; 

typcdof s t r u c t snodo 
typedef avcc 

svec ; 
* s l i a t ; 

/• Simpio l i s t of s t a t e sequences V 

s t r u c t book 
( 

i n t 
i n t 
i n t 
i n t 

) ; 

plancu ; 
•rows ; 
'•colo ; 
•••value 

typcdof s t r u c t book block ; 

v o i d ProcessArgumenta 
I n t UniquoCount 
i n t *SymbolCodQ 
i n t 'SymbolCount 
v o i d CrcotoOlobola 
v o i d MakcMaotortlst 
I n t NoEclIpsc 
i n t S i n g l e t o n 
i n t NoFit 
i n t NoAct 
v o i d CllmbHlUs 
s l i a t NoighborsOf 
v o i d Circumscribe 
v o i d SAppend 
I n t SLocato 
v o i d LAppcnd 
i n t LengthOf 
block *BuildStatoBlock 
block *BuildBinsBlock 
block •fiuildOinsPlusOncBlock 
i n t "PormutatlonsOf 
i n t Porma 
i n t S p l i t s 
v o i d Item 
v o i d Bnum 
I n t • • F l a t t e n 
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v o i d Nest () 
v o i d Process () 
i n t •Merge (> 
v o i d AppendNeighborsOC (} 
i n t CountRows (} 
i n t '•MQkeAMat () 
i n t '•MakoDMot 0 
i n t Distance () 
i n t ••Permute () 
v o i d lAbsorb 0 
v o i d •Absorb {) 
v o i d RccycloBlock () 
v o i d RecyclePair o 
v o i d RecycloSLiat <) 
double C o n t r i b u t i o n (> 
doublo •'Convert () 
long Fact () 
v o i d Climb () 
v o i d CreatcVars () 
v o i d I n i t V a r s () 
v o i d CnlcCOO 0 
v o i d RecordOld () 
double CQICNCW 0 
doublo F u l l v a l u e 0 
v o i d DisplayMats 0 
v o i d ReleasoVars (1 

/' Global d o f l n c s 

/• Global v a r i a b l e s V 
FILE 
V 
char 
•y 

'fp : output f i l e p o i n t e r FILE 
V 
char 
•y 

" a r g ; /• argv copy 

i n t 
•/ 
i n t 

N ; /• number of s t o t c s i n t 
•/ 
i n t T ; /' l e n g t h of symbol ocqucnco 
• / 
i n t 
•/ 

M ; /• count of uniquo symbols i n sequonco 

i n t •Symbol ; /• symbol column assignment i n B-matrix 
• / 
i n t 
V 

• T a l l y ; /* t a l l y of symbols i n sequence 

doublo 
double 
doublo 

••AMax ; 
••BMax ; 
FMax ; 

• l i s t L i s t ; 
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v o i d 

Main program a t o r t s here */ 

mainUrgc, argv) 
inc Qrgc ; 
char ••orgv ; 

i f ( U p = £opcn{-dump.c",-w-)» =a HULL) 
( 

print£C\nCan'C open dump f i l o \ n " ) 
o x i t ( l ) ; 

1 
org = argv ; 
ProcessArguTOGnts t) ; 
CrcatoGlobalsO : 
MakcMaotcrLlatO ; 
C l i m b H l l l s O ; 
DiaployMato(AMax, BHax, FMax) ; 
f p r i n t f t f p , "VnNn-) , 
£clooo(fp) f 
systcmCcat durap.c") ; 

/• Abstract argument i n f o r m o t i o n I n t o uooful g l o b a l v a r i a b l e s '/ 

ProccsaArgumentsf) v o i d 
I n t i ; 
£printC(Ep, "SnNntc : • 

T = a t r l o n ( a r g l l l ) ; 
M = UniquoCount(argil]) 

a r g r i l ) 

Symbol = ( i n t •) malloc(T ' a i z c o f ( i n t ) ) 
Symbol = SymbolCodo(arg(ll. Symbol) ; 

T a l l y = ( i n t •) malloc(M • o i z c o f d n t ) ) 
f o r (1=0 ; i<H ; * t i ) 

T a l l y l i l = 0 ; 
T a l l y • SyrabolCount(Symbol. T a l l y ) ; 

/• Count the number o£ d i f f e r e n t charoctors i n s t r i n g '/ 

I n t 

( 

UniqueCounc(5> 
char '0 ; 

c h a r 
i n t 

' t ; 
k, n ; 

n s a t r l G n ( s ) ; 
t = (char *) calloc(n-»l. sizooE(char)) ,-
3 t r c p y ( t , s ) ; 
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c m ° NULL ; 

k = o t r G p n ( o , t ) ; 
w h i l e ( k >= n ) 
{ 

t = s t r n c a t { t , s*k, 1) ; 
k a o t r o p n t o . t ) i 

) 
r o t u r n ( s t r l G n ( t ) ) ; 

/' A l l o c a t e symbols t o columns */ 

I n t •SymbolCode(3, Symbol) 
char ; 
I n t 'Symbol; 

i n t t , J 
f o r (t=0 ; t<T ; ++t) 
( 

i « o [ t I ; 
SymboMtl o j - -Q' 

) 
rcturn(Symbol) ; 

/* Count numbers of symbols 

i n t 

( 

•SymbolCount(Symbol, T a l l y ) 
i n t •Symbol ; 
i n t ' T a l l y ; 

I n t s. t 
f o r (t=0 ; t<T ; t * t ) 
( 

3 B Symbol I t ) 
• • T a l l y l s l ; 

) 
r o t u r n i T a l l y ) ; 

/* Create a d d i t i o n a l g l o b a l v a r i a b l e s 

CreateGlobolsO 

i n t i ; 

v o i d 

N 3 ; 
i f ( H > K ) 

N = H ; 

/' N! must bo i n t o g e r '/ 

AKax ° (double **) malloc(H * s i z o o f ( d o u b l e * ) ) 
BMax o (double **) malloc(N ' s i z e o f ( d o u b l e * ) } 
f o r (i=0 ; i<N ; ++1) 
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) 
FMax 

AKax[i} ° (doublG ') [nalloc(N 
BMaxti) = (double ') malloc(M 

0.0 ; 

•IzooC(double)) 
3 l z e o f ( d o u b l e ) ) 

/• Grow tho H o t of oin g l o t o n s g c n o r a t i o n by gonerotion 

v o i d MakeMaotorLlstO 

i n t i , n. t ; 
i n t 'Term ; 
o l i o t Head, T o i l . Current, Parent 

Head = T a l l = NULL ; 
Term = ( i n t M malloc(T • s i z e o f d n t ) ) 
£or {t=0 ; t<T ; ++t) 

Termt t l = 0 ; 
SAppcnd(Torm, firHcad, GiTail) ; 
free(Term) ; 

f o r ( t = l 
( 

t<T + + t ) 

Current = Head ; 
Head B T a i l =» NULL ; 
whi l e ( Current != NULL ) 
I 

Parent = Current ; 
Term = Parcnt->scqucnce ; 
n = 0 ; 
f o r (ioO J 1<C ; 

i f { T c r m t i l > n ) 
n = T o r m [ i l ; 

i f ( (n+2) > N ) 
n H N ; 

else 
n 1 n*2 ; 

f o r (i=0 ; i < n ; t*i) 
( 

Terrolc) 1 ; 
SAppend(TGnn, &Hcad, £.Tail) ; 

) 
Current = Porent->nGxt ; 
frco(Parent->sequenco) 
frGe(Parcnt) ; 

) 
Current e Parent » Head ; 
Head = T a i l ° NULL ; 
whi l e ( Current 1= NULL ) 
( 

i f ( HoEcllpse(Current. Parent, t ) ) 
SAppcnd(Currcnt->ocquonco, SHead, i T a i l 

Current = Current->noxt ; 
) 
RecyclcSLlst(Parent) .-
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Current = Parent a Head ; 
Head = T o i l a NULL ; 
w h i l e ( Current != NULL ) 
( 

i f ( Slngl o t o n ( C u r r e n t , Parent, T-U ) 
SAppend(Current->8equenco, &Head. &Tai l ) 

Current « Curront->noxt j 
) 
RccyclcSLi St ( P a r e n t ) ; 
L i s t = Head ; 

/* Test whether soguonce e c l i p s e s another w i t h same f i n a l s t a t e 

i n t NoE:clipae(NodG. Head, t ) 
s l i s t Node ; 
s l i s t Head ; 
i n t t ; 

i n t 
s l i s t 

nonefound, m o r c l e f t 
Current ; 

Current = Head ; 
noncfound = m o r e l o f t = 1 ; 
whi l e ( nonefound US, m o r e l e f t ) 
( 

i f ( Current == NULL ) 
m o r o l c f t = 0 ; 

olse i f ( Current °= Node ) 
Current = CurrGnt->noxt ; 

else i f ( Current->segucnco[t] la Nodo->scqucncclt) ) 
Current « Curront->next ; 

oloo i f ( NoPit(Node->oequenco. Current->nGquencG, t ) ) 
Current = Curront->noxt ; 

else 
nonefound = 0 ; 

) 
return(nonefound) ; 

/* Test whether sequence a c t i v a t e s another i n l i s t '/ 

i n t Singleton(Node, Head, t ) 
a l i o t Node ; 
s l i s t Head : 
i n t t ; 

( 
i n t nonefound, roorcleft ; 
s l i s t Current ; 
Current = Head ; 
noncfound = mor e l e f t = 1 ; 
w h i l e ( nonefound && m o r e l o f t ) 
( 

i f { Current == NULL ) 
mo r e l e f t » 0 ; 

olBG i f ( Current == Node ) 
Current = Current->ncxt ; 
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eloQ i f ( NoAct(Nodo->ooquenco, CurrGnt->DoquGnco, t ) ) 
Current = Current->nQxt ; 

elso 
nonefound B Q ; 

) 
return(nonofoundj 

/• Tost whether t o m l ecllpooo tonn2 and r e t u r n 1 f o r f a i l u r e •/ 

I n t NoPlt(Cerral, tonn2, t ) 
i n t " t e n n l ; 
i n t 'tcrm2 ; 
i n t t ; 

{ 
i n t i , j ; 
i n t ow ; 
i n t •'Matl, ••MQt2 ; 

Matl B HakcAMQt(tGniil, t + l ) ; 
Mat2 a MakcAMat(tQrm2. t+1) ; 

•w ° i ° 0 ; 
w h i l e ( ( !sw ) &£. ( 1<N ) ) 
{ 

j « 0 ; 
w h i l e ( ( law ) ( j<N > ) 
( 

i f ( { M Q t U i l l J I == 0 ) 66 ( Mat2 ( i I [ J l !=» 0 ) ) 
ow B 1 , 

olso 
) 
i f ( Isw ) **i ; 

) 
lM}3orb(Matn ; 
lAbsorb<Nat2) ; 
i f ( sw ) r o t u r n d ) ; 
else 
{ 

H a t l = HakoBMatltGrral, t+1) ; 
Mat2 = HakcBMat(tGnn2, t * l ) ; 

1 = 0 ; 
whi l e ( ( law ) 66 ( i<N ) ) 
( 

j = 0 ; 
w h i l e ( ( !ow ) 66 { j<H ) ) 
{ 

i f ( ( H a t i m i j l 0 ) 66 ( H a t 2 ( i l ( j l t= 0 ) 

eloo 
Gw = 1 ; 

i f ( isw ) **l ; 
) 
IAb3orb(Matn ; 
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IAbaorb(Mat2) 
return(sw) ; 

/* Test whether to r m l a c t i v a t e s teriT)2 and r e t u r n 1 f o r f a i l u r e '/ 

i n t NoAct(tornil, tcrm2, t ) 
i n t • t o r m l ; 
i n t •tGnn2 ; 
i n t t ; 

{ 
i n t i , j ; 
i n t Qw ; 
i n t •rowsum ; 
i n t ••Matl. ••Mat2 ; 

Matl o MakGAMat(torml, t+1) ; 
Mat2 = MakGAHat(term2, t + l ) ; 
rowoum o ( i n t •) malloc(N * a i z e o f t i n t ) ) ; 
f o r (i=0 ; i<N ; ++i) 
( 

row3Uni[il a 0 ; 
f o r ( j = 0 ; j<N ; ++j) 

i f { M a t U i U j l != 0 ) 
rowsumlil = rowsumliJ + M a t l l i l l j ] ; 

) 
ow = i = 0 ; 
whi l e ( ( Isw ) 66 ( i<N ) ) 
{ 

j « 0 ; 
w h i l e ( ( !ow ) 66 ( J<H ) ) 
( 

i f ( ( M a t l U l l j ) 0 ) 66 ( M a t 2 ( i J l j l I» 0 ) 66 { row 
su(Q[i1 !o 0 ) ) 

sw = 1 ; 
else 

++J ; 
} 
i f ( tsw ) ++i ; 

) 
lAbaorb(Matl) ; 
tAbsorb(Mat2) ; 
frGG(rowaum) ; 
i f ( aw ) r o t u r n d ) ; 
OlSG 
( 

Matl = MakcBMat(torml, t+1) ; 
Mat2 s MakoBMat{tQrm2, t+1) ; 
rowaum = ( i n t •) malloc(N • s i z e o f ( i n t ) ) ; 
f o r (i=0 ; i<H ; ++i) 
( 

rowsumlil Q 0 ; 
f o r (JcO ; j<N ; ++J) 

i f ( M a t l l i } I j l 1° 0 ) 
rowoum(i| = rowaum(i] + M a t l ( i ] [ j | ; 

) 
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i = 0 ; 
w h i l o ( t Isw ) 66 ( i<M ) ) 
( 

j = 0 ; 
w h i l e ( ( !sw ) && ( j<M ) ) 
I 

i f ( ( M a t U l K j l «° 0 ) t t ( M a t 2 I l J I j ] 
66 ( rowsum[i) 0 ) ) 

sw = 1 ; 
GIQQ 

0 ) 

) 
i f ( Isw ) + + i 

} 
lAbsorb(Matl) 
lAb3orb(Mat2) 
frco(roweum) 
return(3w) ; 

v o i d 
{ 

For each v a l i d term, c l i m b among a c t i v a t i o n s / n e i g h b o r s 

C l i m b H i l l o O 
i n t ••AMac, "BMat ; 
double ACon, BCon, FMod ; 
• l i s t Noighbora, Current ; 

Current = L i s t ; 
wh i l o ( Current !° NULL ) 
( 

AMat » MakGAMat(CurrGnc->3cquGnce. T) ; 
ACon = Contribution{AMat, N, N) ; 
BMot ° Ha)ceBMat(Current->scciucncG. T) ; 
BCon ° Contributlon(BMaC, N. M) : 
FMod = ACon • BCon ; 

i f ( FMod > FMax ) 
C 

AMax s ConvGrt(AMat. AMax, N, Nl ; 
BMax = Convert(BMat, BMax, N, M) ; 
FMax = FHod ; 

I 
lAbsorb(AMat) ; 
IAb3orb(BMat) ; 
Current = Current->next ; 

) 
while I L i s t 1° NULL ) 
{ 

Current ° L i s t ; 
Noighbora = NoighborsOE(Current->soqucncol 
i f ( LongthOf(Neighbors) 1 ) 

Climb(Neighbors. 0) ; 
RecyclGSList(Neighbors) ; 
L i s t = Currcnt->noxt ; 

frco(Current->oequcnce) ; 
f r c e ( C u r r c n t ) ; 

/• Return l i n k e d l i s t of immcdiato neighbors o£ tho given term V 

s i i s t NolghborsOf(Term) 
i n t 'Terra ; 

( 
i n t "AMat, "BMat, "FMat ; 
i n t i , j , k, I , m ; 
i n t ' l l m ; 
s l i s t Head, T a i l ; 
block 'NDlock ; 
Head = T a i l = NULL ; 
SAppGnd(Terro, &Hoad, &Tail ) ; 
AMat = MakcAMat(Torm, T) ; BMot = MakeBMat(Term, T) ; 
FMat = ( I n t " ) raalloc(N * s i z e o f ( i n t • ) ) ; 
f o r (i=0 ; i<N ; 
[ 

F M a t l i l ( i n t ' I malloc(M • s i z o o f ( i n t ) I ; 
f o r (jnO ; j<M ; t+J) 

F M a t l l l [ j l = B M a t l i l I j l ; 
) 
NBlock ° BuildBin3Plu30neBlock(BMat) ; 
lira = NBlock->rows ; 

f o r (m=0 I m<H ; t+m) 
f o r (1=0 ; l<limtm] ; ++1) 
{ 

k t= 0 ; 
j = m ; 
f o r (i=0 ; i<N ; 

i f ( B M a t I i ) 1 j ) !° 0 ) 
F M a t d l l j ] = NBlock->valuolroI [ I J I k l ; 
• •k ; 

) 
fo r (i=0 ; i<N ; ++i) 

i f ( B H a t t i ] ( j ] == 0 ) 
( 

F M a t { i ] [ j ] ° NBlock->valuQ(m| {11 (k) ,-
Circumscribe(AMat. BMat, FMat. tHead, &T a i l ; 
F M a t d l ( j l =• 0 

) 
f o r (1=0 ; i<H ; ++1) 

FM a t l i ] I j l = BMotdl ( j l 

lAbsorb(AMat) ; lAbsorb(BKat) ; lAbsorbfFHat) : 
RecycloBlockfHBlock) ; 
return(KGad) ; 
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/* Examine nolghborhood of term 

v o i d Circum3cribo(AMat, BMat. FHat, Head, T a i l ) 
i n t •'AMat ; 
i n t ••BMat ; 
i n t ••PMat ; 
s l i s t •Head ; 
s l i s t ' T a i l ; 

i n t l e v e l , 'vec 
bloc l i •NDlock ; 

NBlock = BulldBinaBlock{FMat) ; 
l e v e l = 0 ; 
vec = ( I n t ') malloc(M • s i z e o f ( i n t ) ) ; 
l i m = NBlock->row3 ; 

Process(AMat, BMat. FMat, NBlock, l e v e l , vec, l i m . Head, T a l l ) ; 

RecyclGDlock(NBlock) ; 

/• Adds State co Gnd of l i n k e d o l i s t '/ 

v o i d SAppend(State, Head, T a i l ) 
i n t •State ; 
s l l B t 'Head ; 
s l i s t ' T a i l : 

( 
i n t i ; 
• H o t node i 
node = (svGc ') malloc(Qizoo£(Qvoc)) ; 
nodo->next a NULL ; 
node->saqucnco = ( I n t ') malloc{T • s i z e o f d n t ) ) 
f o r (ioO ; i<T ; • • i ) 

node->sequence[i) = S t a t o ( i | ; 

i f ( 'Head °° NULL ) 
•Head = - T a l l = node ; 

else 
{ 

{• T a i l ) - > n c x t = node ; 
• T a l l = node : 

) 
} 

/• Find s t a t e aequonce i n a l i n k e d H o t of s t a t e sequences •/ 

I n t SLocatc(State, L i s t ) 
I n t 'State ; 
o l i s t L i s t ; 

I n t 1, sw, r e s u l t ; 

r e s u l t B 0 ; 
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i f ( L i s t 1= NULL ) 
{ 

i = aw c 0 ; 
w h i l e ( ( !aw ) && ( i<T ) ) 

i f ( S t a t e d ] != Llst->sequcnceHl ) 
BW = 1 ; 

e l s e 
• + i ; 

i f ( !sw ) 
r e s u l t = 1 ; 

else 
( 

r e s u l t = SLocato(Stato, L i s t - > n c x t ) 
I f ( r e s u l t != 0 ) 

• + r e 3 u l t ; 
) 

) 
r c t u r n ( r e s u l t ) ; 

/' Add State t o end of l i n k e d s l i s t , a v o i d i n g d u p l i c a t e s •/ 

v o i d LAppend(State. Head, T a l l ) 
I n t 'Stoto ; 
s l i s t 'Head ; 
a l i s t ' T a l l ; 

i f ( SLocotG(Stato, -Head) == 0 ) 
SAppend(Stato, Head, T a i l ) ; 

/• Dotormine l e n g t h of a l i n k e d l i s t •/ 

i n t 

{ 

Lc n g t h O f ( L i s t ) 
s l i s t L i s t ; 

i f ( L i s t == NULL ) 
return(O) ; 

e l o G 
r e t u r n ( l + L c n g t h O f ( L i s t - > n e x t ) ) ; 

/• Assembles s t a t e permutations i n t o 3-D block, one plane per c o l of DMat '/ 

block 'BuiIdstatcBlock(BMat) 
i n t "BMat ; 
I n t i , j ; 
i n t sum, 'rep. Ion. 'vcc, " r a n t , next, l i m ; 
block • r e s u l t ; 
r e s u l t o (block •) malloc(sizeo£(block)) ; 
rGSult->planes = M ,-
rc3ult->rows >= ( i n t •) nialloc(M • o i z c o f ( l n t ) ) ; 
r G 3 u l t - > c o l o = ( I n t •') malloc(M • s i z o o f d n t • ) ) ; 
r G 3 u l t - > v a l u e = ( i n t •••) malloc(N • o i z o o f d n t ' • ) ) 
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r e p s ( i n t '» m a l l o c { N * siaeo£(int)) ; 
f o r ( j = 0 ; j<M ; * * j > 
( 

sum = 0 ; 
f o r (i=0 ; i<N ; 
( 

r o p l i l « l l M a t [ i l ( j I ; 
sum = sum + r c p I D ; 

) 
I c n n sum ; 
i f ( j == 0 1 
{ 

— s u m ; 
— r c p l O l ; 

) 
l i m B Pcrm3(sum, rep) ; 
nex t = 0 ; 
v c c n ( i n t •) m a l l o c d c n ' s i z e o f d n t ) ) ; 
mac e= ( i n t m a l l o c d i m • s l z e o f d n t •)> ; 
ltem(sura, rep. Ion, v e c , mat, finoxt) ; 
i f ( j == 0 ) 

f o r ( i = 0 ; i < l l m ; • • i ) 
m a c [ i } ( 0 1 = 0 ; 

r c s u l t - > r o w o [ j ) o Urn ; 
r o s u l t - > c D l a [ j ) o ( i n t •} m a l l o c d l m • a l z e o f ( i n t l ) ; 
f o r (i=0 ; l < l i m ; +*i) 

r e s u I t - > c o l o [ j ] ( i l = I o n ; 
r e 3 u l t - > v a l u o ( j l = mat ; 
f r c o ( v o c ) ; 

» 
r c t u m ( r e s u l t ) ; 

/• AQsemblea symbol a l l o c a t i o n s i n t o 3-D block, one plone per c o l of BMat 

block *BuildDina&lock(BMat} 
i n t "BMat ; 

{ 
i n t i , J ; 
i n t sum, 'bins, I c n , 'vec, **mat, next, l i m ; 
block T o a u l t ; 
r e s u l t = (block •) m o l l o c ( s i z e o f ( b l o c k ) ) ; 
rc s u l t - > p l a n c s = M ; 
rosult->row3 •= ( I n t •) malloc(M • s l z e o f ( i n t ) ) ; 
r e 3 u l t - > c o l s = ( I n t '•) malloc(M • o i z c o f ( i n t • ) ) ; 
r c s u l t - > v a l u o = ( i n t ••') malloc(M • s l z e o f ( l n t • • ) ) ; 

bins = l i n t *) malloc(M * s i z e o f ( i n t ) ) ; 
f o r ( j = 0 ; j<M ; * 4 j ) 
{ 

b l n s l j l = 0 ; 
f o r (i=0 ; 1<N ; ++1) 

i f ( B M a t l i l t j ) I " 0 ) 
+ + b i n s l j ) ; 

sum a T a l l y ( j l ; 
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I f ( j == 0 ) 
—sum ; 

l i m = S p l i t s ( s u m , b i n s ( j ] ) ; 
next = 0 ; 
I c n = b l n s ( J | ; 
voc = ( I n t •) m o l l o c d o n ' oizoo£(int)) ; 
mat = ( i n t ••) i n a l l o c d l m • oizoo£(int • ) ) 

EnumOum, b l n s I J I , I c n , v e c , mat, finext) ; 
I f ( j == 0 » 

f o r d=0 ; i < U m ; +•11 
+ + m a t d l ( 0 1 ; 

r o s u l t - > r o w s | j l = l i m ; 
r e 3 u l t - > c o l 8 [ J ] = ( i n t M m a l l o c d i m 
f o r d = 0 ; i < l i m ; + + i ) 

r o o u l t - > c o l 8 [ j l [ i ] = l e n ; 
r e s u l t - > v a l u o ( j l = mat ; 
f r o c ( v e c ) ; 

3 i z c o f ( i n t ) ) 

) 
r o t u r n ( r o 3 u l t ) 

/• Assembles symbol a l l o c a t i o n s i n t o 3-D b l o c k , one p i a n o p e r c o l of BMat '/ 

bl o c k • B u i I d B i n s P l u s O n e B l o c k { B M a t ) 
I n t ••BMat ; 

i n t 1, j ; 
i n t sum, 'blno, I c n , "vec, "mot, n e x t , 11m ; 
b l o c k • r e s u l t ; 

r e s u l t = ( b l o c k *) m a l l o c ( s i z e o f ( b l o c k ) ) ; 
r c s u l t ~ > p l a n e s = M ; 
r e s u l t - > r o w 3 o ( i n t •) malloc(M * s i z e o f d n t ) } ; 
r o 3 u l t - > c o l a = ( i n t ••) malloc(M ' o i z e o f d n t ' ) ) ; 
r e s u l t - > v a l u e = ( I n t •••) malloclM • s i z o o f d n t * • ) ) ; 

b i n s = ( I n t ') malloc(M ' s i z c o f d n t ) ) ; 
f o r (j=0 ; j<M ; 
i 

b i n o l j ] ° 0 ; 
f o r ( i a O ; i<N ; »•!) 

i f I D M a t t i l | j ) I s 0 ) 
t«bina(j) ; 

sum a T n l l y ( j ] ; 
i f ( J == 0 ) 

--sum ; 

l i m = S p l i t s ( s u m , ( l * b i n s | j l ) ) ; 
nex t = 0 ; 
l e n ° l ^ b i n s l j l ,-
v c c = U n c ') m a l l o c d c n • s l z e o f ( i n t ) > ; 
mot = ( i n t '•) m a l l o c d i m • s i z e o f d n c • ) ) ; 

Enumisum. ( l + b i n s f j ) ) . Ion, v e c , mat, 6noxt) ; 
i f ( j == 0 ) 
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f o r {i=0 ; i < l i m i 
• • m a t d l l O l ; 

r G 9 u l t - > r o w 3 t J l = l i i n ; 
r e s u l t - > c o l B [ j ) = ( i n t •) m a l l o c a i m • o i z e o f ( i n t ) ) 
f o r (i=0 ; i < l i m ; ++i) 

r o n u l t - > c o l o I J l ( I I = I o n ; 
r e s u l t - > v a l u o t j ] ° mat ; 
freo(vGC) ; 

) 
r o t u r n < r o s u l t ) 

/• L i s t s permutations of n things taken n a t a time */ 

i n t '•PermutatlonaOf(n) 
I n t n ; 

I n t 
i n t 

i ; 
sum. rep. l e n , ^vQC, ••mat, next, l i m ; 

rep = ( I n t •) m a l l o c f n • o l z o o f d n t ) ) ; 
f o r (1=0 ; i<n ; ++i| 

r e p ( i l = 1 ; 
Icn o oum s n ; 
l i m o ( i n t ) Pact{n) ; 
next a 0 ; 
vec = ( i n t •) m a l l o c l l e n • s i z o o f { i n t ) ) ; 
mot u ( i n t ••) raallocdlm ' o i z o o f ( i n t • ) ) 

lccm(oum, rep, l e n , vec. mat. 6noxt) ; 
froo(voc) ; 
rGturn(mat) ; 

/• Computoa tho permutations of sum itema. a l l o w i n g f o r r e p e t i t i o n s 

i n t Perms(sum, rep) 
I n t sum I 
i n t *rep ; 

long 
i n t 
i n t 

num, dom 
r e s u l t ; 
i ; 

num = Fact(sum) ; dom = 1 ; 
f o r (UO ; i<N ; ++1) 

dom = dom ' F a c t ( r e p l i ) ) ; 
r e s u l t = ( I n t ) (num/dom) ; 
r e t u r n ( r e s u l t ) ; 

/• Computoa tho waya of a p l i t t i n g n items among r bins 

i n t S p l i t n ( n , r ) 
i n t n ; 
i n t r ; 
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i n t 
i n t r e s u l t ; 

r e s u l t = 1 ; 
f o r ( i = l ; l < r ; +•!) 

r o o u l t B ( r e s u l t • ( n + i ) ) / 1 ; 
r e c u r n ( r e 9 u l t ) ; 

/• L i s t s the permutations of oum items, w i t h r e p Q t i t i o n o as por rep 

v o i d itcm(3um, rep, len, vec, mat, next) 
i n t 
i n t 
i n t 
I n t 
i n t 
i n t 

oum ; 
•rep ; 
len ; 
•vec ; 
• 'mat 
'next 

i n t I , n ; 

i f (sum == 0) 
{ 

) 
eloe 

n a 'next ; 
matlnl = ( i n t •) m a l l o c d e n • s i z e o f d n t ) ) 
f o r (1=0 ; l < l e n ; ++i) 

matlnl l i ] = v e c d J ; 
•next = n+1 ; 

f o r (loO ; 1<N ; ++i) 
i f ( r c p l i ) > 0 ) 
( 

vccden-oumj = i ; 
r o p l i l = r c p l i l - 1 ; 
Item(sum-1, rep, l e n . vec, mat, next) ; 
r o p d l B r c p d l + 1 ; 

) 

EnumoratGO tho ways of s p l i t t i n g aum items among a number of bins ',/ 

v o i d Enum(oum, bin s , l e n , voc, mat, noxt) 
oum ; 
bins ; 
l e n ; 
•vec ; 
"mat ; 
•next ; 

i n t 
i n t 
i n t 
i n t 
i n t 
i n t 

i n t 

i f (bins 
( 

i , n ; 

== 1) 

v e c l l o n - 1 ] = aura ; 
n B 'next ; 
matin) = ( i n t ') m a l l o c d e n • a i z O D f ( i n t ) ) 
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) 
e l s e 

Eor (i=0 ; U l e n ; ++1) 
m a t l n l [ i ] « v c c ( i | 

•next = n+1 ; 

i ) f o r (i=sum ; i>=0 ; 

v o c l l e n - b l n a l = i ; 
Enum(3um-i, bino-1. Ion, vec, mat, next) 

) 

/' Combines tho s t a t o permutations f o r each symbol i n t o a sot of sequences •/ 

i n t ••FlattGn(SBlock) 
block 'SBlock ; 

i n t l e v e l , 'vcc, • l i m , ••mat, noxt 

next = CountRows(SBlock) ; 
voc = ( I n t •) malloc(M ' s i z o o f ( l n t ) ) ; 
mat a ( i n t " ) malloc(next ' s i z c o f d n t ' ) ) ; 
l i m = SBlock->row3 ; 

next = l e v e l = 0 ; 
Nest(SBlock, l e v e l , vec, l i m , mat, Kncxt) ; 
fr o o ( v o c l ; 
return(mat) ; 

/• CorrlGO out H l e v e l s of n e s t i n g , each up t o l l m , w i t h Indlcoa I n vec '/ 

v o i d NG3t(SBlock, l o v e l , vcc. l i m , mat, next) 
block -SBlock ; 
i n t l o v o l ; 
i n t 'vcc ; 
i n t ' l i r a ; 
i n t "mat : 
I n t 'next ; 
i n t i , n ; 

i f ( l e v e l == M ) 
( 

n a 'next ; 
matlnl = Mcrgc(SBlock, vcc) ; 
•noxt = n * l ; 

) 
else 
( n a U m l l o v o U ; 

f o r (iaO ; i<n ; t * i ) 

v e c ( l e v e l I = 1 ; 
Nc3t(SBlock, l o v e l + l , voc, l i m , mat, next) ; 

) 
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/• Performs r e c u r s i v e processing of o i l p o s s i b l e combinations w i t h i n NBlock 

v o i d Proce33(AMat, BMat, FMat, NBlock, l e v e l , vcc, l i m . Head, T a l l ) 
i n t 
i n t 
i n t 
b lock 
i n t 
i n t 
i n t 
s l i s t 
o l l a t 

"AMat ; 
"BHot ; 
••FMat ; 
•NBlock 
l o v e l ; 
'vec ; 
• l l m ; 
•llcad ; 
• T a i l ; 

I n t n 

d. T a i l ) 

i f ( l e v e l o= M ) 
AppondNeighborsOf(AMat, BMat. FMat, NBlock, vec. Mead, T a i l ) ,-

olse 
( 

n o l i m d c v e l ] ; 
f o r (i=0 ; i<n ; ++i) 
( 

vecI l e v e l 1 = I ; 
Procoss(AMat, BMat, FMat, NBlock, l e v o l + 1 , vec, l i m . Hea 

) 

/• Merge values f o r each symbol I n t o f i n a l s t a t o soquence 

i n t •Morgo(SBlock, voc) 
block 'SDlock ; 
I n t 'vec ; 

{ 
i n t j , s, t ; 
i n t 'plane, 'row, 'col ; 
i n t 'Stoto ; 
plane = ( I n t •) malloc{M ' sizco£(int)) 
row = ( I n t ') malloc(M ' s i z o o f ( i n t ) ) 
col = ( i n t *) malloc(M ' s l z c o f d n t ) ) 

f o r (j=0 
( 

j<M ; +*j) 

p l a n c [ j ] o j ; 
r o w t j l = v o c l j l ; 
COUJI = 0 ; 

State = ( i n t ') malloc(T • s l z o o f ( i n t ) ) ; 
f o r (t=0 ; t<T ; ++t) 
( 

3 = SymbolItl ; 
S t a t e t t l a SBlock->valuolplanetsn I r o w l s l U c o l l s ] ] 
• + c o l ( o l ; 

) 
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free(plano) ; 
free(row) ; 
f r e e ( c o l ) ; 
r e t u r n ( S t o t e ) 

/" Capture tho sequences which are immediato neighbors of AMat & BHat 

v o i d AppendNeighboraOf(AMat, BMot, FMat, NBlock, vec. Head, T a l l ) 
i n t 
i n t 
i n t 
block 
I n t 
B l i s t 
s l i s t 

••AMat ; 
••BMat ; 
••FHat ; 
•NBlock 
•vec ; 
•Head ; 
• T a l l ; 

I n t *'IHat, "JMat, •' 
i n t •Sequence ; 
i n t 1, j , k, n ; 
i n t •plane, 'row. 'col 
block 'SBlock ; 

SMat 

p l o n e = ( i n t •) mallDc(M • s l z c o f ( i n t ) ) 
row = t i n t •) raalloc(M • o i z e o f d n t ) ) 
c o l ° d n t •) malloc(M • o i z e o f d n t ) ) 

f o r (J=0 ; j<M ; 
( 

p l a n c f j ) •= j ; 
r o w l j l a v c c l j l ; 
c o l l i ) = 0 ; 

) 
JMat e d n t ••) raalloc(N • o i z o o f d n t • ) ) ; 
f o r (i=0 ; i<N ; ++1) 

J M o t f i ) ^ d n t •) raalloc(M • s i z c o f d n t ) ) 

f o r (j=0 ; j<M ; + t j ) 
f o r (1=0 ; i<N ; ++i) 

i f ( F M a t d l l j l 0 ) 
J M a t d l ( j l ° 0 ; 

ols e 
( 

J M a t d l t j l 

+ + C O l [ j I ; 

N B l o c k - > v a l u Q ( p l a n e ( j ] ) ( r o w ! j ) I ( c o l 

free(plane) ; 
free(row) ; 
f r e e ( c o l ) ; 

SBlock = DuildstoteBlock(JMac) 
SMat o Flattcn(SBlock| ; 

n a CountiRows(SDlock) ; 
f o r (k=0 ; k<n ; 
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sequence o SMat|k) ; 
IMat = HakcAMat(Sequence, T) ; 

i f ( (Distance(AMat,IMat,N,N) * Distancc(BMat,JMat,N,M)) 
LAppGnd(Sequence, Head, T a i l ) ; 

lAbsorbdMat) ; 

:= 1 ) 

lAbsorb(JMat) ; 
RecyclePoir(SBlock, SMat) 

/• Count the t o t a l number o f p o s s i b l e s t a t e sequences w i t h i n SBlock '/ 

I n t 

( 

CountRows(SBlock) 
block *SBlock ; 

I n t j , t o t ; 

t o t = I ; 
f o r (j=0 ; j<M ; 

t o t a cot • SBlock->rowotj) ; 
r e t u r n ( t o t ) ; 

/• Returns A-matrix associated w i t h s t a t e sequence 

i n t -•MakcAMat(State, t ) 
i n t 'Stato ; 
inc t ; 

i n t 
i n t 

•'AMat ; 
i , j , D ; 

AMat = ( i n t ••) malloc(N ' s i z e o f d n t ' ) ) ; 
f o r (i=0 ; i<N ; 
( 

A H a t d l = d n t ') malloc(N • s l z e o f d n t ) ) ; 
f o r (j=0 ; j<N ; 

A M a t d l l j l « 0 ; 
) 
f o r (a=l ; B<t ; ^*a) 
I 

I = S t a t e l s - l l ; 
j = s t a t e l s ) ; 
• • A M a t d H j l ; 

) 
rcturn(AMat) ; 

/' Raturns B-matrix associated w i t h o t o t o sequence '/ 

i n t ••MakcBMat(State, t ) 
i n t 'Stato ; 
I n t t ; 
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i n t "OMat ; 
I n t i , j , a ; 
BHat o ( I n t ••) malloc(N • s i z c o f ( i n t • ) ) ; 
f o r (IBO ; i<N ; *+i) 
( 

BMatdJ = ( i n t •) nialloc(M • flizeof(int)) 
f o r (j=0 ; j<M ; t t j ) 

B M a t l l ] [ j l c 0 ; 
) 
f o r <o=0 ; o<t ; ••s) 
{ 

1 a Stato ( s ) ; 
J = Symbol l a ] ; 
• • B M a t t i H j ) ; 

) 
rGturn(BMat) ; 

/• By how many dlmonaions do two matricoa d i f f e r '/ 

i n t DistancotMatl, Mat2, n, m) 
i n t " M a t l ; 
I n t "Mot2 ; 
i n t n ; 
i n t m ; 

i n t 
I n t 

i , j : 
d i m l , dim2, b i n s ; 

diml => 0 i 
f o r d=0 i i<n ; ++1) 
( 

bins = 0 ; 
f o r (j=0 ; j<ro ; ++J) 

i f ( M a t U i ) [ j j > 0 ) 
+*bins ; 

i f ( bins > 1 ) 
diml = diml + ( b i n a - l ) ; 

) 

dim2 -> 0 ; 
f o r d=0 : i<n ; ++1) 
( 

bins = 0 ; 
f o r (J=0 ; J<m ; t t j ) 

i f { ( M a t U i i r i l + M a t 2 ( l M j | ) > 0 ) 
+*bln3 ; 

i f ( bins > 1 ) 
dim2 = dim2 + (blno-1) ; 

) 
return(dim2 - diml) ; 

/• Permute tho rowa of Mat on per row '/ 

i n t 

( 

••Pormute(Hat, row) 
i n t ''Mat ; 
i n t 'row ; 

i n t 
i n t 

i , j ; 
••BMat 

BMat = { i n t ••) maIIoc(N • a i z G o f d n t • ) ) ; 
f o r (1=0 ; i<N ,- ••!) 
( 

B H a t l i ) = ( i n t ') raalloc(M • 3 i z e o f ( i n t ) ) 
f o r (j=0 ; j<M ; ++j) 

B M a t d l f J ] = M a t t r o w d l I ( j ] ; 
) 
return(BMatl ; 

/• Froo up memory occupied by i n t e g e r m a t r i x •/ 

v o i d 

( 

lAbsorb(Mat) 
i n t " H a t ; 

i n t i ; 
f o r (ioO ; i<N ; ++i) 

f r o o ( K a t d ] ) 
free(Mat) ; 

/• Free up memory occupied by f l o a t i n g p o i n t m a t r i x 

v o i d DAb3orb(Mat) 
double "Mat ; 

i n t I : 

f o r d=0 ; i<N ; + + i ) 

f r G G ( H a t [ i ) ) 

freo(HQt) ; 

/• Free up memory occupied by block of data '/ 

v o i d RecyclGBlock(Block) 
block 'Block ; 

i n t 
i n t 

i , j 
' l i r a 

l i m = Dlock->rows ; 
f o r (JaO ; j<M ; ++J) 
( 

f o r (i=0 ; K l l m l j ] ; ++i) 
f r o e ( B l o c k - > v a l u e [ j l d l ) 

f r c G ( B l o c k - > c o l s l j l ) ; 
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freo(Dlock->rowa) ; 
free(Block) ; 

/• Free up memory occupied by l a r g o v a r i a b l e s •/ 

v o i d RGcyclePair(Block, Hat) 
block 'Block ; 
i n t "Mat ; 

i n t 
i n t 

i , j ; 
t o t , Mira ; 

t o t = 1 ; 
l i m = Block->rown ; 
f o r (jaO ; j<M ; t + j ) 
( 

t o t = t o t • l i m l j ] ; 
f o r (i=0 ; i < l i m { j l ; • • i ) 

f r e o ( B l o c k - > v a l u Q l J l [ i ] ) 
f r c o ( B l o c k - > c o l 3 ( j ] I ; 

) 
free(Block->rows) : 
free(Block) ; 
f o r (j=0 ; j < t o t ; t t j ) 

f r e e ( H a t I j l ) ; 
free(Mat) ; 

/• Free up memory occupied by s l i s t */ 

v o i d R c c y c l e S L l s t ( L i 8 t ) 
s l i s t L i s t ; 
a l l s t Current, Node ; 

Current = L i s t ; 
w h i l e ( Current != NULL ) 
t 

Node = Current ; 
Current s Current->next ; 
froo(Nodo->soqucnco) ; 
freo(Node) ; 

> 

double r e s u l t ; 

Max = (doublo mallOG(n • oi z e o f ( d o u b l e * ) ) ; 
f o r (i=0 ; i<n ; ++i) 

Max(i] = (double ') malloc(m * s i z o o f ( d o u b l o ) ) 

Mux = Convert(Mat, Max, n, m) ; 
r e s u l t a 1.0 ; 
f o r d°0 ; i<n ; 

f o r {j=0 ,- j<m ; + + j ) 
f o r (koO ; k<MatU) I j l ; ++k) 

r e s u l t B r e s u l t • M a x l i J I j l ; 

DAbsorb[Hax) : 
r c t u r n ( r e B u l t ) ; 

/• Generate f l o a t i n g p o i n t v e r s i o n of markov m a t r i x 

double •'Convert(Mat, Max, n, m) 
i n t " H a t ; 
double "Mox ; 
i n t n ; 
i n t m ; 

i n t 
I n t 

i . J ; 
•Sum ; 

Sum = ( i n t ') mallo c ( n ' s i z e o f ( i n t ) ) ; 
f o r (i=0 ; i<n ; • + i ) 
( 

SumUI = 0 ; 
f o r (j=0 ; j<m ; * * j ) 

Sum[i) = Sum(i] * M a t ( i ] [ j | ; 
1 
f o r (i=0 ; i < n ; ++i) 

f o r {j=0 ; j<m ; ++j) 
i f ( Suradl 1= 0 ) 

M a x d I l J l "= ((double) M a t l i l l j l ) / ((double) Sum 
i ) ) 

o loo 
M a x [ i n j ] = 0.0 

free(Sum) ; 
roturn(Mox) ; 

/' Cal c u l a t e f a c t o r i a l '/ 

/• C o n t r i b u t i o n given by Mat (having the s t a t e d dimensions) 

double C o n t r i b u t i o n l M o t , n, m) 
I n t "Mat ; 
i n t n ; 
I n t m ; 

* i n t 1, J, k ,-
doublo "Max ; 

long Fact(n) 
i n t n ; 

( 
long r e s u l t 
r e s u l t = 1 ; 
i f ( n > 1 ) 

r e s u l t s n ' P a c t ( n - l ) 
r e t u m ( r e 3 u l t ) ; 
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I* Perform B-w roes t l m a t i o n , e i t h e r from given term or from pseudo-COG •/ 

vo i d C l i m b ( L i s t , pos) 
s l i s t L i s t ; 
i n t poo ; 

i n t i , j , converged ; 
double "AOld, "BOld, ''ANew, "BNow ; 
doublo ' - A l f a . ••Beta, ••Garaa, " N e t a ; 
double Func, Prev ; 
CrcatoVar8(&A01d, &001d, &ANcw, &BNcw, hhXtix. frBeto, AGaroa, 6Nota) 
InitVaro(ANow, BNew, L i s t , poo) ; 

Func = 0.0 ; 
1 a converged = 0 ; 
whi l e ( ( iconvorged ) ( i < 20 ) ) 
( 

RccordOld(A01d, BOld, ANow, BNow) ; 
Prcv = Func ; 
Func = CalcHew(ANew, BNow, A l f a , Beta, Gama, Neta) ; 
i f ( (Func - Prev) < 0.000001 ) 

converged = 1 ; 
else 

• • i ; 
) 
DlsplayMata(AOld, BOld, Prcv) ; •/ 

i f ( Prev > FMax ) 
( 

fo r (1=0 ; i<N ; t t i ) 
f o r (j=0 ; j<N ; 

AMaxd) | j ) = A O l d d l ( j 1 ; 
fo r (i=0 ; i<N ; ++1) 

fo r (j=0 ; j<M ; +>j) 
B M a x d l l j l = B O l d d l t j l ; 

FMax = Prov ; 
) 
RelGaseVars(A01d. BOld. ANow. BNow, AlCa. Beta, Gama. Nota) ; 

/• A l l o c a t e memory f o r main v a r i a b l e s •/ 

vo i d CreatoVars(aold, bold, onew, hnow, o l f a , beto, gama, neta) 
double ••'aold ; 
double " • b o l d ; 
double • • 'anew ; 
doublo *•'bnew ; 
double •' ' a l f a r 
double •••beta ; 
double '••gamo ; 
doublo •••neta 

double " A d d . ••BOld. •'AHew, 
double • • A l f a , ••Beta, ''Gama, 

BNOW 
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i n t 
AOld 
BOld 
ANew 
BNew 

i . t ; 

(double 
(doublo 
(doublo 
(double 

malloc(N 
malloc(N 
malloc(N 
manoc(N 

size o f ( d o u b l e 
s i z e o f ( d o u b l o 
olzeof(double 
s i z e o f ( d o u b l e 

for 
t 

doO ; 1<N ; + * i ) 

A O l d d l 
ANGWd) 
B O l d d l 
B N c w d l 

e (double 
s (double 
= (double 
= (doublo 

malloc(N 
malloc{N 
malice(M 
malloc(H 

s i z G O f ( d o u b l o ) 1 
B i z c o f ( d o u b l e ) ) 
s i z e o f ( d o u b l e ) ) 
s i z e o f ( d o u b l o ) ) 

A l f a = (double " ) malloc(T • s i z c o f ( d o u b l o ' ) ) 
Beta c (double " ) malloc(T • s i z e o f (double ' ) ) 
Gama ° (doublo *•) malloc(T • aizGo£(doublo * ) ) 

f o r (t=0 
( 

t<T + + t ) 

A l f a l t l = (doublo •) malloc(N • s i z e o f ( d o u b l o ) ) 
D e t a l t l = (double ') malloc(N • s i z e o f ( d o u b l e ) ) 
Gamaltl = (double ') malloc(N • s i z e o f ( d o u b l e ) ) 

NGta ° (double •*) raalloc(N ' s l z e o f ( d o u b l o • ) ) ; 
f o r (i=0 ; i<N ; ++i) 

H e t a l H o (double ') m a l l o c ( N • slzGo£(double)) 

'aold 
•bold 
'anew 
•bnow 
• a l f a 
•beta 
•gama 
•neta 

= AOld 
= BOld 
B ANGw 
= BNow 
° A l f a 
= Beta 
o Gama 
= Neta 

/• Assign i n i t i a l values t o model '/ 

vo i d InitVars(AHew, BNew. L i s t , pos) 
doublo 
doublo 
s l i s t 
I n t 

i n t 
i n t 
i n t 
s l i o t 

••ANGW ; 
••BNow ; 
L i s t ; 
pos ; 

••AMat, ••BMat 
•State ; 
h ; 
Current ; 

i f ( pos °a 0 ) 
CalcCOG(ANGW, BNew, L i s t ) 

GISG 
( 

Current = L i s t ; 
h = 1 ; 
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w h i l e 
( 

( h < pos ) 

Current = 
++h ; 

Currcnt->noxt 

State = Currcnt->flGquenco 
AMat B HakoAMat(Stoto, T) 
BMat = MakeBMat(State, T) 
AHow = Convert(AMat, ANew, 
BHew o Convert(DMat, BNew, 
lAbsorb(AMOt) ; 
lAbsorb(BMat) ; 

/• Cal c u l a t e psoudo-Centor of G r a v i t y of the p a r t i c i p a t i n g terraa '/ 

v o i d CalcCOG(ANcw, BNew, L i s t ) 
double "ANew ; 
double "BNGW ; 
s l i s t L i s t ; 
i n t 
i n t 
i n t 
i n t 

•"AExp, '"DExp 
••ASum, "BSum ; 
P, 'State ; 
h, 1, j ; 

double num, dom ; 
s i I s t Current ; 

P s LengthO£(Llat) : 
AExp - ( i n t " • ) malloc(P ' a i z e o f d n t " ) ) 
BExp = ( i n t ••*) mulloc(P * s i z o o f i i n t • • ) ) 
ASum = ( I n t " ) malloc(P ' s i z e o f ( i n t ' )) 
BSum = ( i n t " ) malloc(P ' s i z e o f ( i n t • )) 

Current = L i s t 
f o r {h=0 ; h<P 
( 

• •h) 

State = Current->aequcnce ; 
AExpIh] = MakeAMat(State, T) ; 
BExpIhl o MakeBMat(Stato, T) ; 
ASumlhl = ( i n t •) raalloc(N' s i z o o f ( i n t ) ) 
BSumlhl a ( I n t ') malloc(H ' s i z G o f ( i n t ) ) 
f o r (i=0 ; i<N ; •+!) 
( 

ASumlh)[1) = 0 : 
BSumlhl111 = 0 ; 
f o r { j = 0 ; j<N ; • • j ) 

ASumEhl111 = ASumlhl111 * 
f o r ( j = 0 ; j<M ; • f j ) 

BSumlhl(i1 ^ BSumlh]|i] t 
) 
Current = Current->noxt ; 

A E x p l h l l i l l j ) 

B E x p l h l l i l l J l 

f o r (i=0 
( 

i<N ; ++i) 

dom o 0.0 
f o r lh=0 ; h<P • •h) 

Listing for BUI McKee FriSep 3 14:12:14 1999 

dom = dom • ((double) A S u m [ h ] l i l ) ; 
f o r (j=0 ; j<N ; + * j ) 
{ 

num = 0 . 0 ; 
f o r (hoO ; h<P ; * t h ) 

num s num * ((double) AExplhl111 I j l ) 
i£ (num < 0.000001) 

A N c w ( i ) I j ) ° 0.0 ; 
GlSO 

A N o w l i ) | j ] = num / dom ; 

f o r (1=0 ; i<N 
{ 

dom = 0.0 ; 
f o r (h=0 ; h<P ; ++h) 

dom ° doro * ((double) BSumlh)|i]) ; 
f o r ( j = 0 ,- J<M ; 
( 

num = 0,0 ; 
f o r (hoO ; h<P ; ••h) 

num = num *• ((double) B E x p l h H i l ( j l ) 
I f (num < 0.000001) 

BNCwMHjl = 0.0 ; 
o l S G 

B N o w l i l I j l = num / dom ; 
) 

f o r (haO ; h<P ; **h) 
f o r (ioO ; i<N ; * + i ) 
I 

f r o o ( A E x p ( h ) l i l ) 
froelDCxplh] H I ) 

1 
f o r (haO ; h<P ; **h) 
( 

frGG(AExp|hn ; 
£rce(BExp|hn ; 

) 
free(AExp) ; 
free(DExp) ; 
f o r (hsO ; h<P ; 
( 

frcG(ASum|hl) ; 
Creo(BSum|hll ; 

1 
free(ASum) ; 
free(BSum) ; 

/• Rotoin o l d A 6 B matrices p r i o r t o noxt i t e r a t i o n •/ 

v o i d Record01d(A01d, DOld, ANow, DNew) 
double "AOld 
double 
double 

-Bold 
•ANow 
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double ••DNew ; 

i n t i , J ; 

fo r (i=0 ; i<N ; ++i) 
( 

for IjoO ; j<N ! ++D) 
A O l d C i ] [ J I - A N G w t l l ( j l 

f o r ( j = 0 ,- j<M ; ++j) 
BOldd) ( j l " BHCw[i] [ j ] 

) 

/• CalculatG revised elements of the A 6 B matrices 

double CalcNew(a, b. a l f a . bota, gama, nota) 
double •'o ; 
double " b ; 
double " a l f a 
double " b e t a 
double "gama 
doublo " n e t a 
I n t i , j , k, t ; 
I n t '0 ; 
double aum. num. dom ; 
double P ; 

0 = Symbol ; 
a l f a t O l l O l = b [ 0 ) ( 0 ( 0 ) 1 ; 
f o r ( I n l J 1<N J ++1) 

alf a ( O ) d ) o 0.0 ; 
f o r (toO ; t < ( T - l ) ; ++t) 

f o r (j=0 ; j<N ; ++J) 
i f ( b [ j ) ( 0 ( t t l ) ) > 0.000001 > 
( 

) 
eloo 

sum = 0.0 ; 
f o r (i=0 ; 1<H ; ++1) 

i f ( O d i I j l > 0.000001) 
sum = oum + a l f a l t ] [ i | ' a ( i ) ( j ) 

a l f a [ t t l J I j ] = aum • b l j l l 0 [ t + l l l ; 

a l E a ( t + l l ( j l = 0.0 ; 
f o r ( j=0 ; j<N ; ++j) 

b o t a l T - l U j ) = 1.0 ; 
fo r (tnT-2 ; t>=0 ; — t ) 

f o r (1=0 ; i<N ; ++i) 
{ 

sum B 0.0 ; 
f o r ( j=0 ; j<N ; ++J) 

i f ( ( a d K j l > 0.000001 ) 66 ( b [ j l ( 0 ( t t l ] ] > 
0.000001 ) ) 

sura o sum + o [ i ] ( j ] • b | j H O ( t + l l ] • bet 
a ( t + l ] ( J ) ; 

b e t a ( t | ( i l = sum ; 

) 

f o r (1=0 ; i<M ; ++1) 
f o r ( j = 0 : j<N ; * + j ) 

i f ( a [ i ) [ j ) > 0.000001 ) 
{ 

oum c 0 ; 
f o r (taO ; t < ( T - l ) ; •«t) 

i f ( b ( j l ( 0 ( t + l l l > 0.000001 ) 
sum = sum + a l f a ( t n i l • a d K j l 

b ( j j ( 0 ( t t i n ' b G t a t f l H j J ; 
n e t a d J I j J = sum 

) 
oleo 

n c t a ( i ] I j ] = 0.0 ; 

f o r (c=0 ,- t<T ; + + t ) 
f o r (1=0 : i<N ; ++i) 

g a m a ( t ] ( l l = a U Q [ t ] d l • b e t a [ t ] ( n ; 
f o r ( i = 0 ; i<N ; + * I l 
( 

dom B 0.0 ; 
f o r (t=0 ; t < ( T - l ) ; ++t) 

dom = dom + g Q m a [ t ] ( i l ; 
f o r (j=0 : j<N ; ++j) 
( 

num e n o t a ( l ) ( j l ; 
i f ( num > 0.000001 ) 

a d I ( j 1 ° num / dom ; 
else 

a d l [ j l ° 0.0 : 
) 

) 

f o r (j=0 ; j<N ; ++j) 
( 

dora = 0.0 ; 
f o r (t=0 ; t<T ; **t) 

dam = dom + o a m a ( t l ( j l ; 
f o r (ke=0 ; k<M ; i t k ) 
{ 

num = 0.0 ; 
f o r (t=0 ; t<T ; t + t ) 

i f ( 0 ( t l =o k ) 
num = num + g a m a | t ] ( j l ; 

I f ( num > 0.000001 ) 
b l j l t k l = num / dom ; 

e l s e 
b ( j l ( k l = 0.0 ; 

) 
) 
aum = 0.0 ; 
f o r d=0 ; i<N ,- + + i ) 

oum ° sum + a l f a ( T - l l ( i t ; 
P = sum ; 
ret u r n ( P ) ; 
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/* Compuco o b j e c t i v e v a l u e a t modal p o s i t i o n u a i n g B-W forward c a l c u l a t i o n 

double F u l l v a l u e ( A M a t , BMat) 
i n t 
i n t 

I n t 
i n t 
double 
double 
doublo 

'•AMac ; 
••BMat ; 

i , J , t ; 
'0 ; 
••a, ••b ; 
• * a l E o , sum ; 

0 = Symbol ; 

a = (doublo " ) m a l l o c I N • s i z a o f ( d o u b l e * ) ) ; 
b = (double •*) raolloc(N • s i z c o f ( d o u b l o M) ; 
f o r ( i = 0 ; i<N ; •+!) 
( 

a l l ) s (doublo •} m a l l o c I N • s i z e o f ( d o u b l e ) ] ; 
b i l l = (double ') raalloc(M • a l z c o f ( d o u b l e ) ) ; 

1 
a = Convert(AMat, a, tt, tt) ; 
b = Convort(BMQt, b, N. H) ; 

a l f a = (doublo •') m a l l o c ( T • o l z e o f ( d o u b l o ')> ; 
Eor (toO ; t<T ; t + t ) 

al£a[t] = (doublo ') malloc(M * a i z c o f ( d o u b l e ) ) ; 
a l f a l O H O I « b | 0)|O [ 0 n ; 
f o r ( i = l ; i<N ; **i) 

a l E a l O ) [ i ] = 0.0 ; 
f o r ItcO ; C<(T-1) ; **t} 

f o r ( j a O ; j<N ; • • j ) 
I f ( b ( j | [ 0 [ t 4 l ) ) > 0.000001 ) 
( 

sun ° 0.0 ; 
f o r ( i = 0 ; i-cN ; + + i ) 

I f ( a [ l l I j l > 0.000001) 
sum = sum * a l f a [ t ] [ i ) • ( i | ( j ] 

) 
e l s Q 

a l f a I t + 1 ] I j l 

a l f a C t t l U j l 

sum • b t j ) t O I t U l l 

0.0 

sum = 0.0 ; 
f o r ( i = 0 ; i<N ; ++i) 

sum = oum + a l f a ( T - l l H I 
P = sum ; 
f o r ( i=0 i<N ; ++i) 

£roo(a(i]) 
f r c e ( b [ i } ) 

£rcc(a) 
f r o e ( b ) 

f o r (t=0 ; t<T ; ++t) 
free(al£a[t|) 

f r o o ( Q l f a ) 

r e t u r n ( P ) 

/* Wrico A & B matricQo to E i l o */ 

v o i d D i s p l B y H a t s ( A O l d , DOld, Prev) 
doublo ••AOld ; 
doublo ••sold ; 
double Prov 

( 
I n t 1, j ; 
doublo Func, Round ; 

f p r i n t f ( f p , "\n\nA-raatrix : \n") 
f o r ( i = 0 ; i<N ; 
( 

£printf(Ep, ' \ n ' ) ; 
f o r ( j = 0 ; j<N ; 

£print£(fp, •%!£ 
) 

A O l d ( l l l j l ) 

f p r i n c f ( f p , "\n\nB-matrix : \n-) ; 
f o r (ioQ ; 1<N ; • t i ) 
( 

E p r i n t f ( E p , "Nn") ; 
Eor ( j=0 ; j<M ; ++j ) 

fprintf(£p, - % l f B O l d f i l l j n ; 
) 
Func = Prov ; 
Round o ( ( d o u b l e ) ( ( l o n g ) ( ( U . 0 / F u n c ) * 100.0) + 0 . 5 ) ) ) / 100.0 
fprintf(£p, •\n\nFunc b % l f a 1/%1£-, Func, Round) ; 

/• F r e e up memory o c c u p i e d by l a r g o v a r l a b l e a •/ 

v o i d R e l e a 8 o V a r s ( A 0 1 d . BOld, ANew, BHew, a l p h a , b e t a , gamma, n e t o ) 
double •AOld 
doublo • •Bold 
double •Allow 
doublo • •BNew 
double • • a l p l i u 
double • •beta 
double • •gamma 
double • •neta 

i n t i , t ; 

f o r (1= 0 ; 1<N 

f r o e ( A 0 1 d I i ] ) 
E r o c ( B 0 1 d [ i l ) 
£reo(ANew[l)> 
E r c c ( B H c w l i I ) 

f r e e ( A O l d ) 
froQ(BOld) 
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froo(ANQw) 
£rGc(BIlGw) 

f o r (t=0 t<T 

f r c c ( a l p h a { t ] ) 
£rcQ(beta[t:n 
froo(ganinui[t|) 

) 
f r o o f a l p h a t ; 
£rG0(bct:a) ; 
froo(gamma) ; 

f o r (1=0 ; 1<N ; **i> 
f r c c ( n G t a U J ) 

f r o o ( n o t a ) ; 



F. Summary of Test Results 

F. 1. Function Evaluations on Grid 

This section presents the results of test three, described originaUy in Section 5.7. in the 

final paragraph of page 137 . 

During this test, the parameter space was searched for the global optimum solution by 

performing evaluations of the objective fijnction* over a grid of equally-spaced points in 

the interior of the space, and the highest located fianction value was then recorded. 

Each trial required three inputs: a single character sequence having length T (these are 

listed down the side), the model size N, and a parameter D which governs the grid 

density. 

The grid of points for evaluation was constructed as follows (see the example on the next 

page) : 

First, the number of ways in which D items can be distributed among N boxes (A/ for 

the B matrix) is enumerated. There are 

such ways. Then the number 1 is added to each box to bring the grid point into the 

interior of the parameter space. Finally, the contents of the boxes are divided by D-^N 

(or D+M for the B matrix). The result is a collection of K ;V t̂uples constituting 

the coordinates of the grid points applicable to a single row of the A {or B) matrix. 

* a different objective fiinction for each training sequence and model size 
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D=3 items among 
N=3 boxes 

To move into 
interior 

3 0 0 1 1 1 4 1 1 
0 3 0 1 1 1 1 4 1 
0 0 3 1 1 1 1 1 4 
2 1 0 1 1 1 3 2 1 
2 0 1 1 1 3 1 2 
1 2 0 plus ^ . ^ equals 2 3 1 
0 2 1 1 1 1 1 3 2 
1 0 2 1 1 1 2 1 3 
0 1 2 1 1 1 1 2 3 
1 1 1 1 1 1 2 2 2 

the plane x + y + z = 1 

as viewed from above 

1/6 2re 3/6 4/6 Sre 



Obviously, the higher the grid density, the more efifective the test. However, in the case 

for simplicity when N = M, this involves K ^ function evaluations (where each of the 

rows of A and B must independently receive each of the K A -̂tuples), For larger 

values of N,M and D, this number of evaluations soon becomes prohibitive. 

Two sets of numbers are presented in the tables. For ease of comparison, the large 

(lower) numbers give the reciprocal of P(0) . The smaller this value, the higher the 

objective value. The little numbers appearing above them represent the CPU elapsed 

time in hours required to perform that trial. 
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N = 3 
T = 5 

ababb 

abccc 

abcad 

abbaa 

aabac 

aabaa 

aaaab 

aabca 

ababc 

abbac 

D = 3 D = 4 D = 5 

0:1:45.5 

7.66 

26:29:54.6 

61.08 

D = 6 

0:6:24.7 

7.00 
7:11:58.7 

8.53 
aborted 

7:15:02.8 

23.78 

7:13:18.8 

24.99 
7:15:28.8 

21.04 
7:12:12.9 

25.06 

D = 7 

0:20:44.1 

6.58 
32:34:25.8 

6.82 
aborted 

32:28:48.3 

20.14 

32:34:41.0 

20.65 
32:33:30.6 

17.71 
32:35:23.8 

21.02 

D = 8 

aborted 

aborted 

aborted 

aborted 

D = 9 

2:23:20,0 

5.98 

aborted 

aborted 

aborted 

D=10 

5:26:41.6 

5.76 
aborted 

aborted 

5:29:01.5 

7.12 

aborted 

3:26:30.1 

2.62 
3:26:12.6 

7.15 

NHB 

3.76 

1.00 

4.00 

4.00 

4.00 

1.00 

4.00 

4.00 

4.00 

4.00 



N = 3 
T = 6 

aabbcb 

aaabaa 

aaabca 

ababcb 

abbbba 

abbacb 

aabaaa 

aaaabc 

ababbb 

aabccd 

D = 3 D = 4 D = 5 D = 6 

8:13:03.2 

67.53 

8:15:44.4 

57.53 
8:16:02.0 

37.37 

8:22:44.2 

39.19 

8:13:58.6 

63.59 

D = 7 D = 8 D = 9 D=10 

aborted 

6:16:24.5 

7.77 

aborted 

aborted 

6:16:03.4 

9.36 

6:19:44.2 

6.47 

6:13.47.2 

7.21 
2:37:33.4 

529.52 
29:08:19.6 

391.70 

NHB 

9.48 

3.38 

6.75 

4.00 

4.00 

4.00 

4.00 

9.48 

4.00 

27.00 



N = 3 
T = 7 

abacded 

aaaabbc 

abbaaaa 

abaacaa 

aaabaca 

aabbcbc 

aaabcac 

abbcdda 

aabbbac 

abcbdea 

D = 3 D = 4 D = 5 

aborted 

33:20:17.7 

1650.68 

aborted 

D = 6 

9:18:37.4 

180.00 

9:23:22.7 

56.93 
9:19:42.2 

108.05 
9:23:26.4 

188.49 
9:17:37.8 

193.98 

9:27:13.6 

216.34 

D = 7 D = 8 D = 9 D=10 

7:04:23.7 

11.48 

NHB 

108.00 

27.00 

4.00 

4.00 

16.00 

27.00 

27.00 

108.00 

27.00 

108.00 



N = 3 
T = 8 

D = 3 D = 4 D = 5 D = 6 D = 7 D = 8 D = 9 D=10 NHB 

7:57:01.1 

abaaaabb 51.86 27.00 
7:57:05.2 

abbbbbbb 3.33 1.00 
7:56:51.3 

aaabbaba 54.50 27,00 
3:14:17.3 36:21:13.1 

abbaacdb 8001.71 5594.86 182.25 
10:49:40.9 

aaaaabcb 199.70 12.21 
11:06:30.1 

aaaabbbc 342.76 37.93 
0:59:52.6 26:58:27.5 

abcdbdeb 42,168.71 21,069.74 108.00 
1:00:35.5 27:15:39.3 

abcdedee 45,730.64 26,597.99 432.00 
3:14:30.7 36:16:54.3 

abcacccd 3480.95 2683.41 182.25 
3:14:04.6 36:22:42.3 

aaabacdc 4240.48 3113.59 149.01 



N = 3 
T = 9 

D = 3 D = 4 D = 5 D = 6 D = 7 D = 8 D = 9 D=10 NHB 

1:06:07.8 

abccbdaeb 231,962.74 1230.19 
3:35:18.4 

abcbabcdb 10,743.98 151.70 
12:27:20.1 

abcbbabcb 666.74 45.56 
1:06:11.5 

aabbcddec 327,374.83 3125.00 
3:35:25.5 

aabcbadda 28,442.12 1025.01 
12:10:11.9 

ababbbbcc 922.24 115.74 
3:35:31.0 

aabbacaad 15,352.50 182.25 
3:35:13.5 

abbcbcddc 28,220.35 83724 
12:09:55.6 

abbaacbba 1398.25 182.25 
3:35:01.1 

aabcbbdba 16,564.20 606.81 



N = 3 
T=10 

D = 3 D = 4 D = 5 D = 6 D = 7 D = 8 D = 9 D=10 NHB 

13:27:40.3 

aabacccabb 9789.45 1728.00 
3:52:48.4 43:46:40.3 

abbbbcaabd 39,962.61 27,755.33 781.25 
13:07:25.3 

abaabbbcca 6251.27 607.18 
13:28:18.5 

aababaaabc 1389.66 115.74 
3:54:12.9 43:46:54.9 

aaabacccdc 29,162.40 21,152.21 329.59 
1:11:09.3 32:00:04.9 

abcdecebca 718,067.04 291,971.98 432.00 
17:24:46.9 

aabcbdefdg 21,474,836.47 46,656.00 
1:11:21.3 32:19:58.7 

abccaaddae 1,200,011.14 765,844.40 6912.00 
13:27:43.6 

aabaabacab 1136.49 64.00 
3:51:10.5 43:55:14.7 

abccbdccdb 77,310.33 52,308.67 2075.94 
9:38:27.4 

abbaaabbaa 142.73 28.94 



N = 3 
T = l l 

D = 3 D = 4 D = 5 D = 6 D = 7 D = 8 D = 9 D=10 NHB 

4:15:31.9 

abaccbcdadb 733,349.38 27,648.00 
4:15:04.3 

aaaabbcadda 206,384.45 5273.44 
4:15:28.9 

abcadbaabac 184,471.57 1728.00 
34:36:24.4 

aaaababacde 713,597.88 4096.00 
4:15:24.0 

abcbdbbcacd 368,983.76 6912.00 
4:15:49.1 

aaabcbaaacd 181,489.48 465J .74 
4:15:25.4 

ababacdbccd 215,315 Al 2916.00 
14:24:32.4 

abacbaccaaa 9024.91 508.26 
4:15:51.3 47:02:54.0 

abcbcabddcd 329,406.08 202,117.52 2601.23 
34:39:56.3 

abbbccdeabe 2,909,207.25 16.093.25 



N = 3 
T=12 

D = 3 D = 4 D = 5 D = 6 D = 7 D = 8 D = 9 D = 10 NHB 

11:18:26.5 

aaaaaaabbaba 251.29 100.78 
2:45:15.2 

aaaabcacabab 22,915,56 1438.38 
2:41:21.3 

aabaabaccabb 29,204.58 606.81 
1:22:34.1 37:17:36.0 

abacdbdabbce 21.474,836.47 16,130,614.53 152,587.89 

4:36:44.4 50:35:21.0 

aaaabacccbdc 486,119.38 343,450.51 8303.77 
4:40:33.7 50:32:23.5 

abacccbddddb 1,313.505.77 867,159.51 14,012.60 
1:22:23.9 37:18:25.3 

abccddbcebce 14,891,699.57 6,300,783.09 17,558.30 
5:45:09.3 

abaccdefefcb 21,474,836.47 569,531.25 

4:41:05.0 

abcccaaadadd 1,100,482.12 10,711.12 
4:40:26.2 50:32:31.6 

abcccaccccad 133,632.13 83,620.48 1230.19 



N = 3 
T=13 

D = 3 D = 4 D = 5 D = 6 D = 7 D = 8 D = 9 D=10 NHB 

1:27:40.9 43:21:02.9 

abcccaccdeaec2\,mfi36Al 15,722,938.32 81,048.98 
1:27:41.3 39:55:05.0 

aaabccacadace20fi9A,m,3S 11.850,812.85 84,375.00 
1:27:54.7 

aaabcdeabcbdc21,474,836.47 361,689.81 
2:53:59.3 16:31:36.5 

aabbbaccacaba 195,646.04 162,162.86 12,601.99 
1:27:47.1 

aabaaaccbdceel 1,474,836.47 314,928.00 
2:57:49.7 16:27:43.7 

aaabbbbcbacac 198,616.37 168,317.93 12,988.01 
6:07:07.3 aborted aflcr 

abcaaaadebfeb2imfi36Al 109.52:29.5 214,334.71 

1:27:30.9 

aabbcdbeacbedl 1,474,836.47 361,689.81 
4:57:01.9 54:07:19.6 

aaaababcabcda 1,609.403.89 1,054,282.31 16,384.00 
6:05:48.7 

abcbdddeceejb2\,4l^,^36.4l 2.153,581.37 



N = 4 
T = 5 

D = 3 D = 4 

ababb 
0:55:19.5 

9.66 
21:08:28.4 

8.05 

abccc 
37:56:11.2 

24.50 

abcad 
aborted after 

168 hours 

abbaa 
0:55:18.2 

11.17 
21:09:31.5 

8.49 

aabac 
37:57:52.7 

56.43 

aabaa 
0:55:23.7 

8.49 
21:09:09.3 

6.57 

aaaab 
0:55:18.1 

10.49 
21:08:52.8 

9.24 

aabca 
37:57:09.7 

36.64 

ababc 
37:55:10.5 

49.99 

abbac 
37:56:45.2 

63.31 

D = 5 D = 6 D = 7 

aborted aflcr 

119:54:48.2 

D = 8 

aborted after 

120 houra 

D = 9 

aborted after 

120 hours 

D=10 

aborted after 

120houre 

NHB 

1.00 

1.00 

4.00 

1.00 

4.00 

1.00 

3.05 

1.00 

3.38 

4.00 



N = 5 
T = 5 

aabca 

abate 

abbac 

D = 3 D = 4 D = 5 D = 6 D = 7 D = 8 D = 9 D = 10 NHB 

aborted aflcr 

ababb 144:07:I5.2 1.00 

1.00 

abcad 100 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

abccc 

aborted after 

abbaa I44:06:39.7 

aabac 
aborted after 

aabaa I44:06:59.3 

aborted after 

aaaab I44:06:25.3 



F.2. Baum-Welch Programs 

This section presents the results of the final test, described originally in Section 5.7. on 

page 138 . 

During this test, the New H M M Building algorithm was set against a battery of four 

H M M model-building programs, all performing classic Baum-Welch re-estimation (i.e. a 

single hill-climb), but differing in the model architecture and choice of starting point: 

Initialized 
uniformly 

Initialized 
randomly 

Fully-connected 

B W l 

BW3 

Left-right 
(2 skip states) 

BW2 

BW4 

The following few pages do not attempt to give the complete set of results, but merely 

present a typical cross-section. For ease of comparison, the numerical values displayed 

are the reciprocal of P{0) . 
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number of states N = 3 
sequence length T = 5 

Training Sequence 

ababb 

abccc 

a bead 

ab baa 

aabac 

aa baa 

aaaab 

aabca 

ababc 

ab bac 

BWl 

28.94 

115.74 

781.25 

28.94 

115.74 

12.21 

12.21 

115.74 

195.31 

195.31 

BW2 

9.22 

1.00 

27.00 

4.00 

16.00 

4.00 

4.82 

16.00 

36.00 

16.00 

Algorithm 
BW3 

3.70 

1.00 

27.00 

4.00 

4.00 

1.00 

4.82 

4.00 

4.00 

4.00 

BW4 

9.22 

1.00 

27.00 

4.00 

16.00 

4.00 

4.82 

16.00 

27.00 

16.00 

NHB 

3.76 

1.00 

4.00 

4.00 

4.00 

1.00 

4.00 

4.00 

4.00 

4.00 



number of states N = 3 
sequence length T = 6 

Training Sequence 

aabbcb 

aaabaa 

aaabca 

ababcb 

ab b b ba 

ab bacb 

aabaaa 

aaaabc 

aba b b b 

aabccd 

BWl 

432.00 

14.93 

182.25 

432.00 

45.56 

432.00 

14.93 

182.25 

45.56 

BW2 

9.48 

9.22 

53.87 

74.82 

7.23 

55.90 

4.00 

21.33 

10.59 

2.916.00 27.00 

Algorithm 
BW3 

9.48 

3.38 

6.75 

6.75 

4.00 

4.00 

4.00 

9.48 

4.00 

27.00 

BW4 

9.48 

11.42 

53.87 

74.82 

7.23 

55.90 

4.00 

21.33 

10.59 

27.00 

NHB 

9.48 

3.38 

6.75 

4.00 

4.00 

4.00 

4.00 

9.48 

4.00 

27.00 



number of states N = 3 
sequence length T = 7 

Training Sequence 

abacded 

aaaabbc 

abbaaaa 

abaacaa 

aaabaca 

aa b be be 

aaahcac 

abbcdda 

aabbbac 

abcbdea 

BWl 

65.88 

263.53 

263,53 

1,906.35 

804.24 

BW2 

51,471.44 307.55 

804.24 36.00 

4.00 

12.21 

45.56 

28.94 

45.56 

12,867.86 256.73 

1,129.69 108.07 

51,471.44 1,233.43 

Algorithm 
BW3 

182.25 

36.00 

9.48 

4.00 

27.00 

28.94 

27.00 

307.63 

27.00 

182.26 

BW4 

307.55 

36.00 

4.00 

12.21 

105.93 

55.91 

45.56 

256.80 

108.07 

NHB 

108.00 

27.00 

4.00 

4.00 

16.00 

27.00 

27.00 

108.00 

27.00 

1,234.28 108.00 
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