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Abstract
Copula models are flexible tools to represent complex structures of dependence for multivariate random variables.
According to Sklar’s theorem (Sklar, 1959), any d-dimensional absolutely continuous density can be uniquely
represented as the product of the marginal distributions and a copula function which captures the dependence
structure among the vector components. In real data applications, the interest of the analyses often lies on specific
functionals of the dependence, which quantify aspects of it in a few numerical values. A broad literature exists
on such functionals, however extensions to include covariates are still limited. This is mainly due to the lack
of unbiased estimators of the copula function, especially when one does not have enough information to select
the copula model. Recent advances in computational methodologies and algorithms have allowed inference in
the presence of complicated likelihood functions, especially in the Bayesian approach, whose methods, despite
being computationally intensive, allow us to better evaluate the uncertainty of the estimates. In this work, we
present several Bayesian methods to approximate the posterior distribution of functionals of the dependence, using
nonparametric models which avoid the selection of the copula function. These methods are compared in simulation
studies and in two realistic applications, from civil engineering and astrophysics.

Keywords: approximate Bayesian computation, conditional copulas, Bayesian inference, dependence mod-
elling, Gaussian processes, empirical likelihood, splines.

1 Introduction
Copula models have received an increasing interest since the work of Sklar (1959). Sklar’s theorem is a probability
result which states that every multivariate cumulative distribution function (CDF, hereafter) can be represented as
the product of the marginal distributions times a factor, namely the copula function, which captures the dependence
structure among the components of the random vector. This result is very important in statistical modelling, espe-
cially when it is reasonable and useful to separately model the marginal distributions and the potentially complex
multivariate dependence structure, or when the degree of information about the marginals and their dependencies
is different, since, in general, more information can be gathered on marginal aspects of the problem at hand.

Sklar’s theorem proves that every multivariate distribution functionFY (·) of a random variable Y = (Y1, . . . , Yd)
can be represented by a copula function C(·) : [0, 1]d → [0, 1] depending on d univariate marginal distributions

FY (y1, . . . , yd) = C (F1(y1|θ1), . . . , Fd(yd|θd) | ψ) (1.1)

where Fj(·) is the marginal CDF of Yj , depending on the parameter vector θj , for j = 1, . . . , d, andψ is the copula
parameter vector. This representation is unique if FY is continuous. In the case of continuous random variables,
Equation (1.1) admits the following density, which shows how the copula function absorbs all the dependence of
the model

fY (y1, . . . , yd) = c(F1(y1|θ1), . . . , Fd(yd|θd) | ψ) · f1(y1|θ1) · . . . · fd(yd|θd)

where c(·) is the density of the copula function C(·). We refer the reader to Nelsen (2007) for a detailed description
of copula theory and methods.
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Patton (2006) extends the definition of copula in the presence of covariates, to describe situations where the
marginals and their dependence structure are influenced by the values of other variables, that is:

FY |X(y1, . . . , yd|X = x) = CX
(
F1|X(y1|X = x), . . . , Fd|X(yd|X = x) |X = x

)
where X ∈ Rp represents a set of covariates, CX(·) is the conditional copula, which may potentially vary with X ,
and Fj|X is the conditional CDF of Yj , for j = 1, . . . , d. Here and in the following, the dependence on the param-
eters (ψ,θ1, . . . ,θd) is left implicit in the notation of the CDFs. The introduction of covariates may be useful in
many applications where the dependence structure varies over the space of the observations (Acar, Craiu and Yao,
2011). Moreover, conditional copulas are the building blocks of vine copulas (Czado, 2010), where situations of
dependence among the variables on which copulas are conditioned on are common in real applications; in these
cases, a “Simplifying Assumption” (Czado, 2019) is often introduced in order to make statistical analysis easier.
According to the Simplifying Assumption, the conditional copula is assumed constant, as in Gijbels, Omelka and
Veraverbeke (2015). Several contributions to the literature aim at exploring and testing violations of this assump-
tion, such as in Haff, Aas and Frigessi (2010), Acar, Genest and Nešlehová (2012), Acar et al. (2013), Killiches,
Kraus and Czado (2016), Killiches, Kraus and Czado (2017) and Kurz and Spanhel (2017). However, Levi and
Craiu (2018) show that violations of the Simplifying Assumption may be due to the omission of important covari-
ates, rather than to a real dependence on the included covariates. This result suggests that, in practical situations, it
is safer to assume the potential dependence of the copula on the values of the available covariates.

A standard approach to model the influence of covariates on copulas is based on a parametric model which
assumes a functional relationship between copula parameters and covariates, such that CX(·) = Cψ(X)(·), where
ψ ∈ Ψ is the copula parameter, assumed to be a function of the covariates X , supposing for simplicity that the
copula depends on one parameter. In this setting, the parameter is associated to the covariates through a link func-
tion ζ : Ψ → R, such that ψ(X) = ζ−1(η(X)), where η(·) is a real-valued calibration function. The calibration
function may assume different forms. A parametric form is adopted, for example, by Genest, Ghoudi and Rivest
(1995), while a nonparametric form is suggested by Acar, Craiu and Yao (2011), who employ a local polynomial-
based approach, and Craiu and Sabeti (2012), Vatter and Chavez-Demoulin (2015), Klein and Kneib (2016) and
Stander et al. (2019), who propose additive conditional copula regression specifications with predictors defined
using splines.

Different approaches are considered in the literature for the estimation of conditional copulas. Abegaz, Gijbels
and Veraverbeke (2012) and Gijbels et al. (2012) have proposed semiparametric and nonparametric methodolo-
gies within the frequentist framework to model the influence on copulas of covariates taking values in complex
spaces; in both papers the authors consider the statistical properties of conditional copula estimators, establishing
consistency and asymptotic normality results.

In the Bayesian framework, Dalla Valle, Leisen and Rossini (2018) have proposed to nonparametrically esti-
mate the conditional copula density in the bivariate case, introducing a generalization of ideas presented in Wu,
Wang and Walker (2015). The authors assume that the unknown conditional copula density can be represented
as an infinite mixture of Gaussian copulas, where the correlation parameter is defined as a (linear or non-linear)
function of a covariate:

cX(u1, u2 | X = x) =

∞∑
ι=1

πιcρ(x)(u1, u2 | X = x)

where cρ(x)(·) denotes the Gaussian copula densities with correlation coefficient ρ(x) depending on the covariate
X , u1 = F1|X(y1 | X = x), u2 = F2|X(y2 | X = x),

∑∞
ι=1 πι = 1 and 0 < πι < 1. The model can be described

via hierarchical specification, for i = 1, . . . , n, as

(u1i, u2i) | ρ(xi | βi) ∼ cρ(xi|βi)(u1i, u2i | xi)

βi | G
iid∼ G

G ∼ DP (α,G0).

The coefficients β, which relate the covariate to the correlation parameter ρ, are given a random CDF G which
follows a Dirichlet process prior with mass parameter α and base distribution G0. The correlation parameter is

imsart-ba ver. 2014/10/16 file: draft2.tex date: March 5, 2021



3

then defined through a calibration function which is linear in the coefficients β. The algorithm proposed by Walker
(2007) for mixture models is applied to implement the Bayesian sampling strategy.

Levi and Craiu (2018) propose to jointly estimate the marginal distributions and the copula function using
Gaussian process (GP) models, where the calibration function follows a priori a single-index model based on GP,
to handle high-dimensional covariates. In more details, the authors assume that

Yj ∼ N (ηj(xi), σ
2
j In), j = 1, . . . , d, i = 1, . . . , n,

where N (µ,Σ) is a multivariate Gaussian distribution with mean µ and variance Σ, ηj(xi) is the calibration
function for the marginal distribution Fj and In is the identity matrix of dimension n × n. The copula function
is characterized by its own calibration function η(xi) = η(x′iβ), for i = 1, . . . , n, where β ∈ Rp is a set
of coefficients that must be normalized for identifiability reasons (||β|| = 1). Each calibration function follows
a Gaussian process prior, centred around zero and with covariance structure depending on a kernel which is a
function of the distance among covariates, e.g. the squared exponential kernel. Although the GP approach is very
attractive for its flexibility, the idea of modelling the parameters of a known copula as a function of covariates
implies the need to choose the copula family. Several model selection methods, which may be applied to both the
choice of the copula family and the choice of the form of the calibration function, are available. One approach
compares the average prediction power of different models using the cross-validated pseudo-marginal likelihood
(CVML) proposed by Geisser and Eddy (1979); another approach is based on the Watanabe-Akaike information
criterion, proposed by Watanabe (2013). Both measures can be generalized to consider covariates.

As a general comment, we point out that the choice of a statistical model for the distribution of a multivariate
random vector is generally complex and parametric assumptions are always difficult to verify. For this reason, it is
often the case that the researcher prefers to reconsider the inference goals on some low dimensional functional of
the copula, i.e., for example Kendall’s τ , Spearman’s ρ or some tail dependence indices; in such case, the complete
dependence structure could be considered as a nuisance parameter.

Grazian and Liseo (2017) have derived an approximation of the posterior distribution π(ϕ; y) of the functional
of interest ϕ using

π(ϕ; y) ∝ π(ϕ)L̂(ϕ; y)

where π(ϕ) is a prior distribution and L̂(·) is a nonparametric approximation of the likelihood function. Grazian
and Liseo (2017) use the exponentially tilted empirical likelihood proposed by Schennach (2005). This version
of the empirical likelihood allows for a Bayesian interpretation involving an implicit nonparametric process prior
on the infinite-dimensional nuisance parameter (the copula structure). Other version of the empirical likelihood
(Owen, 2001) can be used: see, for example, Mengersen, Pudlo and Robert (2013). This approach produces a good
approximation of the posterior distribution (and of the likelihood function) if the generalized moment condition
- which is implicit in the maximization problem associated with the definition of the empirical likelihood - is
satisfied; this condition can be interpreted as a sort of unbiasedness requirement. In order to achieve this goal, a
consistent estimator of the quantity of interest ϕ is needed; while this is easy to do in an unconditional setting,
common estimators of the conditional copula function – upon which the estimators for the functionals are built –
have been shown to display some degree of inconsistency (Gijbels, Veraverbeke and Omelka, 2011).

In this paper we explore several ways to make inference on functionals of the dependence in presence of
covariates. The goal of the paper is to avoid the selection of the copula function. We discuss and propose three
methods of increasing relaxation of the distributional assumptions on the functional of interest: the former is based
on GPs, where, as opposed to Levi and Craiu (2018), the choice of a specific copula family is avoided; the second
is a direct generalization of the approach of Grazian and Liseo (2017) and makes use of the empirical likelihood
of the functional of interest, either implementing an inconsistent estimator of the conditional copula or a linearized
model; the latter makes use of Bayesian splines to approximate the behavior of the functional of the copula.

The remainder of this paper is organised as follows: Section 2 presents several methods to perform inference
on functionals of the dependence based on nonparametric representations of the copula function. Each of these
methods is compared in Section 3 and is contrasted to the conditional method proposed by Levi and Craiu (2018)
in the case of two covariates. Two real datasets showing non-linear dependence on one or two covariates are
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analysed in Section 4, showing that areas of applications include a broad range spacing from civil engineering and
energy management to astrophysics. Finally, Section 5 concludes the paper.

2 Bayesian analysis for functionals of conditional copulas

2.1 Conditional dependence measures

Let us consider the bivariate case and assume that for each level of a covariate (x1, x2, . . . , xk) we observe n`
replications of Y1 and Y2, with ` = 1, . . . , k, and compute the probability integral transforms uj = Fj|X`(yj |X` =
x`) for j = 1, 2 so to obtain:

[(u1,1, u2,1) , . . . , (u1,n` , u2,n`)] , ` = 1, . . . , k,

such that n` is the sample size of (u1, u2) at location x` and
∑k
`=1 n` = n. The joint distribution is defined through

a copula function:
FY1,Y2|X(u1, u2|X = x) = CX(u1, u2|X = x).

We also assume that the strength of dependence between U1 and U2 can be modelled as a smooth function of
X and that we are not able to assume any specific parametric form for CX . Also, we consider the situation where
one is mainly interested in making inference on a synthetic dependence measure of CX , say

ϕ(CX ;x) = E[v(U1, U2)
∣∣X = x].

for some function v. The quantities of interest are in general, functionals of the dependence, such as Kendall’s τ ,
Spearman’s ρ or tail dependence indices. Kendall’s τ is a measure of similarity of the orderings of the data. Given
two independent bivariate random variables (Y1,1, Y2,1) and (Y1,2, Y2,2), Kendall’s τ is defined as

τ = E (sgn [(Y1,1 − Y1,2)(Y2,1 − Y2,2)]) .

This dependence measure can also be defined in terms of copulas as

τ(Y1, Y2) = 4

∫ ∫
[0,1]2

C(u1, u2)dC(u1, u2)− 1. (2.1)

The Spearman’s ρ is an alternative nonparametric measure of rank correlation, assessing how well the dependence
among variables can be described by a monotonic function; it is defined as

ρ(Y1, Y2) = Corr (FY1(Y1), FY2(Y2)) ;

the corresponding copula expression is

ρ(Y1, Y2) = 12

∫ ∫
[0,1]2

C(u1, u2)du1du2 − 3. (2.2)

Other measures of interest are tail dependence indices or the conditional expected value of U1 for a given level of
X and U2, see Levi and Craiu (2018).

Since the above dependence indices can be directly defined through their copula function, the conditional
versions of (2.1) and (2.2) can be easily derived in terms of conditional copulas:

τ(x) = 4

∫ ∫
[0,1]2

CX(u1, u2)dCX(u1, u2)− 1, ρ(x) = 12

∫ ∫
[0,1]2

CX(u1, u2)du1du2 − 3. (2.3)

Consequently, the most common estimators of measures of conditional dependence are expressed in terms of
estimators of the conditional copula. In particular, estimators of τ(x) and ρ(x) are obtained in terms of

CX;h(y1, y2) =

n∑
i=1

wn;i(x, hn)I [Y1 ≤ y1, Y2 ≤ y2] (2.4)
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where I is an indicator function and {wn;i(x, hn)} is a sequence of weights that smooth over the covariate space
(for example, the Nadaraya-Watson or the local-linear weights) and hn > 0 is a bandwidth which is assumed to
vanish as the sample size increases. See Gijbels, Veraverbeke and Omelka (2011) for a detailed definition. As a
reminder, we report here the most common choices of weights. The Nadaraya-Watson weights are defined as

wn;i(x, hn) =
K
(
Xi−x
hn

)
∑
κK

(
Xκ−x
hn

) ,
while the local-linear weights are defined as

wn;i(x, hn) =

1
nhn
K
(
Xi−x
hn

)(
Sn,2 − Xi−x

hn
Sn,1

)
Sn,0Sn,2 − S2

n,1

where Sn,κ = 1
nhn

∑n
i=1

(
Xi−x
hn

)κ
K
(
Xi−x
hn

)
. In both cases, it is necessary to choose a kernel smoothing over

the covariate space: popular choices here are the triweight kernel

K(x) =
35

32
(1− x2)3I(|x| < 1)

and the Gaussian kernel
K(x) = (2π)

−1/2
exp

(
−x2/2

)
.

These choices are the ones considered in this work. Based on these estimators of the copula function, Gijbels,
Veraverbeke and Omelka (2011) propose the nonparametric version of the conditional Kendall’s τ :

τ̂(x) = −1 +
4

1−
∑n
i=1 w

2
n;i(x, hn)

n∑
i=1

n∑
t=1

wn;i(x, hn)wn;t(x, hn)I(Y1i < Y1t, Y2i < Y2t),

and of the conditional Spearman’s ρ

ρ̂(x) = 12

n∑
i=1

wn;i(x, hn)(1− Û1i)(1− Û2i)− 3,

where Û1i = F̂1|X(y1i|Xi = xi) and Û2i = F̂2|X(y2i|Xi = xi).

Unfortunately, estimator (2.4) is biased and the size of the bias depends on the role of the covariates on the
marginal distributions. In order to reduce the influence of the covariates, Gijbels, Veraverbeke and Omelka (2011)
have proposed an alternative estimator, where the marginal distributions are similarly approximated using Equation
(2.4); in this case, a different sequence of weights must be adopted. Nonetheless, this latter estimator is biased
as well: whereas, in particular settings, it can be drastically less biased than the former estimator, there is no
guarantee that the bias will always be smaller than the bias of the former. In addition, it is necessary to choose three
different bandwidth parameters in order to implement it. We refer to Veraverbeke, Omelka and Gijbels (2011) for
a discussion of the asymptotic properties of these estimators. In conclusion, the problem of evaluating the bias of
the nonparametric functionals of the dependence is still open.

Grazian and Liseo (2016) have discussed a preliminary exploration of a potential extension of the approximate
procedure described in Grazian and Liseo (2017); they use estimators (2.3) based on the empirical copula (2.4) and
analyse their properties through simulation. However, the lack of theoretical warranties makes the performance of
the procedure rather “problem-specific” and difficult to evaluate in general.

In this work, the goal of the analysis is to estimate ϕ(u1, u2;x) = ϕ(x) where ϕ(·) is a measure of conditional
dependence, when a nonparametric consistent estimator of ϕ(x) is not available. We propose to work on a trans-
formation of ϕ(x), encouraging normality, e.g. the Fisher’s transformation which maps indices defined in [−1, 1],
like Spearman’s ρ or Kendall’s τ , into the real line:

Z(x) =
1

2
log

1 + ϕ(x)

1− ϕ(x)
. (2.5)
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The sample version of Z(x) is then defined by computing the (possibly biased) estimates of ϕ:

W (x) =
1

2
log

1 + ϕ̂(x)

1− ϕ̂(x)
.

2.2 Gaussian processes approach

First, we assume that Z(x) follows - a priori - a GP

Z(x) ∼ GP
(
g(x)Tβ, σ2K(x, x′; ξ)

)
. (2.6)

Here, the location parameter of the Gaussian process is

E[Z(x)] = g(x)Tβ,

where g(x) = (g1(x), . . . , gq(x))
T is a set of known functions, x ∈ Rp and β ∈ Rq . Common choices for the

basis function g(x) are 0, (1,x) or (1,x,x2), and so on.

Also, K(x, x′; ξ) is a generic correlation kernel depending on a parameter ξ, and σ2 is a positive scale parameter,
so that

Cov(Z(x), Z(x′)) = σ2K(x, x′; ξ).

Without loss of generality, we will consider the squared exponential kernel

Cov (Z(x), Z(x′)) = σ2K(x, x′; ξ) = σ2 exp

(
−1

2

m∑
ι=1

d(xι, x
′
ι)

ξι

)
= σ2 exp

(
−1

2

m∑
ι=1

(xι − x′ι)2

ξι

)
.

For ease of notation, we will consider the case where m = 1, that is

K(x, x′; ξ) = exp

(
−1

2

(x− x′)2

ξ

)
;

however, generalizations to m > 1 are straightforward.

We estimate the functional ϕ(x`) using the unconditional consistent estimator of ϕ, say ϕ̂ and assume that each
set of observations, (y1i, y2i, x`), i = 1, . . . , n`, generates a noisy version of Z(x`), say W (x`), which depends
on a statistic evaluated at location x`; in practice, W (x) is a noisy observation of the signal Z(x). It is possible to
explicitly model the noise through some parametric assumption. For instance, the case of compensating errors can
be modelled through a Gaussian distribution

W (x`) = Z(x`) + ε` ` = 1, . . . , k

where Z(x`) is defined as in Equation (2.6) and ε` ∼ N (0, τ2` ), with τ2` = τ2/n` and ε` ⊥⊥ ε`′ , ` 6= `′.

Consequently, the observations follow a normal distribution

W (x`) ∼ N
(
g(x`)

Tβ, σ2 + τ2`
)
. (2.7)

From Equation (2.7), it follows that the likelihood associated to the observations related to locations x1, . . . , xk,
with a number of observations n1, . . . , nk each, is

L(β, σ2, ξ, τ2) = N
(
g(x)Tβ, σ2Σξ + τ2Ĩ

)
where Ĩ = diag

(
1
n1
, . . . , 1

nk

)
is a diagonal matrix with element

(
1
n1
, . . . , 1

nk

)
on the diagonal, and

Σξ =

K(x1, x1; ξ) · · · K(x1, xk; ξ)
...

. . .
...

K(xk, x1; ξ) · · · K(xk, xk; ξ)

 .
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Standard Bayesian approaches to Gaussian processes can then be developed to handle this situation (Goldstein
and Wooff, 2007, Cressie, 1992). First, the variance matrix can be reformulated following Paulo (2005):

σ2Σξ + τ2Ĩ = σ2

(
Σξ +

τ2

σ2
Ĩ

)
= σ2

(
Σξ + λĨ

)
= σ2M,

where λ = τ2/σ2 and M is a positive definite matrix depending on parameters ξ and λ.

Then, the likelihood can be rewritten as

L(β, σ2, λ, ξ) =
1

σk |M |1/2
exp

(
− 1

2σ2
(W − X̃β)TM−1(W − X̃β)

)
, (2.8)

where X̃ = g(x)T is a k × q matrix of known constants.

Integrating Equation (2.8) with respect toβ (using a noninformative prior distribution π(β) ∝ 1), the integrated
likelihood function for the variance parameters is obtained as

LI(σ2, λ, ξ) =

∫
B

L(β, σ2, λ, ξ)π(β)dβ

∝ σ−(k−q) |M |−1/2| X̃TM−1X̃ |−1/2 exp

(
− 1

2σ2
S̃2
ξ

)
where S̃2

ξ = WT Q̃W, Q̃ = M−1P̃, P̃ = I− X̃(X̃TM−1X̃)−1X̃TM−1, and I is the identity matrix.

It is also possible to integrate with respect to the scale parameter σ2, assuming, a priori, that it follows an
inverse gamma distribution with shape parameter α and scale parameter r

π(σ2) ∝ 1

σα+1
exp

(
− r

2σ2

)
,

such that the integrated likelihood for ξ and λ is defined as

LI(ξ, λ) =

∫ ∞
0

LI(σ2, λ, ξ)π(σ2)dσ2

∝|M |−1/2| XTM−1X |−1/2 1(
S̃2
ξ + r

)n−q
2 +α

. (2.9)

For proofs of the above definition of the integrated likelihood functions, see Paulo (2005). Expression (2.9) can be
also interpreted as the joint density of the observations (w1, . . . , wk) conditionally on the hyperparameters ξ, λ.

In practice, the GP modelling assumptions may not hold (e.g. the bias of the estimator can be asymmetric, the
tails may be non-Gaussian, the variance may vary over the parameter space). In order to consider the case of a
varying covariance structure depending on the parameter space, we may define

W ∼ N
(
g(x)β, σ2Σξ + τ2Ĩ exp(ς(x))

)
where ς(x) is again modelled as a GP: ς(x) ∼ GP(0,K∗(x, x′)). The variance of the Fisher’s transform of the
copula functional is allowed to vary smoothly as a function of the covariate; the exponential function is used since
the variance needs to be positive, then the logarithm is modelled as a GP. Again,K∗ can be chosen to be the squared
exponential kernel. The covariance matrix may be reparametrized by fixing either σ2 or τ2 equal to one in order
to make the model identifiable. Model selection techniques can be used to identify the model to be used; see, for
example, Vehtari and Ojanen (2012).

The posterior sample of (ξ, λ) is then used to approximate the posterior predictive distribution of W at new
locations x∗, using the following expression:

f (w∗|x∗,W ) =

∫
ξ,λ

f (w∗, ξ, λ|x∗,W ) dξdλ
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=

∫
ξ,λ

f (w∗|x∗, ξ, λ) f(ξ, λ|W )dξdλ.

This approximation can be computed for each value x∗ defined over a grid. A natural summary value for the
predictive distribution of W ∗ is the expected value E(W |x∗) ≈ W̄ ∗(x∗) =

∑
w∗f(w∗|x∗), which is also a point

estimate of W ∗ = Z∗ + ε∗ ≈ Z∗.

Finally, the estimation of the functional of interest ϕ can be obtained as

ϕ̂(x∗) =
exp{2W̄ ∗(x∗)} − 1

exp{2W̄ ∗(x∗)}+ 1
. (2.10)

Alternatively, a full sample of ϕ(x∗) can be derived from the posterior predictive distribution of W ∗(x∗).

2.3 Empirical likelihood approach

The assumption of normality of the Fisher’s transform of the copula functionals may be admittedly too strict in
many situations, in particular because the bias of the conditional copula function estimator is not analytically
known.

In recent years, there has been an interest in finding ways to derive the posterior distribution of the parameters
of a model by substituting the likelihood function with an approximation. In this setting, Price et al. (2018) propose
to use the approximation provided by a synthetic likelihood, for which the distribution of some (not necessarily
sufficient) summary statistics of the model is assumed to be Gaussian. Elsewhere (Gutmann and Corander, 2016)
simulator-based models are used, which compare the observed datasets with datasets generated from the model;
the likelihood function is then approximated by assuming a specific model – for example, a Gaussian distribution
– for the discrepancy between observed and simulated data (possibly evaluated in terms of summary statistics).
Another proposal is available in Mengersen, Pudlo and Robert (2013), where the empirical likelihood is employed
as a nonparametric approximation of the likelihood function of the parameter of interest. See Grazian and Fan
(2020) for a recent review of these approaches.

Recently, Grazian and Liseo (2017) have introduced the use of the empirical likelihood in the specific setting
of copula models, by proposing a semiparametric procedure where the posterior distribution of (low-dimensional)
functionals of the dependence is derived and the structure of dependence of the joint multivariate distribution is
taken as a nuisance parameter defined on a infinite-dimensional space. This approach has two main advantages: i) in
many settings, the interest lies in particular indices of the dependence (Spearman’s ρ, Kendall’s τ or tail dependence
indices) which may be in complex relationship with the parameters of the copula function and therefore it can be
difficult to derive a likelihood function for them and ii) the selection of a specific copula family can be difficult
in applied contexts and a semiparametric approach would avoid the need of choosing among alternative copula
models.

Suppose the modelFY,ψ(·) as expressed in (1.1) for a multivariate random variable Y is indexed by a parameter
ψ which can be defined as ψ = (ϕ, ν) and the interest of the analysis is in ϕ while ν is considered as a nuisance
parameter. Then the goal of the analysis is to derive the posterior distribution of ϕ

π(ϕ|y) =

∫
N

f(y|ν, ϕ)π(ν|ϕ)π(ϕ)

m(y)
dν

where ϕ ∈ Φ and ν ∈ N , π(ν|ϕ)π(ϕ) is the joint prior distribution of (ϕ, ν) and m(y) is the distribution of the
data y marginalized over the parameter space.

In the specific setting of this work, we assume that the copula C(·) is parametrized by (ϕ,C∗) where ϕ is
some functional of the dependence in the joint distribution and C∗ belongs to an infinite dimensional metric space
(H, dH). The empirical likelihood, in particular its Bayesian exponentially tilted version proposed by Schennach
(2005), LBEL, may be seen as the derivation of the integrated likelihood for ϕ

LBEL(ϕ; y) ∝
∫
N

L(ϕ, ν; y)π(ν|ϕ)dν
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where the prior distribution π(ν|ϕ) is a stochastic process constructed in such a way to give preference to distri-
butions with a large entropy; following Schennach (2005), the empirical likelihood is defined in terms of a set of
weights {ωi}ni=1 obtained as the solution (for each fixed value of ϕ), of the maximization problem

max
(ω1,...,ωn)

n∑
i=1

(−ωi logωi)

under the constraints 0 ≤ ωi ≤ 1 for i = 1, . . . , n,
∑n
i=1 ωi = 1, and a moment constraint

n∑
i=1

q(yi, ϕ)ωi = 0,

for some function q. The approximate Bayesian procedure for deriving an approximate posterior distribution for
ϕ is then defined by i) selecting a prior distribution π(ϕ); ii) selecting a nonparametric estimator ϕ̂, which must
be, at least, asymptotically unbiased; iii) computing the empirical likelihood LBEL(ϕ); iv) deriving the posterior
distribution π(ϕ|y) through a simulation process. Unfortunately, it is not always easy to perform step ii), i.e. to find
an (at least, asymptotically) unbiased estimator of the quantity of interest, in order to satisfy the moment condition.
In the setting of conditional functional of the dependence, as we have stated in Section 1, nonparametric estimators
of the copula function are biased, then a fully nonparametric approach cannot be directly implemented by using
the empirical likelihood approximation, along the lines of Grazian and Liseo (2017).

In this setting, the Fisher’s transform of the observations can be defined as a function of the covariates, through
a Taylor’s expansion in terms of a polynomial of degree p. Assume that W (·) is differentiable p times in a neigh-
bourhood of an interior point x0; then

W (xh) ≈W (x0) +W (x0)′(xh − x0) + . . .+
W (x0)(l)

p!
(xh − x0)p ≡ x∗Th,x0

β (2.11)

where x∗Th,x0
= (1, (xh − x0), . . . , (xh − x0)p) and β = (β0, β1, . . . , βp).

Similarly, a spline approximation, along the lines of Craiu and Sabeti (2012), can be adopted, using a cubic
spline as a model for the calibration function of the copula parameter

W (xh) ≈
3∑
ι=1

αιx
ι
h +

S∑
s=1

δs(xh − γs)3+, (2.12)

where a+ = max(0, a) and {γs}Ss=1 is a set of knots. In the approach of Craiu and Sabeti (2012), the copula family
is chosen through a model selection procedure. Then, consistent estimators of the coefficients of the Taylor’s
expansion or of the spline function, which can be used to define the moment condition in the definition of the
empirical likelihood, can be derived.

For the parameters β of the linearised model, it is common to define weakly informative priors, such as, for
instance, N (0, 100), and combine them with the weights defined by the empirical likelihood approach described
in Grazian and Liseo (2017) in order to obtain a sample of size G of (β0, . . . , βl|w1, . . . , wk) such that

β
(1)
0 , . . . , β

(1)
l , ω(1)

...
β
(G)
0 , . . . , β

(G)
l , ω(G)

where ωg , with g = 1, . . . , G, represents the weights of (β
(g)
0 , . . . , β

(g)
l ) induced by the empirical likelihood. The

combinations of (β(1), . . . ,β(G)) and the weights (ω1, . . . , ωG) produces an approximation of the joint posterior
distribution for β. On the other hand, if a cubic spline as in Equation (2.12) is used, weakly informative priors for
the parameters {αι}3ι=1 and {δs} =S

s=1 can be considered, such as, for example, N (0, 100).
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The approximate posterior distribution of β can be used to approximate the posterior predictive distribution

f (w∗|x∗,W) =

∫
B

f (w∗,β|x∗,W ) dβ

=

∫
B

f (w∗|x∗,β) f(β|W )dβ

≈
G∑
g=1

f
(
w∗|x∗,β(g)

)
ω̄(g)

where ω̄(g) = ω(g)∑G
g=1 ω

(g) is the normalized weight for the g-th iteration. As in Section 2.2, the approximation can

be computed on a grid of possible values of x∗ and the estimator of the functional of interest can be derived as in
Equation (2.10).

2.4 Bayesian splines approach

An alternative to the empirical likelihood approach of Section 2.3, still avoiding parametric assumptions, is to
model the functional of the dependence as a regression function using regression splines. In this setting, it is
possible to introduce assumptions on the type of function, i.e. its shape and degree of smoothness.

Again, it is useful to work with a transformation of the functional of the dependence, as defined in Equation
(2.5):

Z(x) = f(x) + ε

where f is assumed to be smooth; in addition, constraints to force the function to be monotone or convex can be
included.

For a given set of m knots, a = d0 = . . . = dk+1 = b with m = k + 2, spline basis functions δ =
(s1(x), . . . , sm(x)) are defined on [a, b]. Possible choices of splines are quadratic I-splines (Ramsay et al., 1988),
cubic I-splines, and C-splines (Meyer et al., 2008).

The function f(·) of the predictor x is modelled as

f(x) =

m∑
j=1

βjδj .

The coefficients βj are supposed to follow a priori a normal distribution with zero mean and large variance M . In
addition, a vague gamma prior distribution can be assumed for the precision of the error term. For a full description
of the method used in the implementation, we refer the reader to Meyer, Hackstadt and Hoeting (2011)

3 Simulation Study
We have performed a simulation study considering one and two covariates.

3.1 One covariate

Values of the covariate were simulated from a suitable uniform distribution and the Spearman’s ρ was associated
to the covariate through a linear or a sine relationship

• ρ = 0.8x− 2 with x ∼ Unif(2, 5)

• ρ = sin(x) with x ∼ Unif(−5, 5)
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For each model, we had 20 levels of the covariate. We simulated two-dimensional observations from four
different copula models: Clayton, Frank, Gumbel and Gaussian. For each level of the covariate, we simulated 100
data points with specific parameter values.

Each simulation set-up was repeated 50 times. We first performed a model selection approach based on the
xvCopula function of the R copula package (Kojadinovic et al., 2010), performing the leave-one-out cross-
validation for a set of hypothesized parametric copula models, using maximum pseudo-likelihood estimation.
Specifically, we considered, as potential generating models, the following copulas: Clayton, Frank, Gumbel, Joe,
Gaussian, Plackett, and Student t. Table 1 and 2 show the absolute frequencies of correct selection of the copula
model, when ρ is defined as a linear function and as a sine function respectively. It is evident that the selection of
the copula model is not expected to be an easy task. On the other hand, methods based on an assumption about the
copula model describing the data, strongly rely on this assumption for inference on the functionals of dependence,
such as Spearman’s ρ, Kendall’s τ , or tail dependence indices. Moreover, when selecting the copula based on
the observed data, one often assumes that the copula function does not change with the level of the covariate;
conversely, when this possibility is taken into account, the number of observations for each level of the covariate
are limited, and the selection problem becomes more difficult.

Clayton Frank Gumbel Joe Gaussian Plackett Student t
Clayton 42 0 0 0 0 1 7
Frank 0 10 0 0 0 38 3

Gumbel 0 0 39 0 0 0 11
Gaussian 0 0 0 0 8 0 42

Table 1: Absolute frequencies of correct selection of the copula model using leaving-one-out cross-validation,
where ρ is a linear function of the covariate. The rows represents the copula the data have been simulated from,
and the columns the possible models.

Clayton Frank Gumbel Joe Gaussian Plackett Student t
Clayton 39 0 0 0 0 0 11
Frank 5 1 7 21 1 0 15

Gumbel 0 0 6 0 0 0 44
Gaussian 1 0 6 27 0 0 16

Table 2: Absolute frequencies of correct selection of the copula model using leaving-one-out cross-validation,
where ρ is a sine function of the covariate. The rows represents the copula the data have been simulated from, and
the columns the possible models.

Tables 3, 4, 5 and 6 show the results of the comparison among the four approaches described in Section 2:
GPs, the empirical likelihood method based on an inconsistent estimator of the copula, the empirical likelihood
method based on a linearised model for the functional of the dependence, and Bayesian splines. An approximation
of the integrated mean squared error (IMSE) is used to compare the approaches, where the integration is taken with
respect to all the possible samples and all the possible covariate levels:

IMSE =

∫
Y

∫
X

(ρ̂(x, y)− ρ(x, y))2dxdy ≈
50∑
i=1

k∑
`=1

(ρ̂(x`,yi)− ρ(x`,yi))
2

where ρ(x`,yi) is the true value of Spearman’s ρ for covariate level x`, evaluated at the sample value yi =
(y1i, . . . , yni) and ρ̂(x`,yi) is the corresponding estimate obtained with each of the four approaches under analysis.
An analogous expression for the IMSE can be obtained for Kendall’s τ . In addition to the IMSE values, Tables 3,
4, 5 and 6 list the average length and average coverage results for the credible intervals of level 95%.

Table 3 displays the results with Spearman’s ρ as linear function ρ(x) = 0.8x−2, while Table 4 lists the results
with Kendall’s τ as linear function τ(x) = 0.8x − 2. The approaches showing the best performance are the GP
(Section 2.2) and Bayesian splines (Section 2.4) based approaches, where in all cases, the coverage is close to the
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Clayton Frank Gumbel Gaussian
GP IMSE 0.009 0.003 0.004 0.006

(Ave) CI Length 0.300 0.305 0.270 0.293
(Ave) CI coverage 0.910 1.000 0.978 0.891

Incons. EL - LL, triweight IMSE 0.260 0.297 0.276 0.267
(Ave) CI Length 1.326 1.298 1.309 1.328

(Ave) CI coverage 0.717 0.671 0.725 0.760
Incons. EL - NW, triweight IMSE 0.277 0.282 0.262 0.260

(Ave) CI Length 1.318 1.316 1.304 1.313
(Ave) CI coverage 0.728 0.727 0.730 0.739

Incons. EL - LL, Gaussian IMSE 0.298 0.283 0.274 0.261
(Ave) CI Length 1.299 1.314 1.299 1.317

(Ave) CI coverage 0.723 0.718 0.704 0.775
Incons. EL - NW, Gaussian IMSE 0.280 0.290 0.302 0.230

(Ave) CI Length 1.321 1.295 1.306 1.328
(Ave) CI coverage 0.000 0.729 0.721 0.734

EL - linearised model IMSE 1.097 1.039 1.065 0.926
(Ave) CI Length 2.000 2.000 2.000 2.000

(Ave) CI coverage 1.000 1.000 1.000 1.000
Bayes Splines IMSE 0.003 0.003 0.004 0.002

(Ave) CI Length 0.166 0.169 0.155 0.164
(Ave) CI coverage 0.975 0.985 0.880 0.970

Table 3: Results for the nonparametric analyses with Spearman’s ρ as a linear function. “GP” denotes the Gaussian
process model of Section 2.2; “Incons. EL” denotes the empirical likelihood approach using the inconsistent esti-
mator (2.4), with Local Linear (LL) or Nadaraya-Watson (NW) weights and triweight or Gaussian kernel; “EL -
linearised model” denotes the empirical likelihood approach of Section 2.3 using the approximation (2.11); “Bayes
Splines” denotes the approach of Section 2.4.

expected one and the IMSE is lower than 0.01. The results based on empirical likelihood approaches are always
worse than those based on GPs and Bayesian splines. When using the inconsistent estimator (2.4), the results are
relatively similar, independently of the particular choice of the kernel (Gaussian or triweight) or weights (local-
linear or Nadaraya-Watson): the interval coverage is constantly lower than the expected one (around 70%) and the
IMSE is around 0.3, definitely larger than the previous cases. Finally, when using the empirical likelihood approach
based on the Taylor expansion (2.11), with empirical likelihood weights on the β coefficients, the variance of the
estimates increases and the credible intervals cover all the parameter space.

Similarly to Tables 3 and 4, Tables 5 and 6 report the performance study of the different methods when the
true functions are ρ(x) = sin(x) (Table 5) and τ(x) = sin(x) (Table 6) respectively. Again, the best performance
is achieved by the GPs and the Bayesian splines approaches. The Bayesian splines show a coverage which is
similar or higher than the one obtained with the GPs approach, with only slightly longer intervals on average. The
methods based on empirical likelihood approximations seem inconsistent, with larger intervals lengths and reduced
coverage.

3.2 Two covariates

We have performed simulations also considering functionals depending on two covariates, x1 and x2. We remind
that some of the methods investigated in this paper require repetitions for each combination of the covariate levels,
therefore they are not applicable when using continuous covariates, unless values are grouped into classes. Here,
we compare the results with the semi-parametric approach proposed by Levi and Craiu (2018): while such method
requires the selection of the copula function, it does not require repetitions for each level of the covariates. Here,
following Levi and Craiu (2018), we use the conditional cross-validated pseudo marginal likelihood (CCVML) as
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Clayton Frank Gumbel Gaussian
GP IMSE 0.008 0.000 0.009 0.009

(Ave) CI Length 0.187 0.174 0.217 0.217
(Ave) CI coverage 0.623 1.000 0.771 0.771

Incons. EL - LL, triweight IMSE 0.264 0.255 0.242 0.242
(Ave) CI Length 1.269 1.303 1.337 1.337

(Ave) CI coverage 0.703 0.737 0.773 0.773
Incons. EL - NW, triweight IMSE 0.322 0.257 0.244 0.244

(Ave) CI Length 1.340 1.320 1.319 1.319
(Ave) CI coverage 0.698 0.715 0.751 0.751

Incons. EL - LL, Gaussian IMSE 0.297 0.283 0.240 0.240
(Ave) CI Length 1.291 1.324 1.311 1.311

(Ave) CI coverage 0.711 0.753 0.743 0.743
Incons. EL - NW, Gaussian IMSE 0.326 0.294 0.301 0.301

(Ave) CI Length 1.369 1.278 1.243 1.243
(Ave) CI coverage 0.000 0.000 0.000 0.000

EL - linearised model IMSE 0.986 0.735 0.966 0.966
(Ave) CI Length 2.000 2.000 2.000 2.000

(Ave) CI coverage 1.000 1.000 1.000 1.000
Bayes Splines IMSE 0.000 0.001 0.003 0.003

(Ave) CI Length 0.141 0.137 0.153 0.153
(Ave) CI coverage 1.000 0.967 0.917 0.917

Table 4: Results for the nonparametric analyses with Kendall’s τ as a linear function. “GP” denotes the Gaussian
process model of Section 2.2; “Incons. EL” denotes the empirical likelihood approach using the inconsistent esti-
mator (2.4), with Local Linear (LL) or Nadaraya-Watson (NW) weights and triweight or Gaussian kernel; “EL -
linearised model” denotes the empirical likelihood approach of Section 2.3 using the approximation (2.11); “Bayes
Splines” denotes the approach of Section 2.4.
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Clayton Frank Gumbel Gaussian
GP IMSE 0.504 0.492 0.428 0.366

(Ave) IC Length 1.214 1.001 1.007 1.258
(Ave) IC coverage 0.715 0.862 0.892 0.787

Incons. EL - LL, triweight IMSE 1.620 1.972 1.762 1.672
(Ave) CI Length 1.326 1.298 1.309 1.328

(Ave) CI coverage 0.175 0.185 0.253 0.600
Incons. EL - NW, triweight IMSE 1.217 1.823 1.612 1.601

(Ave) CI Length 1.518 1.161 1.324 1.413
(Ave) CI coverage 0.482 0.437 0.478 0.416

Incons. EL - LL, Gaussian IMSE 1.281 1.238 1.245 1.621
(Ave) CI Length 1.229 1.314 1.229 1.316

(Ave) CI coverage 0.623 0.628 0.654 0.685
Incons. EL - NW, Gaussian IMSE 1.202 1.270 1.202 1.236

(Ave) CI Length 1.222 1.198 1.273 1.210
(Ave) CI coverage 0.410 0.387 0.321 0.344

EL - linearised model IMSE 1.437 1.071 1.242 1.417
(Ave) IC Length 2.000 2.000 2.000 2.000

(Ave) IC coverage 1.000 1.000 1.000 1.000
Bayes Splines IMSE 0.541 0.502 0.720 0.541

(Ave) IC Length 1.229 1.071 1.051 1.206
(Ave) IC coverage 0.931 1.000 0.825 0.912

Table 5: Results for the nonparametric analyses with Spearman’s ρ as a sine function. “GP” denotes the Gaussian
process model of Section 2.2; “Incons. EL” denotes the empirical likelihood approach using the inconsistent esti-
mator (2.4), with Local Linear (LL) or Nadaraya-Watson (NW) weights and triweight or Gaussian kernel; “EL -
linearised model” denotes the empirical likelihood approach of Section 2.3 using the approximation (2.11); “Bayes
Splines” denotes the approach of Section 2.4.
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Clayton Frank Gumbel Gaussian
GP IMSE 0.645 0.293 0.563 0.494

(Ave) CI Length 0.391 0.732 0.949 1.577
(Ave) CI coverage 0.518 0.549 0.398 0.792

Incons. EL - LL, triweight IMSE 0.144 0.135 0.350 0.131
(Ave) CI Length 0.809 0.831 0.747 0.849

(Ave) CI coverage 0.320 0.380 0.260 0.420
Incons. EL - NW, triweight IMSE 0.805 0.809 0.797 0.882

(Ave) CI Length 1.134 1.320 1.141 1.102
(Ave) CI coverage 0.320 0.340 0.400 0.340

Incons. EL - LL, Gaussian IMSE 0.303 0.305 0.457 0.309
(Ave) CI Length 0.598 0.754 0.687 0.662

(Ave) CI coverage 0.320 0.260 0.280 0.200
Incons. EL - NW, Gaussian IMSE 0.669 0.597 0.806 0.605

(Ave) CI Length 0.673 0.544 0.767 0.579
(Ave) CI coverage 0.340 0.320 0.360 0.320

EL - linearised model IMSE 1.420 1.504 1.854 1.534
(Ave) CI Length 2.000 2.000 2.000 2.000

(Ave) CI coverage 1.000 1.000 1.000 1.000
Bayes Splines IMSE 0.492 0.491 0.944 0.507

(Ave) CI Length 1.039 1.003 0.517 1.066
(Ave) CI coverage 0.400 0.330 0.100 0.350

Table 6: Results for the nonparametric analyses with Kendall’s τ as a sine function. “GP” denotes the Gaussian
process model of Section 2.2; “Incons. EL” denotes the empirical likelihood approach using the inconsistent esti-
mator (2.4), with Local Linear (LL) or Nadaraya-Watson (NW) weights and triweight or Gaussian kernel; “EL -
linearised model” denotes the empirical likelihood approach of Section 2.3 using the approximation (2.11); “Bayes
Splines” denotes the approach of Section 2.4.
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selection tool; the CCVML considers the predictive distribution of one response given the rest of the data.

We generated again 50 repetitions of simulations for each of the four considered copulas: Clayton, Frank,
Gumbel, and Gaussian. The methods can be performed for any functional of the dependence, however we focus
here on the Kendall’s τ without loss of generality. We fixed

τ = 0.7 + 0.15 sin(
√

10(x1 + 3x2)) (3.1)

with x1, x2 independently and identically distributed from Unif(0, 1). We adopted the application setting of the
algorithm used in Scenario 1 of the paper by Levi and Craiu (2018). We considered 10 repetitions for each com-
bination of the levels of x1 and x2. Table 7 shows the results of the selection task for the copula model, using the
CCVML. Again, the identification of the correct copula model is not easy, in particular it seems that the Gaussian
copula is poorly identified through CCVML.

Clayton Frank Gaussian Gumbel
Clayton 26 11 13 0
Frank 13 15 22 0

Gumbel 0 0 10 40
Gaussian 3 10 1 36

Table 7: Absolute frequencies of correct selection of the copula model using CCVML, where τ is a function of two
covariates, see Equation 3.1. The rows represents the copula the data have been simulated from, and the columns
the possible models.

Table 8 compares the results of the method proposed by Levi and Craiu (2018) with the methods presented in
Section 2: GPs, the empirical likelihood method based on an inconsistent estimator of the copula, the empirical
likelihood method based on a linearised model for the functional of the dependence and Bayesian splines. The
method based on GPs shows the best performance in terms of average IMSE. In this case, Bayesian splines show
slightly larger IMSE results than GPs, which may be due to the increased dimensionality of the problem.

To implement the method based on the inconsistent copula estimator, it is necessary to extend the definition of
the Nadaraya-Watson weigths given in Section 2. Specifically, for p covariates the weights are defined as

wi(x,hn) =
K
(

Xi−x
hn

)
∑n
i=1K

(
Xi−x
hn

) (3.2)

where K(Xi − x) = Kh1(Xi1 − x1)× . . .×Khp(Xip − xp) for some choices of bandwidth (h1, . . . , hp). Again,
we choose a triweight and a Gaussian kernel function.

Table 8 shows that the performance of the empirical likelihood method results in lower IMSE values than those
yielded by the conditional method of Levi and Craiu (2018), but in larger IMSE values than those obtained with the
methods based on GPs and splines. In addition, the implementation of the empirical likelihood approach is compu-
tationally intensive, and it requires a limited number of covariates. Finally, as for Section 3.1, the performance of
the method based on the empirical likelihood computed on the linearised model is the worst amongst the analysed
methods.

Here we remind that the approaches based on GPs and Bayesian splines require replications for each com-
bination of covariate levels, while the semi-parametric approach of Levi and Craiu (2018) and the approaches
based on the empirical likelihood can be applied when no replications are available. However, the semi-parametric
conditional approach relies on the selection of the copula family (see Table 7).

4 Real Data Examples
We now apply the methods described in this work to two real data examples, the first in the area of civil engineering
and the second in astrophysics, to compare the results of the analysis performed by the different methodologies on
realistic problems.
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Clayton Frank Gumbel Gaussian
Semi-parametric (LC2018) 0.451 0.467 0.452 0.180

GP 0.002 0.002 0.003 0.004
Incons. EL - NW triweight 0.041 0.041 0.041 0.041
Incons. EL - NW Gaussian 0.042 0.042 0.041 0.041

EL - linearised model 1.057 1.061 1.061 1.001
Bayes Splines 0.009 0.009 0.009 0.009

Table 8: Integrated Mean Squared Errors (IMSE) for the nonparametric analyses of the Kendall’s τ in presence of
two covariates. “Semi-parametric (LC2018)” stands for the method proposed by Levi and Craiu (2018), while the
other acronyms can be interpreted as in Table 3.

(a) Heating load against relative compactness (b) Cooling load against relative compactness

Figure 1: Scatterplots of heating and cooling load measures (plotted on the vertical axes) against relative com-
pactness (on the horizontal axes), from the Energy Efficiency dataset. The blue lines are obtained as smoothed
conditional means, while the grey areas show the relevant confidence intervals.

4.1 Energy Efficiency

The Energy Efficiency dataset includes simulations for 12 different building architectural interior environments,
obtained with the Ecotect software (Roberts and Marsh, 2001). The buildings differ with respect to 8 features
which, combined in different ways, lead to 768 building shapes. The response variables are the heating and the
cooling loads, i.e. the amount of heat energy that would need to be added or removed to the space to maintain the
temperature in the requested range, respectively. Lower thermal loads are indicators of higher energy efficiency.
The data have been generated and analysed in Tsanas and Xifara (2012) 1.

An important feature when studying the energy efficiency of buildings is the relative compactness (RC), which
is a measure to compare different building shapes through the surface to volume ratio (Pessenlehner and Mahdavi,
2003, Ourghi, Al-Anzi and Krarti, 2007). Figure 1 shows the scatterplots of the observed data of heating and
cooling loads against RC. The blue lines indicates the smoothed conditional mean, showing that the relationship
is non-linear. We now analyse the effect on the dependence between heating and cooling loads with respect to the
RC indicator.

We applied the approaches described in Section 2 to the Energy Efficiency dataset, after estimating each
marginal nonparametrically.

Figure 2 shows the approximation of the Spearman’s ρ computed between heating and cooling loads as a
function of RC. The blue lines show the approximation obtained with the GP method illustrated in Section 2.2
and the coral lines show results of the splines method illustrated in Section 2.4. The inner dashed lines denote the

1The data are available at https://archive.ics.uci.edu/ml/datasets/Energy+efficiency
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Figure 2: Approximations of Spearman’s ρ computed between heating and cooling loads, varying as a function of
RC from the Energy Efficiency dataset, obtained with the GP method illustrated in Section 2.2 (blue lines) and
the splines method illustrated in Section 2.4 (coral lines), respectively. The inner dashed lines denote the posterior
means and the dotted lines denote the 95% credible intervals. The red points are frequentist estimates for each of
the levels of RC.

posterior means and the dotted lines denote the 95% credible intervals. The red points are frequentist estimates
for each of the levels of RC. From Figure 2 it seems that the dependence between heating and cooling loads is
strong for low and high levels of RC, respectively. For moderate levels of RC, instead, it seems that the strength of
dependence is lower. This may be due to an increased variability in the data, as shown in Figure 1. A comparison
between the method based on GPs and the method based on splines shows that the approximation obtained through
the GP method seems to better follow the frequentist estimates of Spearman’s ρ (red points in Figure 2), while the
approximation obtained through splines is less sensitive to changes in the value of the dependence. This may be
due to the limited number of points for each level of the covariate, showing that GPs is able to follow changes in
dependence with a lower number of data points.

Figure 3 shows a similar approximation of the posterior distribution of Spearman’s ρ obtained with the method
based on the empirical likelihood (EL) illustrated in Section 2.3, using the inconsistent estimator of the copula
function. The orange long-dashed lines denote the frequentist estimates obtained with the inconsistent estimator
of the copula, the coloured dashed lines denote the posterior means obtained with the EL methods and the dotted
lines denote the 95% credible intervals. Each figure represents the approximation obtained with NW weights and
triweight kernel (top left), NW weights and Gaussian kernel (top right), LL weights and triweight kernel (bottom
left), and LL weights and Gaussian kernel (bottom right). From Figure 3 it is evident that the approximation
depends on the weights and kernel chosen in the estimator of the copula function. All the approximations tend to
be concentrated around large values of dependence, however methods based on local-linear weights show a decline
of the dependence for large values of RC. Methods based on the EL for the parameters of the linearised model show
highly variable posterior approximations of the parameters, that lead to estimates of Spearman’s ρ which are very
uncertain (with credible intervals including all the parameter space) and are not included here.

The presence of several building features in the Energy Efficiency dataset allows for the application of methods
based on more than one covariate. In particular, we now focus the analysis on two covariates: RC and wall area
(WA). Table 9 shows the absolute frequency of the data for each combination of the RC and WA covariate levels.
Figure 4 shows the Sperman’s ρ posterior conditional means obtained by applying the method based on GP, with
respect to the levels of WA and RC. Dark red denotes strong dependence, while light yellow denotes weak depen-
dence levels. The dots represent the frequentist estimates of the Spearman’s ρ computed as unconditional samples
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Figure 3: Approximations of Spearman’s ρ computed between heating and cooling loads, varying as a function
of RC from the Energy Efficiency dataset, obtained with the method based on EL. The orange long-dashed lines
denote the frequentist estimates obtained with the inconsistent estimator of the copula, the coloured dashed lines
denote the posterior means obtained with the EL methods and the dotted lines denote the 95% credible intervals.
Each figure represents the approximation obtained with NW weights and triweight kernel (top left), NW weights
and Gaussian kernel (top right), LL weights and triweight kernel (bottom left), and LL weights and Gaussian kernel
(bottom right).
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Wall Area
245.0 269.5 294.0 318.5 343.0 367.5 416.5

0.62 64
0.64 64
0.66 64
0.69 64
0.71 64

Relative 0.74 64
Compactness 0.76 64

0.79 64
0.82 64
0.86 64
0.90 64
0.98 64

Table 9: Frequency table of Relative Compactness (on the rows) and Wall Area (on the columns) from the Energy
Efficiency dataset.

for the observations with that particular combination of the covariate levels. Blue dots denote positive ρs and green
dots denote negative ρs. The size of the dots represent the scaled absolute value of the estimates.

Due to the data setting, as illustrated in Table 9, the implementation of the Bayesian splines is made more
difficult for the limited amount of data points for each of the few observed combinations of covariates and the
method does not converge. Similarly, the EL computed on the multivariate versions of the NW or LL weights tends
to perform poorly, with many weights being close or equal to zero, which influences the overall approximation of
the likelihood function.

In conclusion, in this example the only method applicable with two covariates is the one based on GPs amongst
the methods presented in this work. However, it is clear that, as the number of covariates (or the number of levels
in each covariate) increases, the method would require an increasing number of observations, and this reduces the
applicability in high-dimensional settings.

4.2 MAGIC Gamma Telescope

The Cherenkov gamma telescope observes high energy gamma rays, detecting the radiation emitted by charged
particles produced inside electromagnetic showers. Photons are collected in patterns forming the shower image
and it is necessary to discriminate between the image caused by primary gamma rays and the one caused by other
cosmic rays. Images are usually ellipses and their features, in terms of measures associated with the long and short
axes, help to discriminate amongst images.

The data used in this Section are simulations of ellipses parameters generated by the Monte Carlo program
Corsika (Heck et al., 1998) to simulate registrations of high energy gamma particles in a Cherenkov gamma tele-
scope, called MAGIC (Major Atmospheric Gamma Imaging Cherenkov) telescope located on the Canary islands.
For a full description of the dataset and the evaluation of the performance of several classification methods applied
to the data, the reader is referred to Bock et al. (2004) and Dvořák and Savickỳ (2007) 2. The dependence between
the MAGIC Gamma Telescope variables was analysed by Czado (2019) and by Nagler and Czado (2016), who
pointed out the uncommon characteristics of the dependence structure between some of the variables, which do
not correspond to any parametric copula families. In particular, the dependence between the variables Length
(length of the major axis of the ellipse, in mm) and M3Long (third root of the third moment along the major axis,
in mm) is rather peculiar, as confirmed by the empirical normalized contour plot depicted in the bottom left panel
of Figure 5.

2The data are available at https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope
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Figure 4: Estimation of Sperman’s ρ, with respect to the levels of WA (vertical axis) and RC (horizontal axis), for
the Energy Efficiency dataset. Different colours denote the Sperman’s ρ posterior conditional mean levels obtained
by applying the GP method. Dark red denotes strong dependence, while light yellow denotes weak dependence
levels. The dots represent the frequentist estimates of the Spearman’s ρ computed as unconditional samples for the
observations with that particular combination of the covariate levels. Blue dots denote positive ρs and green dots
denote negative ρs. The size of the dots represent the scaled absolute value of the estimates.
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Figure 5: Empirical normalized contour plot of the variables Length and M3Long (bottom left panel) from
the MAGIC Gamma Telescope dataset; scatterplot and correlation between the variables (top right panel); his-
tograms of Length (top left panel) and M3Long (bottom right panel), after transforming the variables into
pseudo-observations.
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Here we analyse how the dependence between Length and M3Long, measured by Spearman’s ρ, varies with
respect to the variables: class (which has two levels: gamma rays or background noise), Width (the length of
the minor axis of the ellipse in mm) and Size (the 10-log of the sum of the content of all pixels in the image).

Figure 6 shows the approximation of the posterior mean and credible intervals of the Spearman’s ρ between
Length and M3Long with respect to Width and Size, split by class, obtained with the GP and the splines
methods. The blue lines show the results obtained with the GP method, while the coral lines show the results
obtained with the splines method. The inner dashed lines denote the posterior means and the dotted lines denote the
95% credible intervals. Red dots depict the frequentist estimates of the unconditional Spearman’s ρ for observations
belonging to the specific levels of the covariates. Similarly to the example in Section 4.1, splines tend to excessively
smooth out the relationship between the dependence and the covariates, while the GPs better follow the data. Figure
6 also shows that the dependence structure among the recorded images measurements shows different patterns for
gamma rays and background noise and can be used for discriminating between these two data classes.

Figure 7 shows the posterior approximations of Spearman’s ρ between Length and M3Long with respect to
Width and Size, split by class, calculated with the method based on the EL, with the inconsistent estimator of
the copula function using: NW weights with triweigth kernel (blue), NW weights with Gaussian kernel (orange),
LL weights with triweight kernel (green), LL weights with Gaussian kernel (purple). The inner dashed lines denote
the posterior means and the dotted lines denote the 95% credible intervals. Red dots depict the frequentist estimates
of the unconditional Spearman’s ρ for observations belonging to the specific levels of the covariate. Similarly to the
previous examples, the approximation strongly depends on the definition of the weights and the kernel functions
within the weights, and the uncertainty associated with the estimates is larger than that obtained with methods
based on splines or GP. Moreover, the computational cost is large, where for some approximations most of the
weights describing the EL associated with different values of the functional are zero or close to zero and it is not
possible to obtain accurate approximations (this is the reason why some of the estimates are not shown in the
plots). In general, non linear functions seem to be less well approximated than linear functions, especially if some
areas of the covariate spaces are less represented.

5 Conclusions
In this work, we have analysed three main methodologies to approximate the posterior distribution of functionals of
the dependence: Gaussian processes, methods based on the empirical likelihood, and methods based on Bayesian
splines.

We have compared the methods in terms of approximation error and precision of the estimates.

The main advantage of all these methods is that they avoid the selection of the copula family. We have shown
in practical examples that the selection of the copula function is not an easy task. In particular, when the functional
of the dependence is influenced by covariates, two main difficulties arise: the number of observations for each level
of the covariates can be too limited to properly select the model and the structure of the dependence can in practice
change with the level of the covariate.

Non-linear estimation procedures (like Gaussian processes and Bayesian splines) benefit from being flexible
enough to adequately fit the relationship between the dependence and covariates, however they need several obser-
vations for each level of the covariates to define a noisy version of the functionals to be estimated. Such requirement
can be limiting in applied contexts either because there could be only one observation for each level or because the
covariate is continuous. In the latter case, groups of covariate values can be combined into discrete levels. In any
case, these methods can be implemented with a limited number of covariates.

Methods based on the empirical likelihood, despite not needing replications for each covariate level, on the
other hand show higher approximation errors. When using an inconsistent estimator of the copula function, the
approximation seems to strongly depend on the choice of the weights and the approximation error is larger than
GP- or splines-based methods. On the other hand, when using a linearised model of the functional through a
Taylor’s expansion, the uncertanty increases so that inference is not meaningful.
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(a) (b)

(c) (d)

Figure 6: Posterior approximations of Spearman’s ρ between Length and M3Long as a function of Width (top
plots) and Size (bottom plots), for the observations classified as gamma rays (left plots) and background noise
(right plots), as defined by class. The blue lines show the results obtained with the GP method, while the coral
lines show the results obtained with the splines method. The inner dashed lines denote the posterior means and
the dotted lines denote the 95% credible intervals. Red dots depict the frequentist estimates of the unconditional
Spearman’s ρ for observations belonging to the specific levels of the covariates.
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(a) (b)

(c) (d)

Figure 7: Posterior approximations of Spearman’s ρ between Length and M3Long as a function of Width (top
plots) and Size (bottom plots), for the observations classified as gamma rays (left plots) and background noise
(right plots), as defined by class. The lines show the results obtained with the methods based on the EL using:
NW weights with triweigth kernel (blue), NW weights with Gaussian kernel (orange), LL weights with triweight
kernel (green), LL weights with Gaussian kernel (purple). The inner dashed lines denote the posterior means and
the dotted lines denote the 95% credible intervals. Red dots depict the frequentist estimates of the unconditional
Spearman’s ρ for observations belonging to the specific levels of the covariate.
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