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THE GALACTIC MAGNETIC FIELD

by
B. J. Brett
ABSTRACT

The magnetic field of the Galaxy is investigated by spherical
harmonic analysis of Faraday rotation measures of extragalactic
sources and interstellar polarization measurements. Two methods of
analysis are used. Initially, these are campared on synthetic data
sets, and some problems illustrated.

Faraday rotation measures of extragalactic radio sources are taken
primarily fraom a recent catalogue (Simard-Normandin, Kronberg, and
Button, 198l1). These show certain trends with position in the sky,
sanewhat disrupted by randam effects. A recently developed inverse
theory method of spherical harmonic analysis gave an interesting
quantitative indication of these trends, although some problems of
analysis remain. A sharp positive peak in value of rotation
measures is shown in the region of the North Polar Spur, reaching
300 rad m-z. Negative values are found in the galactic equator
between ¢ = 70° and 160°, reaching -300 rad m 2. Positive values
up to 200 rad m-2 are found along the galactic equator between £ =
170° and 330°. The reversal at €= 70°, b = 0°, is sharp and may
be associated with the North Polar Spur. First order spherical
harmonics indicate that a longitudinal field in the plane of the
Galaxy appears to run fram = 99°.

Measurements of polarization of starlight (Axon and Ellis, 1976)
have been difficult to analyse using these methods. Further

methods of inverse theory may give better results.

Models of the field are discussed. Some models of Faraday rotation
of extragalactic sources due to a local longitudinal field affected
by systematic variations in electron density are proposed. One of
these is briefly investigated. Fram this investication it seems
unlikely that variations in electron density due to enhancement in

the local spiral arm have much effect on the rotation measures.
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CHAPTER 1

THE GALACTIC MAGNETIC FIELD

1.1. Intrcduction

A weak magnetic field threads the partly-ionized gas of the
interstellar medium of the Galaxy, varying in intensity, -direction
and regularity. The methods of observation of the field, results
of measurements, and theories of the characteristics of the
magnetic field and its role in the Galaxy, are reviewed by Heiles
(1976) and Verschuur (1979). Thamson (1981) gives detailed

discussions of several methods of evaluating the field.

The role of the galactic magnetic field in large-scale and small-

scale physical processes in the Galaxy is not well understood. It
is important for further progress in galactic research to have more
information about the magnitude and morphology of the magnetic
field in nearby and distant parts of the Galaxy. The overall
purpose of the work described in this thesis is to investigate the
large-scale features of the magnetic field within a few kiloparsecs
of the Sun. A brief report of preliminary results has already been

published (Brett, 1985, in Appendix B).

Distant magnetic fields can be detected by several methcds.

Linearly peolarized radiation passing through thermal electrons in a



magnetic field suffers Faraday rotation, twisting the angle of
polarization. High speed electrons spiralling arocund the lines of
force of the magnetic field emit linearly polarized radio waves by
the synchrotron  process. Interstellar dust grains with
paramagnetic properties are aligned by the local magnetic field,
and partly polarize the beams of starlight passing through them.
Characteristic spectral lines emitted by the excitation of atamic
hydrogen undergo Zeeman splitting in the presence of a magnetic
field. Some cloud filaments seen in the interstellar medium are
aligned with the local magnetic fields. These methods of detection
and techniques of measuring the direction and intensity of the

field will be discussed in more detail in Section 1.3.

Investigation of the galactic magnetic field has shown that the
strength of the field is of the order of a few uG (Verschuur,
1979). This is made up of regular and irreqular components,
thought to be of approximately equal magnitude (Thomson, 1981;
Phillipps et al, 198la). The regular component is one which
changes only slowly on a scale of kpc, the irregular component
varies over distances of 10 to 70 pc (Thomson, 198l; Spoelstra,
1984). The reqular camponent is largely parallel to the plane of
the Galaxy. It may run along the local spiral arm, or toroidally
around the centre of the Galaxy (Simard-Normandin and Kronberg,
1980; Sofue and Fujimoto, 1983; Vallee, 1984), as predicted by the
dynamics and magnetohydrodynamics of the Galaxy (Piddington, 1972;
Roberts and Yuan, 1970; Parker, 1979; Sawa and Fujimoto, 1980;

Zeldovich et al, 1983).



Cbservations of the magnetic field in other spiral galaxies are
relevant to this investigation. They are not yet conclusive (Sofue
et al, 1980; Beck, 1982; Sofue et al, 1985; Vallee, 1986). However
it seems likely that the field in other galaxies are in same case
bi-svmmetric open spirals and in others toroidal. It 1is
particularly difficult to determine the shape of the magnetic
field, like other large-scale features of the Galaxy, fram the
position of the Sun in the disk. As with features such as the
spiral appearance of the disk, informaticn about our Galaxy and

about other galaxies camplement each other.

1.2. The Interstellar Medium

The interstellar medium of the Galaxy consists of hot gas, cool
gas, dust grains, and dense clouds, confined to the disk of the
Galaxy by gravity, and pervaded by cosmic rays, electramagnetic
radiation and the electramagnetic field (McKee and Ostriker, 1977;
Spitzer, 1978; Dyson and Williams, 1980). Supernovae explode in
the medium, sweeping out a bubble around them, with a shell of
swept up material. Stellar winds may also form shells (Weaver et
al, 1977). Gas and dust are often blown out of the disk of the

Galaxy into the halo in a fountain effect (Bregman, 1980).

Stars, dust and gas move around the Galaxy in orbits determined by
gravity. The angular speed of rotation is greatest at the centre
of the Galaxy, and decreases with the distance from the centre.

The density wave theory of spiral structure proposes that the



pattern of orbits form spiral density waves, where stars, dust and
gas are temporarily concentrated in the gravity well (Lin and Shu,
1964). Star formation occurs in sgpiral strips in the disks of
spiral galaxies. A shock associated with the spiral density wave
is supposed to praomote formation of stars (Roberts and Yuan, 1970;
Lin and Bertin, 1985). The local magnetic field is amplified by
the shock (Parker, 1979) and is thought to have a crucial role in
star formation (Davies, 198l; Elmegreen, 1982). This role may be
the formation of molecular clouds and supporting them against
gravity, encouraging the formation of stars at a rate at which -
spiral features appear and persist in grand design spiral arms and
in spurs. However the action of the magnetic field may vary
according to the conditions prevailing in different clouds

(Zeldovich et al, 1985).

The behaviour of magnetic fields in the context of astrophysics is
described by Parker (1979) and Zeldovich et al (1983). Here
electric and magnetic fields cannot be considered cone as cause and
one as effect, as in a laboratory experiment where an electric
current in a wire sets up a magnetic field. A magnetic field in an
ionized gas 1is accampanied by an electric current, and this is
opposed by the resistivity of the gas. The magnetic field decays
in driving the current. The time taken to decay is proportional to
the capacity of the material to carry a current, and is equal to

{3?c/c? where o is the electrical conductivity in e.s.u., { is the
characteristic dimension of the body of gas in am, and ¢ is the

speed of light in am sec™! (Parker, 1979).



In the gas in the disk of the Galaxy, {=200 pc roughly, and the
electrical conductivity of the intercloud medium is at least

1011 e.s.u. (Parker, 1979). The magnetic relaxation time is

therefore about 1024 years, considerably longer than the estimated
age of the Galaxy, which is 1010 years. The kinetic energy of the
gas far exceeds the magnetic energy of the MG field (Spitzer,
1968). Consequently the dynamics of the medium are daminated by
the motion of the gas, which drags the magnetic field along with
it, and so this is described as the 'frozen-in' field. There is,
however, a tendency for the magnetic field lines in the plane of
the Galaxy to expand out of the plane under their own pressure and
the pressure of cosmic rays, leading to a revised time of decay of
108 years (Parker, 1979). It is still tempting to suppose that the

present interstellar field is a relic of the primordial magnetic

field existing in the material fram which the Galaxy formed.

The theorv describing forces and motion in the coupled gaseous and
magnetic fluid is magnetchydodynamics, developed particularly in
investigation of the surface of the Sun, where the magnetic
relaxation time is 300 years. It is this theory that shows that
the balance between the weight of the interstellar gas and the
pressure of the magnetic field and the cosmic rays is not stable
(Parker, 1966, 1979). The magnetic field lines tend to buckle, the
gas collecting in dense pockets, anchoring the field lines, which
in between the pockets tend to bulge outwards (Parker, 1979). The
dense clouds contain a condensed magnetic field and this has been
measured by means of Zeeman splitting, for example bv Davies

(1981). The balance will be upset by the passace of a shock wave



and dense clouds will be formed supported by the condensed field
(Mouschovias, 1976). Star formation proceeds by further
fragmentation and 1is prowted by stellar winds and supernova
explosions fram the earlier stars. There is still same controversy
over whether the spiral shock wave is needed to set this process in

motion (Gerola and Seiden, 1978; Seiden, 1985; Shu, 1985).

A primordial field is destroyved by diffusion and dissipation, but
it can be amplified by turbulent diffusion. Parker (1979)
considers that amplification by turbulent diffusion is the only
acceptable explanation of the existence of the c¢bserved
astrophysical magnetic fields. The magnetohydrodynamical theory of
turbulent diffusion of magnetic fluids is extremely camplex., See,
for example, Moffatt (1978) and Parker (1979). Amplification of
the field is efficient and Parker (1979) suggests that the observed
value é)f 3 /UG for the intensity of the galactic magnetic field is
due to limitation of the field by magnetic buoyancy and suppression
of interstellar turbulence by magnetic stresses. The generation of
the magnetic field by differential rotation and small scale
turbulence forms a galactic dynamo. This is treated by Stix
(1975}, Moffatt (1978), Parker (1979), Zeldovich et al (1983), and
Ruzmaikin et al (1985). Such astrophysical dynamos operate in
different periodic modes, involving increasing numbers of reversals
in the generated field. The real dynamos tend to operate in low

modes (Parker, 1979).

Parker (1979) described the mode which may operate in the Galaxy,

illustrated in Fiqure 1.1. The field is daminated by a torocidal
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Figure 1.1 Magnetic field lines in the lowest even mode of the
galactic dynamo (sketch following Parker, 1979). x is the direction
of the centre of the Galaxy, y is the direction of rotation.

The continuous lines show the field due to the gas flow.

The broken lines show the resulting large-scale circulation.



camponent, but is regenerated by turbulent eddies. These always
rotate in the same sense because of galactic rotation, and cause
the circulation shown, above and below the plane. Away from the
plane, the circulating field diffuses into the halo of the Galaxy.
This leaves behind the part circulating towards the centre of the
Galaxy along the centre of the plane, which is sheared by
differential rotation and augments the toroidal component. The
toroidal field may be reversed on a scale of kiloparsecs. This
mode of galactic dynamo was chosen by Parker (1979) on the basis of
observations of Faraday rotation in pulsars, which show the field
taking the same direction above and below the plane. In the next
mode of dynamo the magnetic field reverses its direction above and
below the plane of the Galaxy, and its physical interpretation

relies on the isolation of the disk of the Galaxy from the halo.

A galactic dynamo relying ‘on more camplex assumptions is. proposed
by Sawa and Fujimoto (1980). It is inspired by the work of Tosa
and Fujimoto (1978), Sofue et al (1980) Simard-Normandin and
Kronberg (1980) and Thamson and Nelson (1980). These all suggest
that the magnetic fields in M51, M8l, and M33 and in our Galaxy,
follow the spiral arms into the centre of the disk and out again
and are open to intergalactic space. A model of a dynamo has been
developed by Sawa and Fujimoto (1980} which supports the field
lines in the disk in a spiral configquration without their being
twisted into a ring by the shearing action of differential
rotation. In this model, the less dense halo is a reservoir of the
magnetic field configuration for the disk. The magnetic field and

gas of the disk move out across the disk by turbulence, diffusing



into the halo before becoming sheared into a toroidal shape. The
haloc has a bisymmetric spiral field, preserved by the pattern of
rotation of the gas in the halo. The gas diffusing ocut of the disk
relaxes in the halo, eventually drifting in toward the centre of
the Galaxy to replenish the field in the disk. Ruzmaikin et al
(1985) suggest that the magnetic field may have a bisymmetric
pattern in outer regions, but in the inner regions where
differential rotation dominates the motion of the gas, the

configuration will be toroidal.

Toroidal fields have been observed in external galaxies (Beck,
1982). Beck (1983) and Vallee (1986) discuss the magnetic fields
in several galaxies, and both emphasise the need for Sfurther
investigations. Vallee (1986) speculates that spiral galaxies with
ring (toroidal) magnetism have a larger mass of HI gas, and have a
limited interaction with other galaxies. Spiral galaxies with
spiral magnetic fields, conversely, are likely to have less HI gas

and a major interaction with another galaxy.

1.3. Observing the Magnetic Field

The galactic magnetic field can be detected, and its direction and
intensity measured, by the methods mentioned in Section 1.1.
However, in all of these methods, except measurements of the Zeeman
effect, other factors have a great deal of influence on the

observations.



Faraday rotation occurs when electromagnetic radiation passes
through thermal electrons in a magnetic field. The angle of
polarization is rotated by the medium. The effect varies with the
square of the wavelength of the radiation. For suitable sources,
measurements at several radio frequencies yield a rotation measure
which is proportional to the product of the electron density and
the line of sight component of the magnetic field, integrated over
the whole length of the line of sight to the source. This is
described in more detail in Chapter 4. Faraday rotation is biased
to give more Qeight to the magnetic field in regions where the
electron density is high. It is also limited to positions in the

sky where there are radio sources to probe the intervening medium.

Rotation measures of pulsars can be found fairly easily, and
estimates of the electron density along the line of sight are
available independently of the rotation measure. Pulsars are found
close to the plane of the interstellar medium, which is important
to determination of the average magnetic field from the rotation
measure. Distances to the pulsars can be estimated. Manchester
(1974) analysed the rotation measures of pulsars available at that
time. An important model for analysis of data relevant to the
magnetic field is a longitudinal local field. This is used to give
the direction of the field. Manchester (1974) found that the
direction of the regular component of the field was < =94°:11° (In
this equation and in the rest of this work, { refers to galactic

longitude and b to galactic latitude )

More recently, Thomson and Nelson (1980) have carried out an
improved analysis on a larger data set, and obtain a field

direction of {=107°+7°. They find the pattern of the residuals

10



(the rotation measures unexplained by the model) unsatisfactory and
also fit a model of a longitudinal field including a reversal in
field direction toward the centre of Galaxy. The residuals of the
latter model are more acceptable. Using it they find the direction
of the field to be {=74°t10°, the intensity of the regular
camponent of the field to be 3.520.3 MG, and the perpendicular

distance to the reversal to be 170+90 pc.

It is more difficult to cobtain rotation measures of the Faradav
rotation of extré-galactic sources, and more difficult to analyse
the results. There are many sources of this kind, well distributed
around the sky, so their analysis can be very rewarding. There is
difficulty in obtaining the rotation measures because the sources
are less consistently polarized. Material in the source and the
intervening intergalactic medium add extra Faraday rctation. The
early'determinations of rotation measures were hampered by the lack
of sufficient measurements of polarization. They can be determined
more reliably now that polarization measurements are available in
larger numbers. Same recent developments are reviewed by Seymour

(1984).

Seymour (1.967) carried out a spherical harmonic analysis of
rotation measures of extragalactic sources found by Gardner and
Davies (1966). He found that the magnetic field was directed
towards {=91°+1° in the plane of the Galaxy. He used 65 rotation
measures. Wright (1973) calculated the rotation measures of 354
sources, and then found the uniform linear camponent of the

galactic magnetic field to be in the direction {=94°13°,

11



Determination and analysis o©f rotation measures by .Vallee and
Kronberg (1975) has been superseded by the more recent work of
Simard-Normandin et al (198l), whose catalogue of rotation measures
have been calculated from many published polarization measurements,
Simard-Normandin and Kronbergy (1980) analyse the rotation measures
in this catalogue, however they do not consider the longitudinal
field model, but 1lock at models of spiral and toroidal

galactic-scale fields.

Tabara and Inocue {1980) have published a large catalogue of‘
measurements of linear polarization of radio sources, including
rotation measures they have calculated, with indications of their
quality. Many of these are used by Thamson and Nelson (1982) who
fit them to a longitudinal model containing the rewversal found with
the pulsar rotation measures. Thamson and Nelson (1982) find the
direction of the field to be €=71°#13°., Inoue and Tabara (1981)
look at the galactic mggnetic field using rotation measures from
their catalogue. They find the longitudinal local field to run in
the direction {=100°110°, and do not find evidence fraom these
extragalactic sources of a reversal in the field within 3 kpc.
Sofue and Fujimoto (1983) also analysed rotation measures from this
cataloque, by smoothing the trends in the rotation measures, and
caomparing them with the rotation measures predicted by a
bisymmetric spiral model of the magnetic field in the Galaxy. They
observe a maximum in rotation measures at {=56° which they ascribe
to the Sagittarius arm, and a minimum of negative rotation measures

at {=90°, ascribing this to the longitudinal local field.
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Faraday rotation and the modelling of rotation measures predicted
by a confiquration of the field have proved to be the most fruitful
method of investigating the galactic magnetic field. In the case
of extragalactic radio sources, there are problems involved in
estimating the rotation measures, as will be described, and other
contributions to the rotation measure, once found. Further
observations and refinement of calculation techniques can improve

the situation.

The galactic background emission, also called the radic continuum
emission, is due to the synchrotron process. Relativistic
electrons interact with interstellar magnetic field lines, or with
the more campressed magnetic lines of force in a superncva remmant.
Radiation emitted by the synchrotron process is highly linearly
polarized, although it may be depolarized by Faraday effects, or
the c.:onfusion of different emitting regions along the line of
sight. The intensity of the radiation emitted, and the angle of
pelarization, contain information about the magnetic field in that
region. The amount of Faraday rotation occurring along the line of
sight depends on the thermal electrons and magnetic fields along

the line of sight.

Surveys of the radico continuum emission in large areas of the sky
show a high intensity in the plane of the Galaxy. Occasicnally a
ridge of high intensity reaches cut of the plane, and such ridges
are called the galactic spurs. They can be traced along ridges of
lowel" intensity to form small circles in the sky, as shown, for

example, by Berkhuijsen (1971). Also known as galactic loops, they

13



are identified with local supernova remnants (Berkhuijsen et al,
1971; Spoelstra, 1972). Cosmic ray electrons, or relativistic
electrons fram the supernova remmant, are interacting with the
magnetic field concentrated in the shell swept up by the supernova

explosicn.

Much of the radio continuum emission fram the disk of the Galaxy is
thought to came from distant supernova remnants. Some comes from
nearby regions (including the locps), and here patterns can be seen
in the polarization of the radio waves. The linear polarization of
synchrotron emission is perpendicular to the local magnetic field,
although it may be rotated along the line of sight by Faraday
rotation. In small regions where the magnetic field is highly
organised, a lot of information can be recovered fram the
radio continuum emission. Spoelstra (1972) was able to evaluate
models of the structure of Loop I, the North Polar Spur, and Loop

II, the Cetus Arc, as supernova remants.

Wilkinscn and Smith (1974) mapped the Faraday rotation of galactic
synchrotron emission over a large region of the sky, between {=100°
and {=180°, and between b=+40° and b=-40°, 1In this area the
emitting region is a thin sheet (Heiles, 1976) at a distance of
between 140 and 400 pc. Depolarization is least for such a thin
emitting region. Wilkinson and Smith (1974) found that the
magnetic field and electron density between the emitting region and
the Sun were quite variable, fluctuating on a scale length of
between 10 and 50 pc. Spoelstra (1984) finds that the continuum is

polarized by features at an average distance of 450 pc, and that

14



the magnetic field and electron density vary on a typical scale of

10 to 75 pc.

2nalysis of the all-sky radio continuum map of Haslam et al (1981la,
1981b), by Phillips et al (198l), leads to same interesting
conclusions. They are able to unfold the total emission by using
logarithmic spiral sections of the plane. They select a spiral
pitch angle of 12°. Fram their results they suggest that the Sun
is between major amms, and that the Galactic magnetic field is made
uf:) of a 3/u.G reqular camponent, and a 3 MG irregular component.
This work apart, the radio continuum is most useful for detailed
inspection of small regions of the key. The depth of the region
emitting polarized radiation is variable, and so is the amount of
polarization. The polarization of the radio continuum emission may
have important information about the detailed behaviour of the

Galactic magnetic field.

Starlight shows a small amount of 1linear polarization, the
fractional intensity of the polarized component being typically one
or two per cent. The amount of polarization correlates with the
amount of reddening and is caused by the same thing, the
interstellar dust. Davis and Greenstein (1951) proposed a
mechanism whereby elongated dust grains became aligned spinning in
the interstellar magnetic field, and preferentially extinguish
light polarized perpendicular to the field. This interstellar
polarization is often plotted on 'E-vector' maps, which show the
degree of polarization and the orientation of maximum polarization.

The most recent catalogque of measurements of stellar polarization

15



was campiled by Axon and Ellis (1976). They have plotted E-vector
maps at different distance ranges. These show the typical features
of plots of interstellar polarization, as close as 100 pc to the

Sun.

In many places along the galactic plane the polarization angle of
starlight is parallel to the plane, showing that the magnetic fielad
is parallel to the plane. This is most noticeable at {=140°, and
180° away fram this position, at {=320°, It seems as if the field
direction is {=50°, in contrast to the information - fram
extragalactic sources. Numerical analysis leads to the same
result, a field direction of about {=50_° (Ellis and Axon, 1978).
It now seems likely that local anomalies and irregular distribution
of dust lead to this misleading result. Inoue and Tabara (1981)
found that away fram the galactic plane, and away fram the North
Polar Spur, interstellar polarization near the South galactic pole
shows a direction of ‘{=100°, a figure more in line with Faraday

rotation results.

Magnetic fields in HI clouds can be found fram the Zeeman splitting
of the 21 am spectral line. Unfortunately the splitting is small,
and has proved difficult and time consuming to detect (Verschuur,
1979). Recent detections are described by Davies (1981) who shows
that more dense clouds have stronger magnetic fields, and that the
field direction is maintained during collapse of the gas clouds
under their own gravity, or the magnetohydrodynamical instability

described by Parker (1966, 1979).
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Other scurces of information about the magnetic field of the
Galaxy, and its role in galactic dynamics on large and small
scales, are the aligmment of filamentary clouds along the local
field, and flux of cosmic rays measured fram the Earth. The
information about the field in these sources is very indirect, and

relies on information already found by other methods.

1.4. Analysis and Modelling

Mathematical models are an appropriate method of investigating the
shape of the galactic magnetic field. On the small scale, the
behaviour of gas and field in supernova explosions, superncva
remnants, interstellar clouds, and in density wave shocks can be
mocdelled, and compared with the observations of .va.rious kinds, A
model of the magnetic field in the shell of a supernova remmant was
devised by Van der Laan (1962), and used by Spoelstra (1972) on
synchrotron emission fram the galactic loops. On the large scale
galactic and local neighbourhood models may be developed and
caompared with the measurements of Faraday rotation of extragalactic
sources and pulsars, and polarization of starlight, as for example

Inoue and Tabara (1981) have done.

The best parameters for the mcdel, such as the direction of the
longitudinal field, are found from the measurements by numerical
methods such as least squares fitting. The models can be evaluated
by inspection of the residuals (the values left when the model

estimates of measurements are subtracted fram the actual

17



measurements) for remaining large-scale trends, or by the
chi-square test. Some estimate of the original error distribution
in the measurements is needed for this test, it can then give the
likelihood of that particular weighted sum of squares of residuals
being found if the model were true. Clear and appropriate use of
these methods can be found in Thomson (198l1), or Thomson and Nelson
{1980, 1982}. Different models can be compared with each other

using residuals by the F-test,

In most of the measurements, it is useful to have methods of
looking at the trends in the data, in order to suggest useful
directions for modelling, and for quantitative and qualitative
methods of evaluating models. One way of doing this is looking at
some representation of the measurements, such as the diagrams of
the directions of the polarization wvectors of stars by Mathewson
and Ford (1970), and, following them, of Axon and Ellis (1976).
Rotation measures are usually shown by plotting symbols
representing their sign and size, as in work by Wright (1973),
Simard-Normandin et al (198l), Sofue and Fujimoto (1981), Thomson
{1981), and many others. These are extremely useful, however they
show measurements that are inaccurate, fluctuating with random
variations. Consequently, smoothed maps have been developed to

show significant trends in the data.

Seymour (1965, 1966, 1967) used spherical harmonic analysis to
quantify the trends in Faraday rotation measures for extragalactic
radio sources, interstellar polarization and polarization of

synchrotron radiation fraom the galaxy. More recently, Ellis and
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Axon (1978) and Tabara and Inoue (198l) averaged the interstellar
polarization measurements in distance and direction bins. Kronberg
and Simard-Normandin (1980) averaged the rotation measures of
extragalactic sources fram their catalogue (Sinaéd—Normandin et al,
1981), by finding the average of all scurces in a particular solid
angle. Sofue and Fujimoto (198l) do the same with the catalogue of
Tabara and Inocue (1980), using a Gaussian beam to weight the

sources towards the centre of the solid angle.

Spherical harmonic analysis is a powerful and appropriate method of
looking at trends in data scattered over the surface of a sphere.
It is less useful when the data is very poorly distributed
(although recent techniques allow for this). It is not appropriate
when the underlying trends are not expected to vary smoothly. The
pulsar rotation measures, for example, are not well distributed
about the sky (Lyne et al, 1585). Different pulsars, from their
position in the galaxy, sample different depths of the interstellar
medium, so the underlying trends cannot be expected to be smooth.
The results of a spherical harmonic analysis of pulsar rotation
measures oould not be compared with a galactic magnetic field
model. However, the rotation measures of extragalactic sources are
good material for spherical harmonic analysis. Interstellar
polarization measurements of stars divided into distance groups are
also appropriate. Synchrotron radiation now seems more suitable to
investigation of limited areas. This is because depolarization of
measurements by Faraday rotation or by the coincidence of several
emitting regions (or one large one) causes confusion, and emission

" from thin sheets is the best subject.
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1.5. Aims

The aims of this work are to carry out spherical harmonic analysis
of Faraday rotation measures of extragalactic sources, and of
interstellar polarization measurements in order to quantify
significant large-scale trends in these variables, and to relate
them to the galactic magnetic field, using them to suggest and

evaluate models and ideas about the field.
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CHAPTER 2

MATHEMATICAL METHODS I

2.1, Spherical Harmonic Analysis

The best introduction to spherical harmonic functions and spherical
harmonic analysis is the following passage by Kaula (1967}

Spherical harmonics arise in a physical context as solutions
of Laplace's equation in spherical co-ordinates. Their
property of orthogonality, ... suggests, however, that the
surface spherical harmonics....constitute the natural spectral
representation for any function that varies over the surface
of the sphere, regardless of whether the function has anything
to do with Laplace's equation. Used in this manner, spherical
harmonics are a device for studying wvariations over a
spherical surface analogous to Fourier series for variations
in time.

The spherical functions S': (&) used throughout are the Schmidt
quasi - normalised functions, described and recamended by Chapman
and Bartels (1951). n 1is called the degree and is zero or a
positive integer. m is called the order and is an integer less
than or equal to n. The i\n(e) are numerical multiples of the
associated Legendre functions Pn m(e) . Examples of these are

r

P1 1(6)=si_ne, P3 1(6)=3/4 sin & (5cos26 +3) .

The surface spherical harmonics are functions of §, colatitude, and

¢, longitude, and take the form S,(0)cos m$ and S;(€)sin m¢ .

They are orthogonal over the sphere because

cos cos

j mp Sh. (e){

Swe

Sp (e){ } m'$ sing deds =0

Sin
Sphere
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unless n=n' and m=m', when the above expression is equal to 47T .
n+ |

Spherical harmonic analysis is used to model the geomagnetic field
from measurements taken at the surface of the Earth. In
geomagnetism the use of spherical harmonic functions is physically
significant (Barraclough, 1978; Whaler, 198l1) because no currents
flow between the surface of the Earth and the atmosphere when
averaged over 20 vears or more. The geamagnetic field therefore
obeys laplace's equation at the surface of the Earth, and so
spherical harmonic functions are not used simply as fitting
functions but are an appropriate way of expressing the geomagnetic

field in spherical polar co-ordinates,

Spherical harmonic analysis is also used to model the variations in
surface height of the Earth, the planets and the Moon. In this
problem the surface spherical harmonic functions are used to model

a scalar quantity, the deviation fraom a perfect sphere.

Seymour (1965, 1966, 1967, 1969) used spherical harmonics to
investigate the galactic magnetic field. He looked at trends over
the sky of observations of Faraday rotation measures of
extragalactic ' radio sources, and the measurements of the
polarization of starlight, and polarization of the galactic
background emission. In this work, spherical harmonic analysis was
used as a method of representing the cobserved data, not the field.
The galactic magnetic field does not satisfy Laplace's equation,

because currents flow in the interstellar medium. (Representations
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of the galactic magnetic field might be better expressed in
cylindrical polar co-ordinates}. If harmonic functions were used
to represent the field it would be important to include other terms
to describe the field camponent induced by currents. The terms of
such a model then would be physically significant in the same way
that spherical harmonic functions are a physically significant

model of the geamagnetic field.

Seymour (1967) analysed sets of rotation measures of extragalactic
sources, all containing less than 90 sources. He also analysed 550
measurements of stellar polarization, and selected points from
surveys of synchrotron radiation at various frequencies. The
examples from geophysics mentioned above were particularly relevant
to his work. He carried out the spherical harmonic analysis with a
canputer program which had been first used to represent the surface
of the Moon, by M.E. Davidson. The method used in the prograrﬁ had

been develcoped by Fougere (1963) on gecmagnetic data.

Faraday rotation measures give a scalar quantity at the position of
each radio source in the sky. Stellar polarization measurements
yield Stokes parameters Q and U, which can each be analysed
separately with surface spherical harmonics. The same holds for
the polarization of the galactic background emission. His methed
of analysis enabled Seymour (1967) to look at trends over the sky

in each of these gquantities separately.

Faraday rotation and interstellar polarization depend on the

galactic magnetic field and on several other factors. These
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relationships will be discussed in Chapters 4 and 5. It is
sufficient at this point to eamphasise that any underlying
dependence on large-scale properties of the interstellar medium
_{such as the galactic magnetic field) are obscured by little-known

factors which are assumed to be randam.

In addition to this problem, the data sets are not distributed very
evenly around the sky. This makes the experience of gecphysicists
particularly relevant to analysis of these data sets. Workers in
the field of gecmagnetisﬁ use spherical harmonic analysis, and the
measurements available are typically inaccurate and poorly
distributed about thev Earth's surface. Consequently the area is

rich in strategies for carrying out analysis of awkward data.

Spherical harmonic analysis is a method of smoothing data and
interpolating values between measured positions. Rotation measures
of extragalactic sources have been studied by Simard-Normandin and
Kronberg (1980) and by Sofue and Fujimoto (1983). In both cases,
the rotation measures were smoothed and interpolated by averaging
over small areas of the skv. Spherical harmonic analysis is in
principle an economical and appropriate method of averaging, able
to represent large scale and small (to choice) scale features, In
practice there are problems in using spherical harmonics which will
be described. Different methods of smoothing can be evaluated by
similar criteria, and essentially are similar problems. The wider
theory which studies the problem most generally is 'inverse theory'

and is briefly introduced in Chapter 3.
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Gubbins (1983) and Whaler (1981) have worked con the applicaticn of
inverse theory methods to spherical harmonic analysis. Their
algorithm developed in gecmagnetic field analysis goes some way to
solving some particular problems. This is introduced in Chapter 3

and will be used alongside Fougere's method as an alternative.

The mathematical expression of the problem is this:
Spherical harmonic analysis seeks the function f(6,¢) which is the
best representation of trends of the observed scalar variable over

the surface of the sphere, and where

L

4}
t@.b= 2 @R comp ] simd) Sh(O) (2a)

N=0 m=z=90Q

In equation (2a) above, aﬂ and bﬂ are constants to be determined,
and L is the degree and order at which the series of harmonics is

truncated.

Looking for the 'best representation' occupies the rest of this
chapter, and the whole of Chapter 3.

2.2. Least Squares Solution

Spherical harmonic analysis is a two-dimensional extension of
curve-fitting. The method of least squares is a well known

procedure for finding a curve which fits well to a set of points

when there are fewer parameters to the fitting curve than there are
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observed points. It relies on evaluating the misfit between the

curve and the observed data points.

It is assumed the reader is familiar with the method of least
squares. However, in this section it will be described, or
sketched, oconcisely in order to present notation and specific

information about its use with spherical harmonics.

Particular values of the co—efficients or parameters a’r’l" and br: in
equation (2a) will determine the function £(6,¢). Then £(g',¢")
will predict a value of the cbserved variable at position (8',?5') .
If d, is the cbserved value of the variable at position (ei,q>i),
the prediction error or residual error is defined to be

e,=d,-f (ei,c,bi) )

When there are fewer parameters than observed values, generally
there is no exact solution to the problem. The least squares
solution is the set of estimates of the parameters which minimizes
the sum of squares of the prediction errors. Matrices are used to

find the least squares solution in non-trivial cases.

The set of observed data consists of D measurements di at (9i,¢i) .
If the spherical harmonic series in equation (2a) above is
truncated at degree and order L, there will be P=(L+1)2
coefficients of the sort a: and bI:. These can be ordered as

[xi:} i=1,P and the spherical harmonic functions as [Si:] i=1,P.

The ‘equations of ocondition', equations {(2b) below, relate
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coefficients and harmonics to observed data. Usually they are not

all satisfied when D>P.

%051 (B, @) +. - 43,5, (6], ) +. ot s (B).4)) =4,

(2b)
XS4 (BD,4’D) +ootx S, (GD,?D) +.. .+xpsp(9D, ¢D) =dD

Or in matrix form :

where G is DxP matrix, x is a vector of length P and 4 is a vector

of length D,

Linear algebra shows that if D>P there is, generally, no exact
solution. In this case a good f(8,$) is the one which minimizes
D
the value of Ze?, hence called the least squares solution.
T :

D
> e,-2 is called the Euclidean or L, nomm of the prediction error
Tei
€--...8, Or e. It is one of several measures of goodness of fit

using the prediction error.

Use of the Euclidean norm corresponds to the assumption that the
errors affecting the data are randon and have a Gaussian
distribution about zero (Draper and Smith, 198l1). If the errors
are Gaussian, the least squares solution is the estimate of the
parameter values which maximizes the probability that the given

data set was observed if those parameters were in fact correct.
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It is often realistic to assume that the errors have a Gaussian
distribution. The Central Limit Theorem shows that when random
variables are drawn fram any particular distribution, the
distribution of their sum tends towards a Gaussian distribution as
the number drawn increases. So when errors in the data are due to
many camnparable contributions, they tend to have a Gaussian

distribution.

The question of whether a Gaussian distribution of errors is a
reasonable assumption in the cases of Faraday rotation and
interstellar polarization will be discussed in the relevant
chapters. For now it is assumed that the errors in the data are
due to effects from many sources of a similar size, and have a

Gaussian distribution.

If this assumption were wrong, other norms of the prediction error
D

could be used. Using the L., norm, or minimizing :A_——; le;_f is

1
appropriate when the noise has a wider (long tailed) distribution.
This norm is good at attaching less weight to the measurements
scattered widely from the trend, the outliers. The higher power
norms (L3 and above) are less robust to spuriocus values as they put

more weight on the largest prediction errors.
The least squares solution to the problem posed in (2b) is given in

many textbooks, for example by Menke (1984). Expressed in matrix

form it is

%= [GTG] 1 &Ta (2c)
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where g is the estimate of the parameter vector x which minimises
Zn.eg. GIG is called the normal equations matrix.

)

Jeast squares analysis was developed by .Gauss. He used it to
determine coefficients of spherical harmmonics to describe the
geamagnetic field in 1839. This method was widely used until 1960,
the data measurements were interpolated by drawing contour maps by
hand so values could be estimated for particular points reqularly
spaced in colatitude and longitude. This enabled a preliminary
harmonic analysis to be carried out, along the parallels of
colatitude, which reduced the number of the normal equations in the
final least squares analysis. With the aid of a computer, Gauss'
method is used directly to calculate 2:, without intermediate
interpolation to regularly spaced points and intermediate harmonic

analysis.

Use of the computer has generated many problems. For example there
are problems of round—off error, especially in the instability of
matrix inversion, and of determining when to truncate the series.
The need to use the computer economically and accurately has
spawned many investigations of different practical methods of least
squares analysis, and, specifically of spherical harmonic analysis.
Many algorithms for spherical harmonic analysis of the gecmagnetic
field are presented by Barraclough (1978). Further problems with
the analysis of the gecamagnetic field are posed by varying

combinations of vector measurements of the field.
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2.3. Fougere's Method

It is not easy to determine an appropriate truncation level for the
series of spherical surface harmonics. Using a very large number
of harmonics is unwieldy and may obscure trends in the data with
detailed modelling of noise. (Raising the number of parameters to
equal or exceed the number of data measurements renders the method

of least squares inappropriate).

However it is important that successive terms in the series
decrease in size substantially before the series is truncated. If
the coefficients do not converge in this way the model may be very
poor in some places where higher harmonics are needed. Convergence
in spherical harmonic coefficients is investigated by looking at
the average 'power' in coefficients of harmonics of the same

degree,

This problem was being tackled along with others in the 1960s and
1970 when the increasing use of computers made them important.
Fougere's (1963) method was an attempt to improve the least squares
solution in spherical harmonic analysis by incorporating a
statistical determination of truncation level. The statistical
method is a form of regression analysis called forward selection.

It is still in use in planetary physics.
Fougere's strateqy was taken from statistical technigques new in the

1960s. In this method a least sguares solution 1is fournd tc a

predetermined level of truncation. The importance of the
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individual independent camponents of the solution are evaluated,
and the least important ones are discarded. This usually means

that a smaller number of spherical harmonics are retained.

Fougere's method is based on the conventional least squares
soluticn found by inverting matrix GTG as in equaticen (2c). 1In
order to be able to carry out the statistical evaluation of the
camponents of the solution, he uses the method of decomposing the
matrix G by Gram-Schmidt orthogonalization into the product of a
matrix with orthogonal colums and a triangular matrix. This is a
standard method of finding the least squares sclution and is

described by Lawson and Hanson (1974).

Gram-Schmidt orthogonalization derives a set of mutually orthogonal

vectors gp,....,q, fram any linearly independent set of wvectors
Dl"""bn' These two sets of vectors span the same n—dimensional
subspace. The set 9qyr----0g, are determined by the following
procedure:

Letc_;l = h

3
S

i

q; = h., - r. g where rij =

o,
o
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Then if the bi are the colums of matrix G, and Q is the matrix
with {mutually orthogonal) columns g, and R is an upper triangular

M

matrix with elements r:.LJ

G = QR

Round-off error in the Gram—-Schmidt procedure can be minimized by a
modification described by Lawson and Hanson (1974). Fougere (1963)
originally attempted to reduce round-off errors by repeating the
orthogonalization procedure twice on each vector. He found a new
orthogonal vector 9, fram l_'1n and then resubmitted q, for
orthogonalization as if it were Dn' He also used double precision

variables in part of his camputer program.

Round—off error has not been a problem in this analvsis. Double
precision arithmetic has been used throughout. On rotation measure
data for example the Gram-Schmidt procedure was found tc give the
same solutions as the modified Gram-Schmidt procedure to 5

significant fiqures.

Formation of matrix Q is a major step towards finding the least
squares solution of the eguations of condition (2b). The matrix
form of (2b) can be rewritten as

QR = d

Now the least squares solution to the equation Qy = d can be easily
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found. It is
¢ =[o%o) s
which collapses to
g -d
because Q is made up of mutually orthogonal columns.
Then if
y = Rx
R is strictly upper triangular, so R-l exists and is easily found.
So the least squares estimate of the best set of parameters :_? is
1A

X=R§

The solution is an expansion of the data vector d in terms of the

base[t_ml,....t_ln} or the base {‘31"“'%} :

(2Q)

M

e 171

p
d = <2{ x.h. +

or

o7
I

P
v:q; + I (2e)

where r is a remainder term. It is easy to find the Yy by taking

the scalar product of d with each g, :

T d

4

O
«

:

Y=

1o,

because the g; are mutually orthogonal. This is another way of

writing the solution

9=q'd
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The y; are ccefficients of the orthogonal vectors which are
specifically calculated for each set of observations. The X;
however are coefficients of the spherical harmonic functions.
After the Y5 have been found, and before the ¥, are c;:llculated fraom
them, Fougere's method evaluates each Y statistically. This can
be done using the F-test because the y; are coefficients of an
orthogonal set of vectors. Each vector and its coefficient are
independent of all the others. The F-test provides a method of
camparing two independent models of a set of data. A complicated
model, that is one with more parameters, will fit the data better

than a simpler one.

Suppose the number of observations is D and the number of
parameters of model J is PJ. For each of the two models the

following quantity is calculated :

D

W=t 2 el
J

where ei is the ith prediction error as usual, and \7J is the number
of degrees of freedom of the Jth model (usually D—PJ) . Then the
ratio W2/W1 can be campared with tables of the F-distriction, which
described the ratio of two variances. A significance level & is
chosen, say 0.05. If the ratio wz/wl exceeds the number given in
the table, and if the errors in the data are distributed normally,
there is a less than 5% chance that model 2 was in fact worse than
model 1, This suggests that model 2 is better than model 1, taking

into account the number of parameters in each,

When the set vy have been calculated, they are tested to see which
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are significant components of the solution at a chosen significance

level & . For each Yy the quantity Vi is found, where

This is a sample variance. These are sorted in order of size, so

that Vi is the 'jth largest' :

(3)

Via? Vi i(P)

Then models are camposed which include successively more of the
components y. g, - Each model My includes the yi(j) for j=1,K, that
is to say, it includes the components corresponding to the K

largest of the Vis,
w
"k ‘% Yi) U

The residual variance of this model MK is

w
T2
W = [d % Vi(j)] A?K

The value of including this Yi(K) is tested by comparing Vi /W

{K)" 'K
with the F-distribution. If this Y3 (K) is significant, the next
model MK+1 is camposed and tested. The value K' is determined at
which the remaining Yi@) ' o Yi(p)
zero, for programming purposes). In the case that K'=P+1, all the

are set aside {(set equal to

Y; will be included.

The set yi(l) f e are used to calculate all i=1 to P of

CYi(K'-1)
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the X, . These will be the required coefficients of the spherical
harmonic functions. The set Yyreeor- Yp will have gaps (or zeros)
in various positions. However, due to orthogonalization procedure,
the XsennerXp will not have any gaps up to a certain maximum i
corresponding to the highest value of i(j) for j=1, K'-1 for which

y; was included, and after that they will be zero.

Starting with the most significant component as basic model, better
models are built up by testing whether the next most significant
camponent is a useful addition to the model already accepted.
Instead of using the camplete set of components Y; 94 to model d,
this method selects a subset which produces a better model, in the

sense of having lower variance.

The advantage of the procedure is its determination of a lower
truncation 1evél than the preselected truncation 1level of the
preliminary least squares analysis. This preselected level can be
raised, as more harmonics can be included without starting from the

beginning again.

In practice the series of coefficients of the harmonics may appear
not to decrease in value quickly or at all. Then increases in the
preselected truncation level lead to increases in the lower
truncation level determined by Fougere's method. In this case the
method doesn't go far enough in solving the problem of slow

convergence.,

It has been pointed out by Kaula (1967) that the solution cbtained
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is the least squares solution in regard to those orthogonalized
vectors (the gi) which were accepted. It is not true to say (as
this has been taken by, for example, Winch (1966) and Barraclough
(1978)), that Fougere's solution is the same as the least squares

solution once the lower truncation level has been determined. To

see this, suppose orthogonal coefficients Visee- 1w correspond to
spherical harmcnic coefficients XqyreoeorX1g and that Yg and Y10
fail the significance test. Then new spherical harmonic
coefficients Zyreceni2g will form Fougere's solution because a
camponent corresponding to Yg has been removed, changing XpreeeerXg
to zy,..... 'Zg- However y,,.....¥Y;/¥q is the least squares
solution to representation by Gyreve1Qqgs dg-

Fougere (1963, 1966a, 1966b) made strong replies to criticism of
his procedure by Leaton (1963), Malin and Leaton (1966}, and Winch
(1966) . Cne point made by his critics was that his solution was
very similar to the least squares solution, and was therefore not
very interesting. The procedure will be used on test data sets and
on astrophysical data sets, and its usefulness can be evaluated in

the light of the results of the analysis.

The data should be weighted by the estimated errors, when these are
available. These are estimates of the variance of each data
measurement. This gives more accurate observations a greater
weight in the composition of the solution. It is done by dividing
each row of the equations of condition (2b) by the square of the
error associated with the data measurement, which is equivalent to
minimizing a weighted prediction error. See Lawson and Hanson

(1974). In the F-test, the ratio of the estimated variances is
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replaced by the ratio of Xz (or chi-squared) for each model, when

2

D
X Z e%_l (2f)

=1
v\?i:'

o, is the error associated with the ith observation, and V, D,
and e, are as before. Applying this to Fougere's method, no
alteration is made to the calculation of the Vi in order to carry

out the statistical testing.

A coamputer program was written for this application of Fougere's
method to astrophysical data. It was written in FORTRAN and made
- use of routines fram the NAG {(Numerical Algorithm Group) library.
The procedure was precisely as described, except that no provision
was made for weighting the observations according tc the estimated
errors. The whole procedure is carried out in one run of the
program. Each run was given an identity number to help keep tracl-f;
of the solution, and had a predetermined truncation level of the
harmcnic series, and a significance level for the statistical

analysis.

The program was initially tested by runs on data that were
functions of spherical harmonics. When used to find the least
squares solution of various sets of data, the results were

practically identical to least squares results from an independent

program.

Modern analysts make use of the convergence to zero of the series

of coefficients as a diagnostic tool. If the series is not
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converging the representation will be poor. Truncating the series
before it converges will mean the amission of terms which have a
large contribution to make. Coefficients of the terms which are
included will be altered, attempting to make up the deficiency.
Representation will be wvery poor in same areas and specific
coefficients will change a lot with variations in data or

truncation level.

Convergence is considered in terms of the average power of all the
coefficients of harmonics of a particular degree. Suppose that
degree is N. Then the properties of spherical harmonics show that
there are N2 harmonics of a lower degree, and 2N+1 of degree N.
The average power of the coefficients of harmonics of this degree

is given by the following formula :

N
P(N) = 4T Z_ [(at:) + (br:)lj
N+ Tz

A plot of degree {ordinate) against the logarithm base 10 of the
power (abscissa) is useful in showing the important information

about convergence of the solution.

The example plot drawn in Figure 2.1 shows the 'power spectrum' of
a solution that is converging. The dashed line corresponds to the
harmonic degree where truncation would result in a negligible

amount of truncation effects.
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Figure 2.1 Typical 'power spectrum' of a converging spherical

harmonic solution. x marks the average power of harmonics of
each degree. The dashed line indicates the harmonic degree

where truncation is acceptable.
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2.4 Fougere's Method and Test Data

Sets of synthetic data were used to investigate the ordinary least
squares and Fougere's method solutions on data fram a known
distribution with known error distribution. They were selected to
be similar to the astrophysical data. These test data sets

themselves will be referred to as A, B, and C.

The statistical package 'MINITAB' was used to generate random
numbers wi-th a Gaussian distribution about a mean of zero, with
standard deviation 30 or 130. These were associated with randam
positions on the sphere, also generated by MINITAB, with same

manipulation.

The random selection of positions on the sphere using the procedure
available with MINITAB was not straightforward. Longitude
values ((P) were selected from a uniform distribution of integers
between 0 and 360. Values of colatitude (&) were found by
selecting real numbers fram a uniform distribution between 0.0 and
1.0 with 5 decimal places, and reversing the signs of half of these
and taking the arc-—cosine.

The same set of 600 positions over the sphere were used in each
set, while the simulated data values were altered. Because of the
method of selection of values of the coiatitude, the first 300
values were on one hemisphere and the second 300 on the other.
This made the distribution of data points a little better (in the

sense of more even) than a completely randam distribution would be.
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The test data wvalues put into set A were 600 nurbers selected
randomly fram a Gaussian distribution with zero mean and standard
deviation 130. This set was designed to mimic the rotation measure
dataset in size. (Although the rotaticn measures do not have a
Gaussian distributicn, their mean is close to zero, and the
standard deviation about 130.) The data set A is illustrated in

Figure 2.2,

Set B did not contain random data. The value 150 was assigned to
positions where 0°< ¢<70° and -90°< 8 <40°, and the value zero
assigned to all other positions. This pattern was chosen to show
up the problems of early truncation of the spherical harmonic

series. It is shown in Figure 2.3.

A set of numbers chosen randamly fraom a Gaussian distribution with
zero mean and standard deviation 30 were added to the values in set
B-to form set C. This was designed to show how the response to the

pattern can be disrupted by noise, and appears in Figure 2.4.

Initially a least squares analysis was carried out on each dataset.
This was done by using the program containing Fougere's procedure,
with significance level%=1.0. This level accepts every coamponent
of the least squares solution. Initial runs of the analysis had
been done truncating the harmonic series at degree and order 6.
Eventually degree and order 12 was selected as the most practical
truncation level for the rotation measure data, and this will be
described in Chapter 4. Because of this, all the runs on test data

were carried out with a truncation level of degree and order 12.
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Also, bearing in mind the significance levels which were found to
be useful with the astrophysical data sets, the test runs were
carried out with the significance level of X=0.l1. This stops the
inclusion of compconents when there is a greater than 10% chance
that the model with the next component included is a worse model

than the model built up so far.

The results are presented in the form of contour maps of the
surface spherical harmonic model. The projection used is the sine
projection, also known as the Samson-Flamsteeed projection. The
contouring was carried out by routines fram the graphics section of
the NAG library combined with routines setting up the sinusoidal
spherical projection. The projection caused problems with contour-
ing at the poles, so that latitudes displayed are between

+80° and -80°,

Only two sets of contour intervals are used, to aid interpretation.
A contour key appears with each map, showing contour levels and
label numbers. Certain contours are labelled with these numbers,
these are at zero, +150, #300, #+450, t600. The power spectra are

presented to show convergence properties of the solutions.

Set A The least squares analysis of set A is No. 5008, Figure 2.5.

The values taken by the spherical harmonic model are between +250
and -300. The model is very lumpy, showing many features that are
due to accidental conjunctions. The power spectrum in Figure 2.6

shows that the series is not converging.
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The Fougere analysis (X = 0.1) of set A is No. 5006, Figure 2.7.
The model values are lower except in a few places. They are close
to zero, which is the mean of the underlying Gaussian distribution,
in many parts of the sphere. However the power spectrum in Figure

2.8 shows no convergence,

Set B The least squares analysis of set B is No. 5009, Figqure 2.9.

The difference between the model and the original function is less
than 25 except near the sharp edge of the pattern. Here the value
dips below =25 in a few places where it should be zero, and is. over
200 in two places where 150 would be correct. These are effects of
truncating the series early. Figure 2,10 shows that convergence is

slow.

The Fougere analysis (X = 0.1) of set B is No. 5011, in Figure
2.11. It is very similar to the least squares analysis in No. 5009
above, appearing very slightly smoother. It is a worse model in

two places. Fiqure 2.12 shows that again convergence is slow.

Set C The least squares analysis of set C is No. 5012, Figure

2.13, The model has been disrupted by the addition of random
noise. The difference between the model and the original pattern
is larger than in 5009 above, but is less than 100 everywhere, and
in many places it is less than 50. The power spectrum in Figure

2.14 shows very slow convergence.

The Fougere analysis (%= 0.1) of set C is run No. 5014, shown in

Figure 2.15. This model is smoother than the previous one. Figure
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2.16 shows slow convergence.

2.5. Discussion

The analysis of test data illustrates the problems of the least
squares method of analysis. The coefficients found by this method
do not form what looks like a convergent series, so truncation is

always 'too early’'.

One effect of this is that the solution takes extreme values in
places where the data is sparse. An example is found in Figure
2.5, run No. 5008. It is practical to discuss areas of the sphere
in terms of longitude and latitude { and b, instead of longitude
and colatitude q) and 8. The high positive values predicted at

(= 150°, b = 15° are not a good model of the data, as can be seen
in the plot of data set A in Figure 2.2. Fougere's method, Figure
2.7 run No. 5006, smooths out the solution but reduces values in

this area by very little.

Another effect appears at the sharp edge of the pattern. This is
seen in Figure 2.9 and 2.13. Again, this effect is hardly touched
by Fougere's method seen in Figures 2.11 and 2.15. This is like

the ringing (Gibbs) phenaomencon in Fourier analysis.

These are serious drawbacks to carrying out a least squares

analysis and occur when the data is very noisy, causing slow
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convergence. They are not affected in these tests by application
of Fougere's selection procedure. Fougere (1963) claims for his
method that it selects a sensible truncation level by an objective
statistical procedure. These tests suggest that Fougere-'s method
will only improve the solution of a least squares solution slightly

in scme cases.

The reason that Fougere's method does not attack the problems is
that it is restricted to rejecting part of the least squares
solution. It does not eliminate components which fit very well in
many areas but poorly in a few places. Moreover it cannot pull in
new camponents which might form better caompramise solutions and

give faster convergence, allowing earlier truncation.

Fougere's method will be applied to astrophysical data in Chapters
4 and 5, but it will be seen that the same prcblems appear. A new
approach is needed, and this is offered by recent work in the field

of inverse theory described in the next chapter, Chapter 3.
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CHAPTER 3

MATHEMATICAL METHODS TI

3.1. Inverse Theory

Inverse theory is the name given to the mathamatical technigues
required to estimate either the parameters of a model, or a
continuous function, fram observed data. The word ‘'inverse' 1is
used in contrast to the 'forward problem' of science, of predicting
observations fram theory. Hence the ‘backward' or 'inverse'
problem is the estimaticon of theoretical parameters or a function
fram the observations. It invariably requires the inversion of a
matrix. Menke (1984) gives this description :
Inverse theory is an organised set of mathematical techniques
for reducing data to obtain useful information about the
physical world on the basis of inferences drawn from
observations.
The matrix form of equation (2b), G x = 4, describes any discrete
linear inverse problem. The term 'inverse theory' will be used

from now on to refer to discrete (parameterized) inverse theory.

Spherical harmonic analysis is a typical problem of inverse theoryv.

In order to find the best representations of the observations by a
model, inverse theory uses several measures of how well a model
works. One of these is geametrical length, as in the case of the
least sguares method, where the length of the prediction error
vector e is minimized. This is only appropriate if the number of

parameters P, is less than the number of observations, D. The

62



principle of minimizing a length can be extended to deal with the

other cases.

The D data measurements define a vector in a D-dimensional space,
as in the matrix form of equation (2b). The columns of matrix G
(in this case (sj(51,¢1),....,sj( QD, ¢D)) forms the jth colum)
are a set of vectors in D space. There are P of these colum
vectors. A set of vectors is described as independent if no one

vector is a linear cambination of others in the set.

If P=D and the set of colum vectors is independent, then it will
span D-space, which is to say a unique linear cambination of the
colum vectors can be found to equal any vector in D-space. So
each set of observations will have a unique expressicn in terms of
the colum vectors. This expression is the solution, or the best
estimate of the parameters if no other information is available.
No minimizaticn has to be applied in this case where P=D, and the

problem is called equal-determined (Menke 1984).

If D>P, the colum vectors will not span D-space. Provided thev
are independent, a linear combination of vectors will uniquely
describe any vector in a P-dimensional subspace of D-space. This
case is called strictly overdetermined by Menke (1984) as the
amount of data is more than is needed to determine the parameters.
There will be no exact solution to (2b). The least squares
criterion is applied to select the vector in the subspace of
D-space which is closest to d, the vector of observed data.
Jackson (1972) uses ‘'over <constrained' rather than ‘'over-

determined’.
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If D<P then the P vectors in D-space will not be independent and
there is an infinite number of ways of constructing a solution
vector from a linear combination of them. The problem is described
as underdetermined and needs further constraint to select a
solution. The counterpart of the least sguares scluticn of the
overdetermined problem, minimizing the prediction error norm, is
minimizing the 'solution length', which is some norm of the

parameters.

The term 'mixed—determined' is used if the P column vectors do not
span the whole D-space and are not linearly independent. D<P
cannot be rigidly correlated with the underdetermined case, nor can
D>P be correlated with the overdetermined case. Part of the
solution of an apparently overdetermined problem can be under-

determined or vice versa (Jackson, 1972; Menke, 1984).

When a mixed-determined problem appears to be overdetermined, the
least squares solution will be unstable. Some of the colum
vectors will be composed of a combination of the others, or so
close that the independent component is lost amongst round-off
errors. The equations of condition matrix is described as
degenerate or ill-conditioned. The least squares solution will
fluctuate wildly in response to small changes in data values or

positions.
In the particular case of spherical harmonic analvsis, under-

determinacy can appear in the overdetermined problem if the data

positions fail to constrain the high values of a harmonic or
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distinguish sufficiently between different harmonics. Fougere's
method goes a little way toward tackling this. In his method the P
colum vectors are orthogonalized, and those which have only a very
small independent contribution produce a very small orthogonal
camponent. The sample variances corresponding to these camponents
are very small so that the camponents are eliminated by a stringent

cut—off level.

The underdeterminacy of the mixed-determined prcoblem means that a
large number of solutions are hearly equally satisfactory. If the
problem appears overdetermined because D>P then the least squares
solution is selected arbitrarily. Combining the methods of solving
strictly overdetermined and strictly underdetermined soluticns can

give better solutions to this problem.

Methods of solving an underdetermined problem add extra constraints
in order to choose between many exact solutions thus expressing a
priori beliefs about the model. This is analogous to the least
squares method of minimizing the length of the vector of prediction
errors to choose one of many inexact solutions in the

overdetermined case.

The solution x to the matrix form of equation (2b) G x = 4 will be
called the solution vector. To constrain an underdetermined
problem, such beliefs as simplicity or smoothness are expressed by
minimizing scme appropriate measure of the solution vector. The
exact counterpart of the least squares method is minimizing the

Fuclidean or L2 norm of the solution vector.
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The solution of the underdetermined problem G x = d which minimizes

the solution length 5T1_< is

g= T[GGTJ a (3a)

(Menke, 1984). More complex beliefs abcut the solution may be

expressed by using a solution norm )_(wa)_c, where Wx is an

appropriate weighting matrix. The more general solution which

minimizes g(Tny_c is
S‘<=WGT[G~ GTj 14 (3b)
X N . d

(Menke, 1984). Carrying this over to the mixed—-determined problem,

a combination (x) of prediction error and solution length can be

minimized, where

P =ge +€xx

The weighting factor ¢2 determines the relative importance of the

two. The best estimate of the solution is then
X =[GTG + 621J “16Tq (3c)

(Menke, 1984). This is a method now commonly used to stabilize

least squares problems (Lawson and Hanson, 1974; Marquardt, 1963),
which has appeared since forward selection as used by Fougere

(1963). It is described by Menke (1984) as damped least squares

and by Draper and Smith (1981} as ridge regression analysis.
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The damped least squares method damps the oscillations of the
underdetermined part of the solution. The method is equivalent to
adding 'white noise' to the data (Gubbins, 1983) and prevents

inappropriate values appearing in areas of sparse data,

A value of 62 is sought which gives an acceptable value for the
prediction error norm, and also minimizes the length of the
solution. This is done by trial and error, small increases in the
prediction error are traded off against decreases in the sclution
length. (The procedure will be described in more detail in the

next section.)

A more general version of solution (3a) contains the prediction
error measured by a norm that takes account of the estimated data
errors. It uses the matrix We’ which is diagonal with ith element
equal to 1/0'{2 \;vhere & is the error associated with the ¢th
observation. The norm gTWeg forms a measure of prediction error

which gives more weight to more accurate observations. This is the

same as the weighting that was mentioned in section 2.3.

. T . .
A more general norm of the solution, x Wxg, can be included in the

functicn to be minimized:
%(}5) =§TWe +€.x%x)_< (3d)

The best estimate of the solution using this is

g = [GTWeG + ezw__] -lGTWeg_l (3e)
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(Menke, 1984), Other methods can be used to reduce the
underdetermined part of the solution. These are restriction of the
variance of the model parameters, and inspection of the eigenvalue

spectrum of the normmal equations matrix.

A second approach to 'best representation' is found in the concepts
of data resolution and model resolution. These are included for
canpleteness, because this approach to inverse theory 1is an
important one. However data and model resolution are not of great

importance for the rest-of- this chapter.

A starting point for data resolution is to consider the analysis as
forming weighted averages of the data. Weighted local averages
were used in the investigation of Faraday rotation of extragalactic
sources by Simard-Normandin and Kronberg (1980) and Sofue and
Fujimoto (1983). To produce a prediction for a particular position
in this way, data measurements nearby are given greater weight than
distant measurements. This should be true of spherical harmonic
analysis, which also, effectively, forms weighted averages.
Analysis of a vector field such as the geomagnetic field has
analogous but different requirements. A prediction at a position
where a measurement is already available should be heavily biased
toward that measurement. Inverse theory includes methods of
evaluating how much weight nearby and distant points have in
forming the prediction, and uses these to find solutions or

evaluate methods of finding solutions.

Model resolution is a corresponding, but more elusive, concept
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developed around the resolution of the parameters of the model. It
makes use of imaginary 'true' values of the parameters, and asks
how much weight these have in forming the actually estimated

parameters.

The least squares solution has perfect model resolution and often
poor data resolution whereas the solution (3a) to the under-
determined problem has perfect data resolution because the model
fits the data perfectly. In this case there are fewer data than
model parametérs so individual parameters can not be perfectly
resolved. Methods of improving the method, for instance by finding
a damped least squares solution, can also be seen as improving data
resolution at the cost of degrading model resolution. There is not
roam to go into this further, however this approach is described in

more detail by Menke (1984) .

A third sense of 'best representation' is distinguished by Menke
(1984) . This is the maximum likelihood estimate. The best
estimate of the parameters should maximize the probability of the
specific set of data being observed fram those parameters. If the
errors in the data have a Gaussian distribution, and if there is no
a priori information, the least squares solution is the maximum
likelihood estimator. Underdetermined or mixed-determined problems
explicitly use a priori information to find the mavimum likelihood
estimate. There can be no exact solutions and so probability and
statistical theory are vital to understanding the powers and

limitations of methods of analysis.
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The geamretrical method, the method of measuring data and model
resolution, and the maximum likelihood estimates are prese.nt.ed by
Menke (1984) in detail. He points out that the three approaches
are parallel, each recovering the least squares and minimm norm
solutions under the appropriate circumstances. They provide a

range of approaches to difficult problems.

3.2. Minimm Norm Solution

The minimm norm solution (3e} has been used for spherical harmonic
analysis of geamagnetic data by Gubbins (1983). Whaler (1981),
Whaler and Gubbins (1981), and Gubbins (1983) have derived models
of the geomagnetic field at the boundary between the core and the
mantle of the Earth, using spherical harmonics. The geomagnetic
field is measured at the surface of the Earth, and a model of the
field at the surface is extrapolated to the core-mantle boundary.
This extrapolation amplifies the size and errors of the harmonics
by a factor of the order of 2:[‘r+2 for harmonics of degree L.
Consequently it is important that the coefficients of the spherical
harmonic model of the geamagnetic field at the Earth's surface
converge to zero quite fast. This and other prcblems of the least

squares method are confronted by Whaler (1981) and Gubbins (1983).
Whaler (1981) considers the application of inverse theory methods

to the analysis of the geomagnetic field. She investigates minimum

norm methods, and different strategies for tackling difficult least
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squares problems. In particular she discusses and uses 'quelling'
of higher degree harmonics, which uses norms to take the power ocut
of higher degree harmonics by weighting against them by factors of,

for instance, L2, where L is the degree.

Gubbins (1983) also describes the use of minimum norm solution (3d)
to analyse the geamagnetic field in order to look at the
core-mantle boundary. His expression of equation (3d) is derived
fram non-linear continuous inverse theory. Matrix Wx is used to
express a priori beliefs about the model parameters. (Gubbins
(1983) uses matrix Cm which is diagonal. C:,} can always be equated
with Wx in (3d).) The ith element of Wx is a function of the

degree of the ith harmmonic, f(L{i)).

In the problem of the field of the core-mantle boundary, Gubbins
(1983) uses a function dominated by the term (a/c)L+2, where a is
the radius of the Earth and c is the radius of the core. This is
the amount by which the harmonics are amplified when the surface
field is extrapolated to the core-mantle boundary. This weighting
of the solution norm brings about the convergence which is required

in a physically satisfying method.

The camputer program used to calculate this solution was mace
available to the author. Advantages of the minimum norm solution
are noted by Whaler (1984) principally the great control of
convergence of the solution and consequent elimination of
truncation effects. Another advantage is the suppression of

extreme values in sparse data areas.
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The minimm norm method is applied in this work to astrophysical
data to attempt to eliminate the truncation effects by finding more
convergent solutions. The spherical harmonics used as fitting
functions have no physical significance, so the appropriate a
priori constraint was an interest in the reqular galactic-scale
field. The appearance of high degree harmonics reflects
small-scale local variations, and therefore it is required that

these harmonics are 'quelled' (a term introduced by Parker, 1977).

The program used to calculate minimum norm solutions will be
referred to as program GW. It uses Cholesky decamposition as
described by Lawson and Hanson (1974), of the normal equations
matrix GTG, or GTweG when this is appropriate. Instead of 62

program GW uses the the constant 'A=1/52.

Trial and error is used to find a suitable value of A which reduces
the solution norm whilst the prediction error remains acceptably
low. This is done by plotting prediction error norm against
solution norm to build up a 'trade-off curve' (Backus and Gilbert,
1970). Once the function £(L}) has been chosen the solution is
calculated for several wvalues of A and for each value the
prediction error norm and solution norm are recorded. An
asymptotic, monotonically decreasing curve will be found (Bachus
and Gilbert, 1970: Menke, 1984) like the one drawn in Figure 3.1
below. In Figure 3.1 the asterisk marks a position where a low
solution norm has been selected without an unacceptable increase in
prediction error. The acceptability of the prediction error can be

checked by a statistical test, either the chi-squared test, if
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Figure 3.1 Example of a 'trade-off curve'.

The cross marks the position of a useful solution.
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error weighting has been used, or the F-test.

The selected solution is tested for convergence by looking at its
power spectrum. If the sclution is converging too slowly with the
increasing degree of the harmonics, it will be necessary to include
harmonics of higher degree, or to alter the function f(L) to damp

out the fluctuations at high degrees.

The functions used were £(L)=1.0 or f(L)=Lk where k is an integer
between 1 and 8. If f(L)=1.0 the solution is the simple damped
least squares solution in eguation (3c). This is called 'neutral
damping' by Gubbins (1983). If this doces not bring about
convergence at a reasonable degree, stronger damping is brought in.

The strength of the darﬁping increases as k is increased.

The quéstion of what is a reascnable degree is decided by the a
priori interest in large-scale trends. Harmonics with degree and
order 1 to 4 are important in representing large-scale trends in
the sky. Harmonics of degree 5 and higher are included in order to
reduce truncation effects and allow the appearance of very
important small-scale features. The effect of damping is to remove
power from these harmonics, forcing the solution to converge. The
power in these higher degree harmonics should decrease quite
rapidly, and it is regarded as unnecessary to include harmonics of
degree and order higher than 15, because the data are reascnably
well distributed. The number of hammonics up to and including

degree and order 14 is 225.
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3.3. Minimm Norm Method and Test Data

Two of the sets of test data described in Chapter 2 were used to
demonstrate the results of program GW. These were set A and set C.
The runs of program G# have identity numbers as before. The
results are presented in the same way as in the previous chapter,
in contour maps and power spectra. Each solution was chosen by
plotting a trade—off curve and selecting a value of the damping
parameter A. The trade—off curves and chosen values of A are also
given. In each case the series was truncated after degree and

order 12.

The following Figures fram Chapter 2 are important to this section for
camparison with the new solutions: The plots of test data sets in
Figures 2.2 and 2.4, the least squares solutions in Figures 2.5 and
2.13, the Fougere solutions in Figures 2.7 and 2.15, and the power

spectra of these solutions in Fiqures 2.5, 2.8, 2.14 and 2.16.

Set A Run No. 0250, Figure 3.2 1is the damped least squares

solution (this uses the simple damping function of 1.0 for all
values of L). The trade-off curve appears in Figure 3.3 where the
value of X\ chosen was 15.0. This solution is a little away from
the ‘'knee' of the trade-off curve, because a slightly Ilower
solution norm has been selected to improve the convergence of the
solution. This has also been done in following solutions. The
power spectrum in Figure 3.4 shows no convergence. The amplitude
of this solution is considerably reduced fram the least squares

solution in Figure 2,2,
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The heavily damped (LB) least squares solution of set A is run No.
0266, in Figure 3.5. The trade-off curve appears in Figure 3.6 and
the value of A selected was 1.5x107 .  The power spectrum in
Figure 3.7 shows that convergence is slow so that this solution has
been truncated too early. The amplitude of this solution is rather
larger than the damped least squares solution in Figure 3.2 and

still less than the least sguares solution in Figure 2.2.

Set C The damped (1.0) least squares solution is run No. 0271,
Figure 3.8, The trade-off curve appears in Figure 3.9, and the
value of \ selected was 15.0. The power spectrum in Figure 3.10
shows very slow convergence. Even though the solution is for a
series that was truncated too éa.rly, it is a considerable

improvement over Figures 2.13 and 2.15.

The damped @) 1east squares solution for set C is run No. 0280 in
Figure 3.11. The trade~off curve appears in Figure 3.12, and the
value of A selected was 2.0x10—3. Figure 3.13 shows the power
spectrum of this solution, which is converging steadily. The
solution, in Figure 3.11, has a tidier appearance than the previous
solution using 1.0 damping, Figure 3.8, but is in fact further fram

the original function in a few places.

The heavily damped (L8) least squares solution is run No. 0286,
shown in Figure 3.14. The trade-off curve is shown in Figqure 3.15.
The value of A\ selected was 2.0x10-7. Convergence is brisk, as the
power spectrum in Figure 3.16 shows. The model is better than the

least squares solution in Figure 2.13, and the Fougere solution in
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Figure 2.15, but some values have been forced slightly higher by

the damping than in Figure 3.8 and 3.11.

3.4. Discussion

In these tests the damped least squares solution, with the simple
damping function of 1.0, is the smoothest and closest to the
original function. For both synthetic datasets convergence is too
slow and truncation of the series at harmonics of degree and order

12 is too soon.,

The more heavily damped solutions force up the amplitude of the
representations and increase the rate of convergence. These
solutions were still rather better than solutions found with
Fougere's method. Heavy damping correspbnds to the a priori
assumption that high order harmonics will be rather small and is
quite inappropriate to analysis of set A where there are no
underlying trends to find. Heavy damping performs quite well in
the analysis of set C where there are large-scale trends to find.
This suggests that the method will perform better than Fougere's
method on rotation measure data where there is known to be at least
one large-scale trend (because the absclute value of the rotation

measure is proportional to the cosine of the latitude}.
The importance of convergence of the power spectrum is not

demonstrated in analvsis of set C, where the more convergent

solutions are not the best in appearance. This may be because even
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the least squares solution of set C in Figure 2.13 shows slow
convergence in Figure 2.14, and only a light touch is needed.
However the damping method of improving the least squares solution

always appears much better than Fougere's methcd.

It is important to be aware that the large random errors in set A
caused large amplitude solutions which were not completely damped
out. The high values inappropriately appearing in the areas empty
of data around (=140°, b=15°, and 4=210°, b=15°, were also not

danped sufficiently.

Far more can be done to investigate and improve solutions using
inverse theory. The resolution of the ccefficients by the data can
be investigated, and error estimates can be found for point values
of the data. Analysis of the eigenvalue spectrum of the normal
equations matrix GTG described by Jackson (1972) uncovers specific
problems with a particular inversion by locking at the variance of
individual parameters. More sophisticated methods of damping out

the instability can then be devised.
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Figure 3.3 Trade-off curve for analysis No. 0250 (simple
damping analysis of set A). Selected solution No. 0250

is marked with a cross, here A= 15.0.
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(simple damping analysis of set A).

81






12" Trade—-off curve: #0266

169
148
120 |
198 -

82 -

P03 30+t —OUW

69 -

3

40

20 r

988 7é8 748 768 788 809 820 g4@

)
. 419
Besidual norm

Figure 3.6 Trade-off curve for analysis No. 0266 (heavy
damping analysis of set A). Selected solution No. 0266
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Figure 3.7 Power spectrum of analysis No. 0266

(heavy damping analysis of set A).
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Figure 3.9 Trade-off curve for analysis No. 0271 (simple
damping analysis of set C). Selected solution No. 0271

marked with a cross, here A= 15.0.
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Figure 3.12 Trade-off curve for analysis No. 0280 (moderate
damping analysis of set (). Selected solution No. 0280

marked with a cross, here A= 2.0 x 1073.
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Figure 3.13 Power spectrum of analvsis No. 0280

(moderate damping analysis of set C).
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Figure 3.15 Trade-off curve for analvsis No. 0286 (heavy
damping analysis of set C). Selected solution No. 0286

marked with a cross, here A= 2.0 x 1077,
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Figure 3.16 Power spectrum of analysis No. 0286

(heavy damping analysis of set C).
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CHAPTER 4

FARADAY ROTATION

4.1. Introduction

Faraday rotation of the plane of polarization of linearly polarized
electromagnetic radiation occurs when the radiation traverses a
plasma containing a magnetic field. The amount of rotation fram

the original angle of polarisation is given by :

A+= kN [ N_H.d¢ (4a)
2
where A\P is the rotation in radians, k is a constant equal to
0.812, X is the wavelength in metres, L is the line of sight to the
source in parsecs, df is a small part of the line of sight,' H is
the magnetic field at g4 in/uG, and Ne is the density of free
electrons at & in an >. This formula can be found in Lang (1980),
and is derived by Harwit (1973) and Zeldovich et al (1983). It
neglects redshift effects on wavelength, and the units are those

comonly used in astrophysics.

The rotation measure RM is wavelength independent, and is defined

as

RM = k| N_H.dL (4b)

L

. . . -2 C
The units of rotation measure are radians metre . The initial
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plane of polarisation LIJO and the angle of rotation +r(;\) are

related in this way :
_ 2
*r(k) = Y’o + RM.X (4c)

In principle, a rotation measure can be found from the angles of
polarisation of radiation from a source measured at several radio
wavelengths. In practice, fitting a straight line of the form (4c)
may be very difficult. Measurements of the plane of polarization
gives values between 0 and T . However, the actual value of LPr
will either be the measured value or this value plus or minus
integer multiples of TI. The value of tpr cannot be measured without

this ambiguity, known as the 'nir ambiguity'.

A medium containing free electrons and a magnetic field is said to
be Faraday active. The interstellar medium of the Galaxy is
Faraday active, and affects radiation from all astrophysical
sources. Within the Galaxy, Faraday rotation can be found in
pulsars and galactic radio continuum emission. Extragalactic radio
sources may undergo Faraday rotation all along the line of sight to

the socurce.

The upper atmosphere of the Earth is also Faraday active, varying
day by day. The effect is removed from astrophysical observations,
using independent observations of the atmospheric contribution at
that particular time and place. This is described by Wright
(1973), who notes that it is one possible source of errors in the

polarization measurements.
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Pulsars are good probes of the interstellar medium, because Faraday
active material is not found associated with them (Manchester and
Taylor, 1977). The Faraday rotation of the pﬁlsar is entirely due
to the intervening interstellar medium, and this makes the ro;ation
measure easier to find. Observations of pulsar emissions alsc give
a ‘'dispersion measure' which can be used either to estimate the
density of electrons along the line of sight, or to estimate the

distance of the pulsar.

ﬁispersion occurs when an electramagnetic wave propagates through a
plasma whether or not a magnetic field is present. The dispersion
measure DM is a oconstant for a particular source, and its
theoretical derivation is described by Harwit {1973) and Thamson
(1981). It can be found by measuring the time difference of
arrival of wave packets of different frequencies, and is related to

electron density along the line of sight as follows :

M = | Nds
e
L
with Ne and L as before, and where ds is the length of the line of

sight segment d{ . DM is measured in an> pCc.

The dispersion measure can be used to estimate the distance of a
pulsar, provided that values for the electron density in the
interstellar medium can be estimated independently. The distances
to 38 pulsars have been found independently of electron density as
described by Lyme et al (1985). Most of these estimates are made

by cambining measurements of the absorpticn of 2lam radiation by
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neutral hydrogen (HI) in the interstellar medium with a model for
the differential rotation of the Galaxy. Two distances were found
fran annual parallax, and three fram known association of the

pulsar with a supernova remnant.

The dispersion measures of pulsars at known distances can be used
to estimate the average electron density of the interstellar
medium. For example Weisberg et al (1980) put the value at between
0.02 and 0,03 am >. More camplex models of electron distribution
can be built up, and an important one of these is the three
canponent model of Lyne et al (1985). In this model the first
canmponent is a layer of constant electron density 0,025 cm-3 which
has a scale height 'much higher' than the 400 pc scale height of
the pulsars. The secoﬁd camponent is a thin layer of scale height
70 pc representing the icnized regions in the galactic plane. The

3.

electron density of this layer is 0.015 cm The third component

is a specific model of the electron distribution in the Gum Nebula,

and is a modulation of a basic value of 0.28 c:m'-3 in that region.

Such information about the distribution of electrons in the Galaxy
can be combined with rotation measure of pulsars and other sources
in order to find out more about the magnetic field of the Galaxy.
Estimates of the magnitude of the field fram pulsar rotation
measures are given for example by Manchester and Taylor (1977) and
their values of about 2 4G for the regular field and another 2 MG

for the irregular component are typical.

The highly organized radio emissions of pulsars may be due to
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synchrotron emission, however the mechanism is not understood.
Synchrotron emission is responsible for the background radio
continuum emission from the Galaxy and the emission from
extragalactic radio sources. In these cases the emitting regions
are large. The presence of thermal electrons in and around the
emitting regions causes Faraday rotation along the line of sight,
within these regions and close to them before the radiation even
reaches the Galaxy. This has the effect of 'depolarizing' the beam

of radio waves, and will be described in more detail below.

Galactic synchrotron emission has information about the
interstellar medium to various depths, depending on the position of
the emitting region. Radiation fram extragalactic radio sources,
on the other hand, is able to probe the whole length of the
interstellar medium along the line of sight to the source.
However, Faraday rotati-on by material in and around the source and
in the intergalactic medium may be included in the calculated
rotation measure. Moreover, the rotation measures cof extragalactic
sources are often difficult to find, and so they can be quite
unreliable guides to the amount of Faraday rotation occurring in

the interstellar medium of the Galaxy.

Spherical harmonic analysis will be used to find more reliable
information about the rotation measures of extragalactic sources.
The method is intended to extract the underlying trends in the
rotation measures, eliminating the random contribution from sources
and the intergalactic medium and possible bad determinations of the

rotation measure. The possible contribution of a regular
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intergalactic medium, suggested by Sofue et al (1980) among others,
can be discounted, following Simard-Nermandin and Kronberg {1980),
Thamson and Nelson (1980) and Vallee (1983b). The spherical
harmonic analysis will estimate the galactic contribution to
rotation measures at all positions in the sky. In the next
sections the determination of extragalactic rotation measures is

considered in some detail.

4.2, Depolarization of Extragalactic Sources

There are considerable problems in associating a rotation measure
with an extragalactic source. The. sources are radio galaxies or
quasars, where conditions are not simple or well-known. Confusing
effects within the source and along the line of sight make it
impossible to determine meaningful rotation measures in the poorest

cases, because of depolarization.

Linear and circular polarization are special cases of elliptical
polarization. A source emits a jumble of differently polarized
waves. The resultant beam is partly polarized, and can be regarded
as the cambination of an unpolarized and a polarized camponent, It
is campletely described by the four Stokes parameters I, Q, U, and
Vv, which are defined in terms of time averages of the electric
field components. I is the total intensity of the beam, Q and U
describe the linear polarization and V describes the circular
polarizaiion. I, Q, and U, are important in detemmining Faraday

rotation measures,
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The polarized component of the beam can in general be regarded as
elliptical with elliptical eccentricity /3, and with its major axis
inclined at an angle LP to the chosen x direction. The intensity I
of the linearly polarized campenent is related to Ie the intensity

of the elliptically polarised camponent by
I =1I_ cos2y
P e
Stokes parameters Q and U are functions of Ip and \{I
= I _cos2 and U=1I_ sin2
- 1, cos2f o sin2y

S0 Ip = (02 + UZ)% and &Péstan_l u/Q.

Fp’ the fractional intensity of linear polarization, is given by

More detailed background information can be found in Gardner and

whitecak (1966), Wright (1973) and Thomson (1981).

Measurements of the angle of polarization are subject to errors,
which are exhaustively described by Wright (1973). Among these are
errors in the <calibration of instruments, calculation of
ionospheric Faraday rotation, and pointing of aerials. There may
also be problems due to gain and phase drifts, resolution effects
and confusion from the galactic background emission or unknown

sources, However, apart from these errors, the presence of several
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differently linearly polarized camponents in the beam of the
telescope is likely to reduce the value of FP. This is
'depolarization’ and is a major problem in determining rotation

measures of extragalactic radio sources.

The synchrotron process is responsible for radio emission from
extragalactic sources. The radiation is wvery highly linearly
polarized, with fracticnal polarization Fp=70% when it is emitted.
However, extragalactic sources ccmrbnly have Fp<10%, because of
depolarization. Fractional intensity is usually greatest at short
wavelengths (such as 6cm) and monotonically declines with
increasing wavelength, although there may be an increase followed

by a peak of polarization intensity, before the decline begins.

There are three distinct causes of depolarization. The first is
the co-existence in the source of regicns with different physical
camposition and magnetic field strengths. These are called
different ‘'regimes', referring to large-scale variations. They
will have different radio spectra and different angles of
polarization. The proportion of radiation fram each regime will
vary at different wavelengths. The effect on the linearly
polarized component of the beam 1is a varying reduction
~ (depolarization) 1in fractional intensity fram the more highly
polarized regime, The overall angle of linear polarization of the
resultant beam will also vary with wavelength. Very different (by
about 11/2 rad) angles of polarization will effectively cancel one

another out.
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A second cause of dépolarization occurs within one regime, when
high velocity electrons cause the emission of synchrotron radiation
and thermal electrons cause Faraday rotation. This 1is called
'front-back' depolarization or intermal Faraday  rotation.
Radiation emitted at the further away part of the region (the back)
is rotated more by its passage through the region, than radiation
emitted by the nearer parts of the region (the front). Differently

rotated parts of the beam interfere, causing depolarization.

A third cause of depolarizati.oﬁ is differential Faraday rotation
across the beam of the telescope by clumpy material in the source
intersecting the line of sight. The telescope beam is very small
compared to the angular size of similar material in our Galaxy, so
is less likely to be depolarized in this way in the interstellar

medium.

The depolarizing effects of internal Faraday rotation and
differential rotation across the beam increase with increasing
wavelength because the amount of rotation increases as described by
equation (4a). There is some debate about how much each of these
two effects occur. Cormway et al (1974, 1977) say that internal
Faraday rotation dominates any differential rotation due to the
line of sight intersecting a 'Faraday screen'. Wardle (1977) and
Wright (1979) suggest that regimes emitting synchrotron radiation
rarely contain the thermal electrons that are responsible for
Faraday rotation, and Thamson (1981) also considers that internal
Faraday rotation is unimportant compared with depolarization caused

by material intersecting the line of sight.
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If there is a significant amount of depolarization, the
polarization angles of the source will not follow a Kz law as in
(4c). So the determination of rotation measures is only reasonable
under certain circumstances. It is necessary that one regime
daminates the synchrotron emission of the source, and that the beam

should not be much affected by internal or external depolarization.

Several criteria have been used to exclude sources, or ranges of
frequencies from a source, that are depolarized. The interference
of different regimes is indicated particularly by a peak in
polarization intensity Fp at some wavelength. Measurements of
polarization at shorter wavelengths are excluded to rule out
wavelengths where a different regime dominates. To increase the
probability that the observed emission is due to one daminant
regime, Vallee (1980) and Thamscn (198l) recammend that a limited
middle range of wavelengths is used in determining the rotation
measure, and an upper wavelength limit (25 or 30 am) is imposed.
Vallee (1980) considers that the worst effects of intermal Faraday
rotation are also avoided by using a middle range of wavelengths.
Depolarization by material intersecting the line of sight is
recognised when the fractional intensity of polarization drops very

fast with wavelengths.

Measures of depolarization have been used to recognise unacceptable

wavelengths or sources. One of these is A the wavelength where

%l
polarization intensity Fp( A) has dropped to half its peak value.
Simard-Normandin et al (1981) exclude wavelengths greater than X %

(the wavelength where polarization has dropped to a quarter of its
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peak value). Wright (1973} recommends a much more stringent value,
7\}§but finds that this excludes many sources (he eventually
develops a camplex but useful system for classifying rotation
measures according to reliability). It is also worth noting that
very high rotation measures cause depolarization across the
beamwidth as polarization is measured. The effect can be decreased

by using narrower bandwidths.

4.3. Calculation of Rotation Measures

Most sources present a very difficult nurerical problem in
extraction of a reliable Faraday rotation measure, or determining
that one does not exist. This is the effect of the nT ambiguity
in N,Jr in (4c). There is no number of cobservations of angle of
polarization at different wavelengths which guarantee finding an

unambiguous rotation measure.

It is possible to find likely values for the rotation measure using
several observations, preferably more than three. 7\2 is plotted
against \(J Several values of l.l/ corresponding to several low values
of n are plotted, and a straight line of the form (4c) is sought.
This can be done by hand and eye, but with large amounts of data,
and looking for greater accuracy and repeatability, camputational
methods are preferred. The least squares method is appropriate
again, It is necessary to minimize the sum of scguares of the

position angle residuals weighted by the reciprocals of the

2

estimated errors. This is exactly equivalent to the quantity XV
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in equation (2f), It is calculated for many values of RM, giving
the slope of the straight line (4c). Unfortunately the n
ambiquity leads to multiple minima in 13 . (Here V is equal to the

nurber of polarization measurements minus two)

By using tables of the chi-squared distribution a probability can
be associated with each RM value which is the probability of the
cbserved polarization measurements being seen 1if that value were
the correct RM. So for each minimum of 7(‘,2, a measure of goodness
of fit of the corresponding RM is available. Caomparison with all
other minima is essential to show whether there is any ambiguity in

the determination.

Thamson (1981) has investigated the numerical prcoblem in detail.
He ran tests using computer generated data fram known distributions
of 'rotation measur.es' and ‘'errors'. His conclusions are
sumarised as follows:-

(i) It is important to step through possible slopes of the line in
rotation measure units of rad m-2, not degrees or radians.
Otherwise minima are poorly resolved or missed at higher values of
slope angle. The steps should not be larger than 2 rad m_z.

(ii) Considerable inaccuracy arises in the estimate of rotation
measure if the errors in polarization measurements have been
underestimated at as little as 2/3 of their real value.

(iii) The absolute value of rotation measures should be restricted
to less than 200 rad m 2 away fram the plane of the Galaxy.

(iv) Long wavelengths measurements {(>30cm) cause further numerical

problems and should not be included.
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(v) The wavelength 7\%, where depolarization has reduced the
intensity of polarization to % of its peak value, is an ocuter limit

for usable measurements.

Point (iii) is the most contentious. A larger region of search
reduces the accuracy of the algorithm, but must be used in the
plane of the Galaxy in any case. The a priori restriction of
rotation measure away fraom the plane is unfortunate. Thamson
(1981) justifies it by considering other information about the size

of the galactic magnetic field, and possible intergalactic fields.

Rotation measures may be found more accurately, and large rotation
measures detected, using a method developed by Rudnick et al
(1983). They make use of the depolarization of the beam by large
rotation measures, across a wide beamwidth. For each source they
make one measurement at a short wavelength using a narrow waveband,
and then they make several measurements at adjacent wide wavebands,
of medium wavelength., If the rotation measure is genuinely high,
depolarizing rotation occurs across the bands and the fractional
intensity drops dramatically fram its initial short wavelength
value. High rotation measures can thus be detected, and moreover
low rotation measures can be estimated more accurately because
there is no nT ambigquity between the wide waveband measurements.
Clearly this is a very useful approach to the prcblem of

determining rotation measures.
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4.4, PRotation Measure Catalogues

Two catalogues of rotation measures have been published recently by
Tabara and Inocue (1980) and by Simard-Normandin et al (1981).

Thomson (198l) describes the former.

Tabara and Inoue's (1980) catalogue is a collection of all
measurements of linear polarization of radio sources published
befocre December 1978. It includes galactic and extragalactic
socurces but not 'pulsars. Rotation measures and depolarization
measures are calculated for many sources. They classify rotation
measures into three grades. These are A, unambigquous good fits; B,
unambiquous poor fits; and C, ambiguous or very poor fits. The
range of search is limited to |RM| < 200 rad m 2 in higher galactic
latitudes, but is considerably wider in low latitudes ( |b| < 26°).

Step length is not mentioned.

The second catalogue was not available to Thomson (1981), however
he gives a detailed critique of a catalogue described earlier by
Kronberg and Simard-Normandin (1976). He finds that the numerical
procedures used by Vallee and Kronberg (1975) and Kronberg and
Simard-Normandin {(1976) produce, on his synthetic data, many high
rotation measures that are quite spurious. This happens because
the 1less severe oonstraints employed by  Kronberg and
Simard-Normandin allowed unlocked for answers. The values of
rotation measures stepped through are selected by taking reqular
steps in angular measure of the slope of the line, not in rad m-2,

which leads to the problem mentioned in point (i). Thomson (1981)
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found that the errors in polarization measurements were
underestimated (point (ii)) and the range of search was very wide

(point (iii)).

The more recent catalogue published by Simard-Normandin et al
(1981) shows one improvement in the algorithm, because rctation
measure values are stepped through in intervals of 10 rad m—z,
sanetimes less. The accuracy of the estimation of errors in the
polarization measurements is difficult to evaluate. An interesting

test would be to increase them all by 50% and see how much

difference this made to the results using the same algorithm,

The range of search used by Simard-Normandin et al (198l) was -1100
to 1100 rad m 2, much wider than Thamson recommends. The problem
in using a wide range of search is that some high value of rotation
measure will give an apparently better fit than the original low
rotation measure. Thamson (1981) suggests that there are good
reasons to suppose that the galactic contribution will be less in
absolute value than 200 rad m-z. A high extragalactic contribution
might be expected to be correlated with a low depolarization
measure A - There is no such correlation in Kronberg and
Simard-Normandin's (1976) catalogue. Therefore it is suspected
that the high values of rotation measure away fram the galactic

plane are not genuine.
In the investigation of galactic rotation measures, conclusions are

biased by restricting the range of search away fram the galactic

plane. This makes it particularly important that the suspect
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sources are investigated using the method of Rudnick et al (1983).
If better observations are not made available, a wide range of
search should be used with care, checking closely whether a
rotation mea;ure is ambiguous by the chi-squared test. The
difference between ambiguous rotation measures in such cases tends
to be large, perhaps 100 rad m 2, which would eliminate many of

these sources from the catalogue.

The rotation measure data set that will be analysed is based on the
rotation measures published by Simard-Normandin et al (1981). 31
new sources were included, and same corrections, using rotation
measures found by Vallee (1983c, 1983d) and Vallee and Bignell
(1983), who use the same algorithm. The whole set is referred to
as 'RM data' in computer generated headings to the contour maps.
It contains 583 rotation measures with galactic coordinates azj.d
estimated errors. It would alsc be useful tc analyse the data from
the catalogue of Incue and Tabara (1980), when the latest version

beccmes available.

The 583 rotation measures in the data set are represented in Figure
4,1. Scme trends can be easily seen by inspection of this diagram.
Large rotation measures are most cammon in the plane of the Galaxy.
The measures are well distributed about the sky but there are same
small areas that have very few. One of these includes the centre

of the Galaxy.

There are many negative rotation measures in the area bounded by

{=70° and {=150°, and below the plane of the Galaxy. This feature
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is associated with Loop II by Simard-Normandin and Kronberg (1980).
The positive rotation measures around (=30° and above the plane of
the Galaxy are associated with loop I, the North Polar Spur. There
is a cluster of positive rotation measures around £=240° and in the
plane of the Galaxy. Some of these are associated with the Gum
Nebula at /=260°, b=0°, by Vallee (1984). Satisfactory represent-
ation of obvious features is a more important criterion (although
an intuitive one) of a good spherical harmonic model than obtaining

the very lowest sum of squares of residuals.

4.5. Spherical Harmonic Analysis

Preliminary analysis with Fougere's method on the rotation measure
data set were carried out with truncation at very low degree and
order. Truncation at degree and order 4 or. bélow gave solutions
too simplified to show typical features. As the truncation level
was moved to degree and order 5 and above, nmore details appeared
but so did areas of very poor representation. The areas changed
dramatically when the truncation level was changed. These problems

led to use of the Inverse Theory program GW.

Spherical harmonic analysis of the rotation measure data was
carried out using program GW up to degree and order 15. At a
particular truncation level a solution is sought with low
prediction error norm and low solution norm, as described in
section 3.2 above. A good solution will be convergent, in the

sense of decreasing average power in harmonics of progressively
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higher degrees, used in Chapters 2 and 3.

The least squares and weighted least squares solutions were not
convergent. Simple and heavier damping in program GW improved the
convergence, Eventually L8 damping, as described in Chapter 3,
produced a solution that was reasonably convergent when truncated
at degree and order 12. This solution and scme others are
presented here, with the power spectra that show their convergence
properties. The performance of Fougere's method at this truncation

level is also shown.

The first diagram, Figure 4.1 shows the data. The least squares
solution of the rotation measure data set to degree and order 12 is
run No. 5001, Figure 4.2. This shows a rather bitty model, and is
a very poor representation of the data in several areas. An area
in the centre of the Galaxy fram (=330° to £=360°, and b=-10° to
b=+10°, is quite empty of rotation measures but is shown as being
distinctly positive in Figure 4.2. An area just above the plane of
the Galaxy where ¢=120° to ¢=150° and b=0° to b=30° is also fairly
empty of rotation measures but is represented as a very strongly
negative anamaly. The generally positive area associated with the
North Polar Spur, {=0° to {=70° and b=0° to b=60° is considerably
weakened, and the large negative area sametimes associated with
Ioop II, at 1=0° to {=180° and b=0° to b=70° hardly appears.
These faults may be due to the early truncation of the solution,
because the power spectrum in Figure 4.3. shows that there is no

convergence. The sum of squares of residuals is 58.25 x 105.
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The Fougere analysis (A = 0.1) to degree and order 12 is run No.
5002, Figure 4.4. This is a samewhat better representation - there
are improvements in all the areas mentioned above with the
exception of the North Polar Spur area. The improvements are not
enough to make the solution really useful. The power spectrum in

Figure 4.5 shows no convergence.

The least squares analysis weighted by errors, to degree and order
12 is run No. 217, Figure 4.6. This has eliminated the negative

. area centred on ( =140°, b=15°. The other prcblem areas still

appear. The power spectrum in Figure 4.7 shows no convergence.

The weighted sum of squares of residuals is 4.09 x 105. The
weighted least squares analysis with simple damping to degree and
order 12, is run No. 216, Fiqure 4.8. The sum of squares of the
residuals is 4.30 x 10°. The trade-off curve from which the
solution was selected is shown in Figure 4.9, the value of X

selected for the solution was 1.25. Convergence is very poor shown
in Figure 4.10. and remained weak when the analysis was taken to
degree and order 15. The solution does show some improvements, in

spite of this. The North Polar Spur and Loop II areas are better

represented, although the centre of the Galaxy is still poor.

The weighted least squares analysis with L8 damping, to degree and
order 12, is run No. 126, Figure 4.11. The trade-off curve is
shown in Figure 4.12, and the value of X\ of 1.0 x 10”7 was selected
in a position where a low solution norm encouraged convergence.

The sum of squares of residuals of this solution is
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4.12 x 105. The power spectrum in Figure 4.13 shows an acceptable
rate of convergence. This slowed down when the analysis was taken
to degree and order 15. This very simplified representation in
Figure 4.11 is good in the critical areas except that it seems to
take up the unnecessary negative representation again, a little

lower at (=140°, b=10°.

The weighted least squares analysis with L8 damping, to degree and
order 12, of the same data set with axes changed ('kwvvsetec') is
run No. 448, and appears in Fiqure 4.14., The trade-off curve is
not shown, nor is the power spectrum, because these are not
distinquishable from the same things for solution No. 126. The
same value of A was used, and the sum-of squares of residuals is
4.2 x 105. Clearly this method of analysis is unaffected by

change of axes.

The Fougere analysis (« =0.1) of the data set with new axes as
above to degree and order 12, is run No. 5030, and Figure 4.15.
This solution has a very poor perturbation in the region
corresponding to the centre of the Galaxy. It seems that this

method is not tolerant to the change of axes.

For comparison, the least squares solutions (not weighted by the
errors in rotation measures) of rotation measure data to degree and
order 6, 8 and 10 are included, in Figures 4.16, 4.17, 4.18. These

are run Nos. 225, 5027, 227.
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4.6, Discussion

Program GW has produced a very good solution in run No. 126, the
weighted least squares solution damped by the factor LB. This
solution, appearing in Fiqgure 4.12, is very simple, reflecting the
requirement that only large-scale trends should appear. Predicted
values are zero in many areas away fraom the plane of the Galaxy.
This is satisfactory, because in many of these areas the rotation
measures are small, and positive and negative values appear mixed

together, suggesting that they are not due to galactic Faraday

rotation.

This soclution has some disadvantages. Scme features are not well
justified by the data, notably a poéitive peak at £=300°, b=0°.
The negative area around {=140°, b=+10°, which was eliminated in
the weighted least squares solution, has reappeared! The
improvement in resolution given by the high truncation level means
that the solution appears detailed rather deceitfully because it

can only reflect trends.

It has no campetition among the other solutions at the truncation
level of degree and order 12. However, a surprisingly good
solution is the least squares solution with the series truncated at
degree and order 6, run No. 0225. This solution reflects all the

obvious trends in the data without appearing misleadingly detailed.

Further analysis could be carried out by inspecting the eigenvalues

of the normal equations matrix. Small eigenvalues are responsible
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for poorly justified solutions. The good solution truncated at
degree and order 6 suggests that in higher truncation level
solutions, the eigenvalues decrease after degree and order 6. The
damping could be more closely tailored to the problem by allowing
eigenvalues freedam up to this level, and then increasing the

damping very quickly to very heavy values.

It is questionable whether the accuracy of the rotation measure
catalogues justifies spending much more time on the problem.
Appearance of more accurate rotation rréasures, found by such a
procedure as that of Rudnick et al (1983) would make it a project

well worth undertaking.

The coefficients which make up the solutions of run No. 126 are
supplied in Appendix A. This spherical harmonic model can be used
to predict the galactic rotation measure for extragalactic sources
not in the cataloque. However, there are often very small-scale
variations in the galactic contribution. It is therefore better to
use very specific local information, fram foreground objects, or
other parts of the same source, to make such predictions. The sum
of squares of residuals of this solution leads to a root mean

square error of approximately 27 rad m_z.

These solutions are primarily relevant to investigation of the
large-scale magnetic field in the local region cof the interstellar
medium. They are intended to quantify the trends in the field.

They can be used primarily as indicators of the types of models of

116



the field which would be useful. Evaluation of models of the
magnetic field should preferably be carried out by direct
camparison with the rotation measures of the catalogue. Residuals
should be found and statistical wvalues calculated from them.
Statistical evaluation of proposed field models by their relation
to the spherical harmonic representation of rotation measures would
be rather complicated. The performance of a field model could be
cavmpared with a spherical harmonic representation, although this
would be a tough test, bearing in mind that the spherical harmonics

are not physically significant.

Pulsar rotation measures cannot be compared directly with the
spherical harmonic representation of extragalactic rotation
measures, because differences may be due to the position of a
particular pulsar in the interstellar medium. A general comparison
can be useful, indicating which features are local, although the
small-scale variations may also cause the rotation measure of an
individual pulsar to be unusual. Manchester and Taylor (1977) have
plotted the rotation measures of pulsars available at that time.
There is a general agreement with the spherical harmonic solutions.
More rotation measures of pulsars are available now, not all of
which have been published. Again, there is general agreement with
the spherical harmonic analysis of extragalactic sources ({(Lyne,

1984) .
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Figure 4.3 Power spectrum of analysis No 5001
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Figure 4.7 Power spectrum of analysis No. 0217

(weighted least squares analysis of rotation measures).
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CHAPTER 5

POLARIZATION OF STARLIGHT

5.1. Introduction

An important source of information about the galactic magnetic
field is the polarization of starlight by interstellar dust
particles, which have been aligned by the field. The angle of
polarization of the starlight is the projection of the magnetic
field on the sky (Davis and Greenstein, 1951), that is, the
camponent of the magnetic field perpendicular to the line of sight.
Consequently, the information is complementary to the information
_about the line of sight camponent in galactic Faraday rotation

measures.

Interstellar  polarization  of starlight is affected by
irreqularities in the distribution of interstellar dust grains and
by the varying physical properties and chemical camposition of the
dust grains (Martin, 1978). Like the extragalactic rotaticn
measures, the polarization measurements contain information about
the galactic magnetic field overlaid by a considerable amount of
confusion fram other effects. Unlike the rotation measures,
interstellar polarization probes the interstellar medium only as

far as the distance of the individual star.

There are 5070 interstellar polarization measurements available in

a catalogue collected by Axon and Ellis (1976). The stars can be
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divided into groups according to their distance from the Sun, each
group formming a spherical shell. Interstellar polarization of
stars within such shells is an appropriate subject for spherical
harmonic analysis. Seymour (1967, 1969) investigated the trends in
interstellar polarization of distance groups of stars from a

catalogue published by Behr (1959).

Behr's (1959) catalogue contained 550 stars, most of these were
nearer than 500 pc. Axcn and Ellis' (1976) catalogue includes 2155
stars which are within 250 pc of the Sun. Clearly it is important

to repeat this method of analysis on the new larger database.

5.2. Polarization by Interstellar Grains

The light from stars is plane polarized by interstellar grains to a
fractional intensity (Fp) of a few per cent, although a few stars
are intrinsically polarized and show a mch higher fractional

intensity of polarization.

The polarization of starlight occurs by the Davis-Greenstein
mechanism (Davis and Greenstein, 1951). According to this theory,
the grains of dust are in thermal motion and have paramagnetic
properties due to their composition. They tend to line up, after
long periods of time, spinning end over end around their minor axes
which are parallel to the magnetic field. This is caused by

paramagnetic relaxation applying a torgque to the spinning grains.
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Van der Hulst (1949) analysed the polarizing properties of aligned
cylindrical grains. When the electric field vector of the light is
parallel to the major axis of the cylinders, extinction is
greatest, and when it 1is perpendicular to the major axis,
extinction is least. When this is combined with the effect of the
paramagnetic torque on the grains, extinction will be greatest when
the electric field vector of the light is perpendicular to the
magnetic field. Jones and Spitzer (1967) looked at the polarizing
properties of prolate spheroids ('needles' or 'rice grains') and
cblate spheroids ('Smarties'), and again extinction is greatest
when the electric field vector is parallel to the major axis of the
particles. Real dust grains are assumed to approximate these

shapes.

The Davis-Greenstein mechanism as outlined above, needs a magnetic
field of at least 10uG. Cugnon (1983) estimates that’ a realistic
value for the required field strength is 45mG or more. Observed
values of the field are of the order of 3/uG. Other mechanisms
have been investigated, for example diamagnetic torques. This
theory predicts that extinction is greatest when the electric field
vector of incoming light is parallel to the electric field. The
plane of polarization of many stars is parallel to the plane of the
Galaxy (Axon and Ellis, 1976). The Davis-Greenstein mechanism
predicts from this that the magnetic field in many places is
parallel to the plane of the Galaxy, which agrees with the Faraday
rotation of galactic and extragalactic sources. Invcking a
mechanism of alignment of dust grains involving diamagnetism means

that the magnetic field is in many places perpendicular to the
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plane of the Galaxy. This is contrary to the Faraday rotation
measures, and the mechanism has been rejected for that reason.
Alignment by interaction with gas flow was also proposed (Gold,
1952) but this agrees less well with observations than the

paramagnetic mechanism (Serkowski, 1962).

In order to reconcile the discrepancies between estimates of the
magnitude of the magnetic field, grains with different paramagnetic
properties were considered, such as grains with high iron content,
grains of dirty ice, and composite grains with a core partly of
iron and a mantle of dirty ice, but the magnetic field required to
align the grains was still an order of magnitude too high. Purcell
(1979) and Spitzer and McGlynn (1979) recently established that
high degrees of magnetic alignment were achieved by suprathermal
rotation due to accidental irregularities in the shape and the
surface of the grain of dust. This explanation is widely accepted

(Aanestad and Greenburg, 1983; Cugnon, 1983).

The relation between extinction and polarization cof starlight at
different frequencies indicates that there are at least two
populations of interstellar dust grains. Aanestad and Greenburg
(1983) describe a population of 0.1 pam particles causing
polarization and extinction at visible frequencies, and one of
0.01 e m particles causing extinction in the far ultraviolet.
Kunkle (1979) propcses a model which uses four distinct populations

of grains of different composition and size.

The shape and composition of the polarizing grains vary fram region
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to region (Aanestad and Greenburg, 1983). The scale of the
variation may be as little as 2 pc (Martin, 1978). Consequently
the relation between the intensity of the field and the fractional

intensity of polarization is variable as well as complex.

5.3. History of Analysis

All-sky plots of interstellar polarization intensity and
orientation show the large-scale features of these probes of the
interstellar medium, particularly when the stars are collected into
distance groups. These have been updated most recently by Axon and
Ellis (1976). They show features that have appeared and demanded
explanation ever since the first detection of interstellar
polarization in 1949, The electric vector of the polarized
carponent of the light is often parallel to the plane of the
Galaxy. This is most noticeable at (=140°, b=0°. At longitudes
such as {=50°,'f=80° in the plane of the Galaxy the electric field
vector seems to take randam directions, suggesting (if the
Davis—Greenstein mechanism is accepted) that the line of sight runs

along the magnetic field in these directicns.

A major feature of the all-sky plots is the high degree of
polarization and aligrment of angle of polarization in stars near
the North Polar Spur known fram radio astronamy. The directions of
the electric field vectors arch up out of the plane toward the
North galactic pole. This feature inspired the theory of Ireland

(1961) and Hoyle and Ireland (1961) which held that a helical
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magnetic field rah along the local spiral arm. The theory was
rejected largely because of the failure of measurements of Faraday
rotation of radio sources to agree with values such as those
predicted by the helical models of Hornmby (1966) or Mathewson
(1968). The North Polar Spur is now regarded as a local supernova
remant or stellar wind bubble (Berkhuijsen, 1973; Weaver, 1979:

Spoelstra, 1972; Bruhweiler et al, 1980; Heiles et al, 1980).

Seymour (1967, 1969) used Fougere's method of spherical harmonic
analysis on Behr's (1959) cétalogue of stellar polarization. He
analysed Stoke's parameters Q and U (expressed in stellar
magnitudes and galactic co-ordinates) separately for stars within
500 pc of the Sun. The groups used by Seymour were (i) 101 stars
between 0 and 30 pc, (ii} 135 stars between 30 and 60 pc, (iii)
105 stars between 60 and 110 pc, (iv} 103 stars between 110 and
260 pc, and (v) 101 stars between 260 and 500 pc. The series of
spherical harmonics was truncated after degree and order 3, so that

10 coefficients were calculated.

Seymour (1967) found that between 30 and 110 pc fram the Sun, there
is a large amount of disorder in the interstellar polarization
measurements, reflected by low significance of components of the
least squares spherical harmonic model. He found evidence for the
presence of the North Polar Spur within 30 pc of the Sun. He also
found that between 110 and 260 pc, a longitudinal field running
from {=50° was consistent with the spherical harmonic model,
although this did not appear in the analysis of the most distant
group. He rejected the helical model of the field by Ireland

(1961) .
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The current catalogue of polarization observaticns compiled by Axon
and Ellis (1976} includes all 1B00 stars fram the previous
catalogue of Mathewson and Ford (1970). Ellis and Axon (1978)
carry out a detailed analysis of implications of the optical data.
They start by 'taking a smoothed representation of the data. They
use all stars within 15° of the plane of the Galaxy, binned in 10
distances intervals of 200 pc, and in intervals of 15° longitude.

The average polarization is calculated for each bin.

Stokes parameter Q in galactié co-ordinates represents camponents
in the plane of the Galaxy and perpendicular to the plane. Stokes
parameter U represents camponents inclined at 45° and 135° to the
plane of the Galaxy. Ellis and Axon (1978) fit longitudinal models
to Q and U data separately, using their smocthed representation of
the catalogue. Using Q data only, ocut to 2 kpc, they find a field
of 2.6 /u.G, runnihg from {=48°, b=+11°, If the solution is
constrained to be in the plane of the Galaxy, the result is a field
of 3.2/u-G, from the direction (=S4°, b=0°. To remove the effects
of local loops and other local features, they subtract a smoothed
representation of polarization in the galactic plane of stars up to
500 pc in distance fram the smoothed polarization of stars at 2
kpc. For the Q data .again, this gives a poorer fit to the
longitudinal model, giving a field magnitude of 3.1 MG running from
{=54°, b=+12°, The U parameter is affected more by randam
effects, perhaps because it describes components which are inclined

to the galactic plane.

141



Ellis and Axon (1978) find that there are severe prcoblems with a
longitudinal model of the galactic magnetic field beyond 500 pc.
They also particularly note that subtraction of the smoothed Stokes
parameters amplifies the errors, so that an incremental map,
recording the change in polarization of stars at increasing
distances, shows largely randam effects. They suggest that this
map is affected by a selection effect which increases with
distance. This effect makes it appear that all polarization occurs
within about 750 pc of the Sun. Highly polarized stars at great
distances are also highly extinguished, and are likely to be faint

and not included in surveys of polarization.

Seymour (1967), Mathewson and Ford (1970) and Ellis and Axon (1978)
all comment on the major feature of interstellar polarization
catalogques associated with the North Polar Spur. The direction of
/ =50° reqularly found for the local longitudinal magnetic field fram
optical data is a direction which is strongly affected by the Spur.
Faraday rotation suggests that the f-ield is found running fram the
direction {=100° or thereabouts. So it is important to determine

the extent of the North Polar Spur.

Seymour (1967) concludes fram the appearance of the spherical
harmonic model of stars within 30 pc, and fram the greater degree
of order in this group of interstellar polarization measurements,
than in more distant stars, that this area includes the position of
the Spur. Bingham (1967) contradicts this, suggesting that stars
closer than 70 pc show little polarization, in this area of the

sky, and do not show the influence of the Spur. Ellis and Axon
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also obtain the distance of the feature (regarded as a shell
structure by 1978) by examining individual stars. They reckon that

the North Pclar Spur, Loop I, extends from 50 to 300 pc.

Berhuijsen (1971) describes the morphology of the four loops
observed in the galactic background radiation, and presents them as
'small circles' on a projection of the sky, giving the direction of
the centres of the loops and their angular diameters. In a later
paper (Berkhuijsen, 1973) she adopts the value of 70pc+40pc for the
tangential distance to loop I (the North Polar Spur), the value
130pc+75pc  for the distance to the centre of the shell, and
230pc+135pc for the diameter of the shell., These values are from
workers using evidence from a variety of criteria (Bunner et al,

1972; Seymour 1969; Spoelstra, 1972).

Around 1970 it was recognised that the loops were shells, probably
of supernova remnants of exceptionally great age, associated with
local groups of stars, and showing up strongly in the magnetic
field and the material of the interstellar medium. The North Polar
Spur was recognised as a multiple shell, having a detailed internal
ridge structure parallel to the main spur. There is far more data
available now about the North Polar Spur than there was when
Seymour (1967, 1969) discussed its position. The distance is not
known more accurately because features of different kinds, HI
emission, X-rays, radio, stellar polarization, do not coincide
exactly (Heiles et al, 1980). Detailed mapping and modelling of
the physical properties of the North Polar Spur would be invaluable

to knowledge of the more distant area, because it would enable
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account to be taken of the effect of the Spur.

Inove and Tabara (1980) used the catalogue of Axon and Ellis (1976)
to examine the local magnetic field, along with rotation measures
from their own catalogue (Tabara and Inoue, 1980). They divide
stars into six distance groups, of 100 toc 200 pc, 200 to 400 pc,
400 to 600 pc, 600 to 1000 pc, 1000 to 1500 pc and 1500 to 2000 pc.
They look at differential .pola.rization, subtracting the average
polarization of the inner shell of stars fraom each star in the next
group. They deduce fram this that interstellar polarization is
more closely correlated with dust clouds than with the component of
the reqular magnetic field. They therefore reject the evidence
fram polarized starlight from stars in the plane of the Galaxy and
investigate stars around the southern Galactic pole, well away fram
the plane and fram the North Polar Spur. They find that here the
reqular magnetic field runs from {=100°, a figure which agrees with

other evidence.

5.4, Fougere's Method

In carrying out spherical harmonic analysis on interstellar
polarization measurements, it is important to look at stars which
are all at similar distances. Starlight which has travelled
various distances through the interstellar medium will not show a
consistent or reascnably smooth variation in polarization angle, in

the underlying trends.
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Following Seymour (1967) Stokes parameters in galactic co-ordinates
were regarded as independent scalar variables and analysed
separately. Spherical harmonic analysis of a scalar variable is
most appropriate when values are scattered reasonably evenly over
the whole sky. This limits analysis to stars which are less than

about 200 pc from the Sun.

The stars in the catalogue were cambed to produce several groups
{or shells) of stars within certain distance ranges, in order to
investigate thé local interstellar medium and magnetic field. The
distance groups selected were 0 to 28 pc, 29 to 53 pc, 54 to 78 pc,
79 to 103 pc, and 104 to 128 pc. The numbers bounding the groups
were chosen because at distances of 100 pc and more, distance

estimates had often been rounded to the nearest multiple of 5 pc.

The stars at various distances are affected by dust all along the
" line of sight, cumilatively. In order to lock at the trends in the
interstellar material in each shell independently, it was planned
to subtract the contribution of earlier shells found by the
spherical harmonic analysis. The polarization of stars in each
group would be scaled to one mean distance. However, this plan

proved unworkable in practice, as will be described.

The Q and U parameters of the stars in the first group were
analysed twice, once using the values in the catalogue, and once
scaling the values to the average distance of all the stars, which
was 18.7 pc. The spherical harmonic series was truncated after

harmonics of degree and order 4, for this preliminary

145



investigation, and a significance cut cff level of 0.1 was used,
although other levels were also investigated. All of the solﬁtions
followed a typical pattern. A few, typically three, of the 25
coefficients were ten times the size of the others, daminating the
solution. The last of these was also the last harmonic coefficient
that was not set to zero by the truncation procedure. This
suggests strongly that only the method of selection of the
orthogonalized components had kept in other low coefficients,
highlighting the arbitrariness of the secondary truncation

procedure.

The scaled sets of parameters were found to be initially dominated
by one star, which was very highly polarized, at 9 pc distance.
However the pattern of domination by a few harmonics persisted
after this star was removed fram the group. This star suggested a
reason for the domination pattern. A very few stars with higher
degrees of polarization than the others make a few harmonics

sufficiently significant to pass the F-test criterion.

The second and third groups of stars were analysed in the same way,
and again stars had to be removed which were dominating the
analysis. The same pattern of a few harmonics only being daminant
persisted after their removal. Moreover, the predicted values of
the coefficients remained low, about 2x10_4. This meant that when
the previous contributions were removed, the new values were
actually much higher than the analysis of the original trends in
the group. The Q parameter of the second shell had predicted

values so much lower than the first shell that the appearance after
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subtracticn of the inner shells contribution, was a reflection of

the analysis of the inner shell.

It was clear from the preliminary investigation that little would
be gained fram carrying on with this method. The stars needed to
be cambed for the most unlikely values, and the analysis needed to
be more robust to the large random variations in the measurements.
The large variations may be due to intrinsic polarization in the

stars, or to a high level of polarization fram small dust clouds.

5.5. Minimm Norm Method

MINITAB, the statistical package, was used to camb the data set of
all 2155 stars within 250 pc for outliers. For each star the Q and
U parameters were each divided by the distance. The two parameters
obtained were converted to a nomal distribution by subtracting the
mean fram each value and dividing by the standard deviation. These
two normalized values were each squared, and the two squares were
added. The final number should have a chi-squared distribution
with two degrees of freedom, Tables of the chi-squared
distribution gave the information that 99% of the values should be

less than 9.21 and 99.9% should be less than 13.82.

There were 18 stars whose chi-squared value was more than 9.21,
which was acceptable, (22 would be expected). However, 8 of these
had a value great than 13.82, where 2 were expected. As there were

several at these numbers, it was difficult to decide where to draw
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the line. There was, however, only one chi-squared value between 8
and 10, this was at B.02. It therefore seemed sensible to exclude
all the stars for which the chi-squared value was more than 9.21,
effectively all those over 10.00. There remained 2137 stars within
250 pc of the Sun., This exclusion was perhaps over zealous, but
was thought useful to improve the performance of the spherical

harmmonic analysis.

Four larger distance groups were selected in order to stabilize the
analysis. These were a group of 621 stars between 0 and 45 pc, 569
stars between 46 and 90 pc, 410 stars between 91 and 135 pc, and
299 stars between 136 and 182 pc. The last group covers a slightly
wider distance, to include more stars. The Stokes parameters were
each divided by the distance of the star. Program GW was used for
the analysis this time, allowing a range of damping options. Again
there proved to be problems carrying out the analysis. Preliminary
investigation was carried out on the third set of stars, between 91

and 135 pc fram the sun.

Solutions were found for the third set using the damping function
L8 which was used with the rotation measure data. The harmonic
series was taken to degree and order 14, Three sets of
polarization parameters were analysed, these were Q, U, and
Ip = (:(Q/d);Z + (U/d)zJ!'i. The solutions are presented in the form
of contour maps in Figures 5.1, 5.4 and 5.7. The corresponding
'trade-off' curves are shown in Figures 5.2, 5.5 and 5.8, and the
power spectra in Figures 5.3, 5.6 and 5.9. The power spectra show

that the solutions are converging very slowly. The trade-off
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curves show that values were selected not at the knee of the curve
but favouring a smaller solution norm at the expense of the

residual norm to encourage convergence.

All three solutions are largely featureless with one area of high
absolute values of Q, U and Ip. This centres on {=90°, b=15°. The
E-vector maps (Axon and Ellis, 1976) show that this feature is due
to one star so these solutions are very unsatisfactory. They
contain no information that cannot be obtained more accurately from
the actual polarization measurements. They confuse rather than

inform.

A final attempt was made to find a better set of solutions, in this
the Q parameter data was solved, without dividing the value by the
distance of the star. This proved to be even less convergent, and

no solution is shown.

In view of the results of using heavy damping with synthetic data
sets, it was not possible to feel confident that such solutions
could be good models of the polarization parameters, and the

solutions themselves inspire no confidence.

5.6. Discussion
Both Fougere's method and the inverse theory method using damping

have failed to find usable solutions on this set of data. It is

possible to bring more powerful armoury to bear on the problem of
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spherical harmonic analysis of awkward data sets. The eigenvector/
eigenvalue analysis of Jackson (1972) allows much more detailed
inspection of the behaviour of the solution. The two methods used
are both ‘packages', which do not permit detailed examination of
the analysis, although it would be possible to extend them.
Further use of spherical harmonic analysis on interstellar
polarization measurements should start by considering the methods

of Jackson (1972)
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CHAPTER 6

MODELLING THE GALACTIC MAGNETIC FIELD

6.1. Early Magnetic Field Models

An early model of the magnetic field was of field lines running
along the spiral arms of the Galaxy, described by Hoyle and Ireland
(1960a) among others. The magnetic field was seen as tubes of
force which had a vital role in maintaining the spiral arms. This
role has now been superseded bv spiral density waves, however in
other respects, these early ideas are very similar to the currently
proposed open bisymmetric spiral field (Sawa and Fujimoto, 1980;
Sofue and Fujimoto, 1983). Hoyle and Ireland (1960a) suggested
then that the field is primordial in origin, and partly wound by
differential rotation. The winding leads to instability, so that
loops of the field emerge from the plane to the halo of the Galaxy.
The gas and magnetic field flow along the spiral arms, outward.
Conservation of angular momentum requires that there is an inflow
of gas in the halo towards the centre of the Galaxy. Hoyle and
Ireland (1960b) discuss this problem, noting that the inflow is not

observed.

A new model emerged when Hoyle and Ireland (1961) proposed that the
magnetic field lines form a tightly wound helix around the spiral
arm. They were dissatisfied with the spiral field model, and
wished to account for the polarization of starlight. The model is
discussed in detail by Ireland (1961). Measurements of inter-—

stellar polarization show a region of maximum polarization parallel
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to the galactic plane at {=140°. This region suggests that the
field direction is ¢=50°, and is still found (Axon and Ellis,
1976) . These cbservations are not in line with the spiral field
model, but are explained by the helical field mcdel, for sta;:S

which are not too close to the mid-plane.

A new impetus was given to the helical magnetic field model by the
estimation of Faraday rotation measures of extragalactic sources by
Gardner and Davies (1966). Hornby (1966) found evidence in these
estimates for the reversal J.n sign of the rotation measures across
the galactic plane. Seymour (1967) found that the equatorially
anti-symmetric component of a third order spherical harmonic model
of the rotation measures was an order of magnitude larger than the
equatorially symmetric camponent, confirmming Hornby's (1966)
analysis. Seymour (1967) however, found that analysis of radio
continuum polarization measurements was nof éonsistent with the

helical magnetic field model.

Mathewson (1968) had measured the polarization of 1400 stars and
his results led him to suggest that a tightly wound helix with
pitch angle 7° accurately described the magnetic field in the local
spiral arm. He then interpreted the spurs observed in radio

continuum surveys as radio tracers of the helical field.

Rotation measures found after this time (Wright, 1973) began
increasingly to suggest that the magnetic field did not reverse its
direction at the galactic plane. This rules out the possibility

that the field is a tightly wound helix. A more loosely wound
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helix remains a possibility, but this removes fram the model its
ability to account for the interstellar polarization, which is its
raison d'etre. The radio continuum spurs are now regarded as parts
of supernova remnants (Berkhuijsen, 1971; Berkhuijsen et al, 1971;
Spoelstra, 1971; Haslam et al, 1971}). Moreover Berkhuijsen et al
(1971) point out that Loops II and III are in places perpendicular

to the helices of the tightly wound model.

Fujimoto et al (1971) speculate that 'rotating eddies' along the
spiral arm cause helical twisting of the magnetic field. The angle
of the helix would be variable. This idea was not taken up, and
the interpretation of the radio loops or spurs as supernova
ramnants marked a defeat for the helical model of the magnetic
field, - because its e.xpianation of interstellar polarization
measurements had been its strength. The pattern of interstellar
polarization shows a clear association with the North Polar Spur,
and this has led to the assumption that the features of the field

described are local and ancmalous.

6.2. Toroidal and Spiral Models

Simard-Normandin and Kronberg (1980) use 543 rotation measures from
their catalogue of extragalactic rotation measures
(Simard-Normandin et al, 1981} to investigate the galactic magnetic
field. They have a method of averaging rotation measures over
small areas of sky, which gives an approximate value for the

galactic contribution to the Faraday rotation at many grid points
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over the sky, called the GRM, Particularly unusual rotation
measures are excluded and the GRM is not evaluated if there are too
few rotation measures in the area. This process is analogous to
using spherical harmonic analysis to determine large-scale trends,
The GRMs however are not evaluated everywhere (there are many gaps
in the plane of the Galaxy), and can be misleading where the

rotation measures change sign sharply.

Many features in the spherical harmonic analysis of the rotation
_measure data set appear also in Simard-Normandin and Kronberg's
(1980) set of GRMs. Three regions are particularly important. The
first is the concentration of strong negative values below the
plane at {=90°, called region A by Simard-Normandin and Kronberg
(1980), and associated with Loop II. The second is the region of
high positive rotation measures around {=250°, which is associated
by Simard-Normandih and Kromberg (1980) with the direction of the
Gum Nebula, and called region B. The third is the region of high
positive rotation measures above the galactic plane at (=40°, which
they call region C, and which is coincident with the North Polar
Spur, Loop I. Although Simard-Normandin and Kronberg (1980) draw
attention to the association in direction between three local
supernova remnants and the three major features of their GRM map,
in each case they reject the possibility of a real physical
association, and regard the rotation measure features as large
scale features of galactic dynamics. This allows them to construct
large scale models of the galactic magnetic field, and campare the
rotation measures predicted fram these models with the real

rotation measures and with the GRMs, in the galactic plane.

163




Simard-Normandin and Kronberg (1980) consider a set of toroidal
models and a set of spiral models. The parameters of the models
are chosen from reasonable values, and not selected to give a good
match to the rotation measures. Four toroidal models are
considered: (1) a toroidal model with no reversals; (2) a
toroidal model with cne reversal within the orbit of the Sun; (3)
a toroidal model with the same reversal, and with a null field in
the outer parts of the Galaxy; (4) and lastly a toroidal model with
two reversals. The second of these proves to have interesting
areas of similarity with both the GRMs and the rotation measures.

There are several problem areas for this model.

Simard-Normandin and Kronberg (1980) then look at a set of four
spiral field models each of a four armed spiral with pitch angle
14°, These are: (i) a spiral model with no reversals; - (ii) a
bisymmetric model with sharp reversals; (iii) a spiral model with
four reversals and (iv) a bisymmetric model with rrbdulated
reversals. The last of these proves to be in better agreement with
the GRMs than other models, although it predicts a sharp negative
feature at ¢=320° which does not appear. It is not a notably good

model of the actual rotation measures.

Simard-Normandin and Kronberg (1980) recammend the bisymmetric
spiral model with modulated reversals. There are several
unpalatable aspects to this recamrendation. The first is that the
major features of the GRM map which the models need to reproduce
are all three associated with known local anomalies in the local

magnetic field, a point that has been made strongly by Vallee
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(1983a, 1984). A second problem is that the models have not been
evaluated quantitatively. It is important to carry out a
statistical evaluation of the merit of different models, which can
be done using the F-test and the original rotation measures, not
the smoothed ones. The smoothed 'rotation measures' are
statistically more camplicated, because the distribution of errors

can no longer be assumed to be Gaussian.

A bisymmetric spiral magnetic field model is also used by Sofue and
Fujimoto (1983). They select rotation measure data from the
catalogue of Tabara and Inocue (1980). They use a Gaussian beam to
smooth the.observed rotation measures, and take the values of this
smoothed distribution in the plane of the Galaxy, for camparison
with the predictions of the bisyﬁmetric spiral model. The
camparison seems to show that the model is interesting but has
serious faults. No quantitative evaluation is offered, nor any
camparison with the performance of any other model, however Sofue
and Fujimoto (1983) conclude that the galactic magnetic field

follows this pattern.

6.3. Local longitudinal Magnetic Field Models

It is relatively simple to determine the direction of the magnetic
field in the local area, fraom whatever kind of observations are
being used, although it is unfortunate that such a wide variety of
answers are found. This is a valid and basic model, because

finding a first order approximation to the field is a practical and
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interesting analysis. One or more parameters are calculated, and

some estimate of errors and probabilities can be provided.

The field configurations which are spiral or toroidal on a galactic
scale are both longitudinal locally, and difficult to distinguish
fran each other, particularly since the density wave theory,
involving a toroidal field, allows for some perturbation in the

direction of the field.

Thamson and Nelson (1980) find using puléar rotation measures that
a good longitudinal model of the magnetic field is in the direction
of {=74°, and has a reversal at a distance of 170 pc. Thamson and
Nelson (1981) find very similar results using extragalactic
rotation measures fram the catalogue of Tabara and Inocue (1980).
Inoue and Tabara (1981} criticise Thamson and Nelson (1980, 1981)
because they find no reversal in the rotation measures, looking at
southern galactic latitudes. Inoue and Tabara (1981} feel that it
is important to avoid anomalous areas of sky in making the analysis
of the data. However, this can be risky in itself because nearly
anything could be confirmed, or rejected, in some area of the
rotation measure sky. The reversal of rotation measures in the
area of the North Polar Spur cannot be avoided, although it seems
that this feature is less marked in the catalogue of Tabara and
Inope (1980), considering the plot of the distribution of rotation
measures presented by Sofue and Fujimoto (1983). However, if there
is a real reversal of rotation measures associated with a local
feature, then there is either a real small scale reversal or

doubling back, or a real large scale reversal. Thamson and Nelson
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(1980), analysing pulsar rotation measures, find that a
longitudinal model with a large scale reversal is a better model
than a longitudinal model on its own. They exclude six scurces

associated with the North Polar Spur.

Vallee (1983a) investigates values of the magnetic field in nearby
spiral arms assuming a longitudinal field‘with‘reversals directed
toward { =90°. Vallee (1984) and Broten et al (1985) lay great
emphasis on the role of the galactic loops, calling them
interstellar magnetic bubbles. A stiaight forward model of a small
region of sky is used by Vallee (1983a) to estimate the value of

the magnetic field in the Perseus arm at 1.5 uG.

Vallee and Bignell (1983) model the effect of the shell of the Gum
Nebula on rotation measures in that region but no all sky modelling
has been done which includes a model of bubbles. Streitmatter et
al (1985) consider that the sun lies in a much larger superbubble
around the stars of Gould's belt and pramise a model of the effect
of this on rotation measures. This superbubble is much larger than
the size of the North Polar Spur, and is on a scale of kiloparsecs.
The modelling of the solar neighbourhood promises to be

interesting.

6.4. Implications of Spherical Harmonic Analysis

The coefficients of individual spherical harmonic functions from

the analysis of rotation measures can be used to investigate
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features of the rotation measure sky. The harmonic of degree and

order 1 are
sin8 oos¢ and sin@sin 47

The coefficients of these two functions can be combined to give a
value for the first order approximation of the direction of the
magnetic field f(d)) (strictly, the direction of highest rotation
measures, the maximm of the line of sight camponent):

£(¢) = a cos+ b sin §.
Then, at constant latitude, maximm and minimm rotation measures
are found at the zeros of _q(f_ . If neither a nor b are zero, the

d¢

turning points occur when tan4: = %.

In solution 126, a=7.3 and b=-44.8, so that turning points of f(¢)
are at4>={=99.3° and 279.3°. The values of f((P) at these
positions are -45.4 and +45.4 respectively. This value for the
direction of the longitudinal field is extremely close to the
values found by Incue and Tabara (198l) who found that the regular
field runs in the direction {=100°i10°, and by Thomson and Nelson
(1980) who found from pulsar rotation measures that the best
longitudinal field direction with reversals is {=107°+7°. A
maximm can be seen in this region in all the spherical harmonic

models of the rotation measure data set.

Inspection of harmonics of the second degree shows that high values
in the plane will also be represented by the second degree

harmonics of second order :

éﬁ' 3 sin’@ cos 24) and _léJT3 sin’e cos 2¢
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These are harmonics that simply have two maxima and minima around
the plane of the sphere, and are zero at the poles. Using the same
method, they are found to have maximum and minimum values of +14.5
at (=30.1° and 210.1°, and -14.5 at {=120.1° and 300.1°. Clearly
these harmonics are being used to model the maximum and minimm
values either side of the reversal in rotation measures shown by
the model at {=70°, b=10°. Other coefficients can be found taking
up similar positions, in order to build up the mcdel predictions of

2 at {=100° and +300 rad m > at {=40°, in the plane of

-300 rad m_
the Galaxy. The spherical harmonic model, constrained as it was to
use low order harmonics, could hardly model a reversal any more

sharply than this. The feature deserves further attention,

A reversal in the field between the Sun and the centre of the
Galaxy has been found to be a good model when incorporated into
bisymmetric spiral and toroidal fields by Simard-Normandin and
Kronberg (1980). Sofue and Fujimoto (1983) also include a reversal
in their bisymmetric field model. Thomson and Nelson (1981) find
that a longitudinal field directed towards (=74°+10°, with a
reversal of that field, inward of the Sun, at a distance of 170 pc,
is a better model than a simple longitudinal model - that is,
better than the one already mentioned, in the direction of

{=107°+7°. No reversal has been found by Incue and Tabara (1981).
The catalogue of Tabara and Inoue (1980) does not contain so many
positive rotation measures in the region around ¢=30°, b=10°, nor
such large ones. The determination of rotation measures is more
strictly controlled by Tabara and Inoue (1980) so that it 1is

possible that the several large positive rotation measures found by
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Simard-Normandin et al (198l) failed to make the higher grades of
Tabara and Inoue (1980). However it is also possible that extra
measurements were available to Simard-Normandin et al (198l).

Clarification of this point would be very useful.

Pulsar rotation measures tend to confirm the high positive values
found for the extragalactic sources in this region (Manchester and
Taylor, 1977). However, Heiles et al (1980) estimate a value of 26
rad m % with an uncertainty of 50% for the Faraday rotation inside
the emitting region of the North Polar Spur. They also estimate
that the electron density within the shell is a greatly enhanced
value of 0.4 cm-3. They find the magnetic field to be low, about
l.5/uG, along the line of sight. The distance to the shell is also
of the order of 70 pc (Berkhuijsen, 1973), so it is impossible that
the large rotation measures come fram this region, even if the
magnetic field or electrén density are anamalous. This suggests
that there is a large scale reversal of the field including the
North Polar Spur, to bring about positive rotation measures as high

as two or three hundred.

It is easy to estimate the rotation measure that would be expected
in this region if a longitudinal field pointing away from the Sun
in the direction of {=100°, dominated the sky. The North Polar
Spur region is found at approximately {=40°. The line of sight
makes an angle of 60° with the .line of sight, so rotation measures
of -300cos60° are expected, which is =150 rad m-2. To find
positive rotation measures here would indicate a reversal. To find

large positive rotation measures is extraordinary. From this it
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appears certain that there is a large-scale reversal, as well as

large or small scale anamalies in this region.

Estimates of a longitudinal field without a reversal being in the
direction of {=100° may be due to the reversed area 'pushing' the
maximum away fram {=90° or {=80°. However, there may really be a
field directed away fram us toward {=100°, as well as the reversed
section running toward us from {=74°. Detailed modelling of a
nurber of possibilities, with statistical tests of the significance
of the models, would be of- great value in considering the

configuration of the field in the local area.

6.5. New Models of Electron Density

Lyne et al (1985) describe a model of the electron density which
includes a constant term of 0.025 c:m—3 for all pulsars, and a term
of 0.015 an > due to ionized hydrogen in the disc of the Galaxy,
with a scale height of 70 pc. This suggests an improvement which
can be made in modelling the rotation measures of extragalactic
sources, because most models regard the electron density as
constant within the Galaxy. It is important to consider local
variations in the electron density, and how these affect the
rotation measure trends. Models will be presented below which show

possible systematic variations in electron density, and one of

these is considered in some detail.

The models presuppose that the galactic mégnetic field 1is
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longitudinal in the region within 2 kpc of the Sun and do not
include effects outside this region. This region was chosen
because variations in the interstellar medium with a small scale
height are only probed to greater distances by very low latitude
sources. Sources with |bj<2° will have a line of sight within 70
pc of the mid-plane for over 2 kpc. Sources with lbl <5° have a

line of sight within 200 pc of the plane for over 2 kpc.

The direction of the longitudinal field is allowed to vary within
the plane of the Galaxy Strictly this is not necessary, the field
direction could be fixed and only the electron density pattemn
allowed to vary its position. However, it 1is clearer to use
galactic co-ordinates and coonsider various magnetic field
directions. This allows investigation of the difference between
field directions of £=50° and ¢=110° and the directions in between

for the local field.

Electron density pattermns which will cammonly occur are enhanced
density in a spiral arm region, local hot-spots, and ring or
shell-structures of high ionization. In the first model, type (i),
the electron density is highest along a straight line passing
through the Sun. Away fram this line it falls off exponentially at
a rate described by a parameter g. This is a simplistic model of
high ionization in a spiral arm, and improvements could be made by
offsetting the Sun fram the centre of the arm and away fram the

mid-plane by a variable amount.

The second model, type (ii), describes a hot-spot of electron
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density, which decreases exponentially at a specified rate with
increasing distance fraom its centre. In the third model, type
(iii), electron density 1is greatest on a given sphere, and
decreases in the same way with increasing distance from the sphere.
Exponential decay is used to simulate a real situation while
allowing quite simple mathematical analysis. In the case of a
hot-spot, for example, the electron density might reach a maximm

at the centre of Nc c:n-3. The electron density at distance 4 from

-(4y2 -
the centre would be Nce (g) an 3. At the distance g fram the
centre, the electron density will have dropped to 37% of its

maximm value.

All three models will be described restricted to the plane of the
Galaxy. This is another simplification for preliminary analysis,
not appropriate for sources in the plane of the Galaxy, but useful
for sources quite near the plane. An extension to three dimensions

is shown for the type (i) model.

A position in the plane of the Galaxy is described in polar
co—ordinates by (r, {), where r is its distance‘ fram the Sun and

{ is its galactic latitude. The magnetic field cames fram a
variable galactic longitude, {=4 . The spiral arm (in the case of
the first model) runs in the direction of {=ot. This is shown in
Figure 6.1. In model type (i) the variable camponent of the

electron density NV decays with distance d fram the spiral arm. So

_( )2

e\

N (r,{) =Ne
v c
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Figure 6.1 The plane of the Galaxy showing a spiral arm running in

direction & and a longitudinal magnetic field in direction /3.
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Figure 6.2 The plane of the Galaxy showing a line of sight in

relation to the spiral arm direction oK

t74




Figure 6.2 shows a line of sight in relation to the spiral arm

direction. Inspection shown that
d= r|sin (x-24)

If the intensity of the magnetic field is B, then the component of

the magnetic field directed along the line of sight at (r, {) is

B cos ([-‘-4).
So
2 lepc
..("‘)z
rR1({) =k | Ne 4B cos (B-¢) ar
r:0 2 lepe
_ol
=chBcos (p—L) e("{)zdr
r=o

This integral is the error function and is available in tables or,
when using the camputer, as a FORTRAN function in the NAG library

of numerical algorithms.

The two dimensional analysis is very similar for models (ii) and
(iii). In type (ii), suppose the centre of maximm electron
density is at (rc, (,c) and the same parameter g describes the rate

of decay. Then

_qd
N (r,l) = Ne (1)2
v c
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as before, where now
= . -
42 = r_tr3-2r r, cos ({c {)
by the cosine fornrmula, in Fiqure 6.3.

In model type (iii) suppose the centre of the circle is at

(rc, l.c) , and the radius is R, with parameter q as before. Then

. _(d‘R
Nv(r,l,) =Ne ' 4

)2

where d? is as in type (ii) above,

The type (i) model can easily be extended to include galactic
latitude b, if variations out to a scale height of say 200 pc are
to be considered. The line of sight ccmpone.nt;: -of the magnetic
field becomes Beos(B -< )cos(b) in the three dimensicnal case.
Then consider the point (s, {, b). Figure 6.4 shows a slice
perpendicular to the galactic plane which includes (s, <, b) and
the Sun. If the perpendicular distance of (s, £, b) fram the

centre of the spiral armm is t, then clearly
t2 = s2sin2b + 42

where d is the distance of (s cos(b), { ,0) from the centre of the

spiral arm.

176



{ = 90°

Figure 6.3 The plane of the Galaxy showing line of sight in
direction ¢, in relation to electron density hotspot at (rc,lc)

in polar co-ordinates.
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(s,?,b)

s sin b

Sun > plane

Figure 6.4 A slice through the plane of the Galaxy including

(s,4,b) and the Sun.

200pc

b,

—> plane
2000 pc

Figure 6.5 A slice through the plane of the Galaxy represented

as a slab, including lines of sight at angles b, and b, to the plane.
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d2=s2cos? (b) sinz (e« - {)
as before substituting r = s cos(b). So
t2=s2cos?(b) sin?(« -{) + s2sin2(b)

If the electron density in the spiral amm is to be cylindrically

symmetrical replace

d
N (r, {)=N (7))
v c

t
N (s, {,b) = Nce_( 7)?

If it is to have an ellipscidal cross section replace the single

parameter q by two parameters p and q. Then replace

(52
by

SZCcosz(b) sin@-{) + Sinz(b))
2 2
) P
Parameter p describes the decay of electron density out of the

plane of the Galaxy. Then

- )2
RM({, b) =k B cos (b)cos {3 —-(_)Nc e ‘4’ ds
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L is the line of sight to the edge of the region being considered,
and ds is an element of the line of sight. The limits of
integration can be determined by a sharp cut off to the slab of the
Galaxy as in Figure 6.5. If 0< |b| <tan”1(0.1), the limits of
integration are 0 to 2000/cos(b) pc. If |b] >tan_1(0.l) , the limits

of integration are 0 to 200/sin(b) pc.

The two-dimensional version of the type (i) model was used to
predict the variation of rotation measures near the plane of the
Galaxy. Five relative directions of the spiral amm ({=%) and the
longitudinal magnetic field ({=p) were considered. The direction

x of the spiral arm was kept at 75°, and the width of the arm was
described by parameter g as 400 pc (following Elmegreen, 1985), and
the direction 4 of the field was made to be 0°¢, 45°, 75°, 50° and
110°. The strength of the magnetic field used was B/U-G, and the
maximm electron density was 0.015 an}. The resulting variation

of rotation measure with galactic longitude is shown in Figures 6.6

to 6.10.

The variation of rotation measure along the galactic plane due to a
longitudinal magnetic field in constant electron density can be

modelled by
RM = 2000 k ¥Ne H cos (B-{)
where { is the galactic longitude, and other symbols have their

usual meaning. This describes the rotation measure due to the

effect of the local region, within 2 kpc, and is applicable to
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sources near the galactic plane. The magnetic field strength used
was 3}/-G, and the electron density was 0.025 cm_3. This variation
is shown as a function of galactic longitude in Figure 6.11, for

camparison with the model of variable electron density.

The Fiqures 6.6 to 6.11 show that, with these values of electron
density, the rotation measures are daminated by the contribution
fram the 'constant' background electron density in the interstellar
medium. Varying electron density in the local spiral arm segment
would show up as a small patch of high rotation measures. This
might not be detected by the particular sources sampled, especially
considering the prcobable extragalactic contribution to individual
sources. If detected it would be hard to distinguish fram other

anaomalous regions in the local region of the Galaxy.

6.6. Conclusions

Modelling can give useful hints about the behaviour of the galactic
magnetic field. Generally, strong conclusions about the shape of
the field await further measurements and the use of strict

statistical inference from models.

Models of small-scale variations 1in the local regions are
important, because of the clear appearance of local anamalous
features in the rotation measure sky. Models were proposed for
investigation, which considered the models of electron density used

by workers with pulsar measurements. The model of varying electron
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density in the local spiral armm proved unhelpful, showing that the
approximation of using constant electron density in models is a

practical one,

Many more camplex models can be devised and considered in this way.
The conclusions that can be drawn from such models are limited by
the accuracy of observed values such as rotation measures. The
area of sky near the North Polar Spur deserves particular attention
in future work. In particular it would be useful to know whether

this is a local anomaly or a large-scale feature.

182



150

198 -
p 3@
r
e
d
1
13
L 9 i 1 1 L 1 I 1
e | 158 _i22—% 6 3@ o 33 300 2
R
M

-8 F

-100

-150 -

Galactic Longitude

7 248 2108

Figure 6.6 Rotation measure model (i) with &= 75°, A= 0°.

183



150

186

50

XA AN —~QD73 0
1
n
[~ [.N]
1

-108

-150 L

Figure 6.7

150 126 9 60 39 @ 330 278 240 210

Galactic Longitude

Rotation measure model (i) with o= 75°, 3= 45°.

184



150

109

P
r
e
d
1
C
L 1 1 1 ] 1
& 308 278 240 210
R
M
_Sa_
~109
—ISBL

Galactic tongitude

Figure 6.8 Rotation measure model (i) with o= 75°, f3=15°.

185



158

180 |-
p 390
r
e
d
1
t
o )
d
R
n
-99 +
-109
-15‘3L

368 27@ 240 2

®

150 126 99 66 30

Galactic Longitude

Figure 6.9 Rotation measure model (i) with o= 75°, /3= 90°.

186



199

100

.

50 F

58120 98 68 3@ 9 300 270 240

XA aocn-=amT o

i
[4)]
[~

T

-189

—

-159

Galactic Longitude

Figure 6.10 Rotation measure model (i) with &= 75°, /3= 110°.

187



158

100 |

1 1 1

159 1206 99 60 30 339 308 278 240 219

—]

IO Amen—0om30
(o]

-109

-150

)

Galactic longitude

Figure 6.11 Rotation measure model of constant electron density

in a slab, with /= 90°.

188



CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTICNS

7.1. Spherical Harmonic Analysis

In Chapters 2 and 3 two methods of spherical harmonic analysis were
described and investigated. These were a method developed by
Fougere (1963) and an inverse theory method developed by Gubbins
(1983). Both of these find a solution without detailed inspection
of the numerical characteristics of a particular analysis. The
second method, however, allowed consideration and camparison of a
large number of solutions. Use of the two methods of analysis in

Chapters 2 to 5 leads to the following conclusions:-

(i) Fougere's method is based on the statistical method of forward
selection, which is an important method of inverse theory.
However, it has proved to be of limited value in the analysis of

extragalactic rotation measures and interstellar polarization.

(ii) The damping (or ridge regression} method developed by Gubbins
(1983) has been useful in the analysis of extragalactic rotation
measures, but good solutions have not been found fram interstellar
polarization data. In general, damped weighted least squares
solutions are improvements over the least squares solutions.
Inspection of the individual analyses using other methods of

inverse theory would be profitable.
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(iii) Spherical harmonic analysis is the appropriate method of
modelling variations over a spherical surface. However, this can
be time consuming, and it can be difficult to find a good
representation, as shown in Chapters 2 to 5. Therefore other
methods of smoothing data on the surface of a sphere are worth

considering.

(iv) Future use of spherical harmonic analysis of astrophysical
data should investigate the further use of inverse methods,

particularly as used in the work of Jackson (1972).

7.2. Rotation Measures

The problems of finding rotation measures were described in Chapter
4. Spherical harmonic analysis was carried out on extragalactic
Faraday rotation measures fram the catalogue of Simard-Normandin et

al (1981). This work suggests the following conclusions:-—

(i) It is important to investigate further the accuracy of values
and errors of rotation measures of extragalactic sources, following
the work of Wright (1973} and Thomson (198l). Ideally,
polarization measurements should be made specifically to find the

rotation measure, as done for example by Rudnick et al (1983).

(ii} ‘The results of the spherical harmonic analysis in chapter 4

indicate the large-scale trends in extragalactic rotation measures

over the sky. They should be considered hcwever in conjunction
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with plots of the rotation measures, as scme features may be
spurious. The solutions indicate the galactic contribution to the
rotation measure, but for specific sources a better indication will
be obtained fram nearby sources and inspection of the rotation

measure in different parts of the source, if this is possible.

(1ii) The analysis shows an area of high positive rotation
measures, up to 300 rad m_z, at galactic longitude 10°< { <70°, and
slightly above the plane of the Galaxy. Values switch rapidly to
negative of similar magnitude, at 70°< {<160°, in the piane of the -
Galaxy. Subject to further clarification of rotation measures,
this indicates a reversal of the galactic magnetic field. The
reversal is probably close to the solar neighbourhood (Thomson and
Nelson, 1980). Positive rotation measures, up to 200 rad m 2 are
shown in the plane of the Galaxy, at longitudes 170°< { <330°. The
root mean square error of the spherical harmonic model is 27 rad
m—z.

(iv) An important set of data that should be investigated in the
near future is the latest camplete set of pulsar rotation measures.
Many have been measured recently (Lyne, 1984). They are better
procbes of the interstellar medium than extragalactic rotation
measures, but require more complex analysis because they are at
varying distances in the medium. Modelling and statistical
analysis as carried out by Thamson and Nelson (1980) and Theomson

(1981) is an example of a promising approach.
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7.3. Interstellar Polarization

Spherical harmonic analysis was carried out on measurements of
interstellar polarization fram the catalogue of Axon and Ellis
(1976). Stars at distances up to 135 pc were considered, however,
results were poor. No satisfactory solutions can be presented, and

conclusions are as follows:-—

(1) Spherical harmonic analysis of interstellar polarization
proved lengthy, and the results were not useful. Both Fougere's
method and the damping method failed to produce solutions. Further

strategies of inverse theory could be applied to the analysis.

(ii) Nearby shells of stars, out to 135 pc, show very disordered
polarization which disrupted the analysis. The interstellar medium

is disordered on a very small scale, locally.

(iii) Spherical harmonic analysis is only appropriate to the
analysis of shells of stars around the sum, and the camparison of
different shells has same numerical and statistical pitfalls.
Interstellar polarization measurements may contain as much
information about the distribution of interstellar dust as about
the interstellar magnetic field, and the E-vector maps of Axon and
Ellis (1976) already form valuable and accessible indicators of
trends in the polarization measurements. Therefore it 1is
questionable whether further attempts at spherical harmonic

analysis would be worth while.
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7.4. Models

In Chapter 6 modelling of the galactic magnetic field was
discussed. Some implications of spherical harmonic analysis of
extragalactic rotation measures were presented. Some models of
systematic variation of electron density were suggested, with
methods of evaluating their effect on extragalactic rotation
measures. One of these was investigated briefly. This work leads

to the following conclusions:-

(i) It is not possible to reach firm conclusions about the form of
the galactic magnetic field at this stage. Models presented so far
by workers in the subject are not conclusive, but have a role which
is rather more experimental and inspirational. The application of
appropriate statistical tests and acknowledgement of limitations
and aséumptions are vital in clarifying what conclusions can be

drawn fram a particular modelling exercise.

{ii) The North Polar Spur, which appears in the radic continuum
emission, is a region of particular interest. A sharp large-scale
reversal of the extra—galactic rotation measures is found in this
region. The Spur is thought to be part of a supernova remnant, and
modelling is recamended as an appropriate method of exploring the
anomalies which appear in this area of observations of X-rays,

radio continuum, Faraday rotation, and starlight.

(iii) First order spherical harmonics show a maximum in Faraday

rotation of extragalactic sources in the plane of the Galaxy at
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longitude {=99°, The accuracy of this figqure is not estimated, it
is very rough. The value is undoubtedly affected by the nearby

field reversal associated with the North Polar Spur.

(iv) A preliminary investigation of a model of variable electron
density in the local spiral arm showed that this would have little
effect on the rotation measure sky. Many other general and
detailed models of variable electron density in the local

neighbourhood deserve attention.
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APPENDIX A

The following numbers are the coefficients of Schmidt normalized
spherical harmonics, up to degree and order 12, which appear in

the solution of analysis Mo. 0126. The first three figures are

significant,

Ay s

J.40B84513001
0.5297564D+01
=0.024363170+0
0.31%032CD"02
=0.23550570+02
-0.60595280+01%
G.33035750+01
-0.284%077002
0.10640611D+C2
-0.20541950+02
-0.10405000+02
Q.12487780+02
0.11526840¢02
-0.370858830+01
0.31385670+00
-0.83387880+01
-0.30842000+02
-0.82058080+01
=0.13197840+02
¢.15970000+C2
~0.52468420+01
0.73943750+01
~0.44291900+01
=0.53109940+01
0.69445480+01
0.14716250-M
0.70957560+01
~0.20087720+01
0.27896770+01
=0.13979160+M
0.10632550+01
~0.26313720+01
0.19207350+G1
0.183647650+01

at most.

-0.155633170+01
0.33426390+02
0.65101550%2¢2
C.215821590+C2

-0.28302700+02
0.72766100+01

=0.33656516+02

~0.28167320+32
J.2C7535¢6D+G2
~0.616066550+01
0.31043470+0¢
2.22331030+Q2
=03.39275770+01

-0.12398070+02

-0.10719140¢02

=0.17193140¢«31

~0.72465%40+C1

-0.14372510+02
0.6332364D+01

~0.36956530+01
0.45106700+01

-0.22481320+-0
0.35388500+01
0.24405020+01
0.33290230+01
9.49073480+01

=3.2Q723970+00
3.477504704+01

~0.69627970°01
0.17308300+01
0.72380320+00
0.2393£4650+01%
0.28763952+01
G.31437290-G1

The coefficients appear in the order

! 2 L
b, , ay, bz

0.72953920-01
0.2440097D+02
0.44295070+01
=0.171267404+02
0.13728320+02
-0.40928850+02
=0.22553790+02
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0.37911960+02
0.16482410+02
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“0.2166449D+01
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~0.45191380+0
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~0.20163640D+02
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0.163%5480+01
0.59686270+0
0.28457820+00
=0.499C5970+01
-0.1587657D+01
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0.20334330+01

=J3.28085500+01
=0.5362439C+01
2.10525900+01
0.6203664D+0Q
0,469444320-01
0.10647700+01
0.5305331D+01
J.66213260+00

ye+... and so on (to b::_).

=0.1211073p+02
“0.12157910+01
-0.16174680+02
“0.8618324504+01
=0.57603420+01
=0.,34&31300+02
=0.33965760+02
0.55559950+01
~0.39227830+01
0.72407210+01°
0.30844330+01
“0.466238950+01
0.19553870+0Q2
~0.23036330+02
0.10003810+02
=0.143463610+02
~0.93990210+01
0.47257580+01
0.22529500+01
~0.56450080+01
0.7847307D+00
-0.93776380+0
0.478B83530+01
=0.58919460D+01
0.16973260+01
0.43498840+00
0.1356043D+00
~0.48739170+01
0.4%443110+00
-0.29313100+01
=0.37455070+00
0.12115260+01
0.10163260+01



APPENDIX B

MODELLING THE GALACTIC CONTRIBUTION TO THE FARADAY ROTATLON OF RADIATION
FROM EXTRA-GALACTIC SOURCES

B.J. Brett :
Department of Mathematies, Statistics & Computing, Plymouth

Polytechnic, Drake Circus, Plymouth PL4 BAA, Devon, UK

Faraday rotation occurs in the Galaxy according to the formula:

RM = k J' neH“dE
L

where: RM is the rotation measure
n density of electrons
H|, component of the magnetic field pavallel to line of sight
L distance travelled through interstillar medium
k constant depending on units.

We have taken a collection of rotation measures of 552 extra-galactic
sources, compiled by Simard-Normandin, Kronberg and Button (Preprint,
1980) and modelled them over the sphere using spherical harmonics. We
hope in this way to model the dependence on galactic co-ordinates
which will be due to the structure of our Galaxy (position of free elec-
trons and direction and strength of the magnetic field).

The spherical harmonic functions are the solutions of Laplace's
equation expressed in spherical polar co-ordinates and are the fitting
functions for data on the surface of a sphere. We used a least-squares
fitting procedure, starting with first-order harmonics, and extending to
second, third, fourth and fifch. (The mean of the data, as a constant
'function', gives a zero-order model.)

We found that the first, second and fourth-order models were statisti-
cally most significant, and illustrate the first and second-order models
here. The first-order model (Fig. 1) is a significant improvement over
the mean model at 0.001 level, using the F-test. The second-order model
(Fig. 2) is a significant improvement over the first-order model at 0.001
level using the F-test.

These are preliminary results, more detailed investigations are
still in progress. The first-order harmonics support a simple model of
a linear field in the solar neighbourhood, parallel to the plane of the
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Calaxy, and having a direction from tIl = 112%0 tII = 2929 Higher -
order models indicate large-scale deviations from this model.

Figure 1: Rotation Measures, First-Order Harmonic Model

Figure 2: Rotation Measures, Second—Order Harmonic Model
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