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Abstract
This study investigates deterministic wave forecasting from the perspective of the Zakharov equation.

Forecasts based on linear dispersion, weakly nonlinear amplitude dispersion, and the Zakharov equation are
compared for reference ocean surfaces generated from JONSWAP and Pierson-Moskowitz spectra. This
approach allows for the role of nonlinearity to be isolated, and demonstrates the success of simple frequency
corrections in forecasting wave-fields up to moderate steepness. The role of second-order bound waves is
investigated by means of analytical formulae, and their impact on forecast accuracy is illustrated for a range of
forecast times.

1 Introduction
Recent years have seen a surge of interest in deterministic wave forecasting for marine decision support systems,
a sector that is poised to continue to grow along with further investment in the marine environment. Increasing
the efficiency and safety of offshore renewable energy, autonomous shipping and navigation, and supply and
offload operations from very-large floating structures (see e.g. Zhao et al. (2018)) relies on accurate, timely
forecasts of wave conditions.

Such operations cannot rely on well-developed stochastic wave forecasts, which provide information of a
space/time averaged nature, on typical scales of ∼ 100 km and ∼ 6 hours. Rather, a deterministic approach is
needed, valid over typical scales of ∼ 1 km and ∼ 5 minutes. The information provided about the sea-state can
then be used to calculate forces and moments on ships or structures (Kusters et al., 2016), inform decisions about
the feasibility of marine operations (Belmont et al., 2014), or provide input to adaptive control systems (Fusco
& Ringwood, 2010; Ma et al., 2018).

Deterministic wave forecasting is a two step process: (1) the sea-surface elevation (or some proxy thereof)
must be measured, and (2) the spatio-temporal evolution of that measurement must be computed. Both steps
present unique theoretical and practical challenges, although herein only those associated with step (2) will be
addressed. Even if precise information about the sea-state is available, the fact that waves in deep water are
dispersive produces the major limitation to prediction. At lowest order, the phase-velocity cp of the waves is
given by cp = ω/k for ω2 = g |k | the deep-water dispersion relation, with g the acceleration of gravity, ω the
radian frequency, and k the wavenumber. Thus waves of different frequencies propagate at different speeds.
Moreover, the energy of a wave group moves at the so-called group velocity cg = dω/dk, and in deep water
cg = cp/2. Therefore waves within a measured area will move out of it at different speeds, and will mix with
other waves originating outside that area. The theoretical region which is amenable to prediction is usually called
the “predictable zone”. When the finite steepness of the waves is accounted for it can be seen that amplitudes
also have an influence on the frequencies, altering the dispersion relation, and thereby the predictable zone. All
of these factors impact the ability to produce a forecast from measured data.
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For usable forecasts, the sea state must be measured remotely, and for most applications the measurement
technique of choice is based on marine wave radar (Borge et al., 2004). Many existing applications (e.g. Al-Ani
et al. (2020); Connell et al. (2015); Hilmer & Thornhill (2016)) of deterministic forecasting, both research and
commercial, make use of X-band radar backscatter (see Lee et al. (1995); Young et al. (1985) and others),
although approaches based on LIDAR have also been advanced (see, for example, Belmont et al. (2007); Grilli
et al. (2011)). X-band radar has the advantage of a large existing hardware-base, as well as greater range,
reflecting the relatively greater maturity of the technology.

No matter the source, wave measurements inevitably suffer from a number of uncertainties. Wave buoy
measurements exhibit deviations from the actual sea–state due to the buoy response (McAllister & van den
Bremer, 2019), while radar is limited by wave shadowing (Plant & Farquharson, 2012) (the inability to observe
in the radar shadow of a wave crest). While an accurate measurement of the sea-surface height at a single
instant, like that furnished by the WASS of Fedele et al. (2013) would be ideal, radar measurements are further
impacted by the rotation time of the radar antennae (typically several seconds, (Al-Ani et al., 2020)). Moreover,
the spacing of the measurement points cannot be determined a priori (Desmars et al., 2020). This issue was
recently addressed by Qi et al. (2018b), who provided a very general formulation of the predictable region based
on multiple spatio-temporal measurements, both fixed and moving.

For practical forecasts, with a time-horizon limited to several minutes, it is imperative that the forecast is
produced quickly. For this reason linear wave-propagation, with its low computational demands, has been widely
used (Hilmer & Thornhill, 2016; Kusters et al., 2016; Al-Ani et al., 2020). This means that such factors as
wave-wave interaction, as well as the presence of bound modes, are necessarily missed. Since the importance
of these, and the time-scale of nonlinear evolution – theoretically ε−2 times a typical wave period in deep water,
for ε the wave steepness, – depends on the wave steepness, linear theory may be appropriate for short-term
predictions of quiescent states for some marine operations (Belmont et al., 2014). Nevertheless, considerable
recent research has been devoted to nonlinear deterministic forecasting.

Early work on nonlinear wave forecasting used classical perturbation theory up to second order for unidi-
rectional (Zhang et al., 1996) and short-crested waves (Zhang et al., 1999). This relied on a division of the
amplitude spectrum into frequency bands, with assumptions about distinct interactions between wave-modes in
each band. Subsequent work, starting with Wu (2004), sought to extend the order of nonlinearity and the physics
accounted for by using the high-order spectral method (HOS) formulated byWest et al (1987) and Dommermuth
& Yue (1987). This method employs Zakharov’s (1968) reformulation of the water-wave problem, together with
eigenfunction expansion at each order, to account for arbitrary nonlinearity and large numbers of free modes
(see e.g. Mei et al. (2018)).

Since then, numerous studies have appeared on deterministic wave forecasting usingHOS, includingKöllisch
et al. (2018), who supplemented the HOSwith a Newton-Krylovmethod for determining initial conditions, rather
than the optimisation procedures employed in Wu (2004) or Blondel et al. (2010). Qi et al. (2018a) employed
HOS to extend the general linear predictable zone of Qi et al. (2018b), as well as comparing with tank data.
They emphasise the importance of nonlinearity in reconstructing a sea-state, and develop a method to optimise
this reconstruction for a given number of wave modes. Klein et al. (2019) subsequently investigated the use of
HOS for a variety of different sea-states, and used a surface similarity parameter to quantify the accuracy of the
forecast. Law et al. (2020) recently used an Artificial Neural Network trained with HOS simulations to produce
predictions. Desmars et al. (2020) have developed a nonlinear, Lagrangian model (see Guérin et al. (2019)) and
employed this for forecasting from non-uniformly spaced data from both HOS simulations and experiments.

Other approaches to nonlinear forecasting focus on using particular, closed form equations, such as the
narrow-band cubic Schrödinger equation (NLS), and its extensions (Trulsen, 2005; Simanesew et al., 2017).
Suchmodel equations have the advantages of providing analytical insight and tractability, aswell as computational
efficiency, albeit with some loss of predictability for broad-banded or short-crested seas. Klein et al. (2020) have
compared several nonlinear Schrödinger models to HOS in a variety of conditions, and found that the inclusion
of higher-order dispersion in NLS is crucial in achieving accuracy over a variety of conditions.

In the present manuscript we pursue wave forecasting using the Zakharov equation (Zakharov, 1968), a
natural extension of the NLS which has not hitherto been used for this purpose. The Zakharov equation includes
wave-wave interaction up to third order and yields the NLS and its extensions as narrow-band simplifications.
It also serves as the basis for deriving Hasselmann’s kinetic equation, which is widely used in (phase-averaged)
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oceanic wave forecasting models. Due to a lack of bandwidth restriction and an explicit separation of resonant
and non-resonant terms the Zakharov formulation is simultaneously general and able to furnish detailed insight
into the dominant nonlinear interactions for deep-water waves. Moreover, it is possible to distinguish among
those nonlinear interactions which give rise to energy exchange, and those which effect only a mutual frequency
correction among waves. Isolating this frequency correction yields a computationally simple but remarkably
effective forecast. By revisiting the non-resonant contributions, it is likewise possible to isolate the contribution
of bound modes to the evolution of a sea-state.

In section 2 we describe how a reference ocean surface can be generated computationally to provide the
basis for a forecast, and subsequently give a brief overview of some key concepts relating to discrete data points
and Fourier transforms, which will be used for forecasting. In section 3 we introduce three possibilities for the
time-evolution of the forecast. These are linear frequency dispersion, weakly nonlinear amplitude dispersion
derived from the Zakharov equation, or weakly nonlinear amplitude dispersion with energy exchange (using the
Zakharov equation). The concept of a predictable region, and its dependence on linear and nonlinear forecasting,
are discussed in section 3.2. Numerical results are provided in section 4: narrow JONSWAP spectra are explored
in section 4.1, and examples with broad Pierson-Moskowitz spectra are treated in section 4.2. Section 4.3 looks
at the inclusion of second order bound modes and their effect on the forecast. Section 4.4 applies the forecasting
methodology to reference seas generated by HOS. Finally section 5 provides some concluding remarks and
directions for future research.

2 Synthetic sea surfaces and measurements
2.1 The synthetic sea surface
A computational study of the effects of nonlinearity on deterministic wave forecasting requires that realisations
of various sea surfaces are available. Samples from these furnish the measurements which drive the forecast,
and those forecasts are compared to subsequent spatio-temporal pictures of the sea surfaces. In common with
much other work on deterministic forecasting (see e.g. Law et al. (2020); Klein et al. (2020); Desmars et al.
(2018)) engineering design spectra will be used to generate the synthetic sea-surfaces herein. These design
spectra provide the basic parameters of the synthetic sea surface. For the time-evolution of these sea surfaces,
we will largely employ the Zakharov equation which includes the effects of cubic nonlinearities. To incorporate
higher-order nonlinearities, we also use the higher order spectral method (HOS) developed by Dommermuth &
Yue (1987) and West et al. (1987) to propagate our synthetic sea surfaces (see section 4.4).

The following steps towards generating and propagating the sea surface will be outlined in detail below: (1)
select a continuous wavenumber spectrum. (2) discretise the spectrum with a suitably dense number of modes
M . (3) relate the M modal amplitudes to complex amplitudes Bi in the Zakharov formulation. (4) Use the Bi to
write the free surface η = η1 + η2 + O(ε3), including leading order terms in η1 and second order bound modes
in η2. (5) Employ the Zakharov equation to calculate the temporal evolution of η above.

The JONSWAP spectrum is widely used in engineering design, and gives a useful representation of energy
density for a variety of wind conditions, including for stormy seas. The spectral shape is

Ψ(k) =
α

2k3 exp

(
−5
4

(
k
kp

)−2
)
γ

exp(−(
√

k
kp
−1)2/(2σ2))

, (1)

depending on wavenumber k, with peak-wavenumber kp, and tunable parameters α, γ, and σ. The Pierson-
Moskowitz (PM) spectrum, a common one-parameter representation of a fully-developed sea, is obtained from
(1) by setting the peak-sharpening parameter γ = 1, and α = 0.0081. It is important to note that any spectrum
is essentially a linear concept, drawing on the idea that a free surface can be described as a superposition of
sinusoidal wave modes (see e.g. Holthuijsen (2007)).

To generate a synthetic sea-surface the wavenumber spectrum Ψ(k) (either JONSWAP or PM) must first be
discretized into a large number of wavenumber “bins” ki, with 2Ψ(ki)∆k = a2

i giving the corresponding mode
amplitude, where ∆k is the width of each bin. This dense discretization furnishes the (initial) magnitude of the
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complex amplitudes |Bk | via

|Bk | = 2π

√
gΨ(ki)∆k

ωk
. (2)

The phases φk corresponding to the magnitudes |Bk | are arbitrary, and play no role in the energy spectrum Ψ(k),
which is predicated on an assumption of a spatially homogeneous and temporally stationary sea.

To third order in the wave steepness ε the complex amplitudes evolve according to the Zakharov equation

i
dBn

dt
=

M∑
p,q,r=1

Tnpqrδ
qr
npei∆npqr tB∗pBqBr , with n = 1, 2, . . . ,M, (3)

where Tnpqr = T(kn, kp, kq, kr ) are lengthy kernels (Mei et al., 2018), δqrnp is a Kronecker delta function such
that

δ
qr
np =

{
1 for kn + kp = kq + kr ,
0 otherwise,

(4)

and ∆npqr = ωn +ωp −ωq −ωr is a frequency detuning. This equation captures energy exchange and nonlinear
frequency correction due to resonant and near-resonant interactions of quartets of waves (see Mei et al. (2018)).
This is implicit in the derivation, and requires the frequency detuning to be small in an appropriate sense.1
The Zakharov equation thus contains as special cases the third-order Stokes waves, the nonlinear wave-wave
interactions of Longuet-Higgins & Phillips (1962), the nonlinear Schrödinger equation (Zakharov, 1968), and
many other phenomena.

The leading-order free surface elevation η1 is obtained from the complex amplitudes via

η1(x, t) =
1

2π

∑
n

(
ωn

2g

)1/2 (
Bnei(knx−ωn t) + c.c.

)
, (5)

where “c.c.” stands for the complex conjugate of the preceding expression. The next order surface elevation η2
is associated with second-order bound harmonics. These arise due to non-resonant interactions, i.e. the linear,
harmonic wave description gives rise at second order to terms that include sums and differences of wavenumbers
and frequencies like

exp(i(ki ± k j)x − (ω(ki) ± ω(k j))t). (6)

Because ω(ki) ± ω(k j) , ω(ki ± k j) in general, such bound modes do not propagate with the usual (linear or
nonlinear) dispersion relation. For the same reason these waves cannot fulfil both wavenumber and frequency
resonance conditions. Their contribution to the free surface can be written in terms of complex amplitudes Bi

and kernels V (1), V (2), V (3) (see (Mei et al., 2018, Ch. 14.A)) as

η2(x, t) = −
1

2π

M/2−1∑
i, j=1

√
ωi+j

2g
©«

V (1)i+j ,i, j

ωi+j − ωi − ωj
+

V (3)
−i−j ,i, j

ωi+j + ωi + ωj

ª®¬
[
BiBjei((ki+k j )x−(ωi+ω j )t) + c.c.

]
+

√
ωj−i

2g

V (2)j−i,i, j

ωj−i + ωi − ωj

[
B∗i Bjei((k j−ki )x−(ω j−ωi )t) + c.c

]
, (7)

where the shorthands ωi+j = ω(ki + k j), ωj−i = ω(k j − ki), and V (n)
±i±j ,i j = V (n)(±ki ± k j, ki, k j) are used.

Equations (5) and (7) together yield a free surfacewith sum and difference harmonics included, corresponding
to the O(ε) correction in (Wehausen & Laitone, 1960, Eq. (27.25)).2 We will omit higher-order bound waves
from the description of the free-surface, although these may be calculated from eq. (14.3.5) of Mei et al. (2018).

1For computational implementation of the Zakharov equation, the criterion ∆npqr /ωp < ε
2 is used, where ωp is the peak frequency

of the input spectrum, and ε an average steepness.
2For computational implementation, onlymodes that are in the support of the spectrumare considered, in order to prevent the accumulation

of energy in high wavenumbers.
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Thus, to obtain a realization of the reference ocean surface with particular statistical properties (such as
significant wave height, or spectral peak period) initial magnitudes |Bn | are provided by (2) and initial phases
φk are chosen randomly from a uniform distribution over [0,2π). Inserting this initial data into (5) yields a
leading-order free surface, and inserting into (7) allows second-order bound modes to be added if desired. These
reference ocean surfaces at t = 0 will be measured (see section 2.2 below), and snapshots at t > 0 (generated
from numerical integration of (3)) will be compared to forecasts. The above formulation clearly separates the
effects of nonlinearity on wave frequency and energy exchange (included in (5)) and the effects of nonlinearity
on wave shape (included in (7)), allowing for the relative importance of bound modes to be examined.

2.2 Discrete measurements and the FFT
Provided a free surface η(x, t) composed of long-crested, unidirectional waves, we take samples at N points

y0, y1, . . . yN−1, (8)

corresponding to a set of physical locations x0, x1, . . . xN−1 at a specified time. It is simplest to assume that these
data points are equally spaced, and so write xn = nL/N, for N samples covering a length L− L/N . Alternatively,
for non-uniformly spaced points a resampling based on interpolation can be used (see Desmars et al. (2020) for
an example of how non-uniformly sampled points may be treated). Then the discrete time Fourier transform
(DTFT) of the sequence {yn}N−1

n=0 is defined as

Y ( j) =
N−1∑
n=0

yn exp(−i2π jn/N) =
N−1∑
n=0

yn exp(−ik j xn), (9)

for k j = 2π j/L.
Since Y ( j + N) =

∑
n yn exp(−i2π jn/N) exp(−i2πn) = Y ( j), the new sequence is N-periodic. The Y ( j) are

the discrete time Fourier coefficients, obtained by multiplying the original sequence by the N-th complex roots
of unity, and may be efficiently calculated using the fast Fourier transform (FFT).

The inverse transform is given by

yn =
1
N

N−1∑
m=0

Y (m) exp(i2πmn/N), (10)

which yields an N-periodic extension of the original sequence. Moreover, it is possible to construct a continuous
signal by replacing nL/N by a continuous variable x:

y(x) =
1
N

N−1∑
m=0

Y (m) exp(ikmx). (11)

For N even, it will be convenient for subsequent computations to rewrite (11) in the form

y(x) =
Y (0)

N
+

1
N

N/2−1∑
m=1
(Y (m) exp(ikmx) + Y ∗(m) exp(−ikmx)) . (12)

The first term Y (0)/N is the mean of the sampled points by (9) – an approximation to the mean sea-surface over
the measurement area. The forecast is thus prepared using N/2 − 1 distinct Fourier modes, which should be
significantly smaller than, and not a subset of, the M modes in the generated sea.

3 Deterministic forecasting
3.1 Linear and nonlinear forecasts
Section 2.2 describes the process of (1) taking a continuous sea-surface elevation, (2) measuring it at N
equidistant points xn = nL/N , (3) computing the FFT of the measured sequence, and (4) using the inverse
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transform to construct an L-periodic, continuous approximation to the original sea. That approximation will
form the basis for a leading order forecast, with different possibilities for its forward evolution in time. The
possibilities to be explored here are (i) linear dispersion, assuming modes kn have a frequency ωn =

√
g |kn |,

(ii) Stokes’ corrected dispersion, where the linear frequency is corrected by the presence of other waves to
Ωn = ωn +

∑
p enpTnpnp |Bp |

2, and (iii) third-order nonlinear evolution using the Zakharov equation.
The simplest spatio-temporal forecast is obtained by assuming propagating modes are governed by the linear

dispersion relationωm =
√
g |km |,which establishes a one-to-one correspondence between wavenumbers k ∈ R+

and (positive) frequency. For unidirectional propagation this allows for a linear forecast ζL to be constructed
directly from the Fourier coefficients via (12) to yield

ζL(x, t) =
Y (0)

N
+

1
N

N/2−1∑
m=1
(Y (m) exp(i(kmx − ωmt) + Y ∗(m) exp(−i(kmx − ωmt)) , (13)

where the subscript “L” is used to denote linear dispersion.
Linear theory is predicated on assumptions of small wave steepness ε . Thus, for steeper waves a number of

nonlinear effects manifest:

1. Amplitude-dependent, mutual frequency correction of different wave modes.

2. Slow energy-exchange among resonant and near-resonant wave-modes.

The simplest way to exploit the Zakharov formulation is to employ it to calculate an analogue of Stokes’
frequency correction, whereby the finite-amplitude affects the dispersion relation of waves. This was first
demonstrated for a single wave-mode by Stokes (1847), for two wave-modes by Longuet-Higgins & Phillips
(1962), extended to include the effects of surface tension by Hogan et al. (1988), and subsequently to many
modes (Stiassnie, 1991) and finite depth (Madsen & Fuhrman, 2012).

The Zakharov equation (3) makes the calculation of the mutual frequency correction algebraically simple:
assuming that the magnitude of the complex amplitudes is constant, so |Bn(t)| = |Bn(0)|, the Zakharov equation
can be integrated in time to leading order, as described by Stuhlmeier & Stiassnie (2019). This leads to the
compact expression for the nonlinear frequency correction

Ωn = ωn +
∑
p

enpTnpnp |Bp |
2, (14)

where ωn is the linear frequency, Ωn the nonlinear corrected frequency, and

enp =

{
1 for n = p,
2 for n , p.

(15)

For long-crested waves, as those treated herein, the kernel Tnpnp takes the following simple form:

T(kn, kp, kn, kp) =


knk2

p

4π2 for 0 < kp < kn,

k2
nkp

4π2 for kp ≥ kn > 0.

(16)

Comparing (12) and (5), the rescaling between Fourier amplitudes Y (m) and initial values for the complex
amplitudes Bm is

Bm(0) =
2π
N

√
2g
ωm

Y (m), (17)

for N the number of sampling points, and m = 1, . . . ,N/2−1, so that the measured sea-surface elevation provides
all the ingredients for calculating the corrected frequencies.
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In turn, this allows for a second forecast, improving upon (13):

ζS(x, t) =
Y (0)

N
+

1
N

N/2−1∑
m=1
(Y (m) exp(i(kmx −Ωmt) + Y ∗(m) exp(−i(kmx −Ωmt)) . (18)

Here the subscript “S” is used to denote Stokes’ corrected dispersion. The measured mode amplitudes Y (m)
remain constant, but the frequency Ωm, as well as phase and group velocities, depend on those amplitudes
through (14).

Finally, it is possible to include third order energy exchange between quartets of waves in the forecast,
allowing the mode amplitudes to be functions of time. The forecast is then cosmetically similar to (13):

ζZ (x, t) =
Y (0)

N
+

1
N

N/2−1∑
m=1
(Y (m, t) exp(i(kmx − ωmt) + Y ∗(m, t) exp(−i(kmx − ωmt)) , (19)

The subscript “Z” is used to denote evolution using the Zakharov equation, and the argument of the (complex)
terms Y (m, t) contributes the nonlinear frequency correction seen in (18). This forecast entails numerical
integration of

i
Y (m, t)

dt
=

8π2g

N2

N/2−1∑
p,q,r=1

(
ωm

ωpωqωr

)1/2
Tmpqrδ

qr
mpei∆mpqr tY ∗(p, t)Y (q, t)Y (r, t). (20)

where Y (i,0) are the Fourier coefficients obtained from the measurement. This is equivalent to solving a
Zakharov equation with N/2 − 1 modes (with N/2 − 1 < M for M the number of modes in the sea). Here
the initial amplitudes and phases are obtained from the measurements directly, whereas the initial data for the
sea is initialized from a given spectrum. The N surface-elevation measurements give only N/2 − 1 coupled
Zakharov equations because the complex amplitudes Bi depend on both the free surface and the potential at the
free surface (see eq. (2.12a,b) in Stiassnie & Shemer (1984)).

3.2 The predictable region
Due to their dispersive nature, waves measured over a given area of ocean surface will travel through – and
ultimately out of – that area at different speeds. Thus the group velocities of the longest and shortest waves
in the measurement, denoted cg,L and cg,S respectively, determine the predictable region. Any deterministic
forecast is thus time limited, with the extent of the predictable region determined largely by the region of sea
measured, and the group velocities of the waves therein. Because nonlinear effects change the dispersion relation,
as encapsulated in equation (14), they also affect the group velocity, as depicted in figure 1. Since the effect
of nonlinearity in (14) is to increase phase and group velocities versus linear theory (an effect also observed
experimentally by Taklo et al. (2015)), in a manner dependent on the amplitudes of other waves in the sea, the
extent to which the predictable region varies depends on ε .

In figure 1 the predictable regions are shown using linear dispersion (∆ABC) and nonlinear dispersion
(∆ABD), with the lines AC, AD, and BC, BD calculated for kL and kS respectively. For low (mean) steepness,
the predictable regions are nearly identical, but as steepness increases the nonlinear theory allows for a theoret-
ically larger, and slightly shifted, predictable region.3 In what follows, we shall compare the forecast and the
synthetic “Sea” within the nonlinear predictable region only.

4 Results
The above sections describe a procedure generating a synthetic sea from a spectrum, sampling that sea at a
number of spatial locations, and using those measurements to generate a spatio-temporal forecast. Deriving

3The predictable region increases in size because the nonlinear frequency correction disproportionately affects shorter waves (see the
discussion in Stuhlmeier & Stiassnie (2019)).
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Figure 1: Predictable regions according to the linear (dashed lines) and nonlinear (solid lines) dispersion
relations. The waves are derived from a JONSWAP spectrum with either ε = 0.1 (left panel) or ε = 0.2 (right
panel), see table 1. In both panels, cg,L and cg,S are calculated for kL = 0.028 m−1 and kS = 0.25 m−1,
respectively.

the measurements from reference ocean surfaces generated from JONSWAP and PM wavenumber spectra as
described in Section 2.1 allows for the effects of nonlinearity on the forecast to be examined in detail. Moreover,
many statistically identical realisations of the ocean surface can be generated to test each forecasting approach.
A schematic of our forecasting approach using a JONSWAP spectral shape is given in figure 2.

Panel (a) of figure 2 shows the JONSWAP energy spectrum Ψ(k). This is used to generate a reference
surface, or “sea” η1(x,0), and in panel (b) the samples of the reference ocean surface are represented by red
circles. As mentioned in Section 3.1, it is convenient to choose these measurement points with uniform spacing
in x-direction. In real-world applications the sampling length and measurement spacing might be constrained
by the range and resolution of a ship board X-band radar, but for our synthetic seas no such restrictions exist.
Measuring at N points over a length L means that wave-modes k ∈ {2π/L,4π/L, . . . ,2π(N/2 − 1)/L} can be
resolved. Therefore L must be sufficiently large to resolve the longest waves of interest, and N must be sufficiently
large to avoid aliasing errors. The primary effect of selecting L is to determine the size of the x − t-domain for
which prediction is possible.

Depending on the situation of interest not all of the sampled modes may be relevant – particularly long or
short waves may not have a significant effect on shipping, for example. To this end, a reduced set of modes
k ∈ [kL, kS] are used, which are depicted by the dotted vertical lines in panel (c) of figure 2. These represent
the longest and shortest waves accounted for in the forecast.

Following section 3.2 the nonlinear predictable region ∆ABC, depicted in panel (d) of figure 2, is calculated.
For waves travelling in the positive x-direction, measured waves k ∈ [kL, kS] will propagate through the region
bounded by lines AC with slope 1/cg,L and BC with slope 1/cg,S . As time progresses, waves shorter than kS
(originating at t = 0 at points x > B) will infiltrate the region ∆ABC from the right of BC, and waves longer
than kL (originating at points x < A) will do likewise from the left of AC. In the scenario depicted, at t = 160 s
the information in the measurement region AB has completely dispersed, and no prediction can be made. In the
examples below we present the three forecasting techniques of section 3.1 applied to a variety of cases.

4.1 Examples based on JONSWAP spectra
In discretizing the spectrum we employ M = 198 wavenumber bins from k = 0.0012 m−1 to k = 0.24 m−1,with
uniform spacing ∆k = 0.0012 m−1. This gives the reference sea η1 (without bound waves, calculated using (5)
as described in section 2.1, and simulated in time with the Zakharov equation (3)) a spatial periodicity of 5236
m. For simplicity, in figures and tables we denote the reference sea throughout by “Sea”. As shown in figure 2,
we shall measure a stretch of this reference sea L = 1000 m in length at N = 200 measurement points to avoid
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Figure 2: Schematic diagram for wave forecasting with a synthetic sea-surface. Counter-clockwise from top
left: (a) JONSWAP energy spectrum with kp = 0.05m−1, and ε = 0.1. (b) A synthetic sea-surface derived from
the JONSWAP spectrum, here sampled at N = 200 points (red circles) over L = 1000 m. (c) The FFT of the
sampled values yields N = 200 Fourier amplitudes. Only modes between kL = 0.028m−1 and kS = 0.25m−1

are retained as significant. (d) The group velocities cg,L and cg,S associated with kL and kS determine the
predictable region ∆ABC of space-time. All the wave energy in modes k ∈ [kL, kS] within the triangular region
enters it through the segment AB at time t = 0.

9



α ε Hm0 [m]

0.014 0.10 5.7
0.031 0.15 8.5
0.056 0.20 11.4

Table 1: Table with JONSWAP parameter α and corresponding ε and spectral significant wave height Hm0 .
Other JONSWAP parameters are fixed at σ = 0.08, γ = 5 and kp = 0.05 m−1.

errors in the short wavelengths.4 As cutoff wavenumbers for the measured waves we take kL = 0.028 m−1 and
kS = 0.25 m−1, so that the longest and shortest waves in the forecast are 224 and 25 metres long, respectively
(the peak of our JONSWAP spectrum corresponds to 126 metre waves).

The parameter α can be interpreted as an energy scale, and is proportional to the significant wave-height and
average slope as seen in table 1 (σ = 0.08, γ = 5 and peak wavenumber kp = 0.05 m−1 are held constant). In
the table we use the integral of the spectrum

m0 =

∫
Ψ(k)dk (21)

to define ε =
√

2m0kp, and Hm0 = 4√m0.
Just as the predictable region depends on the nonlinearity of the sea-state, so does the accuracy of the forecast

itself. In figure 3 a number of forecasts are depicted compared to a reference sea initialized using a JONSWAP
spectrum (as described above). Three mean steepness values ε = 0.1, 0.15 and 0.2 are shown (see table 1),
and the sea at t = 60 s is compared to forecasts using linear dispersion (13) and the Zakharov equation (19)
(upper panels), or linear dispersion (13) and nonlinear dispersion (18) (lower panels). The theoretical predictable
region at this time is bounded on the x-axis by two dashed, vertical lines, which are determined from the group
velocities of the longest and shortest waves accounted for.

For ε = 0.1, all three forecasts agree reasonably well – there is little difference between linear and nonlinear
dispersion, and scant energy exchange within the framework of the Zakharov equation. For ε = 0.15 the lower
phase and group speeds of the linear theory lead to departures from the reference sea. Finally, for ε = 0.2, the
evolving amplitudes become important, with the best agreement seen for the forecast based on the Zakharov
equation. Nevertheless, the simpler forecast ζS continues to display satisfactory agreement.

It is possible to obtain a measure of the quality of the forecast in space and time by considering the difference
between reference sea and forecast as in figure 4, which compares the sea and forecasts based on (18) and (19)
throughout the predictable region. While both forecasts initially match the sea (at time t = 0, on the x-axis of
both plots), the forecast based on integrating the Zakharov equation remains very accurate until at least t = 60 s,
while the forecast based on nonlinear dispersion alone shows significant deviations, comparable to the significant
wave-height of the sea itself.

The comparisons shown in figures 3 and 4 are each based on a single realization of the reference ocean
surface from a JONSWAP spectrum, so that the quality of the forecast will vary depending on those waves
measured over the length L at t = 0 s. An aggregate measure of quality is provided by computing the linear
correlation between forecast and sea, a simple measure of whether the forecast rises and falls with the reference
sea. For two samples x = {x1, . . . , xn} and y = {y1, . . . , yn} Pearson’s correlation coefficient is written

ρx,y =

∑n
i=1(xi − x̄)(yi − x̄)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (22)

where x̄ denotes the mean. The correlation coefficient ranges between -1 and 1, with 0 implying no linear
correlation. A value of 1 means perfect positive correlation, e.g. crests in one signal coincide with crests in

4The forecast is thus constructed from 99 Fourier modes, versus 198 modes in the synthetically generated sea. The former are not a
subset of the latter.
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Figure 3: Comparison of forecasts with a reference sea η1 (blue, solid line, denoted “Sea”) at t = 60 s, for
ε = 0.1, 0.15 and 0.2. (Upper panels) The sea is compared to a linear forecast (yellow, dashed line) and a
forecast based on the Zakharov equation (red, solid line). (Lower panels) The sea is compared to a linear forecast
(yellow, dashed line, as in top panel) and a linear forecast with nonlinear frequency correction (purple, solid
line).
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Only differences within the predictable regions (see Fig 1) are shown, for a reference sea with ε = 0.15 (see Table
1). Colours denote percentage of the significant wave height Hm0 = 8.5 m, and the area outside the predictable
region is set to zero.

t = 30 s t = 60 s t = 90 s
ε ρSea,ζL ρSea,ζS ρSea,ζZ ρSea,ζL ρSea,ζS ρSea,ζZ ρSea,ζL ρSea,ζS ρSea,ζZ

0.1 0.91 0.99 0.99 0.70 0.97 0.98 0.57 0.95 0.97
0.15 0.68 0.95 0.98 0.33 0.88 0.96 0.13 0.77 0.92
0.2 0.39 0.85 0.97 0.00 0.66 0.92 -0.10 0.39 0.79

Table 2: Mean correlation between sea and forecast for t = 30, 60 and 90 s, with ε = 0.1, 0.15 and 0.2. In each
instance 50 realisations of the reference ocean surface and corresponding forecasts are employed, and the mean
correlation over the predictable interval is calculated. Mean correlations ≥ 0.8 have been marked bold.

the second, while -1 means perfect negative correlation, where crests in one signal coincide with troughs in the
second. Other aggregate measures of fit exist, including the “surface similarity parameter” developed by Perlin
& Bustamante (2016) and used to investigate deterministic wave predictions in Klein et al. (2020).

For the three values of ε in table 1, the correlation ρ between sea and forecast is computed at three forecasting
times t = 30, 60, and 90 s throughout the predictable interval bounded by the nonlinear group velocities (see
figure 1). Repeating this procedure with 50 realisations of the sea surface, each initialized with random,
uniformly distributed phases, and averaging the correlation yields the results shown in table 2, where ρ denotes
the average correlation. Note that figure 3 is one representative realization for the middle column (t = 60 s) of
this table. To identify high quality forecasts, those entries with mean correlation equal to or greater than 0.8
have been marked in bold. For short time and low mean steepness, all three forecasting methods are comparable.
Even through intermediate time t = 60 s and steepness ε = 0.15, the frequency corrected forecast ζS in (18)
performs very well. For severe seas associated with ε = 0.2, however, a forecast based on the Zakharov equation
(19) is clearly preferable.

4.2 Forecasting for a broad spectrum
Because a forecasting approach based on the Zakharov equation has no bandwidth limitation, it is instructive to
consider an example of forecasting for a fully-developed sea provided by a Pierson-Moskowitz (PM) spectrum,
which is discretized using 200 wavenumber bins between 0.001 and 0.2. To compare with the results for a
narrower spectrum in Section 4.1 we select a PM spectrum with significant wave-height 5.7 m (see table 1),
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Figure 5: Comparison of forecasts with a reference sea η1 (blue, solid line, denoted “Sea”) generated by a
Pierson-Moskowitz spectrum with kp = 0.029 at t = 60 s (top panels) and t = 120 s (bottom panels). Dashed,
vertical lines represent the boundaries of the predictable region determined from the nonlinear group velocities
of kL = 0.01 m−1 and kS = 0.2 m−1. Colours of curves are as in figure 3.

which yields kp = 0.029 and ε = 0.056 from (21). Since the PM spectrum represents a scenario of wind blowing
over unlimited fetch, only one free parameter is available to describe such a fully-developed sea.

Given the smaller peak wavenumber, the forecasting region must be increased in size in order to sample
waves of interest. Consequently L is extended to 2000 m, and N to 300 (hence 149 Fourier modes) to avoid
aliasing errors (from L = 1000 m and N = 200 for the narrow spectra in Section 4.1). In addition, the smallest
and largest wavenumbers of interest for the forecast are chosen kL = 0.01 m−1 and kS = 0.2 m−1, so that the
longest and shortest waves resolved are 628 m and 31 m in length, respectively. The increase in the measurement
region leads to a concurrent increase in the predictable region.

A comparison of the three forecasts developed in Section 3.1 for such a PM spectrum is given in figure 5.
Due to the low steepness of the sea (η1 calculated from (5), without bound waves) the linear forecast ζL proves
excellent at t = 60 s – the mean correlation over the predictable region from 50 realizations is 0.92 for the
linear forecast, compared to 0.99 for ζS and 1.00 for ζZ . For longer times, corrections to the dispersion relation
(18) become increasingly important – the mean correlation from forecasting 50 realizations of the sea to time
t = 120 s decreases to 0.75 for ζL, but remains 0.98 for ζS and 0.99 for ζZ . For fully-developed seas of such low
steepness (ε = 0.056), the frequency corrected forecast is nearly identical to the forecast based on the Zakharov
equation (19).

4.3 Bound modes and deterministic forecasting
Thus far only free waves have been considered in simulating the reference sea-surfaces and generating forecasts.
The main effect of the bound waves is to sharpen wave crests and flatten the wave troughs. An example is
shown in figure 6, where a JONSWAP spectrum with ε = 0.2 (see table 1) has been used to generate free wave
modes (denoted η1) and second order bound modes η2 as described in Section 2.1. Together, η1 + η2 give the
second-order free surface elevation.
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Figure 7: Comparison of a sea (blue curve, containing free and bound modes η1 + η2) generated using a
JONSWAP spectrum with ε = 0.2 and two forecasts at time t = 60 s. (Red, solid curve) Forecast assuming
all modes are free and evolving in time using the Zakharov equation via (19) and (20). (Yellow, dashed curve)
Forecast based on identifying the free modes at the measurement time (see red Fourier amplitudes in figure
6, right panel), evolving these in time using the Zakharov equation, and adding the analytical bound modes
calculated using (7) at t = 60 s.

The presence of bound modes presents a difficulty for forecasting, since part of the measured energy does
not propagate with the expected dispersion relation. The right panel of figure 6 shows Fourier amplitude spectra
of all modes η1 + η2, as well as of the free modes η1 only. Only the latter propagate in accordance with linear
or weakly nonlinear dispersion (14), depending on the forecasting model used. Nevertheless, the measurement
procedure outlined in Section 3.1 perforce identifies all of the mode amplitudes (as shown in blue in figure 6,
right panel) as free modes.

Given an ensemble of well-resolved spatio-temporal measurements it is possible to construct a wavenumber-
frequency spectrum Ψ(k,ω) without assuming the linear dispersion relation. Energy that does not fall on the
curved planeω =

√
g |k | in spectral (k,ω)-space can then be attributed to bound waves or, for field measurements,

ambient currents. For surface elevation measurements at a single time, by contrast, it is theoretically impossible
to distinguish free and bound modes. The smallness of the second order bound mode contributions means that
they do not give rise to appreciable errors in forecasting if the wave steepness is low. In a practical setting, a
measurement contains free as well as bound modes, like the blue curve η1 + η2 in the left panel of figure 6.

The sea-state in figure 7 is computed from a JONSWAP spectrum with ε = 0.2 (see table 1), which is evolved
as described in section 2.1, with bound waves added from the analytical expression (7). Two forecasts based on
measurements at N = 200 points over L = 1000 m are contrasted: ζZ (red curve) simply applies the procedures
of Section 3.1 to the measurements, ignoring the fact that bound modes are present in the sea. It thereby
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t = 30 s t = 60 s t = 90 s
ε ρSea,ζZ ρSea,ζ̃Z ρSea,ζZ ρSea,ζ̃Z ρSea,ζZ ρSea,ζ̃Z

0.1 0.98 0.99 0.97 0.98 0.96 0.97
0.15 0.96 0.98 0.93 0.94 0.89 0.91
0.2 0.91 0.95 0.83 0.88 0.76 0.79

Table 3: Mean correlation over 50 realizations between a sea with bound waves and a forecast that fails to
account for bound modes ζZ , or an artificial forecast that employs analytical bound modes for the measurement
ζ̃Z . The sea is initialized from a JONSWAP spectrum with ε = 0.1, 0.15, and 0.2 (see table 1), and comparisons
are presented at times t = 30, 60 and 90 s.

misidentifies the bound mode energy as belonging to free modes (see figure 6, right panel). All modes in this
forecast ζZ are evolved using the Zakharov equation forecast (19). By contrast, the second forecast ζ̃Z (yellow,
dashed line) presents an ideal situation that cannot be realised in practice: it uses a fabricated measurement of the
free waves only at t = 0 s, which is evolved to t = 60 s using (19) and (20), with the analytical bound modes then
added from (7). It differs from the sea-state through its use of fewer modes obtained from the measurements.

In figure 7 it is difficult to distinguish the error incurred by an inability to accurately identify bound mode
contributions from that inherent in forecasting a highly nonlinear sea from a limited number ofmeasurements. As
noted previously, the forecast quality depends on the measurement area L and the waves therein for a particular
realization of the sea surface. Table 3 considers averages over 50 realizations at a variety of forecast times
(t = 30, 60 and 90 s) and average wave slopes (JONSWAP spectra with ε = 0.1, 0.15 and 0.2). It compares the
average correlation in the predictable region of x-space between sea and either the forecast ζZ (where bound
modes are misidentified as free), or the forecast ζ̃Z (an ideal scenario where bound and free modes can be
distinguished in the measurement at t = 0 s).

The mean correlation for the ideal forecast ρSea,ζ̃Z compares favourably with that seen for ρSea,ζZ in table
2, where bound modes were not considered. For waves of low to moderate steepness with ε = 0.1 and 0.15
the differences between ζZ and ζ̃Z are rather small, and the forecasting error introduced by the bound waves
is minimal. For steeper waves, however, the differences are somewhat more marked, particularly for long
forecasting times.

4.4 Comparison with HOS simulations
In order to validate our approach, and study the effects of higher order nonlinearities, the three forecasting
approaches can also be applied to reference seas generated by means of HOS simulations. In this section, we
employ the open source HOS-Ocean solver (Ducrozet et al., 2016) to generate and propagate wave-fields in a
2D domain. HOS order M = 5 is chosen to include higher-order nonlinearities beyond those captured by the
Zakharov equation, and a JONSWAP spectrum with γ = 5, kp = 0.05m−1 and Hs as in table 1 is used to generate
the initial wave-field in deep water.

Each initial wave field (at t = 0 s) is sampled at S = 300 uniformly distributed points over a length of
L = 2000 m. The initial wave field is subsequently evolved in time with HOS (details of which may be found in
Ducrozet et al. (2016, 2007); Bonnefoy et al. (2010)), while the sampled points are used to generate forecasts
using linear dispersion, nonlinear dispersion, or the Zakharov equation. One realisation of the sea is compared
to the three forecasts at t = 60 s in figure 8 for ε = 0.1, 0.15 and 0.2 (see table 1). For low steepness (ε = 0.1)
all forecasts provide good agreement, and up to moderate steepness (ε = 0.15) both nonlinear forecasts ζS and
ζZ perform very well. For yet steeper waves, the mismatch between sea and ζS and ζZ is similar in scale to that
seen in figure 3.

Since each realisation of the sea employs uniformly distributed random phases, an aggregate measure of
the quality of the three forecasting approaches for HOS-generated sea surfaces (“Sea” in the table) is provided
by the mean correlations shown in table 4. The mean correlations are comparable to those found in table 2
where the reference sea is generated from the Zakharov equation, as can be seen by comparing the number of
forecasts marked bold (with mean correlation greater than or equal to 0.8, to indicate a good match) in either
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Figure 8: Comparison of forecasts with a reference sea propagated via HOS (blue, solid line, denoted “Sea”) at
t = 60 s, for ε = 0.1 (upper two panels), ε = 0.15 (middle two panels), and ε = 0.2 (lower two panels). (Upper
panels) The sea is compared to a linear forecast (yellow, dashed line) and a forecast based on the Zakharov
equation (red, solid line). (Lower panels) The sea is compared to a linear forecast (yellow, dashed line, as in top
panel) and a linear forecast with nonlinear frequency correction (purple, solid line).

t = 30 s t = 60 s t = 90 s
ε ρSea,ζL ρSea,ζS ρSea,ζZ ρSea,ζL ρSea,ζS ρSea,ζZ ρSea,ζL ρSea,ζS ρSea,ζZ

0.1 0.86 0.95 0.96 0.69 0.90 0.94 0.51 0.85 0.93
0.15 0.68 0.88 0.92 0.36 0.77 0.88 0.13 0.66 0.84
0.2 0.51 0.82 0.89 0.04 0.63 0.83 -0.15 0.45 0.76

Table 4: Mean correlation between a sea simulated with HOS and forecasts for t = 30, 60 and 90 s, with
ε = 0.1, 0.15 and 0.2. In each instance 50 realisations of the reference ocean surface and corresponding
forecasts are employed, and the mean correlation over the predictable interval is calculated. Mean correlations
≥ 0.8 have been marked bold.
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table. Comparison with HOS simulations of order M = 3 show no appreciable difference from those with M = 5
presented in table 4, underscoring the relatively small contributions of these higher order terms on the scales
involved.

5 Conclusions
We have introduced and developed a deterministic wave forecasting methodology based on the Zakharov
equation, and used it to investigate the effect of nonlinearity and bound waves on wave forecasts. The Zakharov
equation readily yields analytical insight, and the present approach is complementary to recent work employing
the higher-order spectral method for reconstruction of nonlinear wave fields (see recent work by Desmars et al.
(2020); Qi et al. (2018a); Köllisch et al. (2018)).

Under an assumption that all interactions take place close to a central wavenumber, the nonlinear Schrödinger
equation and its extensions may be derived from the Zakharov equation (3) (see Stiassnie (1984)). The Zakharov
equation thus generalises the nonlinear Schrödinger models, which have been widely used to study rogue waves
(Onorato & Suret, 2016), as well as in recent studies of wave forecasting (see e.g. Klein et al. (2020); Simanesew
et al. (2017); Trulsen (2005)). Because of its lack of bandwidth restrictions, our method is applicable to both
narrow, JONSWAP spectra (as in Section 4.1) as well as broad Pierson-Moskowitz spectra (as in Section 4.2).

Nonlinear effects can play an important role in deterministic wave forecasts, the extent of which is dependent
on both average steepness as well as forecasting time. For small wave slopes below ε = 0.1 linear theory
is sufficient to provide forecasts for moderately long time – up to approximately 10Tp, for Tp the peak wave
period of the spectrum. Nevertheless, the weakly nonlinear corrections associated with finite-amplitude effects
– analogues of Stokes’ frequency correction – can be easily and effectively computed from the sea-surface
measurements, and yield a marked improvement over linear forecasts.

For moderately nonlinear wave-fields, up to ε = 0.15, such third-order frequency corrections are likely
to be sufficient to provide accurate forecasts, as very little energy exchange between modes can occur within
the predictable time-frame. For steeper wave-fields, the full Zakharov equation should be brought to bear to
obtain an accurate forecast. While the theoretical time scale of the Zakharov equation is t2 ∼ ε−2Tp, our results
indicate that departures from linear theory begin to appear at t1 ∼ ε−1Tp,which must be taken into account when
preparing a forecast. For the time-scales involved in deterministic forecasting, the energy exchange captured by
the cubic nonlinearities of the Zakharov equation is sufficient, as demonstrated by comparisons with HOS of
order five in section 4.4.

The Zakharov formulation yields an analytical expression for the second (and higher) order bound waves.
Bound waves are present in the wave field as a consequence of the harmonic description of nonlinear wave
motion, and thus do not obey the natural dispersion relation. When sampling a real sea-surface at a number of
points, the associated Fourier amplitudes will contain such bound mode contributions in addition to free waves.
By including appropriate bound modes in the generated reference sea it is possible to assess the effect of this
misidentification of bound wave energy. For the cases considered, with steepness up to ε = 0.15, second-order
bound modes form a relatively minor contribution. Future work will be devoted to accurate identification of
bound waves from a wave record, with a view towards furnishing more accurate forecasts for longer times and
highly nonlinear seas.

While this work has examined the simplest case of unidirectional propagation, subsequent studies will
consider directionally propagating waves from the perspective of the Zakharov equation. In the first instance, this
will impact the geometry of the predictable region, thereby altering the linear forecast. As shown by Stuhlmeier
& Stiassnie (2019), the extent of the nonlinear frequency correction is also direction dependent, giving rise to a
complex interplay between wave frequency, amplitude, and direction in determining the forecast. The inclusion
of local wind and a suitable representation of wave breaking – via forcing terms in the Zakharov equation (see
Annenkov & Shrira (2009)) – would further present an opportunity for comparison with experiments.
Acknowledgements. The authors are grateful for helpful comments and suggestions of the referees on earlier
drafts of this paper.
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