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ABSTRACT 

 

MECHANISMS OF MOVEMENT IN MEROPLANKTON:  

A PRIMER FOR DISPERSAL 

 

MOLLY KENDALL JAMES 

 

Biophysical models have become the ‘go-to’ tool for predicting the dispersive 

trajectories of planktic marine organisms, and are used to design Marine Protected 

Areas (MPAs), identify pathways of invasion, and understand metapopulation dynamics 

and biogeography. Yet, despite this relatively long history of development, continued 

technological advancement and increased usage, models continue to often fail to predict 

patterns in nature.  

As biophysical models are able to accurately predict the dispersal of abiotic particles, it 

is argued that it is how we incorporate larval behaviour (sensu vertical swimming) in 

models that may be decoupling predictions of dispersal and species distribution 

patterns. Yet, despite the recognised importance of vertical distribution/position to 

dispersal by advection, especially in smaller organisms, there is currently no general 

consensus of how, what, and when behaviours can and should be included in models, 

perhaps because the drivers of larval behaviour are inherently complex and as yet, not 

fully understood (Chapter 1). The typical approach is to parameterise behaviours as 

‘rules’ based on laboratory observed responses to cues, but it this approach appropriate 

given the complexity of larval decision-making in the presence of multiple cues in 
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nature in comparison to single cue responses in controlled environments? In Chapter 2 I 

explored the movements larvae must undertake to achieve the vertical distribution 

patterns observed in nature. Results suggest that behaviours are not consistent with 

those described under the Tidal Vertical Migration (TVM) hypothesis, instead, showing 

a need for swimming speed and direction to vary over the tidal cycle -- with upward 

swimming needing to be 2.5x faster than downwards swimming and a change in 

direction from upwards to downwards needing to occur around the midpoint of the 

flood tide - and low model compatibility during the ebb tide. Next, I looked to identify 

the environmental drivers of larval vertical distribution during the ebb tide, where the 

model compatibility of Chapter 2 was low. Explored external drivers (density, salinity, 

temperature, turbulence) explained very little of the vertical distribution patterns of the 

larvae, however, results suggest differential usage of environmental cues based on 

ontogenetic stage, and vertical distribution patterns observed differed from previous 

observations of a similar species at a different location.  Finally, I presented a 

framework for assessing how behavioural parameterisation can influence dispersal 

trajectories in marine systems (Chapter 4), comparing a novel approach of reverse 

engineering larval swimming from in-situ observations (Chapter 2: REVM behaviours) 

against simulations adopting passive dispersal, and particles attributed a tidal vertical 

migration (TVM) signature. Results highlight how the implementation of behaviour 

within biophysical models can lead to fundamentally different dispersal outcomes, and 

specifically, that the inclusion of vertical migration behaviour is a mechanism that 

significantly reduces dispersal distances, but depending on the approach to 

implementation can lead to fundamental differences in dispersal direction. 
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This thesis makes significant steps towards improving the parameterisation of behaviour 

within dispersal models by considering larval movement as a manifestation of 

behaviour influenced by the larva’s in-situ environment. The methodologies and 

analytical techniques designed and applied within the data chapters can be applied to 

any species with a planktonic dispersal phase in any location, and provide an important 

step towards improving the biological ‘realism’ of behavioural parameterisation in 

dispersal models in the absence of an understanding of the complex drivers of active 

larval movement. 
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The majority of marine species (approximately 80%) spend at least some part of their 

life history as a member of the plankton (Milekovsky,1971). For many, their life history 

is bi-phasic, whereby relatively sessile adults release larvae into the pelagic 

environment. This is the predominant developmental strategy for most marine phyla, 

with only 4 of the estimated 30 phyla present in the ocean not exhibiting a larval 

development stage (Strathmann, 1985; Pechenik, 1999). The planktic larval stage is 

therefore the only ‘free-living’ period in an organism's life history, but a crucially 

important stage as it is the mechanism through which an organism can disperse and is 

therefore a key determinant in the ecology and evolution of species (Levin, 2006; 

Cowen and Sponaugle, 2009; Lowe & McPeek 2014).  

Larval dispersal has been the focus of marine studies for over 120 years. Cleve (1900) 

was perhaps one of the first to consider pelagic life-histories and the role of water 

currents in the dispersal of marine animals, although his early observations were unable 

to distinguish between geographic and biological groups (Gran, 1902). In 1928, Astrid 

Cleve-Euler - Cleve's daughter who was a botanist, geologist, chemist, and the first 

woman in Sweden to obtain a Doctorate in science - continued her father's early work 

and went on to state: 

"regular biological analysis of the oceans and of the coastal waters would 

no doubt give a more thorough knowledge of the sea currents, their 

movements and their intermingling, than could be expected from 

hydrographic observations only".  

 

In the years surrounding that statement, dispersal research had become driven by 

applied interests, and especially effort to understand the distribution of fish larvae and 
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their importance for commercial fish stocks (e.g. Hjort, 1926; Walford 1938; Johnson 

1939). Today, scientific interest in the mechanisms of larval dispersal remains unabated 

(see Swearer et al. 2019 for review). The link between physics and biology is clearly 

recognised and technological advances in molecular tools, electronic tagging, 

hydrodynamic modelling and computing have undoubtedly improved our understanding 

of dispersal., yet many questions and uncertainties still remain.  

1.1 The need to understand the dispersal process 

Despite the ever-burgeoning literature, understanding larval dispersal and the ecological 

linkages of populations remains a key challenge in marine ecology (Treml and Haplin, 

2015). In part, this is due to the dynamic nature of the marine environment, leading to 

constant change in the geographic distribution of marine species worldwide in response 

to stressors including rising sea temperatures and ocean acidification (Parmesan and 

Yohe, 2003; Burrows et al., 2011). Profound changes in the biogeography of species 

have occurred in recent years, particularly as previously unsuitable environments have 

become suitable with respect to an organism’s physiological tolerances (Kimball et al., 

2004; Hare et al., 2012). For some species, this has manifested as a poleward shift in 

distribution (Neumann et al., 2013; Hiddink et al., 2015) but in others, no shifts are 

reported (Doak & Morris 2010, Firth et al. in review), or are counter to predictions of 

net poleward movement (e.g., Lenoir et al. 2010). Larval dispersal may underlie some 

of these idiosyncratic responses. For instance,  warmer oceans can elicit physiological 

stress and mortality (Laubier, 2001), increase larval development rates (see O'Connor et 

al. 2007 for a review of 72 species across 6 phyla including fish and invertebrates), or 

reduce plankton duration and exposure to ocean currents, thereby altering population 

and community dynamics as connectivity patterns change (Lockwood et al., 2005). 

Given that dispersal is a key mechanism that shapes the distribution of marine species 
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(Piñeda et al., 2007; Lowe & McPeek, 2014), understanding how and where species 

disperse is imperative to understanding the structure and functioning of marine 

ecosystems today and in the future. 

1.2 Quantifying larval dispersal 

Larval dispersal is often defined as the movement of larvae between their spawning 

source and their settlement site (Cowen and Sponaugle, 2009; Piñeda et al., 2007), 

although it can be argued that this should technically be referred to as propagule 

dispersal., as the dispersal process can also encompass pre-fertilisation dispersal of 

gametes. For the purpose of continuity and in this thesis, I shall consider movement 

from the spawning source to settlement site, including the movement of free-living 

gametes, as ‘larval dispersal’.   

Larval dispersal can be described as a probability distribution function away from a 

starting location (Neubert and Caswell, 2000), or statistically, a probability density 

function or 'kernel' (PDF) describing the frequency of individuals at a distance from 

their source (Werner et al., 2007). For many organisms, this kernel can be described as 

being 'long-tailed'; a large number of organisms remain ‘close to home’, while a smaller 

proportion undergo 'long-distance' dispersal with large variation observed in the 

distance travelled by those who travel further afield (Mayr, 1963; Endler, 1977). From 

an evolutionary and ecological perspective, high concentrations close to home are 

unsurprising and likely attributable to the high energetic cost and risks associated with 

dispersal (Lowe and McPeek, 2004, Nathan et al., 2012).  

Quantifying dispersal of large marine mammals, fish and seabirds can be relatively 

straight-forward using technologies including GPS and satellite imagery (e.g. Carter et 

al., 2017; Doherty et al., 2019; Cox et al., 2016). In contrast, tracking the movement of 
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typically microscopic larvae is considerably more challenging due to their small size. 

Nevertheless, a number of direct and indirect methodologies have been developed to 

quantify and/or predict larval dispersal.   

1.2.1 Direct approaches 

Direct approaches used to examine larval transport in-situ include the use of trace-

elemental fingerprinting to determine source locations (Becker et al., 2007; DiBacco 

and Levin, 2000), the use of artificial markers (tracers) such as dyes (Dabrowski and 

Tsukamoto, 1986), or natural (physiological) markers such as thermal stress marks to 

‘tag’ larvae (Volk et al., 1999). These methods, however, have some drawbacks. Larval 

tracking by trace-elemental fingerprinting requires knowledge of the sources that lead to 

certain fingerprints to be able to trace the origin of the larvae (DiBacco and Levin, 

2000). In artificial marking studies, larval mortality and the typical dilution of larvae in 

the ocean limits the number of tagged individuals that are recaptured in mark-recapture 

efforts (Cowen et al., 2000).  

1.2.2 Indirect approaches 

Genetic tools can be used to infer connectivity between marine populations (see reviews 

by Hedgecock et al., 2007 & Hellberg, 2007), providing indirect insights into the 

movement of propagules between populations (Hellberg et al., 2002). These approaches 

have been used for a range of taxa including crustaceans (Britto et al., 2018; Silva et al., 

2019), fish (Pinsky et al., 2017; Hirase et al., 2020), and bivalves (Silliman, 2019; Van 

Wyngarden et al., 2017). For instance, an Isolation By Distance (IBD) model (Wright, 

1943) that determines gene frequency distribution over a geographic region (Rohlf & 

Schnell, 1971) and associated divergence between populations can be correlated with 

distance to infer dispersal (Palumbi, 2003). Genotyping is typically undertaken using 

either microsatellite markers, or single nucleotide polymorphisms (SNPs). 
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Microsatellite analysis is achieved by identifying short repeats in regions of non-coding 

DNA (Vieira et al., 2016), whereas SNPs are regions of the genome where two strains 

differ by one nucleotide, or base pair (Morin et al., 2009). Genetic measures also allow 

indirect estimation of long-term trends in larval dispersal (Buonaccorsi et al., 2004) and 

provide a means to empirically quantify marine connectivity (Christie et al., 2017). 

These approaches, however, share one significant limitation. While they can provide 

insights into population connectivity, they cannot forecast dispersal., which for instance, 

can limit their value for answering questions related to changes in species distribution 

patterns under future climatic scenarios, or in the design of Marine Protected Areas.  

Given rates of global environmental change, biodiversity loss, and need for action to 

protect biodiversity and natural resources, being able to predict dispersal and 

understanding ecological connectivity is paramount to addressing these challenges. 

Connectivity is now frequently considered in the design of coherent Marine Protected 

Areas (Le Quesne and Codling, 2007; Botsford et al., 2009; Christie et al., 2010; 

Andrello et al., 2013; Krueck et al., 2017; Ross et al., 2017; Costello and Connor, 2019; 

Manel et al., 2019; Moksnes and Jonsson, 2020); efforts to monitor biological invasions 

(Occhipinti-Ambrogi, 2007; Elith, 2017) and fisheries (Morgan and Botsford, 2001; 

Krueck et al., 2017; Whomersley et al., 2018; Criales et al., 2019;); and, to understand 

the influence of climate change on patterns of species distribution (Occhipinti-Ambrogi, 

2007; Wilson et al., 2016). 

Biophysical modelling provides a solution to this limitation and is regularly used to 

predict the dispersal of abiotic (e.g. oil spills, see Spaulding 2017 for review), and 

biotic, propagules including marine, freshwater and terrestrial flora and fauna (e.g. 

Harding and Trites, 1988; Brickman and Frank, 2000;  Allain et al., 2007; Banas et al., 

2009; Nicolle et al., 2013; Ross et al., 2017; Ludsin et al., 2014; Kinlan and Gaines, 
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2003). Biophysical models combine 3 components: a hydrodynamic model that 

describes the physical properties of an environment, a Lagrangian model which 

calculates particles movement, and biological behaviour (an Individual Based Model, or 

IBM). Typically, hydrodynamic fields are provided by a General Ocean Circulation 

Model (OGCM) that describe velocity fields based on resolving Navier-Stokes 

equations (Aiken et al., 2011; Banas et al., 2009; Donahue et al., 2015; Wood et al., 

2014, 2016 - see Swearer et al., 2019 for review), however, other velocity field sources, 

such as advection diffusion models, may also be used (e.g. Cowen et al., 2000; Gaylord 

and Gaines, 2000; Hill, 1990; Richards et al., 1996;  Treml et al., 2008). By combining 

these components, researchers can trace the trajectories of individual particles under 

modelled hydrodynamic conditions (Siegal et al., 2003). 

1.3 Ocean General Circulation Models (OGCMs) 

The Oceanic General Circulation Models (OGCMs) that underpin biophysical models 

were originally developed by researchers at the NOAA Geophysical Fluid Dynamics 

Laboratory in New Jersey (Bryan, 1969) following the successful development of a 

mathematical model of atmospheric circulation in the 1950s (Phillips, 1956) to 

numerically describe the circulation of water within the world’s oceans. OGCMs 

calculate velocities, turbulence, temperature, salinity and density by resolving 

‘primitive’ equations, discretised over space and time, and it is the different techniques 

used to discretise these parameters that gives rise to different types of hydrodynamic 

models (Jones et al., 2002; North et al. 2009; Swearer et al. 2019). These differences are 

summarised for a number of open-source readily available ocean models in Table 1.1.   

OGCMs are discretised in the horizontal plane by grids applied to the coordinate system 

of the study area using either a structured (e.g. NEMO, Madec, 2008); or unstructured 

grid (e.g. FVCOM, Chen et al., 2003). In some instances, for example, in study areas 
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where the flow regime is consistently well-mixed, it may be appropriate to run the 

model using only this 2D (horizontal only) grid (e.g. Ellein et al., 2000). However, 

studies have identified that marine larvae exhibit differential depth distributions of over 

their life-history (Aiken et al., 2011; Knights et al., 2006), and are therefore not 

'passive'. These studies indicate that consideration of heterogeneous advective flow 

regimes across the water column and the relationship between an organism and its 

vertical position within that column is likely important to outcome of model predictions, 

especially those applied to simulate the dispersal of biological propagules. Should 

propagules be incorrectly 'placed' in their vertical position, horizontal advection 

distances could be erroneous.   

To account for this vertical heterogeneity in advection, a more complex model is 

required that includes a z-axis component, i.e. one that converts a model from 2D 

(horizontal only) to 3D (e.g. Fig. 1.1). This z-axis is usually parameterised in one of 

three ways. (1) Using a fixed number of vertical layers (Fig. 1.1a), known as ‘z’-levels 

(i.e. the Advanced Circulation Model (ADCRIC): Leuttich et al. 1992; The Hamburg 

Ocean Primitive Equation General Circulation Model (HOPE): Wolff et al. 1997); (2) 

using local topography to define sigma-levels (Fig. 1.1b)(i.e. the Regional Ocean 

Modelling System (ROMS): Shchepetkin & McWilliams (2005) within a Finite Volume 

Community Ocean Model (FVCOM) framework (e.g. Chen et al. 2003; M.I.T. General 

Circulation Model (MitGCM); Marshall et al. (1997)); or (3) using density-dependent 

depth divisions (Fig. 1.1c) (e.g. isopycnal models; OPYC - Oberhuber, 1993).  

Ideally, ocean models should be able to resolve water mass characteristics over large 

timeframes, effectively resolve mixing in the surface layers at an appropriate resolution 

and be able to maintain effectiveness in shallower waters near the coasts. As such, 

models with hybridised vertical discretisation schemes have been developed as to take 
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advantage of each of the different methods, for example NEMO (z-level/sigma-level 

hybrid: Madec, 2008) and HYCOM (z-level/sigma-level/isopycnal hybrid: Wallcraft et 

al., 2009) (see Table 1.1). 

 

 

 

 

Figure 1.1: A visual representation of a) z-level, b) sigma-level (terrain following) and c) isopycnal 

vertical discretization methods.  Redrawn from the Naval Postgraduate School: 

(https://www.oc.nps.edu/nom/modeling/vertical_grids.html 
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Table 1.1: An overview of the methods of discretisation used by Ocean General Circulation Models 

(OGCMs) and open-source particles trackers coupled with OGCMs. 

Hydrodynamic 

Model 

Horizontal 

Grid 

Horizontal 

Discretisation 

Method 

Vertical 

Grid Scale Citation 

 

Coupled 

particle 

trackers 

 

Example 

applications 

Advanced 

Circulation Model 

(ADCRIC) 

unstructured 

space: finite 

element 

method; time: 

finite difference 

method 

z-levels regional 

Leuttich et al. 

(1992) 

Unnamed 

particle tracker 

(Hill, 2007) 

Tang (2010) 

CCSR (Centre for 

Climate Research) 

Ocean Component 

Model (COCO) 

structured 

finite-difference 

method 

sigma-

levels 
unspecified 

Hasumi 

(2015) 

Unnamed 

particle tracker 

(Hsuing et al., 

2018) 

Hsiung et al 

(2018) 

Coupled 

Hydrodynamical 

Ecological Model for 

Regional Shelf Seas 

(COHERENS) 

structured 

finite-difference 

method 

sigma-

levels 
regional 

Luyten et al. 

(2006) 

SEDLAG 

(Luyten et al., 

1999) 

Savina et al. 

(2010) 

Finite Volume 

Community Ocean 

Model (FVCOM) 

 

unstructured 

combination of 

finite element 

and finite 

difference 

methods 

sigma-

levels 

regional 
Chen et al. 

(2003) 

FVCOM 

Lagrangian 

particle-tracking 

module 

(Chen et al., 

2003) 

 

 

Rowe et al. 

(2016) 
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Hydrodynamic 

Model 

Horizontal 

Grid 

Horizontal 

Discretisation 

Method 

Vertical 

Grid Scale Citation 

 

Coupled 

particle 

trackers 

 

Example 

applications 

AWI Finite-

Element/Volume Sea 

Ice-Ocean Model 

(FESOM) 

unstructured 
finite-volume 

method 

z-level; 

z-

level/sig

ma-level 

hybrids 

multi-scale 
Wang et al. 

(2014) 

 

FESOM-C drift 

(Wang et al., 

2014) 

 

Sprong et al. 

(2020) 

The Hamburg Ocean 

Primitive Equation 

General Circulation 

Model (HOPE) 

structured 

finite-difference 

method 
z-levels 

basin-scale 

(Pacific) 

Wolff et al. 

(1997) 

Unnamed 

particle tracler 

(Kasai et al., 

2008) 

Kasai et 

al.(2008) 

Hybrid Coordinate 

Ocean Model 

(HYCOM) 

 

structured 

 

finite-difference 

method 

 

z-

level/sig

ma-

level/isop

ycnal 

hybrid 

 

global and 

basin-scale 

 

Wallcraft et 

al. (2009) 

CMS (Paris et 

al., 2013) 

 

Pol3DD 

(Lebreton et al., 

2012) 

Ross et al. 

(2016) 

 

Zhang et 

al.(2020) 

 

The Hamburg Large 

Scale Geostrophic 

Ocean General 

Circulation Model 

(LSG) 

structured 

finite-difference 

method 
z-levels global 

Maier-Reimer 

et al. (1993) 

 

Unnamed 

particle tracker 

(Drijfhout et al., 

1996) 

 

Drijfhout et 

al. 

(1996) 
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Hydrodynamic 

Model 

Horizontal 

Grid 

Horizontal 

Discretisation 

Method 

Vertical 

Grid Scale Citation 

 

Coupled 

particle 

trackers 

 

Example 

applications 

Miami Isopycnic 

Coordinate Ocean 

Model (MICOM) 

structured 

finite-difference 

method 
isopycnal global 

Bleck et al. 

(1992) 

Unnamed 

particle tracker 

(Cowen et al., 

2003) 

Cowen et al. 

(2003) 

M.I.T. General 

Circultion Model 

(MitGCM) 

structured 

finite-volume 

method 

sigma-

levels 

global to 

regional 

Marshall et 

al. (1997) 

PaTATO (Fredj 

et al., 2006) 

TrackMPD 

(Jalón-Rojas et 

al., 2019) 

Berenshtein 

et al. (2018) 

No examples 

Modelo 

Hidrodinâmico 

(MOHID) 

structured finite-volume 

method 

z-levels local to 

regional 

Leitão et al. 

(2008) 

Unnamed 

particle tracker 

(Pinto et al., 

2016) 

 

 

Pinto et al. 

(2016) 

 

GFDL Modular 

Ocean Model 

(MOM) 

structured 

finite-volume 

method 

z-levels 

or simga-

levels 

global 

Pacanowski 

et al. (1991) 

Unnamed 

particle tracker 

(Iida et al., 

2010) 

 

Iida et al. 

(2010) 
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Hydrodynamic 

Model 

Horizontal 

Grid 

Horizontal 

Discretisation 

Method 

Vertical 

Grid Scale Citation 

 

Coupled 

particle 

trackers 

 

Example 

applications 

 

Nucleus for 

European Modelling 

of the Ocean 

(NEMO) 

 

Structured 

 

Finite-

difference 

method 

 

z-

level/sig

ma-level 

hybrid 

 

global to 

regional 

 

Madec (2008) 

ARIANE 

(Blanke and 

Raynaud, 1997) 

Parcels 

(Delendmeter 

and van Sebille, 

2019) 

LTRANS 

(Schlag and 

North, 2012) 

Wagner et al. 

(2019) 

Le Gouvello 

et al. (2020) 

Mayorga-

Adame et al. 

(2017a) 

The Ocean Isopyncal 

General Circulation 

Model (OPYC) 

structured 

finite-difference 

method 
isopycnal 

global and 

basin-scale 

Oberhuber 

(1993) 
No examples No examples 

Princeton Ocean 

Model (POM) 

structured 

finite-difference 

method 

sigma-

levels 

local to 

global 

Blumberg & 

Mellor (1987) 

 

PaTATO (Fredj 

et al., 2006) 

 

TrackMPD 

(Jalón-Rojas et 

al., 2019) 

 

Hayes et al. 

(2019) 

 

 

No examples 

The Parallel Ocean 

Program (POP) 
structured 

finite-difference 

method 

sigma-

levels 
global 

Smith et al. 

(2010) 

 

No examples 

 

No examples 
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Hydrodynamic 

Model 

Horizontal 

Grid 

Horizontal 

Discretisation 

Method 

Vertical 

Grid Scale Citation 

 

Coupled 

particle 

trackers 

 

Example 

applications 

 

The Regional Ocean 

Modelling System 

(ROMS) 

 

 

 

 

structured 

 

 

finite-difference 

method 

 

 

sigma-

levels 

 

 

Regional 

 

 

Shchepetkin 

& 

McWilliams 

(2005) 

PaTATO (Fredj 

et al., 2006) 

TrackMPD 

(Jalón-Rojas et 

al., 2019) 

LTRANS 

(Schlag and 

North, 2012) 

Carlson et al. 

(2017) 

No examples 

 

McManus et 

al. (2020) 

Second-generation 

Louvain-la-Neuve 

Ice-Ocean Model 

(SLIM-Ocean 

Model) 

unstructured 
finite-element 

method 

unspecifi

ed 

regional 
Comblen et 

al. (2010) 

No examples No examples 

 

1.4 Choosing an appropriate model for larval dispersal research 

Following rapid advancement in computing power and technological understanding, 

OGCMs are able to depict ocean circulation at spatial and temporal resolutions relevant 

to larval dispersal., for example, ocean currents, tides, freshwater inputs, fronts and 

turbulence. However, effective estimates of larval dispersal using biophysical models 

rely on selecting an appropriate underlying hydrodynamic model in terms of its spatial 

and temporal scale and resolution in order to effectively capture the physical processes 

that the organism is exposed to during its larval phase (North et al., 2009). Hence, the 
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choice of the velocity field source used in dispersal estimates is dependent on the 

model’s ability to resolve parameters relevant to the question being asked by the study.  

Readily available open-source OGCMs (e.g. ROMS, HYCOM, MITgcm, NEMO), 

however, are typically not 'built' with ecology in mind, where the importance of 

oceanographic variability and its features likely occur over very small spatio-temporal 

scales, rather than the more broad-scale conditions generated by most OGCMs. For 

instance, where velocity values are averaged over time, the output of the OGCM may 

not be applicable to the scale over which biological/ecological processes operate. For 

example, an OGCM that produces monthly average current speeds would not be 

sufficiently resolved enough to study larval dispersal in tidally influenced coastal 

regions. Recent research has highlighted that the choice of hydrodynamic model can 

produce marked differences in dispersal predictions (Ross et al., 2020), therefore 

ecologists must consider the parameters of the hydrodynamic model and the suitability 

of its outputs with regard to their study objectives.  

For simplicity, the choice of the hydrodynamic model is often determined by the 

particle tracker component, which are frequently built to be coupled with certain 

OGCMs (see Table 1.1), however, this may result in ‘unsuitable’ hydrodynamic models 

being used. The open-source availability of many particle trackers has allowed 

researchers to address this, creating modified versions of Lagrangian models that can be 

coupled to whatever hydrodynamic model best represents their study area and best 

captures the temporal and spatial resolution and model complexity required for 

answering the study questions (e.g. Mayorga-Adame et al., 2017b). 
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1.5 Lagrangian particle tracking  

To simulate larval behaviour within models, a Lagrangian particle tracking module is a 

key component. These modules can track virtual ‘particles’ in space and time; the 

trajectory of each particle is determined by two general inputs: (i) current velocities and 

diffusivity fields derived from an OGCM (van Sebille et al., 2018) and, (ii) biological 

parameters describing traits of the larva/simulated particle. Originally, this technique 

was used to track virtual water particles in order to study current pathways (Awaji et al., 

1980; Imasato et al., 1980), and has since been applied to a number of different 

applications such as tracking plastics (Lebreton et al., 2012), oil spills (Paris et al., 

2012; Haza et al., 2016), sand grains (Soulsby et al., 2007), volcanic rock (Jutzeler et 

al., 2014), icebergs (Marsh et al., 2015) and planktonic larvae (Siegal et al., 2003; 

Allain et el, 2007; North et al., 2008; Banas et al., 2009; Kim et al., 2010; Robins et al., 

2012; 2013; Nicolle et al., 2013;; Phelps et al., 2015; Ross et al., 2017; Wood et al., 

2014, 2016, Corell and Nissling, 2019). 

There are numerous open-source Lagrangian particle trackers available (Table 1.1). 

Some (i.e. PartTracker, SandTrack, Ariane, TrackMPD) were designed to track abiotic 

particles, such that particle movement within these models is governed solely by 

hydrodynamic advective and diffusive processes. These models are well validated 

(Soulsby et al., 2007) and have shown that they and their associated OGCMs are an 

appropriate tool for predicting abiotic particle dispersal. However, for biotic particles 

such as marine invertebrate larvae, dispersal and distribution is also influenced by 

biological traits (Treml et al., 2015: Figure 1.2). 

Larval behaviour (biological traits) has the potential to decouple model predictions from 

patterns in nature if incorrectly prescribed. Behaviours, however, are complex responses 

to a range of physiological and environmental cues (Rittschof et al., 1998; Kingsford et 
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al., 2002; Wahab et al., 2011; Tosches et al., 2014), and current understanding of how 

behaviours are stimulated (cues) and manifested in nature remains limited. Despite 

behavioural drivers either being poorly or simplistically described, a common response 

has been to increase the complexity of biophysical models in an effort to make them 

more ‘realistic’ (see a recent review by Treml et al. (2015) highlighting the complexity 

of modelling biological traits), to address the argument that the lack of model 

complexity to capture biological and behavioural traits undermines predictive efficacy. 

The Lagrangian TRANSport model (LTRANS; Schlag and North, 2012), for example, 

contains specific modules that allow the user to account for a number of biological 

parameters, such as settlement based on reaching appropriate habitat within a settlement 

competency window, the age at which a particle dies, scaled swimming speeds based on 

the particles age, and active swimming behaviours (i.e. Diel Vertical Migration, or 

behaviour in response to hydrographic features such as haloclines (e.g. North et al. 

2008)). Connectivity Modelling System (CMS; Paris et al., 2013) includes modules that 

account for egg buoyancy, vertical migration behaviour, mortality, and through the 

different particle attributes module, can assign variation within the population based on 

a probability density function and minimum and maximum values. Yet, despite the 

increased complexity of the ‘bio’ component of biophysical models over the years, 

model predictions of larval dispersal are likely overestimated (Shanks et al., 2003; 

Shanks, 2009). 

This disparity between patterns of genetic differentiation in nature and model 

predictions of dispersal (as suggested by Marshall et al, 2019) suggest we are currently 

failing to fully understand how to best incorporate dispersal-relevant biological traits 

within model frameworks. Similarly, can we be confident that when we do get match 

between model predictions and patterns in nature, is it because behavioural traits have 

been are correctly parameterised within the model? 
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Figure 1.2: The stages of dispersal and population connectivity in benthic marine organisms and the 

biophysical drivers of at each stage. Redrawn after (Treml et al., 2015 and Swearer et al., 2019). 

 

1.6 Larval behaviour: the great decoupler? 

1.6.1 Hydrodynamics and larval behaviour 

Due to their small size and relatively slow swimming speeds, larvae have often been 

considered as passive (sensu abiotic) objects with respect to advective ocean currents. 

This is perhaps reasonable given that velocities can be orders of magnitude greater than 

the swimming speed of planktonic organisms (Thorpe, 2005), and thus, the expectation 

that net transport in the horizontal plane is primarily mediated by advective flow (e.g. 

Mayorga-Adame et al., 2017b; Adams & Mullineaux, 2008). However, vertical current 

speeds associated with vertical mixing are often much slower than horizontal advection 

and are equal to or less than larval swimming speeds (Chia et al., 1984; Thorpe, 2005) 

allowing even small-bodied organisms such as larvae to manipulate their vertical 
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position in the water column (e.g. Raby et al., 1994; Shanks and Brink, 2005; Knights et 

al. 2006; Lloyd et al., 2012; Bonicelli et al., 2016; McIntyre et al., 2020).  

This capacity to modify vertical position, even in microorganisms, has the potential to 

greatly affect dispersal projections. Horizontal (advective) flow in the ocean can change 

with depth in both direction and magnitude (Ekman, 1905) dependant on shear stress at 

the surface (wind) and bottom (friction) and stratification of the water column. 

Consequently, manifestation of vertical movement, irrespective of stimulus (James et al. 

2019), can lead to differential exposure to advective currents of different velocity (i.e. 

magnitude and direction). Much research argues that vertical migration by the early-life 

histories of marine organisms represents an 'active' dispersal mechanism allowing 

species to exert some control over their horizontal movement through selection of 

specific advective conditions (Knights et al., 2006; Marta-Almeida et al., 2006; North et 

al., 2008; Robins et al., 2013; Phelps et al., 2015).  

1.6.2 Laval behaviour and biophysical models 

Despite the general appreciation that larval behaviour plays a key role in larval transport 

(Kingsford et al., 2002; Levin, 2006; Phelps et al., 2013; Gary et al., 2020), the majority 

of biophysical modelling studies assume passive larval transport (Swearer et al., 2019). 

A number of recent studies justified the exclusion of behaviour for different reasons. 

Assis et al (2015) argued the omission of behaviours, such as larval swimming, was 

appropriate because the behaviour only influences a larvae’s position at the scale of 

metres and was not applicable at the large spatial scale of their study. Wood et al (2016) 

stated that: 1) their model was designed to provide estimates of dispersal potential of an 

undefined positively buoyant species, and so the study did not set out to achieve 

biological realism, and 2) observations from the field indicated that positively buoyant 

larvae were restricted to the surface layers, thus it was assumed that in conditions where 
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the larvae became mixed into deeper waters, the energy that caused the mixing would 

also homogenise the water column. In fact, it is only relatively recently (in comparison 

to larval dispersal research in general e.g. Cleve 1900) that incorporation of larval 

behaviour within biophysical models has gained traction (Garland et al., 2002; Marta-

Almeida et al., 2006; Nicolle et al., 2013; North et al., 2008; Phelps et al., 2015), 

however as the drivers of larval behaviour are inherently complex (Figure 1.3), there is 

currently no general consensus of how, what, and when behaviours can and should be 

included (Swearer et al., 2019). 

The aim of this thesis is to consider how we parameterise larval behaviour within model 

frameworks, explore whether there are behavioural signals that can be generalised, and 

determine the impact of adopting different behavioural rules within models on dispersal 

predictions.  

 

Figure 1.3: Schematic of the cues influencing larval behaviour, and the manifestation of behaviour and its 

influence on larval dispersal.    
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1.7 The duality of larval behaviour: linking the biology to the 

environment 

1.7.1 ‘Rule-based’ behaviours 

In the context of biophysical modelling, “larval behaviour” typically refers to applying 

an active swimming response (speed/direction) by a model propagule (larvae) to an 

exogenous (i.e. external stimuli) or endogenous cue (e.g. circadian rhythm) (North et al., 

2008; Banas et al., 2009; Butler et al., 2011, Daigle et al., 2016) (Figure 1.3). 

Behaviours can be incorporated in biophysical models by the use of simple ‘rules’ based 

on laboratory observations. For example, to simulate diel vertical migration, particles 

can be programmed to swim down during daylight hours and up during the night 

(negative phototaxis, e.g. Phelps et al., 2015). Similar rule-based approaches have been 

adopted in biophysical models of dispersal to parameterise larval behaviour in relation 

to ontogeny (Puckett et al., 2014), temperature (Civelek et al., 2013; Daigle et al., 

2016), salinity (North et al., 2008), chlorophyll gradients (Cowen et al., 2003), and tidal 

(tidal vertical migration) cycles (Moksnes et al., 2014). However, it remains unclear if 

rules based on laboratory-made observations are appropriate. Studies have shown that 

swimming behaviours observed in lab-based settings can be absent from field 

observations (Maldonado et al., 2003; 2006), thus parameterising behaviours within 

dispersal models based on laboratory observations should be undertaken with caution. 

This decoupling of lab and field-based observations may be due to the fact that in nature 

organisms are likely exposed to multiple, rather than single cues, which may alter their 

responses (Welch and Forward, 2001). Moreover, the scale and/or intensity of cues may 

be masked in nature, such that behaviours observed in a laboratory are not always 

expressed in the field (Ettinger-Epstein et al., 2008), and local conditions may prevent 

behavioural responses from manifesting (Wheeler et al., 2016). As such, lab-observed 
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behaviours in response to a single stimulus in a controlled environment may not be 

reflective of the in-situ movements of larvae. 

1.7.2 How to respond? Dealing with multiple cues 

Hierarchal responses to stimuli have been shown to influence the vertical migration of a 

range of taxa including larval sponges (Ettinger-Epstein et al., 2008; Whalan et al., 

2008), crustaceans (Welch and Forward, 2001), polychaetes (Verasztó et al., 2018) and 

larval fish (Teodósio et al., 2016). Laboratory studies have clearly shown that larvae can 

exhibit behavioural responses and directed movement in response to external cues 

resulting in phototaxis (Forward, 1974; Jékely et al., 2008; Butler et al., 2011), rheotaxis 

(Oteiza et al., 2017), geotaxis (Rius et al., 2010; Cohen et al., 2015), chemotaxis 

(Dumas et al., 2014), phonotaxis (Lillis et al., 2016; Egglestone et al., 2016) and 

thermotaxis (Yokogawa et al., 2014; Goodman et al., 2018) (see Kingsford et al., 2002 

for an in-depth review on larval cue responses and their implications for dispersal). 

However, how multiple cues amalgamate in nature i.e. what is the relative 

strength/importance of cue(s) in the manifestation of a behavioural response (e.g. 

movement), remains unclear and consequently, how to account for behaviours governed 

by multifaceted cue responses is currently a significant knowledge gap. 

1.7.3 The manifestation of behaviour 

Active swimming can be considered the emergent or manifested behaviour of marine 

larvae in response to one/multiple cues that is important to larval dispersal.  Active 

larval swimming behaviours have been observed in the laboratory for a range of taxa 

including bivalves (Sprung et al., 1984; Jonsson et al., 1991; Troost et al., 2008; Fuchs 

and DiBacco, 2011; Fuchs et al., 2013), echinoderms (Roy et al., 2012; Strathmann and 

Grünbaum, 2006; Gilpin et al., 2017), gastropods (Fuchs et al., 2004), and crustaceans 

(Walker, 2004; Møller et al., 2007; López-Duarte and Tankersley, 2007; Gravinese et 
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al., 2018). Invertebrate larval vertical swimming speeds are suggested to range from 

between 0.08 - 4.2 cm s-1 (Chai et al., 1984). Leis (2020) recently considered how larval 

swimming speed is incorporated in biophysical dispersal models, and found that most 

studies use a critical swimming speed (i.e. the maximum speed of flow at which larvae 

are able to maintain their position). Realising that larvae are unlikely to consistently 

maintain this critical swimming speed, Fisher and Wilson (2004) argue that 50% of the 

critical swimming speed was an adequate approximation for a maintainable swimming 

speed. This approximation has been used in modelling studies (Kobayashi 2006; Chang 

et al., 2018), however, later Fisher and Leis (2009) claimed that such an approximation 

is not appropriate for use in dispersal modelling. Indeed, Leis (2020) suggests that 

critical swimming speed and in-situ swimming speed are in fact not well correlated, and 

may lead to significant model prediction errors. This raises a number of questions: (1) 

should active swimming be incorporated within model frameworks, and if so, (2) how 

should that be done, and (3) what swimming speeds should be included?    

1.7.4 Larval behaviour is complex 

To address these questions, and to move toward ensuring best predictions of larval 

dispersal., we must consider the environment in which a larva exists, and the extent to 

which it may influence its behaviour/movement (Metaxas and Saunders, 2009; Swearer 

et al., 2019). Yet, much of the effort into incorporating behavioural algorithms into 

dispersal models has considered behaviour to be independent of the physical state of the 

larva i.e. the rules applied to particles to not consider context specificity, 

notwithstanding increasing evidence that behavioural decisions are governed by 

responses to the local environment (Swearer et al., 2019), and that behavioural 

manifestation is mediated by a larva’s surroundings (i.e. hierarchal responses to 

complex cues (Kingsford et al., 2002), or limitations to swimming ability (Wheeler et 



Chapter 1: Introduction 

24  Molly Kendall James - March 2021 

al., 2016; Leis, 2020)). As discussed earlier, the link between cue detection and 

behavioural manifestation in the field remains unresolved. We argue that behavioural 

‘rules’ within dispersal models (which are typically a set of 'additive' rules) are unlikely 

to capture behavioural complexity, leading to incorrect representation of active 

swimming, and thus, inaccurate representations of larval vertical distribution patterns 

affecting horizontal dispersal predictions. Logically, these errors are likely to propagate 

over time (Firth et al., 2016), and as a consequence, the incorrect incorporation of 

behavioural parameters that inaccurately reflect in-situ vertical distribution profiles is of 

particular concern, especially when considering species with long planktonic duration 

periods. 

A new approach is therefore needed in modelling studies that consider active 

swimming, and ideally, one that is not focussed on individual responses to individual 

cues, but instead considers the mechanisms of movement required to accurately reflect 

the vertical distribution patterns we see in nature so that organisms are exposed to the 

‘correct’ advective currents for dispersal (i.e. the horizontal velocities that match what 

they would be exposed to in the natural environment due to their vertical position in the 

water column). 

1.8 The aims of this thesis 

The chapters that make up this thesis focus on two objectives: (1) improving current 

understanding into how larval behaviours manifest in nature (Chapters 2 and 3), and (2) 

refining behavioural parameterisation methods within biophysical models of dispersal 

with illustrations of how differences in behavioural parameterisation affect dispersal 

predictions (Chapter 4). Chapter 2 described an approach to reverse-engineer larval 

swimming based on in-situ observations of larval vertical distribution patterns. We test 

a range of swimming velocities within a model environment to examine if vertical 



Chapter 1: Introduction 

Molly Kendall James – March 2021   25 

(active) swimming could feasibly be the mechanism that results in patterns observed in-

situ, and if so, generate a single active swimming behaviour that can replace a suite of 

complex behavioural rules. In Chapter 3, we undertook a high spatial and temporal 

resolution sampling regime to assess whether change in larval vertical distribution 

patterns can be attributed to in-situ environmental drivers, and compared vertical 

distribution profiles of the same species in different regions to assess the influence of 

locality. Finally, based on the outcomes of Chapters 2 and 3, Chapter 4 undertakes 

simulations to predict dispersal using the Irish Sea as a case study. Here, we explore 

how vertical distribution profile error propagates through larval dispersal predictions 

made by a biophysical model, with a formal comparison of three 'behaviours'; passive 

dispersal., a tidal vertical migration (TVM) ‘rule-based’ behaviour, and  a reverse-

engineered active swimming behaviour (after Chapter 2), and consider the effect of 

these behavioural parameterisations on larval biogeography. 

 

 

 

 

 

 

 

 

 



Chapter 2: Reverse engineering field-derived vertical distribution profiles to infer larval behaviours 

26  Molly Kendall James - March 2021 

 REVERSE ENGINEERING FIELD-

DERIVED VERTICAL DISTRIBUTION 

PROFILES TO INFER LARVAL 

BEHAVIOURS 

 

 

A version of this chapter has been published at: James MK, Polton JA, Brereton AR, Howell KL, 

Nimmo-Smith WA & Knights AM (2019) Reverse engineering field-derived vertical distribution profiles 

to infer larval swimming behaviors. Proceedings of the National Academy of Sciences. 116 (24):11818-

23. (see: Publications) 
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2.1 Abstract 

Biophysical models are well-used tools for predicting the dispersal of marine larvae. 

Larval behaviour has been shown to influence dispersal., but how to incorporate 

behaviour effectively within dispersal models remains a challenge. Mechanisms of 

behaviour are often derived from lab-based studies, and so may not reflect behaviour in-

situ. Here, using state-of-the-art models, we explore the movements larvae must 

undertake to achieve the vertical distribution patterns observed in nature. Results 

suggest that behaviours are not consistent with those described under the Tidal Vertical 

Migration (TVM) hypothesis. Instead, we show (i) a need for swimming speed and 

direction to vary over the tidal cycle, and (ii) in some instances, larval swimming cannot 

explain observed vertical patterns. We argue that current methods of behavioural 

parameterisation are limited in their capacity to replicate in-situ observations of vertical 

distribution, which may cause dispersal error to propagate over time, due to advective 

differences over depth, and demonstrate an alternative to lab-based behavioural 

parameterisation that encompasses the range of environmental cues that may be acting 

upon planktic organisms. 

2.2 Introduction  

Larval dispersal is a primary factor shaping the distribution of marine species and 

influencing the structure of marine communities (Cowen and Sponagule, 2009). 

Understanding mechanisms of dispersal is therefore imperative to predicting species 

distributions (Levin, 2006). Biophysical modelling – the tracking of particles assigned 

biological parameters (‘behaviours’) within ocean models – has become a ubiquitous 

tool for predicting propagule dispersal in the marine environment (Banas et al., 2009; 

Nicolle et al., 2013; Ross et al., 2017). Models have become increasingly complex to 

enhance ‘realism’, yet despite these efforts, simulation outcomes often do not match the 



Chapter 2: Reverse engineering field-derived vertical distribution profiles to infer larval behaviours 

28  Molly Kendall James - March 2021 

patterns observed in nature identified by genetic studies (Marshall et al., 2010). As 

biophysical models are able to accurately predict the trajectories of abiotic particles 

(Soulsby et al., 2007), the decoupling of modelled and observed distributions is 

frequently attributed to poorly-defined larval behaviour mechanisms, and a limited 

understanding of how to incorporate behaviours within dispersal models (Marshall et 

al., 2010; Metaxas and Saunders, 2009). 

In the context of biophysical modelling, ‘behaviour’ refers to applying an active 

swimming response, typically in the z-dimension, to a model propagule (larvae).  

Planktic organisms generally swim at relatively slow speeds (mm-cms-1) in comparison 

to horizontal currents, which can be orders of magnitude faster (i.e. ms-1). As such, 

active horizontal movement, especially for the early life-history stages of many marine 

organisms (which tend to be small), can be assumed passive. Swimming speeds can, 

however, exceed the vertical mixing velocities in the ocean (Thorpe, 2005), providing 

individuals with a mechanism by which they can alter their vertical position in the water 

column.  When considered in conjunction with depth-related differences in horizontal 

velocity, vertical migration is argued to provide a mechanism through which weak-

swimming individuals can manipulate their horizontal trajectory (e.g. Porch, 1998; 

Knights et al., 2006). Such depth-related differences can be generated by Ekman 

processes, which can be significant in both tidal (Polton et al., 2013a) and open ocean 

environments (Polton et al., 2013b), and tidally induced vertical shear (Uncles and 

Stephens, 1990).  

Vertical swimming is often modelled in response to exogenous (i.e. external stimuli) or 

endogenous cues (e.g. circadian rhythm) (Banas et al., 2009; North et al., 2008). This 

seems sensible as laboratory studies have clearly shown that larvae can exhibit 

behavioural responses and directed movement in response to stimuli (e.g. Kingsford et 
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al., 2002). In nature, however, organisms are likely exposed to multiple, rather than 

single cues, which may alter their responses (Welch and Forward, 2001). Moreover, the 

scale and/or intensity of cues may be masked in nature, such that behaviours observed 

in a laboratory are not always expressed in the field (Ettinger-Epstein et al., 2008). As 

such, lab-observed behaviours in response to a single stimulus in a controlled 

environment may not be reflective of the in-situ movements of larvae. 

A number of field-based studies have highlighted changes in larval vertical distribution 

patterns that correlate with the tidal cycle, for instance, where larvae occupy surface 

waters during the flooding tide, and remain in close proximity to the seabed during the 

ebbing tide, or vice versa. Such tidally synchronised vertical migration (TVM) has been 

documented for a range of taxa (Knights et al., 2006; Kimmerer et al., 1998; Criales et 

al., 2011; Ueda et al., 2010) across a range of larval ages (North et al., 2008; Lutz and 

Kennish, 1992) and observations have been made in both estuarine (Kunze et al., 2013; 

Peterio and Shanks, 2015) and coastal (Knights et al., 2006; Weinstock et al., 2018) 

environments. Active occupation of different depths during alternate tidal states 

(flood/ebb), often referred to as Selective Tidal Stream Transport (STST) (Criales et al., 

2011; Forward and Tankersley, 2001), allows organisms to exploit depth-related current 

differences. These observations are often interpreted as evidence of larval behaviour and 

specifically, an energy-efficient tactic to facilitate migration over long distances or 

promote retention close to coastal areas. However, the mechanisms that govern tidally 

timed movements of marine larvae remain poorly resolved (Forward and Tankersley, 

2001). Synchronisation of movement with the tide suggests the presence of (i) cue(s), 

and (ii) behavioural decision-making (Gibson, 2003). 

Research has suggested salinity gradients may act as a cue to vertical migration (North 

et al., 2008). Salinity gradients associated with tidal state would be expected in 
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estuaries, however, in coastal environments where tidally correlated distribution profiles 

have also been observed, these signals would be much weaker and thus more difficult 

for larvae to detect. At coastal sites, one could assume that there would be an absence of 

strong tidal signals, except in velocity. Otezia et al. (2017) recently showed that some 

larval fish can detect flow velocity using their lateral line, providing a navigational 

signal in the absence of visual or chemical cues, but it is unclear if non-fish larvae can 

perceive changes in the magnitude and direction of the current due to their small size 

and the lack of focal points in the marine environment (McManus and Woodson, 2012). 

There is, however, increasing evidence to suggest that they can respond to turbulence 

(Welch and Forward, 2001), either acting as a cue for larval behaviour (Fuchs and 

DiBacco, 2011; Fuchs et al., 2013), or alternatively, by hindering a larva’s motion 

strategy (Michalec et al., 2015) due to disorientation preventing expression of a 

behavioural response (Bradley et al., 2013). Weinstock et al. (2018) suggest that TVM 

patterns may be passive, caused by vertical advection resulting from the tidal flow over 

a sloping shelf, however Knights et al. (2006) observed a shift in abundance from the 

surface waters during the flood tide to deeper waters at high water (Fig. 2.1) that 

contradicts this theory. It was suggested that larvae may be responding to tidal 

conditions to facilitate transport, but the exact mechanism could not be resolved.  

Larval behaviour can be applied in biophysical models through the application of 

simple ‘rules’ e.g. TVM can be simulated by programming ‘larvae’ to swim up during 

the flood, and down during the ebb (or vice versa). This approach has been implemented 

in numerous studies (e.g. North et al., 2008; Paris et al., 2013; Robins et al., 2012). But 

is it appropriate to apply these rules, and if so, does our current understanding of larval 

movement allow accurate replication of in-situ patterns? Although distribution profiles 

in Knights et al. (2006) correlated to tidal state, the patterns observed were not 

analogous STST theory, in which larval abundances would be expected to be greatest in 
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the surface waters during mid-flood and high water to promote advection towards the 

coast, and greatest near the bed during mid-ebb and low water to limit offshore transport 

(Forward and Tankersley, 2001). Instead, larvae were most closely associated with the 

sea-bed during both slack water periods, with the middle and bed during the ebb tide. 

Despite these observations, Knights et al. (2006) has been heavily cited as evidence of 

STST, and specifically used as justification for TVM in dispersal models (Robins et al., 

2013). We argue that this is inaccurate and will lead to erroneous predictions of 

dispersal. Here, using a combination of empirical data and state-of-the-art modelling, 

we explore the active movements that bivalve larvae would need to undertake in order 

to create the patterns observed in nature over the course of a tidal cycle. We test a range 

of swimming velocities within a model environment to examine if vertical swimming 

could feasibly be the mechanism that facilitates the patterns observed in-situ, given 

what we know about the swimming speed of early life-history stages of bivalves. 

2.3 Methods 

2.3.1 Observations of vertical distribution profiles 

To determine the extent of vertical migration in a coastal environment, we used data 

collected for a previous study (Knights et al., 2006) from two 100 m × 100 m sites (Site 

1: 52° 19.542’ N, 6° 15.538 W; Site 2: 52° 20.036’ N, 6° 15.344’ W) within a 4 km2 

area with a mean depth of 24m in the Southern Irish Sea off the coast of County 

Wexford, Ireland. The waters at this location are well-mixed (Brown et al., 2003); with 

mean horizontal advection of up to 1ms-1 (Knights et al., 2006), and vertical mixing at 

rates of up to 0.1m2s-1 (Fig. 2.2), which can result in turbulent velocities that are orders 

of magnitude greater than the swimming speeds of larvae. These conditions therefore 

provide a challenging test for the effectiveness of larval behaviour (e.g. swimming) to 

influence vertical distribution.  Replicate samples (n=5) were collected from three depth 
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zones (surface, 0-8m; mid-water, 8-16m; bottom, 16-24m) during four consecutive tidal 

states (low water slack; flood; high water slack; ebb) over a full tidal cycle (12.1 hours). 

Replicate sampling was undertaken in May/June and July/August in order to capture 

early and late stage larvae respectively, and to encompass variation associated with 

differences in the tidal amplitude cycle (spring/neap). Previous analyses of the data have 

shown that larval vertical distribution profiles correlate to a change in the tidal state 

(flood, high water slack; ebb; low water slack), but not the tidal phase (spring/neap), nor 

with ontogenetic larval stage or sampling location. In the present study, we take a 

numerical approach using a realistic modelled hydrodynamic environment to explore 

whether vertical swimming could feasibly be the mechanism that facilitates the 

observed changes in distribution over a tidal cycle. 

 

Figure 2.1: Observed proportional abundance (% ± SD) of Mytilus spp. larvae within each depth zone 

during four tidal states (Mid Flood; High Water; Mid Ebb; Low Water). Multiple comparison outcomes 

are shown above each bar, where different letters and numbers indicate a significant difference (p < 0.05) 

in (a-b) larval proportions between depth zones within a tidal state and (1-2) between tidal states within a 

depth zone (Tukey’s HSD). 
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2.3.2 The hydrodynamic model 

A large-eddy simulation (LES) of an unstratified tidal boundary layer was used to 

generate a time and depth varying diffusivity coefficient. The purpose of the LES was to 

create a diffusivity matrix that represented the hydrodynamic environment at the 

time/location of sampling. The LES configuration was set-up to be forced by time series 

profiles of ‘filtered’ horizontal velocities obtained from an ADCP record and solved for 

the turbulent ‘perturbation’ flow (Brereton et al., 2019). The LES domain was 

nominally 50m x 50m x 25m with a lateral grid size of 0.4m and a stretched vertical 

grid sizes 0.07 m - 0.17m. This method is validated against independent measurements 

of turbulence dissipation. The advantage of this method over a direct 3D turbulent 

simulation of particles comes from the fact that online Lagrangian simulations are 

computationally demanding. This method undertakes trajectory analysis offline using 

the output from the LES, reducing the computational demand of the simulation, 

allowing many experiments to be run to seek statistical convergence (see ‘the particle-

tracking model’). In this simulation the background tidal flow, U, was assumed to be 

oscillating in one direction. The direction of the flow had no influence on the resultant 

diffusivity coefficient. From these resolved turbulent fluctuations, an effective eddy-

diffusivity (Fig. 2.2) can be derived from the following relationship: 

 

where K is the eddy diffusivity (in m2s-1), <𝑢′𝑤′> is a resolved Reynolds stress 

averaged horizontally over the domain (calculated by the LES), ∂U/∂z is the prescribed 

vertical mean (tidal) shear, and Prt is the turbulent Prandtl number of seawater, taken as 

one.  As this statistic is not well defined when the vertical mean is near zero, a cubic 
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spline was used to smooth K in time, with 2-minute intervals (de Boor, 1978). This has 

no discernible effect on K away from the slack tide. 

A velocity depth profile was fitted assuming a log-layer approximation with a 

roughness length of z0 = 0.001 m, though eddy-diffusivity was not sensitive to the 

choice of z0.  As the Irish Sea tends to be well-mixed with no known hydrographic 

features during the spring and summer months when field samples were collected 

(Brown et al., 2003), it was deemed appropriate to use a constant density LES.  The 

mid-points of the flood and ebb tide were determined from the depth-averaged current 

velocities when maximum positive and maximum negative flows occurred.  Similarly, 

the slack tide mid points were identified as the times when the associated depth-

averaged current velocities were nearest to zero. 

It should be noted that, as is the case with all models, the parameterised diffusivity 

output of the LES may not necessarily be a perfect match for what the real organisms 

experienced in the field. However, direct calculation of the diffusivities using an LES 

seems preferable to simply taking a constant value or estimating diffusivity from either 

a hydrostatic model or scaling arguments. Furthermore, the LES is validated to simulate 

realistic levels of dissipation (which represents processes at the scale of the organisms 

(Metaxas, 2001). Such, it was considered an appropriate trade-off between 

hydrodynamic complexity and physical accuracy, whilst also permitting investigation 

into larval movement through offline particle tracking. 
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Figure 2.2: Visualisation of the eddy diffusivity field (K) created by the Large Eddy Simulation over a 

12.1 hour tidal period from low water slack1 to low water slack2 forced by time series profiles of ‘filtered’ 

horizontal velocities, and solved for the turbulent ‘perturbation’ flow. See Brereton et al. (2019) for full 

details. 

 

2.3.3 The particle tracking model 

To test the potential of larvae to undergo vertical migration, a 1-D Lagrangian particle-

tracking algorithm was built in MATLAB (Version 2017b) to follow the vertical 

trajectories of virtual larvae within the filtered eddy-diffusivity flow field as generated 

by the LES (see Appendix 1). The 1-D definition of the particle tracker is due to the 

exclusion of horizontal movement within the simulation (i.e. eddy-diffusivity can only 

move particles upwards or downwards). Preliminary tests using 100, 10,000 and 

100,000 seed particles indicated convergence of the relative vertical distribution 
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profiles. As such, it was deemed appropriate to use 100 particles in each simulation in 

order to minimise computational effort without influencing results (see Appendix 2). 

The hydrodynamic environment was prescribed using the horizontally averaged output 

of the LES, K, which was coupled with a particle movement component implemented 

using a random walk approach (as described in Ross and Sharples, 2004), and larval 

active swimming (ω) behaviour (described in detail below).  The model timestep, δt, 

was set at 60s. This was deemed sufficiently small enough so that the diffusivity profile 

was locally well approximated by the first-order Taylor expansion. Particle movement 

was calculated for δt by:  

 

where zn is the depth of a particle at the nth timestep, Kʹ is the diffusivity gradient at the 

particle location (δK/δz), R is a random number from a continuous distribution between 

1 and -1 (with variance r = 0.33), and ωn is the vertical swimming velocity of a particle 

at timestep n.  

A Mersenne-Twister algorithm was applied to the random number generator to ensure 

that values of R were sufficiently random. The inclusion of the deterministic component 

Kʹ(zn)δt ensures that particles are always advected in the direction of higher diffusivity, 

thus preventing artificial accumulation in low diffusion areas. It was assumed that the 

rate of larval diffusivity was equal to the rate of eddy diffusivity calculated by the LES. 

This was considered appropriate as larval transport by eddies is not affected by inertial 

and crossing trajectories effects due to their small size (Ross and Sharples, 2004). 

Larval vertical movement was explored from each tidal state to the next consecutive 

state (Flood to High Water, High Water to Ebb, Ebb to Low Water, Low Water to 
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Flood) using a ‘mixed-model’ approach. Prior to each simulation, the model water 

column was seeded with particles in a probabilistic vertical distribution profile based on 

the observed vertical distribution for the defined starting tidal state. To achieve this, the 

model particles (n=100) were distributed so that the percentage of particles in each bin 

matched the percentage of the total population of larvae observed in the field for that 

bin/tidal state. Additionally, particles were randomly assigned depths within each depth 

bin using a random number generator. Particles were then assigned ‘behavioural rules’, 

explained in further detail below. 

2.3.4 Parameterising swimming behaviour  

To assess the influence of larval swimming on vertical distribution profiles, multiple 

simulations were run using a range of swimming velocities (N=2525). Although bivalve 

larvae have been observed to swim in a helical pattern (Jonsson et al., 1991), swimming 

in the model was confined to one-dimension, and as such, swimming velocities 

represent the absolute swimming velocity (the vertical distance travelled by an 

organism), rather than the linear velocity (the velocity of a larva along its swimming 

path). Swimming velocities explored ranged from -2.5mms-1 to 5mms-1, justified by an 

in-depth literature review (e.g. Fuchs and DiBacco, 2011; Sprung, 1984). Particles were 

considered neutrally buoyant (i.e. downward movement was an active response), and 

swam constantly at the swimming velocity given by the model parameters. 

Each simulation ran from the midpoint of the defined starting tidal state to the midpoint 

of the next consecutive state. Simulation duration was variable: 174 model minutes 

between low water and mid-flood, 176 minutes between mid-flood and high water, 198 

minutes between high water and mid-ebb, and 182 minutes between mid-ebb and low 

water. Variation matched that at the survey location, where local bathymetry can act to 

distort the pattern of the tide, generating tidal asymmetry (Dronkers, 1986). 
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Furthermore, around the British Isles the M2 and M4 tides can combine to give 

differences in the flood and ebb tidal streams (Pingree and Griffiths, 1979). Tidal 

asymmetry has been demonstrated in the Irish Sea (Moore et al., 2009) and was 

observed by Knights et al. (2006) at the study site. Such patterns were replicated by the 

LES. 

Following each simulation, the proportional abundance of particles within each depth 

bin was calculated (where the proportion is the number of particles in each bin divided 

by the total number of seeded model particles) and compared to the observed 

proportional abundance of particles for the end tidal state of the model run. 

2.3.5 Analysis 

2.3.5.1 Larval vertical velocity as a predictor of in-situ distribution profiles 

A bootstrap approach was used to assess the error between the modelled and observed 

profiles for each tested vertical velocity at each tidal state, given the variation in the 

sampled (modelled and observed) populations. We generated 100 new estimates of the 

observed distribution profile, using the mean and standard deviation of the observed 

proportional abundances in each depth bin (n=5). We then used the same method to 

bootstrap 100 distribution profiles for each tested swimming velocity, using the 

modelled proportional abundances in each depth bin as the sample data (n=25). Pairwise 

comparisons were used to determine the sum of squares of the proportional difference 

between the simulated and observed profiles for each depth bin, and the overall 

difference between the observed and simulated profiles was demonstrated by the total of 

the sum of squares of the difference for all three bins (SStotal). The mean square error 

(MSE) and 95% confidence intervals were calculated for each tested velocity. SStotal 

(n=7600 for each tidal period: 100 pairwise comparisons x 76 tested swimming 

velocities) and MSE (n=76) were plotted against swimming velocity. Best fitting curves 
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were constructed in R, using ANOVA to justify the order of the polynomial. The 

equation of each curve was then solved for the smallest value of y to determine the 

swimming velocity where the likelihood of difference between the simulated and 

observed profiles was lowest, and as such, the quality of that velocity as a predictor of 

in-situ distribution patterns was greatest. 

2.3.5.2 Assessing model compatibility 

Two-way ANOVA and planned F-test comparisons were used to compare proportions 

of larvae recorded from in-situ observations (n=5) and proportions of virtual larvae 

from model simulations (n=5) (Sokal and Rohlf, 1995). For each tested velocity, the 

number of simulation runs was fixed to match the number of replicates observed.  As 

proportional distribution data were in percentages, data were transformed by the angular 

(arc-sine of square root) transformation prior to statistical analysis in order to satisfy the 

assumptions of the ANOVA. The simulation was replicated five times for each 

scenario, to generate variance estimates around the mean diffusivity based on the 

random walk. Stouffer’s transformed z method (Stouffer et al., 1949) was used to 

combine the p-values of the interaction term of the 5 independently run tests to provide 

a quantifiable continuous measure of compatibility between the observed data and the 

model outcome - Model Predictive Capability (MPC) - ranging from 0 (complete 

incompatibility) to 1 (perfect compatibility) (Greenland et al., 2016). In addition to the 

continuous measure of compatibility, the combined p-value was used at the significance 

level of 0.01 (Bonferroni correction: α = 0.05/5 tests) to accept or reject the null 

hypothesis that there was no difference between the simulated and observed distribution 

profiles. 
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2.4 Results 

The success of the model at predicting the distribution profiles observed in nature was 

highly variable, dependent on tidal period modelled, and swimming velocity assigned to 

the particles, as demonstrated by the Model Predictive Capability (Fig. 2.3: bars). When 

particles were passive, the modelled distribution profile was significantly different to 

the observed profile for all tidal states (Stouffers p<0.01). On the flood tide, modelled 

distribution profiles did not significantly differ from those observed in nature when 

particles were assigned swimming velocities ranging from 0.8mms-1 to 3.3mms-1 

(Stouffer’s p>0.01), and maximum MPC (MPCmax) was achieved at 2.2mms-1 

(Stouffer’s p = 0.997) (Fig. 2.3a). MPCmax at high water was achieved when particles 

were assigned a swimming velocity of -0.8mms-1 (Stouffer’s p = 0.883) and velocities 

between -0.4mms-1 and -1.5mms-1 produced profiles that did not significantly differ 

from the observations (Stouffer’s p>0.01), with the exception of -1.4mms-1 (Stouffer’s 

p<0.01) (Fig. 2.3b). The model predicted distributions that were not significantly 

different to those observed at low water when particles were assigned swimming 

velocities of -0.7,-0.8 and -1mms-1 tide (Stouffer’s p>0.01), with MPCmax at -0.7 and     

-0.8mms-1 tide (Stouffer’s p = 0.23 for both) (Fig. 2.3d). Combined p-values suggest 

significant differences between the modelled and observed distribution profiles on the 

ebb tide for all tested swimming velocities (Fig. 3c), and so a value for MPCmax on the 

ebb tide could not be determined.  

Minimum SStotal., as predicted by the fitted curves correlated well to MPCmax (Fig. 2.3), 

with the lowest values predicted within 2mms-1 of the swimming velocities related to 

MPCmax for: a) the flood tide (VelocityMin.SStotal = 2.4mms-1 ; MPCmax = 2.2mms-1), b) 

high water (VelocityMin.SStotal = -1mms-1 ; MPCmax = -0.8mms-1), and d) low water 
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(VelocityMin.SStotal = -0.8mms-1; MPCmax = -0.7/-0.8mms-1). The velocity at which the 

lowest SStotal was predicted on c) the ebb tide was -1.1mms-1. 
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Figure 2.3: Compatibility of the model at predicting the distribution profiles observed in nature during 

each a) the flood tide, b) high water slack, c) the ebb tide, and d) low water slack, after a ~3hr simulation 

period, and the quality of vertical swimming velocity as an estimator of observed profiles.  Vertical 

swimming velocity (mms-1) is shown against Model Predictive Capability (Stouffer’s Combined p-value: 

coloured bars) (left axis), and Total Sum of squares of the difference between 100 pairwise comparisons 

of modelled and observed distribution profiles generated using a bootstrap approach (right axis). Data 

points indicate individual pairwise comparisons (n=7600) and grey bands demonstrate 95% confidence 

intervals. Mean Square Error (MSE) is represented by coloured lines.  Curves of best fit are calculated 

using 3rd order polynomials: a) Flood:  y = -1.18x3 + 43x2 – 193.16x + 448.48, r2 = 0.39 (SStotal), r2 = 

0.97 (Mean Squared Error); b) High Water:  y = -9.95x3 + 122.25x2 + 276.62x + 363.19, r2 = 0.75 

(SStotal), r2 = 0.99 (MSE); c) Ebb: y = -9.05x3 + 91.61x2 + 252.34x + 379.60, r2 = 0.82 (SStotal), r2 = 0.99 

(MSE); d) Low Water: y = -13.49x3 + 170.38x2 + 335.67x + 251.78, r2 = 0.93 (SStotal), r2 = 0.99 (MSE). 
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2.5 Discussion 

Behaviour is often included in biophysical models using relatively simple rules based 

on laboratory-based observations of larval responses to cues (North et al., 2008; Robins 

et al., 2013). Here, we argue that this approach may not be appropriate.  Our results 

suggest that current methods of behavioural parameterisation used in biophysical 

modelling studies are limited in their capacity to ‘match’ in-situ observations of vertical 

distribution profiles. Using a bootstrap approach, we identified the swimming velocities 

that best reduced the likelihood of difference between observed distributions and those 

predicted by the model, even in instances where the model predictive capability was low 

(i.e. the ebb tide). 

We simulated change in the vertical distribution of virtual larvae by assigning 

‘behaviours’ to particles within a novel high-resolution tidal boundary layer Lagrangian 

model. To our knowledge, there is no study that has attempted to reverse-engineer 

model simulations to determine larval behavioural parameters in this way. In addition to 

showing that the likelihood of difference between model and nature is reduced when 

particles are assigned some sort of active movement compared to passive particles, our 

results are the first to indicate when larvae change their swimming ‘behaviour’ in 

response to changes in tidal state. We showed that a shift from positive (upward) to 

negative (downward) movement around the mid-flood point of the circatidal cycle was 

necessary for larvae to achieve the distribution patterns observed in nature (Knights et 

al., 2006). This is counter to the selective tidal stream transport hypothesis, which 

argues that organisms swim upwards for the duration of one tidal state and downward 

during the opposing state (e.g. (Civelek et al., 2013), and contradicts Weinstock et al.’s 

(2018) theory of passive vertical advective movement by tidal straining, as this 

mechanism would result in the direction of vertical movement being consistent during 
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the flooding tide. Consequently, the implementation of TVM in a dispersal model using 

this ‘rule’ (e.g. Robins et al., 2013) may be ineffective at generating vertical profiles 

that accurately represent nature. Even over relatively short time periods, such as the 3-

hour period between mid-flood and high water, inaccurate vertical distributions in 

biophysical models will influence dispersal estimates, and such errors will accumulate 

and propagate over time (consider species with long planktic larval durations). This 

effect was recently hypothesized by Firth et al. (2016). Looking forward, future research 

should explore how the results of this study propagate through the larval dispersal 

estimated by a biophysical model, and how behavioural parameters derived from the 

reverse-engineering of in-situ vertical distribution profiles influence both dispersal and 

connectivity predictions when compared to estimates made using alternative approaches 

to vertical distribution (i.e. ‘rule-based’ behaviours (e.g. Robins et al., 2013) and/or 

probabilistic larval vertical distribution profiles (e.g. Paris et al., 2007). 

All velocities resulting in the smallest error between model and observations fell 

between the boundaries of larval swimming reported in the literature suggesting that 

swimming is an important mechanism. Reported swimming speeds and sinking velocity 

estimates are typically highly variable both within and across taxa; although are 

typically in the range of 1 to 10mms-1 and rarely exceed 20mms-1 (4.2 cms-1 in Cancer 

magister megalopa) (Chia et al., 1984). Our study showed that, for our data, upwards 

swimming must be 2.5x faster than downwards swimming in order to best match the 

observed profiles. This demonstrates the need for swimming speed to be a variable 

parameter in dispersal modelling studies, and highlights that the speed of upwards and 

downwards movement is not always consistent, however we acknowledge that any 

difference in optimum swimming speed among tidal states will be most marked in 

slower swimming species, such as bivalves, and effects will likely be less pronounced 

for stronger swimmers (Huntley and Zhou, 2004).  
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The model-generated distribution profiles on the ebb tide were significantly different to 

those observed for all tested velocities leading to low model compatibility (HW to mid-

ebb; mid-ebb to LW). This is in marked contrast to the flood tide where compatibility 

was high. Our approach was able to identify the optimum vertical velocities that give 

the ‘best fit’ to the observed patterns when larval behaviour is parameterized by 

constant swimming in one direction; however, the low compatibility between the 

modelled data and observed profiles suggests that we do not fully understand the 

behavioural responses of the larvae and their relationship with the physical 

characteristics of the ocean during this particular tidal state. For instance, it is possible 

that spatially and/or temporally inconsistent behavioural responses in-situ may cause 

larval swimming to differ among depths over even shorter timescales. One possible 

solution to this problem might be to use higher spatio-temporal resolution in-situ 

sampling coupled with a short model internal time-step in an effort to improve model 

compatibility. This process alone may provide further insights into the relationship 

between manifestation of larval behaviours in response to their environment, whilst 

simultaneously supporting improved model compatibility and better characterisation of 

larval behaviour within model frameworks. 

Due to the sampling regime of the original study, our model was only able to reverse-

engineer optimum swimming speeds during daylight hours. Diel vertical migration 

(DVM) occurs when organisms synchronize their vertical movement to the day/night 

cycle. Such behaviour, thought to be a predation-avoidance response (Lampert, 1994), 

has been documented for a number of taxa (Romero et al., 2012; Breckenridge et al., 

2011; Raby et al., 1994). Whether bivalve larvae exhibit DVM remains unclear; there is 

conflicting evidence in the literature (Raby et al., 1994; Bonicelli et al., 2016), and 

differences may well be location specific. Future research would benefit from sampling 

programmes that encompass the 24-hour diel cycle in order to encapsulate potential 
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variation in the vertical distribution of larvae within the study domain due to the 

day/night cycle.   

The model system of this study assumes a well-mixed open coastal environment with a 

flat bathymetry and laterally homogenous spatially averaged velocities. Given this, and 

the fact that the LES model could be directly forced by observed velocities suggests that 

the LES data broadly described the hydrodynamic conditions that the larvae would 

experience throughout the study domain. It must be noted, however, that in 

environments with high spatial heterogeneity (for example over sloping bathymetry, or 

across lateral or vertical frontal systems) differential vertical mixing may influence 

larval ability to regulate depth as expected. Stratification of the water column has been 

shown to alter the vertical migration of marine organisms (Raby et al., 1994; Lougee et 

al., 2002) by acting as a barrier to vertical movement (Daigle and Metaxas, 2011). 

Should our approach be undertaken to infer larval swimming in a more heterogeneous 

environment, such as an estuary, the underlying hydrodynamic model should be 

designed as to adequately represent realistic conditions.   

The cues which govern larval swimming responses in-situ remain unclear and were 

beyond the scope of this study. It has been previously suggested that some larvae may 

respond to a hierarchy of cues, indeed, many have the sensory ability to do so 

(Kingsford et al., 2002; Otezia et al., 2017). Hierarchical responses to stimuli have been 

shown to influence the vertical migration of a range of taxa including the larvae of 

sponges (Ettinger-Epstein et al., 2008), and fish (Teodosio et al., 2016), and so it is 

possible that a similar response exists in other organisms, for example, bivalves. If cues 

do influence the vertical migration of larvae in a hierarchical manner, their order of 

importance to the organism must be determined if behaviours are to be parameterised 

using a rule-based approach in dispersal models so that behaviours accurately depict 
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responses in nature. This order may change over space and time and in relation to other 

cues and so rule-based models must account for this. Failure to do so could greatly 

contribute to model error. 

With this in mind, accurately parameterising larval behaviour using a rule-based 

approach is clearly a complex endeavour that requires an in-depth understanding of a 

multitude of potential drivers of larval movement, and knowledge of how these drivers 

influence both larvae and each other. Using field-derived vertical distribution data to set 

the goal posts, our approach allows larval behaviour to be based on real-life changes in 

the vertical distribution patterns of larvae. By focusing on the active movements 

particles would be required to undertake within the model domain to achieve a 

distribution profile that is the least different from that observed in nature, we effectively 

bypass the need for a complex understanding of the mechanisms of planktic swimming 

and larval responses to behavioural stimuli, instead focusing on the end goal: achieving 

a modelled distribution profile that accurately replicates nature.  

Dispersal is a key mechanism that shapes the distribution of marine species, and thus an 

understanding of how and why species disperse is imperative to the success of marine 

conservation agendas, fisheries management efforts and attempts to minimise the risk of 

invasive species spread (Levin, 2006; Botsford et al., 2003; Palumbi, 2003). 

Biophysical modelling provides a cost-effective tool to estimate dispersal in the marine 

environment, however, inaccuracies within these models can misguide those using 

them, and consequently decisions made off the back of inaccurate model estimations 

may be ineffective (Botsford et al., 2009). This study demonstrates that active 

movement changes over the course of the tidal cycle at temporal scales typically not 

modelled. Our approach has reverse-engineered model simulations to identify the larval 

swimming speeds and directions that generate the smallest error between modelled and 
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observed distribution patterns.  These estimates are not perfect, but as error is reduced 

compared to the passive model when particles are given active movement, we can 

conclude that larval swimming is an important mechanism in accurate depictions of 

vertical distribution. This approach will allow future research to determine the best 

fitting behaviours of a range of taxa, where in-situ vertical distribution data is/can be 

made available. 

This study highlights that over a period as short as 12 hours, differences in behaviour 

(i.e. speed/direction) required to replicate observed vertical distribution profiles are 

great. Our results indicate that current ‘rule-based’ approaches to behavioural 

parameterisation, for example, assigning a constant swimming speed to particles and/or 

assuming vertical direction with respect to tidal direction (i.e. Robins et al., 2013), may 

lead to significant over- or under-estimates of dispersal. For larvae swimming outside 

optimum speeds, modelled predictions of dispersal will become increasingly divergent 

over time in terms of match to in-situ observations due to depth-related differences in 

current velocity, especially for species with PLDs longer than 1 day. This study offers 

an alternative method of behavioural parameterisation, where behaviour is inferred from 

the field rather than the laboratory, which will aid in minimising the error associated 

with inaccurate vertical distribution profiles in biophysical models. 
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A version of this chapter is currently in preparation as: James, MK, Polton, JA, Howell, KL & Knights, 

AM. Assessing environmental drivers of vertical distribution in a tidally influenced coastal system, for 

publication in a marine ecology and ecosystem research journal., such as Marine Ecology Progress Series. 
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3.1 Abstract 

Identifying the drivers of larval behaviour remains a significant challenge in marine 

ecology. Larvae have the ability to alter their vertical position in the water column, 

exposing them to depth-differentiated which can influence their dispersal trajectory. 

However, the drivers of larval vertical migration remain unclear. Variations in the in-

situ vertical distribution profiles of early and late stage bivalve larvae collected from the 

English Channel in 2018 were investigated and compared to distribution profiles of 

bivalves collected from the Irish Sea. Generalised Additive Models (GAMs) were used 

to reveal the influences of density, temperature, salinity and eddy diffusivity on the 

distribution profiles. External drivers explained very little of the vertical distribution 

patterns of the larvae, however, results suggest differential usage of environmental cues 

based on ontogenetic stage. Vertical distribution patterns observed differed from 

previous observations of a similar species at a different location, suggesting that it may 

not be appropriate to generalise larval behaviours as a function of temperature, salinity, 

density, diffusivity, tidal state or larval age.   

3.2 Introduction 

Larval dispersal - the movement of individuals or gametes away from their areas of 

origin or from centres of high population density - plays a critical role in shaping the 

distribution patterns of species in the marine environment (Clobert et al. 2001; Wright, 

1951). Many marine species are sessile or display limited movement as adults, relying 

on a ‘free flowing’ larval life-history stage as the mechanism for dispersal. This ‘larval 

dispersal’ phase is an essential connectivity mechanism that links discrete populations 

that can offset disturbance, ensure gene flow and facilitate stability (Bernhardt and 

Leslie, 2013).  Dispersal is therefore an important process in the evolution and adaptive 
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capacity of marine organisms and understanding connectivity a key aspect of 

understanding species biogeographic patterns.   

During their planktonic life-history stage, larvae are exposed to oceanographic 

processes that can act to transport individuals from one location to another (Pineda et 

al., 2007). For many years, marine larvae were considered as passive particles at the 

mercy of ocean currents, and their dispersal - the geographic distance travelled from 

spawning to settlement - determined solely by hydrodynamics (Pineda et al., 2007). 

Coupled with the idea that oceans were open with no barriers to dispersal., the 

assumption was dispersal and distribution was widespread (e.g. Lessios et al., 1998). 

The influential paper by Cowen et al. (2000) challenged this paradigm, suggesting that 

marine populations may not be as ‘open’ as once thought. Observations of breaks in the 

distribution patterns of marine organisms with the capacity for long distance dispersal 

(LDD) indicate limits to the transport of larvae (Barber et al., 2002; Waters et al., 2005). 

Subsequently, hydrodynamic features such as fronts (Gilg and Hilbish, 2003; Thornhill 

et al., 2008), eddies (Mann and Lazier, 2006); Sanvicente-Anorve et al., 2018) and 

upwelling (Rocha et al., 2005) are now recognised as potential barriers to dispersal.  

Concomitantly, there has been increased consideration of the role of larval behaviour on 

dispersal. Historically, larval behaviour was not considered important in dispersal 

estimates, largely because the small size of larvae (and limited swimming ability in 

comparison to advection velocities; Huntley and Zhou, 2004) suggested no capacity to 

manipulate their horizontal position. However, increasingly larvae are now thought to 

modify their horizontal advection through manipulation of their vertical position in the 

water column by actively swimming and/or by altering their buoyancy (Garrison, 1999; 

Szmant and Meadows, 2006; Shanks, 2009; Stanley, 2012; Daigle et al., 2016; 

McVeigh et al., 2017). This is achievable as larvae are able to overcome vertical mixing 
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in marine systems as their swimming speeds are greater than the velocities associated 

with vertical mixing (Yamazaki and Squires, 1996; Thorpe, 2005; Scheuch and 

Menden-Deuer, 2014). 

A combination of physical oceanography and larval behaviours likely play a role in the 

idiosyncratic biogeographic patterns of biodiversity often observed in nature. It is 

argued that larval vertical migration in response to environmental cues provides planktic 

organisms with a mechanism by which they are able to take advantage of changing flow 

speeds and directions characteristic of coastal environments despite their limited 

horizontal swimming capacity (sensu Selective Tidal Stream Transport (STST); 

Forward and Tankersley, 2001) and to some extent, govern their dispersal trajectory. 

For example, by occupying deeper waters during the ebbing tide larvae minimise 

transport offshore during tidal oscillations, which promotes self-recruitment (Rowe and 

Epifanio, 1994; Kimmerer et al., 2014; Teodosio and Garel, 2015). Conversely, larvae 

that occupy surface waters during the ebb tide will facilitate offshore transport, carrying 

them to regions that potentially have more food/less predation risks, and/or less 

competition for suitable habitat (Forward and Tankersley, 2001).  

Coastal systems are highly dynamic with fluctuations in tidal activity, wave action, and 

surface heating from the sun that can result in strong environmental gradients forming 

over short-term (hours: high-low water cycles), mid-term (weeks: spring-neap cycles) 

and long-term (months: seasons) temporal scales (Krumme and Liang, 2004), and over 

spatial scales ranging from kilometres (ocean-basins) to millimetres (eddy diffusivity 

gradients).  Given that marine larvae have been shown to exhibit behavioural responses 

to a number of environmental cues in lab-based experiments that reflect conditions in 

coastal systems, it is reasonable to assume that the movement of larvae is to some extent 

governed by detection of their environment. For example, in laboratory experiments, 
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vertical profiles of marine larvae have been observed to be influenced by light (Ettinger-

Epstein et al., 2008; Cisewski et al., 2010; Wahab et al., 2014; Andres-Bragado et al., 

2018), the presence of conspecifics (Ettinger Epstein et al., 2008; ), temperature 

(Gardner et al., 2004; Fouzai et al., 2015), salinity (Crosbie et al., 2019) food 

availability (Bianco et al., 2011; Fouzai et al., 2015), familiar soundscapes (Lillis et al., 

2018), turbulence (Fuchs et al., 2004; Fuchs and DiBacco, 2011; Wheeler et al., 2016) 

and welling events (DiBacco et al., 2011) suggesting at the potential for phototactic, 

chemotactic, gravitactic, visual., auditory, and olfactory behavioural responses.  

Yet, little is known about the mechanisms by which larvae perform vertical migration in 

the water column. In marine environments, larvae are consistently exposed to a plethora 

of cues of which laboratory experiments indicate that they have the ability to respond to 

(see above). It is unclear, however, which of these they respond to in nature when cues 

are presented simultaneously. We have only recently shed light on what larvae might be 

doing to achieve changes in their vertical distribution (James et al., 2019; Chapter 2), 

but how they are interacting with their environment remains unknown, and a significant 

missing piece of the puzzle in larval dispersal modelling (Swearer et al., 2019). It has 

been suggested that cue response may be hierarchal (Kingsford et al., 2002; Woodson et 

al., 2007 Fuchs et al., 2010; Huijbers et al., 2012; Teodosio et al., 2016). For instance, 

megalopae of the blue crab, Callinectes sapidus, have been shown to mediate their 

vertical migratory behaviour in response to a hierarchy of salinity and turbulence levels 

(Welch and Forward, 2001). Furthermore, conflicting cues can lead to mixed 

behavioural responses (Fouzai et al., 2015; Morello and Yung, 2016), decoupling 

predictions of behaviour made through observations of single-cue responses under 

relatively artificial laboratory conditions. Consequently, our understanding of the 

environmental cues that larvae use to signal vertical migratory behavioural responses is 
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limited, due to both our lack of knowledge surrounding decision-making by larvae, 

coupled with the inherent complexity of their surrounding environment. 

Zooplankton are known to respond rapidly to changing conditions (David et al., 2005), 

so it is likely that behavioural responses to the environment influence the vertical 

distribution profiles of organisms over time periods even as short as a few hours. In 

tidally-influenced systems, change in the vertical distribution of larvae over these types 

of temporal scales has the potential to significantly influence the dispersal of organisms 

due to tidal flow. Many studies have been published that correlate observed vertical 

distribution patterns to the tide (Carriker 1951,1961; Kunkle, 1957; Wood and Hargis, 

1971; Booth, 1972; Maru et al., 1973; Andrews, 1983; Gregg, 2002; Baker and Mann, 

2003; Knights et al., 2006; Peteiro and Shanks, 2015), yet the mechanisms that drive the 

formation of these profiles in nature remain unresolved. Furthermore, there is limited 

information available on the relationships between multiple tidally-influenced 

environmental variables and larval vertical distribution in-situ. Given biophysical 

models typically accurately predict the trajectories of abiotic particles (Soulsby et al., 

2007), the decoupling of observed distributions and those predicted by dispersal studies 

is frequently attributed to poorly defined larval behavioural mechanisms and a limited 

understanding of how to incorporate behaviours within dispersal models (Metaxas and 

Saunders, 2009). Such, understanding how and when larval behaviours manifest in 

nature is paramount to effective biophysical modelling that better predicts connectivity 

patterns in the marine environment. 

Here, we explored changing patterns of larval vertical distribution to reveal potential 

drivers of larval behaviour. We observed change over time and space in both larval 

density and proportional abundance of bivalve larvae in a macro-tidal coastal 

environment to answer the questions: What are the main environmental drivers of 
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change of larval vertical distribution, and how do the patterns of vertical distribution 

observed in our samples compare to previous observations of vertical distribution in a 

different location for the same taxa? 

3.3 Methods 

3.3.1 Data collection 

Sampling was undertaken in Bigbury Bay, off the Coast of South Devon, UK, (50° 17' 

20"N to 50° 17' 29"N, 4° 0' 24"W to 4° 0' 30"W) during September 2018 (Fig. 3.1). 

This location is characterised by a large tidal range (~4-5m) and experiences a semi-

diurnal tide. Timing of sampling was chosen to coincide with the autumnal peak in 

zooplankton abundance observed on this coast, in which bivalves make a significant 

contribution to the total zooplankton abundance (Eloire et al., 2010). Plankton samples 

were collected over a 6-hour period to capture the change from low flow (high water 

slack) to high flow (ebb tide). This period of the tide was specifically chosen for 

detailed exploration as recent research revealed that the behaviours of blue mussel 

larvae inferred from in-situ vertical distribution profiles could not be explained for the 

period between high water slack and the mid-point of the ebb tide (James et al., 2019; 

Chapter 2). This modelling study explored whether observed patterns could be 

‘matched’ in a model environment through the implementation of a uni-directional 

constant swimming behaviour. Results demonstrated low model compatibility during 

the high water → mid-ebb period and suggested that behavioural manifestation may be 

more complex than the tested method of behavioural implementation. As such, this 

study endeavoured to explore the factors that may cause complex behavioural responses 

to arise. 
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Figure 3.1: Bigbury Bay, off the coast of South Devon in the English Channel (inset, the location of 

Bigbury Bay in relation to the UK). Study site is marked by the green circle. 

 

Samples were collected from within a 200m2 area (with a water depth of ~25 m chart 

datum and a tidal range of 5m at the time of sampling (anyTide, National Oceanography 

Centre). Both sites had similar topography and seabed composition, which was 

predominantly stony circa-littoral reef in both locations (Gaches and Cork, 2008). Water 

depth was first measured in-situ by echo sounder (Airmar P79 transducer 200KHz: 

Raymarine) to the nearest 0.1m before dividing the column into 3 equal depth bins 

(following Knights et al., 2006), calculated as 1/3rd of the total water column depth at 

the time of sample collection.  

Plankton nets with mouth diameter of 250mm and a mesh size of 100µm were 

suspended in each depth bin by attaching them to a vertical rope tied to a 25kg weight 

placed on the sea bed and suspended using a surface buoy (25 kN) (this setup is 
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hereafter referred to in the paper as ‘strings’).  Each 3-hour tidal period (HWS +/- 1.5hrs 

and mid ebb +/- 1.5 hours) was divided into three 1 hour ‘windows’ and strings were 

deployed for the duration of each window (see Fig 3.2). To account for spatial variation 

and ‘patchiness’ within the plankton, duplicate strings were deployed within the 

sampling area for each 1-hour sampling period. Following deployment, nets were 

washed into 250ml PDFE bottles and the contents stored in 70% industrial denatured 

alcohol (IDA) to fix plankton. Current data was obtained by Acoustic Doppler Current 

Profiler (Nortek AWAC 400kHz, Norway) mounted on a bedframe (Nortek Ocean 

Science Sea Spider, Norway). Current speed and direction were recorded at 1 metre 

depth intervals every minute for the duration of the study (360 minutes). CTD casts 

(SBE 19plus V2 SeaCAT profiler CTD, Seabird Electronics, USA) were taken at the 

midpoint of each hourly sampling window to provide water column profiles of 

temperature, salinity and density. 
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Figure 3.2: Schematic of the sampling regime. Replicate plankton strings deployed for hour long ‘windows’ during high water (+/- 1.5 hours from High Water Slack) 

and ebb tide (+/- 1.5 hours from mid-ebb: calculated as the halfway point between high water and low water). 
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3.3.2 Processing the oceanographic data 

ADCP data were processed using MATLAB (2018b) and mean current speed (ms-1) per 

hour in each 1m depth bin was calculated. Eddy diffusivity (m2s2) was fitted to the 

current speed profile using a scaled output of a Large Eddy Simulation (LES) (see 

Brereton et al. 2019 and James et al. 2019; Chapter 2 Fig 2.2) by determining 

coefficients between the current speeds used to force the original LES and those 

collected by the AWAC, and then multiplying the original eddy diffusivity by the 

calculated coefficient for each time step/depth bin. This process generated mean hourly 

eddy diffusivity records (to match the timeframe of each sampling window) with a 

vertical spatial resolution of 1m. 

3.3.3 Plankton Taxonomy 

In the laboratory, Mytilus larvae were identified then enumerated using the 

identification keys of Newell and Newell (1977) and Conway (2012). Bivalve larvae 

were chosen as the study species as: 1) they are known to be dominant members of the 

zooplankton community during the Autumn (the time of sampling); 2) they are known 

to have the capacity for active swimming (Sprung, 1984; Fuchs and DiBacco, 2011); 

and 3) previous research has examined the in-situ vertical distribution profiles of this 

taxa over the course of tidal cycles (Knights et al., 2006) allowing for direct comparison 

between the profiles obtained during this study and those obtained from other study 

sites. Identified larvae were grouped into one of two ontogenetic stages based on size 

and morphological features: (i) early stage (D-veliger; <210µm and no foot present), 

and (ii) late stage (pediveliger; >210µm and foot present). Density (number per m3) was 

quantified by determining the volume of water sampled by each net during the sampling 

window using: 
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𝜋𝑟2 ∗ 𝑢 

Where r is the radius of the net opening, and u is the cumulative velocity of the passing 

current over the sampling window as provided by the ADCP.   

Larval densities in each depth-bin*tidal state combination (n = 6; 2 reps per hour, 3 

hours per tidal state) were then bootstrapped using a normal distribution around the 

mean and standard deviation for each sample to improve estimates of the confidence 

intervals. This process was replicated so that 1350 observations were recorded in total 

for each depth-bin × tidal state combination.   

The calculated distributions of density values for each depth bin were used to randomly 

assign larval density. For example, the bottom depth bin covered 7 metres of the water 

column and thus 7 values for eddy diffusivity, temperature, salinity, and water density 

(temporally averaged over each sampling window), were obtained within this depth bin 

for each timestep, collected at 1 metre intervals. To assign larval densities at 1 metre 

intervals within the bottom bin, a random larval density was chosen based on a normal 

distribution around the mean and standard deviation of larval density for the bottom bin 

for each timestep.  Current velocity was not selected as a factor due to lack of evidence 

that it can be directly sensed by invertebrate larvae. Given plankton density differences 

can occur between states due to patchiness, proportional abundances of larvae in each 

depth bin in relation to the total abundance of larvae in the water column were 

considered instead of raw density to compare vertical distribution profiles between 

states. 

3.3.4 Comparing larval densities and vertical distribution profiles 

Statistical analyses were performed using R (Version 3.4.1, R Core Team, 2018). Larval 

densities and proportional abundances were compared using a three-factor ANOVA 
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design: (1) tidal state (2 levels: high water slack, ebb tide); (2) Depth Bin (3 levels: 

surface, middle, bed); and (3) Larval age (2 levels: early, late), and interactions among 

factors were also considered. Assumptions of ANOVA were tested using Levene’s test 

for homogeneity of variances at the significance level of α = 0.05. When assumptions of 

the ANOVA were not met, data were square root (x+1) transformed prior to analysis. 

Differences between the means of groups were assessed at the significance level of α = 

0.05. For terms that were significant, Tukey’s Honestly Significant Difference (HSD) 

testing was used to identify which means were different and mean differences as 

percentages were calculated.  

Additionally, larval vertical distribution profiles of proportional abundance were 

compared to previous data describing changes in the vertical distribution profile of 

bivalve larvae over a tidal cycle in the Southern Irish Sea. This study was undertaken in 

a well-mixed open coastal (shelf sea) environment where means currents speeds are of a 

similar magnitude to those in the English Channel (anyTide, National Oceanography 

Centre), and sampling was undertaken in water of a similar depth to this study 

(~25metres). Comparative analysis was done using the same factorial design as above 

but replacing the ‘larval age' variable with a new integrative factor: ‘group’, in which 

larvae were classified as early stage, late stage or Irish. As the Irish Sea bivalve larval 

population exhibited no significant differences in vertical distribution patterns with 

respect to ontogeny (Knights et al., 2006), larval age of the Irish Sea population was not 

considered in this model. Furthermore, in order to assess behavioural manifestation in 

terms of vertical movement of the population, we looked at shifts in the vertical 

distribution profiles for early, late stage and Irish larvae between the two sampled tidal 

states and calculated the mean percentage change in the proportional abundance of 

larvae in each depth bin between the two states. 
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3.3.5 Assessing the drivers of vertical distribution 

To assess which environmental variables may be driving the observed changes in the 

vertical distribution patterns of bivalve larvae, General Additive Models (GAMs) were 

implemented using the ‘mgcv’ package in R (Wood, 2012). A step-wise approach was 

used to determine the best fitting GAM to predict proportional abundance, with four 

environmental variables with distinct ecological effects, namely: water density (kg/m3), 

temperature (°C), salinity (PSU) and eddy diffusivity (m2s1) used as covariates. This 

was done by fitting a ‘thin plate’ smoothing spline to each of the covariates where 

appropriate, and reducing the equation through the removal of non-significant variables 

where necessary to improve model fit. Prior to analysis, variables were tested for 

correlation and significant correlates were removed. Model fit was assessed using the 

generalised cross-validation (GCV) score of the model, with the model with the lowest 

GCV score indicating lowest prediction error. The relative importance of each of the 

covariates to the final model outcome was determined using the VarImp function from 

the ‘caret’ package in R (Khun, 2012). 

3.4 Results 

3.4.1 Water column features 

The water column exhibited slight stratification during the high-water slack tide, with 

maximum differences in temperature, salinity and density throughout the water column 

of 0.2°C, 1.2 PSU, and 0. 9 kg/m3 respectively (Fig. 3.3).  These differences all 

occurred during the slack high-water period. During the ebb tide, the water column was 

well-mixed with no significant features (Fig. 3.3). A temporal lag of approximately 1 

hour was observed between current speed intensity and the intensity of the eddy 

diffusivity predicted by the LES model (Fig. 3.4). Surface peaks observed for all 
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variables are artefacts of the sampling equipment, caused by calibration of the CTD as it 

enters the water. 
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Figure 3.3:  Time series of CTD casts of temperature (red), salinity (green) and density (blue) taken from Bigbury Bay, South Devon UK in September 2018 alongside 

a plankton sampling agenda. Profiles collected at the midpoint of each 1-hour sample collection window 
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Figure 3.4:  Eddy Diffusivity Profile fitted to current speeds collected by an Acoustic Doppler Current Profiler in Bigbury Bay, South Devon, UK in September 2018.  

Upper graph shows the current speed (taken from the ADCP) at 5m from the bed (blue) and the fitted eddy diffusivity at 5m from the bed (red). Lower graph shows the 

fitted eddy diffusivity profile over the water column over the sampling period. The x-axis (Time in hours) is shared between both graphs.   
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3.4.2 Larval abundances  

The mean density of bivalves in the samples was 26.8 ± 19.8 m-3. The density of early 

stage larvae was significantly higher than that of late stage larvae (9.55 more early stage 

larvae per m3: F1,2688 = 591.93, p < 0.001) (Fig. 3.5), and the mean density significantly 

higher during slack high water than during the ebb tide (6.64 more larvae per m3 at high 

water: F1,2688  = 284.90, p < 0.001) (Fig. 3.5). There was a significant interaction 

between larval stage, tidal state and depth bin. There was also a significant interaction 

between larval stage, tidal state and depth bin for the proportional abundances of larvae 

(F2,2688, p  < 0.001) (Fig. 3.6). 

3.4.3 Comparisons of vertical distribution profiles 

At high water slack, no significant differences were observed between the mean 

proportions of early stage larvae in the surface (36% of all larvae in the water column) 

and middle waters (40% of all larvae in the water column) (Tukey’s HS, p = 0.052), but 

significantly fewer larvae occurred nearer the bed (24% of all larvae in the water 

column - 12% fewer than at the surface, 16% fewer than in the middle bin: Tukey’s HS, 

p < 0.001). During the ebb tide, there were no significant differences in the mean 

proportions of early stage larvae in the middle and lower depth bins (middle bin 21%, 

bed bin 21%: Tukey’s HSD, p = 0.998), and a significantly higher proportion of early 

stage larvae nearer the surface (58%: Tukey’s HSD, p < 0.001). The mean proportion of 

early stage larvae in the surface waters was 22% greater on the ebb tide than at high 

water (Tukey’s HSD: p < 0.001), and the mean proportion of early stage larvae in the 

middle of the water column was 19% greater at high water than on the ebb tide (Tukey’s 

HSD, p < 0.001). The proportion of early stage larvae near the bed did not change 

significantly between tidal states (Tukey’s HSD, p = 0.111). 
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Figure 3.5: Vertical profiles of densities (organisms per metre3) of early and late stage Mytilus spp. larvae 

at two tidal states: high water and ebb tide.  Plots show mean densities (n=6) and error bars show the 

standard error.    

 

The mean proportion of late stage bivalves was significantly lower in the surface waters 

than in the middle of the water column (21% fewer larvae: Tukey’s HSD, p < 0.001) 

and near the bed (15%: Tukey’s HSD, p < 0.001) during high water. During this tidal 

state, the greatest proportion of late stage larvae were found in the middle of the water 

column 42% of all the larvae in the water column), where the mean proportion of late 

stage larvae was 21% greater than at the surface, and 6% greater than near the bed 

(Tukey’s HSD, p < 0.001).  During the ebb tide, the greatest proportion of late stage 

larvae remained in the middle of the water column (44%), however, in contrast with the 

high-water distribution, the proportion of late stage larvae near the surface was greater 

than near the bed (9% more larvae near the surface than near the bed: Tukey’s HSD, p < 
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0.001). No significant differences were observed in the proportional abundances of late 

stage larvae in the middle depth bin between tidal states (Tukey’s HSD, p = 0.902), 

however a significantly greater proportion of late stage larvae were present in the 

surface waters during the ebb tide when compared to high water (11% more larvae in 

relation to the total number of larvae in the water column observed at the surface during 

the ebb tide) (Tukey’s HSD, p < 0.001), and a greater number of late stage larvae were 

present near the bed during high water compared to the ebb tide (13% more larvae in 

relation to the total number of larvae in the water column observed near the bed during 

high water: Tukey’s HSD, p < 0.001).   

The proportion of early stage larvae in the surface waters relative to the total abundance 

of early stage larvae in the water column was significantly greater than the proportion of 

late stage larvae in the surface waters, at both high water (14% greater: Tukey’s HSD, p 

< 0.001) and the ebb tide (25% greater: Tukey’s HSD, p < 0.001). The proportional 

abundance of late stage larvae in the middle depth bin was significantly greater than the 

proportion of early stage larvae in the middle depth bin on the ebb tide (23% greater: 

Tukey’s HSD, p < 0.001), however, there was no significant difference in proportions of 

early and late stage larvae in the middle depth bin at high water (Tukey’s HSD, p = 

0.908).  A significantly greater proportion of late stage larvae were observed near the 

bed at slack high water than early stage larvae (12% greater: Tukey’s HSD, p < 0.001), 

yet on the ebb tide, no differences in proportions of late and early stage larvae were 

observed in the bin near the bed (Tukey’s HSD, p = 0.959). 

3.4.4 Regional differences 

Comparison of the vertical distribution profiles of both larval stages of bivalves 

collected from the sample site in the English Channel with profiles of larvae collected 

from the Irish Sea highlighted significant differences. The proportional abundances of 
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both early- and late-stage larvae relative to the total number of larvae in the water 

column were significantly different from the Irish Sea vertical for all tidal state/depth 

bin combinations (Tukey’s HSD, p < 0.001 for all), apart from the middle depth bin on 

the ebb tide, where no difference in the proportional abundance between the two 

populations was found (Tukey’s HSD, p = 0.26, p < 0.001 for all other combinations). 

Specifically, the proportion of Irish larvae in the surface waters at high water slack was 

7% smaller than the proportion of early-stage larvae in the English Channel (Tukey’s 

HSD, p < 0.001), but 7% greater than late-stage English Channel larvae.  Proportional 

abundance in the middle water column at high water was greater than the Irish Sea 

population for both early-stage (mean difference 11%: Tukey’s HSD, p < 0.001) and 

late-stage larvae (mean difference 14%: Tukey’s HSD, p < 0.001), and proportional 

abundances near the bed at high water were significantly smaller in the English Channel 

population (early-stage larvae – mean difference 19%: Tukey’s HSS, p <0.001; late-

stage larvae – mean difference 19%: Tukey’s HSD, p <0.001).  During the ebb tide, the 

English Channel population demonstrated a greater proportional abundance of larvae in 

the surface waters compared to the Irish Sea – this effect was much more pronounced 

for early-stage larvae (mean difference 37%: Tukey’s HSD, p < 0.001) than late-stage 

larvae (mean difference 12%: Tukey’s HSD, p < 0.001). Significantly lower 

proportional abundances were observed near the bed on the ebb tide in the English 

Channel compared to the Irish Sea (early-stage larvae – mean difference 18%: Tukey’s 

HSD, p < 0.001 ; late-stage larvae – mean difference 19%: Tukey’s HSD, p < 0.001), 

and the proportional abundance of early-stage larvae in the middle water column on the 

ebb tide was significantly smaller than the Irish Sea (mean difference 20%: Tukey’s 

HSD, p < 0.001). Distribution profiles of larvae and vertical shifts in the distribution of 

larvae between high water and ebb tide for early-stage English Channel larvae, late-

stage English Channel larvae and Irish larvae are visualised in Fig 3.6. 
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Figure 3.6: Proportional abundances of a) early-stage bivalve larvae collected from the English Channel, b) late-stage bivalve larvae collected from the English 

Channel and c) Bivalve larvae collected from the Irish Sea (not separated by larval stage as no significant differences observed with ontogeny (Knights et al., 2006) 

collected +/- 1.5 hour from high water slack (left) and the mid-point of the ebb tide (right). Arrows display the vertical shift in the population required to achieve the 

change in vertical distribution between high water and ebb tide. 
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3.4.5 Model fitting to explain larval proportional abundances as a function 

of their environment 

The best fitting-model for both early and late stage larvae included smoothing terms for 

all tested covariates (Fig 3.7). Model accuracy was increased by fitting thin plate 

regression splines to all included covariates and was not improved with the removal of 

any of the covariates. Overall, the best fitting GAMs explained 17.2 % of the variability 

in proportional abundance of early stage larvae (GCV = 346.57, n = 1350), and 23.9 % 

of the variability in proportional abundance of late stage larvae (GCV = 290.52, n = 

1350) (see Appendix 3). The contribution of the environmental variables to the variance 

in proportional abundance differed between ontogenetic stages. Eddy diffusivity made 

the greatest contribution to the variance in proportional abundance of early-stage larvae 

at 7.84%, followed by water density at 6.83%, then temperature at 2.53% (total variance 

= 17.2%). In contrast, in late-stage larvae, temperature made the greatest contribution to 

the variance in proportional abundance at 12.41%, followed by water density at 11.67%, 

and lastly salinity at 0.09% (total variance = 24%). Although the inclusion of all 

covariates was deemed necessary to attain the best-fit model in both cases, salinity was 

shown not to be a contributing factor to the overall variance in proportional abundance 

of early-stage larvae explained by the model.  Similarly, eddy diffusivity did not 

contribute to the overall variance in proportional abundance of late-stage larvae 

explained by the model. 
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Figure 3.7: Best fit multivariate generalised additive model (GAM) terms displaying the estimated partial 

effects (smoothed by thin plate regression splines) that density, salinity, temperature, and eddy diffusivity 

have on the proportional abundance of:  early stage (D-veliger) bivalve larvae (a-d), and late stage 

(pediveliger) bivalve larvae (e-h) in the water column in this study (solid line).  95% confidence intervals 

are highlighted by grey areas and small lines on the x-axis represent individual data points. 
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3.5 Discussion 

Larval dispersal in marine systems is thought to be influenced by behaviour, resulting in 

exposure to depth-differentiated current speeds and directions (Knights et al., 2006; 

North et al., 2008; Shanks, 2009; James et al. 2019). In this paper, we explored how 

larval vertical distribution profiles change between high water and ebb tide periods and 

correlate these profiles with environmental features. Here, different vertical distribution 

profiles were identified in relation to the state of the tide (high water; ebb) and these 

patterns were dependent on larval ontogenetic stage.   

Generalised Additive Models (GAMs) were used to determine larval proportional 

abundance as a function of the following environmental variables: temperature, density, 

salinity and eddy diffusivity (i.e. turbulence). All of these factors have been shown to 

influence larval swimming behaviours in laboratory conditions (Fuchs et al., 2008; 

North et al., 2008; Podolsky, 1993; Gardener et al., 2004). Here, model compatibility 

incorporating these factors was generally relatively low, explaining just 17.2% and 

23.9% of the variance in proportional abundance of early and late stage larvae 

respectively. The main factors contributing to the variance were eddy diffusivity at 

7.8%, and water density at 6.8% for early stage larvae, and water density at 12.1% and 

temperature at 11.7% for late stage larvae. Such findings may well be indicative that 

larval behaviour is governed by many more cues than those tested. Indeed, factors such 

as light (Ettinger-Epstein et al., 2008; Cisewski et al., 2010; Wahab et al., 2014; 

Andres-Bragado et al., 2018), conspecific presence (Ettinger Epstein et al., 2008) food 

availability (Bianco et al., 2011; Fouzai et al., 2015), and soundscapes (Simpson et al., 

2011; Lillis et al., 2018) have been shown to influence the directional movement of 

invertebrate larvae, and coastal topography has been shown to influence vertical 
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distribution patterns over time (Weinstock et al., 2018).  As such, ours GAMs may be 

limited by the level of included factors.   

In coastal environments, stabilising and destabilising forces such as tidal and wind 

mixing (Hetzel et al., 2015), freshwater runoff (Simpson et al., 1991), the movement of 

water over heterogeneous topography (Simpson and Hunter, 1974), and surface heating 

(Simpson and Hunter, 1974) can lead to the stratification and mixing of the water 

column over a variety of spatial and temporal scales. Indeed, such patterns were 

observed (albeit weakly) in this study, with the water column becoming stratified over 

the high-water period and becoming well-mixed during the ebb tide. Discontinuities in 

both temperature and salinity over depth have been shown in the laboratory to alter the 

behaviours controlling the vertical movement of larvae in the water column and may act 

as a barrier to vertical swimming (Daigle and Metaxas, 2011; Lougee et al., 2002; 

Sameoto and Metaxas, 2008). In this study, gradients in temperature and salinity were 

small, even when thermo/haloclines had formed (maximum differences over the water 

column of 0.2°C and 1.2 PSU respectively). Observations of bivalve larvae being 

unable to cross these features have been shown in the presence of considerably larger 

gradients (Mann et al., 1991), while being able to freely traverse smaller clines, such 

that it is unlikely that these gradients would prevent larvae from using active swimming 

to alter their vertical position in the water column.  

The density of the water column contributed to the observed variance in proportional 

abundance for both early and late stage larvae, however, the mechanism that may be 

governing this remains unclear. Eddy diffusivity was shown to contribute to the 

variance observed in the vertical distribution of early stage larvae, but not late-stage 

larvae, suggesting that larger larvae may have more control over their position in 

turbulent waters than their smaller counterparts (i.e. Huntley and Zhou, 2004) Bivalve 
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larvae have been  observed in the laboratory to respond to turbulence (Fuchs et al., 

2004; Fuchs and DiBaccio, 2011; Wheeler et al., 2013), however, observations have 

recorded turbulence eliciting a sinking response, with larvae switching from upwards to 

downwards swimming at a critical turbulence threshold. Larvae in this study increased 

in the upper water column as the turbulence increased, in contrast to the behaviours 

predicted by Fuchs suggesting that: a) the critical threshold was not met (unlikely due to 

the high mixing power in macro-tidal environments like those experienced in the study 

area); b) larvae are responding to turbulence in a different manner to those observed in a 

laboratory setting; or c) additional unmeasured variables are acting upon the larvae and 

influencing their behaviour in-situ that have not been included in laboratory studies of 

behaviour.   

As shown in Knights et al. (2006), the vertical distribution of larvae in this study was 

highly dependent on the tide, with the proportional abundance of larvae in different 

depth bins correlating strongly with the state of the tide (Fig. 7). But in contrast to 

Knights et al. (2006), ontogenetic differences in the vertical distribution profiles of 

marine bivalve larvae were observed whereby proportional abundances of early-stage 

larvae in the surface waters are greater than late-stage larvae, regardless of tidal state, 

and where late-stage larvae show a greater affiliation than early-stage larvae to the 

middle column during the ebb tide.  

There were also significant differences in the overall vertical distribution profiles of 

larvae collected from the English Channel (this study) and the Irish Sea (Knights et al., 

2006). Results suggest that early-stage larvae in the English Channel must migrate from 

both the bottom and mid-depth waters towards the surface in order to achieve the 

observed pattern on the ebb tide. Late-stage larvae also appear to exhibit an upwards 

movement between high water and mid-ebb, however the majority of change for this 



Chapter 3: Assessing environmental drivers of vertical distribution in a tidally influenced coastal system 

76  Molly Kendall James - March 2021 

population comes from the movement of larvae near the bed (Fig 3.6). In the context of 

selective Tidal Stream Transport, this is unexpected, as one would assume that late 

stage larvae to prefer to remain near the bed during the ebbing tide to mitigate their 

offshore transport and remain in close proximity to suitable habitat (i.e. self-recruitment 

to a population: Sponaugle et al., 2002). Laboratory experiments suggest a sinking 

response to strong turbulence by both early and late stage larvae (Fuchs and Dibaccio, 

2011), and so it would be expected that larvae experiencing turbulence near the bed 

would display sinking behaviour. It is possible that larvae near the bed are uplifted by 

boundary layer turbulence which may overpower their active swimming response 

(Butman et al., 1988). Recent advances have made studies looking into the impact of 

turbulent flow on the behaviour of larvae feasible (Fuchs et al., 2013; Wheeler et al., 

2013), however the field is still in its infancy. Further work exploring hydrodynamic 

factors that may act to dampen or prevent larval behavioural responses would definitely 

provide some useful insights into the mechanisms governing larval vertical distribution 

patterns. 

The net upwards movement of both early and late-stage English Channel larvae differ 

from the patterns observed in the Irish Sea. In the Irish Sea Study, proportional 

abundances between high water slack and mid-ebb reduced in both the surface and 

bottom depth zones and increased in the middle of the water column, suggesting 

contrasting behavioural responses with depth. Such comparisons between the two 

populations are anecdotal., as a number of variables such as seasonality 

(Spring/Summer sampling regime in Knights et al 2006 vs. an Autumnal sampling 

regime in this study), decadal variation in climate (2005 vs 2019), and local conditions 

were not controlled for. Both study regions, however, exhibit similar mean current 

speeds (~0.7ms-1 at the surface: anyTide, National Oceanography Centre), water depth 
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(25m), and topography, and populations of bivalves, in particular mussels, are 

ubiquitous in both areas.  

Differences in vertical distribution patterns between the two populations suggests either 

intra-specific or location specific variation in larval behaviours. This has major 

implications for dispersal studies as it suggests that it may not be appropriate to 

generalise larval behaviours if models are to present accurate predictions of larval 

dispersal. We suggest that to achieve the greatest model accuracy, in-situ vertical 

distribution profiles should be collected from the study area prior to analysis of 

dispersal through modelling, in order to ground-truth local behaviours. Our previous 

work (James et al., 2019) presents a method by which larval distribution profiles 

collected from the field can be used to infer behaviours over timescales as small as the 

sampling regime allows, which can then be applied within modelled environments.  

Significant differences in larval densities were observed between tidal states, with a 

greater number of larvae present in the water column during high water than during the 

ebb tide. Given the proximity of the study location to the coast, this not surprising, if 

one was to expect higher densities of larvae off-shore from the observation site. Similar 

patterns were observed by Knights et al (2006) who suggested that reduced densities on 

the ebb tide may be due to close association with the sea bed such that larvae are not 

captured by sampling nets.  

This study contributes to already extensive literature showing that vertical distribution 

profiles of bivalve larvae correspond to the state of the tide (Carriker 1961; Kunkle 

1957; Wood and Hargis 1971; Booth 1972; Maru et al. 1973; Andrews 1983; Gregg 

2002; Baker and Mann 2003; Knights et al. 2006; Peteiro and Shanks 2015), yet 

patterns observed differ from previous observations of similar species in a different 

location (Knights et al., 2006). When attempting to disentangle the drivers of these 
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profiles, we found that commonly thought-of behavioural cues (i.e. temperature, 

salinity, density and turbulence) explained relatively little variance in the proportional 

abundance of larvae observed in the water column at any given time, and as such, these 

external drivers should be used to determine behavioural ‘rules’ in biophysical models 

with great caution. We suggest that, due the complex nature of oceanic environments in 

which multiple cues are present that have the potential to influence an organism’s 

behaviour at any given time, larval behaviours are likely more idiosyncratic than can be 

effectively modelled by a ‘rule-based’ approach, and should instead be considered on a 

case-by-case basis. 
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 A FRAMEWORK FOR ASSESSING THE 

INFLUENCE OF BEHAVIOURAL 

PARAMETERISATION ON THE 

DISPERSION OF LARVAE IN MARINE 

SYSTEMS 

A version of this chapter is currently in preparation as: James, MK, Mayorga-Adame, GC, Knights, AM, 

Nimmo-Smith, AWM, Howell, KL & Polton, JA A framework for assessing the influence of behavioural 

parameterisation on the dispersion of larvae in marine systems, for publication in a statistical modelling 

methodologies research journal, such as Ecological Modelling. 
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4.1 Abstract 

The importance of including behaviour in larval dispersal modelling has gained 

significant traction, yet, how behaviours are best incorporated to predict patterns in 

nature remains up for debate. Here, using a coupled three-dimensional hydrodynamic 

model and a Lagrangian particle tracker, we show how methods of behavioural 

parameterisation, alongside spatial and temporal hydrodynamic changes, can influence 

larval dispersal predictions. We compare a novel approach of reverse engineering larval 

swimming from in-situ observations (REVM behaviours) against simulations adopting 

passive dispersal (PASSIVE) and particles attributed a tidal vertical migration (TVM) 

signature. Using statistical models (i.e. LME; GAM and correlation), we test the effects 

of change in tidal state conditions, season, and planktonic larval duration in conjunction 

with behavioural parameters on the distance travelled and biogeographic distribution. 

Our results highlight how the implementation of behaviour within biophysical models 

can lead to fundamentally different dispersal outcomes, and specifically, that the 

inclusion of vertical migration behaviour is a mechanism that significantly reduces 

dispersal distances, but depending on the implementation approach can lead to 

fundamental differences in dispersal direction. For shorter PLDs (1 day), we find that 

the inclusion of behaviour does not affect predictions, but for longer PLDs we show that 

exclusion of behaviour leads to significant overestimates of dispersal, an effect that 

increases as the PLD increases. Incorrect behavioural parameterisation could lead to 

mischaracterisation of connectivity and erroneous coastal management strategies. 

4.2 Introduction 

Many marine species have a bi-phasic life history strategy, whereby they are sessile or 

display limited movement as adults, while displaying a planktic developmental stage 

during which they are susceptible to dispersal by ocean currents. This dispersive period 
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acts to shape patterns of species distribution and governs the connectivity of populations 

(Levin, 2006; Treml et al., 2012) in a range of taxa including plants (Van der Stocken et 

al. 2019), fish (Zeng et al. 2019) and invertebrates (Blanco et al. 2019). Yet determining 

species distribution and population connectivity patterns in the marine environment is 

often challenging, especially when considering small planktonic organisms due to the 

obvious difficulties associated with tracking their movement in macro-environments. In 

contrast to larger organisms, where dispersal studies can be undertaken using visual or 

GPS tracking (e.g. Olson, 1985), predicting dispersal of micro-organisms requires the 

use of genetic (Gilg and Hilbish, 2003; Hoey et al., 2020) or geochemical markers 

(Thorrold et al., 2007), or increasingly, the use of biophysical modelling to predict 

dispersal based on a combination of hydrodynamics and biological processes (e.g. 

Levin, 2006; Cowen and Sponaugle, 2009; Swearer et al., 2019).  

Biophysical models of larval dispersal can be implemented in a number of ways, 

adopting relatively simple advection-diffusion models (Hill, 1990; Cowen et al., 2000; 

Gaylord and Gaines, 2000), or by combining a general ocean circulation model 

describing local hydrodynamics with an individual particle tracker to incorporate 

biological traits (e.g. Paris et al., 2013; Schlag and North, 2012; Lett et al., 2008). In 

recent years, advances in computational power and efficiency have allowed for 

circulation models to include greater spatial and/or temporal resolution, allowing even 

complex velocity flow fields over intricate topography to be resolved. Due to this, 

dispersal modelling using ocean circulation models has become the dominant method of 

larval dispersal research in order to capture realistic hydrodynamics as experienced by 

the larvae (Swearer et al., 2019). However, increasingly it is the parameterisation of 

biological traits assigned to individual particles within the particle-tracking component 

of the model (traits such as larval duration, mortality and behaviour (Metaxas and 
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Saunders, 2009) that has received considerable research attention due to the potential of 

those traits to influence the model predictions (Hill 1990; Cowen et al., 2000; Edwards 

et al., 2007; Aiken et al., 2007; Phelps et al., 2015; Daigle et al., 2016; Gary et al., 

2020) and decouple model predictions from patterns in nature (Marshall et al. 2010, 

James et al. 2019).   

Biological parameterisation has previously relied heavily on the results of laboratory 

studies and current literature to infer traits, such as planktonic larval duration (Siegal et 

al., 2003; Aiken et al., 2007; Ross et al., 2016; Munroe et al., 2018) and larval 

behaviours (North et al., 2008; Daigle et al., 2016; Bode et al., 2019). Typically, larval 

behaviours such as swimming speed and behavioural triggers are parameterised using 

directly observed values from the laboratory (North et al., 2008; Robins et al., 2013; 

Phelps et al., 2015; Daigle et al., 2016; Bode et al., 2019; Gary et al., 2020), or by 

quantifying swimming speed as a proportion of the critical speed of the organism 

(again, typically based on laboratory observations of critical swimming speeds). Fifty 

percent of the critical swimming speed - the maximum speed an organism can actively 

swim at -   is deemed to be a good approximation for the sustainable swimming speed of 

larvae (Fisher and Wilson, 2004), and has been used to parameterise behaviour by 

Kobayashi (2006) and Chang et al. (2018).  It is argued, however, that this approach 

may not adequately represent realistic larval behaviours in marine systems, where 

environmental conditions are more complex than those experienced in controlled 

laboratory environments. Recent research has endeavoured to bridge the gap between 

individual larval ability and behavioural manifestation in nature by considering how 

realistic in-situ swimming speeds can best be incorporated within dispersal models 

(Chapter 2 and in James et al., 2019; Leis, 2020). Results of these studies show that 

behaviours parameterised through laboratory observations are likely over simplistic and 
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consequently fail to accurately capture how larvae behave in the field, which in turn can 

lead to erroneous vertical distribution profiles within the model environment, thus 

generating under- or overestimations of larval dispersal. It is hypothesised that 

inaccurate biological parameterisation can lead to a mismatch between estimated 

dispersal and observed population connectivity (Marshall et al., 2010), and incorrect 

behavioural assumptions can lead to less accurate predictions of dispersal than models 

that omit behaviour altogether (Bode et al., 2019). 

As biophysical models are frequently used in a range of ecological applications, such as 

the design of Marine Protected Areas (MPAs), in fisheries management efforts, marine 

conservation agendas and attempts to minimise the risk of invasive species spread 

(Botsford et al., 2003; Gaines et al., 2003, 2010; Levin, 2006; Palumbi, 2003), effective 

decision making relies on model accuracy (Botsford et al., 2009). Accurate descriptors 

of larval behaviour in dispersal models arguably rely on considering the behaviour of a 

larvae not as an individual metric but as a product of its environment in any given space 

and at any given time (Swearer et al., 2019). Studies have clearly demonstrated that 

larvae can  respond to a range of environmental cues (see Kingsford et al., 2002 for a 

review), and show that larval behaviour is likely a combined response to multiple cues 

(Morello and Yund, 2016). Thus, the challenge (and limitations) of quantifying larval 

behaviours in the laboratory becomes 3-fold, namely: (i) recreating the complexity of 

the natural environment; (ii) determining which cues are being used to govern 

behavioural manifestation and when, and (iii) identifying the relative importance of 

each cue to the organism when multiple cues are present. Logically, such challenges can 

be overcome by studying the larvae in their natural environment. 

Although there are logistical challenges associated with inferring larval behaviours from 

field studies, it is possible through high temporal resolution vertical distribution 
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sampling regimes (e.g. Dibacco et al., 2001; Knights et al., 2006). In Chapter 2 (and see 

James et al., 2019), we used in-situ observed changes in vertical distribution of mussel 

larvae (Mytilus spp.) from a previous study (Knights et al. 2006) in conjunction with a 

fine-scale one-dimensional ocean turbulence model (Large Eddy Simulation: Brereton 

et al., 2019) to infer larval behaviours over the course of a tidal cycle. There, we were 

able to generate estimates of larval swimming speeds that are not independent of the 

environmental processes that larvae are exposed to in-situ and which allowed 

replication of vertical distribution patterns in nature. Our conclusion was that the 

inclusion of swimming behaviours within biophysical model frameworks needs to be 

more nuanced than adopting a simple 'rules-based approach' if ecological realism is to 

be achieved (James et al. 2019). For instance, we showed that a change in swimming 

direction during a tidal state (e.g. during tidal flooding) is needed for models to match 

in-situ patterns; this change would ordinarily not be captured within traditional rules, 

such as the implementation of a Tidal Vertical Migration (TVM) signature (i.e. upward 

swimming during flood and downwards swimming during ebb – or vice versa, sensu 

Forward et al., 2003; Kunze et al., 2013). We also identified a 2.5-fold asymmetry in 

swimming velocities between upward and downward swimming speeds, suggesting 

differential capacity to utilise vertically stratified horizontal advection for transport (e.g. 

Knights et al. 2006).  

While this earlier study revealed previously undescribed idiosyncrasies in larval 

swimming over temporal scales ordinarily not considered, the effect(s) of these nuanced 

'behaviours' on dispersal predictions have yet to be evaluated i.e. do they actually make 

a difference to dispersal predictions? Here, we explore how the results of our previous 

study propagate through larval dispersal estimations made by a biophysical model in 

relation to behavioural parameterisation determined by both the assumption of passive 



Chapter 4: A framework for assessing the influence of behavioural parameterisation on the dispersion of 

larvae in marine systems 

Molly Kendall James – March 2021   85 

particles and a TVM approach based on ‘rule-based’ behaviours. We achieve this by 

tracking virtual ‘larvae’ assigned no swimming behaviour (i.e.  passivity) versus larvae 

assigned one of two swimming behaviours (i.e. TVM and reverse-engineered vertical 

migration (herein referred to as REVM)) within a hydrodynamic model framework over 

a 28 day planktonic larval duration period and comparing the influence of time of 

release (season and tidal state) and behaviour characterisation on the distance travelled 

by particles, their resultant dispersal kernels and biogeographic dispersal patterns.   

4.3 Methods 

4.3.1 The study area 

The underlying data driving the reverse-engineering approach applied in James et al. 

(2019) were derived from Knights et al. (2006) and the original in-situ data were 

collected in the southern Irish Sea. Here we assess the implications of behavioural 

parameterisation in a modelling framework by coupling a particle tracking model to an 

ocean circulation model of the same region. For this study, a cut-out of the full NEMO 

AMM7 hydrodynamic model restricted to the Southern Irish Sea (51°N to 55N and 

12°W to 2°W) was used  (Fig. 4.1). Water depths in this region are typically less than 

100 m, although depths can reach up to ~150 m in the central channel and tidal flows 

typically oscillate in the North-South direction (see Fig. 4.1). The Irish Sea represents a 

typical semi-enclosed tidally influenced coastal basin with dynamical length scales of 

10-1000 km), and as such, the findings of this study are applicable to other analogous 

ecosystems.  
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Figure 4.1: Mean tidal flows for Spring 2005 (April 1st – June 30th) and Summer 2005 (July 1st – 

September 30th) as depicted by NEMO AMM7. Inset shows the domain of the AMM7 configuration of 

the NEMO hydrodynamic model with bathymetry in metres (colourscale bar) (Taken from Warner et al., 

2005). Red box inside inset denotes the location of the model domain cut-out within AMM7. Location of 

the insitu sampling regime undertaken by Knights et al. (2006) on which reverse engineered behaviours 

were calculated (James et al., 2019) is marked by a black dot. This location was also the location for the 

seeding of particles within the model.  
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4.3.2 The hydrodynamic model 

The Coastal Ocean Version 5 European North-West shelf configuration (CO5) of the 

Atlantic Margin 7km Model (AMM7), produced using the Nucleus of European 

Modelling of the Ocean (NEMO) general ocean circulation modelling framework was 

used to simulate the hydrodynamics of the Irish Sea (see O’Dea et al. 2017). This model 

domain encompasses the entire north west European shelf region, though in this study 

we focus on an Irish Sea subregion. The NEMO AMM7 model was developed by the 

Met Office in collaboration with the National Oceanography Centre and has been 

extensively refined and validated against observations for the UK shelf seas region so it 

is warranted to be a good representation of the coastal ocean for the study region. This 

model resolves prognostic variables (velocity, turbulence, salinity, temperature) on a 

curvilinear orthogonal horizontal grid with a horizontal resolution of approximately 7 

km, and a vertical grid derived from 51 stretched-σ levels with realistic GEBCO 

bathymetry (Madec et al., 2016; O’Dea et al., 2017). It includes atmospheric (ERA-

interim), tidal (TPXO7.2), and open boundary (ORCA0083) forcing, providing realistic 

3-dimensional current velocities.  

Model output for the study domain was generated for a 6-month period from 1st April 

2005 to 31st September 2005, chosen to coincide with the timeframe of an in-situ 

sampling programme undertaken by Knights et al. (2006). Hourly velocity field outputs 

were adopted in order to capture the strong tidal flows present in the Irish Sea (Brown et 

al., 2003).  

Two additional variables (‘stateid’ and ‘tchange’) were created in MATLAB (v. 2020a) 

and appended to the NEMO output file. These variables were created in three 

dimensions (longitude (x), latitude (y) and time (t)). The 'stateid' variable described the 

state of the tide (x,y,t) using four classification integers: (1) first half flood (low water 
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slack to mid-point of the flood tide); (2) 2nd half flood (mid-point of the flood tide to 

high water slack); (3) 1st half ebb (high water slack to the mid-point of the ebb tide) and, 

(4) 2nd half ebb (mid-point of the ebb tide to low water slack). The 'tchange' variable 

was used to describe the number of seconds until the tidal state at (x,y,t) was due to 

change from one 'stateid' classification to another. This was calculated by first calling 

the hourly sea surface height (SSH) data from the NEMO model output file at (x,y,t-

4:t+4), which was then interpolated from hours to minutes, followed by fitting of a 

cubic spline. Local maxima (high tide) and minima (low tide) were then identified 

within the interpolated SSH dataset, and midpoints of the flooding and ebbing tide 

determined as the time-points halfway between the time-points of the slack tides. The 

resultant variable ‘tchange’ provided the number of seconds between the model 

timestep and the next consecutive change in tidal state, so that tidal changes occurring 

within the 1-hour model output frequencies are accounted for. 

4.3.3 The particle tracking model 

Particles were tracked using a version of the Lagrangian TRANSport model (LTRANS 

v.2: Schlag and North, 2012), modified to be forced by the offline output of the NEMO 

model and larval behaviours governed by the ‘stateid’ and ‘tchange’ variables. 

LTRANS is an offline individual-based particle tracking model that runs with the stored 

predictions of a 3D hydrodynamic model, tracking the trajectories of particles in three 

dimensions based on advection, diffusion and individual particle behaviours. The model 

includes a 4th order Runge-Kutta scheme for the advection of particles and a random 

walk, scaled by the spatially and temporally variable vertical viscosity coefficient of the 

underlying hydrodynamic model, to simulate vertical movement due to turbulence at 

sub-grid scales (Visser et al., 1997; Ross and Sharples, 2004).  
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Preliminary convergence testing was undertaken to determine the appropriate number of 

particles to be released within the model. This test was a simple experiment following 

(Robins et al., 2013). Initially, 100,000 particles were released from a single location 

point (the insitu sampling point of Knights et al., 2006) and the number of particles in 

each grid cell calculated after 30 days. Following simulations were then undertaken, 

reducing the number of particles to 50,000, then 10,000, then 5000, and the proportion 

of the cohort in each grid cell calculated. Simulations were considered significantly 

different if the proportion of larvae in the grid cells deviated by more than 10% of the 

original simulation with 100,000 particles.  Results indicated that simulations with 

10,000 particles were sufficient to capture variation within the population whilst 

maintaining computational efficiency, with no discernible difference in outcomes 

between simulations run with 10,000 and 100,000 particles. Other studies in the same 

domain (e.g. Robins et al., 2013) have used a similar number of particles.  

4.3.4 Swimming behaviours 

Larval behaviours can be specified within LTRANS via the behaviour sub-routine. 

Modifications were made to the behavioural sub-routine to test two active swimming 

behaviours. (1) Applying a tidal vertical migration (TVM) whereby individuals are 

parameterised to swim up during the flood tide and down during the ebb tide at a fixed 

rate of 0.001ms-1 in alignment with values in the literature (Chia et al. 1984; Sprung, 

1984; Young, 1995 and values used by other biophysical modelling studies focussing on 

bivalves (e.g. Robins et al., 2013; Daigle et al., 2016)). (2) Reverse-engineered 

swimming behaviour (as described in Chapter 2 and James et al., 2019), in which virtual 

larvae were configured to swim at a random speed taken from a normal distribution 

profile fitted over the Modelled Predictive Capability (MPC) for a range of swimming 

speeds for each tidal state (means and standard deviations of the MPC are given in 
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Table 4.1). The methodology is discussed in greater detail in  Chapter 2 (section 2.3.6: 

assessing model compatibility) and in James et al. (2019) but briefly, the MPC describes 

the results of two-way ANOVAs and planned F-test comparisons between the simulated 

vertical distribution of larvae by the model and in-situ vertical distribution profiles of 

larvae from Knights et al. (2006). P-values of the interaction term provided a 

quantifiable continuous measure of compatibility between the observed data and the 

model outcome - the model predictive capability (MPC) - with values ranging from 0 

(complete incompatibility) to 1 (perfect compatibility). The model is considered not 

significantly different from the observed data at a significance level of 0.01 after 

Bonferroni correction (James et al. 2019).  For the period ranging from high water to 

mid ebb, where the predictive capability of the model was low across all swimming 

speeds using the reverse-engineering approach (p <0.05 for all tested swimming 

speeds), particles were configured to swim downwards at a fixed rate of 0.0011ms-1, as 

to match the lowest total sum of squares of the proportional difference (i.e. our 'best 

guess') calculated between the field observations of larval vertical distribution and the 

models run in James et al. (2019). For completeness, the 'active' TVM and REVM 

behavioural models were compared with passive model simulations with no larval 

behaviour described.  
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Table 4.1: Mean and standard deviation of a normal distribution curve fitted to the Model Predictive 

Capacity after James et al. (2019) for 4 tidal periods: low water slack to mid flood, mid flood to high 

water slack, high water slack to mid ebb, and mid ebb to low water slack.* denotes a tidal period where 

the MPC was unresolved for all tested swimming speeds. 

Tidal Period 
Mean swimming speed 

(mms-1) 
Standard Deviation 

Low water slack to mid flood 2.06 0.5 

Mid flood to high water slack -0.91 0.2 

High water slack to mid ebb * * 

Mid ebb to low water slack -0.76 0.07 

 

At each modelled hour, LTRANS was configured to read the variables ‘stateid’ and 

‘tchange’ from the underlying hydrodynamic model and larvae were assigned 

behaviours dependent on the current state of the tide.  The ‘tchange’ variable was used 

so that if a change in the state occurred during the modelled hour, larval behaviour 

changed at this point, rather than during the consecutive timestep. This approach of 

quantifying the tidal state in space and time was chosen over simpler methods of 

determining the tidal state (i.e. using tidal charts and a time counter within the model: 

sensu Daigle et al., 2016), as at a single time-point (e.g. 'Hour 1'), the tidal state could 

be fundamentally different depending on its position within the study domain (see 

Figure 4.2) resulting in different behavioural responses in both space and time.   
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Figure 4.2: An illustration of tide propagation around an amphidromic point (location circled in first plot) 

in the Irish Sea over a 12-hour window highlighting spatial variation in the tidal period. Four tidal states 

periods are shown: low water slack to mid flood (blue); mid flood to high water slack (yellow); high 

water slack to mid ebb (green) and; mid ebb to low water slack (red). 
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4.3.5 Particle release and tracking 

Particles were released within the model at the location of in-situ sampling (52.2N, 

6.15W; Knights et al., 2006)  Particles were released following observed proportional 

distribution patterns for each tidal state, binned according to the vertical grid of the 

hydrodynamic model (following the methodology of Daigle et al., 2016), and individual 

runs were undertaken for each starting profile. Runs simulating each of the three 

behavioural parameterisation approaches (namely: Passive, Tidal Vertical Migration 

(TVM), and Reverse-Engineered Vertical Migration (REVM), were simulated during 

the spring (April) and summer (July) to account for potential differences in dispersal 

due to seasonal stratification as there is a known frontal system that develops in the 

Southern Irish Sea (Neill et al., 2012). The full list of all simulations undertaken is 

shown in Table 4.2. As no difference was observed in the vertical distribution patterns 

of larvae with respect to tidal phase (i.e. neap vs. spring) in the field (Knights et al., 

2006), phase was not considered here. Particles were released on the first spring tide 

following April 1st (spring) or July 1st (summer).  Particles were tracked for a duration 

of 28 days, which is within the typical range of ciliated larvae (Siegel et al. 2003; 

Hartnett et al. 2007; Tian et al. 2009).  LTRANS was configured to output the location 

(lat/lon) and depth of each particle every 30 minutes. Output files were then processed 

in MATLAB (v. 2020a) to calculate (i) radial distance travelled by the particle from its 

source to its end point, and (ii) the cumulative distance travelled by the particle (i.e. the 

total path length), every 30 minutes. 
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Table 4.2: Design of the study capturing starting variation in tidal state, season and larval behaviour in 

individual simulations in LTRANS. 

Simulation ID Behaviour Season Release Tidal State 

1.1.1 Passive Spring flood tide 

1.1.2 Passive Spring high water slack 

1.1.3 Passive Spring ebb tide 

1.1.4 Passive Spring low water slack 

1.2.1 Passive Summer flood tide 

1.2.2 Passive Summer high water slack 

1.2.3 Passive Summer ebb tide 

1.2.4 Passive Summer low water slack 

2.1.1 TVM Spring flood tide 

2.1.2 TVM Spring high water slack 

2.1.3 TVM Spring ebb tide 

2.1.4 TVM Spring low water slack 

2.2.1 TVM Summer flood tide 

2.2.2 TVM Summer high water slack 

2.2.3 TVM Summer ebb tide 

2.2.4 TVM Summer low water slack 

3.1.1 REVM Spring flood tide 

3.1.2 REVM Spring high water slack 

3.1.3 REVM Spring ebb tide 

3.1.4 REVM Spring low water slack 

3.2.1 REVM Summer flood tide 

3.2.2 REVM Summer high water slack 

3.2.3 REVM Summer ebb tide 

3.2.4 REVM Summer low water slack 
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4.3.6 Statistical Analysis 

All analyses were undertaken in R (R Core Team, 2020). A Linear mixed effects (lme) 

model in the R package ‘nlme’ (Pinheiro et al. 2020) was used to test the effects of four 

fixed variables on mean distance travelled by a particle. Model factors were: (1) 

Behaviour (levels: Passive; Tidal Vertical Migration; REVM); (2) Season (levels: 

Spring; Summer); (3) Tidal State at Release (levels: flood; low water slack; ebb; high 

water slack); and (4) Prediction (levels: radial distance; cumulative distance). Time 

(days) was included as a random variable, and an autocorrelation structure (AR(1)) 

applied following identification of temporal/spatial autocorrelation using the auto-

correlation function (ACF, package ‘nlme’; Pinheiro et al. 2020). A stepwise model 

reduction approach based on Akaike Information Criterion (AIC; Sakamoto et al. 1986) 

scores was used to identify the best-fitting model.  

We also used Generalised Additive Models (GAMs) to assess relationships between 

behaviour, tidal state, and season and their effect on radial distance and cumulative 

distance over a 28-day planktonic larval duration.  The GAM modelling incorporated 

fitting a smooth function to the timestep covariate (days since release) and followed a 

gamma distribution for each of the response variables. GAM models were fitted using 

the R package ‘mgcv’ (Wood, 2011).  

Pettitt’s test (Pettitt, 1979) was used to estimate the mean time point for a shift in central 

tendency in radial distance over the time series, using the R package ‘trend’ (Pohlert, 

2020). Pettitt estimates from model simulations were then compared using one-factor 

ANOVA on a randomised normally distributed sample (n=100 using the rnorm() 

function in R) of values based on the mean and standard deviations of the Pettitt’s test 

outcome.  
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Additional descriptive statistics, specifically the mean, median, standard deviation, and 

interquartile ranges were used also to describe the dispersal kernels of passive, REVM 

and TVM particles at 1, 7, 14, 21, and 28 days. ANOVA and Tukey post-hoc pairwise 

comparison tests were used to compare the mean radial distances travelled for each 

explored timepoint and Mood’s Pairwise median tests (Mood, 1954) used to formally 

compare kernel medians of model outputs.   

Lastly, the ‘meanm’ function was used in MATLAB (v.2020a) to calculate the central 

tendency of the dispersal cloud as a lat/long coordinate for each season 

(spring/summer), behaviour (passive/reverse-engineered/TVM) and day (1, 7, 14, 21, 28 

days) combination, and the Euclidean distance between central tendencies was 

calculated in R using the ‘sp’ package (Pebesma and Bivand, 2005). The ‘cor’ function 

in R was used to calculate the correlation between the central tendencies and correlation 

plots were formally tested using Spearman’s rank correlation coefficient (Spearman, 

1904). 

4.4 Results 

4.4.1 LME modelling 

There was a significant interaction between behaviour and prediction method (F2,188 = 

6.162, p <0.01) on mean dispersal distance. No other interactions were significant (p > 

0.05: Appendix 4). Mean radial and cumulative distances after 28 days were greatest in 

passive simulations, travelling on average, 79 km from source, and 1359 km along their 

path, respectively. Reverse-engineered particles travelled considerably shorter distances, 

travelling a mean radial distance of 33.7 km (2.3× shorter), and a mean cumulative 

distance of 359 km (3.8× shorter). Notably, mean radial distance of reverse-engineered 

particles increased by only 1.6 km between 14 and 28 days, with no significant 
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difference in the radial distances between 14 and 21 days (Tukey’s HSD: p = 0.329). 

TVM particles travelled a mean radial distance of 52 km (+1.5× REVM; -1.5× Passive) 

after 28 days, and a mean cumulative distance of 1024 km (+2.9× REVM; -1.3× 

Passive) (Figure 4.3).  

 

Figure 4.3: Left: Comparison of the distance travelled ‘as the crow flies’ from a single point source 

location (radial distance ± SD), and Right: the mean distance travelled by particles along their dispersal 

path (cumulative distance ± SD) after 1, 7, 14, 21 and 28 days planktonic duration.   

 

4.4.2 GAM fitting and identifying points of change 

In general., GAM models were a good fit, with behaviour, season, and tidal state 

explaining 75.7% of the deviance in radial distance travelled by particles from their 

source, and 97% of the deviance in cumulative distance travelled by particles along their 
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dispersal path (Appendix 5 and 6). All incorporated covariates could significantly 

predict radial distance travelled from source (Appendix 5).  Results demonstrated that 

both radial distance and cumulative distance path clearly differed with respect to 

behaviour and season, however, seasonal effects were only apparent in passive model 

simulations, and not ‘behaving’ models (Figs 4.4 and 4.5) and significant differences 

were observed in the estimates among experiments. Additionally, differences were only 

found between tidal state in the passive model, whereby particles travelled the greatest 

radial distance from source yet travelled the shortest cumulative distance when released 

on the ebb tide (Figs 4.4 and 4.5).  
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Figure 4.4: Fitted Generalise Additive Model (GAM) of radial distance from source over time (Days) 

grouped by behavioural modelling (3 levels: passive, reverse engineered, tidal vertical migration), season 

(2 levels: Spring (April) and Summer (July)) and tidal state at release (4 levels: flood tide, high water, ebb 

tide, low water) (n = 10,000,  N=240,000). The black line is the mean fitted GAM summarising the 

response for all release states, and colours indicate individual tidal state GAMs. Vertical dashed lines 

indicate the estimated mean time point for a shift in central tendency of the time series based on Pettitt’s 

test outcomes. 
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Figure 4.5: Fitted Generalise Additive Model (GAM) of cumulative distance travelled by a particle along 

its path over time (Days) grouped by behavioural modelling (3 levels: passive, reverse engineered, tidal 

vertical migration), season (2 levels: Spring (April) and Summer (July)) and tidal state at release (4 levels: 

flood tide, high water, ebb tide, low water). N = 34584. The black line is the mean fitted GAM 

summarising the response for all release states, and colours indicate individual tidal state GAMs. Vertical 

dashed lines indicate the estimated mean time point for a shift in central tendency of the time series based 

on Pettitt’s test outcomes.   
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Analysis of the estimated mean time point for a shift in central tendency of the time 

series following Pettitt’s test indicated significant differences in the point of change for 

each behaviour × season interaction combination (Figure 4.6): (Tukey’s HSD: p <0.001) 

for all pairwise comparisons). Passive particles released in the spring exhibited the latest 

shift, occurring at 15.59 ± 0.57 days, which occurred 1.7 days earlier in the summer 

(13.91 ± 0.73 days). The shift in central tendency of the TVM model occurred at 14.92 

days (± 0.15 days) and 14.42 days (± 0.25 days) in spring and summer, respectively. 

Reverse-engineered particles exhibited a shift in central tendency after just 9.68 days (± 

0.17 days) in spring, but unlike the passive and TVM models, showed an increase to 

10.27 days (± 0.29 days) in summer. 

 

Figure 4.6: Distribution of estimates of shift in central tendency (days) of the time series following 

Pettitt’s test for each of behaviour × season model combination. Random sample distributions (n = 100) 

generated using the rnorm() function based on estimates of Pettitt mean and standard deviation. All 

groups significantly different (p<0.001). 
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4.4.3 Density kernels (probability density functions) 

Comparison of the dispersal kernels revealed differences between models over time 

(Fig. 4.7). After 24 modelled hours, differences in the dispersal distance between 

behaviours were small. TVM particles travelled 1.8 km farther from source than 

reverse-engineered particles, and 1.7 km farther from source than passive particles 

(Table 4.3). The median distance travelled by TVM particles (5.3 km) was 1.4 km and 

1.5 km greater than reverse-engineered and passive particles respectively (Figure 4.7: 1 

day).   

After 1 modelled week, the mean dispersal distance of reverse-engineered particles was 

significantly greater than passive or TVM models (Tukey’s HSD, p <0.001 in all cases) 

by 5.4 km and 6 km respectively (Table 4.3).  Reverse-engineered particles also exhibit 

a significantly greater median distance at this time point than passive (4.8 km 

difference: Mood’s median test, p <0.001) and TVM (4.9 km difference Pairwise 

Moods median test, p <0.001). There was no difference in median distance between 

passive and TVM particles (p = 0.734) (Figure 4.7: 7 days)  

At 14 days, post-hoc testing showed no difference in the mean dispersal distance of 

reverse-engineered and TVM particles (Tukey’s HSD, p = 0.774), however a significant 

difference of 0.5 km was observed in the median distance travelled (Pairwise Moods 

median test, p <0.001: Table 4.5). Reverse-engineered particles showed greater radial 

distance clustering (SD = 5.5 km) in comparison to passive (SD = 16.9 km) and TVM 

(SD = 9.6 km) simulations. 50% of the population were within 4.3 km of the median, in 

contrast to the passive (Inter Quartile Range = 13.1 km) and TVM (12.9 km) models.  

REVM particles continued to become increasingly clustered over time, whereas 

particles continued to disperse in the passive and TVM experiments (Fig. 4.7). 
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After a 28-day planktonic larval duration, significant differences were observed in the 

mean (Tukey’s HSD, p <0.001 in all cases) and the median (Pairwise Moods median 

test, p <0.001 in all cases) radial dispersal distance from the source point.  Reverse-

engineered particles exhibited the shortest distance travelled (median distance: 32.9 km) 

and their distribution was the least spread out, with 50% off the population found 

between 30.5 km and 35.3 km from source. Passive particles had the greatest mean 

distance at the end of the simulation (79.1 km (Reverse-engineered: 33.7 km, TVM: 

52.1 km)), however the median distance travelled by particles after 28 days was greater 

for TVM particles (54.9 km (passive: 46.4 km)). At this time point, the distribution of 

passive particles displayed the greatest spread with 50% off the population found 

between 6.8 km and 86 km from source. 
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Table 4.3: Descriptive statistics of the dispersal kernels of passive, reverse-engineered (REVM)  and 

TVM assigned particles after 1, 7, 14, 21, and 28 days. 

Day Behaviour 

Mean 

Radial 

Distance 

(km) 

Standard 

Deviation 

Median 

Radial 

Distance 

(km) 

Minimum 

Radial 

Distance 

(km) 

Maximum 

Radial 

Distance 

(km) 

Inter-

quartile 

Range 

1 Passive 4.191 2.523 3.825 0.605 13.272 3.133 

1 
Reverse-

Engineered 
4.031 2.196 3.882 0.036 19.411 3.465 

1 TVM 5.890 3.442 5.280 0.034 21.897 4.746 

7 Passive 17.084 6.953 18.178 3.349 33.707 13.049 

7 
Reverse-

Engineered 
23.113 4.858 23.013 0.217 41.096 7.113 

7 TVM 17.721 6.653 18.164 0.275 43.410 8.564 

14 Passive 29.119 16.940 24.691 1.314 70.976 13.077 

14 
Reverse-

Engineered 
32.053 5.514 31.886 2.180 56.133 4.329 

14 TVM 32.013 9.601 32.389 0.684 68.771 12.900 

21 Passive 53.159 31.286 45.946 0.897 144.819 26.415 

21 
Reverse-

Engineered 
32.547 4.786 32.166 4.259 73.335 0.961 

21 TVM 48.704 13.623 50.788 0.291 91.736 18.813 

28 Passive 79.113 57.362 46.370 0.316 228.177 39.551 

28 
Reverse-

Engineered 
33.674 4.468 32.908 1.901 76.504 2.368 

28 TVM 52.085 16.972 54.914 0.894 117.524 22.642 
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Figure 4.7: Density kernels of the radial distance from source for the population of passive (n = 80,000), 

reverse-engineered (REVM) (n = 80,000) and TVM (n = 80,000) particles at 1, 7, 14, 21 and 28 days 

from release.   
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4.4.4 Biogeography 

Mapping the locations of particles at set time points highlighted disjunct biogeographic 

distributions depending on the behavioural model implemented (Figure 4.8) with clear 

differences in the centre of gravity of the 2-dimensional cloud and direction of travel 

(Figs 4.9 & 4.10). REVM model simulations showed a south west mean direction of 

travel, whereas the TVM model predicted a mean north/north east movement. Passive 

models followed a similar direction of travel to TVM models in the spring, and a similar 

direction to REVM models in the summer, albeit with different central tendencies and 

spread of particles.  

After 24 hours, these differences were relatively small, with strong positive correlation 

between all behavioural comparisons in both seasons (Figures 4.9 & 4.10). TVM and 

REVM particles displayed the greatest distance between central tendencies at this time 

point, with 10 km in both spring and summer. Seasonal differences in central tendencies 

after 1 day were also small: 4 km between spring and summer passive particles, and 3 

km between spring and summer TVM particles and spring and summer REVM 

particles.   

After 7 simulation days, differences in the behavioural dispersal clouds became more 

apparent (Figure 4.8: 7 days). TVM particles followed a north-easterly trajectory, whilst 

REVM particles travelled south and circumnavigated the coast to the West. This 

directional trend propagated throughout the simulation (Figure 4.8). In spring, passive 

particles travelled in a similar direction to TVM particles, however in Summer the cloud 

of passive particles travelled Southwest (Fig 4.8) The central tendency of REVM 

particles held a strong positive correlation at 14, 21 and 28 days. In summer after 21 

days, the central tendency of passive particles was positively correlated to REVM 

particles (Fig 4.9) and the central tendencies of the groups were separated by a distance 
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of 13 km (Fig. 4.10), however the spread of passive particles was much greater (Figs 4.7 

& 4.8).   

After 28 simulation days, the geographic distances between the central tendencies of the 

dispersal clouds of each behavioural class were large. In spring, the central tendency of 

the passive cloud was positioned 41 km from the central tendency of the TVM cloud, 

and 112 km from the central tendency of the REVM cloud. The central point of the 

passive cloud was positively correlated to the central point of the TVM cloud, and 

negatively correlated to the central point of the REVM cloud (Fig. 4.9). The difference 

in distance between the central tendencies of the TVM and REVM clouds in spring was 

107 km and the two points showed strong negative correlation (Fig. 4.9).  In summer, 

after 28 days the central tendency of the passive cloud was 208 km from the central 

tendency of the TVM cloud, and 105 km from the central tendency of the REVM cloud. 

In contrast to spring, the central point of the passive cloud was negatively correlated to 

the central point of the TVM cloud, and positively correlated to the central point of the 

REVM cloud (Fig. 4.9). The difference in distance between the central tendencies of the 

TVM and REVM clouds in summer after 28 days was 107 km. These two points again 

showed negative correlation, but to a weaker extent than observed in the spring (Fig. 

4.9).  

The seasonal difference between the central tendencies of passive particles increased 

over time (Fig 4.8 & Fig 4.10), and after 28 days planktonic larval duration the central 

tendencies of the clouds were separated by a Euclidean distance of 217 km. Behaving 

particles were less geographically influenced by season (Fig 4.10), and after 28 days 

seasonal clouds were geographically separated by 9 km and 10 km for TVM and REVM 

respectively. 
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Figure 4.8: Visualisation of the dispersal of virtual larvae in LTRANS v2.0 assigned 3 behavioural 

regimes (red: passive, green: reverse-engineered (REVM), blue: TVM) from a single-point source 

location in the Irish Sea. X denotes the centre of gravity of each of the dispersal clouds.   
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Figure 4.9: Correlation matrix of the distance of centre of gravity of the dispersal clouds for each day × 

season × behaviour combination. Labels denote the day and the behavioural mode. Pairwise comparisons 

range from strong positive correlation (close proximity of centre of gravity of dispersal clouds) to strong 

negative correlation (large distances between centre of gravity of dispersal clouds). Pairs with no 

significant correlation (Spearman’s rank correlation coefficient: p > 0.05) denoted by ‘X’. 

 

 

Figure 4.10: Matrix of the Euclidean distances between central tendencies of the dispersal clouds 

calculated from the lat/lon. Labels denote the day and the behavioural mode. Boxes with thick borders are 

comparisons between seasons for the same model class (behaviour). Colour scale indicates small (blue) to 

large (red) distance between the centre of gravity of the clouds.    
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4.5 Discussion 

The capacity of biophysical models to predict dispersal and allow spatial and temporal 

assessment of connectivity are currently at the forefront of larval dispersal research, and 

more broadly, central to our efforts to understanding pressing global challenges 

including climate change (Lett et al., 2010; Andrello et al., 2015; Lacroix et al., 2018; 

Oldfather et al. 2020) and the impacts of invasive species (Richardson et al., 2016; 

Lashley et al., 2018). Yet understanding how to parameterise the ‘biological 

component’ of these models and the potential effects of inaccurate representation of 

biological traits on model predictions remains a key challenge (Metaxas and Saunders, 

2009). It is largely accepted that larval behaviour plays a key role in larval transport and 

wider ecological functioning; but despite this recognised importance, many dispersal 

models still assume passive dispersal (see Swearer et al., 2019 for review). 

Nevertheless, there is clear recognition of the need to include behaviour in biophysical 

models (e.g. Garland et al., 2002; Marta-Almeida et al., 2006; Paris et al., 2007; North 

et al., 2008; Nicolle et al., 2013; Phelps et al., 2015; Daigle et al., 2016; Mayorga-

Adame et al., 2017; Bode et al., 2019; James et al. 2019). Here, our results highlight 

how differential classification of a single behaviour - active larval swimming - within a 

model framework, can lead to markedly different dispersal outcomes. Notably we show 

that, at least where coastal circulation has a strong tidal component such as in and 

around the Irish Sea, inclusion of vertical migration behaviour, a known behavioural 

phenomena in a range of marine taxa including bivalves (Watters et al., 2001; Knights 

et al., 2006; Bonicelli et al., 2016), crustaceans, (Zhou and Dorland., 2004; Queiroga  

and Blanton (2005) and fish (Paris and Cowen, 2004; Irisson et al. 2010; Hawes et al., 

2020 ) can reduce dispersal distance, but that the modification of that simulated vertical 

migration behaviour greatly influences dispersal distances and direction.  
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It has been widely recognised that small changes in the vertical position of a larva can 

greatly influence its dispersal trajectory due to depth-related differences in the 

magnitude and direction of the current (Largier, 2003; Pringle, 2007; Correll et al., 

2012; Torres et al., 2018), and that some organisms actively migrate in the vertical in 

order to take advantage of favourable currents (i.e. Selective Tidal Stream Transport; 

Forward et al., 2003; Knights et al., 2006; Kunze et al., 2013; Peterio and Shanks, 

2015), avoid predation (i.e. Diel Vertical Migration – Lampbert, 1993; Scheuerell and 

Schindler, 2003; Gibson et al., 2016; Pinti and Visser, 2019), and access available food 

sources (Gibson et al., 2016). However, what remains uncertain is the extent to which a 

larva can manipulate its position in-situ. Here, we incorporated a state-of-art assessment 

of larval swimming behaviour based on statistical models of likelihood (Chapter 2) of 

match between model simulations and field-derived observations of vertical distribution 

profiles. We argue that the REVM approach offers a behavioural parameterisation that 

addresses some of the previous limitations of laboratory observations of behaviour; 

specifically, their failure to capture 'real-life' interactions between larvae and their 

environment (Bowler and Benton, 2005) and subsequent expression of a behaviour as 

movement. Further, there is also mounting evidence that not all larvae are equal (see 

Toonen and Pawlik, 2001; Marshall et al., 2010 and Nanninga and Berumen, 2014 for a 

review) with a high degree of intra-specific variability. The REVM method of 

behavioural parameterisation captures this intra-population variation by stochastically 

assigning behaviours within the larval cohort based on a range of likely swimming 

speeds inferred from the field; an approach previously advocated by Fisken et al. 

(2007). Interestingly, we demonstrate that even with inclusion of intra-population 

variability in capacity to 'behave', the dispersal of REVM particles displayed the lowest 

variance and dispersal distances of all three scenarios (e.g. Fig 4.8), travelling 

considerably shorter distances than passive or TVM equivalents (on average 1000 km 
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less than passive particles and 665 km less than TVM particles). Our results further 

reinforce the potential for larval swimming and active behaviours such as selective tidal 

stream transport or vertical migration (Forward and Tankersley (2001); Knights et al. 

2006) to be an effective transport mechanism for even small, relatively slow-swimming 

organisms despite flow-fields orders of magnitude faster.  

Our results suggest that for organisms with short planktonic durations (e.g. 1 day), 

dispersal predictions were largely the same, suggesting a 'simple' passive dispersal 

model will provide equally robust predictions of dispersal as a more complex model that 

incorporates behaviour. Over time, however, we show that the incorporation of (a) 

behaviour, and parameterisation of the behaviour in the model framework, becomes 

increasingly important. In Chapter 2, we specifically addressed our concern that 

inaccurate parameterisation of behaviours would lead to additive errors in model 

predictions as a function of time. Here, comparison of our REVM and TVM simulations 

reinforce this concern; after 14 days, the REVM models indicate biogeographic stability 

and suggest at an effective retention mechanism, whereas the TVM model suggests 

continued dispersion away from the source (Fig. 4.8; Table 4.3) and supports the 

hypothesis that larval behaviour acts to reduce dispersal in the marine environment 

(Shanks et al., 2003; Shanks 2009). However, it is clear that how and when larvae 

utilise heterogeneous flow regimes can have a stark impact on realised dispersal 

patterns.   

4.5.1 Cohort clustering 

Our work showed that our REVM approach resulted in rapid early dispersal followed by 

high levels of clustering at short distances from the source. Clustering of the larval 

cohort has ecological pros and cons: it can provide advantages, such as allowing 
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organisms to evade predation and offer protection through a ‘safety in numbers’ 

approach, but also it may lead to increased mortality due to intraspecific competition for 

resources (Hixon and Jones, 2005). Mortality is not considered in our models as its 

inclusion was beyond the scope of our objectives, however it is a key factor to consider 

in estimating population dynamics from dispersal models (Treml et al., 2015), and 

hence the design of connectivity-informed conservation agendas should endeavour to 

include temporal and spatial species-specific mortality rates (Carr et al., 2017). 

4.5.2 Biogeography – the need for a 3D approach 

We also draw attention to the importance of choosing relevant metrics to quantify 

dispersal. In our study, the mean dispersal distance of TVM and REVM larvae after 14 

days was not significantly different, however mapping the dispersal cloud identified 

north-easterly movement of TVM particles, and south-westerly movement of REVM 

particles. Average distance of dispersal of the larval cohort therefore arguably fails to 

provide adequate information for spatial management of marine environments. 

Furthermore, distance travelled from source proved to be an order of magnitude smaller 

than the distance travelled by particles along their dispersal paths, irrespective of 

behaviour and timing of release. Such findings support the case for the use of 

Lagrangian approaches coupling local circulation models with individual based models 

(Cowen et al., 2006; Rochette et al., 2012) when estimating dispersal as opposed to 

mean estimates of dispersal distance (Sala et al., 2002; Lockwood et al., 2002; White et 

al., 2010) or speed = distance*time calculations (Shanks et al., 2003; Shanks, 2009).  

4.5.3 Implications 

Despite the importance of dispersal to the ecological and evolutionary success of both 

terrestrial and marine organisms, our results continue to highlight our limited 
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understanding of the role of behaviour in dispersal predictions. Dispersal is a key 

consideration in estimates of population connectivity and models continue to play a 

critical theoretical and applied role in science today, whether being used to design 

Marine Protected Areas (MPAs: Gaines et al., 2003; 2010; Almany et al., 2009; Kaplan 

et al., 2009; Costello et al., 2010; Krueck et al., 2017), identify pathways of invasion 

(Viard et al., 2006; Kitchens et al., 2017), or understanding metapopulation dynamics 

and biogeography (Sanvicente-Añorve et al., 2018). We consider models to be an 

invaluable tool in these endeavours, but the results here highlight the disproportionate 

effects that even a single behaviour - larval swimming - can have on model predictions, 

our understanding of ecosystem functioning, and notably the ecological coherence of 

marine systems (Jonsson et al., 2020). Although the questions of which behavioural 

modelling approach is best remain, the results of our REVM model are in broad 

alignment with the findings of other studies (Woodson and McManus, 2007; Shanks 

2009; Sundelöf & Jonsson, 2011) reinforcing our thinking that active larval behaviour 

does serve as a mechanism to reduce larval dispersal., and that coastal marine systems, 

even physically dynamic systems like the Irish Sea, can be relatively 'closed' (sensu 

Cowen et al. 2000) and that MPAs and other coherent networks may need to be closer 

together. Our results suggest that management decisions made on incorrect behavioural 

assumptions in dispersal models may overestimate the connectivity between local 

populations (in contention with the suggestions of Costello and Connor, 2019 and 

Manel et al., 2019) who argue that the spatial scale of marine connectivity is 

underestimated), leading to a false sense of security in the ecological coherence of 

protected networks.  

Although further work is needed, we suggest that in the meantime, that best estimates of 

dispersal and specifically, biogeography, requires (i) use of a Lagrangian particle-
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tracking approach coupled with localised circulation models, and ii) empirical data of 

vertical distribution profiles to allow the estimation of larval swimming speeds likely to 

occur in-situ.  
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5.1 Thesis background and rationale 

5.1.1 Larval behaviour in dispersal models 

Over the past 40 years, biophysical models that combine a hydrodynamic model and 

particle tracker that mimics biological traits have become the ‘go-to’ tool for predicting 

the dispersive trajectories of planktic marine organisms (Swearer et al., 2019). 

Increasingly, they are used to design Marine Protected Areas (MPAs: Gaines et al., 

2003; 2010; Almany et al., 2009; Kaplan et al., 2009; Costello et al., 2010; Krueck et 

al., 2017), identify pathways of invasion (Viard et al., 2006; Kitchens et al., 2017), and 

understand metapopulation dynamics and biogeography (Sanvicente-Añorve et al., 

2018). Yet, despite this relatively long history of development, continued technological 

advancement and increased usage, models continue to often fail to predict patterns in 

nature (James et al., 2019).  

As particle trackers coupled with ocean models are able to accurately predict the 

dispersal trajectories of abiotic particles (Soulsby et al., 2009), the failure of such 

models to accurately predict dispersal is increasingly argued to be a result of inaccurate 

parameterisation of the biological traits of organisms rather than failure of the 

underlying hydrodynamic model to predict ocean processes. Indeed, the concept that 

larval behaviour can play a significant role in their dispersal has continued to gain 

significant traction in the field of larval dispersal modelling (e.g. Kingsford et al., 2002; 

Shanks et al., 2003; Levin, 2006; Knights et al., 2006; Shanks, 2009; James et al., 

2019). Particular focus has been placed on characterising active larval movement 

(swimming), following numerous field studies showing temporal changes in the vertical 

distribution profiles of marine larvae (e.g. Richter, 1973; Knights et al. 2006; Lloyd et 

al., 2012; Shulzitski et al., 2017) that cannot be explained by random dispersal 

trajectories.  
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Despite the recognised importance of vertical distribution/position to dispersal by 

advection, especially in smaller organisms, there is currently no general consensus of 

how, what, and when behaviours can and should be included (Swearer et al., 2019), 

perhaps because the drivers of larval behaviour are inherently complex (see Figure 5.1), 

and as yet, not fully understood. Nevertheless, larval behaviour is often represented 

within dispersal models as an active swimming response (speed/direction) by a model 

propagule (larvae) to an exogenous (i.e. external stimuli) or endogenous cue (e.g. 

circadian rhythm). Furthermore, swimming behaviours are often described using 

laboratory observations of swimming speeds in response to a small number of (often 

one) cues such as salinity (North et al., 2008), tidal direction (Banas et al., 2009; Daigle 

et al., 2016), ontogeny (Butler et al., 2011), or daylight (Daigle et al., 2016)). Yet, 

studies have shown that swimming behaviours observed in lab-based settings can be 

absent from field observations (Maldonado et al., 2003; 2006), which may be due to the 

fact that in nature organisms are likely exposed to multiple, rather than single cues, 

which may cause their behavioural responses to differ from those in these necessarily 

simplified control experiments. 

5.1.2 Getting the vertical position right 

A fundamental purpose of including larval behaviours in biophysical models of the 

planktonic dispersal of invertebrate larvae is to accurately represent the vertical position 

of larvae in the water column to ensure that they are exposed to the ‘correct’ advective 

currents. Planktic marine organisms actively migrate across the vertical in order to take 

advantage of favourable currents (i.e. Selective Tidal Stream Transport; Forward et al., 

2003; Knights et al., 2006; Kunze et al., 2013; Peterio and Shanks, 2015), avoid 

predation (i.e. Diel Vertical Migration – Lampbert, 1993; Scheuerell and Schindler, 

2003; Gibson et al., 2016; Pinti and Visser, 2019), and access available food sources 
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(Gibson et al., 2016). Studies have shown that even relatively small changes in the 

vertical position of planktic organisms in the water column can have a vast effect on 

their horizontal trajectories due to exposure to depth-differentiated current speeds and 

directions influencing dispersal distance, retention, and the degree of connectivity 

between populations. (Largier, 2003; North et al., 2008; Corell et al., 2012; Robins et al. 

2013; Phelps et al., 2015; Daigle et al., 2016; Torres et al., 2018). Therefore, ensuring 

the correct vertical position of larvae, and consequently the correct exposure to 

horizontal advective currents in biophysical models, is paramount to accurate 

predictions of dispersal.   

5.2 Thesis objectives 

The experiments and observations that make up this thesis were undertaken with two 

objectives in mind: 1) improving current understanding into how larval behaviours 

manifest in nature, and 2) development of a framework within biophysical models of 

dispersal that better reflects vertical distribution patterns observed in the natural 

environment. To that end, I undertook a multidisciplinary approach, combining novel 

modelling techniques with field-based observations of larval vertical distribution 

profiles (see Fig. 5.1). Specifically, I first developed techniques to infer larval 

swimming speeds (behaviours) from in-situ observations of changes in vertical 

distribution profiles (Chapter 2), then explored whether in-situ larval vertical 

distribution profiles could be described as a function of tidally-influenced 

environmental signals (Chapter 3). Finally, I assessed the sensitivity of change in 

within-model behavioural parameterisation on larval dispersal estimates and 

biogeography within a 3D Lagrangian modelling framework using the Irish Sea as a 

case study example (Chapter 4).  
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Figure 5.1: General schematic displaying the components required to generate descriptors of dispersal (red), the biological (purple) and physical (dark blue) factors 

that must be considered when parameterising behaviour based on ‘rules’, and how the data chapters of this thesis act to improve current understanding of how 

behaviours manifest in nature (chapters 2 & 3) and the demonstrate the effects of behavioural parameterisation on dispersal predictions (Chapter 4). Grey shaded areas 

indicated the drivers that are encompassed in descriptions of larval behaviour made by inferring behaviour using the methods outlined in Chapters 2 & 3.
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5.3 Synopsis of data chapters 

In Chapter 2, I presented a novel approach for modelling larval behaviour (i.e. active 

swimming) based on in-situ observations of larval vertical distribution profiles. The aim 

of this chapter was to create an amalgamated behavioural function that can be applied in 

dispersal models that captures all ‘behavioural responses’ without knowing the 

individual mechanisms (and thus, individual rules) that govern active swimming. I used 

a combination of empirical data modelling techniques to explore the active movements 

that larvae would need to undertake in order to create the patterns observed in nature 

over the course of a tidal cycle. This was achieved by testing a range of swimming 

velocities in a model environment and looking for replication of pattern between the 

modelled and field-derived distribution patterns. The results of this study suggest that 

active swimming behaviours are inconsistent with previous hypothesised behavioural 

functions (e.g. TVM). Instead, I showed a need for adaptation of active swimming 

speed and direction that varies over tidal cycles, but also that, in some instances, we are 

unable to explain observed vertical patterns using active swimming. Specifically, I 

showed that in order to match in-situ observations, there are two requirements: first, a 

shift from positive (upward) to negative (downward) movement at mid-points of a 

circa-tidal cycle (rather than at the turning point between the ebb and flood) is required 

to best match vertical distribution patterns, and second, different swimming velocities in 

the upward and downward direction are required (i.e. 2.5× faster when swimming 

upwards). The approach was not always successful; during the ebb tide, model 

compatibility was low, suggesting that we do not fully understand the behavioural 

responses of the larvae and their relationship with the physical characteristics of the 

ocean during this particular period of the tide. Despite this, I was able to identify the 
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optimum vertical velocities that give the “best fit” to the observed patterns when larval 

behaviour is parameterized by constant swimming in one direction.  

In Chapter 3 and following the low model compatibility achieved during the ebb tide 

period, I undertook a high spatial and temporal sampling regime of larval vertical 

distribution profiles and common physical input parameters of ocean models (i.e. 

density, temperature, salinity and eddy diffusivity) between high water and low water. 

The aim was to better resolve behaviours during this period and describe a signal that 

could be used to parameterise larval behaviour in dispersal modelling studies. I used 

Generalised Additive Models (GAMs) to reveal the influences of density, temperature, 

salinity and eddy diffusivity on the observed distribution profiles of bivalve larvae 

(Mytilus spp.). Additionally, I compared the vertical distribution profiles sampled here 

with profiles from the Irish Sea in 2005 (Knights et al., 2006) to assess whether it is 

appropriate to generalise vertical patterns over different locations. I demonstrated that of 

the environmental drivers investigated, they generally explained little difference in 

vertical distribution patterns, although, some differential use of environmental cues 

between ontogenetic stages was observed. As shown in Knights et al. (2006), the 

vertical distribution of larvae displayed a strong correlation to the state of the tide, with 

marked differences observed between the vertical distribution profiles at high water and 

mid ebb, however the proportional abundances during each tidal state significantly 

differed from those observed by Knights et al. (2006) in the Irish Sea. 

In Chapter 4, I undertook simulations to predict dispersal pathways using the Irish Sea 

as a case study, and specifically, explored how vertical distribution profile error may 

propagate in biophysical larval dispersal predictions. Formal comparisons of three 

models were made, namely: (1) a passive dispersal model; (2) simulations 

implementing a tidal vertical migration (TVM) ‘rule-based’ behaviour; and (3) 
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simulations implementing a reverse-engineered active swimming behaviour (after 

Chapter 2). The effects of (non) behavioural parameterisation on larval dispersal and 

biogeography were considered. The results highlight how differences in the method of 

behaviour characterisation within a biophysical model can lead to fundamentally 

different dispersal outcomes. Results highlight how differential classification of a single 

behaviour - active larval swimming - within a model framework, can lead to markedly 

different dispersal outcomes, reinforcing previous findings that vertical migration 

behaviour is a mechanism that significantly reduces dispersal distances (e.g. Woodson 

and McManus, 2007). Specifically, I show that the approach to behavioural 

parameterisation can lead to fundamental differences in biogeographic dispersal 

predictions. I show that the inclusion of swimming behaviour (either a 'TVM' or 

reverse-engineered behavioural signature) reduces the influence of the state of the tide 

and the season at which particles are released, and highlight that distance travelled from 

source is a limited metric that can fail to describe the whole picture when comparing 

dispersal trajectories (dispersal clouds can travel similar distances to different 

locations). I argue that a 3D approach that incorporates horizontal and vertical spatial 

components is fundamental to effectively describing biogeographic dispersal.  

Importantly, I also demonstrate that over short planktonic larval durations (≤ 24 hours), 

the dispersal trajectories are largely the same irrespective of behavioural 

parameterisation, but with increasing PLD length, stark differences in both the distance 

travelled from source and the biogeographic location of the dispersal cloud become 

increasingly apparent between all behavioural models (passive; TVM; REVM).   
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5.4 Implications of findings 

Dispersal is a key consideration in estimates of population connectivity, and biophysical 

modelling provides a cost-effective and well-utilised tool to estimate dispersal in the 

marine environment. These models continue to play a critical theoretical and applied 

role in science today, however, inaccuracies within these models can misguide those 

using them, and consequently decisions made off the back of inaccurate model 

estimations may be ineffective (Botsford et al., 2009a). 

The findings of the studies within this thesis highlight the disproportionate effects that 

even a single behaviour - larval swimming - can have on model predictions, our 

understanding of ecosystem functioning, and notably the ecological coherence of 

marine systems (Jonsson et al., 2020). Our results suggest that current methods of 

behavioural parameterisation used in biophysical modelling studies (i.e. rule-based 

approaches) are limited in their capacity to match in-situ observations of vertical 

distribution profiles, and consequently fail to place larvae in the ‘correct’ vertical 

position in the water column and expose them to the ‘correct’ advective currents. The 

‘best-fit’ velocities calculated by the model in Chapter 2 fell between the boundaries of 

larval swimming reported in the literature for Mytilus larvae (-2.5mms-1 to 5mms-1: Chai 

et al., 1984; Sprung, 1984; Fuchs and DiBacco, 2001), suggesting that vertical 

migration is important mechanism for even small, relatively slow-swimming organisms 

despite flow-fields orders of magnitude faster (Forward and Tankersley, 2001; Knights 

et al., 2006). However, I demonstrated that active movement changes over the course of 

the tidal cycle at temporal scales typically not modelled. Specifically, the change in both 

swimming speed and direction around the midpoint of the flood tide (from upwards 

swimming at 2.2mm s-1 to downwards swimming/sinking at 1mm s-1) necessary to 

match the in-situ profiles observed by Knights et al. (2006) (Chapter 2) is counter to the 
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theory of Tidal Vertical Migration (TVM) in which organisms swim upwards for the 

duration of one tidal state and downward during the opposing state (e.g. Civelek et al., 

2013), and to Weinstock et al.’s (2018) theory of passive vertical advective movement 

by tidal straining.  Consequently, the implementation of passivity (e.g. Wood et al., 

2014; 2016) or TVM (e.g. Robins et al., 2013) in a dispersal model may be ineffective 

at generating vertical profiles that accurately represent nature, with potential for error in 

vertical position to generate errors in dispersal predictions that propagate over time (as 

demonstrated in Chapter 4); for instance, as planktonic duration increases. Given that 

the larval duration can be dependent on numerous factors including temperature 

(O’Connor et al., 2007), food (Tupoint et al., 2012), and the physiological condition of 

the larvae (Phillips, 2004), future work should perhaps also consider the local 

environment of the organism and consider stochastic larval durations in biophysical 

models depending on abiotic conditions. 

It has long been argued that the length of PLD assigned to a particle can have a 

significant influence on its dispersal in a biophysical model (e.g. Edwards et al., 2007). 

The results of Chapter 4 demonstrate that with increasing time (i.e. PLD length), there is 

increasing divergence between the modelled dispersal outputs of each tested 

behavioural mode. Our findings show that, for organisms with shorter PLD’s (≤ 24 

hours), incorporation (or absence) of behaviours within a biophysical model has no 

effect on predictions. However, as time spent in the plankton increases, there is 

prediction divergence. Consequently, I argue that when modelling dispersal over short 

time scales (up to 1 day), the assumption of passivity may well be sufficient and that 

dispersal models could consider omitting behaviour altogether. However, for species 

with longer PLD’s (> 24 hours), which is common for many taxa including a range of 

commercially important taxa such as mussels (21 –35 days: Filgueira et al., 2015), 

oysters (10 –21 days: Yoo et al., 1976), and periwinkles (28 –49 days: Chang et al., 
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2011), accurate representation of the vertical position of larvae in the water column may 

well be fundamental to achieving realistic predictions of dispersal.  

When attempting to disentangle the drivers of vertical distribution from the profiles 

collected from the field in Chapter 3, I discovered that temperature, salinity, density, 

and turbulence explained relatively little variance in the proportional abundance of 

larvae observed in the water column at any given time. As such, I argue that these 

external drivers as determinants of behavioural ‘rules’ in biophysical models should be 

used with caution. Additionally, numerous other factors were unexplored in Chapter 3; 

for instance, light (Ettinger-Epstein et al., 2008; Cisewski et al., 2010; Wahab et al., 

2014; de Andres-Bragado et al., 2018), conspecific presence (Ettinger Epstein et al., 

2008), food availability (Bianco et al., 2011; Fouzai et al., 2015), and soundscapes 

(Simpson et al., 2011; Lillis et al., 2016) have also been shown to influence the 

directional movement of invertebrate larvae in laboratory settings. In reality, it is likely 

that larval behaviours manifest in nature as a result of interactions between all these 

(and potentially more) cues (see Fig. 5.1), yet our understanding of larval decision-

making in response to multiple cues and their subsequent capacity to effect movement 

remains unresolved. I suggest that, due the complex nature of oceanic environments in 

which multiple cues are present that have the potential to influence an organism’s 

behaviour at any given time, larval behaviours are more likely to be locally 

idiosyncratic such that the success (validation) of ‘rule-based’ approaches is more a 

result of luck rather than design.  

I also highlighted differences in vertical distribution patterns between the populations of 

larvae collected in southwest England (Chapter 3) and in the Irish Sea (Knights et al., 

2006), signifying either intra-specific or location specific variation in larval behaviours. 

This suggests that it may not be appropriate to generalise behavioural rules if models 
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are to present accurate predictions of larval dispersal. In the absence of an in-depth 

understanding of larval decision-making in-situ, I suggest that larval behaviour should 

be considered in dispersal models on a case-by-case basis, using the methodology 

provided in Chapter 2 to amalgamate all the potential factors that may influence 

behaviour into a single movement metric that allows us to get the vertical position of 

larvae ‘right’ when the drivers of vertical swimming are unknown. Although the 

questions of which behavioural modelling approach is best remain, the findings of 

Chapter 4 emphasize that how we include behaviour in models can have significant 

effects on our predictions of dispersal. The results of "Reverse-engineered" model 

predictions of larval swimming support the findings of other studies (Woodson and 

McManus, 2007; Shanks 2009; Sundelöf & Jonsson, 2011) that argue that active larval 

behaviour serves as a mechanism to reduce larval dispersal. If this is the case, we may 

be overestimating connectivity within our oceans and between marine populations, and 

that efforts to protect connectivity, such as by way of MPAs and creation of 'coherent 

networks', may need to be designed in a way that ensures populations are closer 

together.  

5.5 Bridging the gap between larvae and their environment: a 

framework for dispersal modelling studies 

The biological and physical drivers of larval dispersal create a complex suite of 

parameters for consideration in a ‘rule-based’ approach (Fig. 5.1). Marine invertebrate 

larvae have been shown to exhibit hierarchal responses to environmental cues (Welch 

and Forward, 2001; Ettinger-Epstein et al., 2008; Whalan et al., 2008; Teodósio et al., 

2016; Verasztó et al., 2018), so effectively capturing behaviours using a ‘rule-based’ 

approach requires not only an understanding of decision making in response to cues, but 

also an understanding of how behaviour is influenced by the interactions between 

multiple signals. How larvae make decisions in response to multiple cues and how this 
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effects their active movement, and consequently their dispersal, remains an unanswered 

and significant question in marine ecology. Swearer et al. (2019) argue that in dispersal 

models, behaviour exists independently of the physical state of the larva (i.e. behaviour 

exists without consideration of the influence of the environment on the larva), and that 

breaking through this ‘dualism’ will be an important step moving forward. By 

amalgamating all the potential drivers of larval behaviour into a signal metric 

representing behavioural manifestation (Figure 5.2), the chapters within this thesis 

provide a framework for achieving this by connecting larval behaviours in models to 

larval behavioural manifestation in nature, overcoming the need to rely on descriptors of 

behaviour derived from observations made under controlled laboratory conditions, 

which may not be present in the field, (Maldonado et al., 2003; Maldonado, 2006) to 

reflect the vertical position of larvae in the water column at a given time point.    

 

Figure 5.2: Schematic describing the links between larval vertical position in the field and biogeography, 

showing the drivers of larval movement (active (vertical) swimming) as a ‘black box’. The approach 

proposed in Chapter 2 provides a methodology for amalgamating the behavioural response of larvae to all 

these cues as a single ‘active swimming’ behavioural response.     
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Moving forward, I suggest that dispersal modellers consider the following building 

blocks in model development in order to generate accurate predictions of larval 

movement. 1) A well-validated ocean model of sufficient spatial and temporal 

resolution to capture the hydrodynamics relevant to the scale of the larvae, and 2) a 

Lagrangian particle tracker in which species-specific behaviours are parameterised 

using an amalgamated behavioural metric derived from in-situ vertical distribution 

profiles local to the study area, collected using a high spatio-temporal sampling regime 

(sensu Knights et al., 2006). Although it may not be cost and time-effective, extensive 

sampling currently provides the best means of identifying how larval behaviours 

manifest in nature in a way that encompasses the entire range of in-situ biological and 

physical drivers that can influence movement (Metaxas and Saunders, 2009). The 

approaches presented in this thesis provide the framework for converting such observed 

vertical distribution profiles into behavioural metrics for use in biophysical models, 

which allow us to make predictions that are arguably more accurate, however validation 

of the approaches outlined is required to ascertain their effectiveness.   

5.6 Future directions 

5.6.1 Addressing the limitations of this thesis 

 

“All models are wrong, but some are useful” 

In 1976, statistician George Box used the above aphorism in a paper published in the 

Journal of the American Statistical Association to emphasise that, by nature, models are 

simplifications of reality applied with the aim of improving our current understanding. 

But do previous models of larval dispersal improve our understanding, or have they 

muddied the waters and led us down the garden path? Non-validated biophysical 
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models have been used to address hypothetical considerations of the influence of 

varying factors on larval dispersal (Hill, 1990; Marta-Almeida et al., 2006; Aiken, 2007; 

North et al., 2008; Phelps et al., 2015), however, without validation, the outcomes of 

such models are purely theoretical., and model outcomes need to be compared to 

species distributions in the field to justify their findings in an ecological context. The 

assessments within this thesis were undertaken with the aim of determining if current 

biophysical modelling approaches do indeed improve our current understanding or if we 

are being misled by their outcomes, but additional work is required to fully test the 

validity of the approaches proposed here. For instance, further field studies would be 

beneficial to assess whether our 1-dimensional model proposed in Chapter 2 is 

successful in matching in-situ observations. Additionally, genetic tools could be used to 

test the ‘goodness of fit’ of a model prediction that adopts our reverse-engineered 

behavioural parameterisation approach (Chapter 4); for instance, using genetic 

parentage data (e.g. Bode et al., 2019 and see review by Hedgecock et al., 2007) and 

comparison with other behavioural parameterisation approaches. This method, however, 

does rely upon knowledge of the genetic structure of potential source populations and 

adequate genetic differentiation between populations (Hedgecock et al., 2007; Metaxas 

and Saunders, 2009). The dispersal model outcomes presented in Chapter 4 could also 

be validated by comparing spatial patterns in dispersal with in-situ observations of 

population dynamics of the study species (i.e. known locations of adult populations 

Incze and Naimie, 2000; Pfeiffer-Herbert et al., 2007), but this may be overly simplistic 

as population dynamics are not only governed by dispersal., but also the settlement of 

larvae at the end of their planktic life-history stage, and post-settlement survival to 

recruitment into the adult population (Treml et al., 2015). Arguably, we therefore need 

to incorporate components parameterising settlement, mortality, and recruitment into 
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models in order to effectively validate their outcomes against observed species 

distributions patterns (Metaxas and Saunders, 2009).  

5.6.2 Linking dispersal and recruitment 

In this thesis, I have only considered dispersal and not the recruitment stages of 

population dynamics. The omission of this crucial life history stage can decouple 

dispersal predictions with observed species distribution patterns (Marshall et al., 2010; 

Treml et al., 2015). A logical next step would therefore be to also consider the 

relationship between dispersal and recruitment in order to provide insights into the 

likelihood and rate of change in species distribution profiles over time.  

5.6.2.1 Settlement 

For a larva to settle, it is required to come into contact with suitable habitat during its 

competency window, and there is evidence that some species are able to delay 

settlement in the absence of good habitat (e.g. Pechenik, 1990). Settlement on suitable 

habitat is a biophysically complex process, governed in part by the length of the 

competency window, the detection of cues that indicate and orientate the larvae towards 

good habitat, and larval swimming ability (Swearer et al., 2019). Like larval behaviour 

during dispersal, limited information is available on the drivers of settlement in-situ due 

to the logistical challenges of monitoring the process. It is therefore unsurprising that, 

despite its importance to population connectivity, habitat detection is seldom 

incorporated into biophysical models, however advances have been made to 

probabilistically implement realistic active settlement behaviours within modelling 

studies (Staaterman & Paris 2014, Treml et al. 2015). 

5.6.2.2 Mortality 

It is widely accepted that larval mortality can have a significant impact on connectivity 

(Thorson, 1946; Cowen et al., 2000; Metaxas and Saunders 2009; Vaughn and Allen, 



General discussion 

132  Molly Kendall James - March 2021 

2010; Paris et al., 2007; Treml et al., 2015). Estimates of connectivity therefore should 

consider the likelihood of larval survival throughout the dispersal process and into 

subsequent life-history stages (Swearer et al., 2019). Quantifying the mortality rate of 

the larvae of benthic invertebrates faces logistical challenges as reliable estimates can 

only be obtained from field studies (White et al., 214), however is assumed to be 

relatively high, ranging from 0.02% to 1.01% of the population per day (Dahlberg 1979, 

Houde 1997, Rumrill 1990, Morgan 1995, Vaughn and Allen 2010). The rarity of 

empirical estimates of mortality from field-based studies, and the uncertainty within the 

estimates where they are available (ranging more than two orders of magnitude within a 

single taxon: White et al., 2014) suggest that this is a significant area for future research. 

Poor fertilisation success, stress, lack of resources, and offshore transport have been 

found to be major contributors to larval mortality (Rumrill, 1990; Morgan, 1995; 

Vaughn and Allen, 2010), however predation is believed to be the primary factor of 

larval and post-larval mortality (Thorson, 1950; Morgan, 1995).  

5.6.3 The day/night cycle 

Predation is believed to be a factor that drives the vertical distribution of larvae in the 

marine environment, as larvae of a range of taxa have been observed to synchronise 

their vertical migratory behaviours to the day/night, occupying the surface waters at 

night when visibility is low and staying in deeper waters during the day as a predation-

avoidance response (Lampert, 1994; Raby et al., 1994; Breckenridge et al., 2011; 

Romero et al., 2012). The sampling regimes used (Knights et al., 2006) and undertaken 

(Chapter 3) in this thesis were carried out during daylight hours, and so potential diurnal 

vertical migration patterns were not explored. It is therefore possible that, even when 

the reverse-engineering approach is implemented, model outcomes over- or 

underestimate larval dispersal as I cannot guarantee that the observed patterns used to 
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‘fit’ the active swimming metric over the course of the tidal cycle are repeated by larvae 

during the night.  Future research would benefit from sampling programmes that 

encompass the 24-hour diel cycle in order to encapsulate potential variation in the 

vertical distribution of larvae as a function of the day/night cycle. 

5.7 Final conclusions 

Dispersal models play a critical role in theoretical and applied science and can be 

invaluable tools in these endeavours, but as this thesis highlights, additional focus needs 

to be placed on the importance of correctly parameterising behaviour in these models in 

order for their findings to better replicate patterns in nature, and thus patterns of 

dispersal. I have shown this to be especially important when modelling the dispersal of 

species with extended planktonic larval durations (> 24 hours), where models using a 

rule-based approach lead to marked differences in dispersal and larval biogeography.  

This thesis makes significant steps towards improving the parameterisation of behaviour 

within dispersal models by considering larval movement as a manifestation of 

behaviour influenced by the larva’s in-situ environment. The methodologies and 

analytical techniques designed and applied within the data chapters can be applied to 

any species with a planktonic dispersal phase in any location, and provide an important 

step towards improving the biological ‘realism’ of behavioural parameterisation in 

dispersal models in the absence of an understanding of the complex drivers of active 

larval movement. 
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Appendix 1: MATLAB code for the 1D particle tracker (Chapter 2) 

 

 

%%===== ANOVA MODULE ========== 

 

 

%2 way anova to compare modelled and observed data 

 

 

%organise the distribution replicates so that they are in the same 

format as the observational data (rows = TMB; columns = reps) 

 

%transpose the matrix 

drep = distribution_rep'; 

%flip the matrix so is reads TMB not BMT 

dflip = flipud(drep); 

%remove the top line of 0s 

distro_rep(:,:,modelrun) = dflip(2:end,:); 

 

%######################################################### 

%convert the data to decimal percentages 

distro_decimal = distro_rep/100; 

% arcsin square root tranform the data 

distro_transform = asin(sqrt(distro_decimal)); 

 

clear dep; 

clear dflip; 

clear distro_decimal; 

 

%original ANOVA (raw percentages) 

%create a matrix with 2 columns (modelled and observed) and 

(reps*depthbins) rows 

 

%populate the observed column 

 

if strcmp(endpoint,'flood') 

        %top depth bin 

        anova_data(1:5,2) = obs_data(1,:); 

        %mid depth bin 

        anova_data(6:10,2) = obs_data(2,:); 

        %bottom depth bin 

        anova_data(11:15,2) = obs_data(3,:); 

elseif strcmp(endpoint,'hws') 

    %top depth bin   

    anova_data(1:5,2) = obs_data(5,:); 

    %mid depth bin 

    anova_data(6:10,2) = obs_data(6,:); 

    %bottom depth bin 

    anova_data(11:15,2) = obs_data(7,:); 

 

elseif strcmp(endpoint,'ebb') 

    %top depth bin   

    anova_data(1:5,2) = obs_data(9,:); 

    %mid depth bin 

    anova_data(6:10,2) = obs_data(10,:); 

    %bottom depth bin 

    anova_data(11:15,2) = obs_data(11,:); 

 

elseif strcmp(endpoint,'lws') 
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    %top depth bin   

    anova_data(1:5,2) = obs_data(13,:); 

    %mid depth bin 

    anova_data(6:10,2) = obs_data(14,:); 

    %bottom depth bin 

    anova_data(11:15,2) = obs_data(15,:); 

end 

 

%populate the modelled column 

anova_data(1:5,1) = distro_rep(1,:,modelrun); 

anova_data(6:10,1) = distro_rep(2,:,modelrun); 

anova_data(11:15,1) = distro_rep(3,:,modelrun); 

 

anova_data; 

 

 

anova_labels = 

['modelled';'modelled';'modelled';'modelled';'modelled';'observed';'ob

served';'observed';'observed';'observed']; 

 

[p,tbl,stats] = anova2(anova_data,5,'off'); 

%top_data(1:5,1) = anova_data(1:5,1); 

%top_data(6:10,1) = anova_data(1:5,2); 

 

%mid_data(1:5,1) = anova_data(6:10,1); 

%mid_data(6:10,1) = anova_data(6:10,2); 

 

%bottom_data(1:5,1) = anova_data(11:15,1); 

%bottom_data(6:10,1) = anova_data(11:15,2); 

 

 

p_interaction = p(3) 

 

 

% ANOVA - transformed data 

 

%create a matrix with 2 columns (modelled and observed) and 

(reps*depthbins) rows 

 

%populate the observed column 

 

if strcmp(endpoint,'flood') 

        %top depth bin 

        anova_data(1:5,2) = obs_transform(1,:); 

        %mid depth bin 

        anova_data(6:10,2) = obs_transform(2,:); 

        %bottom depth bin 

        anova_data(11:15,2) = obs_transform(3,:); 

elseif strcmp(endpoint,'hws') 

    %top depth bin   

    anova_data(1:5,2) = obs_transform(5,:); 

    %mid depth bin 

    anova_data(6:10,2) = obs_transform(6,:); 

    %bottom depth bin 

    anova_data(11:15,2) = obs_transform(7,:); 

 

elseif strcmp(endpoint,'ebb') 

    %top depth bin   

    anova_data(1:5,2) = obs_transform(9,:); 

    %mid depth bin 

    anova_data(6:10,2) = obs_transform(10,:); 

    %bottom depth bin 

    anova_data(11:15,2) = obs_transform(11,:); 
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elseif strcmp(endpoint,'lws') 

    %top depth bin   

    anova_data(1:5,2) = obs_transform(13,:); 

    %mid depth bin 

    anova_data(6:10,2) = obs_transform(14,:); 

    %bottom depth bin 

    anova_data(11:15,2) = obs_transform(15,:); 

end 

 

%populate the modelled column 

anova_data(1:5,1) = distro_transform(1,:,modelrun); 

anova_data(6:10,1) = distro_transform(2,:,modelrun); 

anova_data(11:15,1) = distro_transform(3,:,modelrun); 

 

anova_data; 

 

 

anova_labels = 

['modelled';'modelled';'modelled';'modelled';'modelled';'observed';'ob

served';'observed';'observed';'observed']; 

 

[p,tbl,stats] = anova2(anova_data,5,'off'); 

%top_data(1:5,1) = anova_data(1:5,1); 

%top_data(6:10,1) = anova_data(1:5,2); 

 

%mid_data(1:5,1) = anova_data(6:10,1); 

%mid_data(6:10,1) = anova_data(6:10,2); 

 

%bottom_data(1:5,1) = anova_data(11:15,1); 

%bottom_data(6:10,1) = anova_data(11:15,2); 

 

 

p_transform(modelrun) = p(3) 

 

 

 

 

 

 

%================================================================ 

 

%%===== AVERAGES MODULE ========== 

 

 

 

%calculates the mean proportion of articles in each depth bin from all 

replicate model runs 

 

 

mean_top = mean(distribution_rep(:,3)) 

se_top = std(distribution_rep(:,3))/(sqrt(replicates)) 

mean_middle = mean(distribution_rep(:,2)) 

se_middle = std(distribution_rep(:,2))/(sqrt(replicates)) 

mean_bottom = mean(distribution_rep(:,1)) 

se_bottom = std(distribution_rep(:,1))/(sqrt(replicates)) 

 

if strcmp(mean_histogram,'on') 

mean_bar = [mean_top hist_Z_percent_end(3); mean_middle 

hist_Z_percent_end(2); mean_bottom hist_Z_percent_end(1)]; 

 

se_bar = [se_top standard_error_observed(3); se_middle 

standard_error_observed(2); se_bottom standard_error_observed(1)]; 
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figure (1) 

hold on 

bar(mean_bar); 

title('Modelled vs observed vertical distribution') 

ylim([0 100]); 

ylabel('Percent of total population') 

xticks([1 2 3]) 

xticklabels({'Top (0.8m)','Middle (8-16m)','Bottom (16-24m)'}); 

 

ngroups = size(mean_bar,1); 

nbars = size(mean_bar,2); 

groupwidth = min(0.8, nbars/(nbars + 1.5)); 

for i = 1:nbars 

x = (1:ngroups) - (groupwidth/2) + (2*i-1) * (groupwidth / (2*nbars)); 

  errorbar(x, mean_bar(:,i), se_bar(:,i), 'k', 'linestyle', 'none'); 

end 

legend('labels',({'Modelled','Observed'})) 

end 

 

 

 

 

 

%================================================================ 

 

%===== BOUNDARY CONDITIONS MODULE ========== 

%particles stick to the boundaries if they are rigid 

 

if strcmp(boundary,'rigid') 

if Z_new(i) >H 

Z_new(i) = H -0.0001; 

elseif Z_new(i) < 0 

Z_new(i) = 0.0001; 

end 

 

%particles are reflected back into the water column at a distance 

equal to that of which they traversed the boundary 

elseif strcmp(boundary,'reflective') 

if Z_new(i) >H 

Z_new(i) = H-(Z_new(i) - H); 

elseif Z_new(i) < 0 

Z_new(i) = abs(Z_new(i)); 

end 

end  

 

 

 

 

 

%================================================================ 

 

%========== HYDRODYNAMIC MODULE============ 

 

%LES smoothing and interpolating module 

 

depth_interval = 0.01; %depth interval in metres 

 H = 24; %water depth (m) 

 

 interp_method = 'spline'; %interpolation method 

 Prt = 1; %Turbulent Prandtl number 

 LES_scale = 1; %to explore different magnitides of K 
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 %external timestep 

 LES_ts = 2; 

 

 load('Eddy_Vis.mat') %matrix containing nxn K profile generated by 

the LES 

 [EV, ~, ~, ~, ~] =filloutliers(eddy_vis,interp_method,2); 

 EVsmooth = smoothdata(EV,2); 

 EVsmooth = smoothdata(EVsmooth,1); 

 EV=EVsmooth; 

 clear EVsmooth 

 clear eddy_vis 

 zq = 0:depth_interval:z(end); 

 EV_interp = zeros(length(zq),length(time)); 

 

 for tidx = 1:length(time) %loops through each timestep 

   y = EV(:,tidx) ; % selects the EV values for all depths for the 

timestep 

   y_interp = interp1(z,y,zq,interp_method); %interpolates the EV 

values for the queried z points (zq) 

   EV_interp(:,tidx) = y_interp; %populates the column relating to the 

timestep with the interpolated values 

end 

 

 EV = EV_interp; 

 z = zq; 

 

 clear y 

 clear y_interp 

 clear EV_interp 

 clear  zq 

 

 clear y 

 clear y_interp 

 clear EV_interp 

 clear  zq 

 

 

 %extend the time scale 

for xx = 345:380 

time(1,xx) = time(1,xx-1)+0.0333333333; 

end 

 

p = polyfit(time(:,1:344),tide_5m,4); 

x1 = time(1,1):0.0333333333:time(end); 

y1 = polyval(p,x1); 

 

  

%attach extrapolated values to tide_5m 

 tide_5m(:,345:380) = y1(:,345:380); 

clear xx 

 

%Cut dataset to water column height (H) 

[~,hidx] = min(abs(z-H),[],2); 

 zH = z(1:hidx); 

 z = zH; 

 clear zH 

 EVH = EV(1:hidx,:); 

 EV = EVH; 

 clear EVH 

 

%extend the EV dataset with blank values to fill 

 

EV(:,344:380) = zeros; 
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%find the cumulative eddy viscosity to plot the tide 

EVsum = sum(EV(:,1:380)); 

 

%reflect the tide between hws and ebb overlay anomoly values and 

extrapolate data 

EV_reflect = fliplr(EV(:,194:286)); 

EV(:,288:380) = EV_reflect; 

 

clear EV_reflect 

clear extrap_method 

clear EVsum 

 

 

K = EV*Prt; 

meanK = mean(K); 

 

%extend the time dataset to start at 0 hours 

time_new = 0:0.033333333:1.966666667; 

%add the original time series to the new time series 

time_new(1,61:440) = time; 

 

%extend the tide dataset to match the new time dataset  

tide5m_new(1,61:440) = tide_5m; 

tide5m_new(1,1:60) = NaN; 

 

tide_reflect = fliplr(tide5m_new(1,140:278)); 

tide5m_new(1,1:139) = tide_reflect; 

 

clear tide_reflect 

time = time_new; 

tide_5m = tide5m_new; 

clear tide5m_new 

clear time_new 

 

%extend K inline with tide and time 

K_new(:,61:440) = K; 

K_new(:,1:60) = 0; 

K_reflect = fliplr(K_new(:,244:319)); 

K_new(:,1:76) = K_reflect; 

K_new(:,67:105) = smoothdata(K_new(:,67:105),2); 

K = K_new; 

meanK = mean(K); 

 

%find points marking tidal states (Achieved by manually searching the 

dataset) 

lws1_idx = 52; 

midflood = 139; 

hws_idx = 227; 

midebb = 326; 

lws_idx = 417; 

 

 

%Calulate the diffusivity gradient between depth bins 

 Kprime = zeros(size(K)); 

 Kprime(1,:) = (K(2,:)- K(1,:)) / ((z(2)) - (z(1))); 

 Kprime(end,:) = (K(end,:) - K(end-1,:)) / (z(end) - z(end-1)); 

for kk = 2:length(z)-1 

 Kprime(kk,:) = (K(kk+1,:) - K(kk-1,:)) / (z(kk+1) - z(kk-1)); 

end 

 

 

%Calculate the second derivative of K with respect to z 
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Kdev = zeros(size(K)); 

Kdev(1,:) = ((K(2,:) - K(1,:)).^2) / ((z(2)^2) - (z(1)^2)); 

Kdev(end,:) = ((K(end,:) - K(end-1,:)).^2) / ((z(end)^2) - (z(end-

1)^2)); 

 

for kk = 2:length(z)-1 

        Kdev(kk,:) = ((K(kk+1,:) - K(kk-1,:)).^2) / ((z(kk+1)^2) - 

(z(kk-1)^2)); 

end 

 

minKdev = min(Kdev(:)); 

min_ts = 1/minKdev; 

 

clear interp_method 

 clear Prt 

 clear tidx 

 clear EV 

 clear kk 

 

 

 

 

 

%================================================================ 

 

%=====OUTPUT MODULE ============  

%saves data into an array 

 

data_array = cell(41,6); 

 

if strcmp(startpoint,'flood') 

data_array(1,1) = cellstr('HWS'); 

elseif strcmp(startpoint,'hws') 

data_array(1,1) = cellstr('Ebb'); 

elseif strcmp(startpoint,'ebb') 

data_array(1,1) = cellstr('LWS'); 

elseif strcmp(startpoint,'lws') 

data_array(1,1) = cellstr('Flood'); 

end 

 

 datalabels = ["MeanSurf", "MeanMid", "MeanBed", "SESurf", "SEMid", 

"SEBed"]; 

data_array(2,1) = cellstr(datalabels(1)); 

data_array(2,2) = cellstr(datalabels(2)); 

data_array(2,3) = cellstr(datalabels(3)); 

data_array(2,4) = cellstr(datalabels(4)); 

data_array(2,5) = cellstr(datalabels(5)); 

data_array(2,6) = cellstr(datalabels(6)); 

 

 

data_array(3,1) = num2cell(mean_top); 

data_array(3,2) = num2cell(mean_middle); 

data_array(3,3) = num2cell(mean_bottom); 

data_array(3,4) = num2cell(se_top); 

data_array(3,5) = num2cell(se_middle); 

data_array(3,6) = num2cell(se_bottom); 

 

anovalabels = ["2Way ANOVA", "1Way ANOVA: Surface", "1Way ANOVA: 

Middle"," 1Way ANOVA: Bed"]; 

 

data_array(5,1) = cellstr(anovalabels); 

data_array(6:11,1:6) = tbl; 
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data_array(32,2) = cellstr('Modelled'); 

data_array(32,3) = cellstr('Observed'); 

data_array(32,4) = cellstr('Difference'); 

 

data_array(33,1) = cellstr('Surface (0-8m)'); 

data_array(34,1) = cellstr('Middle (8-16m)'); 

data_array(35,1) = cellstr('Bed (16-24m)'); 

 

mean_bar_cell = num2cell(mean_bar); 

data_array(33:35,2:3) = mean_bar_cell; 

 

data_array(37,1) = cellstr('Standard Error'); 

data_array(37,2) = cellstr('Modelled'); 

data_array(37,3) = cellstr('Observed'); 

 

data_array(38,1) = cellstr('Surface (0-8m)'); 

data_array(39,1) = cellstr('Middle (8-16m)'); 

data_array(40,1) = cellstr('Bed (16-24m)'); 

 

se_bar_cell = num2cell(se_bar); 

data_array(38:40,2:3) = se_bar_cell; 

 

 

 

 

 

%================================================================ 

%=======START========== 

 

%runs the model 

 

%load in hydrodynamic data 

hydrodynamic_module 

 

%load in variables 

variables_module 

 

for modelrun = 1:5 

swimloop = 0; 

for swimspeed = -0.0025:0.0001:0.005 

    swimloop = swimloop + 1; 

 

    for rep = 1:replicates 

 

%~~~STARTING DISTRIBUTION OF PARTICLES BASED ON OBSERVATIONAL DATA 

~~~~% 

 

        if strcmp(startpoint,'flood') 

            top = 43.61; 

            middle = 31.72;  

            bottom = 24.67;  

        elseif strcmp(startpoint,'hws') 

            top = 28.23; 

            middle = 28.51;  

            bottom = 43.27; 

        elseif strcmp(startpoint,'ebb') 

            top = 20.36; 

            middle = 40.79; 

            bottom = 38.85; 

        elseif strcmp(startpoint,'lws') 

            top = 27.86; 

            middle = 29.88; 
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            bottom = 42.26; 

        end 

 

 

    top_no = N/(100/top); 

    middle_no = N/(100/middle); 

    bottom_no = N/(100/bottom); 

 

    step = 0; 

    %~~~ RANDOMLY ASSIGN PARTICLE DEPTHS WITHIN EACH DEPTH BIN ~~~% 

 

        for i = 1:N 

            if i < top_no 

                Z(i) = ((H/3)*2) + (H-((H/3)*2)).*rand; %random 

distribution of particles in top depth bin 

            elseif  i > top_no && i < (top_no+middle_no) 

                Z(i) = (H/3) + (((H/3)*2)-(H/3)).*rand; %random 

distribution of particles in mid depth bin 

            elseif i > (top_no+middle_no) && i <= N 

                Z(i) = 0 + ((H/3)-0).*rand; %random distribution of 

particles in bottom depth bin 

            end 

        end % particle loop 

 

        %~~~VERTICAL DISPLACEMENT~~~% 

 

        for ts = ts_start:ts_end 

         

            %counter 

            timestep_count= ['Timestep counter: ',num2str(ts),' out of 

',num2str(ts_end), ' Behaviour: ',behaviour,' ',startpoint, ' to 

',endpoint, ' (Replicate ',num2str(rep),]; 

            disp(timestep_count) 

            disp(modelrun) 

            disp(swimspeed) 

     

            for its = 1:nested_ts %internal timestep loop 

     

                step = step + 1; %internal timestep counter 

     

                vertical_displacement_module 

     

                if strcmp (show_particles, 'on') 

                    figure (1) 

                    hold off 

                    scatter(x,Z,60,'k') 

                    set(gca, 'XLim', [0 N], 'YLim', [0 24]) 

                    title('1D water column') 

                    xlabel('') 

                    set(gca,'xtick',[]) 

                    ylabel('Depth (m)') 

                    hold on 

                    pause (0.0005) 

                end 

     

            end %end internal timestep loop 

        end % end external timestep loop 

 

 

     

        %Number of particles in each depth bin 

        hist_Z = histc(Z,edges); 
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        %histogram as a percentage of population 

        hist_Z_percent = 100 ./ (N./hist_Z); 

        modelled__distribution = hist_Z_percent; 

        observed__distribution = hist_Z_percent_end; 

     

        %store distribution results for replicate in a matrix 

        distribution_rep(rep,:) = hist_Z_percent; 

 

    end 

 

 

 

 

    anova_module 

    averages_module 

 

    output_module 

    disp completed 

 

 

 

 

    for i = 1:5 

      xlswrite([num2str(swimspeed),'.xls'],distro_rep(:,:,i),i) 

    end 

 

    xlswrite('p-values',swimspeed,1,['A' num2str(swimloop)]) 

    range = ['B', num2str(swimloop), ':', 'F', num2str(swimloop)]; 

    xlswrite('p-values',p_transform,1,range) 

         

 

end 

 

 

 

 

%================================================================ 

%========= SWIM CAPACITY MODULE ========== 

%this module gives the option to suppress swimming behavour as a 

function of a vaiable (default is a critical level of K) 

 

if strcmp(swimming_performance, 'con') 

 

        L(i) = 1; 

 

elseif strcmp(swimming_performance,'pass') 

 

    L(i) = 0; 

 

elseif strcmp(swimming_performance,'lambda') 

     

    if K(zidx(i),ts) < Kcrit 

    L(i) = 1; 

    elseif K(zidx(i),ts)  >= Kcrit 

    L(i) = 0; 

    end 

     

 

end 
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%================================================================ 

%==========VARIABLES MODULE============== 

 

 

N = 25; %number of particles 

dt =120; %internal timestep (s) 

replicates =5; 

behaviour  = 'active'; % active or passive 

time_swimming = 1; 

 %time spent swimming (cruising and escaping) as a decimal percentage 

 

time_escape = 0; 

 % of total swimming time spent escaping as a decimal percentage 

 

 if time_escape > 0; 

     escspeed =0.03; %in ms-1 

 end 

 

%Kcrit = 1; %optional. see swimming performance module 

 

 

loop = 0; 

figpath = 'pwd'; 

swimming_performance = 'con'; 

%options: 

%'con': constant: lambda = 1 

%'lamdba': lambda is a function of K 

%'pass': passiveL lambda = 0 

 

startpoint = 'ebb'; 

endpoint = 'lws'; 

 

if strcmp(startpoint,'lws') 

    ts_start = lws1_idx; 

elseif strcmp(startpoint,'flood') 

    ts_start = midflood; 

elseif strcmp (startpoint, 'hws') 

    ts_start = hws_idx; 

elseif strcmp(startpoint,'ebb') 

    ts_start = midebb; 

end 

 

if strcmp(endpoint,'flood') 

    ts_end = midflood; 

elseif strcmp(endpoint,'hws') 

    ts_end = hws_idx; 

elseif strcmp(endpoint,'ebb') 

    ts_end = midebb; 

elseif strcmp(endpoint,'lws') 

    ts_end = lws_idx; 

end 

 

 

show_particles =''; % 'on' displays a visualisation of particle 

movement in the water column 

show_histogram = 'on'; % 'on' shows a bar chart comparing the modelled 

and oserved distribution profiles 

mean_histogram = 'on'; % 'on' generates a bar chart showing the mean 

observed distribution profile and the mean modelled distribution 

profile over all replicate model runs (default 5) 
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boundary = 'reflective'; 

 

%nested timestep (number of internal timesteps in model timestep 

nested_ts = (LES_ts*60) / dt; 

 

%read in the observational percentage data 

obs_data = xlsread("obs_data.xlsx"); 

 

%convert obs data to decimal 

obsdata_decimal = obs_data/100; 

% arcsin square root transform the obs data to anova 

obs_transform = asin(sqrt(obsdata_decimal)); 

clear obsdata_decimal; 

 

 

%calculate the mean percentage of particles in each depth bin from the 

replicates 

mean_obs = mean(obs_data,2); 

 

%calcuate the SD for each mean 

sd_obs = std(obs_data,0,2); 

 

%calculate the SE for each mean 

obs_repcount = size (obs_data,2); 

se_obs = sd_obs/sqrt(obs_repcount); 

  

%ebb tide vertical distribution 

 

if strcmp(endpoint,'flood') 

hist_Z_percent_end = [mean_obs(3) mean_obs(2) mean_obs(1)]; 

standard_error_observed = [se_obs(3) se_obs(2) se_obs(1)]; 

elseif strcmp(endpoint,'hws') 

hist_Z_percent_end = [mean_obs(7) mean_obs(6) mean_obs(5)]; 

standard_error_observed = [se_obs(7) se_obs(6) se_obs(5)]; 

elseif strcmp(endpoint,'ebb') 

hist_Z_percent_end = [mean_obs(11) mean_obs(10) mean_obs(9)]; 

standard_error_observed = [se_obs(11) se_obs(10) se_obs(9)]; 

elseif strcmp(endpoint,'lws') 

hist_Z_percent_end = [mean_obs(15) mean_obs(14) mean_obs(13)]; 

standard_error_observed = [se_obs(15) se_obs(14) se_obs(13)]; 

end 

 

for i = 1:N 

if i < hist_Z_percent_end(3) 

Z_obs(i) = ((H/3)*2) + (H-((H/3)*2)).*rand; %random distribution of 

particles in top depth bin 

elseif  i > hist_Z_percent_end(3) && i < 

(hist_Z_percent_end(3)+hist_Z_percent_end(2)) 

Z_obs(i) = (H/3) + (((H/3)*2)-(H/3)).*rand; %random distribution of 

particles in mid depth bin 

elseif i > (hist_Z_percent_end(3)+hist_Z_percent_end(2)) && i <= N 

Z_obs(i) = 0 + ((H/3)-0).*rand; %random distribution of particles in 

bottom depth bin 

end 

end %end particle loop 

 

%binned data 

numbins = 3; %number of bins in the histogram 

binsize = H/numbins; % size of each depth bin in metres 

edges= 0:H/numbins:H; %edges of the bins 

 

%x position of particles (fixed - no horizontal advection) 

x= 1 + (N-1)*rand(1,N); 
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%multiply K by lES scaler 

K = K*LES_scale; 

 

swimloop = 0; 

 

%Mersenne twister random number generator 

twister = RandStream('mt19937ar','Seed',1); 

RandStream.setGlobalStream(twister); 

 

%Pre allocated arrays and comment strings 

Z = zeros(1,N); %particle depths 

w = zeros(1,N); %particle swimming speeds 

R = zeros(1,N); % Random walk factor 

L = zeros(1,N); %swimming ability of particles 

Z_new = zeros(1,N); % new particle locations 

zidx = zeros(1,N); %depth index of particle loop iteration 

Z_offset=zeros(1,N); %offset depth 

Ki=zeros(1,N); % Kprime (dt^2/d^2z) 

 

 

 

 

 

 

 

%========================================================== 

%===========VERTICAL DISPLACEMENT MODULE================ 

 

for i =1:N %particle loop 

 

%Random number between -1 and 1 

%normal distribution 

R(i) = -1 + 2.*rand; 

 

 %swimspeed 

w(i) = swimspeed; 

 

 

%find the location of the particle 

%local index of z nearest to the depth of the particle 

zidx(i) = knnsearch(z'',Z(i)); 

 

%find the diffusivity gradient at the particles location 

Ki(i) = Kprime(zidx(i),ts); 

 

%offset the particles location at a distance of 1/2K''dt 

Z_offset(i) = Z(i) + ((Ki(i)/2)*dt); 

%find the depth index for the offset particle 

offset_zidx(i) = knnsearch(z'', Z_offset(i)); 

 

swimming_capacity_module 

 

%GENERATE A MATRIX OF THE SWIMMING SPEEDS OF EACH PARTICLE DURING EACH 

TIMESTEP 

swim_matrix(i,step,rep) = w(i) * L(i); 

 

Kstep(i,step) = K(zidx(i),ts); 

 

KRWstep(i,step) = Kstep(i,step) * R(i); 
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%calculate particle vertical displacement 

%using the equation Z(n+1) = Zn + K''(Zn)dt + (R((2K(Zn + 

1/2K''dt)dt)/r)^0.5) + (w*l)dt (Visser,1997) 

 

if strcmp(behaviour,'active')   

 

Z_new(i) = Z(i)  + (Ki(i)*dt) + R(i) 

*((2*K(offset_zidx(i),ts)*dt)/(1/3))^0.5 +((w(i)*L(i))*dt); 

 

 

elseif strcmp(behaviour,'passive') 

Z_new(i) = Z(i)  + (Ki(i)*dt) + R(i) 

*((2*K(offset_zidx(i),ts)*dt)/(1/3))^0.5; 

end 

boundary_conditions_module 

 

% New particle Location 

Z(i) = Z_new(i); 

 

end 
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Appendix 2: Sensitivity analysis of the 1D particle tracking model (Chapter 

2) 

 

Number of 
Particles 

Replicate Top (%) Mid (%) Bed (%) 

100 1 45.4 29.8 24.8 

100 2 41.6 33.8 24.6 

100 3 45 32.8 22.2 

100 4 41.4 33.6 25 

100 5 45.2 33.8 21 

100,000 1 43.24 32.86 23.9 

100,000 2 42.88 33.06 23.9 

100,000 3 43.18 33.8 24.06 

100,000 4 42.52 32.32 23.02 

100,000 5 43.32 33.24 25.16 

     

 

 

 > mod <- aov(data = sanalysis, mod ~ Top+Mid+Bed) 

 > summary(mod) 

 

  

       Df   Sum Sq  Mean Sq    F value Pr(>F) 

 Top          1 1.645e+09 1.645e+09   0.427  0.538 

 Mid          1 4.344e+05 4.344e+05   0.000  0.992 

 Bed          1 1.935e+08 1.935e+08   0.050  0.830 

 Residuals    6 2.311e+10 3.852e+09 
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Appendix 3: GAM model summaries (Chapter 3) 

 

summary(earlybiv.gam) 

 

Family: gaussian  

Link function: identity  

 

Formula: 

BivalvePropAbun_e ~ s(Temperature) + s(Salinity) + s(Density) +  

    s(EddyDiffusivity) 

 

Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 0.351843   0.005717   61.55   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Approximate significance of smooth terms: 

                     edf Ref.df      F  p-value     

s(Temperature)     8.680  8.940  5.942 3.96e-08 *** 

s(Salinity)        8.388  8.805  4.999 2.50e-06 *** 

s(Density)         9.000  9.000  8.342 3.38e-12 *** 

s(EddyDiffusivity) 8.461  8.885 10.995 1.45e-13 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

R-sq.(adj) =   0.17    

Deviance explained = 17.2% 

GCV = 346.57 

n = 1350 

 

 

summary(latebiv.gam) 

 

Family: gaussian  

Link function: identity  

 

Formula: 

BivalvePropAbun_l ~ s(Temperature) + s(Salinity) + s(Density) +  

    s(EddyDiffusivity) 

 

Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 0.350163   0.005306      66   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Approximate significance of smooth terms: 

                     edf Ref.df      F  p-value     

s(Temperature)     6.832  7.776  6.898 1.48e-08 *** 

s(Salinity)        3.334  4.109  0.503    0.728     

s(Density)         2.722  3.412  1.009    0.375     

s(EddyDiffusivity) 8.791  8.978 39.713  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

R-sq.(adj) =  0.239   

Deviance explained = 23.9% 

GCV = 290.52 

n = 1350 
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Appendix 4: ANOVA of the best fit linear mixed-effects model 

(sqrt(meandist) ~ ReleaseState*Season*Behaviour*method, 

random=~1|days, correlation=corAR1()) (Chapter 4) 

 

 
Num 

D.F 

DEN 

D.F. 
F-Value p-value 

Intercept 1 188 19.849 <0.0001 

State 3 188 0.02 0.996 

Season 1 188 1.322 0.252 

Behaviour 2 188 206.705 <0.001 

Distance metric 1 188 94.079 <0.001 

State : Season 3 188 0.403 0.751 

State : Behaviour 6 188 0.157 0.988 

Season : Behaviour 2 188 2.038 0.133 

State : Distance metric 3 188 0.19 0.903 

Season : Distance metric 1 188 1.712 0.192 

Behaviour : Distance metric 2 188 6.162 0.003 

State : Season : Behaviour 6 188 0.107 0.996 

State : Season : Distance metric 3 188 0.182 0.909 

State : Behaviour : Distance metric 6 188 0.109 0.995 

Season : Behaviour : Distance metric 2 188 0.219 0.803 

State : Season : Behaviour : Distance 

metric 
6 188 0.192 0.978 
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Appendix 5: Summary of the GAM log(RadialDistance + 1) ~ s(Days) + 

Behaviour + Season + TidalState (Chapter 4) 

 

Parametric 

Coefficients 

Estimate Std. Error T value Pr (>|t|) 

(Intercept) 3.318387    0.005069 654.54 <2e-16 *** 

Behaviourreveng -0.053756    0.004693   -11.45 <2e-16 *** 

Behaviourtvm 0.062178    0.004693    13.25 <2e-16 *** 

Seasonsummer    0.085295    0.003832    22.26 <2e-16 *** 

TidalStateflood 0.120265    0.005419   -22.19 <2e-16 *** 

TidalStatehw -0.085168    0.005419   -15.72 <2e-16 *** 

TidalStatelw -0.071867    0.005419   -13.26 <2e-16 *** 

 

 

 

 

Smooth 

Terms 

Edf Ref.df F p-value 

S(Days) 8.95 8.999 11815 <2e-16 *** 

Significance codes :  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
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Appendix 6: Summary of the GAM log(PathTravelled + 1) ~ s(Days) + 

Behaviour + Season + TidalState (Chapter 4) 

 

Parametric 

Coefficients 

Estimate Std. Error T value Pr (>|t|) 

(Intercept) 6.2108180    0.0029394 2112.935 <2e-16 *** 

Behaviourreveng -1.2002112 0.0027214 -441.03 <2e-16 *** 

Behaviourtvm -0.5749442 0.0027214 -221.269 <2e-16 *** 

Seasonsummer    0.0585558  0.0022220 26.353 <2e-16 *** 

TidalStateflood 0.187068 0.0031424 5.953 2.66e-09 *** 

TidalStatehw 0.0040826   0.0031424 1.229 0.194 

TidalStatelw 0.0005868 0.0031424 0.187 0.852 

 

Smooth 

Terms 

Edf Ref.df F p-value 

S(Days) 8.997 9 102768 <2e-16 *** 

Significance codes :  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05  

 

 

 

 

 

 

 

 

 


