The neural correlates of ongoing conscious thought

PII: S2589-0042(21)00100-0
DOI: https://doi.org/10.1016/j.isci.2021.102132
Reference: ISCI 102132
To appear in: ISCIENCE

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021
The neural correlates of ongoing conscious thought

Jonathan Smallwood1, Adam Turnbull1, Hao-ting Wang2, Nerissa S.P. Ho1, Giulia L. Poerio3, Theodoros Karapanagiotidis1, Delali Konu1, Brontë Mckeown, Meichao Zhang1, Charlotte Murphy4, Deniz Vatansever5, Danilo Bzdok6, Mahiko Konishi7, Robert Leech8, Paul Seli8, Jonathan W. Schooler9, Boris Bernhardt6, Daniel S. Margulies11 and Elizabeth Jefferies1.

Author affiliations

1 Department of Psychology / York Imaging centre, University of York, England.
2 University of Sussex, Brighton, England.
3 Department of Psychology, University of Essex, Colchester, England.
4 Department of Psychology, Cardiff University, Wales.
5 Fudan University, Shanghai, China.
6 Montreal Neurological Institute, McGill University, Montreal.
7 Laboratoire de Sciences Cognitives et de Psycholinguistique, Dept d’Etudes Cognitives, ENS, PSL University, EHESS, CNRS, Paris, France
8 Kings College, London, England.
9 Department of Psychology, duke University, Durham, North Carolina, USA.
10 Department of Psychological and Brain Sciences, University of California, Santa Barbara, California, USA.
11 Centre Nationale de la Recherche Scientifique, Institute du Cerveau et de la Moelle epiniere, Paris, France.

Address for correspondence: Jonathan Smallwood, email: smallwoodjmm@gmail.com

This research was supported by a European Research Council consolidator award to the first author (WANDERINGMINDS - 646927). EJ was supported by a European Research Council consolidator award (FLEXSEM – 771863).
Abstract
A core goal in cognitive neuroscience is identifying the physical substrates of the patterns of thought that occupy our daily lives. Contemporary views suggest that the landscape of ongoing experience is heterogeneous and can be influenced by features of both the person and the context. This perspective piece considers recent work that explicitly accounts for both the heterogeneity of the experience and context-dependence of patterns of ongoing thought. These studies reveal systems linked to attention and control are important for organising experience in response to changing environmental demands. These studies also establish a role of the default mode network beyond task-negative or purely episodic content, for example, implicating it in the level of vivid detail in experience in both task contexts and in spontaneous self-generated experiential states. Together this work demonstrates the landscape of ongoing thought is reflected in the activity of multiple neural systems and it is important to distinguish between processes contributing to how the experience unfolds from those linked to how these experiences are regulated.
Understanding the neural systems that support different patterns of thought is a long-term goal of cognitive neuroscience. However, the content of our thoughts and the form they take varies in a complex manner across people, places and time (Figure 1). Since humans have the capacity for introspection, it is possible to use the technique of self-report to gain insight into the heterogeneous structure of these different patterns of experience. This approach is referred to as the Experience Sampling (ES) method. Over the last decade, ES has become increasingly influential in the fields of psychology and cognitive neuroscience. This perspective piece considers recent work examining the neural correlates of ongoing experience, which account for both the content of ongoing thought and the way in which thought change depending on the situation we are in. These studies provide important evidence for the subtle context dependent nature of the correlation between neural function and cognition and highlights that some such neural systems such as the default mode network (DMN) play a much more general role in cognition than has been hitherto anticipated.

Before continuing this review, it is important to recognise that self-reports can be an unreliable way to characterise cognition, as they are subject to contextual, and motivational biases that the participants may themselves not recognise. Problems with the validity and reliability of self-reports limits the potential for experience sampling data to be useful as a tool for understanding cognition, and these inaccuracies can be quantified through a process of triangulation – an examination of the reliability of the correlations with replicable objective measures. Box 1 consider the challenges that introspection poses in understanding ongoing thought patterns, and how advances in neuroimaging and advanced statistical methods provide a number of strategies that can be helpful.

Content, form and situation as boundary conditions in understanding the neural correlates of ongoing experience

Ongoing thought patterns can vary substantially across person, place and situation (See top panel of Fig 1). Consequently, this section of this review considers how understanding the neural correlates of different thought patterns can be improved by (i) measuring multiple features of experience, and (ii) including a range of different situations.

Measuring the content and form of experience. Initial work linking ongoing experience to patterns of neural activity focused on specific states (e.g. off-task thought). By focusing on the neural correlates of experiential states, these studies have been useful in delineating the capacity to link patterns of reports to associated brain activity. However, by focusing on only a small number of dimensions of experience as these studies did, the mapping between observed patterns of neural activity and specific features of cognition can be ambiguous. For example, studies suggest off-task thoughts often have more personally relevant episodic content, than do on-tasks states especially when measured in the laboratory. Off-task states can also vary across individuals with respect to the degree to which they are deliberate, as well as in their focus on the future or the past. Other studies have shown that specific features of experience are most closely associated with task performance and physiological measures such as pupillometry. Dimensions of experience are also often correlated, for example,
with ‘intentional’ thoughts described as more future focused. At the same time features of experience that are assumed to be important, such as a sense of experiential dynamism, can be present in apparently opposing states (i.e. both task focused and task free).

Similar covariation between domains is seen in neural studies – for example there is similarity in the patterns of neural activity associated with experiences that are unrelated to the ongoing task and those referencing stimulus-independent features of mental content. Likewise, Christoff and colleagues found that regions showed a pattern of increased activity with off-task content that were often stronger when participants showed a relative absence of awareness of the contents of experience (often termed meta-awareness). Finally, Kuyci and colleagues demonstrated that numerous brain regions, including those within the DMN, were related to patterns of off task thought, but that these relationships were more consistently seen when behaviour was highly stable.

There is an emerging trend for researchers to explicitly address the covariation between multiple features, or dimensions, of experience by recording several features of experience at the same time. Once experience sampling data has been recorded, techniques like Principal Components Analysis (PCA), or cluster analysis (CA) can be used to provide compact low-dimensional representations of the self-reported data. These low dimensional representations can broadly be loosely considered to describe ‘pattern of thoughts’ that the participants reported during the study and can be represented as word clouds, where the polarity of the loading is indicated by the ink colour and the magnitude is indicated by the font size (bigger = more important). Figure 1 shows an example of dimensions calculated in this way from data recorded in three different situations in the behavioural lab, during neuroimaging and in daily life. It can be seen that dimensions produced in this manner produce word clouds with broadly similar features and studies have shown that they have robust correlations across time.

Measuring experience across situations. Simple brain-experience correlations within only a single task context may make it difficult to isolate features that are specific to the measurement context, with those that play a more general role in experience. For example, while elements of the default mode network have been linked to being ‘off-task’ in sustained attention and aversive situations linked to nociception, features of the default mode are also important for tasks such as reading. Accordingly, neural links with ongoing experience during reading are complex. For example, studies have shown that regions of the default mode network, such as the posterior cingulate cortex or the lateral temporal cortex, contribute to both better and worse focus on the task during reading, depending on their pattern of connectivity with other neural regions. If neural systems contributing to different types of thought patterns varies as a function of the task context, it will be likely that the functional implications of brain – cognition relationships will be mischaracterised if they are only sampled in a single task context.

Contemporary research, therefore, converges on the assumption that in order to fully characterise the role specific neural substrates plays in ongoing experience, it is necessary to sample more than one task environment. More generally, this observation has important for the generalizability of accounts of neural function. For
example, we found that individual variation in patterns of emotional thoughts shows the least generalizability between the laboratory and daily life and that both patterns of detailed and off-task thought are correlated across individuals and can show similarities in their relationship to grey matter architecture.15

\textbf{Summary.} Understanding the neural correlates of different patterns of thought requires both (1) the measurement of multiple aspects of ongoing experience at the same time, to control for complex relationships between different experiential features and (2) the assessment of experiences across a range of situations in order to isolate contextual influences from more general influences. With these issues in mind, we next consider recent studies exploring the neural basis of the experiential features of different thought patterns that use designs that involve these methodological features.

\textbf{Mapping the neural features of different ongoing thought patterns}

When participants perform a wide range of difficult external tasks they increase activity in a common set of distributed regions anchored in lateral parietal and frontal regions, which are often referred to as the task-positive or multiple demand network (MDN).32 In the lower panel of Figure 2, these ‘task-positive’ systems are represented in dark blue. In contrast, neural activity in a different set of regions decrease when tasks get harder, but often remains active in the absence of a task. This network includes a set of regions anchored by the posterior cingulate and medial prefrontal cortex and is known as the default mode network (DMN).33 The regions of the DMN are indicated in the lower panel of Figure 2 in red. Initial interpretations of the deactivation observed in the DMN focused on the possibility that it supports task-negative functions, e.g.34. However more recent studies suggest this system is important in certain active mental processes, particularly those linked to memory or social processes. Endel Tulving35 coined the term ‘mental time travel’ to describe the type of thinking that participants engage when they imagine the future or recall the past. Studies have confirmed a role for regions within the DMN in aspects of mental time travel (e.g.36), as well in tasks tapping both semantic37,38 and episodic memory39. More broadly, regions in the DMN is important when information in memory can guide external task decisions40-43. Importantly, applications of advanced machine learning to resting state functional connectivity have demonstrated that the DMN and MDN form two extremes of a neural hierarchy that is commonly assumed to represent how the brain responds to tasks which vary on their cognitive demands44. Generally, the MDN regions tend to increase when tasks are difficult, while the regions of the DMN often shows the opposite pattern of behaviour (i.e. reduces its level of activity).

\textbf{Beyond perception-action: the neural correlates of self-generated states}

Contemporary accounts of ongoing thought argue that attention toggles between modes of perceptually guided and self-generated thoughts over time.45 Consistent with this observation studies highlight a pattern of experience which is anchored at one extreme by a state of deliberate task focus and at the other by patterns of episodic social cognition (see the second column in Figure 2, and centre of main panel Figure 3). Figure 2 shows this pattern is broadly reproducible in studies in the lab and daily life15 and when the same task is performed in the scanner and in the laboratory.46
A series of studies explicitly explored neural activity associated with this dimension of experience. In one study, recruitment of neural activity in regions of lateral parietal cortex was observed when participants’ reports indicate a deliberate focus on task-relevant material (in blue, see right top brain Figure 2). Importantly, this pattern was equivalent in both an easy and a more demanding task context suggesting that these dorsolateral parietal regions are important in maintaining external task-relevant information regardless of the difficulty of the task. In contrast, when participants’ experience is dominated by episodic social features, increased neural recruitment is observed in regions of ventral medial prefrontal cortex (in red, see the left top brain, Figure 3). Prior research has confirmed activity in this cortical region during ‘off-task’ states.

It is clear from Figure 2 that in the context of sustained attention, task-related features of ongoing thought are related to parietal cortex, while the self-generated episodic content is related to regions in the DMN, in this case vMPFC. The middle panel of Figure 2 shows the resting state functional connectivity of the regions showing associations between states of task focus (blue) and episodic social cognition (red) from the relevant studies. It can be seen that these maps are largely non-overlapping and correspond to the two extremes of the task-positive hierarchy as characterised by a prior study. Together, therefore, these studies establish a correspondence between a dimension identified through experience sampling, reflecting trade-offs between internal and external domains, and a neural hierarchy that describes the brain’s response to increasing task demands.

In order to confirm the psychological features of ‘social episodic’ cognition, Ho and colleagues conducted an individual difference experiment that examined how variation in episodic and social aspects of thought is related to neural responses to stimuli with real world significance (faces and scenes) measured using fMRI. They found that individuals who tend to prioritise patterns of social episodic cognition under laboratory conditions, show greater activation in a region of lateral fusiform associated with face perception when viewing faces. This result is presented in the right panel of Figure 3 and provides confirmatory evidence that individuals prone to off-task thought show heightened neural sensitivity to person relevant stimuli. Since the term ‘person’ is dominant in this pattern of thought (see word cloud), this result provides converging neural and experiential support for the view that the off-task state can have important social features.

Immersive experience – a role for the DMN in more detailed patterns of ongoing thought.

As well as representing different types of experiential content (for example task relevant or episodic-social content), patterns of ongoing thought can also vary with respect to how immersive they feel. Analysis of the contents of ongoing thought provided by MDES show evidence of a pattern of immersive detailed thinking that is linked to task relevant processing in both the real world and in the lab (See top row in Figure 1). In the laboratory, this pattern is most prominent in executively demanding tasks.
Studies have linked states of detailed task relevant ongoing thought to neural activity in the DMN. For example, when participants perform tasks requiring the maintenance of spatial information in working memory, neural signals in this region contain information regarding patterns of detail thought during working memory maintenance. Moreover, whole brain analyses localised this pattern to the posterior cingulate cortex where greater neural activity is linked to task relevant thoughts with greater detail in a 1-back working memory context (See top panel Figure 3). An individual difference analysis established that individuals who have more detailed task relevant thoughts in the lab, show greater correlation between the DMN and regions of lateral visual cortex at rest. This suggests that patterns of detailed experience partly depend on co-ordination between the DMN and visual cortex. Together these data suggest that neural processes in the DMN, especially posterior regions, can be associated with more detail task-relevant thought. This pattern may be the subjective correlate of the observation that nodes within the DMN become more integrated with systems involved more directly in perception and action during more challenging working memory tasks. It may also be linked to the observation that the DMN can play a role in being “in the zone” during task performance. It is worth noting that collectively these lines of evidence are inconsistent with a role of the DMN as purely task-negative, or relevant to purely autobiographical content.

In order to fully understand the associations between detailed experience and neural signals within the DMN, it is important to establish whether a similar relationship extends beyond the context of cognitively-demanding working memory tasks. Prior task-based studies have shown that precise and vivid features of episodic memory are linked to regions of the default mode including both the angular gyrus and precuneus. Similarly, disruption of the angular gyrus via transcranial magnetic stimulation selectively impairs specific features of semantic retrieval. Building on these relationships, Murphy and colleagues examined neural activity during the act of self-reference in a group of individuals for whom we had pre-established their tendency to report different aspects of experience during sustained attention tasks within the laboratory. This study found individuals who report patterns of detailed task relevant thoughts in the lab, exhibited greater recruitment of posterior medial cortex during the act of self-reference (see middle panel in Figure 3).

Finally, it is important to determine whether there is any role for the DMN and patterns in detailed thoughts that are only loosely related to ongoing external tasks. To address this goal, Wang and colleagues used an advanced machine learning technique known as canonical correlation analysis (CCA, for a review see). CCA allows the simultaneous decomposition of data sets with different features, in this case performance trade-offs across a battery of cognitive tasks and patterns of individual variation in the functional architecture of individuals at rest. They found a pattern associated with better semantic performance (picture naming and category fluency) relative to executive control tasks (switching and digit span) was linked to a distributed pattern of connectivity that encompassed the posterior cingulate – a pattern consistent with a role of semantic processing in imagination. In a separate laboratory session, these individuals reported a pattern of self-generated mental time travel in the laboratory characterised by higher levels of detail. It can be seen in the word cloud in the lower panel of Figure 3 that the term “detailed” is associated with less task-relevant processing (the word “task” is coloured blue), whereas the terms
“detailed” and “task” both have similar loadings in the upper word cloud (and also in daily life see Figure 1). This indicates that the two patterns of experience both have detailed features, and both are linked to the posterior cingulate, yet are differentiated in terms of whether they are task relevant or not. Viewed together these data suggest a role for the posterior cingulate in detailed cognition that encompasses both internal and externally directed experiential states.

It is also possible that connections between the hippocampus and the posterior cingulate are important for the process that give rise to detailed experiences. A seed based functional connectivity study found that individual with greater connectivity between the hippocampus and the posterior cingulate reported patterns of more detailed thoughts in the laboratory. Furthermore, in an independent set of participants, greater cortical thickness in the anterior para hippocampus was linked to patterns of evolving detailed task focus in the laboratory and in daily life, supporting prior studies which show a role of the hippocampus in evolving thoughts. In healthy controls increased connectivity between the medial temporal lobe and posterior cingulate is linked to more extreme mind wandering, while this relationship is not observed in either fronto temporal dementia or Alzheimers disease. Finally, in Alzheimer’s disease dysregulation of the posterior cingulate cortex is linked to a lack of details in episodic thoughts.

Together these studies establish a role for regions of the DMN in patterns of detailed, evolving ongoing thought across a broad range of contexts, including complex tasks such as working memory, and spontaneous self-generated states. This suggests a role of the DMN that extends beyond either a simple task negative or a traditionally episodic view of this system’s functional contribution to cognition. Collectively our data suggest that the DMN, or at least the pCC, makes a broad contribution to ongoing experience that is generally related to how detailed, or, immersive experiences are. One hypothesis is that this role is made possible because the DMN is located at the apex of a cognitive hierarchy in humans, allowing it be involved in multiple different modes of operation. Moreover, the apparent role of the DMN in highly detailed experiences suggests it may help establish a sense of “presence” which is the subjective experience of being in one place or environment and that is assumed to be important in states of immersion in virtual environments. Consistent with this possibility, studies suggest that neural processes in regions of posterior cingulate cortex and hippocampus are important in our sense of where we are and of body ownership in virtual environments.

The maintenance and dynamics of ongoing thought patterns over time

One important feature of patterns of ongoing thought is that they are dynamic. As well as understanding how we are able to represent information relevant to both perceptually guided and self-generated thought patterns, it is important to understand the neural correlates of how we maintain these patterns over time, as well as to be able to flexibly switch between these states in an appropriate manner.

Regulating ongoing thought patterns in line with environmental demands
Studies suggest that the ability to stay on task during complex tasks is linked to better performance and that this may be mediated via executive control. On the other hand, studies have suggested that dispositional variation towards engaging in self-generated thought (such as daydreaming) are associated with tasks linked to better creativity problem solving. Likewise, periods of self-generated thinking are hypothesised to provide opportunities for making personal goals concrete. Consequently, since there may be benefits to both and internal and external focus, it has been proposed that adaptive cognition requires the ability to regulate patterns of thought to ensure that they are appropriate to the demands imposed by the external environment. This view is known as the context regulation hypothesis.

To test the context regulation hypothesis, Turnbull and colleagues measured neural activity while participants performed a task which alternated between blocks of low and high demands through the manipulation of working memory load. Under these conditions individuals generally maintain task focus during the harder blocks and engage in greater off-task episodic thought during the easier blocks. This difference is usually more pronounced for individuals who tend to perform well on cognitive measures that are thought to be associated with better control.

Turnbull and colleagues found that neural activity in a region of the left dorsolateral prefrontal cortex shows a pattern of greater neural activity when participants engaged in task focus during demanding external tasks and during greater off-task social episodic thought while individuals performed the easier task blocks (see Figure 4). This region is within the ventral attention network (VAN), as defined by Yeo and colleagues, and meta-analysis of its functions highlighted processes linked to “executive control.” Notably, lesions in this region are linked to problems regulating both internal and external cognition. Moreover, Turnbull and colleagues found that at rest the VAN shows greater correlation with a region of left motor cortex for individuals who showed a better ability to regulate their thoughts to ensure that they are compatible with environmental goals (i.e. who reported more on-task thought in more demanding tasks and more off-task thought when the task was easier). Together, these studies highlight a role for the VAN as important for prioritising patterns of ongoing thoughts that transcend a specific focus of attention (because this network was associated with both external and internal focus). Instead, this evidence is consistent with a role of this system in the alignment between a persons’ broader goals and the demands of the environment and thus may be important for stabilising salient cognitive states. Furthermore, the study highlights interactions between this system and regions linked to motor behaviour as one mechanism through which better context regulation is achieved. Consistent with this possibility, individuals describe off-task thoughts as more intentional during easy tasks, and more intentional off-task-thoughts are associated with greater functional connectivity with a similar region of motor cortex (shown in the lower right hand panel, Figure 4).

Intrinsically motivated changes in ongoing experience

As well as changing in a manner determined by environmental demands, patterns of ongoing thought also vary naturally with the passage of time. The neural basis of these intrinsic changes can be explored using two complementary methods. One approach is to exploit advanced machine learning methods that allows time varying neural data to be decomposed into state related patterns. Approaches such as...
hidden markov modelling (HMM) and other dynamic approaches have been argued to be important for understanding dynamic state like features of spontaneous thought. Karapanagiotidis and colleagues applied HMM to resting state data in a large cohort of participants for whom samples of experience had been recorded at the end of the scan. They found that states identified in this manner tend to fall towards the extreme end of one or more of the large-scale neural hierarchies. It can be seen in the top left panel of Figure 5 that the naturally occurring states (indicated by the coloured dots) fall outside of the distribution generated through permutation testing (indicated by the grey contours in the plot). Notably, the time that participants spent in two states had reliable multivariate associations with the experience sampling data collected at the end of the scan. These are presented in the middle top panel of Figure 5, showing both the neural organisation of the states and the associations with experience in the form of word clouds. Psychologically, these states corresponded to ‘unpleasant intrusive’ experiences as well as a pattern of ‘autobiographical planning’. Notably, these two states occupied opposing ends of the neural hierarchy describing the brain’s response to complex task demands, with states of planning resembling the patterns seen during complex task performance (see histogram in the top right panel).

A second method for understanding the dynamics of ongoing thought uses experience sampling to characterise how cognition changes with respect to time. Turnbull and colleagues examined the neural changes that emerged as time passes between moments of action during sustained attention tasks. Experience sampling was recorded concurrently with brain activity. They found that maps describing the regional impact of the passage of time were spatially correlated with the map describing the neural response to task demands (Gradient 3, lower panel Figure 1). This indicates that as time passed, task-positive regions tended to decrease in activity while regions in the DMN tended to increase. A conceptually similar pattern was observed when comparing neural maps derived from experience sampling studies which describe the difference between being on-task or thinking about self-generated social episodic information. It can be seen in the scatterplot in the lower left panel in Figure 5 that the spatial maps relating to time and attentional state occupy similar regions within the three-dimensional gradient space – regions increasing activity are located closer to the off-task state.

Summary. Studies examining dynamic properties of ongoing thought have revealed the influence of systems that help stabilise patterns of experience in line with the demands on cognition, as well as intrinsic influences that emerge with the passage of time. Importantly, these data highlight that it is likely to be an oversimplification to equate neural patterns linked to spontaneous thought as similar to neural motifs synonymous with easy or automatic situations, since (a) the occurrence of patterns of neural organisation normally seen during the performance of difficult tasks can also be linked to patterns of self-generated thoughts, albeit those with a relatively task like features (i.e. problem solving, deliberate and future focused, see Figure 5) and (b) regions of dorsolateral prefrontal cortex can play a role in prioritising both task relevant information and self-generated experience (see Figure 4).

Implications and future directions
The studies reviewed in this paper establish the complex role that neural processes play in patterns of ongoing thought. Critically, this review highlights the need for future studies to account for the heterogeneity of experiences using techniques such as MDES, which can capture multiple different features of experience. These rich data can be explored using data-driven methods to provide descriptions of different qualities of experience that provides a contrast to studies that focus on specific features of experience. For example, recent philosophical considerations of research on 'mind-wandering' suggests that there are epistemological problems with this construct as it is often operationalised and it is possible a data driven taxonomy could be useful when addressing relationships between mental autonomy and conscious experience. Furthermore, it is essential that future studies must seek to assess the psychological and neural correlates of different types of experiences across a broader range of task contexts. This review has shown that without measuring different task contexts, associations between neural systems and ongoing thought patterns can easily be mischaracterised. As well as providing clear criteria for future experimental work focused on understanding the neural correlates of ongoing experience, these studies also have general implications for understanding the role specific brain systems play in cognition.

Attention and control systems can play a broad role in the maintenance of goal states that extends beyond external tasks. Data considered in this review (see Figure 2) show that dorso lateral prefrontal cortex (dLFPC), a region embedded in the ventral attention network (VAN), plays a role in the expression of thoughts that they have apparently opposing content: DLPFC was associated with on task thoughts when external task demands are higher, and patterns of off-task social episodic thoughts when external task demands were lower. In contrast, regions of intra parietal sulcus (IPS), a member of the dorsal attention network (DAN), has a relationship with thought patterns that is more closely tied to the direction of attention. Activity in IPS was linked to external task focus in both easier and harder tasks. Both the dLPFC cortex and IPS are members of the so called ‘multiple demand network’ (MDN)\(^9\), and the contrasting associations these regions have with respect to ongoing thought patterns, suggest a novel way to fractionate this network. It is possible that dLPFC may play a more abstract role than IPS, since the former helps prioritise ongoing thought patterns regardless of whether they require an internal or external focus to attention. In contrast, IPS is apparently more closely tied to interacting directly with the outside world since its activity was only linked to thoughts related to an external task. Accordingly, patterns of increased activity in the MDN observed during difficult external tasks may reflect two types of processes. Regions such as IPS (and perhaps other regions of the DAN) may be engaged when attention is focused externally, while regions such as dLFPC (and perhaps other regions in the VAN) may be engaged when thoughts need to be prioritised in line with the agent’s current goal state. Notably this fractionation of the MDN system is anticipated by recent formulations of the neural basis of spontaneous thoughts\(^2\).

Furthermore, the existence of regions with a dedicated role in the maintenance of external task relevant input (e.g. IPS), raise the possibility that there may also be regions that exert a greater influence on internally represented content (e.g. memories). Regions including the posterior middle temporal gyrus (pMTG) and the inferior frontal gyrus (IFG) have been argued to be important in the selection of
memories in line with task demands, forming a network important for the process of semantic control91. These regions may exert influence on internally represented information because they are closely aligned functionally to elements of the default mode network than are other elements of the MDN91,92. These data raise the possibility that certain aspects of the brains executive control system may be relevant to influencing how memories contribute to ongoing thoughts. Important preliminary support for this idea comes from evidence that patterns of brain activity dominated by connections between the IFG and the angular gyrus (AG), are associated with reports that individuals spent their time at rest engaged thinking deliberate thoughts on a theme familiar to themselves38. Future studies could extend our understanding of this possibility by examining whether regions important for controlled retrieval of information from memory as part of an externally motivated task are also important for the support of patterns of self-generated thought with more controlled features.

The default mode network role in ongoing thought goes beyond task-negative or strictly autobiographical processes. Although studies show that regions of the medial prefrontal cortex can play an important role content related to off-task states during sustained attention27, they also show that the same system can contribute to task focus when reading30. The most direct evidence for the role of the DMN in both task related and spontaneous aspects of ongoing thoughts is in the contribution of the pCC to highly detailed patterns of thought (Figure 5). In particular, our analysis suggests that the pCC plays a general role in ongoing thought patterns - contributing to experiences with higher levels of detail across different tasks contexts and in spontaneous states. Since this occurred across multiple different contexts, including complex external tasks, this pattern is inconsistent with views on the DMN as facilitating purely automatic93, social94 or self-relevant95 processes. Instead, these results are consistent with the notion that certain regions of the default mode network play a role in ongoing experience that is linked to ‘how’ experiences emerge or unfold62, possibly reflecting a role of the DMN in supporting more integrated forms of cognition96. It will also be important determine the extent to which different thought patterns recruit the default mode network as a whole, or instead whether different mental states fractionate the ‘canonical’ default mode network, creating sub networks that are engaged in different types of cognitive state.
References

15. Ho, N. S. P. *et al.* Facing up to why the wandering mind: Patterns of off-task laboratory thought are associated with stronger neural recruitment of right fusiform cortex while processing facial stimuli. *NeuroImage*, 116765 (2020).

54 Murphy, C. *et al.* Hello, is that me you are looking for? A re-examination of the role of the DMN in off-task thought. *BioRxiv*, 612465 (2019).

66 McVay, J. C. & Kane, M. J. Drifting from slow to “d’oh!": Working memory capacity and mind wandering predict extreme reaction times and executive control errors.

85 Zanesco, A. P. Quantifying streams of thought during cognitive task performance using sequence analysis. (2020).

87 Turnbull, A. et al. Reductions in task positive neural systems occur with the passage of time and are associated with changes in ongoing thought. *Scientific reports* **10**, 1-10 (2020).

Display Items

Contextually variable

Idiosyncratic

Temporally dynamic

Experience Sampling Method (ESM)

Daily life

Behavior

Neural activity

Figure 1. Upper panel. Using Experience Sampling to understanding patterns of experience. Ongoing experience varies across people, places and time. Studies use experience sampling to gain better insight into the patterns of experience that are common in different individuals and in different situations, including in daily life. These can be related to objective behavioral and neural signatures recorded under laboratory conditions to help understand the neural contributions to different patterns of ongoing thought.

Lower panel. Consistency in the latent structure of thought patterns as revealed through the decomposition of multi-dimensional experience sampling (MDES) data. The left-hand panel shows the results of the application of the same decomposition algorithm (Principal Components Analysis, PCA) to sets of experience sampling questions recorded in different situations. It can be seen that this approach reveals similar structure in reports across situations and that this structure is correlated across individuals. In this figure the word clouds show the importance of the item through the font size (bigger = more important) and the direction of the association through the colour (warmer colours = positive, cooler colours = negative).
Figure 2. Neural regions dissociating external task focus and states of episodic social cognition reflect opposing ends of a task-positive hierarchy. Studies highlight regions which are active during external task focus (shown in blue) and during self-generated episodic social thought (shown in red) fall at opposing sides of a neural hierarchy that describes the brains response to external tasks. The top left panel shows greater neural activity within the ventral medial prefrontal cortex when individuals engage in social episodic thought 1. The top right panel shows regions of the intra parietal sulcus exhibiting greater activation when individuals are engaged in external task focus 2. The word clouds describe the experience patterns associated with each pattern of neural response. The middle and lower panel shows the functional connectivity of these two regions (coloured appropriately) and it can be seen that the distribution of these maps parallel a dimension in connectivity space which describes the brains response to increasing task demands from 3. The right-hand sub panel shows a region of lateral fusiform cortex that shows greater activity when viewing faces for individuals who were spent more time engaged in off task thought in a separate laboratory session.
Figure 3. Regions of posterior cingulate cortex are implicated in reports of vivid detailed thought across a range of states. The top panel (coloured blue) shows evidence of the role of the DMN, and in particular a region of posterior cingulate, in detailed task relevant cognition during working memory. In a study measuring neural activity in conjunction with subjective reports of ongoing thought patterns a region of posterior cingulate cortex was identified that exhibited a stronger positive association with reports of detailed task relevant experience during working memory than in a less demanding task variant 2. In an individual difference study in which participants performed a similar paradigm in the laboratory and brain activity was recorded at rest, individuals who reported high levels of external detail during task performance in the lab, exhibited greater functional connectivity between the default mode network and regions of visual cortex 4. The middle panel (coloured green) shows greater activity in regions of posterior cingulate cortex during self-reference for participants who maintained high levels of detail in a separate laboratory session 5. The lower panel (coloured red) shows the results of a canonical correlation analysis highlighting neural regions, including the posterior cingulate cortex, as linked to both expertise in semantic processing and patterns of ongoing thought characterised by vivid mental time travel. Note the different associations between the term “task” and “detail” in the upper and lower word clouds in this figure, which imply that these states share high levels of detail but differ with respect to whether they refer to detailed task relevant cognition, or detailed self-generated thought.
Figure 4. Studies have highlighted the role of the ventral attention network (VAN), and in particular region BA 9/46 in the dorsolateral pre-frontal cortex as important in regulating patterns of ongoing thought to ensure that they are appropriate given the demands imposed by the external environment. The left panel shows the neural correlates of context regulation. Activity within a region of left dorsolateral prefrontal cortex (shown in red) is associated with social-episodic thought when task demands are low, and task focus when task demands are higher. The middle panel shows the functional architecture supporting better context regulation. Individuals who show better alignment of cognition with task demands in the laboratory, show greater connectivity between the VAN (shown in purple) with a region of left motor cortex (shown in yellow) at rest. The lower right sub panel shows that a similar region of left motor cortex connectivity at rest is associated with greater levels of intentional mind-wandering that maybe the hallmark of more contextually regulated ongoing thought.
Figure 5. Dynamic features of ongoing experience reflect the role of task related hierarchies as an organizing framework for differentiating patterns of thought. Analysis of the distribution of naturally occurring neural states at rest show that these hidden states tend to cluster towards the extreme ends of each of three well-described neural hierarchies (unimodal-transmodal, visual-motor and task positive task negative). Top left panel shows that states identified using hidden markov modelling (HMM) tend to fall outside the region that corresponds to the distribution of synthetic states (indicated as contour plots and generated via permutation testing). The middle top panel shows the spatial motifs of two states identified that had multivariate associations with patterns of ongoing experience (displayed as word clouds). These broadly correspond to a state of unpleasant rumination and future planning. The histogram highlights that these states were differentiated along a connectivity gradient that resembles the effect of task demands on cognition (Gradient 3). It is also possible to explore the dynamics of ongoing thought using experience sampling in a task. States of on-task thought tend to decline over time and this phenomenon can be visualised by calculating the similarity in spatial maps that describe neural processes that changes with time during task performance and relating these to spatial maps which describe the difference between being on task or focused on social episodic states. These are presented in the lower middle panel of this figure. The lower right plot shows that both maps associated with being on task or engaged in social episodic thought occupy opposing sides of Gradient 3. Neural estimations of regions that change the most with time, occupy similar positions on the same dimension (regions that decrease the most are closer to the on-task state, while regions that increase the most with time are close to the social episodic patterns).
Box 1. Using neuroimaging in combination with experience sampling to overcome the limitations of introspection as a tool for probing experience.

There are a number of ways that advances in neuroimaging can help resolve issues linked to the problems of introspection as a scientific tool.

- **Triangulation between neural function and both state and trait measures of experience.** Experience sampling can be used to chart momentary differences in the focus of attention by intermittently probing individuals under different experimental conditions to determine patterns of momentary experience. However, patterns of experience can also be understood through their variation across a population as a dispositional trait. The possibility that spontaneous patterns can have trait like features means that aspects of neural activity at rest are likely to be related to features of an individuals’ cognitive or affective profile. When both trait and state like features of ongoing experience are combined with neural measures, the appropriate design can allow the evaluation of whether they both produce compatible conclusions. Figure 5 illustrates the results of such an approach. In one study, measures of functional organisation of neural function at rest were recorded in a large cohort of individuals. On subsequent days, the participants’ patterns of ongoing thought were recorded in the laboratory. Since neural function was recorded before experience sampling occurred, dispositional associations between experience sampling and neural activity should be minimally impacted by experience sampling. In a second study, neural activity was recorded at the same time that patterns of experience were recorded by self-report. Measuring experience at the same time as neural function is likely to be more accurate in identifying the neural correlates of momentary experience, yet more likely to biased by the act of introspection because both neural activity and self-report measures are acquired simultaneously. Both studies highlighted regions of the ventral attention network (VAN) as important in the process of regulating attention in line with the demands of the task. The convergence between the conclusion of a dispositional and momentary analysis increase our confidence in the claim that the VAN plays an important role in contextual regulation of ongoing thought.

- **Objective indicators of ongoing thought patterns.** In multiple areas of neuroscience, advanced machine learning techniques have been used to understand the relationship between activity and function. Machine learning methods have been used to infer neural patterns associated with the performance of different tasks and to discriminate features of perceptual content. They have also been used to show that attentional states fluctuate over time. Machine learning approaches could be leveraged to determine the occurrence of hidden thought patterns in a manner that is fully independent of self-report. It has already been shown that perceptual states can be decoded from neural patterns in visual cortex, and dream content can be decoded using the neural patterns that occur when participants are awake and view content with similar semantic features. Along similar lines, used machine learning to discriminate task-induced examples of autobiographical memories with positive and negative features, and demonstrated that these patterns can discriminate between spontaneously occurring examples of similar states. It is possible that these approaches could be fruitfully combined with approaches that use techniques like hidden markov modelling (HMM) or other ways of clustering data from fMRI or electroencephalograms to identify naturally-occurring states. As our knowledge of the different patterns of ongoing thought and their associated neural correlates develops, pattern learning approaches are likely to become an increasingly useful tool in measuring covert states in an objective manner.
References

