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Bayesian Hierarchical Models for Linear Networks

Zainab Al-kaabawia, Yinghui Weia, Rana Moyeeda

aCentre for Mathematical Sciences, School of Engineering, Computing and Mathematics, University of Plymouth,
PL4 8AA, UK

Abstract

The purpose of this study is to highlight dangerous motorways via estimating the intensity of acci-
dents and study its pattern across the UK motorway network. Two methods have been developed
to achieve this aim. First, the motorway-specific intensity is estimated by using a homogeneous
Poisson process. The heterogeneity across motorways is incorporated using two-level hierarchi-
cal models. The data structure is multilevel since each motorway consists of junctions that are
joined by grouped segments. In the second method, the segment-specific intensity is estimated.
The homogeneous Poisson process is used to model accident data within grouped segments but
heterogeneity across grouped segments is incorporated using three-level hierarchical models. A
Bayesian method via Markov Chain Monte Carlo is used to estimate the unknown parameters in
the models and the sensitivity to the choice of priors is assessed. The performance of the pro-
posed models is evaluated by a simulation study and an application to traffic accidents in 2016 on
the UK motorway network. The deviance information criterion (DIC) and the widely applicable
information criterion (WAIC) are employed to choose between models.

Keywords: Hierarchical Models, Bayesian methods, Linear networks, Point processes

1. Introduction

Traffic crashes have considerable impact on human, economics and the society. To improve road
safety, traffic accidents research often seeks to determine prediction methods of traffic accidents.
Traditional crash prediction models, such as generalized linear model, are widely used in traffic
safety studies. However, multilevel data structure is extensively existed due to technique used to
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collect or cluster traffic data [24]. Ignoring hierarchical nature of data may produce unreliable
estimates of model parameters and statistical inference. Hierarchical modelling is a statistical
approach that used to properly take account of multilevel data structure [19, 24]. Currently, hierar-
chical modelling has been employed in many research fields such as sociology, education, political
science and public health. Shankar et al (1998) showed that the explanatory power of crash models
had been improved when site-specific random effects and time indicator were incorporated into the
negative binomial regression model [44]. Jones and Jørgensen (2003) expounded and discussed
possible applications of hierarchical models in road traffic accidents in Norway [28]. The use
of hierarchical modelling technique to represent multilevel data structure in crash prediction has
been growing since then. In some research, hierarchical models were used to predict crash fre-
quency [39, 15, 37, 29, 34, 42, 26, 21] and in other research, hierarchical models were developed
to identify factors affecting crash severity [28, 32, 27]. In previous studies, models were proposed
to account for unobserved heterogeneity at the segment level, for example, hierarchical Bayesian
binary probit models[43], binary logit models [18], Bayesian multilevel Poisson-lognormal joint
models [5], multivariate hierarchical Poisson-lognormal spatial joint models [4], and grouped la-
tent class ordered probit models with class-probability functions[16]. In general, these models
accommodated the unobserved heterogeneity arising from the random effects terms, the possibil-
ity of systematic variations of unobserved groups across the highway segments or corridors which
consist of intersections and roadway segments. In our study, two-level and three-level Bayesian
hierarchical models are proposed to capture the unobserved heterogeneity by varying the accident
intensity across the motorways and motorway segments.

The motorway network is considered as a linear network and road accidents as a spatial point
pattern involving the spatial locations of accidents. A linear network L is defined as the union
L =

⋃n
i=1 `i of a finite collection of line segments `1, ..., `n in the plane [7]. The line segment in

the plane with endpoints u and v is given by [u, v] = {tu + (1 − t)v : 0 ≤ t ≤ 1}. For a point process
on a linear network, an intensity of points along the network is defined as the expected number of
points per unit length of network [8].

The novelty of this work is to estimate the intensity function of accidents and study its pattern
across the UK motorway network using a Bayesian approach. We proposed hierarchical models to
estimate the motorway-specific and segment-specific accidents intensities. In a two-level model,
the intensity of accidents was considered homogeneous across segments within each motorway,
but was inhomogeneous across motorways. Each motorway consists of junctions that are joined by
grouped segments. The intensity of accidents may be inhomogeneous across grouped segments.
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Thus, ignoring the between grouped segments heterogeneity may underestimate the standard er-
ror of the accident intensity. In a three-level model, the intensity of accidents was considered
homogeneous within grouped segments, but was inhomogeneous among grouped segments and
motorways.

2. Description of Data

The accident data are obtained from the Department for Transport in Great Britain [1]. A STATS19
reporting form was used to record accident on the road network by police officers. This form gives
details about accident circumstances such as road and weather conditions, time and location of
accident, the driver’s behaviour and the vehicles involved in a road accident. The traffic accident
is registered as the sample point for each link of road in the road network. The road network
consists of individual road sections that are segmented in junction to junction link , with different
lengths. For this study, the unit of measurement for length is a kilometer. Segments are grouped
according count point locations existing on Great Britain’s motorway network. In these count
points, “traffic estimates are calculated for each link of Great Britain’s motorway network, with
links’ start and end points defined as where the link joins a motorway junction [2, 3]. Each link
has a uniquely referenced Count Point (CP), where the traffic is usually counted by enumerators”
[2]. There are 51 motorways in the UK and data are recorded on 49 motorways by STATS19. The
hierarchical structure of data in this study is shown in Figure 1.
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Motorway Network

M1 M2 M3 ... M621 M876 M898

(a) Two-level hierarchical model

Motorway Network

M1

M1GS1 ... M1GS83

M2

M2GS1 ... M2GS14

M3

M3GS1 ... M3GS22

...

...

M621

M621GS1 ...M621GS12

M876

M876GS1 ... M876GS8

M898

M898GS1

(b) Three-level hierarchical model

Figure 1: The hierarchical structure of UK motorway network in 2016. Mi denotes motorway i. M1GS1 represents the
first grouped segments on M1; M1GS83 represents the eighty third grouped segments on M1 and so on for the rest of
the symbols of grouped segments for other motorways. The grouped segments are links joining motorway junctions
and they are grouped to incorporate the heterogeneity of the accident intensity across them [2].

Table 1 shows the descriptive statistics for the accident data in 2016 for 49 motorways in the UK.
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Motorway Length of motorway (in Kilometers) Number of accidents Number of grouped segments

M1 304.50 593 83

M2 39.39 53 14

M3 95.89 188 22

M4 299.84 475 80

M5 256.22 263 52

M6 366.76 637 90

M8 87.85 163 51

M9 52.60 25 18

M11 80.41 130 17

M18 45.25 48 13

M20 79.54 153 18

M23 26.59 34 7

M25 181.52 657 48

M26 15.46 15 2

M27 47.86 151 24

M32 6.87 17 6

M40 140.21 179 33

M42 64.93 88 21

M45 12.39 3 3

M48 19.30 6 5

M49 8.30 1 3

M50 33.19 5 8

M53 32.21 31 17

M54 35.90 12 13

M55 19.90 19 5

M56 57.89 72 30

M57 16.48 22 11

M58 18.95 7 10

M60 56.75 72 40

M61 36.50 50 12

M62 154.90 253 48

M65 41.88 71 19

M66 13.64 15 8

M67 7.53 4 4

M69 26.18 23 5

M73 11.23 10 8

M74 141.30 55 54

M77 28.93 17 22

M80 41.67 38 33

M90 49.32 23 16

M180 39.68 13 6

M181 3.78 2 1

M271 3.74 8 4

M275 3.98 12 5

M602 6.37 7 2

M606 4.03 14 3

M621 15.05 35 12

M876 11.89 11 8

M898 1.38 2 1

Table 1: Descriptive statistics for accident data on the UK motorways in 2016. The length of motorway is in kilometer.
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3. Models

3.1. Two-level Bayesian Hierarchical Model (Model 1)

3.1.1. Model Definition

Let m denote the total number of motorways. The number of accidents ni on the motorway i (i =

1, ...,m) follows a Poisson distribution with mean λiLi where Li represents the length of motorway
i and λi is the accident intensity on the motorway i per unit length. Here λiLi is the expected
number of accidents on the motorway i and it can vary from one motorway to another because
each motorway could have different conditions and features. Let αi = log λi denote the log-
intensity function and assume it follows a normal distribution N

(
α, τ2

)
. The two-level hierarchical

model for traffic accidents is given below,

ni ∼ Pois(λiLi), i = 1, ...,m,

αi ∼ N(α, τ2). (1)

Here α is the overall log-intensity and τ2 is the between-motorway variance. In this model, we
assume that each accident’s location follows a uniform distribution on interval (0, Li).

3.1.2. Likelihood Function

Let N = {ni, i = 1, ...,m} represent the accident count and Θ =
{
α1, α2, ..., αm;α; τ2

}
the parameters

in the two-level hierarchical model. The likelihood for the two-level hierarchical model is given
by,

L (N|Θ) ∝
m∏

i=1

exp
(
niαi − Li exp (αi)

)
×

m∏
i=1

1
√

2πτ2
exp

(
−

(αi − α)2

2τ2

)
. (2)

3.1.3. Prior Distribution

The specification of the prior distribution depends on available information about unknown param-
eters. The strategy for specifying prior distributions for the parameters in the hierarchical model
includes conjugate, vague and weakly-informative priors. Where possible, conjugate priors are
used to ensure that the conditional distributions are of closed forms to ease the simulation; other-
wise, we specify non-conjugate priors. In either cases, we specify the values of parameters to have
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large variances for vague or non-informative priors, and make use of pre-existing data to construct
informative priors. For α, a conjugate normal prior N

(
µ0, σ

2
0

)
is assigned. We used a conju-

gate inverse gamma prior with a shape parameter α0 and rate parameter β0 for τ2. Alternatively,
we specify a uniform prior unif (0, a), with a > 0, for the between-motorway standard deviation

τ [31]. Another choice of prior is a half-normal distribution HN (θ) for τ, where θ =

√
π

σ
√

2
and

σ > 0 as detailed in [30].

3.1.4. Posterior Distribution

Posterior if the prior distribution on τ2 is an inverse gamma distribution
The posterior distribution is the product of the likelihood and the prior distribution. Therefore, the
joint posterior density function for the parameters given the observed data is

π(Θ|N) =

m∏
i=1

exp
(
niαi − Li exp (αi)

)
×

m∏
i=1

1
√

2πτ2
exp

(
−

(αi − α)2

2τ2

)
×

1√
2πσ2

0

exp
(
−

(α − µ0)2

2σ2
0

)
×

βα0
0

Γ(α0)

(
τ2

)−α0−1
exp

(
−β0/τ

2
)
. (3)

The conditional posterior distribution of αi is given by,

π
(
αi|α, τ

2,N
)
∝ exp

(
niαi − Li exp (αi)

)
× exp

(
−

(αi − α)2

2τ2

)
. (4)

The conditional posterior distribution of α is a normal distribution N
(
µα, σ

2
α

)
with mean and vari-

ance respectively given below,

µα =

∑m
i=1 αi

τ2 +
µ0

σ2
0

m
τ2 +

1
σ2

0

and σ2
α =

1
m
τ2 +

1
σ2

0

. (5)

The conditional posterior distribution of τ2 is given by,

π(τ2|α;α1, ...αm; N) ∝
(
τ2

)−(α0 +
m
2

) − 1
exp

−
β0 +

∑m
i=1 (αi − α)2

2
τ2

 . (6)
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Hence, τ2 has an inverse gamma distribution with shape α0 +
m
2

and rate β0 +

∑m
i=1(αi − α)2

2
.

Posterior if the prior distribution on τ is a uniform distribution
The joint posterior density is

π(Θ|N) ∝
m∏

i=1

exp
(
niαi − Li exp (αi)

)
×

m∏
i=1

1
√

2πτ2
exp

(
−

(αi − α)2

2τ2

)
×

1√
2πσ2

0

exp
(
−

(α − µ0)2

2σ2
0

)
. (7)

The conditional posterior distributions of αi (i = 1, ...,m) and α are given in (4) and (5). The
conditional posterior density of τ is given by,

π(τ|α;α1, ..., αm; N) ∝
(

1
√

2πτ2

)m

exp

− m∑
i=1

(αi − α)2

2τ2

 . (8)

Posterior if the prior distribution on τ is a half-normal distribution (HN) with parameter θ
The joint posterior distribution is

π(Θ|N) =

m∏
i=1

exp
(
niαi − Li exp (αi)

)
×

m∏
i=1

1
√

2πτ2
exp

(
−

(αi − α)2

2τ2

)
×

1√
2πσ2

0

exp
(
−

(α − µ0)2

2σ2
0

)
×

2θ
π

exp
(
−
τ2θ2

π

)
. (9)

The conditional posterior distributions of αi (i = 1, ...,m) and α are the same as in equations (4)
and (5). The conditional posterior distribution of τ is

π(τ|α;α1..., αm; N) ∝ τ−m exp

− m∑
i=1

(αi − α)2

2τ2 −
τ2θ2

π

 . (10)

3.1.5. Estimation

In equations (5) and (6), the conditional posterior distributions of α and τ2 given other parameters
have a known form, but the conditional posterior distributions of αi (i = 1, ...,m) in equation (4)
do not have known forms. Therefore, the Metropolis-Hastings within Gibbs sampler is used to
simulate the Markov chains of αi (i = 1, ...,m), α and τ2. A new value άi is simulated from a
proposal distribution q1(άi, α

(t−1)
i ), which is the normal distribution with mean equalling to current
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value α(t−1)
i and the variance is chosen such that an acceptance rate of άi is between 0.24 and 0.40

[20]. The proposed value is accepted with the probability

r1(α(t−1)
i , άi) = min

 π
(
άi|α

(t−1), τ2(t−1)
)

q1

(
α(t−1)

i , άi

)
π
(
α(t−1)

i |α(t−1), τ2(t−1)
)

q1

(
άi, α

(t−1)
i

) , 1
 . (11)

If the proposed value is rejected, and the current value is taken as the next value in the Markov
chain.

The uniform prior distribution on τ leads to the conditional posterior distribution of τ as given in
equation (8). This posterior distribution does not have a closed form, therefore, the Metropolis-
Hastings sampler is used. The two steps are defined as follows. Firstly, we draw a proposed value,
τ́, from the proposal distribution q2

(
τ́, τ(t−1)

)
, which is a normal distribution with mean equal to

the current value τ(t−1). Secondly, the proposed value is accepted with the probability

r2(τ(t−1), τ́) = min

 π
(
τ́|α(t), α(t)

1 , ..., α
(t)
m

)
q2

(
τ(t−1), τ́

)
π
(
τ(t−1)|α(t), α(t)

1 , ..., α
(t)
m

)
q2

(
τ́, τ(t−1)) , 1

 . (12)

The conditional posterior distribution for τ in equation (10) is produced by using a half-normal
prior distribution and does not have a closed form. Therefore, the Metropolis-Hastings sampler is
used to simulate τ. This sampler includes generating the proposed value τ́ from the proposal dis-
tribution q2

(
τ́, τ(t−1)

)
and the proposed value is accepted with the probability r2

(
τ(t−1), τ́

)
described

in equation (12). The proposal distribution q2

(
., τ(t−1))

)
is a normal distribution with current state

τ(t−1) as the mean.

3.2. Two-level Frequentist Hierarchical Method (Model 2)

In this section, we describe a two-stage approach to modelling the accident data on the UK motor-
way network using the frequentist method. In stage one, we used the maximum likelihood method
to estimate the log-intensity function yi and the corresponding standard deviation σi. In stage
two, the estimated log-intensity functions are combined across motorways to produce an overall
estimate. The model can be formulated as follows,

yi ∼ N(αi, σ
2
i ),

αi ∼ N(α, τ2). (13)
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Here yi represents the estimated intensity at the log scale for motorway i, αi represents the random
effects for the log-intensity and σ2

i is the within-motorway variance corresponding to yi; α is
the overall intensity at the log scale and τ2 represents the between-motorway heterogeneity. The
marginal distribution of each estimated log-intensity yi is a normal distribution with mean α and
variance

(
σ2

i + τ2
)−1

[22]. Hence the contribution of motorway i to the likelihood for α and τ2 is
given by,

Li

(
α, τ2|yi, σ

2
i

)
=

1√
2π

(
σ2

i + τ2
) exp

− (
yi − α

)2

2
(
σ2

i + τ2
) . (14)

For m independent motorways, the likelihood is given by the product of the individual motorway
likelihoods as follows,

L
(
α, τ2|y, σ2

)
=

m∏
i=1

1√
2π

(
σ2

i + τ2
) exp

− (
yi − α

)2

2
(
σ2

i + τ2
) . (15)

3.3. Three-level Bayesian Hierarchical Model (Model 3)

3.3.1. Model Definition

In the three-level hierarchical model, the number of accidents within grouped segments follows a
homogeneous process but a non-homogeneous process across grouped segments and motorways.
Let m denote the total number of motorways and si (i = 1, ...,m) the number of grouped segments
for each motorway i. Suppose that the intensity of accidents per kilometer is λi j (i = 1, ...,m ; j =

1, ..., si), where i is the index of motorway and j is the index of grouped segments. The number
of accidents ni j on each grouped segments follows a Poisson distribution with mean λi jLi j, where
Li j represents the length (in kilometer) of the grouped segments j on motorway i. Let αi j = log λi j

denote the log-intensity function. The three-level hierarchical model is given below,

ni j ∼ Pois
(
λi jLi j

)
, i = 1, ...,m; j = 1, .., si,

αi j ∼ N
(
αi, τ

2
i

)
,

αi ∼ N(α, τ2). (16)

The second level includes the log-intensity of accidents, αi j, on each grouped segments and the
log-intensity of accidents, αi, on each motorway as well as the between grouped segments het-
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erogeneity, τ2
i . The third level includes the overall log-intensity of accidents α and the between-

motorway heterogeneity, τ2. The intensity of accidents is constant on grouped segments that have
the same mark, but it varies across grouped segments and motorways.

3.3.2. Likelihood Function

Let Θ3 denote model parameters
{
α11, ..., αmsm;α1, ..., αm; τ2

1, ..., τ
2
m;α; τ2

}
in the three-level hier-

archical model. Let γ denote the log-intensity of accidents on grouped segments
{
α11, ..., αmsm

}
,

α = {α1, ..., αm} and τ2 =
{
τ2

1, ..., τ
2
m

}
. It is assumed that the accidents are uniformly distributed

within grouped segments.

The likelihood function for the proposed three-level hierarchical model is given by,

L (N|Θ3) = P (N|γ) × P
(
γ|α, τ2

)
× P

(
α|α, τ2

)
∝

m∏
i=1

si∏
j=1

exp
(
ni jαi j − Li j exp

(
αi j

))

×

m∏
i=1

si∏
j=1

1√
2πτ2

i

exp

−
(
αi j − αi

)2

2τ2
i

 × m∏
i=1

1
√

2πτ2
exp

(
−

(αi − α)2

2τ2

)
. (17)

3.3.3. Posterior Distribution

The same prior distributions for α and τ2 as the ones described in section 3.1.3 are considered.

Posterior if the prior distribution on τ2 is an inverse gamma distribution with shape a0 and
scale b0

A joint posterior distribution for parameters Θ3 is given by,

π (Θ3|N) ∝
m∏

i=1

si∏
j=1

exp
(
ni jαi j − Li j exp

(
αi j

))
×

m∏
i=1

si∏
j=1

1√
2πτ2

i

exp

−
(
αi j − αi

)2

2τ2
i


×

m∏
i=1

1
√

2πτ2
exp

(
−

(αi − α)2

2τ2

)
×

m∏
i=1

ba0
0

Γ(a0)

(
τ2

i

)−a0−1
exp

(
−b0

τ2
i

)
×

1√
2πσ2

0

exp
(
− (α − µ0)2

2σ2
0

)
×

βα0
0

Γ(α0)

(
τ2

)−α0−1
exp

(
−β0

τ2

)
. (18)
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The conditional posterior distribution of αi j is given by,

π
(
αi j|α, τ

2,N
)
∝ exp

(
ni jαi j − Li j exp

(
αi j

))
exp

−
(
αi j − αi

)2

2τ2
i

 . (19)

The conditional posterior distribution of αi is a normal distribution N(µαi , σ
2
αi

) with mean and
variance:

µαi =

∑si
j=1 αi j

τ2
i

+
α

τ2

si

τ2
i

+
1
τ2

and σ2
αi

=
1

si

τ2
i

+
1
τ2

. (20)

The conditional posterior distribution of τ2
i is given by,

τ2
i ∼ Inv-Gamma

 si

2
+ a0,

si∑
j=1

(
αi j − αi

)2

2
+ b0

 . (21)

The conditional posterior distribution of α is a N(µα, σ2
α) with mean and variance respectively

given below,

µα =

∑m
i=1 αi

τ2 +
µ0

σ2
0

m
τ2 +

1
σ2

0

and σ2
α =

1
m
τ2 +

1
σ2

0

. (22)

The conditional posterior distribution of τ2 is given by,

τ2 ∼ Inv-Gamma
(
m
2

+ α0,

∑m
i=1 (αi − α)2

2
+ β0

)
. (23)
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Posterior if the prior distribution on τ is a uniform distribution
The probability density function of the uniform prior distribution on τ is constant, so it does not
appear in the joint posterior distribution. Hence, the joint posterior distribution is given by,

π (Θ3|N) ∝
m∏

i=1

si∏
j=1

exp
(
ni jαi j − Li j exp

(
αi j

))
×

m∏
i=1

si∏
j=1

1√
2πτ2

i

exp

−
(
αi j − αi

)2

2τ2
i


×

m∏
i=1

1
√

2πτ2
exp

(
−

(αi − α)2

2τ2

)
×

m∏
i=1

ba0
0

Γ(a0)

(
τ2

i

)−a0−1
exp

(
−b0

τ2
i

)
×

1√
2πσ2

0

exp
(
− (α − µ0)2

2σ2
0

)
. (24)

The conditional posterior distributions of αi j, αi, τ2
i (i = 1, ...,m; j = 1, ..., si) and α are the same

in equations (19)-(22). The conditional posterior distribution of τ is given by,

π(τ|α, α,N) ∝
(

1
√

2πτ2

)m

exp

− m∑
i=1

(αi − α)2

2τ2

 . (25)

Posterior if the prior distribution on τ is a half-normal (HN) distribution with parameter θ
If we use HN(θ) as the prior for τ, the joint posterior distribution is given by,

π (Θ3|N) ∝
m∏

i=1

si∏
j=1

exp
(
ni jαi j − Li j exp

(
αi j

))

×

m∏
i=1

si∏
j=1

1√
2πτ2

i

exp

−
(
αi j − αi

)2

2τ2
i

 × m∏
i=1

1
√

2πτ2
exp

(
−

(αi − α)2

2τ2

)

×

m∏
i=1

ba0
0

Γ(a0)

(
τ2

i

)−a0−1
exp

(
−b0

τ2
i

)
×

1√
2πσ2

0

exp
(
− (α − µ0)2

2σ2
0

)

×
2θ
π

exp
(
−
τ2θ2

π

)
. (26)

The conditional posterior distributions of αi j, αi, τ2
i , (i = 1, ...,m; j = 1, ..., si) and α are the same

in equations (19)-(22). The conditional posterior distribution of τ is given by,

π(τ|α, α,N) ∝ τ−m exp

− m∑
i=1

(αi − α)2

2τ2 −
τ2θ2

π

 . (27)
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3.3.4. Estimation

Bayesian estimation of the three-level hierarchical model is performed using Metropolis-Hastings
within Gibbs sampler. We generate random samples from conditional posterior distributions of α,
αi, τ2 and τ2

i (i = 1, ...,m), respectively. Conditional posterior distributions of αi j, (i = 1, ...,m; j =

1, ..., si) are not of closed forms. In this case, the Metropolis-Hasting algorithm is used. Normal
proposal distributions are specified for αi j, (i = 1, ...,m; j = 1, ..., si) with mean α(t−1)

i j and variance
σ2

i j, where t (t = 1, ...,M) is the iteration index. The variance σ2
i j is chosen such that an acceptance

rate is between 0.24 and 0.40) [20].

A value άi j generated from the proposal distribution q1

(
άi j, α

(t−1)
i j

)
is accepted with probability

r1(α(t−1)
i j , άi j) = min

 π
(
άi j|α

(t−1)
i , τ2(t−1)

i

)
q1

(
α(t−1)

i j , άi j

)
π
(
α(t−1)

i j |α
(t−1)
i , τ2(t−1)

i

)
q1

(
άi j, α

(t−1)
i j

) , 1
 . (28)

A new value τ́ is generated from a proposal distribution q2(τ́, τ(t−1)), which is a normal distribution
with mean equalling to current value τ(t−1). The new value τ́ is accepted with probability

r2(τ(t−1), τ́) = min

 π
(
τ́|α(t), α(t)

1 , ..., α
(t)
m

)
q2

(
τ(t−1), τ́

)
π
(
τ(t−1)|α(t), α(t)

1 , ..., α
(t)
m

)
q2

(
τ́, τ(t−1)) , 1

 . (29)

3.4. Three-level Frequentist Hierarchical Method (Model 4)

The maximum likelihood estimation is used in three stages to estimate the model parameters (16).
In stage one, the log-intensity of accidents αi j is estimated for each grouped segments where the
relevant part of likelihood function in equation (17) is used,

Li j

(
αi j; N

)
= exp

(
ni jαi j − Li j exp

(
αi j

))
. (30)

The log-likelihood function is

`i j

(
αi j; N

)
= ni jαi j − Li j exp

(
αi j

)
. (31)
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The maximum likelihood estimate (M.L.E.) of αi j is given by,

α̂i j = log ni j − log Li j. (32)

To calculate the standard error of α̂i j, we use the Fisher information matrix I(α̂i j), which is a scalar
containing the entry

I(α̂i j) = −E
[
H

(
α̂i j

)]
= −E

∂2`i j

∂α2
i j

 = Li j exp
(
αi j

)
, (33)

where H
(
α̂i j

)
represents the Hessian matrix. The square root of the inverse of the Fisher informa-

tion scalar is an estimator of the standard error for αi j

S E
(
α̂i j

)
=

√
I−1(α̂i j) =

(
Li j exp

(
αi j

))− 1
2
. (34)

In stage two, the log-intensity of accidents αi ( i = 1, ...,m) is estimated for each motorway. Here,
the point estimates α̂i j, (i = 1, ...,m; j = 1, ..., ni) are substituted in the likelihood function in
equation (17). The relevant part of the likelihood function is given by,

Li

(
α, τ2; γ̂

)
=

m∏
i=1

si∏
j=1

1√
2πτ2

i

exp

−
(
α̂i j − αi

)2

2τ2
i

 . (35)

The log-likelihood function is

`i

(
α, τ2; γ̂

)
=

m∑
i=1

− si

2
log τ2

i −

∑si
j=1

(
α̂i j − αi

)2

2τ2
i

 . (36)

The maximum likelihood estimates α̂i and τ̂2
i are respectively given by,

α̂i =

∑si
j=1 α̂i j

si
and τ̂2

i =

∑si
j=1

(
α̂i j − α̂i

)2

si
. (37)
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To obtain the standard errors of α̂i and τ̂2
i , we use the Fisher information matrix as follows,

I
(
α̂i, τ̂

2
i

)
= −E

[
H

(
α̂i, τ̂

2
i

)]
= −E


∂2`i

∂α2
i

∂2`i

∂αi∂τ
2
i

∂2`i

∂τ2
i ∂αi

∂2`i

∂(τ2
i )2

 =


si

τ2
i

0

0
si

2τ4
i

 , (38)

where H
(
α̂i, τ̂

2
i

)
represents the Hessian matrix. The inverse of the Fisher information matrix is

given by,

I−1
(
α̂i, τ̂

2
i

)
=


τ2

i

si
0

0
2τ4

i

si

 . (39)

The standard errors of α̂i and τ̂2
i are the square root of diagonal elements in (29), and hence are

given by,

S E (α̂i) =

√
τ2

i

si
. (40)

S E
(
τ̂2

i

)
=

√
2τ4

i

si
. (41)

In stage three, α and τ2 are estimated by maximising the following likelihood,

L(α, τ2; α̂i) =

m∏
i=1

1
√

2πτ2
exp

{
−

(α̂i − α)2

2τ2

}
. (42)

The estimated values α̂i and S E (α̂i) are used as data in (42).

4. Application to UK Motorway Accident Data

Non-informative and weakly informative prior distributions
A non-informative prior distribution reflects the lack of prior information about a parameter [33].
A conjugate prior could be non-informative, such as Inv-Gamma(0.001, 0.001) or weakly-informative,
such as Inv-Gamma(0.1, 0.1) for τ2. As a sensitivity analysis, we use the uniform prior unif(0, 100)
and a half-normal prior distribution HN (0.14) for τ, both are non-informative priors on τ [46, 31].
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We used Inv-Gamma(0.001, 0.001) as prior for τ2
i (i = 1, ...,m). Finally, a non-informative normal

prior distribution was used with mean µ0 = 0 and variance σ2
0 = 100 for α.

Informative prior distributions
An informative prior describes specific pre-existing information about parameter [33]. The max-
imum likelihood estimates of τ2 and α and their standard errors of traffic accident data from an
earlier year (e.g. 2015) will be used to specify the informative priors in the Bayesian analysis of
accident data in the subsequent year. More specifically, the parameters for inverse gamma prior
are calculated from solving the following equation:

E
(
τ2

)
=
α0

β0
= τ̂2

ML,

var
(
τ2

)
=
α0

β2
0

= var(τ̂2
ML), (43)

where τ̂2
ML is the maximum likelihood estimate, 0.3162 and var(τ̂2

ML) is the variance of τ̂2
ML,

(0.0738)2, both are obtained from analysing the UK motorways accident data in 2015. Solving
the equations in (43), we obtain α0 = 18.36 and β0 = 58.06. Thus, the informative prior for τ2 is
Inv-Gamma(18.36, 58.06). Similarly, µ0 = −6.65 and σ2

0 = 0.092.

Results
Both two-level and three-level hierarchical models are used to analyse the observed accident data
in 2016 for the UK motorways. Model parameters include the overall log-intensity of traffic
accidents α, and the between-motorway standard deviation, τ. The MCMC simulation requires
specifying starting points for the parameters. The initial values 0 and 0.1 are specified for α and
τ, respectively. The MCMC algorithm was run on the two-level hierarchical model for 100,000
iterations with a burn-in period of 10,000 and a thinning interval of 10; and on the three-level
hierarchical model, 500,000 iterations with a burn-in period of 50,000 and a thinning interval of
100. The number of iterations of the MCMC is different between the two-level and three-level
hierarchical models to ensure convergence to the posterior distributions.

Table 2 shows that the two-level Bayesian hierarchical model with different priors gives similar
estimates of both the parameters α and τ and their standard deviations as well as their credible
intervals. This indicates that the estimates of the model parameters are robust to the choice of prior.
The estimated α and τ using the maximum likelihood estimation are similar to those from two-level
Bayesian hierarchical model. Under the three-level Bayesian hierarchical model, the posterior
mean, standard deviation and 95% credible interval for α and τ are similar when non-informative

17



and weakly-informative prior distributions are used. The width of the credible interval of α based
on the Bayesian method with an informative prior is narrower than the one estimated with non-
informative and weakly-informative priors. In addition, the standard deviation for α̂ based on
the Bayesian method with informative priors is smaller than that based on the Bayesian method
with other priors. The estimated α and τ are similar between the frequentist and the Bayesian
approaches, although the standard deviations are, in general, slightly smaller in the frequentist
approach (see table 2), as expected.
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Table 3 shows the estimated overall intensity of accidents per one kilometer. It is clear that results
for λ from the three-level Bayesian hierarchical model are similar, except for the informative prior
where λ is greater, but close to the estimate from the frequentist method. The two-level Bayesian
hierarchical model produces similar results under non-informative and weakly-informative priors
of τ.

Methods Two-level hierarchical model Three-level hierarchical model

Prior distribution Point estimate 95% CI Point estimate 95% CI

Bayesian τ2 ∼ Inv-Gamma(0.001, 0.001) 1.09 (0.90, 1.31) 0.98 (0.79, 1.22)

τ2 ∼ Inv-Gamma(0.1, 0.1) 1.05 (0.85, 1.29) 0.98 (0.79, 1.22)

τ ∼ unif(0, 100) 1.05 (0.85, 1.31) 0.98 (0.78, 1.22)

τ ∼ HN(0.14) 1.05 (0.85, 1.29) 0.98 (0.78, 1.22)

α ∼ N(−6.65, 0.092) 1.33 (1.12, 1.61) 1.23 (1.05, 1.43)
τ2 ∼ Inv-Gamma(18.36, 58.06)

Frequentist 1.10 (0.91, 1.33) 1.31 (1.12, 1.53)

Table 3: Posterior summary and frequentist of overall accident intensity λ per one kilometer for UK motor-
way network in 2016: λ = exp(α). The prior of α is N(0, 100). CI: credible interval or confidence interval.
HN represents the half-normal distribution.

Figure 2 shows 49 motorways with intensities of traffic accidents per one kilometer and their
corresponding credible intervals for both two-level and three-level Bayesian hierarchical models.
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(a) Two-level Bayesian hierarchical model (b) Three-level Bayesian hierarchical model

Figure 2: Results from the two-level Bayesian hierarchical model and the three-level Bayesian hierar-
chical model for accident data on the UK motorways in 2016. In the two-level Bayesian hierarchical
model, the following prior distributions are used, α ∼ N(0, 100) and τ2 ∼ Inv-Gamma(0.001, 0.001).
In the three-level Bayesian hierarchical model, the prior distributions are α ∼ N(−6.65, 0.092) and
τ2 ∼ Inv-Gamma(18.36, 58.06). Results include the posterior mean and the corresponding 95% credible in-
terval for the intensity of accidents λi = 1000×exp (αi) per one kilometer on each motorway and the overall
intensity of accidents λ per one kilometer. Square boxes represent posterior means of λi, (i = 1, ...,m). The
diamond represents the estimated overall intensity of accident λ and its 95% credible interval. Horizontal
lines denote 95% credible intervals and the sold vertical line represents the posterior mean of the overall
intensity λ.
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Based on the estimation results from Figure 2 of the Bayesian hierarchical models for the UK mo-
torway data, the estimated intensities of accidents on the UK motorway network are classified into
five categories. Category one (λ < 0.5) is referred to a very low risk; Category two (0.5 ≤ λ < 1)

is referred to a low risk; Category three (1 ≤ λ < 2) is referred to a moderate risk; Category four
(2 ≤ λ < 3) is referred to a high risk. Finally, category five (λ ≥ 3) is referred to a very high risk.
Based on the results from the Bayeisan three-level hierarchical model, the moderate-risk level rep-
resents the general intensity of accidents level of the UK motorway network. Based on the results
presented in Figures2 and 3, motorways: M27, M275 and M32 are at high risk, whereas motor-
ways: M25 and M606 form the highest risk motorways, where the expected number of accidents
is above 3 per one kilometer for both motorways. On the other hand, motorways: M9, M90, M58,
M45, M48, M49, M180, M54, M74 and M50 have the lowest risk such that the expected number
of accidents is lower than 0.5 for these motorways.

Based on the results of the two-level Bayesian hierarchical model, Figures 2 and 4 shows that a
general level of the intensity of accidents on the UK motorway network is of moderate risk where
the moderate risk motorways are M32, M1, M3, M20, M8, M6, M65, M62, M11, M4, M271,
M42, M61, M2, M40, M57, M23, M60, M56, M898, M66, M602, M18 and M5. Motorways
M25 surrounding almost all of Greater London, England, except North Ockendon, in the United
Kingdom and M27 in Hampshire, England, starting west-east from Cadnam to Portsmouth, have
a very high-risk level. The expected numbers of accidents are 3.59 per one kilometer of M25
and 3.03 per one kilometer of M27. The motorways M54, M180, M74 and M50 form the lowest
risk motorways and their estimated intensities are 4.4, 4.4, 4.2, 3.3 per 10 kilometers. Figure 4,
moreover, illustrates that the risk intensity level for motorways M606, M621 and M275 is high and
the expected number of accidents is 2.36 per one kilometer of M606 and 2.09 per one kilometer
for both M621 and M275.
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Figure 3: Estimated intensity of traffic accidents per one kilometer on the UK motorway network in 2016.
The intensities are estimated using the three-level Bayesian hierarchical model with prior distributions α ∼
N(−6.65, 0.092) and τ2 ∼ Inv-Gamma(18.36, 58.06).
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Figure 4: Estimated intensity of traffic accidents per one kilometer on the UK motorway network in 2016.
The intensities are estimated using the two-level Bayesian hierarchical model with prior distributions α ∼
N(0, 100) and τ2 ∼ Inv-Gamma (0.001, 0.001).
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5. Simulation Study

We conducted a simulation study to assess the performance of the proposed models.

5.1. Simulation Design

For the two-level hierarchical model, we considered six scenarios with different true values of
parameters α and τ. The true values of α are set to be -1 and -7. If the overall log-intensity α is
chosen to be lower than −9, the number of accidents on the motorway will be very close to zero.
The between-motorway standard deviation τ is set to be 0.3, 0.8 and 1.5 to reflect the variation
between motorways. A magnitude of 0.3 would indicate that there is not much variation in the
motorway specific log-intensity while a magnitude of 1.5 would result in much more variation
between motorways. These true values are chosen to be close to the results for the observed data
set. The log-intensity αi on motorway i (i = 1, ...,m) is drawn from a normal distribution with
mean α and standard deviation τ. For the two-level hierarchical model, the number of accidents
ni (i = 1, ...,m) on the motorway i is generated from a Poisson distribution with mean Li exp(αi),
where Li is the length of the motorway i. We simulated 1,000 data sets for each scenario.

For the three-level hierarchical model, we simulated data according to the following,

αi ∼ N(α, τ2),

αi j ∼ N
(
αi, τ

2
i

)
,

ni j ∼ Pois
(
Li j exp

(
αi j

))
, i = 1, ...,m; j = 1, .., si. (44)

Six different scenarios of simulation are considered with α = −5, −7 and τ = 0.3, 0.7, 1.5 for the
three-level models.

The performance of the proposed models is evaluated by comparing the simulated results with the
true values using the following metrics, bias, mean square error (MSE) and coverage probability
(CP) [40]. The bias in the parameter estimate represents the difference between the average of the
estimates over all simulation and the true value. The mean square error is the squared bias plus the
variance of the estimated parameter, for example MSE(α̂) = Bias(α̂, α)2 + Var(α̂). The coverage
probability is the percentage of 95% credible intervals across the 1000 simulated data sets that
contain the true value.
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5.2. Simulation Results

Table 4 shows that the performance of the two-level Bayesian hierarchical model is better than the
two-level frequentist hierarchical model in terms of the bias, MSE and coverage probability. In
Table 4, the bias and MSE in α and τ for the two-level frequentist hierarchical model is larger than
those for the two-level Bayesian hierarchical model for scenarios with true value α = −7. The bias
in τ obtained for the two-level Bayesian hierarchical model is insensitive to the choice of priors

Table 5 shows that the three-level Bayesian hierarchical model performs better than the three-level
frequentist hierarchical model in terms of the bias, MSE and coverage probability. The three-
level frequentist approach produced higher bias for point estimates of α and τ acrosss the six
scenarios and a bigger MSE. For scenarios with true value of α = −5, the bias of the estimated τ
is sensitive to the specification of the prior distribution. For the true value of α = −7, the three-
level frequentist hierarchical model produced poor coverage probabilities for both the parameters,
providing a value of 0 for α. For the true value of α = −5, the coverage probabilities are better
than those for α = −7, but the frequentist approach gave lower coverage probabilities for both the
parameters. Henderson et al. (2000) showed that the separate analysis using the two-stage method
is not performing well compared with the one-stage method [23]. Browne et al. (2006) showed
that marginal quasi-likelihood method produced the coverage probability as zero for the random
effect variance parameter in random-effects logistic regression model [14]. Our simulation results
show that Bayesian hierarchical models appeared better than the frequentist hierarchical models
in terms of the bias, MSE and coverage probability.
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6. Model Comparisons

6.1. Model Comparisons using Information Criteria

We compare the Bayesian models using the deviance information criterion (DIC) [45] and the
Watanabe-Akaike or widely applicable information criterion (WAIC) [47]. Table 6 shows that
DIC and WAIC for the three-level Bayesian hierarchical model across different priors are lower
than those for two-level Bayesian hierarchical model. This indicates that the three-level Bayesian
hierarchical model provides a better fit to the observed data compared with the two-level Bayesian
hierarchical model.

Model Criterion Prior distribution

Gamma(0.001, 0.001) Gamma(0.1, 0.1) HN(0.14) unif(0, 100) Gamma(18.36, 58.06)

2LBHM DIC 100408.3 71999.9 71825.6 71950.6 71971.7
WAIC 89412.6 68222.7 68135.6 68210.9 68223.2

3LBHM DIC 85204.3 71683.3 71671.0 71671.0 71700.3
WAIC 1049.9 888.3 895.7 20271.2 891.3

Table 6: DIC and WAIC. 2LBHM represents the two-level Bayesian hierarchical model and 3LBHM rep-
resents the three-level Bayesian hierarchical model.

6.2. Model Comparisons using Simulation Study

Simulation Design
The term “misspecification” means fitting a wrong model to the data [48]. Model misspecification
affects estimation and produces biased estimates. To investigate the effects of model misspecifica-
tion, we fitted a two-level Bayesian hierarchical model (1) to the same data sets that simulated in
section 5.1 via a three-level Bayesian hierarchical model (16). We provide posterior mean, bias,
mean square error and coverage probability to investigate whether model (1) is able to analyse
data in presence of between grouped segments heterogeneity. The same prior distribution in sec-
tion 3.1.3 and the same initial values in section 4 are utilized in the Bayesian analysis, and 100,000
iterations were run with a burn-in period of 10,000 and a thinning interval of 10 to obtain posterior
samples for α and τ.
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Simulation Results
Tables 7 shows that the two-level Bayesian hierarchical model produced biased estimates, with
large mean square errors and extremely poor coverage probabilities for both the model parameters.
The coverage probability values were 0 or close to 0 for τ and exactly equal or close to 100%
for α when the true value for the between-motorway standard deviation was τ = 0.3 and 0.7.
This indicates that the fitted model, two-level hierarchical Bayesian model, is incorrect, when the
underlying model has three levels.

30



α
=
−

5
α

=
−

7
Tr

ue
τ

Pa
ra

m
et

er
s

M
ea

n
B

ia
s

M
SE

C
P

Ti
m

e
M

ea
n

B
ia

s
M

SE
C

P
Ti

m
e

In
v-

G
am

m
a(

0.
00

1,
0.

00
1)

0.
3

α
-4

.8
19

9
0.

18
01

0.
03

87
10

0%
20

14
7

-6
.8

12
1

0.
18

79
0.

04
37

99
.9

%
19

59
2

τ
1.

62
70

1.
32

70
1.

76
73

0%
1.

66
70

1.
36

70
1.

87
68

0%
0.

7
α

-4
.8

16
5

0.
18

35
0.

04
79

99
.2

%
17

95
5

-6
.8

00
4

0.
19

96
0.

05
76

98
.7

%
21

10
3

τ
1.

73
62

1.
03

62
1.

08
68

0%
1.

78
56

1.
08

56
1.

19
46

0%
1.

5
α

-4
.8

16
7

0.
18

33
0.

08
41

96
.6

%
19

41
0

-6
.8

22
0.

17
8

0.
08

68
97

.0
%

19
95

9
τ

2.
18

8
0.

68
8

0.
51

42
0.

37
%

2.
24

09
0.

74
09

0.
59

89
0.

34
%

In
v-

G
am

m
a(

0.
1,

0.
1)

0.
3

α
-4

.8
19

7
0.

18
03

0.
03

87
10

0%
19

62
3

-6
.8

12
1

0.
18

79
0.

04
38

99
.9

%
20

93
7

τ
1.

62
45

1.
32

45
1.

76
07

0%
1.

66
45

1.
36

45
1.

86
99

0%
0.

7
α

-4
.8

16
7

0.
18

33
0.

04
78

99
.6

%
18

53
6

-6
.8

00
2

0.
19

98
0.

05
77

98
.4

%
20

11
4

τ
1.

73
4

1.
03

4
1.

08
21

0%
1.

78
29

1.
08

29
1.

18
87

0%
1.

5
α

-4
.8

16
3

0.
18

37
0.

08
4

96
.2

%
17

88
5

-6
.8

21
9

0.
17

81
0.

08
65

97
.1

%
19

96
5

τ
2.

18
36

0.
68

36
0.

50
79

03
.7

%
2.

23
68

0.
73

68
0.

59
26

0.
35

%
un

if
(0
,1

00
)

0.
3

α
-4

.8
20

0
0.

18
00

0.
03

88
10

0%
19

39
8

-6
.8

12
9

0.
18

71
0.

04
35

10
0%

21
00

3
τ

1.
64

52
1.

34
52

1.
81

6
0%

1.
68

69
1.

38
69

1.
93

18
0%

0.
7

α
-4

.8
16

8
0.

18
32

0.
04

78
99

.4
%

19
78

8
-6

.8
01

4
0.

19
86

0.
05

73
99

.0
%

22
65

4
τ

1.
75

62
1.

05
62

1.
12

89
0%

1.
80

75
1.

10
75

1.
24

30
0%

1.
5

α
-4

.8
16

9
0.

18
31

0.
08

37
96

.7
%

22
42

0
-6

.8
24

3
0.

17
57

0.
08

6
97

.4
%

20
76

9
τ

2.
21

36
0.

71
36

0.
55

11
0.

31
%

2.
26

96
0.

76
96

0.
64

37
03

.0
%

H
N

(0
.1

4)
0.

3
α

-4
.8

19
5

0.
18

05
0.

03
89

10
0%

23
91

1
-6

.8
12

9
0.

18
71

0.
04

35
10

0%
24

28
5

τ
1.

64
55

1.
34

55
1.

81
69

0%
1.

68
69

1.
38

69
1.

93
19

0%
0.

7
α

-4
.8

16
7

0.
18

33
0.

04
78

99
.5

%
24

05
4

-6
.8

01
4

0.
19

86
0.

05
73

99
.0

%
24

80
8

τ
1.

75
61

1.
05

61
1.

12
87

0%
1.

80
75

1.
10

75
1.

24
29

0%
1.

5
α

-4
.8

16
7

0.
18

33
0.

08
39

96
.5

%
24

21
4

-6
.8

24
3

0.
17

57
0.

08
60

97
.4

%
24

46
0

τ
2.

21
34

0.
71

34
0.

55
09

0.
32

%
2.

26
97

0.
76

97
0.

64
38

3.
0%

Ta
bl

e
7:

Si
m

ul
at

io
n

re
su

lts
fr

om
tw

o-
le

ve
l

B
ay

es
ia

n
hi

er
ar

ch
ic

al
m

od
el

un
de

r
fo

ur
pr

io
r

di
st

ri
bu

tio
ns

of
τ2

an
d

th
e

pr
io

r
di

st
ri

bu
tio

n
α
∼

N
(0
,1

02 ).
Ti

m
e

fo
rr

un
ni

ng
th

e
si

m
ul

at
io

n
is

re
co

rd
ed

in
se

co
nd

s.
M

SE
re

pr
es

en
ts

m
ea

n
sq

ua
re

er
ro

ra
nd

C
P

th
e

co
ve

ra
ge

pr
ob

ab
ili

ty
.

31



7. Discussion and Conclusions

This study focused on Bayesian hierarchical models for analysing road accidents on the UK mo-
torway network. This work helps to identify the most dangerous motorways in the UK network
based on the estimated intensity of traffic accidents. These models have not been used for the
UK motorway network before. We modelled the accident data at the motorway level by propos-
ing a two-level hierarchical model to take into account the heterogeneity across motorways. We
proposed a three-level hierarchical model to incorporate the heterogeneity not only across mo-
torways but also across grouped segments. We assumed accident intensities are homogeneous
within grouped segments but heterogeneous across grouped segments. Using the proposed hierar-
chical models, we identified motorways with highest and lowest intensities of accidents, classified
motorway into different risk categories, and estimated the overall intensity of accidents.

We used both Bayesian and frequentist approaches to estimate the model parameters. In the
Bayesian approach, a sensitivity analysis with different prior distributions for τ2 has been per-
formed to investigate the effect of the prior choice on the resulting posterior distributions of α and
τ. We have used non-informative, weakly-informative and informative priors. In the frequentist
approach, the maximum likelihood method has been separately used for each level of the model.

We assessed the performance of all proposed models through a simulation study as well as a real
application related to the traffic accident data on the UK motorway network in 2016. In the simula-
tion study, different scenarios were explored. We examined three performance criteria, bias, mean
square error (MSE) and coverage probability (CP) of parameter estimates. The two parameters α
and τ represent the overall accident intensity and between-motorway heterogeneity, respectively.
We model all motorways simultaneously using hierarchical models. The performance of different
levels of hierarchical models is evaluated through the estimation of these two parameters. The
simulation results showed that the performance of the two-level Bayesian hierarchical model is
better than the two-level frequentist hierarchical model in terms of the bias and the coverage prob-
ability for some simulation scenarios. The performance of both models is similar in terms of mean
square errors.

In the real application, the findings from two-level Bayesian hierarchical analysis suggest that
three motorways with the highest intensity of traffic accidents are M25, M27 and M606. The
M25 has the highest intensity of traffic accidents where the expected number of accidents is 3.59
per one kilometer. The M27 has the second highest intensity of traffic accidents with the expected
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number of accidents 3.03 per one kilometer. The M606 is the third most dangerous motorway with
the expected number of accidents 2.36 per one kilometer. The three motorways with the lowest
intensity of accidents are M50, M74 and M180. The lowest intensity of accidents is the M50 with
an expected number of accidents of 3.32 per 10 kilometers. The second lowest intensity of traffic
accidents is the M74 with an expected number of accidents of 4.18 per 10 kilometers. The M180
has the third lowest intensity of accidents with an expected number of accidents of 4.35 per 10
kilometers.

The simulation results showed that the three-level Bayesian hierarchical model performed better
than the three-level frequentist model in most of the simulation scenarios. The frequentist method
failed to attain the required level of actual coverage in some scenarios because of the large bias in
the estimates of the overall log-intensity of accidents and the between-motorway standard devia-
tion.

The results of the analysis of the real data using the three-level Bayesian hierarchical model
showed that the motorway has the highest intensity of accidents is M25, where the expected num-
ber of accidents is 3.12 per one kilometer. The second highest intensity is found on M606 with
λ = 3.09 per one kilometer. The third highest intensity is found on M27 with an expected number
of accidents of 2.69 per one kilometer. In contrast, M50, M74 and M49 have the lowest intensity
of accidents with the expected numbers of accidents being 1.7, 2.7 and 3.0 per 10 kilometers,
respectively. Some motorways have the similar intensity of accidents, for example, both M2 and
M11 have λ = 1.39 per one kilmeter, both M53 and M55 have λ = 9.5 per 10 kilometers, both
M73 and M77 have λ = 5.8 per 10 kilometers and both M54 and M180 have λ = 3.2 per 10
kilometers.

Information criteria (DIC and WAIC) and a simulation study were used to compare between the
two-level and three-level Bayesian hierarchical models. The values of DIC and WAIC for the
three-level hierarchical model are lower than those for the two-level hierarchical model. This
indicates that the three-level Bayesian hierarchical model fits the data better.

Future research can be conducted to investigate the overdispresion of the accident data by employ-
ing alternative models, such as negative binomial models [15], zero-inflated Poisson models [36]
and Extra-Poisson variation models [13]. The relaxation of the assumption of homogenous acci-
dent intensity within grouped segments can be explored to allow for the variation of the accident
intensity within grouped segments. The extension could also include incorporating the hetero-
geneity arising from unobserved factors [41, 18, 6, 12], and spatial correlations at intersections
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[25, 35, 9]. In our three-level hierarchical models, we allow parameters of accident intensity to
vary across grouped segments. Future research can investigate multivariate random parameters
models to account for the spatial correlations [9, 11, 25, 35] and temporal correlations [38], as
well as correlations between different types of crash [6]. The incorporation of spatial correlations
in crash models has led to improved precision parameter estimates in some data sets [9], and this
can be tested for the UK motorway accident data, by taking into account the spatial correlations
between grouped segments. The multivariate random parameters models can also be extended
to account for the correlations between explanatory variables to further improve the precision of
the parameter estimates, due to the possibility of further capturing the underlying unobserved het-
erogeneity [18]. Variables such as geometric design, traffic conditions, environmental conditions
and other variables affecting the accident occurrence in a motorway can be investigated. Models
can be developed to include explanatory variables that may attribute to unobserved heterogeneity
arising from various sources such as unobserved vehicle characteristics [10], driver characteristics
[17, 35], roadway attributes, and environmental factors [12].
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