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Abstract

MULTI-MODAL PERSONALISATION IN LONG-TERM HUMAN-ROBOT
INTERACTION
Bahar Irfan

While short-term interactions with robots benefit from the novelty effect, long-term inter-
actions can suffer from a decrease in user interest and engagement. Based on the previous
research within Human-Robot Interaction (HRI), the thesis presented here is that user
experience in long-term human-robot interactions can be improved by personalising the
interaction through recognising users and recalling previously learned information.

User recognition is the first step towards personalising the interaction, however, there does
not exist a reliable user recognition method for fully autonomous user recognition in long-
term HRI for real-world applications. Correspondingly, this thesis proposes a Multi-modal
Incremental Bayesian Network (MMIBN) model, which combines face recognition with
soft biometrics and allows continuous, incremental and online learning of users, without
the need for any preliminary training. We validated the robustness and reliability of this
approach with a long-term (4-weeks) real-world study with 14 users and an artificially
generated multi-modal long-term user recognition dataset with 200 users.

Following on from this work, we explored personalisation of the interaction in service
robotics and socially assistive robotics, based on earlier evidence for the impact of per-
sonalisation on long-term interactions. We created the text-based Barista Datasets that
contain simulated generic and personalised dialogues for interactions with a barista that
recall and suggest user preferences in subsequent interactions in a coffee shop. Based on
these datasets, we designed fully autonomous barista robots with MMIBN, automatic
speech recognition (ASR) and a rule-based dialogue manager, and evaluated these robots
with a real-world long-term (5-day) study with 18 non-native English speakers. The study
demonstrated that personalisation mitigates negative user experiences that arise from
unreliable speech recognition and the inflexible structure of the rule-based dialogue man-
ager. Consequently, we explored the potential of the state-of-the-art data-driven dialogue
models based on the Barista Datasets. The results showed that while data-driven models
perform remarkably well in generic task-oriented dialogue, no model could perform
sufficiently well for personalisation in long-term interactions.

Lastly, to demonstrate the real-world benefits of long-term HRI, we design a personalised
robot to improve user motivation and adherence to the cardiac rehabilitation programme,
and evaluate with a study that ran for 2.5 years at a hospital in Colombia. The robot indi-
vidually tracked the patients’ health progress and attendance throughout the programme,
and provided personalised and immediate feedback based on continuous monitoring for
18 weeks. While the study could not be completed due to the outbreak of COVID-19, our
initial findings (with 6 patients) showed that user engagement and motivation for the
therapy and adherence were improved and maintained in the long-term interactions.

Overall, the work undertaken provides supporting evidence for our thesis and contributes
fundamental stepping stones for future research in personalised long-term HRI to develop
robots that can meet and maintain user expectations.
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Chapter 1

Introduction

Long-term interaction is fundamental in many fields, such as education, rehabilitation,

work environments and domestic applications. These fields also offer the opportunity

to embed robots in assistive roles (Goodrich & Schultz, 2007; Leite et al., 2013; Bartneck

et al., 2019). However, such application areas in the real world require reliable, durable

and autonomous solutions for achieving feasible Human-Robot Interaction (HRI) over

time. Unlike short-term interactions which benefit from the “novelty effect”, long-term

interactions can suffer from a decrease in user interest and engagement as the product

ceases to be new to the user (Huttenrauch & Eklundh, 2002; Kanda et al., 2004; Salter et al.,

2004; Gockley et al., 2005; Kanda et al., 2007; Sung et al., 2009; Leite et al., 2013). This arises

from the ‘one size fits all’ approach based on a fixed set of behaviours, which is not suitable

for repeated interactions. People have individual needs, likes and dislikes, preferences

and personalities, hence adaptable systems are needed to learn from users and personalise

the interaction. Personalisation, in addition, can help improve user engagement, and

create a sense of familiarity over time to facilitate rapport and trust between the user and

the robot (Dautenhahn, 2004; Bickmore & Picard, 2005; Kanda et al., 2010; Leite et al., 2013;

Irfan et al., 2019).

Communication through verbal and non-verbal means is vital in interaction with hu-

mans (Mavridis, 2015). Conversational Artificial Intelligence (AI) refers to the speech

and text-based systems, also known as conversational agents (e.g., virtual assistants and

chatbots), that automate communication and create personalised experiences. Personal

assistants such as Siri1, Google Assistant2, and Alexa3 are increasingly being used for tasks

1https://www.apple.com/siri/
2https://assistant.google.com
3https://developer.amazon.com/en-US/alexa

1

https://www.apple.com/siri/
https://assistant.google.com
https://developer.amazon.com/en-US/alexa


such as calling or texting, querying news, weather or recipes, or playing music. However,

these systems rely on uni-modal input in an interaction, such as text or speech. Hence, they

lack the additional information that can improve the personalisation of the experience,

such as visual input which helps to identify users, estimate their emotional states, and

integrate the interaction context into the conversation. Robots are ideal platforms with

multiple sensors to enable multi-modal communication and personalisation.

This thesis focuses on multi-modal personalisation in long-term HRI for real-world ap-

plications. As the first step towards personalisation, a multi-modal user recognition

method is developed for enabling reliable autonomous and incremental recognition in

long-term interactions. Two real-world studies are designed for long-term interactions in

customer-oriented service and health-care domains. Subsequent interactions are person-

alised by recalling user attributes, preferences or behaviour patterns through multi-modal

communication.

1.1 Scope and Key Concepts

HRI covers an extensive research area, as outlined in Goodrich & Schultz (2007). This

research focuses on exploring multi-modal personalisation in long-term HRI for real-

world applications. More specifically, this work addresses user identification for real-time

HRI over extended periods of time, and personalised conversational agents as service

robots and socially assistive robots. The following subsections define the scope of our

research focus and the key concepts in more detail, accompanied by the justifications of

our restrictions where necessary.

1.1.1 Long-Term Human-Robot Interaction

In addition to helping design systems for long-term HRI in a variety of fields, long-term

interaction studies allow observing changes in user behaviour and experiences over

time, and the true impact of an offered solution (Kanda et al., 2004; Leite et al., 2013).

The duration for a study to be considered as long-term interaction varies in the literature

(ranging with studies lasting 25 minutes (Salter et al., 2004) to six months (Sung et al.,

2009)), due to several factors, such as the number of interactions with a robot, the length

of the interaction, the number of users interacting with the robot simultaneously, and the
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complexity of the robot’s behaviour (Leite et al., 2013). Leite et al. (2013) define long-term

interaction as follows:

“An interaction can be considered as ’long-term’ when the user becomes familiarised

with the robot to a point that her perception of such robot is not biased by the novelty

effect anymore.”

Based on this definition, we designed long-term user studies with varying durations

depending on the complexity and the goal of the task: five consecutive days (Chapter 7),

four weeks (Chapter 4), and 18 weeks with two sessions per week (Chapter 9).

1.1.2 Personalisation and Long-Term Memory

Blom (2000) suggests that users or designers personalise their products primarily to “facil-

itate the work” (i.e., for “enabling access to information content”, “accommodating work

goals” or “accommodating individual differences”) or “accommodate social requirements”

(i.e., for “eliciting an emotional response” or “expressing identity”). Based on this tax-

onomy, our motivation for personalisation in this thesis falls under facilitating the work

through accommodating individual differences and work goals, particularly by tracking

the progress of patients to increase the user engagement in the therapy (Chapter 9) and

improving the user experience and increasing the robot efficiency through decreasing the

time it takes to take an order by recalling previous orders (Chapter 6).

In order to create personalised HRI, certain type of information should be acquired from

the user and recalled in the subsequent interactions. Based on the previous research for

adaptation in natural and synthetic systems, Wood et al. (2011) suggest using a biologically-

inspired long-term memory that contains semantic (e.g., name, preference), as well as,

episodic information (“who, what, where, when”), by using contextual, spatial, and

temporal information about previous interactions. Acquiring a diverse set of facts for

achieving a higher level of personalisation requires making use of various sensors, thus,

creating the necessity for multi-modal personalisation. Consequently, in this thesis, we

rely on visual, audio, sensory and text-based input to acquire and recall semantic and

episodic information.

Humans are capable of learning incrementally, that is, they can expand their knowledge

over time, which is a desirable feature for personalisation in long-term HRI because new
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users or new attributes might need to be learned. However, incremental learning is not

sufficient to achieve fully adaptable systems, because preferences and appearances of

known users can change over time. For example, if a user gets a hair cut or starts wearing

glasses, user recognition might fail to recognise the user, and this would persist over time

because the model is not updated for this user. In comparison, humans can continuously

adapt to changing circumstances by updating their prior beliefs. Such adaptation can be

made possible by online learning (OL) in robots, in which the model is updated sequentially

with incoming information. We apply incremental and online learning throughout this

thesis for learning new users as well as updating the models.

The information acquired during an interaction can be stored and recalled by two types

of approaches: knowledge-base (KB) and data-driven. KB is a structured database with

entities and their corresponding values and relations; whereas, data-driven approaches

rely on extracting the structures and values from the data itself. KB approaches are

suitable for long-term interactions, because the database can be expanded and updated.

However, only data-driven approaches that rely on end-to-end learning allow incremental

and online learning, because the system is trained from input-to-output as a whole. Thus,

KB approaches are more robust because they rely on explicit storage of data; whereas

data-driven methods are more flexible because a priori or structured knowledge in terms

of rules or templates are not necessary to store or use (Gao et al., 2019; Yan, 2018). In

this thesis, we use a combination of KB and end-to-end data-driven approaches in our

architectures to account for this trade-off.

1.1.3 Multi-modal User Recognition

Deploying robots in the real world for long-term interactions requires a high level of

autonomy. In other words, tele-operated robots or the Wizard-of-Oz (WoZ) method, which

rely on a human operator to control the robot unbeknownst to the user, are not suitable

for real-world applications. Consequently, for achieving personalisation in long-term

interactions, the robot should autonomously recognise users without intrusive methods or

external devices, such as QR tags or access cards. This requires recognising and updating

the users continuously and incrementally and possibly starting from a state without any

known user.

Face recognition (FR) has been the technique that is most prominently used for biometric
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user identification due to its non-intrusive character. Most state-of-the-art FR methods are

based on deep learning approaches (e.g., Taigman et al. (2014); Sun et al. (2014); Parkhi et al.

(2015); Schroff et al. (2015)), however, these techniques are made for recognising users that

are already in the user database. Only a few deep learning techniques exist for recognising

unknown users (Bendale & Boult, 2016; Ge et al., 2017). Moreover, these models are

not suitable for incrementally learning unknown users due to the catastrophic forgetting

problem, which refers to the drastic loss of performance on previously learned classes

when a new class is introduced (McClelland et al., 1995; McCloskey & Cohen, 1989; Parisi

et al., 2019). One solution to overcome this problem is by re-training the network after the

introduction of a novel user. However, this requires storing the previous samples, which

could create a prohibitive computational burden in long-term deployments. Furthermore,

it would require a significant amount of time to retrain with a growing number of users

and samples (Bendale & Boult, 2015), especially on low computational power systems such

as robots, which makes them unsuitable for real-time HRI. Thus, we need systems that

allow scaling and support incremental learning of new classes in addition to recognising

previously learned classes, which is termed open world recognition (Bendale & Boult, 2015).

There exist a few approaches that were designed for open world recognition (Bendale &

Boult, 2015; De Rosa et al., 2016; Fei et al., 2016; Rudd et al., 2018), however, none of these

approaches is applied to user recognition.

Relying solely on FR can result in recognition failures due to inaccuracies in the data, such

as low lighting conditions or blurry images (Wójcik et al., 2016). This problem, along with

the incorrect recognitions arising from the similarities between users, can be overcome by

combining multi-modal sources of information, similar to how humans recognise each

other (e.g., using voice to recognise a person in a dark room). For example, ancillary

physical or behavioural characteristics, called soft biometrics (SB), such as age and gender,

can be used in combination with primary biometrics (i.e., biometrics that can help uniquely

identify a person, such as FR or fingerprints), or other SB to improve the recognition

performance (Jain et al., 2011; Dantcheva et al., 2016; Scheirer et al., 2011). Most robots,

due to the rich sensor suite they carry, lend themselves well to multi-modal recognition.

One architecture that has been used in previous research that allows combining multi-

modal information for recognition is a Bayesian network (BN) (Scheirer et al., 2011). BN

is a probabilistic graphical model which represents conditional dependencies of a set of

variables through a directed acyclic graph. However, typically BNs are created with a
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conditional probability table based on a priori knowledge of the dependencies, termed

likelihoods, of various sources of information. In the case of missing a priori data, e.g., for

new users or with changes in the user appearance, the assumptions for dependencies

might not hold, which, in turn, would affect the overall recognition performance. Never-

theless, it is possible to achieve incremental and online learning with BNs by updating the

likelihoods of the network (Bauer et al., 1997; Cohen et al., 2001b,a; Lim & Cho, 2006; Liu

& Liao, 2008).

Following these aspects, this thesis aims to design a multi-modal user recognition system

for long-term HRI using an incremental BN with online learning, as described in detail in

Chapter 3 and evaluated in Chapter 4 and 5.

1.1.4 Conversational Artificial Intelligence

This thesis focuses on the social perspective of long-term HRI. Breazeal (2002) define

robots that communicate with and understand the responses of the users in a personal

way as sociable robots. Communication in HRI may refer to verbal or non-verbal interaction,

such as nonlinguistic utterances, body movements, facial expressions, colour and eye gaze

(see works by Bethel & Murphy (2008); Mavridis (2015); Saunderson & Nejat (2019) for

extensive surveys in the literature). However, non-verbal interaction is not sufficient to

convey various type of information. For example, while nonlinguistic utterances similar

to the beeping sounds of R2D2 in the Star Wars movies may result in the categorical

perception of the sounds, and the subtle differences between utterances might not be

understood by users (Read & Belpaeme, 2012, 2016). Nevertheless, non-verbal interaction

is an important aspect of human-human communication, and it can increase efficiency

and robustness of the interaction when used in conjunction with verbal information. In

order to achieve a natural HRI with mutual understanding, it is desired to have both

verbal and non-verbal communication (Mavridis, 2015). Moreover, HRI poses a challenge

over uni-modal interaction due to the robot’s embodiment, with the user assuming multi-

modal capabilities based on the various sensors of the robot (e.g., camera, microphones,

speakers, tablet) (Goodrich & Schultz, 2007; Rickert et al., 2007). In this thesis, we focus on

multi-modal natural language interactions based on speech, by making use of available

technologies for natural language processing (NLP), such as automatic speech recognition

(ASR), natural language understanding (NLU), natural language generation (NLG) and
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text-to-speech (TTS), in addition to acquiring sensory information and using touchscreen

interfaces for text or image-based interaction to reduce the errors in ASR, wherever

necessary. We use non-verbal communication, such as the body movements4, gaze and

touch-based interaction to increase the naturalness of the interaction. Natural language

interactions in HRI can refer to the uni-directional exchange of information, e.g., the human

instructing the robot or the robot instructing the human, or bi-directional interaction, such

as a dialogue. In this thesis, we examine bi-directional interaction that involves multi-

modal exchange of information between the robot and the user.

Conversational agents that are restricted to conversing about a narrow domain are called

closed-domain dialogue systems. In contrast, open-domain dialogue systems can converse

about a variety of topics. These dialogue systems can be further categorized for their

application purpose: general-purpose or task-oriented (goal-oriented or goal-driven) dialogue

systems. Task-oriented dialogue systems can only do a particular task (or a small set

of tasks), such as booking a restaurant, whereas general-purpose dialogue systems are

capable of performing any task, such as “chit-chat” (Yan, 2018). Designing conversational

agents that are similar to humans requires using open-domain and general-purpose

dialogue systems, however, building such systems is extremely challenging (Gao et al.,

2019). Moreover, the ASR systems are not reliable enough to understand open-domain

spoken dialogue in HRI. In addition, such systems are not necessary in most of the real-

world application areas in HRI (e.g., education, rehabilitation, customer service, search

and rescue). For example, a customer service robot deployed at a coffee shop only needs

to know the menu and request information from the customers accordingly. Hence, for

such applications, task-oriented closed-domain dialogue systems are sufficient and more

appropriate.

Traditional conversational AI relies mostly on slot-filling methods through rule-based

dialogue management systems (RBDMSs) based on predefined if-then-structures and

templates with a set of slots to be filled during the dialogue, which are the basis of most

commercial systems (Yan, 2018; Gao et al., 2019; Bordes et al., 2016). For example, the

Mitsuku5 chatbot, which is the five-time winner of the Loebner Prize Turing Test in general-

purpose open-domain dialogue, is based on Artificial Intelligence Markup Language

(AIML), which is a rule-based language written on XML. The Turing test (Turing, 1950)

4Using animated speech feature of NAOqi: http://doc.aldebaran.com/2-4/naoqi/audio/
alanimatedspeech-api.html

5https://www.pandorabots.com/mitsuku/
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evaluates the dialogue system’s ability to exhibit intelligent behaviour equivalent to, or

indistinguishable from that of a human, based on general-purpose open-domain dialogue.

The evaluator needs to understand if the conversation partner is a machine or a human,

based on text-based interactions through a computer. In the recent years, the research

(especially by Google, Facebook, IBM, Microsoft and Amazon) is shifting towards creating

data-driven conversational agents (e.g., neural approaches) to compete with RBDMSs,

in order to create more flexible systems that do not require any feature engineering

or domain-specific handcrafted rules (e.g., Sutskever et al. (2014); Graves et al. (2014);

Sukhbaatar et al. (2015); Rajendran et al. (2018); Shum et al. (2018); Ram et al. (2018)).

Only recently Google’s Meena chatbot, which is an end-to-end neural conversational

model, outperformed Mitsuku (Adiwardana et al., 2020), and Facebook AI’s Blender

outperformed Meena (Roller et al., 2020). However, they both used an excessive amount

of computational power to train the model6, which has incited a discussion both in

the fields of NLP7 and HRI that defended the advantages of using RBDMSs for their

low computational power requirement and the lack of necessity for training, which

are especially crucial for robots. Even though, data-driven approaches require smaller

datasets in training for task-oriented closed-domain dialogue, variations that can arise

from user utterances, as well as, the differences between user needs can be challenging for

achieving personalisation in long-term interactions, thus requiring sufficient data from

each individual or methods that allow transferring common dialogue knowledge between

users (Mo et al., 2016). Using an RBDMS, allows structuring the interaction through a

set of rules, such that the relations between users need not be learned or transferred.

However, deploying robots in the real world brings about the challenges of ASR errors,

compared to text-based approaches that benefit from a more robust NLP, which decrease

the robustness of RBDMSs. Moreover, rule-based approaches require the user to respond

in a particular manner, which can be time consuming and frustrating (Williams et al., 2018;

Bartneck et al., 2019).

At the time of writing, only a few studies (Kasap & Magnenat-Thalmann, 2012; Zheng

et al., 2019; Churamani et al., 2017) explored fully autonomous personalisation in dialogue

6Meena is a neural conversational model with 2.6 billion parameters trained on a TPU-v3 Pod (2048 TPU
cores) for 30 days on 341 GB of text, filtered from public domain social media conversations (Adiwardana et al.,
2020). Blender is a neural conversational model with 9.4 billion parameters trained on filtered public domain
social media conversations (1.50B comments), and fine-tuned with a blend of Wikipedia, crowd-sourced
conversations based on personality or grounded in an emotional situation (a total of 76k utterances) (Roller
et al., 2020).

7See, for example: https://twitter.com/eturner303/status/1223976313544773634
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for long-term HRI. However, none of these studies was conducted in the real world. In

this thesis, we explore both the applicability of a RBDMS (Chapter 7) and data-driven

approaches (Chapter 8) to real-world long-term interactions with task-oriented closed-

domain dialogue that focuses on individually personalising HRI over time.

1.1.5 Real-World Applications

It is important to find an application area for long-term HRI, where personalisation can be

valuable in the real world. There exists several studies that show the advantages using

social and assistive robots in influencing, educating or training people, especially in long-

term interactions (Huttenrauch & Eklundh, 2002; Kanda et al., 2004; Severinson-Eklundh

et al., 2003; Robins et al., 2004; Werry et al., 2001). There is growing evidence that many

long-term interactions require (mutual) adaptation (de Ruyter et al., 2005; Severinson-

Eklundh et al., 2003; Robins et al., 2004; Forlizzi & DiSalvo, 2006; Goodrich & Schultz,

2007). Moreover, it has been shown that people adapt to robots in the service industry

over the long-term over a wide range of tasks (Green & Eklundh, 2003; Sung et al., 2009),

and personalisation of conversational agents in healthcare and medicine is effective in

increasing user engagement and user task performance (Matarić et al., 2007; Kocaballi

et al., 2019). Based on these aspects, we explored two areas of application: service robotics

and socially assistive robotics.

A service robot is a robot that performs useful tasks for humans or equipment excluding

industrial automation applications, based on its current state and sensing without human

intervention8. Service robots exist in a wide range of areas, ranging from domestic use

to deployment for customer service. This thesis focuses on the use of customer-oriented

service robots (Chapter 7), specifically as an order-taking robot in a coffee shop which

recognises users and recalls the user’s previous orders in subsequent interactions, similar

to a barista in a local coffee shop.

Socially assistive robotics (SAR) refers to the assistive and supportive robotics applications

in social interactions (Feil-Seifer & Matarić, 2005). This field faces several challenges,

such as the proximity and vulnerability of the human in the interaction, the potential of

unanticipated patterns and a noisy real-world environment (Goodrich & Schultz, 2007).

Due to these challenges, it is important to structure social interaction, such that the therapy

8Definition from the International Organization for Standardization (ISO 8373): https://www.ifr.org/
service-robots/

9

https://www.ifr.org/service-robots/
https://www.ifr.org/service-robots/


is not negatively affected. Moreover, because the robot will be deployed in the real world

with non-expert users (e.g., doctors, nurses, patients), thus, it should not require an

operator or extensive training (Feil-Seifer & Matarić, 2005). In other words, it should be

autonomous and require minimum effort from users and medical staff. In addition, it

must be designed in accordance with the requirements of the therapy in collaboration

with a medical team and it must conform to the changing routines and demands of the

patient and carers (Matarić & Scassellati, 2016). Moreover, the ultimate goal of SAR is to

alter the long-term behaviour of the user in accordance with the behavioural, therapeutic,

or educational goals that the robot was designed to support. SAR is used in a variety

of therapy fields, such as a therapeutic tool for children, the elderly, stroke patients,

rehabilitation and other special-needs populations requiring personalised care (Matarić &

Scassellati, 2016).

Cardiac rehabilitation (CR) is a therapy used to prevent cardiovascular disease or to treat

a patient after a post-cardiovascular event. One of the most critical issues of CR is the

lack of adherence of the patients to the therapy process. However, there is evidence that

an embodied agent can increase compliance and adherence to the therapy (Deng et al.,

2019). Based on these findings in the literature, we designed a multi-modal personalised

socially assistive robot to increase patients’ engagement, motivation and adherence to

the long-term CR programme in a hospital (Chapter 9). The robot processes the sensory

information from the patient to track the patient during the session and through the

programme, as well as to recall the previous sessions to provide personalised feedback on

the patient’s health and progress throughout programme.

1.2 The Thesis

The main thesis that this document seeks to put forward is as below.

User experience in long-term human-robot interactions can be improved by

personalising the interaction through recognising users and recalling previ-

ously learned information.

This thesis raises a series of additional research questions (RQ) that shaped our objectives

and evaluation approaches. As defined in the main thesis and previously outlined in the

scope of this work, we explore personalisation of the interaction through user recognition
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(concerning RQ1) and acquiring and recalling of information (RQ2-4) for application in

the real world (RQ5-6).

• RQ1: Which user recognition algorithms are applicable to long-term recognition in the real

world?

As previously established in this chapter, long-term HRI requires a high level of

autonomy in real-world applications. Hence, in order to personalise the interaction,

the users should be continuously and incrementally recognised without intrusive

methods or external devices. However, as further addressed in Section 2.2, a reliable

user recognition algorithm does not exist for open world user recognition in long-

term HRI, which brought upon the following research objective (RO) in this thesis:

• RO1: Build a user recognition algorithm suitable for fully-autonomous long-term

HRI in the real world that allows incremental and online learning of users.

Based on this objective, we created a multi-modal incremental Bayesian network

with online learning for user recognition, as described in Chapter 3 and evaluated in

Chapter 4 and 5.

• RQ2: How should the robot communicate with users to acquire and convey information?

As presented in Section 1.1.4, this thesis focuses on natural language interactions

through verbal and non-verbal communication. Based on this research question

and the motivation to achieve naturalness in the interaction that relies on mutual

understanding, we explore bi-directional interaction for our user studies in which

the robot requests, receives and delivers information.

• RQ3: Which dialogue architectures are appropriate for long-term interactions in the real

world?

Conversational Artificial Intelligence is a broad research topic ranging from task-

oriented closed-domain to general-purpose open-domain systems using rule-based

dialogue management systems to data-driven approaches, as highlighted in Sec-

tion 1.1.4. This research question explores the rule-based and data-driven state-

of-the-art approaches described in Section 2.3, and evaluates their potential for

real-world interactions in Chapter 7 and 8.

• RQ4: Which type of information should be recalled for personalisation?
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Inspired by the suggestion of Wood et al. (2011), we obtain and recall both semantic

and episodic information for personalising long-term interactions. However, the spe-

cific information that should be acquired depends on the context of the application,

which brought upon the following research question:

• RQ5: Which are the real-world application areas where personalisation can make an impact

in long-term interactions?

As outlined in Section 1.1.5, we identified that customer-oriented service robotics and

socially assistive robotics fields are suitable to evaluate our research questions for

long-term interactions in the real world. Consequently, we developed the following

objectives:

• RO2: Design a personalised customer-oriented service robot to improve user ex-

perience and increase the efficiency of the task.

We designed a barista robot that recalls the previous orders of a user, in order to

create the personalised experience of a local coffee shop, in addition to decreasing

the number of turns necessary for an order. We initially designed the interaction by

generating text-based Barista datasets, as described in Chapter 6. Correspondingly,

we designed a robot with a rule-based dialogue management system in Chapter 7.

We explored the applicability of data-driven approaches in Chapter 8.

• RO3: Design a personalised socially assistive robot to increase user engagement,

motivation and adherence to the therapy.

We collaborated with the Colombian School of Engineering Julio Garavito and

doctors and therapists in Fundación Cardioinfantil Instituto de Cardiología (Bogotá,

Colombia) in designing a personalised socially assistive robot to be applied in

cardiac rehabilitation programme. The designed system, our contributions and the

real-world study are described in detail in Chapter 9.

In both of these applications, we used the user recognition system that we developed

for our first objective (RO1) for identifying users.

• RQ6: What is the impact of personalisation in long-term human-robot interaction?

We evaluated the impact of personalisation through real-world studies, as described

in Section 7 and Section 9.
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1.3 Research Overview

The thesis and the research questions are explored in this document through building

and designing a series of systems applicable to long-term interactions, followed by ex-

perimental evaluations in the real world. Initially, a literature review was conducted in

long-term human-robot interaction, long-term memory systems, personalisation, and real-

world application areas for personalised robots (Section 2.1), followed by user recognition

(Section 2.2) and conversational agents (Section 2.3) to define the scope of this work and

find answers to our research questions.

1.3.1 User Recognition

Based on our findings, multi-modal user recognition was identified to provide reliable

identification that would overcome problems in real-world applications. Moreover, as

described in Section 1.1.3, incremental and online learning were determined to be vital for

autonomous long-term interactions. Due to the lack of an existing model that satisfied

these constraints, we built a multi-modal incremental Bayesian network with online

learning for identifying users, which is the first in combining soft biometrics with a

primary biometric for open world user identification in real-time HRI, as detailed in

Chapter 3.

We validated our system in a real-time HRI scenario with 14 participants (10 males, 4

females, with age range of 24-40) and collected a total of 66 images per user over four

weeks period, as described in Chapter 4. We used a Pepper9 robot (SoftBank Robotics

Europe) with NAOqi10 software modules that provided the face recognition similarity

scores, along with gender, age, and height estimations that we used as input modalities,

in addition to the time of interaction. In order to obtain reliable ground truth values, the

participants enrolled by entering their name, gender, age, and height through the tablet

interface of the robot, followed by a picture taken by the robot. This enrolment process

occurred within the first week of the study for the participants, that is, the participants

were not enrolled at the same time, which resembled a real-world situation. The robot

was placed in the kitchen of an office of the Centre for Robotics and Neural Systems

(CRNS) at the University of Plymouth, as shown in Figure 1.1. The participants were PhD

9https://www.softbankrobotics.com/emea/en/pepper
10http://doc.aldebaran.com/2-5

13

https://www.softbankrobotics.com/emea/en/pepper
http://doc.aldebaran.com/2-5


Figure 1.1: A user is interacting with a Pepper robot during the user recognition study11.

students or researchers working in the office, or visiting it frequently. The participants

interacted with the robot at the beginning and the end of the day and throughout the day

whenever they wished (mostly during their coffee or lunch breaks). This enabled us to

achieve a natural level of interaction similar to the real world. At each interaction, the

robot would autonomously recognise the user, and request from the user a confirmation of

the estimated identity. The robot communicated its requests and feedback verbally, but the

participants interacted with the robot only through the tablet interface to ensure reliable

data collection. This study showed that the proposed model is suitable for real-world

human-robot interaction experiments for user recognition in real-time, in addition to

enabling us to optimise the parameters of the Bayesian network.

However, we could not generalise the results obtained from the user study to larger

populations due to the limited population size and the narrow age range of the users.

Obtaining a dataset which captures a diverse set of characteristics for a large number of

users over long-term interactions is a laborious task in HRI. Thus, we created a multi-

modal long-term user recognition dataset (Chapter 5) based on the images of 200 celebrities

obtained from the IMDB-WIKI dataset (Rothe et al., 2015, 2018), which contains images

taken at events or still frames from movies. We used proprietary algorithms of the

Pepper robot to obtain multi-modal biometric information from these images (namely,

face recognition scores for similarities between users, and gender and age estimates),

while the height and time of interaction were artificially generated to simulate a long-term

HRI scenario similar to the one in our earlier work. We defined two datasets of varying

sizes: (1) where each user is observed precisely ten times, e.g., ten return visits to a robot

11Video demonstration for human-robot interaction within the study: https://youtu.be/Ix98k6_-2Zc
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therapist, and (2) where each user is encountered a different amount of times (10 to 41

times). Moreover, we defined two sets of timing: (1) patterned interaction times, where

the user will be encountered certain times on specific days similar to HRI in rehabilitation

and education areas, and (2) random interaction times, such as in domestic applications

with companion robots, in which it is likely to encounter the user at any time of the day.

We evaluated the proposed multi-modal incremental Bayesian network with and without

online learning in comparison to face recognition, soft biometrics and a state-of-the-art

open world recognition method Extreme Value Machine (EVM).

1.3.2 Conversational Artificial Intelligence

As previously stated in the scope of this thesis, we used task-oriented closed-domain

dialogue within a customer-oriented service robot context as an order-taking barista in a

coffee shop for evaluating the impact of personalisation in long-term recognitions.

Due to the lack of available corpora for human-human interaction or human-robot interac-

tion and the challenges in collecting thousands of interactions, it was necessary to generate

artificial datasets for coffee shop interactions with a barista for ordering drinks and ac-

companiments. Subsequently, three text-based datasets were generated, as described in

Chapter 6: (1) Barista Dataset, (2) Personalised Barista Dataset, (3) Personalised Barista Dataset

with Preferences Information. The Barista Dataset is based on the transaction between the

barista and a customer similar to that in a coffee shop chain: the drink and accompaniment

order is taken, confirmed and changed if necessary, the customer’s name is taken and used

to note the location of the order, followed by a goodbye phrase. In the Personalised Barista

Dataset, the customer is recognised, and the previous most common (or most recent) order

of the customer is recalled to ask if the customer would prefer to have that again, thereby,

decreasing the number of conversational turns necessary to make an order. The identified

user information is provided by the identification number and the name of the user, which

simulates the information obtained from a user recognition system in HRI. This dataset

allows training and evaluating data-driven approaches to extract orders from the data

when the user is known. The final dataset, Personalised Barista Dataset with Preferences

Information, provides the most common (or most recent) order information along with the

user information to be able to compare the performance of data-driven approaches with

the same information in rule-based dialogue management systems (RBDMS).
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Based on these datasets, we designed non-personalised and personalised barista robots

with RBDMS in Chapter 7. The RBDMS relies on template matching and dialogue state

tracking to match the user responses to the phrases in the rules used to create the Barista

Dataset and Personalised Barista Dataset. We combined the user recognition system that

we developed in Chapter 3 with NAOqi voice activity detection12 and Google Cloud

Speech-to-Text13 for online automatic speech recognition (ASR). We optimised the ASR to

be adaptable to non-native speakers on an audio dataset that we collected through 12 non-

native English speakers (with slightly accented English, but with high English proficiency

levels) reading the same five monologues from Personalised Barista Dataset to the robot. We

used the Adapted Pepper14 robot (shown in Figure 1.2), which has an improved microphone

system with higher signal-to-noise ratio compared to an off-the-shelf robot.

We conducted a 5-day real-world study in the coffee bar of an international student

campus, Cité Internationale Universitaire de Paris, with 18 non-native English speakers

Figure 1.2: Adapted Pepper is taking the order of a user as a barista robot15.

12http://doc.aldebaran.com/2-5/naoqi/audio/alspeechrecognition-api.html
13https://cloud.google.com/speech-to-text
14Created for MuMMER project: http://mummer-project.eu.
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(11 males, 7 females) within the age range of 22-47, as described in Chapter 7. We

compared three conditions: (1) enrolment, (2) non-personalised robot and (3) personalised

robot. Enrolment is the first interaction with the robot, which is non-personalised. The

participants interacted with the same condition during the duration of the study.

Furthermore, we explored the applicability of the state-of-the-art data-driven approaches

highlighted in Section 1.1.4 and described in detail in Section 2.3. We evaluated the

approaches on the three generated artificial text-based datasets with different sizes of

datasets, as described in Chapter 8 to observe the performance of the approaches based

on the provided information, size of the datasets and varying tasks.

1.3.3 Socially Assistive Robotics

For evaluating long-term HRI in an assistive real-world application, we designed a person-

alised socially assistive robot for cardiac rehabilitation programme which has been used

throughout the therapy of patients in Fundación Cardioinfantil Instituto de Cardiología

(Bogotá, Colombia). We used a NAO16 robot (SoftBank Robotics Europe) in our study,

along with a touchscreen interface and a sensory interface to receive feedback from the

patient and obtain medical measures, as shown in Figure 1.3.

In the study, we designed three conditions: (1) control, (2) social robot and (3) personalised

robot. In each of these conditions, a sensory interface obtains the patient’s heart rate,

posture, cadence, step length and speed and the inclination of the treadmill. In addition,

Figure 1.3: Socially assistive robot setup for cardiac rehabilitation programme at Fundación
Cardioinfantil Instituto de Cardiología (Bogotá, Colombia).

15Demonstration of the robot behaviours is available at: https://youtu.be/eAOnHlDuHqw
16https://www.softbankrobotics.com/emea/en/nao
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a touchscreen interface is used to request the exertion level of the patient. In the control

condition, there is only a touchscreen that provides online and continuous monitoring and

visualisation of the obtained sensory information. The tablet does not provide any verbal

feedback to the patient in order to closely resemble the conventional CR programme. A

socially assistive robot is used in the social robot condition to provide immediate feedback

if any of the sensory values exceed the given limits, motivate the patient throughout the

session and alert the doctor in case of emergencies. In the personalised robot condition,

the patient is recognised through the user recognition system defined in Chapter 3. The

name of the patient is used periodically throughout the session to personalise the content

of the feedback provided in the other robot condition. Moreover, the difficulty level of

the session and the performance of the patient is compared to the previous sessions to

motivate the patient for the therapy and the upcoming sessions, at the beginning and

end of a session. In addition, the attendance of the patient is tracked to ensure that the

patient is adhering to the CR programme. The study has finished for the control condition,

but could not be completed for the social and personalised robot conditions due to the

outbreak of COVID-19.

1.4 Contributions

This research work contributed both technically (by developing software in multiple

projects) and scientifically (by evaluating the impact of the approaches) to the state-of-the-

art in HRI, specifically on personalisation in long-term interactions. This section highlights

the contributions of this thesis and indicates the relevant chapters and the published work,

in addition to stating other contributions that are not included in the main body of the

document.

1.4.1 Main Contributions

• The first contribution, and one of the cornerstones of this work, is the design and im-

plementation of Multi-modal Incremental Bayesian Network (MMIBN), which is

a multi-modal user identification system that supports online learning. It is the

first method for sequential and incremental learning in open world user recogni-

tion that allows starting from a state without any known users. In addition, this

proposed approach is the first in combining soft biometrics with a primary bio-
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metric for open world user identification in real-time in human-robot interaction

(Chapter 3; Irfan et al. (2018b, under review)).

• We propose an online learning method for Bayesian networks based on Voting

Expectation Maximization (EM) (Cohen et al., 2001a,b) and Maximum Likelihood

estimation that accounts for modelling the noise in the modalities and uses an

adaptive learning rate based on the frequency of user appearances. This method

relies on supervised learning, through direct or indirect (e.g., through dialogue)

confirmation of the identity, to adapt the likelihoods of the modalities within the

Bayesian network (Section 3.2.5; Irfan et al. (under review)).

• We introduced the quality of the estimation and long-term recognition perfor-

mance loss to decrease the number of incorrect recognitions and create a balance

between identifying known users and unknown users for long-term interactions,

respectively (Chapter 3; Irfan et al. (2018b, under review)).

• We evaluated MMIBN in a user study for four weeks that showed the proposed

model is applicable for real-world HRI experiments for user recognition in real-

time. In addition, the proposed model outperformed base face recognition in

terms of higher identification rate (Chapter 4; Irfan et al. (2018b)).

• We created a multi-modal long-term user recognition dataset with 200 users of

varying characteristics based on the IMDB-WIKI dataset (Rothe et al., 2015, 2018) for

evaluating the model with a large number of users (Chapter 5; Irfan et al. (under

review)).

• We evaluated MMIBN with the multi-modal long-term user recognition dataset

and showed that the proposed model significantly outperforms base face recog-

nition, soft biometrics and a state-of-the-art approach in open world recognition.

Online learning was found to decrease recognition performance compared to us-

ing a non-adaptive model for our proposed user recognition model, which could

be due to the accumulating noise of the identifiers. However, online learning was

shown to equalise the recognition performance between users, thereby, decreas-

ing the biases in the system caused by face recognition (Chapter 5; Irfan et al.

(under review)).

• We created text-based simulated Barista Datasets for generic and personalised
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task-oriented closed-domain dialogue based on interactions of an order-taking

barista in a coffee shop, in order to train and evaluate rule-based and data-driven

approaches (Chapter 6).

• We designed a fully autonomous barista robot with user recognition, automatic

speech recognition and a rule-based dialogue management system (Chapter 7;

Irfan et al. (2020b)).

• We evaluated the barista robot in a real-world study with non-native English

speakers for five days, which is the first study for fully autonomous personal-

isation in dialogue for long-term HRI conducted in the real world. The study

showed that personalisation can mitigate interaction failures and the negative

user experience (Chapter 7; Irfan et al. (2020b))17.

• We explored the potential of the state-of-the-art data-driven dialogue models in

generic and personalised long-term interactions within continual and few-shot

learning contexts based on the text-based Barista Datasets. The experiments demon-

strated that a generative model, Sequence-to-Sequence (Seq2Seq), achieves near-

perfect accuracy in generic long-term interactions, however, no model is suitable

for personalised long-term interactions. Nonetheless, a retrieval-based attention

model, Memory Network, shows potential, in addition to performing well in

generic long-term interactions (Chapter 8).

• We designed a personalised socially assistive robot for cardiac rehabilitation to

improve user motivation and adherence in the real-world long-term (18 weeks)

clinical therapy of patients. We designed a clinical study to compare the con-

ventional CR programme with a generic robot with continuous monitoring and

immediate feedback, and to a robot with personalised feedback based on patients’

progress and attendance in the therapy. The study took place in a hospital in

Colombia and ran for 2.5 years. The personalised robot was perceived positively

throughout the programme, the gaze, social interaction and the compliance to the

robot’s requests were maintained over time and the personalisation features were

appreciated by the patients. The patients in both robot conditions reported that

working with a robot improved motivation to attend the therapy sessions. In ad-

dition, the continuous monitoring was found to facilitate immediate intervention

17Video presentation of the study is available online: https://www.youtube.com/watch?v=_g2H1Dk83wQ
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by the medical team in critical situations and enable high-intensity training. Multi-

modal user recognition with online learning was found to perform better than the

non-adaptive model, when the identifiers are malfunctioning (Chapter 9) (Chapter 9;

Lara et al. (2017a,b); Casas et al. (2018b,c,a); Irfan et al. (2020a)).

The work presented in this thesis has been conducted under the EU H2020 Marie Skłodowska-

Curie Actions Innovative Training Networks project Applications of Personal Robotics for

Interaction and Learning (APRIL), grant 674868.

The experiments on socially assistive robotics are conducted at Fundación Cardioinfantil

Instituto de Cardiología (Bogotá, Colombia) in collaboration with Emmanuel Senft and

the research group in Colombian School of Engineering Julio Garavito funded by the

Royal Academy of Engineering IAPP project Human-Robot Interaction Strategies for

Rehabilitation based on Socially Assistive Robotics (grant IAPP/1516/137). The author

designed and built the user recognition and personalisation systems used in the personalised

robot condition, in addition to contributing to the design of the overall study.

The work on barista robot, conducted at Cité Internationale Universitaire de Paris, was

done in collaboration with Mehdi Hellou funded by SoftBank Robotics Europe as a

research intern under the joint supervision of the author and Alexandre Mazel. The author

designed the barista robot and the rule-based dialogue management system (RBDMS)

architectures, created the corresponding datasets, designed the experimental procedure

and the evaluation methods for the user study and conducted the analysis of the study.

1.4.2 Other Contributions

• We conducted two social facilitation studies on established tasks in the literature

to observe the effects of the presence of a robot on task performance and cheating.

However, we could not replicate the effects of social facilitation by humans, which

supported the “replication crisis” in psychology (Aarts, 2015). Consequently, we

concluded that HRI studies based on psychology experiments should be designed

carefully by ensuring the replicability of previous studies and avoiding the confound-

ing factors (e.g., Hawthorne effect and demand characteristics). We also highlighted

the importance of registering studies, reporting null-results and designing reference

tasks for HRI (Irfan et al., 2018a).
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• We participated in and won the Social Care Challenge of EPSRC UK Robotics

and Autonomous Systems Network (UK-RAS Network). The challenge consisted

of designing a project proposal for using Pepper (SoftBank Robotics Europe) or

Miro18 (Consequential Robotics) robots in social care. Our proposal was using a

personalised robot for reminiscence dialogues with care home residents. The winners

of the challenge collaborated in organising socially assistive robotics demonstrations

during UK robotics week (June 2017). The collaboration resulted in UK-RAS Social

Care White Paper (Prescott & Caleb-Solly, 2017).

• A personalised robot narrator with non-verbal emotional communication was de-

veloped. The work was presented at the 9th Joint IEEE International Conference

on Development and Learning and on Epigenetic Robotics (ICDL-Epirob 2019)

workshop on Personal Robotics and Secure Human-Robot Collaboration19.

• A number of ASR engines were evaluated for child-robot interaction under a variety

of conditions on a NAO robot. The study showed that the current state-of-the-art

ASR engines are not reliable in real-world applications with children (Kennedy et al.,

2017).

• Chilitags (Bonnard et al., 2013) were adapted to be used with object recognition

on a NAO robot in the Second Language Tutoring using Social Robots (L2TOR)20

project (Wallbridge et al., 2017).

The social facilitation work was done in collaboration with a team of researchers at

University of Plymouth. The author equally contributed to the experimental design,

execution, data analyses and writing, in addition to leading this research work, conducting

the literature review, and presenting the work at an international conference as the first

author of the published paper.

In designing the proposal for Social Care Challenge and conducting the demonstrations

during the UK robotics week, the author collaborated with Asimina Marmpena and Marta

Romeo under the supervision of Prof. Tony Belpaeme and Prof. Ray Jones.

The personalised robot narrator was developed in collaboration with Asimina Marmpena.

The author contributed by integrating the user recognition system (MMIBN) and imple-

18http://consequentialrobotics.com
19Video demonstrating the personalised robot narrator is available online: https://youtu.be/

fBIIn0PQGSA
20Second Language Tutoring using Social Robots (L2TOR): http://www.l2tor.eu
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menting additional personalisation modules for retrieval of user profile, based on the

estimated age of the user.

The author contributed to the analysis and writing of the results for the study on child

speech recognition.

1.5 Structure

The structure of this thesis is outlined below with an overview of the content and context

for each chapter. A summary of key elements and findings are included at the start of

Chapters 3 to 9 to clarify their contribution.

• This chapter provided an introduction and motivation for personalisation in long-

term human-robot interaction, in addition to the research questions and objectives

including the primary thesis, the scope, and the research approaches and contribu-

tions of the work presented in later chapters.

• Chapter 2 provides a background for the research, touching upon topics on long-term

human-robot interaction, personalisation and long-term memory, user recognition,

conversational artificial intelligence and real-world application areas where person-

alised robots can create an impact in long-term interactions, identifying the key areas

for contribution that this thesis aims to address.

• Chapter 3 proposes a novel multi-modal user recognition system, MMIBN, that

enables autonomous incremental and online learning in long-term human-robot

interactions. This chapter also introduces the quality of the estimation (Q) and long-

term recognition performance loss (L) parameters for optimising user recognition in

long-term interactions.

• Chapter 4 presents the first study evaluating the applicability of MMIBN to real-

world interactions. The results show that multi-modal recognition improves the

identification rate compared to face recognition and that the system is suitable for

real-world HRI. Moreover, it is found that online learning performed worse than

using fixed likelihoods for the user recognition system.

• Chapter 5 presents the multi-modal long-term user recognition dataset, which is

created to extend the work in Chapter 4 for evaluating MMIBN for a large number of
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users. As a result of the study, it is found that MMIBN significantly outperforms and

improves the identification rate compared to the face recognition, soft biometrics and

a state-of-the-art approach in open world recognition. In addition, it is confirmed

that online learning does not provide better performance than fixed likelihoods, but

it allows users to be recognised equally well.

• Chapter 6 presents the developed Barista and Personalised Barista datasets that are

used to train and evaluate rule-based and data-driven approaches for task-oriented

closed-domain dialogue.

• Chapter 7 describes the architecture for a fully autonomous barista robot with user

recognition, automatic speech recognition and a rule-based dialogue management

system. In addition, it examines the impacts and the challenges of using a barista

robot in a real-world study with non-native English speakers.

• Chapter 8 explores the applicability of the state-of-the-art end-to-end data-driven

approaches to personalisation in long-term interactions based on the Barista datasets

described in Chapter 6.

• Chapter 9 describes the architecture of a personalised socially assistive robot for

cardiac rehabilitation, in addition to the user study showing its application in the

real-world therapy.

• Chapter 10 draws on the main findings of technical and experimental work from

previous chapters, alongside the context of the related work, to present a discussion

concerning the research questions and contributions introduced in this chapter. The

limitations of the work conducted here are outlined, along with the future directions

of research and the potential impact of the designed systems in long-term HRI.
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Chapter 2

Background

This thesis focuses on multi-modal personalisation in long-term human-robot interactions,

particularly through user recognition and natural language-based interactions, for real-

world applications. This chapter provides a theoretical background in these areas.

In Section 2.1, previous work in the domain of long-term human-robot interaction is

surveyed to identify the challenges and methodology necessary in interactions that last for

extended periods of time. Subsequently, long-term memory systems and personalisation

in human-robot interaction are reviewed. In addition, a brief overview of personalisation

in real-world applications is laid out, highlighting service robotics and socially assistive

robotics, where an impact has been previously observed for long-term interactions.

Following the perspectives of the research in long-term interactions and personalisa-

tion, we focus on finding a suitable architecture for user recognition that enables fully

autonomous incremental and online learning for real-time interactions on a robot. A

broad overview of user recognition is provided in Section 2.2, whereby, the terminology

is introduced for biometric systems, and the underlying design choices in this project

are described under the topics of multi-modal recognition, soft biometrics, open-world

recognition and online learning, in addition to the previous methods in Human-Robot

Interaction (HRI), identifying areas for contribution.

As previously established in the scope of this work, we focus on social HRI based on

multi-modal bi-directional exchanges of information. Consequently, in Section 2.3, several

approaches in Conversational Artificial Intelligence (AI) for the fields of human-robot

interaction and chatbots are discussed, followed by a review of personalised conversational

agents.
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2.1 Long-Term Human-Robot Interaction

In short-term interactions (“the first 10 minutes of HRI” (Bartneck et al., 2019)), users

are generally affected by the “novelty-effect”, which arise from the unfamiliarity with

robots, hence their initial reactions might be quite different from their reactions over a

longer period of time. In contrast, long-term interactions consist of multiple interactions

with the user over extended periods of time. An interaction is considered “long-term”

after the novelty-effect wears off and the user becomes familiarised with the robot, which

depends on the number of interactions with a robot, and the context and complexity

of the robot’s behaviour (Leite et al., 2013). Research in this area enables investigating

changes in user behaviour and experiences, and observing the integration of robots into

human social contexts over time, as well as facilitate the design of systems for real-world

applications (Leite et al., 2013; Bartneck et al., 2019). Here we will explore the studies in

a variety of application areas, highlighting the challenges, methodologies and the key

conclusions.

2.1.1 Challenges and Design Considerations

There are fewer number of long-term interaction studies in the literature compared to

short-term studies, due to the challenges that long-term interactions face, such as lower

number of subjects and the required level of autonomy and lack of robust technology, as

described in detail below.

2.1.1.1 Subjects

Conducting long-term studies are more labour and time intensive both for the experi-

menter and the subjects, in comparison to short-term studies (Ganster et al., 2010), espe-

cially in the real world. Thus, it is challenging to recruit subjects willing to participate in

long-term studies, which limits the number of subjects in these studies (Leite et al., 2013).

For example, Huttenrauch & Eklundh (2002) explored the long-term effects of a service

robot, which is designed to help motion-impaired people with the transportation of light

objects in an office, with only a single participant over a period of 3 months on an average

of 3 hours per day. In another study (Wada & Shibata, 2007), which is accepted as one of

the landmarks in the field of long-term interaction (Leite et al., 2013), 12 participants in a
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care house interacted with a PARO robot (a seal shaped robot) over a month for 1-4 hours

per week. The robot demonstrated animal-like behaviour, such as responding to touch,

sound and lights, and recognised a limited number of words. The experiment showed

that the robot strengthens the social ties among the residents of the care house, deducted

from the increased duration of interaction between residents. In addition, most residents

established moderate or strong ties with the robot.

On the other hand, Gockley et al. (2005) deployed a “roboceptionist” at a university

campus with 233 participants over 6 months. The robot could recognise users through

their ID cards and conducted limited text-based dialogue to provide directions and talk

about its background story. A receptionist role was chosen for the robot to have more

frequent interactions, and it was deployed in a public space to maximise the number of

participants. Even though many users repeatedly interacted with the robot, after a certain

period, only a few of the interactions lasted for more than 30 seconds. Kanda et al. (2004)

conducted a field trial with 228 children in a school for two weeks. The robot identified

students using RFID tags and interacted with them in English through a limited set of

recognised words and uttered sentences. The results showed that the duration of the

interaction declined from 3-7 minutes in the first interaction to less than a minute in the

later interactions.

These studies show that the duration of the interaction and the number of available

participants depend on the capabilities of the robot and the application area.

2.1.1.2 Autonomy

A common technique in HRI is the Wizard-of-Oz (WoZ) methodology (Green et al.,

2004), in which a robot is tele-operated by an experimenter away from the view of the

user, to make the user believe that the robot is autonomous (Riek, 2012). This method

allows researchers to bypass issues that make it difficult to run the system autonomously,

such as automatic speech recognition (ASR), natural language understanding (NLU),

natural language generation (NLG) and navigation. Additionally, WoZ has been used

to gather data to design architectures for autonomous interactions. However, reliance

on this methodology may create unrealistic expectations and result in findings that are

not grounded in a realistic interaction, which threaten the validity of the studies and

applicability of these results to future interactions with fully autonomous robots (Fernaeus
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et al., 2009; Riek, 2012). In addition, long-term interactions, especially in real-world

applications, require a high level of autonomy (Goodrich & Schultz, 2007; Thill et al., 2012;

Leite et al., 2013). Human operation does not scale to interactions over extended periods of

time or in a variety of places. Especially for assistive robotics, the robots are aimed to help

overcome the shortfall of the workforce (Fasola & Matarić, 2013a), hence, having robot

operators is not plausible in the real world. However, in order to design and deploy fully

autonomous robots to the real world, we need robust and reliable technology. Currently,

such a technology does not exist.

Interactions in the real world carry the challenges of complex environments and noisy

data. In addition, for long-term interactions, the robots may need to interact in dynamic

environments, with a large number of people, for extended periods of time starting with

incomplete or incorrect knowledge due to the inaccuracies in the sensors. Kunze et al.

(2018) define common necessities and challenge areas in robotics for long-term autonomy

to be: navigation and mapping, perception, knowledge representation and reasoning,

planning, interaction, and learning. In this thesis, we rely on a static robot to avoid

problems with navigation, however, we will examine the other challenges that are of

particular importance.

If the users will be encountered repeatedly during long-term applications, autonomous

user identification that can adapt to the changes in the appearances of users is essential,

which is an open challenge of perception for robots (Kunze et al., 2018). Currently, there

is no reliable user recognition system that can identify and learn users autonomously

and incrementally for long-term human-robot interactions, as outlined in more detail in

Section 2.2.

Autonomous robots in long-term interactions in the real world require knowledge repre-

sentation and reasoning capabilities to represent various aspects of the world and reason

about them, in particular when these aspects change over time. If the environment is not

fully known before deployment or new objects may need to be learned, it is known as an

open world problem. Novelty and anomaly detection, in addition to belief revision through

updating the beliefs with new information, e.g., through online learning, are essential in

long-term scenarios (Kunze et al., 2018).

Planning and scheduling technologies are fundamental to account for the changes in the

environment or task dynamics, and to determine the necessary sequence of actions for
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achieving a task. These structures allow adapting the behaviour of the robot in an online

manner (Ingrand & Ghallab, 2017).

As previously mentioned, long-term HRI studies with fully autonomous social robots are

not common in the literature due to the difficulties of the dynamics and non-predictability

of an interaction with a human. Additionally, if the interaction is based on natural lan-

guage, the lack of robust technology might cause challenges in the interaction. Especially

in child-robot interaction, the state-of-the-art approaches (e.g., Google Speech-to-Text,

Microsoft Speech, CMU PocketSphinx, Nuance NAOqi speech recognition engine) fail

to provide reliable results due to a high number of disfluencies and ungrammatical lan-

guage utterances in child speech (Kennedy et al., 2017). Moreover, unconstrained speech

recognition in noisy environments (Shiomi et al., 2008), speech recognition with non-

native speakers (Kitashov et al., 2018) or elderly (Young & Mihailidis, 2010) also pose as

challenges for natural language interactions.

It is not possible to design and generate every possible response, action or sensor process-

ing structures for human-robot interactions (Goodrich & Schultz, 2007). Hence, learning

during deployment rather than during a design phase is crucial in achieving long-term

autonomy in open or dynamic worlds to compensate for the lack of complete knowledge

of users and the environment at the start of an interaction (Kunze et al., 2018). In addition,

techniques that allow robots to continually learn from experience should allow online

improvement of capabilities, autonomy, and interaction. However, unsupervised online

learning may result in worse performance due to inaccuracies in the data, which can be

overcome with “human-in-the-loop” systems to confirm the learned information.

2.1.2 User Expectations and Engagement

Short-term studies benefit from the novelty of the robot, that is, a higher positive user

experience is achieved due to it being the first time interaction with a robot. Even though

users might initially have high expectations, they might not have enough time to explore

the extent of capabilities, or rather the lack of capabilities, of the robot. In contrast, long-

term interactions allow users to encounter such limitations, which may result in a decrease

of interest and user engagement (Leite et al., 2013). The behaviour of the robot might not

be attractive enough to keep user expectations, and the frequency of interacting with the

robot and the user interest may decrease over time (Fernaeus et al., 2010; Kanda et al.,
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2007; Tanaka et al., 2006; Huttenrauch & Eklundh, 2002; Kanda et al., 2004; Salter et al.,

2004; Gockley et al., 2005; Sung et al., 2009).

Anthropomorphism might raise false expectations regarding the cognitive and social

abilities of a robot, that the robot fails to fulfil (Dautenhahn, 2004). In fact, when the robot

looks less human-like and demonstrates matching behaviour, users would expect less

cognitive human-likeness (Hayashi et al., 2010). In addition, the theory of the “uncanny

valley” (Mori, 1970) suggests that the likeability of a robot increases with more human-like

appearance, until a point where subtle deviations from human appearance and behaviour

create an unnerving effect, at which point the likeability decreases dramatically. Moore

(2012) supports the previous views on user expectations, and suggest that the uncanny

valley effect arises because of expectations that increase with human-likeness, such that

when a certain aspect of the appearance or behaviour is wrong, the likeability decreases.

Hence, one way to prevent users from having high expectations is by using robots that

have a simpler appearance.

However, the simpler appearance of a robot does not guarantee low expectations. Forlizzi

& DiSalvo (2006) stated that users had lower expectations for the practical functionality

of a Roomba robot (a service robot for cleaning the floors) compared to other social

or fictional robots. However, the users were disappointed that the robot did not gain

knowledge of the environment over time and adapt its behaviour accordingly, based

on their expectations that arise from other technological systems (e.g., phones, cars).

Nowadays, these expectations have risen due to the false advertisement of robots in the

media1. The state-of-the-art approaches, especially for verbal skills, do not meet these

level of expectations, which causes a sharp decrease in user interest over time (Gockley

et al., 2005; Kanda et al., 2007). Hence, it is crucial to well inform participants of the

capabilities of the robot and the context of the study.

Another important approach that would facilitate user engagement in long-term interac-

tions and help meet the growing expectations of users is to design robots that can increase

their knowledge over time. Remembering previous aspects of an interaction and learning

new information through the use of a memory structure may give users the impression of

behavioural coherence and plausibility, hence, it might positively influence the perception

of intelligence and, in turn, the quality of the interaction with the robot (Lim et al., 2011).

1The news article on falsely advertised robots in the media: https://www.forbes.com/sites/
noelsharkey/2018/11/17/mama-mia-its-sophia-a-show-robot-or-dangerous-platform-to-mislead/
#160615ca7ac9
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In addition, adapting to users and personalising the experience can help improve user

engagement and create a sense of familiarity over time to facilitate establishing rapport

and trust between the user and the robot (Dautenhahn, 2004; Sabelli et al., 2011; Leite et al.,

2013; Irfan et al., 2019). In the following sections, we will discuss the methodology and

effects of long-term memory systems and personalised robots in detail.

2.1.3 Long-Term Memory Systems and Personalisation

As stated in Chapter 1, this research focuses on personalisation in long-term human-robot

interactions. Memory is essential for learning, recalling and personalising interactions

that last for extended periods of time (Castellano et al., 2008; Wood et al., 2011; Leite et al.,

2013; Baxter & Belpaeme, 2014). Several memory models have been developed in HRI for

long-term interactions. Here we will focus our attention on long-term memory models for

personalised social HRI based on natural language.

The first generally accepted model of human memory is Atkinson-Shiffrin model (Atkin-

son & Shiffrin, 1968), known as the multi-store model, that consists of sensory, short-term

and long-term memory. According to the model, input passes from sensory memory into

a short-term storage gated by attention, which holds information for a finite length of

time. Through rehearsal, the information is passed to the long-term memory for storage

for longer periods of time, in addition to retrieval of information into short-term memory,

when necessary. Short-term memory is bounded by the context and task demand, whereas

long-term memory is not dependent on specific tasks. Working memory is a variant of

short-term memory (Baddeley & Hitch, 1974; Cowan, 1988) for a temporary recollection of

task-relevant information. Long-term memory can be further categorised into two parts:

procedural and declarative memory. Procedural memory contains non-consciously accessible

information such as skilled motor behaviours, habits, and stimulus-response conditioning.

In contrast, declarative memory holds consciously accessible information, consisting of

semantic memory that stores symbolic information about context-free objects, facts, and con-

cepts, and episodic memory, which contains “who, what, where, when information” about

previous interactions. For a nontrivial level of social HRI, Wood et al. (2011) suggest using

a biologically-inspired long-term memory that contains semantic (e.g., user’s name and

preference), as well as, episodic information, by using contextual, spatial, and temporal

information about previous interactions. For example, for a long-term companion robot,
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Ho et al. (2010) proposed a semantic memory to store user’s preferences in the initial

interaction and adapt to the changes in the preferences, and episodic memory to retrieve

similar events for deciding the correct actions in a currently encountered situation.

Section 1.1.2 highlighted the importance of using incremental learning (i.e., expanding a

model for new users or attributes) and online learning (i.e., updating a model sequentially

with incoming information) for adaptation in long-term interactions. Previous work in

long-term memory systems in HRI have implemented several ways of learning from

users during deployment, mostly based on rule-based systems relying on a knowledge-

base to extract and update information, or probabilistic methods and “human-in-the-

loop” systems that involve human input to learn and validate the information. For

example, an interactive manipulator robot arm used a combination of working memory

and long-term memory based on rule-based systems for incrementally learning and

updating sensory-motor actions through vision and dialogue (Mavridis & Roy, 2006;

Mavridis & Petychakis, 2010). Müller et al. (2014) designed a robot for accident prevention

and assistance for elderly people in long-term interactions, using a Partially Observable

Markov Decision Process (POMDP) that adapts it behaviour online based on user’s

reactions and explicit rewards. The results of their user study suggested that exploration

feature of the architecture was negatively perceived because the users were expecting

persistent behaviour. Campos et al. (2018) designed a “conversational memory” for a robot

that personalised its interactions by recognising users and revisiting common episodic

shared history to maintain a coherent social relationship over time. Situated learning and

crowd-sourcing were used to learn from user utterances, generate new utterances and

validate continuation sentences and end of a conversation. Their evaluation study over 14

days showed that only on rare occasions, the robot was able to refer back to previously

shared history because the users changed the topic or did not understand the intention of

the robot. While this memory system allowed users to converse about a various range

of topics with the robot, crowd-sourcing is very costly, hence, is not feasible in the real-

world applications. On the other hand, data-driven approaches that automatically infer

knowledge and strategies from data are rarely used in HRI, due to the amount of data

necessary to train these systems, which is especially challenging to obtain in HRI. In

fact, there are no studies that explored data-driven approaches in long-term HRI. The

studies that have used data-driven approaches for designing social robot behaviours are

based on short-term interactions, which were trained on corpora of natural human-human
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interactions (Liu et al., 2014; Liu et al., 2016, 2018; Liu et al., 2019; Doering et al., 2019a,c,b).

In this thesis, we explore rule-based approaches (Chapter 7 and Chapter 9), in addition to

data-driven approaches for personalisation in long-term interactions (Chapter 8).

A key problem with long-term memory is that storing all the information obtained in

interaction obstructs recalling relevant information in new interactions (Castellano et al.,

2008). Therefore, it is essential for the robot to know which information should be

recalled based on user inputs and the context of the interaction. The ways to obtain

the relevant information from an interaction vary depending on the application area

and the complexity of the task. On the one hand, close-ended structured dialogues

can be used to obtain pre-determined information from the user, however, this might

reduce the adaptability to variations in user responses. On the other hand, extracting the

relevant information from data would require an extensive amount of interactions, and

might prove counterproductive in some applications due to the noise in the data. Both

types of approaches are explored in this thesis, and the corresponding background in

conversational agents is detailed further in Section 2.3.

Most research focuses on using a pre-determined set of attributes for adaptation, depend-

ing on the task. These attributes and the behaviour of the robot are determined based on

the task and the application domain. Previous studies showed the benefits of remember-

ing user’s personal attributes (e.g., name, gender, age) (Kanda et al., 2004; Kanda et al.,

2007, 2010; Sabelli et al., 2011; Gockley et al., 2005; Mutlu et al., 2006; Belpaeme et al.,

2013; Kennedy et al., 2015; Leite et al., 2014; Churamani et al., 2017; Campos et al., 2018;

Zheng et al., 2019), preferences (Belpaeme et al., 2013; Ho et al., 2010; Churamani et al.,

2017; Zheng et al., 2019) and behaviour patterns (Glas et al., 2017; Zheng et al., 2019),

in addition to recalling previous shared history (Ho et al., 2010; Belpaeme et al., 2013;

Matsumoto et al., 2012; Leite et al., 2014, 2017; Campos et al., 2018; Zheng et al., 2019;

Ahmad et al., 2019) for improving user experience in long-term interactions, especially

through personalising the interaction. Zheng et al. (2019) compared remembering these

four types of information with a personal assistant robot (ERICA robot, by Glas et al.

(2016)) that tracked the status of users’ tasks and gave health tips. They used a combi-

nation of sensory memory, working memory, and long-term memory with a rule-based

knowledge-base structure that stored and retrieved memories. Their findings suggested

that commenting on observed user behaviour patterns elicits stronger positive feelings,

and tracking the progress of user’s goals and recalling previous shared history are more
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effective in building rapport than commenting on semantic information (e.g., personal

attributes or preferences). However, their results were based on a study with three users

and referring to the behaviour patterns were encountered far less than the other behaviour,

hence, a more comprehensive study is necessary for more conclusive results since each of

these types of information proved useful in the literature.

2.1.4 Real-World Applications

Conducting longitudinal studies in the real world can reveal how users interact with

the robot when the tasks involving them become more of a routine (Sung et al., 2009).

However, deploying autonomous robots in the real world creates additional challenges,

such as incomplete data and dropouts, thereby, decreasing the success rate of the inter-

action (Dondrup et al., 2018). However, such challenges allow testing the limits of HRI

systems and enable observing how people react to failures in the real world, such that we

can design reliable and durable systems.

Robots are beginning to emerge in real-world applications in a variety of areas, such as re-

tail2 (e.g., promoting sales3, managing warehouses or being used in delivery), restaurants4

(e.g., servers, cooks or hostesses), domestic environments (e.g., for cleaning (Prassler et al.,

2016) or as a companion) and healthcare5 (Prescott & Caleb-Solly, 2017) (e.g., exoskeletons,

surgery, telepresence and robots in therapy), in addition to industrial and military robots.

However, several domestic robots (e.g., Jibo6, Vector (Anki)7, Kuri (Mayfield Robotics),

Keecker8) recently were withdrawn from the market or the companies manufacturing

them shut down due to low sales, which is presumed to arise from the lack of a profoundly

valuable task to justify the significant purchase cost9. In contrast, in retail, restaurants and

healthcare, there is a “one-to-many” structure, where one robot can interact with hundreds

of people per day or over long periods of time, thereby, making it more likely to justify

its purchase value. In addition, some customers may repeatedly visit the same shops or

restaurants. Hence, recognising “regular” customers and recalling their preferences for

2https://emerj.com/ai-sector-overviews/robots-in-retail-examples/
3Pepper robot is used by several companies in retail (Pandey & Gelin, 2018):

https://www.softbankrobotics.com/emea/en/industries/retail
4https://medium.com/@olivermitchell/the-new-restaurant-experience-robot-servers-cooks-and-hostesses-ff25c261879e
5https://interestingengineering.com/15-medical-robots-that-are-changing-the-world
6https://www.jibo.com
7https://anki.com/en-us.html
8https://www.keecker.com
9https://spectrum.ieee.org/automaton/robotics/home-robots/why-the-pursuit-of-a-killer-app-for-home-robots-is-fraught-with-peril
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personalising their experience, e.g., to recommend new products, may increase rapport

with customers and encourage them to return to the shop or the restaurant again (Gwinner

et al., 1998; Kanda et al., 2010; Niemelä et al., 2019). While recalling all previous customers

is a very difficult task for a human, this can potentially be achieved with a robot (Glas

et al., 2017). Concerning healthcare, the number of individuals with long-term conditions,

such as stroke, arthritis, heart disease or dementia, is increasing with population growth,

whereas there is a growing need of qualified nurses and residential care workers (Fasola

& Matarić, 2013a; Prescott & Caleb-Solly, 2017; UK, 2017). Robots in assistive roles can

help reduce the workload of carers and medical specialists. Furthermore, personalised

robots can help track the progress of patients which would help doctors personalise the

therapy to the patient. Hence, we decided to focus our research on customer-oriented

service robots and robots in healthcare settings.

2.1.4.1 Service Robotics

Despite the growing use of customer-oriented service robots in the real world, there are

relatively few studies that explore their long-term effects. For example, Kanda et al. (2010)

used a robot in a shopping mall to give directions and advertise shops. The robot also

recognised users through RFID tags and personalised its recommendations based on

user preferences over time. The results showed that personalisation resulted in increased

familiarity and rapport. In addition, the authors suggested that using more natural user

recognition methods (e.g., face recognition) will increase the robot’s perceived intelligence.

Similarly, a robot that personalised its greetings based on the visiting patterns of the

recognised users in a shopping mall, such as frequency, time of the day, walking speed,

and the group size accompanying the user, was found to increase familiarity with the

robot (Glas et al., 2017). Lee et al. (2012) designed a personalised snack delivery robot for

long-term interactions that recalled snack choices, service usage patterns, and the robot’s

shared history with users (e.g., referring to previous robot failures). User orders were

taken and tracked via a website. The results suggested that personalisation reinforced

participants’ rapport, cooperation, and engagement.

However, none of the previously mentioned service robot studies was fully autonomous.

These studies used partial WoZ methods for helping with speech recognition, tracking user

preferences, controlling dialogue, specifying user locations or validating user recognition.
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2.1.4.2 Socially Assistive Robotics

Socially assistive robotics (SAR) refers to a domain of HRI where robots are used in

healthcare and therapies (Tapus et al., 2007). Examples of such studies involve cognitive

and developmental disorders (Michaud & Théberge-Turmel, 2002; Robins et al., 2005;

Scassellati, 2007; Thill et al., 2012; Moro et al., 2018; Rudovic et al., 2018; Scassellati et al.,

2018; Cao et al., 2019; Clabaugh et al., 2019), care for elderly (Roy et al., 2000; Tapus,

2009; Fasola & Matarić, 2013b; Khosla et al., 2016; Hanheide et al., 2017; Cao et al., 2019;

Kachouie et al., 2014), and rehabilitation (Eriksson et al., 2005; Tapus et al., 2008; Fasola &

Matarić, 2013b; Süssenbach et al., 2014; Schneider et al., 2017; Woodworth et al., 2018; Cao

et al., 2019). However, most research in rehabilitation has been carried out in laboratory

conditions or during short-term interventions, which restrict the applicability of the results

to long-term therapies in real-world applications due to the confounding factors, such

as the novelty effect (Gockley et al., 2005) and the adaptation of the technology (Riek,

2017). In fact, similar to the other domains, longitudinal research on SAR (Wada & Shibata,

2007; Kidd & Breazeal, 2008; François et al., 2009; Sabelli et al., 2011; Süssenbach et al.,

2014; de Graaf et al., 2015; Scassellati et al., 2018; Clabaugh et al., 2019) is notably less than

short-term studies, where some studies report a considerable decrease in user interest and

motivation compared to the initial interaction (Kidd & Breazeal, 2008; Süssenbach et al.,

2014).

Each area of rehabilitation is specialised in its own requirements, therefore, the role

of the robot can change depending on the task to assist with (Duffy, 2003), the user

population to work with (Scheeff et al., 2002), and the appearance and behaviour of

the robot (Feil-Seifer & Matarić, 2005). However, the applications share common goals,

such as providing monitoring, feedback and assistance, increasing user motivation, and

improving task performance and progress (Ahmad et al., 2017). Personalisation can

provide individualised care in these tasks (Matarić et al., 2007; Matarić & Scassellati, 2016),

improve user performance (Tapus et al., 2008; Tapus, 2009), increase perceived familiarity

and sociability (Sabelli et al., 2011; Fasola & Matarić, 2013b), and elicit and maintain user

engagement over extended durations (Scassellati et al., 2018; Winkle et al., 2018; Clabaugh

et al., 2019). Personalisation needs to focus both on the short-term changes that represent

individual differences (e.g., name, personality, preferences) and on the long-term changes

(e.g., therapy progress) that enable the interaction to continue to be engaging in the long-
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term through both verbal and non-verbal communication (Tapus et al., 2007). However,

due to the diverse individual needs, the noise of real-world environments, and the scale

of need in rehabilitation, non-autonomous personalisation of SAR is infeasible.

Most research in personalisation in SAR relies on rule-based approaches that use a pre-

defined set of rules determined by medical staff or based on previous research. Model-

based or statistical approaches (e.g., reinforcement learning or Bayesian methods) have

also been used in SAR for learning user preferences (Woodworth et al., 2018), adaptation

to user profile or states (Conn et al., 2008; Chan & Nejat, 2011; Gordon & Breazeal, 2015;

Gordon et al., 2016; Schodde et al., 2017; Rudovic et al., 2018) or personalising instruction

and feedback (Clabaugh et al., 2019). However, these methods require learning from a

large amount of data (Clabaugh et al., 2019), which is especially lacking in HRI. In addition,

these approaches may prove unreliable in providing a structured therapy (Gordon et al.,

2016) and may result in incorrect behaviours of the robot, therefore, posing serious health

problems, especially in rehabilitation therapy.

In this section, we highlighted the challenges of long-term human-robot interaction, and

we identified that common solutions involve autonomous personalisation of the interac-

tion through recognising users and adapting the communication and robot behaviours. In

the following sections, we discuss the previous work on user recognition and conversa-

tional artificial intelligence to determine the methods appropriate for customer-oriented

service robotics and socially assistive robotics.

2.2 User Recognition

User identification is an important step towards achieving and maintaining a personalised

long-term interaction with robots. Contrary to the general approaches in biometric recog-

nition, in an HRI scenario, the robot may start from a “tabula rasa” state with no prior

knowledge of users. The users would be encountered incrementally, that is, all the users

will not be introduced as a “batch”. Hence, it is necessary to differentiate “unknown” users

from those that are previously enrolled. Ideally, new users should be allowed to enrol

in the system at any time for future recognitions. This section introduces the concepts of

recognition and details the state-of-the-art approaches in biometric systems and HRI.

Recognition in biometric systems can either refer to verification (authentication) or identi-
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fication (Phillips et al., 2011). Verification involves a one-to-one match that compares the

presented biometric sample, called a probe, to the corresponding biometric samples of

the claimed identity in the enrolment database (gallery). Identification corresponds to

one-to-many matching that compares the given probe to multiple biometric samples in

the gallery to associate the identity of the user to one of those in the database. Moreover,

identification can be divided into two categories: closed-set recognition and open-set recogni-

tion. Closed-set identification assumes that the probe should belong to someone in the

gallery, that is, all users to be identified are previously enrolled in the system. In open-set

identification, the probe does not have to belong to a user within the database. Hence,

the system has to decide whether the user is new or a previously enrolled user. Open-set

recognition is a well-established area (Scheirer et al., 2013; Jain et al., 2014; Scheirer et al.,

2014), but in a real-world setting, these unknown classes might need to be added into the

system for future recognitions, extending the open-set recognition problem to include

the incremental learning of new classes, known as open world recognition. Recognition in

human-robot interaction is a type of open world recognition problem where the new users

need to be identified as unknown, and these users should be further allowed to enrol in

the system.

Face recognition (FR) is the most common method in biometric recognition. Nevertheless,

most FR challenges, such as Face Recognition Vendor Tests10, only evaluate verifica-

tion algorithms. To this date, Unconstrained Face Detection and Open Set Recognition

Challenge11 remains the only available open-set identification challenge, which show

that the best algorithms achieved good identification accuracies at the cost of high false

identification rates (Gunther et al., 2017).

FR could be unreliable during a real-time identification, due to several reasons, such as

changing facial features, expressions, occlusions and lighting conditions (Wójcik et al.,

2016). Another example is the recent release of a smartphone with a built-in FR system,

which was reported to fail in distinguishing family members of different genders and

ages due to the similarity of their facial features12. This issue raised awareness of the

security and privacy problems that using FR might cause, as compared to access through

a passcode.

10https://www.nist.gov/programs-projects/face-recognition-vendor-test-frvt
11http://vast.uccs.edu/Opensetface
12https://www.wired.com/story/10-year-old-face-id-unlocks-mothers-iphone-x/
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In addition to false identification, in the case that a biometric system cannot obtain

meaningful data, Failure to Capture error (FTC) will be encountered (Ross & Jain, 2007).

For example, a face may not be detected in the case of a blurry image while the person

is in motion. Failure to Enroll error (FTE) denotes the proportion of users that cannot be

successfully enrolled in a biometric system for this reason. Moreover, biometric systems

that use a single identifier, called a uni-modal biometric system, has an upper bound on

matching accuracy.

2.2.1 Multi-modal Recognition

Humans use multi-modal information for recognising a person, especially in case of

incomplete information, such as using voice in a dark room. Similarly, multi-modal bio-

metric systems can improve the matching accuracy by fusing information from multiple

biometric identifiers, which allows reducing the effects of noisy data, decreasing FTE error,

and eliminating the upper bound set on the accuracy for a better estimation of the identity.

Robots are ideal platforms for using multi-modal recognition due to carrying a wide range

of sensors.

Several post-classification fusion methods have been proposed for integrating multi-modal

information, as shown in Fig. 2.1, which can be classified into three categories: decision,

rank, and confidence level fusion (Jain et al., 2005). Decision level fusion (e.g., majority

voting, AND/ OR rule) is mainly used for combining individual best matches from each

biometric classifier. Rank level methods (e.g., highest rank, logistic regression) are used

when the output of each biometric classifier consists of ranked matches.

Confidence level fusion methods are the most common approaches, as they combine the

individual scores from multiple biometric sources, which provide more information than

the ranks or best matches. There are two approaches to combine the scores for confidence

level fusion: classification and combination. In the classification approach, a feature vector

is used to combine the output of individual identifiers, which is then classified into

categories. This approach allows combining non-homogeneous data, such as distance or

similarity metric and different numerical ranges, therefore, no pre-processing is required.

Examples of the classification approach are neural networks, k-nearest neighbors, Support

Vector Machine (SVM), and decision trees.

In the combination approach, the individual matching scores from multiple biometric
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Figure 2.1: Biometric fusion methods (adapted from Jain et al. (2005)).

identifiers are combined into a scalar score, which is used to identify the person. Several

combination methods exist in the literature, such as product rule, sum rule, min rule, max

rule, median rule, and majority voting. For instance, a Bayesian network (BN) computes the

probability of an outcome by using the product rule to combine the probabilities of a set of

variables based on their conditional dependencies. Thus, BNs are suitable for multi-modal

biometric recognition (Bigün et al., 1997; Verlinde et al., 1999; Jain et al., 2004; Scheirer

et al., 2011).

In order to ensure a meaningful combination of scores, the scores must be normalised into

a common range through normalisation. A good normalisation method should be robust

and efficient in estimating the location (i.e., mean of a normal distribution) and scale (i.e.,

standard deviation) parameters, where robustness indicates the insensitivity to the outliers,

and efficiency refers to the proximity of the optimal distribution to the estimated one when

the former is known.

After the combination of the scores, a threshold is used to determine if a matching score

corresponds to a genuine user or an impostor, that is, the values below the threshold are

regarded as impostor score.
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2.2.2 Soft Biometrics

Although most biometric systems utilise primary biometrics, such as fingerprint or face, for

person recognition, other attributes of an individual such as age, gender, ethnicity, height,

eye colour and clothing -referred to as soft biometrics (SB)- can provide additional informa-

tion to improve the recognition performance (Dantcheva et al., 2016). Soft biometric traits

are characteristics that provide information about a user that is not capable of uniquely

identifying a person on its own.

The primary work (Jain et al., 2004) that proposed fusing soft biometric traits (e.g., gender,

ethnicity, and height) with a primary biometric (e.g., fingerprint) used a . They proposed

a weighting scheme where the traits with smaller variability and larger distinguishing

capability will be given more weight in the computation of the final matching scores.

Other notable research combined soft biometric data (ethnicity, hair colour and gender)

with contextual information (occupation and location) using a Bayesian attribute net-

work (Scheirer et al., 2011), or with other primary biometrics (Abreu & Fairhurst, 2011;

Jain & Park, 2009; Zewail et al., 2004; Park & Jain, 2010).

2.2.3 Open World Recognition

User recognition in HRI, especially within long-term interactions, require identifying new

users and enabling them to be enrolled for subsequent interactions, which is an open world

recognition problem. Several open-set recognition algorithms exist for detecting novel

classes, such as 1-vs-Set machine (Scheirer et al., 2013), Support Vector Machine (SVM)

approaches (Scheirer et al., 2014; Jain et al., 2014), and nearest neighbors methods (Fayin

Li & Wechsler, 2005; Mendes Júnior et al., 2017). However, these approaches require

re-training the entire system in order to add new classes. While this may be feasible

for a small amount of classes, the running time increases with the increasing number of

classes and data (Bendale & Boult, 2015; Suguna & Thanushkodi, 2010; Wang & Wang,

2007). Thus, they are not suitable for real-time open world recognition. In addition, these

approaches require a sufficient amount of data to form meaningful clusters and accuracies.

Despite the fact that most state-of-the-art face recognition methods use deep learning (Taig-

man et al., 2014; Sun et al., 2014; Parkhi et al., 2015; Schroff et al., 2015), only a few ap-

proaches exist for open-set recognition (Bendale & Boult, 2016; Ge et al., 2017; Shu et al.,
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2017) and there does not exist one for open world recognition. The reason is most deep

learning methods suffer from catastrophic forgetting problem, which refers to the drastic loss

of performance on previously learned classes when a new class is introduced (McClelland

et al., 1995; McCloskey & Cohen, 1989; Parisi et al., 2019). Existing approaches that could

help to overcome this problem often require a part of the previous data for re-training,

which might not be available. Moreover, similar to SVM and nearest neighbors methods,

re-training does not scale well with time.

Bendale & Boult (2015) introduced the first algorithm applied to open world recognition,

called Nearest-Non Outlier, based on Nearest Class Mean (Mensink et al., 2013) for open-

set classification and incremental learning. Rudd et al. (2018) developed Extreme Value

Machine (EVM) using Extreme Value Theory, which selects points and distributions that

best summarise each class to form the probabilistic representation of decision boundaries

to classify samples and identify unknowns. They used a Weibull distribution over the

positive class scores to estimate the unnormalised posterior probability of inclusion for

each class, while incrementally adding a batch of new classes using model reduction with

a threshold. They showed that EVM is comparable to the W-SVM (Scheirer et al., 2014) in

open-set recognition and outperforms Nearest-Non Outlier for open world recognition.

Similarly, Fei et al. (2016) proposed a new approach for what they termed as cumulative

learning which is a type of lifelong learning problem applied to open world recognition,

based on a centre-based similarity space learning method and the 1-vs-rest strategy of

SVM. However, none of these methods have been evaluated on user recognition. In

addition, there are no open world user recognition methods that apply sequential learning

of new classes.

Bayesian networks assume a priori knowledge of the states of variables and the conditional

probabilities of these variables. Their structure, in theory, allows incremental learning

to add new states, however, this would require readjusting of the probabilities between

conditionally dependent variables, which could be the reason that they have not been

applied to open world recognition problems before. Nevertheless, an extension of a BN

was proposed to the open universe problem Milch & Russell (2010), which is concerned

with the uncertainty about which objects exist, and the relations between the variables.

However, the open world problem is simpler, in that, only the number of states of a

variable, such as the number of users or the number of known faces, can change.
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2.2.4 Online Learning

Humans can update their prior beliefs by continuously adapting to changing circum-

stances and learning effectively from their experience. An algorithm designed for open

world recognition may not be sufficient to recognise a person after changes in their ap-

pearance, because the model is not updated for known samples. Such a problem, where

the training data becomes available sequentially, can be solved by online learning (OL).

Online learning allows the model to be updated at each sample, which can improve the

performance in recognition (De Rosa et al., 2016).

There are many existing algorithms for online learning for classification. For instance, Lee

& Kriegman (2005) proposed an online learning algorithm of probabilistic appearances

for video-based recognition and tracking, which is comparable in performance to batch

learning, but a prior generic model is necessary for their approach.

De Rosa et al. (2016) used online learning in open world recognition for incremental

learning of classification metric and the threshold for novelty detection and local learning

for describing the space of classes. Their results showed that online learning increases

performance. The approach was applied to object recognition on three existing algorithms,

namely, Nearest Class Mean, Nearest-Non Outlier and Nearest Ball Classifier (Rosa et al.,

2015), and they showed that their approach performed better than these baselines.

For Bayesian networks, the conditional probability tables, hence, the priors and likelihoods

are assigned based on a priori knowledge of the data, or they are learned from data (Koller

& Friedman, 2009). However, hand-crafted likelihoods can cause incorrect estimations

if the set probabilities are not accurate enough. If the data is fully available, Maximum

Likelihood estimation is commonly used for learning the likelihoods from data, which

relies on counting how many times each of the possible assignments of conditions appears

in the training data (Koller & Friedman, 2009). However, in the case of incomplete data,

the assumptions or learned likelihoods might not hold valid, which, in turn, would affect

the overall estimations of the posterior probabilities. Online learning of the likelihoods

can help achieve better performance.

Contrary to online learning of the network structure or parameters, the online learning

of the likelihoods or priors has been understudied, as the availability of the conditional

probability tables is assumed. If the relation is dependent over adjacent time steps, dy-
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namic Bayesian networks can be used. However, in a recognition scenario, the previously

recognised user can be different from the current target user, hence, dynamic Bayesian

networks are not suitable. Some online learning approaches involve making assumptions,

such as conditional independence on the priors (Oravecz et al., 2016) and Gaussian distri-

bution of parameters (Opper & Winther, 1999), which does not apply to biometric data, or

require careful selection of parameters (Honkela & Valpola, 2003) for good performance.

Bauer et al. (1997) first proposed the use of Expectation Maximization (EM) with a constant

learning rate, named EM(η), for online learning of likelihoods in Bayesian networks with

sequential and incomplete data. Cohen et al. (2001a,b) extended the approach for complete

(fully observable) or missing (partially observable) data with an adaptive or constant

learning rate, called Voting EM. When the data is fully observable, they suggested using

an adaptive learning rate, such that the effect of new samples would decrease with time,

based on Maximum Likelihood estimation or through a set of pre-defined values. On the

other hand, for missing data, a fixed learning rate can be used, unless if there is hidden

nodes, in which case, incremental EM (Neal & Hinton, 1999) can be used.

2.2.5 User Recognition in Human-Robot Interaction

The challenges in user recognition in HRI derive from the need to automatically learn

and recognise users without intrusive methods or external devices, such as QR codes or

access cards. This requires a real-time biometric system that allows incremental and online

learning.

Similar to biometric recognition, the most common approach for user recognition in HRI

is through face recognition (FR). The earliest work on incremental user recognition in HRI

used FR on the Kismet robot (Aryananda, 2001) with seven subjects in a lab environment

and with the Mertz robot (Aryananda, 2009) with 500 subjects in a public environment.

User recognition was based on batch clustering of images taken from a video sequence

during the interaction with a user. Even though the system was incremental, it required

initial training based on 300 images to recognise users, and the users were generally

misclassified as a known individual until their clusters were formed. Other classification

approaches for open-set recognition recognition in HRI used SVM (Hanheide et al., 2008),

Bayesian approaches (Cruz et al., 2008) and a combination of k-nearest neighbor with

principal component analysis (Gaisser et al., 2013). However, all of these methods require
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offline pre-training or re-training in order to achieve autonomous user recognition. In

other words, none of these methods allow autonomous open world user recognition

starting from a state without any known user.

Robots lend themselves well for multi-modal recognition based on their multiple sen-

sors. However, only a few studies exist that used soft biometrics for recognition in HRI.

Martinson et al. (2013) used only soft biometrics, namely, clothing, complexion (nose and

forehead) and height, to guess the identity of the individual out of three subjects within a

group, with 202 subjects in total. They achieved a 90% correct identification rate, where

clothing was the most reliable parameter, and complexion the least. The importance of

clothing parameter can be explained by the short duration between the first initial 20-

second training phase and the second recognition. However, in a long-term HRI scenario,

clothing could be unreliable as the clothes of the users will change frequently. Moreover,

the problem is likely to be more complex than a fixed choice task with 3 options, hence,

soft biometrics alone would not be sufficient to identify a user.

Ouellet et al. (2014) combined face recognition, speaker identification and human metrol-

ogy with a weighted sum in closed-set identification. They used pre-training that consisted

of 30 seconds of facial images from different angles and facial expressions, reading pas-

sages for 2 minutes and 60 seconds for human metrology. They trained the system on 22

participants, but only evaluated on seven people with increasing distance to the camera.

Thus, given the required length of the training data and the small number of participants,

it is hard to conclude if the method works well in open-set identification. Another study

for multi-modal recognition in closed-set identification, proposed combining face, body

and speech information, but they have not tested their approach in a real-world HRI sce-

nario (Al-Qaderi & Rad, 2018). However, none of these methods combined soft biometrics

with a primary biometric for open world user identification in real-time HRI.

In this section, we have established that there are no incremental user recognition methods

suitable for real-world HRI. Correspondingly, in this thesis, we will build a multi-modal

user recognition system with incremental and online learning for long-term interactions,

without the necessity of any preliminary training (Chapter 3, 4 and 5).

In the next section, we turn our attention to the communication within the interaction, such

that we can identify methods that are suitable for personalisation in long-term interactions.
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2.3 Conversational Artificial Intelligence

Verbal and non-verbal communication are vital for achieving a natural human-robot

interaction with mutual understanding (Mavridis, 2015). Thus, as previously established

in Chapter 1, our research focuses on multi-modal communication based on speech, text-

based and sensory information. Conversational Artificial Intelligence (AI) is the field

that focuses on building speech and text-based solutions to automate communication

with conversational agents, such as chatbots, virtual agents and social (or sociable) robots.

In this section, we will provide an outline of conversational AI to introduce the related

concepts and common state-of-the-art architectures, ranging from rule-based methods to

data-driven approaches, before focusing on personalised chatbots and robots.

Various approaches exist within conversational AI depending on whether the conversation

is task-oriented (goal-oriented), such as meeting scheduling, giving directions and booking

restaurants, or general purpose (e.g., chit-chat), and whether the range of topics is restricted

(closed-domain) or not (open-domain). Our research focuses on closed-domain task-oriented

natural language interaction.

Task-oriented dialogue is composed of a sequence of turns of dialogue acts from the user and

the agent, where utterances are actions that can change the (mental) state of both the user

and the system (Wittgenstein, 1953; Austin, 1962; Core & Allen, 1997; Traum, 1999). These

actions can be used to suggest, plan, acknowledge, inform, request and confirm certain

information (Bach & Harnish, 1979). A typical task-oriented dialogue system is composed

of four modules (Tur, 2011; Young et al., 2013; Gao et al., 2019), as illustrated in Figure 2.2:

Natural Language
Understanding 

(NLU)

Dialogue State
Tracking

(DST)

Dialogue Policy
(DP)

Natural Language
Generation

(NLG)

Knowledge-
Base 
(KB)

Text-to-Speech
(TTS)

Automatic Speech
Recognition

(ASR)

Task-Oriented Dialogue Systems

Dialogue Manager (DM)

Figure 2.2: Task-oriented dialogue management system architecture, with optional mech-
anisms for storing and extracting information (KB), analysing speech input (ASR) and
producing speech output (TTS).
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(1) natural language understanding (NLU) module for identifying conversation domain,

user intents and extracting related information through pre-determined templates; (2)

dialogue manager (DM) for controlling the dialogue, composed of dialogue state tracking

(DST) that determines the (belief) state of the conversation and dialogue policy (DP) that

chooses the best action given the current state; (3) natural language generation (NLG) for

transforming the agent action into a natural language response. Knowledge-base (KB) is

an external database that is often used in task-oriented dialogue systems to inquire about

or store information to accomplish the task. A system action can be a user response in

the form of dialogue acts, or an internal operation such as a KB lookup or an application

program interface (API) call. If a user communicates with the agent through speech instead

of text-based input, an automatic speech recognition (ASR) system is necessary to extract

corresponding words or sentences from speech signals before it is passed on to the NLU

module. If the agent utterance will be delivered via speech, a text-to-speech (TTS) module

transforms the text output into speech. Depending on the application domain (e.g., for

robots), both the user input and the agent output may include a variety of modalities

including gestures, visual displays and haptic feedback.

The dialogue managers in task-oriented dialogue systems can either rely on a set of

hand-crafted if-then-structures and templates to track the dialogue state and choose

the corresponding dialogue act (i.e., rule-based approaches) or model the uncertainty

in dialogue states and learn the dialogue policy through statistical approaches. The

simplest rule-based dialogue management systems (RBDMSs) rely on finite state machines

(FSMs), where states represent questions, and links between states correspond to actions

depending on the user response (Winograd & Flores, 1986; Goddeau et al., 1996; Stent

et al., 1999). These systems are designed for user-initiative or system-initiative conversations,

in which either the user or the system controls the dialogue through prompts or questions.

Template-based (frame-based) systems aim to fill a set of slots with values extracted from

the user’s utterances, by matching them to pre-defined structures or keywords (Bobrow

et al., 1977; Simpson & Eraser, 1993; Aust et al., 1995; Stent et al., 1999; Pieraccini et al.,

1997; Thompson et al., 2004a). Bobrow et al. (1977) proposed the template-based Genial

Understander System (GUS) architecture for travel planning that extracted various travel

information, such as date of travel, the origin of travel and destination, and booked user’s

travel plans accordingly. This architecture underlies most (if not all) modern commercial

digital assistants, with a mixed-initiative structure and nonlinear dialogue flow, in which
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the system and user may ask and answer questions in any order (Jurafsky & Martin, 2019).

Additional rule-based approaches include plan-based systems (Allen et al., 1994; Cohen

& Perrault, 1986; Cohen & Levesque, 1990), models of rational interaction (Sadek et al.,

1997), and Bayesian approaches (Sun et al., 2014). Most task-oriented dialogue systems

in HRI also rely on rule-based approaches (Gockley et al., 2005; Kanda et al., 2007, 2010;

Giuliani et al., 2013; Kasap & Magnenat-Thalmann, 2012; Churamani et al., 2017; Williams

et al., 2018; Zheng et al., 2019).

A variety of statistical approaches emerged due to the Dialogue State Tracking Chal-

lenges13 (Henderson, 2015; Chen et al., 2017), such conditional random fields (Lee, 2013;

Lee & Eskenazi, 2013; Ren et al., 2013), maximum entropy models (Williams, 2013), web-

style ranking (Williams, 2014), Partially Observable Markov Decision Process (Young et al.,

2013), and several machine learning approaches (see Henderson (2015) for a survey). In

addition to state tracking, statistical approaches, such as supervised learning, reinforce-

ment learning and transfer learning, have been applied to policy learning (Gašić et al.,

2013; Genevay & Laroche, 2016; Mo et al., 2016). Nowadays, most of the publicly available

and commercial task-oriented chatbot systems (e.g., Alexa, Siri, Google Assistant) are

often a combination of hand-crafted components, which allow extracting information

through common queries, and statistical methods that provide robustness to noise and

ambiguity and allow learning through data (Gao et al., 2019).

Recently, data-driven approaches, which rely on extracting and learning the structures

and values directly from the training data, have been devised for task-oriented dialogue

to reduce the cost of laboriously hand-crafting dialogue managers (see Yan (2018) and Gao

et al. (2019) for recent surveys on these methods). Data-driven approaches are categorised

based on how the dialogue response is generated: retrieval-based (also called ranking or

information retrieval) and generative models. Retrieval-based models select a dialogue

response from a set of predefined responses (candidates). These systems can provide

syntactically correct and specific responses, however, the responses are limited to those in

the candidate set. In contrast, generative models generate a response word-by-word based

on the conversation history (context), thus, they are prone to grammatical errors. One of

the most popular generative models is that of Sutskever et al. (2014), called Sequence-to-

Sequence (Seq2Seq). It relies on multi-layered long short-term memory (LSTM) (Hochreiter

& Schmidhuber, 1997) for encoding and decoding. The main advantage of this model is

13https://www.microsoft.com/en-us/research/event/dialog-state-tracking-challenge
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that it requires only a small amount of feature engineering and domain specificity, thus it

can be applied to tasks where domain knowledge may not be readily available or where

the design rules are too complex to create manually (Vinyals & Le, 2015). In addition, it

can generate entirely novel responses, in contrast to retrieval-based model approaches.

However, these approaches require a large amount of data to train and are computationally

expensive because they need to learn the sentence structure. Furthermore, the vanilla

approaches rely only on recent dialogue history without using an external memory (Zhang

et al., 2018).

Remembering all the information learned in an interaction, given the expanding volume

of data over time, may prevent recalling salient information. One of the solutions to

this problem in data-driven approaches is using attention mechanisms, which focus on

particular elements of a task to respond to queries. Memory Networks (Weston et al.,

2014; Sukhbaatar et al., 2015) combine a long-term memory with an attention mecha-

nism, hence, in theory, they should be suitable and adaptable for long-term interactions.

However, similar to other data-driven approaches, they have only been evaluated in

single interaction or application domains, such as question-answering (Weston et al., 2014;

Sukhbaatar et al., 2015; Chandar et al., 2016; Ganhotra & Polymenakos, 2018), language

modelling (Sukhbaatar et al., 2015), task-oriented (Bordes et al., 2016; Joshi et al., 2017)

and open-domain dialogue (Dodge et al., 2015; Zhang et al., 2018).

A similar approach to Memory Networks is Dynamic Memory Networks (DMN) (Kumar

et al., 2015; Xiong et al., 2016), which uses gated recurrent neural networks (GRU) (Cho

et al., 2014; Chung et al., 2014) and word sequence representation instead of sentence

representation. DMN models are applicable to various domains such as question answer-

ing (QA), text classification for sentiment analysis, part-of-speech tagging and visual QA,

however, it has not been evaluated on dialogue. Other similar approaches are Neural

Turing Machine (Graves et al., 2014) and the work of Bahdanau et al. (2014), however,

similarly to DMN, they have not been applied to task-oriented dialogue.

2.3.1 Personalised Conversational Agents

As we have established in the previous sections, personalisation is important in long-term

human-robot interactions to improve user engagement and build rapport with users. In

the domain of chatbots, personalisation was also shown to increase the perceived level of
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social intelligence of the agent, in addition to increased task efficiency and awareness of

the situational context of the conversation (Neururer et al., 2018; Kocaballi et al., 2019). In

the following sections, we will outline the previous research in personalisation of dialogue

with chatbots and social robots to identify the appropriate architectures.

2.3.1.1 Personalised Chatbots

Some studies in the domain of chatbots relate personalisation to the agent’s personal qual-

ities, such as personality. For example, Zhang et al. (2018) applied End-to-End Memory

Networks (MemN2N) to open-domain conversations with personalities (Persona-Chat

dataset) to increase user engagement and create consistent dialogue. They compared

several retrieval-based and generative models, which showed that ranking models out-

perform generative models in choosing the correct response. Nevertheless, generative

models offer flexibility in a conversation and handle previously unseen (out-of-vocabulary)

words better than the ranking models. Based on the Persona-Chat dataset, the Conver-

sational Intelligence Challenge14 was created under the scope of competitions tracks in

NIPS (NeurIPS) conference in 2017 and 2018 (Dinan et al., 2019). This challenge gave rise

to many approaches (e.g., Yusupov & Kuratov (2018) and Wolf et al. (2019), the winning

systems of those years) that focus on maintaining a personality in open-domain dialogue.

Other studies focused on personalisation for adapting the conversation, content and

behaviour of the agent to the preferences and needs of users and situational context. For

example, Thompson et al. (2004b) proposed a template-based interactive system with

a knowledge-base for restaurant recommendation, which could learn user preferences

in a dialogue to improve future conversations. The results showed that the number

of turns and time required to find an acceptable restaurant decreased over time with

personalisation. Other rule-based approaches (Rich, 1979; Pargellis et al., 2004; Lucas et al.,

2009; Tokunaga et al., 2017) used offline user-entered information inserted to the system

at the set-up time, however, as we highlighted in previous sections, online learning from

users during an interaction is essential for long-term interactions, since behaviours and

user preferences can change over time.

Rule-based approaches perform well in simulated text-based datasets for personalisation,

but they are not suitable for real-world applications, where handcrafting every possible

14http://convai.io
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request or utterance in terms of templates is not plausible. Statistical dialogue systems,

such as transfer learning (Genevay & Laroche, 2016; Mo et al., 2016), combine the modular

architecture of rule-based systems with learning of states and actions from training data

for personalising the interaction. However, the performance of these approaches depend

on the pre-defined parameters of the reward function and may deteriorate due to the

differences between the selected source users and the target user.

Data-driven approaches map the user input to the agent output directly, hence, provide

more flexibility without requiring any set of rules. Joshi et al. (2017) created a personalised

simulated text-based dataset building upon bAbI dialog dataset (Bordes et al., 2016) for

restaurant booking, with recommendations based on dietary preferences and favourite

food of the user, and adapted conversation and recommendation styles based on the user’s

gender and age. They also introduced a split memory architecture based on MemN2N,

which allow the model to perform separate attention over the knowledge-base facts (or

profile attributes), in order to reduce the confusion during retrieval and generative settings.

Such confusion arises while retrieving information from the database about an entity, such

as the address of a recommended restaurant, because there is no mechanism to enforce

the attention of the network to interpret knowledge about a specified entity or link it to

the user’s attributes, unlike in a rule-based system. The proposed approach significantly

outperformed supervised embeddings (Bordes et al., 2016) baseline, and performed better

in recommending the correct restaurant and in full dialogue than MemN2N, however, it

performed worse in changes to the requests and responding to user queries. Luo et al.

(2019) and Zhang et al. (2019) proposed improvements on the split memory architecture

based on this dataset. However, all of these approaches focus on personalising the dialogue

based on general attributes (gender and age), instead of adapting to each user. In addition,

personalisation was based on single interactions of users, instead of long-term interactions.

Moreover, user attributes were pre-defined at the beginning of the conversation, instead

of obtained from the interaction. Nevertheless, the split memory architecture may be

suitable for personalisation in long-term HRI, since one part of the memory may be used

for focusing on individual user attributes.
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2.3.1.2 Personalised Dialogue in Human-Robot Interaction

Humans communicate with each other through a variety of ways, such as speech, ges-

tures, expressions, and text and image-based interfaces. Building robots that support

multi-modal communication through conversing with humans in natural language, as

well as supporting crucial non-verbal communication aspects, will allow a more natural

interaction, whereby, ensuring communication and task effectiveness (Mavridis, 2015). In

addition, multi-modal interaction is particularly important in personalisation of long-term

interactions, in order to achieve user recognition and communication to improve the user

experience and engagement, which is a common approach in previous research.

Most of the HRI studies personalise the interaction by using partial or fully Wizard-

of-Oz operation in order to choose an appropriate dialogue response, avoid errors in

speech recognition or learn from users (e.g., Kanda et al. (2010); Sabelli et al. (2011); Lee

et al. (2012); Senft et al. (2015); Leite et al. (2017); Glas et al. (2017); Ahmad et al. (2019);

Kennedy et al. (2015)). However, as previously stated in Section 2.1.1, having an operator

is not suitable for real-world applications for extended periods of time. Only a few

studies (Kasap & Magnenat-Thalmann, 2012; Zheng et al., 2019; Churamani et al., 2017)

explored fully autonomous personalisation in dialogue for long-term HRI. However, none

of these studies were conducted in the real-world environments.

Kasap & Magnenat-Thalmann (2012) combined short-term and episodic memory in multi-

modal personalisation of the teaching style depending on the affective state of the agent

and the user, and the agent’s relationship with the user over time. They used a rule-based

approach based on beliefs, desires (goals) and intentions (actions) (Bratman, 1999) of the

agent combined with a hierarchical task network and finite state machine to plan and

execute the goals. In addition, a rule-based emotion engine is used to determine and

update emotional state and mood of the agent. The users are recognised through face

recognition, and user responses are obtained by speech recognition. While this model

proves to be a successful implementation of personalisation in increasing user engagement

and responsiveness over time, using affect may not be appropriate in some domains (e.g.,

healthcare).

Also presented in Section 2.1.3, Zheng et al. (2019) used sensory, working and long-

term memory based on a rule-based dialogue manager and a knowledge-base to offer

personalised activity tracking. Personalisation consisted of learning and recalling the
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user’s name, hobbies, plans and behaviour patterns, and referring to the robot’s own

failures. A case study of three users was conducted over eight days, which suggested

that commenting on meta-behaviour (e.g., user’s leaving time from the office) is more

successful in inducing positive reactions, followed by recalling shared experience (e.g.,

robot’s failures) and referring to user’s previously stated plans, with the least positive

reaction being induced by remembering factual information (e.g., hobbies). However, the

results cannot be generalised due to the limited number of users, and the unequal and

small amount of personalisation patterns.

Churamani et al. (2017) used a rule-based knowledge-base to personalise greetings and

conversation by obtaining the user’s name and preferences in the initial interaction and

recalling it in the subsequent one, during small-talk for an object teaching task. Multi-

modal user recognition is used by combining deep learning approaches for speaker

identification (Ng et al., 2017) and face recognition (Schroff et al., 2015). However, the user

recognition required pre-training. The results showed that personalisation significantly

increased the likeability and perceived intelligence and attention of the robot, along with

user engagement. In contrast, personalisation decreased the perceived safety and social

influence of the robot, and users recommended it less for real-world context, which can be

attributed to the complexity of the interaction and noisy environment that caused speech

recognition failures. However, the study was only based on two interactions, hence, the

novelty effect might have affected the results.

There is no data-driven approach for long-term HRI, due to the necessity for (and the

lack of) available corpora to train such systems. In this thesis, we compare and validate

the applicability of rule-based systems (Chapter 7 and 9) and data-driven approaches

(Chapter 8) to fully autonomous personalisation in dialogue for real-world HRI.

2.4 Summary

This chapter has described the challenges and methodologies in long-term human-robot

interactions, user recognition and conversation. Previous literature revealed that personal-

isation improves user interest and engagement and facilitates building rapport with users.

In order to achieve personalisation in real-world interactions over extended periods of

time, fully autonomous robots with long-term memory systems that support incremental

and online learning are essential. Several long-term studies confirmed these findings
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through personalising the interaction by recalling user’s personal attributes, preferences

and behaviour patterns, along with previous shared history with users, particularly in

customer-oriented service robotics and socially assistive robotics for healthcare appli-

cations in task-oriented interaction. In order to achieve autonomous personalisation

of the interaction users should be identified and learned autonomously and incremen-

tally for long-term human-robot interactions, starting from a state without any known

users. However, a review on biometric recognition systems showed that there are no

user recognition systems developed with such capabilities. In addition, several studies

revealed the importance of multi-modal user recognition and natural language-based

verbal and non-verbal communication in achieving reliable autonomy and naturalness

in the interaction. Research in conversational agents revealed that most task-oriented

dialogue systems in HRI use rule-based approaches due to their robustness, however,

none has been evaluated autonomously in real-world studies. Additionally, data-driven

approaches, which offer flexibility and reduce the costs of laboriously hand-crafting rules,

have not been applied to personalisation in long-term interactions with chatbots or robots.

Nevertheless, attention mechanisms, particularly End-to-End Memory Networks, show

promise in recalling relevant memories for long-term interactions.
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Chapter 3

Multi-modal Incremental Bayesian Network

with Online Learning for Open World User

Identification

Key points:

• Multi-modal Incremental Bayesian Network (MMIBN) is proposed, which is

the first method for sequential and incremental learning in open world user

recognition that allows starting from a state without any known users. It is

also the first multi-modal approach that combines a primary biometric (face

recognition) with soft biometrics (gender, age and height and time of interaction)

for open world user recognition in human-robot interaction.

• An online learning method for Bayesian networks is proposed based on Voting

Expectation Maximization and Maximum Likelihood estimation for modelling

noise in modalities and frequency of user appearances.

• Quality of the estimation is introduced to decrease the number of incorrect

recognitions that may arise from the combined noise in the identifiers.

• Long-term recognition performance loss is introduced for balancing the trade-off

between identifying known users and unknown users for long-term interactions.

• Hybrid normalisation is introduced, which combines the optimal normalisation

methods for each parameter in the Bayesian network.
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Parts of the work presented in this chapter have been published at the Social Robots

in the Wild workshop at 2018 ACM/IEEE International Conference on Human-Robot

Interaction (Irfan et al., 2018b)1 and under review at the ACM Transactions on Human-

Robot Interaction journal. The source code for the Multi-modal Incremental Bayesian

Network (MMIBN) models is available online2 for academic use based on the license

terms.

1Available online at: http://socialrobotsinthewild.org/wp-content/uploads/2018/02/HRI-SRW_
2018_paper_6.pdf

2https://github.com/birfan/MultimodalRecognition
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3.1 Motivation

We explored various architectures suitable for user recognition in long-term Human-Robot

Interaction (HRI), as presented in Chapter 2.2, to answer our first research question, Which

user recognition algorithms are applicable to long-term recognition in the real world?. The core

problem that we face within HRI for personalising the interaction is to recognise unknown

users and enrol them incrementally and autonomously, which is classified as open world

recognition. However, as shown in Chapter 2.2, there exists a limited amount of research

on this topic, and none of the available methods is evaluated on user identification. In

addition, these methods use batch learning of classes instead of sequential learning, which

is unsuitable for HRI, because the users do not present themselves to the robot in batches.

In contrast, it is more likely that the same users will be encountered several times before

the introduction of another. However, there are no user recognition systems which can

support identifying and learning users autonomously and incrementally in long-term

interactions, starting from a state without any known users. Thus, this thesis proposes the

first open world user recognition system for sequential and incremental learning of users

without the necessity of any preliminary training.
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Figure 3.1: Robots can make use of multi-modal information to recognise users more
accurately in long-term interactions. This image contains the artwork of Hoang-Long Cao.
Permission was granted for use and modification.

Uni-modal systems based on primary biometrics, such as face or voice recognition, may

not always provide good performance due to noise in the identifiers and the similari-

ties between users. Previous literature revealed that multi-modal biometric recognition

57



helps overcome these problems. Robots are also suitable for multi-modal recognition as

they have multiple sensors and perception algorithms (as shown in Figure 3.1), which

allow them to recognise users even when data are inaccurate or noisy. Particularly, soft

biometrics enables using ancillary physical or behavioural characteristics of a user (e.g.,

gender and age) to markedly improve the user recognition (Dantcheva et al., 2016; Jain

et al., 2011). However, there are no HRI studies that combine a primary biometric with

soft biometrics for improving open world user identification in real-time HRI. This thesis

explores the use of soft biometrics in user recognition with non-intrusive features, namely,

gender, age, height and time of interaction, to combine with a primary biometric, face

recognition (FR). While the proposed modalities have shown improvement in recognition

when fused separately or with other biometrics (Scheirer et al., 2011; Martinson et al., 2013;

Arigbabu et al., 2015; Dantcheva et al., 2016), our approach is the first in combining them.

Adapting to the changes in user appearances can improve user recognition in long-term

interactions. In addition, online learning (OL) can help overcome misidentifications due

to similarities between users, especially in combination with multi-modal recognition. For

instance, a user can be initially mistaken for another in certain circumstances, however,

these variations can be learned over time and combined with other modalities to improve

recognition where FR fails.

Bayesian approaches are suitable for multi-modal biometric recognition as they allow

combining estimates of various identifiers (Bigün et al., 1997; Verlinde et al., 1999; Jain et al.,

2004; Scheirer et al., 2011). Moreover, online learning can be applied to Bayesian network

(BN)s to adapt the a priori likelihoods (Oravecz et al., 2016; Opper & Winther, 1999; Honkela

& Valpola, 2003; Bauer et al., 1997; Cohen et al., 2001b; Lim & Cho, 2006; Liu & Liao, 2008),

which can be used to learn the similarities between users over time and better adapt the

likelihoods according to how identifiers estimate a user’s attributes in reality (e.g., age

estimation as 20 for a 25 year old user). Accordingly, to accomplish our first research

objective (RO1), we propose the Multi-modal Incremental Bayesian Network (MMIBN),

which allows incremental and online learning for long-term human-robot interactions3.

Correspondingly, we propose methods to adapt the Bayesian network to reliably recognise

unknown users, extend the architecture for adding new users, combine multiple modalities

and apply online learning with an adaptive learning rate for continuous probabilities.

3Continual (or lifelong) learning in machine learning refers to learning continuously, incrementally and
adaptively. However, the definition includes both batch and online learning, whereas, user recognition in
long-term HRI should be both incremental and online.
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3.2 Methodology

Bayesian network (BN) is a probabilistic graphical model which represents conditional

dependencies of a set of variables through a directed acyclic graph. BNs are suitable for

combining scores of identifiers with uncertainties when the knowledge of the world is

incomplete (Scheirer et al., 2011). The naive Bayes classifier model assumes conditional

independence between predictors, which is a reasonable assumption for a multi-modal

biometric identifier as the individual identifiers do not affect each other’s results.

We propose the Multi-modal Incremental Bayesian Network (MMIBN) that integrates

multi-modal biometric information for reliable recognition in open world identification

through a naive Bayes model, as shown in Fig. 3.2. The primary biometric in our system

is face recognition (Face, F), which is fused with soft biometrics (SB), namely, gender (G),

age (A), and height (H) estimations and time of interaction (T ime, T ). We hypothesise

that the integration of these SB will reduce the effects of noisy data and increase the

identification rate. The pyAgrum (Gonzales et al., 2017) library is used for implementing

the BN structure.

�

� � � � �

Figure 3.2: The multi-modal incremental Bayesian network model with Identity (I), Face
(F), Gender (G), Age (A), Height (H), and T ime of interaction (T ) nodes for user recognition.

3.2.1 Structure

The number of states for each node depends on the modality: Face and Identity nodes

have ne+1 states, where ne is the number of enrolled (known) users, and the additional

state is the Unknown (U) state; Age and Height nodes are restricted to the available range

of the identifier, such as [0,75] for Age and [50,240] for Height; Gender has “female” and

“male” states; T ime is defined by the day of the week and the time of the day, through

time slots (e.g., every 30 min is a time slot). An example of the representation within the

database is given in Table 3.1.

When a user is encountered, the corresponding multi-modal biometric evidence is collected
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Table 3.1: Exemplary database for multi-modal user recognition.

Identity Name Gender Age Height
(cm)

Time(s) of interaction

1 Jane Female 25 168 11:10, Tuesday [71st slot]
2 James Male 27 175 11:20, Wednesday [119th slot]
3 Joe Male 40 178 11:15, Tuesday [71st slot],

18:40:00, Thursday [182nd slot]

from the identifiers. FR provides similarity scores, which give the percentage of similarity

of the user to the known faces in the database. Age, Height, and T ime are assumed

to be discrete random variables (e.g., age is taken as 26, when it is between 26 and 27)

with a discretised and normalised normal distribution of probabilities, N(µ,σ2), defined

by Equation 3.1, where V is the estimated value, Z is the standard score, and C is the

confidence of the biometric indicator for the estimated value.

µ= V , P(
−0.5
σ

< Z <
0.5
σ

) = C (3.1)

The number of T ime states (slots) is determined by the time period (tp), which can be

set depending on the precision required in the application. A smaller time period and

standard deviation (σt) ensure a higher precision, however, this would increase the

complexity of the Bayesian network, thereby, the time to calculate the identity. In addition,

a higher precision carries the risks of decreasing the recognition rate, if the users are not

encountered near the time slot that they were previously seen. For instance, if users in the

application scenario will change every 5 minutes, then tp = 5 min and σt = 15 min would

be reasonable. In contrast, in an HRI scenario, tp = 30 min with σt = 60 min can allow

better identification because it is less likely to encounter users at the same time every day.

Hence, we use the latter in this work.

3.2.2 Weights of the Network

Soft biometric traits are characteristics that are not suitable to identify an individual

uniquely. However, previous research shows that they can improve the recognition rate if

used in combination with primary biometrics (Dantcheva et al., 2016). Some soft biometric

features may contain more information about an individual than others depending on

the characteristics of a population. For instance, if there are users that have a particular
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characteristic (e.g., very tall, or very young), they will be identified more easily within a

group. We assume that a large population will have similar characteristics. Nevertheless,

some features will still remain more informative, such as age compared to gender. This

can be modelled by giving higher weights to the parameters with smaller variability and

larger distinguishing capability (Jain et al., 2004).

Similar to the work of Zhou & Huang (2006), we use weights (wi) as the exponential to the

likelihoods of the child nodes (i.e., biometrics, Xi). The posterior probability, P(Ij|X1, ..,Xn),

is approximated, as shown in Equation 3.2. Ij stands for the jth user (I= j), where I is the

Identity node.

P(Ij|X1, ..,Xn)∝
P(Ij)

∏
iP(Xi|I

j)wi

P(X1, ..,Xn)
(3.2)

We assume that the identifiers perform equally well on all users (Jain et al., 2004), thus, the

accuracy of an identifier is independent of the user. Accordingly, equal priors are assumed

for each of the identifiers, i.e., P(Xk
i ) = P(Xl

i) for all k ̸= l. The posterior probability

simplifies to the equation shown in Equation 3.3.

P(Ij|X1, ..,Xn)∝ P(Ij)
∏
i

P(Xi|I
j)wi (3.3)

Because the distribution of users over time is not known, one approach for determining

P(Ij) is to use adaptive priors using frequencies, as shown in Equation 3.4, where noj is

the number of times user j is observed.

P(Ij) =
noj∑
jnoj

(3.4)

However, this can create a bias in the system towards the most frequently observed

user as it affects the posterior probability directly, thus, may result in a decrease in the

identification rate. Therefore, we assume that the probability of encountering user j is

equally likely as encountering user m, hence, we assume equal priors for P(I).
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3.2.3 Quality of the Estimation

Algorithms for open-set problems generally use a threshold (e.g., over the highest prob-

ability/score) to determine if the user is already enrolled or unknown. However, the

resulting posterior probabilities in a BN can be low due to the multiplication of the con-

ditionally independent modalities and vary depending on the number of states. Hence,

we use a two-step ad hoc mechanism to transform the BN to allow open-set recognition.

(1) Unknown (U) state is used in both Face and Identity nodes. The similarity score of

FR for the Unknown state, i.e., the probability of the user being unknown according to

the face recognition, is set to the FR threshold (θFR), such that when normalised, scores

below/above the threshold will have lower/higher probabilities than Unknown. This

allows maintaining the threshold for the FR system in use. (2) We use the confidence

measure called the quality of the estimation (Q). Given the evidence yt at time t, it compares

the highest (winning) posterior probability (Pw) to the second highest (Ps), as shown in

Equation 3.5. The difference between the probabilities decreases, as the number of enrolled

users (ne) increases since
∑

jP(I
j|yt) = 1.0. A similar method was used by Filliat (2007)

for estimating the quality of localisation based on different images.

Q= [Pw(Ij|yt) − Ps(I
j|yt)] ne (3.5)

Using the quality of the estimation enables decreasing misidentifications. For example,

the highest posterior score can be very high, however, if the second highest posterior is

very close to it, there are two possible strong candidates for the current user. If the system

were to identify the user in this case, the resulting misidentification could cause adverse

effects on the current user especially in the case of different genders or age differences

between the two users, as well as security issues. Thus, it is preferable to identify the

user as unknown, if the quality is below a determined threshold (θQ), or if the Unknown

state has the highest posterior probability. Otherwise, the identity is estimated with a

maximum a posteriori estimation, given in Equation 3.6.

j∗ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
U, if Q< θQ or

P(IU|yt)> P(Ij|yt) for all j

argmaxjP(I
j|yt), otherwise

(3.6)
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3.2.4 Incremental Learning

In HRI scenarios, it is desired to allow the users to enrol in the system, such that they can

be recognised at the next encounter. For this, we use an online system, where a user can

enrol by entering their name, gender, birth year, and height, and then a photo of the user

is taken by the robot. This information is gathered to have the ground truth values for

recognition, and for setting the initial likelihoods.

Initially, the system starts as “tabula rasa”, where there are no known users. The BN is

formed when the first user is enrolled with the Identity node having one state for the

new user and one for Unknown. The initial likelihood for the Face node is set to be

much higher for the true values as shown in Equation 3.7, where wF is the weight of the

face variable, and ne is the number of enrolled users. The value was found based on

preliminary experiments.

P(Fk|Ij) =

⎧⎪⎪⎨⎪⎪⎩
0.9wF , if k= j

[0.1/(ne − 1)]wF , otherwise
(3.7)

The remaining likelihoods are set using the prior knowledge that the user entered in a

similar structure to the evidence for age, height and time variables with a discretised

and normalised normal distribution, N(µ,σ2), where µ is the true value (e.g., age of the

person), and σ is the standard deviation of the identifier. Gender is set at [0.99wG ,0.01wG ]

ratio, which is experimentally found.

For the Unknown state, P(Xk
i |I

U) is set to be uniformly distributed, as an unknown user

can be of any age, height and be recognised at any time of the day, except for the Face

node. Using uniform probabilities or reducing the constant (0.9) in the Face node for the

Unknown state resulted in worse recognition performance in preliminary experiments,

hence, the likelihood is set as in Equation 3.7.

When a new user is enrolled, BN is expanded by adding a new state to the Identity and

Face nodes. For each previous state in the Identity node (including Unknown), P(Fk|Ij)

is updated by appending the value corresponding to k ̸= j condition in Equation 3.7

([0.1/(ne − 1)]wF with updated ne) for the new user, and re-normalising the likelihoods.

The likelihoods of Gender, Age, Height and T ime nodes for the previously enrolled users

remain the same. This scalability feature removes the need to retrain the network when a
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new user is enrolled, thereby, decreasing the time complexity, which can be crucial if the

new user is introduced at a later step (e.g., after 1000 users). For instance, if each image

corresponding to no average number of observations per user was to be recognised again

after a new user is added to the face database, it would take a significant amount of time

to expand the network compared to scaling, since ne no O(FR)≫ ne O(1) updates, where

O(FR) is the time complexity of the FR algorithm. In order to allow the network to make

meaningful estimations, in the first few recognitions (here, we chose 5 recognitions), the

identity is declared as unknown, regardless of the estimated identity.

3.2.5 Online Learning of Likelihoods

BN parameters are generally determined by expert opinion or by learning from data (Koller

& Friedman, 2009). The former can cause incorrect estimations if the set probabilities are

not accurate enough. The latter, for which Maximum Likelihood estimation is commonly

used, is not possible when the BN is constructed with incomplete data. One solution is

to use offline batch learning, however, it requires storing data that can cause memory

problems in long-term interactions. Another approach is to update the parameters as the

data arrive, which is termed online learning. Several approaches exist in the literature for

online learning in Bayesian networks, as outlined in Section 2.2.4.

Bauer et al. (1997) proposed using Expectation Maximization (EM) with a learning rate

(EM(η)) for online parameter estimation in a Bayesian network, formulated as in Equa-

tion 3.8. θtijk represents an entry in the conditional probability table of Xi variable

given the value of its parent node Pai at time t, that is, the likelihood of variable Xi

is θtijk = P(Xi = xki |Pai = paji). η is the learning rate that controls how much is the past

likelihoods is weighed in for the current likelihood. As η approaches 1, the effect of

previous data decreases, hence, the update relies more on the present evidence.

θt+1
ijk = η

Pθt(xki ,paji|yt)

Pθt(paji)
+ (1 − η) θtijk (3.8)

Cohen et al. (2001b) proposed an extension of EM(η) called Voting EM for continuous prob-

abilities and missing (partially observable) data in the evidence (as shown in Equation 3.9)

and discrete probabilities and complete (fully observable) data (Equation 3.10)4.

4The equations are presented in the formulation of Bauer et al. (1997) for consistency.
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θt+1
ijk =

⎧⎪⎪⎨⎪⎪⎩
η

Pθt(x
k
i ,paji|yt)

Pθt(paji|yt)
+ (1 − η) θtijk, if Pθt(paji|yt) ̸= 0

θtijk, otherwise
(3.9)

θt+1
ijk =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
η+ (1 − η) θtijk for P(paji|yt) = 1 and P(xki |yt) = 1

(1 − η) θtijk for P(paji|yt) = 1 and P(xki |yt) = 0

θtijk, otherwise

(3.10)

While user recognition is a fully observable problem (i.e., has complete evidence), bio-

metric identifiers may provide varying evidence at each interaction due to noise in the

identifiers or the biometric sample, such as varying timing of interactions, lighting condi-

tions, and occlusions. For instance, the estimated age of a person may change from time

to time depending on the previously mentioned factors among others, thus, the identifier

confidence score may be less than 1. Thus, we cannot assume discrete probabilities, as in

Equation 3.10.

The only parent node (Pai) in our architecture is the Identity node. Cohen et al. (2001b)

suggest that Pθt(paji|yt) = 1 can be assumed with no loss of generality. However, as we dis-

cussed before, the noise in the identifiers or the sample causes nonzero values for P(Ik|yt)

for k ̸= j, where
∑

kP(I
k|yt) = 1. Thus, that assumption does not hold. Similarly, if we

use unsupervised learning using Pθt(paji|yt) term in Equation 3.9, we may update the

likelihoods incorrectly. Hence, supervised learning is necessary to achieve accurate online

learning. The identity of the user should be known for updating the corresponding likeli-

hoods, which can be achieved in HRI by directly requesting confirmation of the estimated

identity, or by obtaining the confirmation implicitly from the dialogue. Thus, Pθt(paji|yt)

becomes P(Ij) = 1. Given the evidence at time t and the independently obtained true

identity, we can use the Bayes rule to derive, Pθt(xki ,paji|yt) = Pθt(xki |paji,yt) Pθt(paji|yt),

where Pθt(paji|yt) = 1. The resulting formulation of online learning in MMIBN is pre-

sented in Equation 3.11. We will refer to the proposed Multi-modal Incremental Bayesian

Network with online learning as MMIBN:OL.

θt+1
ijk =

⎧⎪⎪⎨⎪⎪⎩
ηj Pθt(xki |I

j,yt) + (1 − ηj) θ
t
ijk, if P(Ij) = 1

θtijk, otherwise
(3.11)
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The learning rate (η) can either be fixed or adaptive, such as using a set of pre-defined

values or Maximum Likelihood estimation through dividing by the number of times the

parents were equal to their jth configuration. Cohen et al. (2001b) suggest using a fixed

learning rate for incomplete data, whereas, an adaptive one for complete data with discrete

probabilities. Selecting a fixed learning rate may result in poor performance, if the value

is not correctly estimated. In addition, user recognition is a fully observable problem,

however, the evidence is noisy and continuous. Hence, we apply Maximum Likelihood

estimation to continuous probabilities, in contrast to the work in (Cohen et al., 2001b,a; Liu

& Liao, 2008). We use the number of observations of the user j (noj) to adapt the learning

rate, as shown in Equation 3.12. Each observation of the user creates a progressively

smaller update on the likelihoods, such that, the effect of a new observation decreases as

the number of recognitions of the user increases.

ηj =
1

noj + 1
(3.12)

If the user j is not previously enrolled in the system: (1) the Face likelihoods for the

Unknown state, P(Fk|IU), are updated, (2) the user is added to the Bayesian network, as

described in Section 3.2.4, (3) online learning is applied to the other states’ Face likelihoods

P(Fk|Ij), for each user k. Likelihoods of gender, age, height, and time remain the same for

Unknown to ensure uniform distribution. If the user is already enrolled, online learning is

applied to likelihoods of all modalities for that user.

3.2.6 Long-Term Recognition Performance Loss

The standard metrics for open-set identification are Detection and Identification Rate (DIR)

and False Alarm Rate (FAR) (Phillips et al., 2011). DIR is the fraction of correctly classified

probes (samples) within the probes of the enrolled users (PE ), given in Equation 3.13.

FAR is the fraction of incorrectly classified probes within the probes of unknown users

(PU ), given in Equation 3.14. Note that FAR only changes for unknown users, i.e., when

a new user is enrolling.

DIR =
|{argmaxjP(I

j|yt) = j | j, j ∈PE }|

|PE |
(3.13)
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FAR =
|{argmaxjP(I

j|yt) = j | k, j ∈PE , k ∈PU }|

|PU |
(3.14)

In other words, DIR represents the True Positive of enrolled users, in which the current

probe (i.e., the multi-modal biometric sample) belongs to a previously enrolled user, and

it is identified correctly. FAR serves as the False Positive for unknown users, that is, the

probe belongs to an unknown user, but he/she is identified as an enrolled user. However,

True Positive and False Positive are notions of verification problems, in which the probe

is compared against a claimed identity, thus, are generally not applicable to open-set

identification.

Ideally, DIR= 1.0, when all users are correctly identified, and FAR= 0.0, when all unknown

users are identified as such. In reality, there is a trade-off between DIR and FAR, which is

determined by the threshold of the identifier, i.e., a higher threshold might decrease FAR,

while also reducing DIR. This trade-off is generally represented by a Receiver Operating

Characteristic (ROC) curve. The standard practice is to determine the desired FAR, which

would then set the identifier threshold and DIR based on this curve.

Depending on the biometric application, the cost of incorrectly identifying a user as known

may be very different from the cost of incorrect identification of the enrolled user (Jain et al.,

2011). For short-term interactions, in which a user will be encountered one or two times,

FAR is as important or more important than DIR. However, for long-term interactions,

users will be encountered a greater number of times. Thus, correctly identifying a user

(in a closed-set) becomes more important than correctly identifying an unknown user

(open-set). Hence, we introduced the long-term recognition performance loss (L) that creates a

balance between DIR and FAR based on the average number of observations per user (no),

as presented in Equation 3.15, where α is the ratio of the importance of DIR compared

to FAR. Ideally, L= 0, when all known and unknown users are correctly identified. This

measure was developed due to the necessity to better optimise the quality of the estimation

and the weights of MMIBN on the data obtained in Chapter 4.

L= α (1 −DIR) + (1 −α) FAR

α= 1 −
1
no

(3.15)
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3.2.7 Normalisation Methods

The scores from each modality must be normalised into a common range (e.g., [0,1]) to

ensure a meaningful combination. It is important to choose a method that is insensitive

to outliers and provides a good estimate of the distribution (Jain et al., 2005), such as,

normsum (dividing each value by the sum of values), minmax, softmax (Bishop, 2006),

and tanh (Hampel et al., 1986), formulated as:

normsum : x ′
i=

xi∑
xi

(3.16)

minmax : x ′
i=

xi − min
max−min

(3.17)

softmax : x ′
i=

exp(xi)∑
exp(xi)

(3.18)

tanh : x ′
i=0.5

[
tanh

(
0.01

[
xi −M

SD

])
+ 1

]
(3.19)

where xi is the value of the state obtained from FR or from the distribution of probabilities

for age, height or time nodes, and x ′
i is the normalised probability. M and SD stand for

the sample mean and the sample standard deviation of the scores, respectively, instead of

the population mean and standard deviation used by Jain et al. (2005).

We initially used normsum method during our user study (in Chapter 4), and then we

compared the performance of all the normalisation methods on the data obtained from

the study to find the optimal method. However, we noticed that each method performs

differently depending on the biometric identifier due to the variations within the data and

the information format. Hence, we introduce hybrid normalisation, which combines the

methods that achieve the lowest long-term recognition performance loss for each modality.

In other words, hybrid normalisation uses the best performing normalisation method for

each modality.

Extensive tests were made on the dataset obtained in Chapter 4 to get the optimal methods

for each modality (Face, Gender, Age, Height and T ime). The long-term recognition

performance loss was optimised for each combination of the individual modality with face

recognition (Face, Face+Gender, Face+Age, Face+Height, Face+T ime) while optimising the

weights for each of the combinations. The resulting hybrid normalisation uses normsum

for Face, Gender, and Height; tanh for Age; softmax for T ime of interaction. Subsequently,

we optimised the weights of the MMIBN and the quality of the estimation for each
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normalisation method and compared the results on the multi-modal user recognition

dataset that we generated in Chapter 5.

Additionally, BNs use the product rule for combining the results of each node, hence,

if a probability of a classifier is zero, it results in an overall zero probability for a class

irrespective of the results from other classifier. In our user study, we evaluated the effect

of using a small (10−6) cut-off probability threshold (pt). The effect varied depending on

the normalisation method, hence, for our simulated dataset, we set the cut-off threshold

equal to the minimum value in the likelihoods obtained from the user study.

3.2.8 Extendability

The presented approach uses only one primary biometric, hence, in the absence of facial

information, the image is discarded, and another image is taken, if necessary. It is intended

to increase the recognition rate from a single image. However, in order to increase the

reliability of the system, multiple images (e.g., 3 images as in Chapter 4) can be taken

in succession, and the results can be normalised to estimate the identity of the user.

Nonetheless, the system allows extension with other primary biometric traits, such as

voice and fingerprint, and other SB, such as eye colour and gait, to improve recognition.

The proposed approach does not require heavy computing, therefore, it is suitable for use

on commercially available robots. In addition, it can work with any identifier software on

any platform. We employ this system on Pepper (in Chapters 4, 5 and 7) and NAO (in

Chapter 9) robots for our experiments. These robots are operated by NAOqi5 software,

which includes different modules that allowed us to extract face similarity scores, gender,

height and age estimations from a single image. The estimations from these modalities

are fed into the network. The internal states of the proprietary algorithm are inaccessible,

hence, we assume that the gender and age estimations are not used to obtain the face

similarity scores, and they are conditionally independent of the FR results, even though

they are obtained from the 2D image.

In order to benefit research in long-term HRI, we are making the source code of MMIBN

and the code to run the system on NAO and Pepper robots available online6. We encourage

researchers to use MMIBN in their studies and extend it with other biometrics.

5http://doc.aldebaran.com/2-5
6https://github.com/birfan/MultimodalRecognition
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3.3 Summary

This chapter introduced Multi-modal Incremental Bayesian Network (MMIBN) for fully

autonomous user recognition in long-term human-robot interactions, which is the first

user recognition method that can continuously and incrementally learn users, without

the need for any preliminary training. It is also the first method that combines a primary

biometric (face recognition) with weighted soft biometrics (gender, age, height and time

of interaction) for improving open world user identification in real-time Human-Robot In-

teraction. We introduced methods to enable open world recognition in Bayesian networks,

in addition to evaluating the quality of the estimation to reduce misidentifications. We

proposed an extension of an online learning approach for Bayesian networks that adjusts

the learning rate according to the frequency of users and allows working with continuous

probabilities arising from uncertainties in the identifiers. We also introduced the long-term

recognition performance loss that weighs the importance of correct estimations of known

users to the incorrect estimations of unknown users for optimising the parameters of

the Bayesian network. The proposed approach can be extended with other biometrics

and applied to any commercially available robot due to its computationally lightweight

structure.
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Chapter 4

Long-Term User Recognition Study

Key points:

• A recognition architecture and study are designed for validating Multi-modal

Incremental Bayesian Network (MMIBN) in real-world long-term human-robot

interactions and obtaining data to optimise the parameters of the method.

• MMIBN is shown to be suitable for user recognition in the study lasting 4 weeks

with 14 participants.

• MMIBN improves the fraction of correctly recognised known users (DIR) com-

pared to face recognition by 1.4% in open-set recognition and 4.4% in closed-set.

• Online learning (OL) is found to decrease the fraction of incorrectly recognised

unknown users (FAR), with the cost of decreasing DIR.

• Minmax normalisation method is found to be optimal for non-adaptive MMIBN,

whereas, softmax is found to be best for online learning (MMIBN:OL).

• Height is found to be the most effective soft biometric trait, and age is found to

be the least.

Parts of the work presented in this chapter have been published in Irfan et al. (2018b).

The publication is available online1 at the Social Robots in the Wild workshop at 2018

ACM/IEEE International Conference on Human-Robot Interaction.

1http://socialrobotsinthewild.org/wp-content/uploads/2018/02/HRI-SRW_2018_paper_6.pdf
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4.1 Motivation

As revealed in Section 2.2, there are no user recognition systems that allow open world

recognition in Human-Robot Interaction (HRI), starting from a state without any known

users. In order to address that gap, in Chapter 3, we proposed the Multi-modal Incremental

Bayesian Network (MMIBN) as a reliable user identification system for long-term HRI

that can identify previously known and new users and incrementally learn new users with

multi-modal information. While this system does not need any preliminary training, it is

important to find the optimal parameters of the network to ensure reliable identification

performance. Consequently, in this chapter, we design a user study to validate that

MMIBN is suitable for long-term HRI in the real world and collect data to optimise the

system.

Moreover, the proposed system addresses an open challenge in HRI (Kunze et al., 2018)

by adapting to the changes in the appearances of users with online learning. However,

in order to ensure that the learned biometrics are corresponding to the correct user,

supervised learning is necessary. This can be achieved directly by requesting confirmation

of identity from the user or indirectly through dialogue. In this study, we choose the

former to ensure a reliable collection of data. In addition, new users should be able to

enrol themselves to the system, hence, we design a “human-in-the-loop” architecture to

enable autonomous identification and enrolment.

4.2 Hypotheses

The primary purpose of the study conducted here is to evaluate whether our proposed

approach is suitable in a real-world interaction for long-term HRI. In addition, this study

aimed to collect real-world human biometric data to optimise the parameters of the

Bayesian network, such as the weights, normalisation method, face recognition thresh-

old and quality of the estimation (Q). Subsequently, the previous literature suggests

that multi-modal user recognition with soft biometrics will improve recognition perfor-

mance (Dantcheva et al., 2016). In addition, online learning has been shown to improve

(object) recognition performance (De Rosa et al., 2016). Based on the objective of our study

and the findings from previous literature, we derived the following hypotheses for the

study, as listed below:
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H1 Our proposed Multi-modal Incremental Bayesian Network (MMIBN) is suitable

to recognise users autonomously and incrementally for long-term human-robot

interactions in the real world.

H2 MMIBN will improve user recognition compared to face recognition (FR), as mea-

sured by an increase in the Detection and Identification Rate (DIR) of known users.

H3 Online learning (MMIBN:OL) will improve user recognition over a non-adaptive

model (MMIBN), as measured by an increase in DIR.

4.3 Applying MMIBN to Human-Robot Interaction

As stated in the previous chapter, MMIBN can be applied to any platform. In this study,

we chose the Pepper robot (SoftBank Robotics Europe) for the following reasons: (1) It is

a commercially available robot that shares the same NAOqi2 software with NAO robot

(SoftBank Robotics Europe), removing the need to implement new architectures for each

robot that will be used in different projects throughout this thesis. (2) NAOqi has its

proprietary identifier algorithms for face recognition, gender, age and height estimation.

(3) Pepper and NAO robots are widely used in the literature, hence, it is desired to create

an architecture that will benefit the community for future long-term HRI studies3. (4)

Pepper has a tablet interface, which enables reliable confirmation of identity, as shown in

Figure 4.1, which is fundamental to this study.

Figure 4.1: A user is interacting with the Pepper robot during the user study, through its
tablet interface to confirm the identity that is estimated.

2http://doc.aldebaran.com/2-5
3We release the code for MMIBN and the recognition architecture in this study on: https://github.com/

birfan/MultimodalRecognition
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In order to enable MMIBN to recognise and learn users autonomously, it is necessary to

design an architecture that allows autonomous user detection and enrolment. Correspond-

ingly, we designed the Recognition Module (Figure 4.2) and the Recognition Architecture

(Figure 4.3). User recognition starts when a person is detected by estimating their height

and marking the time of interaction. Subsequently, when a face is detected, the user’s

picture(s) is taken, and it is analysed with face recognition, gender and age estimations.

The obtained modalities are input to MMIBN, which estimates the identity as described in

Chapter 3. The user is asked to confirm the estimated identity (step 4): if the identity is

estimated as Unknown, using the phrase “I’m sorry, I couldn’t recognise who you are! Could

you enter your name on the tablet please?”, or if the user is estimated as a known user, with

the utterance “Hello USER_NAME, it is nice to see you again! Could you confirm that it is

you please?”. If the identity is wrongly estimated, the name of the user is requested. The

estimated identity and recognition values are stored for data analysis (step 6). If the user

is previously known, online learning of the likelihoods is performed for the known user,

as described in Section 3.2.5. Finally, user and face recognition databases are updated with

the new information. The video demonstration of the interaction is available online4.

Start Recognition

Face DetectionTake Picture

Face Recognition Gender Estimation Age Estimation

Height Estimation

Multi-Modal
Incremental

Bayesian Network

Estimated
height,
Time of 
interaction

Face similarity
scores

Gender with
confidence

Age with
confidence

Person 
detected

Face 
detected

Image

Person Detection

Recognition
Module

Figure 4.2: Diagram of the Recognition Module. The yellow highlighted modules are
proprietary software within NAOqi that are used to obtain the estimated modalities.

4Known user interaction: https://youtu.be/Ix98k6_-2Zc
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Figure 4.3: Diagram of the Recognition Architecture. First 7 actions are common to both
known and new users. Actions 8-18 (in green) are performed for new users, whereas, 8-10
(in blue) are performed for known users. Dashed line shows that ground truth values for
gender, age and height are requested from the user and a new image is taken as input
when the user is enrolling. The system also allows using estimated values for enrolment.
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If the user is new, the Face likelihoods for the Unknown state are updated. Afterwards,

in order to obtain reliable ground truth values, the user’s gender, age, and height are

requested sequentially through Pepper’s tablet interface (Figure 4.4), followed by a picture

taken by the robot. MMIBN is expanded for the new user, and the user is added to the

face recognition and user databases. Subsequently, the identification is performed once

again on the new image with the previously described steps for the known user.

Figure 4.4: Enrolment questions for name, gender, birth year and height.

As previously stated, this user study is aimed to collect real-world data to optimise the

parameters of the MMIBN. However, in order to ensure that user recognition is reliable

for the study, we conducted preliminary experiments to set the weights and the cut-

off threshold. The normalisation method was set as normsum, and the quality of the

estimation was set to be 0. The preliminary tests were not enough to accurately determine

the face recognition threshold, hence, we used the maximum similarity score per image

to set the similarity of Unknown state as 1−max(FR). MMIBN:OL was used to measure

the capability to track the times of interaction, learn the similarities between users and

determine the identifier estimations of users.

4.4 Experimental Procedure

In order to validate that our proposed user recognition approach is suitable for real-world

interactions, we designed a long-term HRI study of 4 weeks in an office of the Centre for

Robotics and Neural Systems (CRNS) at the University of Plymouth. In order to ensure a
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natural level of interaction that frequently occurs throughout the day, we placed the robot

at the office kitchen. When students are taking a coffee or lunch break, the robot would

autonomously recognise them and request the confirmation of the estimated identity or

enrol them into the system, if they have not been previously introduced. Moreover, the

participants were encouraged to greet the robot when they arrive and before they leave,

but no specific times were enforced to interact with the robot, that is, the participants

interacted with the robot whenever they wished. The experimenter was present in the

office for the first week of the study, in case of any operational errors, but did not interfere

with the experiment.

4.4.1 Participants

The study involved 14 participants (10 males, 4 females) with an age range of 24-40

(M = 29.6, SD = 4.5). The participants were PhD students or researchers that are either

working in the office or visiting it frequently. Each participant enrolled in the system

within the first week of the study, however, they were not enrolled consecutively, which

resembled a real-world situation.

The participants signed an information and consent form under the University of Ply-

mouth ethical approval for image collection and sharing (see Appendix A).

4.4.2 Behaviour of the Robot

While the participants only interacted with the robot through the tablet interface or touch,

the robot communicated its requests and feedback verbally to capture the participant’s

attention. In order to encourage the participants to interact with the robot frequently

and achieve a more natural interaction, we used positive responses to the confirmations.

The robot replied with a phrase randomly chosen from a list of positive sentences after

the correct recognition of a person, such as “You look very good today”, “I feel much better

every time I see you” or “I knew it was you, just wanted to be sure!”. If the recognition was

incorrect, the robot would apologise for its mistake and either accept its mistake in a

positive manner, state that the person is looking different or say that it was a joke.

In order to reduce the effort required by the participants, the robot did not interact with

the same user within 30 minutes period, unless the user voluntarily touches the head of

the robot, which triggers the recognition. Moreover, if the user does not interact with
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the robot for 2 minutes after it asks for confirmation or requests the name, the collected

images would be discarded and the robot would return to idle mode. This “reset” feature

could also be achieved by the experimenter by touching the robot’s bottom bumper in

case of any system failures, but this feature was not used by (or told to) the participants.

The robot stayed in a fixed position before the interaction to achieve good quality images.

When a user was identified, multiple pictures (here, 3) are taken consecutively. If a face is

detected in an image, it would be analysed for identity, and the results of each image will

be combined to estimate the identity. If a face is not detected in the taken image, it will be

discarded. In order to request the confirmation of the estimated identity, the robot became

animate to ensure a natural interaction.

The robot was not shut down throughout the duration of the study, but it was put to sleep

mode in the evenings in order to release the tension in the motors. The experimenter or

the users could wake the robot up by touching the back of its (left) hand. However, the

robot could only be put to sleep by the experimenter via remote connection.

4.4.3 Measures

As described in Section 3.2.6, Detection and Identification Rate (DIR) (Equation 3.13) and

False Alarm Rate (FAR) (Equation 3.14) are reported along with receiver operating charac-

teristic (ROC) curves, which are the performance measures for the open-set identification

problem (Phillips et al., 2011). In addition, Failure to Enroll error (FTE) is reported, which

corresponds to the fraction of images where a face cannot be detected.

4.5 Results

4.5.1 User Study

The study was successfully run fully autonomously (with only a few minor interventions

for tablet crashes or heated motor alerts) for four weeks in a real-world environment. We

reached a total of 476 recognitions, with users interacting with the robot between 24 to

62 times over four weeks period, corresponding to a total of 66 to 175 images per user.

DIR improved with the increasing number of recognitions as shown in Figure 4.5 (filled

circles correspond to a new user enrolling), and reached 0.835 for Multi-modal Incremental
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Bayesian Network with Online Learning (MMIBN:OL), offering a slight improvement

over FR (0.826). On the other hand, FAR was lower for FR (0.2) than MMIBN:OL (0.4),

which is due to the consecutive enrolment of a few users with similar characteristics.

Nevertheless, these findings show that MMIBN satisfies our first research objective and

supports our hypothesis (H1), that is, the proposed approach is suitable for autonomous

user recognition for long-term human-robot interactions in the real world.
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Figure 4.5: The change of (a) Detection and Identification Rate (DIR) and (b) False Alarm
Rate (FAR) with the proposed approach (MMIBN) and the face recognition (FR) for the
increasing number of recognitions. Ideally DIR= 1.0 and FAR= 0.0. FAR only changes
for unknown users, i.e., when a new user is enrolling (depicted with filled circles). The
results show that MMIBN:OL offers a slight improvement over FR in DIR in the expense
of increased FAR.

Online learning was successful in learning the times that the users interacted with the robot.

Figure 4.6 shows the time of interaction probabilities derived from the T ime likelihoods in

MMIBN for the first week of the study, which reveals that users interacted with the robot at

various times during the day. Each likelihood is normalised within itself to sum to 1. Thus,

while some users (e.g., the user represented with a green line and triangles) have peaks

in the data because they only appeared during certain times or were encountered less,

the others (e.g., for the user corresponding to the light blue line) are distributed evenly

because they have been encountered more frequently throughout the day. One interesting

observation resulting from this graph is that although the workday lasts typically from

9 am to 5 pm (17:00), some users stayed late (until 8-10 pm) in order to finish their daily

tasks (e.g., experiments, writing papers). In fact, one user is seen around 1 am on Friday.

The users were not encountered on the weekend, as expected. On another note, after the
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Figure 4.6: Time of interaction probabilities for 14 users derived from the T ime likelihoods
in MMIBN at the end of the first week of the user recognition study.

study, two participants reported that they frequently interacted with the robot throughout

the day, because they enjoyed hearing its positive comments (e.g., “You look very good

today!”), which indicates the importance of positive feedback in maintaining user interest

in long-term interactions.

The recognition process took approximately 5 seconds: ∼2-3s for user detection, ∼1.5s

(0.5s each per image) for image capture, ∼1s to load the network parameters, ∼0.6s (0.2s

each) for recognition from modalities, ∼0.9s (0.3s each) for estimation of the identity using

MMIBN. Since the robot did not notify participants when taking images, some of the

captured images include people looking sideways, partially covering their faces or moving

(see Figure 4.7). In addition, occlusions (e.g., sunglasses) and lighting conditions, such

as direct light from the windows, caused problems in FR, resulting in a mean FTE of

M = 0.214 (SD = 0.008). The identity was not estimated by the MMIBN in those cases

because the only primary biometric in our system is FR and soft biometrics do not have

the deterministic characteristic to estimate the identity on their own.

(a) (b) (c) (d)

Figure 4.7: Examples of unreliable face recognition from the user study: (a) a blurry image;
(b) an oblique viewing angle; (c) occlusions, e.g., sunglasses; (d) bad lighting condition.
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4.5.2 Optimisation of Parameters

While the proposed approach showed improvement over FR with the preliminary param-

eters, optimising these parameters would help improve the identification performance

further. Hence, we performed optimisation for the network parameters by evaluating each

normalisation method with varying weights, learning and cut-off settings on 5-fold cross-

validation. We ranged the weights from 0 to 1 with 0.1 increments, used either no cut-off

threshold or used a small value (10−6) and set the face recognition threshold θFR = 0.3,

based on the user study results. Cross-validation was performed on the same amount

of images per person (65 images per user) collected from the user study. We divided the

images into five bins and used four bins as the training set (open-set recognition) and one

bin as the test set (closed-set recognition) for each fold, where the test bin was different

at each fold. We replaced the “human-in-the-loop” with an offline system that would

simulate an interaction by feeding images, time of interactions and estimated heights

(from the user study) to the Recognition Module (Figure 4.2) and the true identity to the

Recognition Architecture (Figure 4.3). For each fold, we randomised the ordering of users

to reduce the bias due to order. Each image contained only a single user corresponding to

the true identity and accounted for a single recognition instead of multiple images per

recognition. The resulting mean cross-validation DIR and FAR for the optimised weights

are given in Table 4.1 (on the next page).

Note that the DIR and FAR of FR is different (higher) than the results in the user study

because cross-validation is applied on the partial data from the user study, the data is

cleaned of any incorrect identities prior to cross-validation, a face recognition threshold

is used, and the ordering of users has an effect on the results, which were averaged to

remove the bias in the analysis.

The cross-validation results show that our proposed MMIBN can improve the recognition

performance, by a maximum of 1.8% increase in DIR for open-set recognition and 2.2%

in closed-set recognition, supporting our hypothesis (H2). However, the results show

that online learning does not improve performance, thus, H3 is not supported. While

normsum and minmax methods provide good results for a non-adaptive MMIBN, the

identification rate drops below FR with learning, whereas, softmax and tanh methods are

not markedly affected.

FAR of MMIBN or MMIBN:OL with any normalisation method is greater than the FAR of
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Model Normalisation Cut-off Threshold (pt) FAR DIR1 (Training) DIR1 (Test) wG wA wH wT

FR none none 0.443 (0.078) 0.933 (0.004) 0.945 (0.015)

MMIBN normsum none 0.629 (0.032) 0.951 (0.004) 0.967 (0.013) 0 0 0.1 0

MMIBN normsum 10−6 0.529 (0.081) 0.943 (0.003) 0.956 (0.015) 0 0 0.1 0.1

MMIBN minmax none 0.629 (0.032) 0.951 (0.005) 0.965 (0.015) 0.2 0 0.1 0

MMIBN minmax 10−6 0.586 (0.060) 0.949 (0.005) 0.965 (0.014) 0.2 0 0.1 0

MMIBN softmax none 0.571 (0.072) 0.947 (0.004) 0.965 (0.014) 0.1 0 0.6 0

MMIBN softmax 10−6 0.571 (0.072) 0.946 (0.003) 0.959 (0.015) 0.1 0.1 0.1 0.1

MMIBN tanh none 0.571 (0.051) 0.942 (0.005) 0.955 (0.012) 0 0 0.1 0

MMIBN tanh 10−6 0.543 (0.039) 0.942 (0.003) 0.957 (0.013) 0 0 0.3 0.1

MMIBN:OL normsum none 0.629 (0.032) 0.782 (0.063) 0.694 (0.093) 0.1 0 0.1 0

MMIBN:OL normsum 10−6 0.571 (0.072) 0.75 (0.082) 0.632 (0.127) 0.1 0 0.1 0

MMIBN:OL minmax none 0.629 (0.032) 0.776 (0.064) 0.692 (0.090) 0 0 0.1 0

MMIBN:OL minmax 10−6 0.643 (0.0) 0.776 (0.061) 0.697 (0.089) 0 0 0.1 0

MMIBN:OL softmax none 0.586 (0.060) 0.946 (0.005) 0.961 (0.017) 0.1 0 0.6 0

MMIBN:OL softmax 10−6 0.586 (0.060) 0.946 (0.005) 0.954 (0.025) 0.1 0 0.6 0

MMIBN:OL tanh none 0.571 (0.051) 0.943 (0.007) 0.955 (0.012) 0 0 0.1 0

MMIBN:OL tanh 10−6 0.543 (0.039) 0.943 (0.006) 0.961 (0.019) 0 0 0.3 0

Table 4.1: The mean results of the 5-fold cross-validation: optimised weights, DIR for training and closed-set test sets and FAR, for each normalisation
method with varying models and cut-off threshold settings. Highlights in blue show the best values, and highlights in red show the chosen methods.
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FR. This is caused by the combination of multi-modal data. For example, if the highest

face similarity score is below the threshold, the FR reports the user as “unknown”. The

network, on the other hand, will still try to identify the user based on other sensor input,

where errors might increase FAR.

In order to compare the effects of learning, we chose the minmax method without learning

and with a cut-off threshold (MMIBNminmax) and the softmax method with learning and

no cut-off threshold (MMIBN:OLsoftmax), because the former provides the second highest

DIR but with lower FAR than that of the best methods (highlighted in blue), and the latter

provides the best DIR in learning in both training and test sets. In order to determine

the ideal face recognition threshold (θFR), we conducted several cross-validations with

varying thresholds. The results are presented in Figure 4.8a.
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Figure 4.8: ROC curves, where dotted lines represent FR results, dashed line is
MMIBNminmax, solid line is MMIBN:OLsoftmax: (a) Performance measures, DIR (in blue)
and FAR (in red), for varying θFR; (b) ROC curve for varying Q values for θFR = 0.4.
MMIBNminmax is able to perform in the top left zone, where DIR is higher than FR and
FAR is lower.

The trade-off between DIR and FAR is apparent from the results. The ideal FR threshold

(θFR) should maintain a low FAR with a good DIR. For example, at θFR = 0.7, the FAR is

very low for both FR and MMIBN:OLsoftmax, however, the DIR has also decreased sub-

stantially. Hence, we compare the results in the range where FARFR ⩽ 0.5 (corresponding

to θFR = 0.3) and DIRFR ⩾ 0.8 (corresponding to θFR = 0.6). MMIBNminmax is better in

identification, by providing DIR in 0.93-0.949 range, whereas MMIBN:OLsoftmax provides

between 0.873-0.946, both higher than that of FR (0.801-0.933). However, online learning

allows lower FAR (0.286-0.543) than MMIBNminmax (0.457-0.571). Within this range, the

least FAR for the highest DIR for both proposed methods is obtained at θFR = 0.4.

Based on the established FR threshold, we compared the effects of the quality of the
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estimation of estimation (Q) (see Figure 4.8b). As the quality of the estimation increases,

the DIR and FAR decreases. If the problem is treated as a closed-set problem (where all

the users are enrolled and FAR is not relevant), the DIR of MMIBNminmax is 4.4% higher

than that of FR (Q= 0). For the open-set identification problem, the “area of improvement”

is where FAR ⩽ FARFR and DIR ⩾ DIRFR, corresponding to the upper left quartile. Where

the FAR of both models are equal (Q= 0.31), the DIR of MMIBNminmax is 1.4% higher than

that of FR. If we continue in this range until the DIR of both models are equal (Q= 0.41),

then MMIBNminmax achieves 1.4% lower FAR than that of FR. MMIBN:OLsoftmax does not

provide a value in the area of improvement, hence, we can conclude that the proposed

online learning model performs worse than the non-adaptive model.

4.6 Discussion

While the proposed approach and the Recognition Architecture allowed real-time recogni-

tion in long-term HRI requiring only a low time complexity (0.3 seconds), the time it takes

to calculate the estimated identity increases with the number of recognitions and multiple

images may result in a noticeable amount of delays in the recognition.

Our user study and cross-validation on the data showed that the FR method used as

our primary biometric could provide a good DIR (88 − 93%), and MMIBN improves it

further, even for a large number of recognitions. However, we had a small population in

the experiment, hence, the face recognition became better at identifying the individuals.

In order to ensure that FR and MMIBN are suitable for user recognition for real-world

applications, these methods should be evaluated on a larger population, which is difficult

to obtain in a real-world long-term HRI study as mentioned in Section 2.1.1.

While previous literature suggests that online learning can improve open world recog-

nition for objects (De Rosa et al., 2016), our results demonstrated otherwise for user

identification for known users. On the other hand, online learning is shown to decrease

the FAR. In this study, we concluded that MMIBN is more appropriate for long-term inter-

actions because DIR is more valuable than FAR due to long-term interactions involving

more known user interactions than new ones. However, the trade-off between DIR and

FAR makes it difficult to choose the best set of parameters.

Although online learning was successful in learning the interaction patterns of users, we
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can also observe (from Figure 4.6) that some of the users interact with the robot at similar

times, which makes it difficult for time to be a distinguishing feature for identification.

This is also supported by the optimised weights in Table 4.1, which is mostly zero for

T ime. However, T ime can be an important variable in identifying users when users are

interacted in a timely fashion, such as recurring weekly appointments in a hospital.

For the remaining optimised weights, we can see that age is the least effective soft biometric

in determining the identity (because it is mostly zero), whereas height is the most effective

one. However, this might be due to the characteristics of the population in the study, as

the participants’ ages are close to each other. Another important factor is the reliability

of the age recognition software. The standard deviation of the estimated age of a user

on average was found to be σAge = 9.3. Hence, we cannot conclude that age should

not be used to supplement the FR in general, but if used, the accuracy of the software

used should be high, especially in a population with a narrow age range. On the other

hand, the effectiveness of the height can also be explained by the nature of the population,

because we had 3 relatively tall (> 180 cm) and 2 relatively short (< 160 cm) users, albeit

the average standard deviation of σHeight = 6.3 cm. We believe that a larger and more

balanced dataset would allow observing the true effects of these parameters.

4.7 Summary

The real-world user study showed that the proposed Multi-modal Incremental Bayesian

Network (MMIBN) and the designed recognition architecture are suitable for real-time user

recognition in long-term human-robot interactions, as they allow fully autonomous user

enrolment and recognition, in addition to improving the identification rate, confirming

two of our hypotheses. Contrary to our initial hypothesis, while online learning was able

to learn the behaviour patterns of the users correctly, it did not improve the known user

identification rate (DIR), however, it was shown to decrease the incorrect identifications

for new users (FAR). The real-world user study also enabled us to optimise the parameters

of the MMIBN using 5-fold cross-validation. Minmax was found to perform best as the

normalisation method for the non-adaptive MMIBN, whereas, softmax was the most

suitable for online learning. Overall, height was found to be the most effective soft

biometric, whereas, age the least. However, the results might be biased due to the small

population size and the characteristics of the population.
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The additional evaluations using varying face recognition threshold and the quality of

the estimation showed that increasing either of these parameters can decrease the FAR,

resulting in a decrease the DIR as well. The proposed MMIBN models performed best at

0.4 as the face recognition threshold. MMIBN increased the DIR by 4.4% for closed-set

recognition and 1.4% for open-set recognition compared to face recognition.
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Chapter 5

Multi-modal Long-Term User Recognition

Dataset

Key points:

• Multi-modal Long-Term User Recognition Dataset created with 200 users of

varying characteristics, based on the IMDB-WIKI dataset (Rothe et al., 2015,

2018) and artificially generated height and interaction times, for evaluating user

recognition models with a large number of users.

• Multi-modal Incremental Bayesian Network (MMIBN) models are shown to

perform equally well for uniform or patterned timing, equal or varying frequency

of appearance, learning users sequentially or at random intervals, and across

training and open-set datasets, and between closed-sets.

• Hybrid normalisation outperforms the individual normalisation methods.

• MMIBN models are shown to significantly outperform face recognition, soft

biometrics and a state-of-the-art open world recognition algorithm, by providing

lower long-term recognition performance loss and higher identification rate.

• Online learning does not outperform a non-adaptive MMIBN, but decreases the

bias in recognition performance between users.
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Parts of the work are under review at the ACM Transactions on Human-Robot Interaction

journal. The Multi-modal Long-Term User Recognition Dataset1 and the source code for

the Multi-modal Incremental Bayesian Network (MMIBN) models2 are available online

for academic use based on the license terms.

1https://github.com/birfan/MultimodalRecognitionDataset
2https://github.com/birfan/MultimodalRecognition
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5.1 Motivation

We evaluated the proposed Multi-modal Incremental Bayesian Network (MMIBN) in a

real-world long-term Human-Robot Interaction (HRI) study in Chapter 4. The results

showed that: (1) the proposed model is suitable for user recognition in real-time for

long-term HRI, (2) MMIBN with optimised parameters improves recognition performance

by increasing Detection and Identification Rate (DIR) and decreasing False Alarm Rate

(FAR) compared to face recognition (FR), (3) Multi-modal Incremental Bayesian Network

with Online Learning (MMIBN:OL) decreases FAR at the cost of decreasing DIR, hence,

a non-adaptive model is found to be better for user recognition, (4) height is the most

effective soft biometric in identifying users, whereas age is the least. However, the limited

population size (14 users) and the narrow age range (24-40) of the users in that experiment

prevented us from claiming that the results can be generalised for application in larger

populations.

Obtaining a dataset which encapsulates a diverse set of characteristics for a large number

of users over long-term interactions is a laborious task in HRI, as discussed in Section 2.1.1.

Thus, this chapter describes Multi-modal Long-Term User Recognition Dataset that we

created from images of 200 celebrities obtained from the IMDB-WIKI dataset (Rothe et al.,

2015, 2018), in combination with artificially generated height and time of interactions to

simulate a long-term HRI scenario similar to the one in our earlier work. The IMDB-WIKI

dataset contains cropped faces from images taken at events or still frames from movies.

We used proprietary algorithms of the Pepper robot to obtain multi-modal biometric

information from these images (face, gender and age), similar to the simulated cross-

validations in the previous chapter. On this dataset, we evaluate our proposed MMIBN

in comparison to online learning (OL), face recognition (FR), soft biometrics (SB), and a

state-of-the-art open world recognition algorithm Extreme Value Machine (EVM).

There were several other challenges and confounding factors in the user study that are

analysed further in this chapter. In the interest of overcoming the trade-off between DIR

and FAR, we base our comparison on the proposed long-term recognition performance

loss (L), presented in Section 3.2.6. While minmax and softmax were found to be the

best normalisation methods for non-adaptive and online learning in the previous chapter,

further analysis of the results suggested that the optimal normalisation method may vary
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depending on the biometric trait, hence, we analyse the effects of combining normalisation

methods under hybrid normalisation introduced in Chapter 3. We investigate the effect

of timing patterns in interactions on the user recognition performance that could vary

depending on the HRI application, as time was perceived to be an influencing factor in

the previous chapter. Furthermore, we examine the frequency of user appearances, based

on users that appear at different frequencies, similar to the user study in the previous

chapter, in comparison to all users appearing with the same number of times, similar to

the previous cross-validation evaluations. In addition, we evaluate the stability of the

proposed approach by comparing enrolling sequentially, which is similar to batch learning,

to having repeated interactions of previously enrolled users before the introduction of a

new user, similar to the previous user study and cross-validation evaluations.

5.2 Multi-modal Long-Term User Recognition Dataset

To the best of our knowledge, the only publicly available dataset that contains the soft bio-

metrics used in our system (except interaction time) with a dataset of images is BioSoft (Sad-

hya et al., 2017). However, due to the low number of subjects (75), and the lack of numeric

height values, we decided to create Multi-modal Long-Term User Recognition Dataset.

IMDB-WIKI dataset (Rothe et al., 2015, 2018) is chosen as the image resource for our dataset

because it contains more than 500k images of celebrities with gender and age labels. 200

celebrities are randomly sampled out of 20k celebrities, choosing only celebrities which

have more than 10 images each corresponding to the same age. The resulting dataset

contains 101 females, 98 males and one transgender person. In the dataset, each image of

the user was chosen from the same year in order to simulate an open world HRI scenario,

where the users will be met in consecutive days or weeks. The images that correspond to

an age that is within the five most common ages in the set were randomly rejected during

the selection to ensure a diverse set of ages. The resulting age range is 10 to 63, with the

mean age of 33.04 (SD= 9.28). We assume that IMDB-WIKI dataset offers a diverse set of

characteristics and soft biometrics.

In the scope of this work, only one user is assumed to be present in each image. Hence,

the cropped faces of IMDB-WIKI dataset is used, and the dataset is cleaned in three steps:

by removing (1) images with a resolution lower than 150x150, (2) images without a face

detected by NAOqi, (3) images that erroneously correspond to another person. Figure 5.1
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Figure 5.1: Samples of images from IMDB-WIKI dataset (Rothe et al., 2015, 2018), used in
creating the Multi-modal Long-Term User Recognition Dataset.

shows samples of images used from the IMDB-WIKI dataset to create the Multi-modal

Long-Term User Recognition Dataset. Because the images come from movies, TV series

and events, they may contain bad lighting conditions, occlusions, oblique viewing angles,

a variety of facial expressions, partial faces of other people, face paint and disguise, and

black and white images, as can be observed from the samples provided.

We artificially created height data for each user, since height was found to be the most

important soft biometric in determining the identity in Chapter 4. To keep the data realistic

and model the differences between the estimated heights, Gaussian noise with σ= 6.3 cm

found in Chapter 4 was added to the heights of the users obtained from the web.

We assume that the average number of times a user will be observed is no ⩾ 10, which is a

reasonable assumption for long-term HRI. Hence, we created two datasets: (1) ten samples

dataset (D-Ten), where each user is observed precisely ten times, e.g. ten return visits to a

robot therapist, and (2) all samples dataset (D-All), in which each user is encountered a

different amount of times (10 to 41 times). Two types of distribution are considered for the

time of interaction: (1) patterned interaction times in a week modelled through a Gaussian

mixture model (G), where the user will be encountered certain times on specific days,

which applies to HRI in rehabilitation and education areas, and (2) random interaction

times represented by a uniform distribution (U), such as in domestic applications with

companion robots, where the user can be seen at any time of the day in the week, resulting

in a total of four datasets (D-TenUniform, D-TenGaussian, D-AllUniform, D-AllGaussian). The

clean datasets of images and the resulting datasets are available online3.

3https://github.com/birfan/MultimodalRecognitionDataset
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5.3 Hypotheses

H1 Our proposed Multi-modal Incremental Bayesian Network (MMIBN) will improve

user recognition compared to face recognition (FR) alone, as measured by a decrease

in the long-term recognition performance loss (L) and increase in the identification

rate of known users (DIR).

H2 Online learning (MMIBN:OL) will improve user recognition over a non-adaptive

model, as measured by a decrease in L and an increase in DIR.

H3 Hybrid normalisation will outperform the individual normalisation methods.

H4 When assumptions are made about the temporal interaction pattern of the user (i.e.,

for Gaussian patterned timing of interaction), recognition will improve. When the

time of interaction is uniformly distributed, the loss L will be higher.

5.4 Experimental Procedure

5.4.1 Cross Validation

We evaluated the stability and performance of the models using repeated k-fold cross-

validation, as described in Algorithm 1. Two different methods are used for creating

validation folds, namely, OrderedKFold and ShuffledKFold. OrderedKFold is the case

where users are introduced one by one to the system without any repetitions of previous

users during the enrolment (step 4 in Algorithm 1). The order of repeated interactions is

random after the enrolment. In ShuffledKFold, there can be repetitions of the previous

user(s) before another user is introduced, because the order of overall samples is random

(step 10). OrderedKFold is similar to batch learning in an incremental learning sense,

whereas, the iteration (repeat) created by ShuffledKFold is more similar to a real-world

scenario, as experienced in the user study in the previous chapter. Our aim is to evaluate if

there are any performance differences between the two cases and to prove that the model

is stable across several repeats. We chose K= 5 folds and R= 11 repeats.
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Algorithm 1 Repeated K-Fold Cross-Validation Generation

1: function ORDEREDKFOLD(K,U) ▷ K is the number of folds, U is the samples for each user
2: k← 1
3: while k <= K do ▷ Create initial cross-validation set
4: SU← shuffle order of U ▷ Enrolment order is different across each bin
5: B[k]← SU[i][j : j+length(SU[i])/K] ▷ Divide user samples equally to each bin
6: V[k]← stratified randomise order B ▷ Initial and final bins are different per fold
7: k← k+ 1
8: return V ▷ Validation set
9: function SHUFFLEDKFOLD(K,P) ▷ P is the (previous) validation set

10: SP← shuffle P ▷ Shuffle the order of the user samples in previous validation set
11: k← 1
12: while k <= K do ▷ Create initial cross-validation set
13: B[k]← SP[j : j+length(SP)/K] ▷ Divide shuffled validation set across each bin
14: V[k]← stratified randomise order B ▷ Initial and final bins are different per fold
15: return V ▷ Validation set
16: procedure REPEATEDKFOLD(R,K,U) ▷ R is the number of repeats
17: C[1]← ORDEREDKFOLD(K,U)
18: r← 2
19: while r <= R do ▷ Create cross-validation set for number of repeats
20: C[r]← SHUFFLEDKFOLD(K,C[r− 1])
21: r← r+ 1
22: return C ▷ Repeated K-Fold Cross-Validation

Each dataset (D-Ten and D-All) is divided into two with 100 users each. The first set is

then divided through cross-validation procedure with 80% of the data for the training set

(first four bins, corresponding to 800 samples in D-Ten and 2308 in D-All) and 20% of the

data for the test set, closed-set (training) (final bin, corresponding to 200 samples in D-Ten,

620 in D-All). The open-set is created from the remaining 100 users (800 samples in D-Ten,

2280 in D-All). The closed-set (open) is similar to closed-set (training), which corresponds to

the final bin in each fold (200 in D-Ten, 570 in D-All). The open-set evaluation is made

by introducing the open-set samples after the training set, that is, 100 users are enrolled

in the system, and recognised multiple times before the introduction of 100 new users.

However, the results for the open-set do not include the results for training.

A stratified random bin order (step 6 and 14) is used for having a different initial bin and

final bin in each fold to ensure a different enrolment order of users and a different test set,

respectively.

The only difference between Gaussian and uniform datasets is the time of the interaction

for each sample; that is, the order of the samples is the same.

For online learning, the likelihoods are learned during the training phase (training and

open-set), and the learned likelihoods are used without online learning for the closed-set.
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5.4.2 Variables and Measures of the Study

Given our datasets and the parameters of our model, we have four independent variables

and three dependent variables for analysing the results on the evaluation sets: training,

open-set, closed-set (training), closed-set (open). The dependent variables are DIR in

Equation 3.13, FAR in Equation 3.14 and long-term recognition performance loss (shortly,

loss) in Equation 3.15, which are used to measure the performance of the models. The

independent variables are as follows:

1. Dataset size: ten samples per user (D-Ten), random amount of samples (D-All)

2. Timing of interaction: patterned interaction times (gaussian), random interaction

times (uniform)

3. Model: non-adaptive (fixed) likelihoods (MMIBN), online learning (MMIBN:OL)

4. Normalisation method: softmax, minmax, tanh, normsum and hybrid

5.5 Results

5.5.1 Optimisation of Parameters

In this section, we present our empirical evaluations to obtain the optimised parameters

of our system on the described datasets. Bayesian optimisation4 is used to optimise the

weights of the network and the threshold for the quality of the estimation (Q) (θQ). A total

of 303 iterations is used for 5-fold cross-validation for each combination of the independent

variables (for 40 conditions). The parameters are optimised by minimising the loss on the

training set. By using the optimised parameters, 11 repeats of 5-fold cross-validation are

conducted for each of the conditions to evaluate the effects of the independent variables

on the open-set.

The loss parameter α defined in Equation 3.15 should be set to find the optimum face

recognition threshold (θFR) and optimise the parameters in our network. As α increases,

the fraction of correct recognitions of enrolled users (DIR) increases, but the fraction of

the incorrect recognitions of unknown users (FAR) will increase. Based on our average

4https://thuijskens.github.io/2016/12/29/bayesian-optimisation/
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number of observations assumption no = 10 for long-term interaction, α becomes 0.9. For

applications with fewer observations per user, α can be set accordingly.

5.5.1.1 Face Recognition Threshold

In face recognition, if the highest similarity score is below θFR, the identity is classified

as unknown. We examined how θFR influences the long-term recognition performance

loss for the NAOqi FR, and noticed a decrease in performance (i.e. increase in loss) for

θFR > 0.4, as shown in Figure 5.2. Hence, we chose θFR = 0.4 because it is the highest

threshold giving the lowest loss to decrease FAR in our model, in agreement with our

previous work in Chapter 4.
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Figure 5.2: The change in long-term recognition performance loss for NAOqi face recog-
nition (FR) given the FR threshold (θFR), in D-Ten (ten samples dataset) and D-All (all
samples) datasets. The results show that 0.4 is the ideal θFR, because it is the highest
threshold giving the lowest loss to decrease FAR.

5.5.1.2 Analysis of Variance of Independent Variables

For clarity of the presentation of results, we will initially analyse the results for 11-repeats

of 5-fold cross-validation, before presenting the optimised parameters from Bayesian

optimisation. This would allow us to later analyse only the optimisation parameters for

the best performing normalisation method.

Levene’s test on the loss reveals (F(10,2189) = 0.026,p = 1) that there is no significant

difference in variances between the repeats, which, indicates that our Bayesian network

models are stable across repeats. Analysis of variance (ANOVA) (Type-I) supports that

there is no significant difference between repeats (F(10,2189) = 0.044,p= 1), which shows
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that there is no significant difference between the OrderedKFold cross-validation and the

ShuffledKFold, indicating that the model performs equally well for learning new users

incrementally sequentially (similar to batch learning) and at random intervals (similar to a

real-world scenario). Hence, we will only analyse the results of a single randomly selected

repeat of 5-fold cross-validation. Since the model is stable across repeats, using a single

repeat of cross-fold validation instead of independent test sets does not violate ANOVA

assumption (Beleites & Salzer, 2008).

Due to the linear relation of loss with DIR and FAR in Equation 3.15, there will be

a correlation between the parameters. Pearson’s product-moment partial correlation

coefficient was computed to assess their relationships. The results show that there is

a negative correlation between loss and FAR (r(200) = −0.18,p = .009) and a positive

correlation between loss and DIR (r(200) = 0.99,p= 9.9× 10−195). However, no significant

correlation is found between FAR and DIR (r(200) = 0.08,p = .25). Hence, we will only

report the significance analysis of loss.

A factorial ANOVA is conducted for analysing the primary and interaction effects of our

independent variables. The results show that there are no significant primary effects for the

model (F(1,160) = 1.50,p= .22), and no significant interaction effects are found between the

dataset size, timing of interaction, and model combination (F(1,160) = 0.01,p= .91). Every

other independent variable and their interactions are found to be significant (p < 0.001

level). This shows that the size of the dataset, timing of interaction and normalisation

method have significant effects on the performance of the model, but online learning by

itself does not provide significant improvement.

There are 200 data points (40 conditions across 5-folds) evaluated for ANOVA, so central

limit theorem takes effect for the normality assumption. Inspection of the Q-Q plot shows

that most of the data points lie on a linear axis. Residual plots do not show a particular

pattern, thus the equality of variances can be inferred. The Cook’s distance for high

leverage points is less than 0.25, so there is no need to remove them as outliers. Moreover,

the dataset is balanced, that is, sample sizes are equal for each condition. Thus, ANOVA

results are valid.
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5.5.1.3 Normalisation Methods

We conducted a post-hoc analysis using Tukey’s Honestly Significant Differences (HSD)

test on the cross-validations. Throughout this thesis, we adopt a letter-representation for

Tukey’s HSD test plots. Levels that are not significantly different from each other at 0.95

confidence level (p < 0.05) are represented with the same letter over all the conditions,

that is, each method is compared to all the other methods in different conditions. In other

words, if two methods do not share a common letter, then there is a significant difference

in performance between them. Multiple letters mean that the method is at the same

significance level with multiple other methods. Additionally, for clarity of results, D-All

and D-Ten datasets have been analysed separately, however, the results show similar

patterns in both datasets.

Figure 5.3 shows the resulting boxplot for D-All from Tukey’s HSD separated by the

learning method and timing of interaction. Tukey’s test results for D-Ten show a similar

pattern, presented in Appendix B.1.
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Figure 5.3: Results of Tukey’s HSD test of loss in the open-set for normalisation methods
with optimised weights for all samples (D-All) dataset: softmax, minmax, tanh, normsum,
and hybrid. Lower loss is better. Levels that are not significantly different from each other
at 0.95 confidence level are represented with the same letter within all separations. The
results show that hybrid normalisation significantly outperforms the other normalisation
methods in all datasets and models.

In both of D-All and D-Ten datasets, hybrid normalisation provides significantly lower
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loss (p < 0.05) in all conditions except for online learning in Gaussian timing for D-All

(p= 0.78 in D-AllGaussian), in which case it still provides the lowest mean for loss. Hence,

our hypothesis H3 is strongly supported, and hybrid normalisation method is chosen for

the remaining analyses.

Even though we did not find any significant differences in the primary effect of the

learning method, Figure 5.3 shows that there are significant differences between online

learning and fixed likelihoods for hybrid normalisation. Online learning results in a higher

loss for both datasets, which is in contrast with our hypothesis H2. The other methods do

not show a stable pattern across conditions or datasets.

Most methods perform significantly worse in uniform timing of interaction (random

interaction times), as compared to patterned interactions (Gaussian times), supporting our

hypothesis H4. Softmax performs equally well on both models for D-All but performs

worse in uniform timing for D-Ten. Hybrid normalisation performs equally well for

MMIBN in D-All but performs significantly worse in other conditions.

Hybrid normalisation performs better in all conditions and shows stability across varying

conditions compared to the other methods. It achieves lower loss in D-All than in D-Ten,

as a result of a higher number of samples in D-All (2280 in open-set) as compared to

D-Ten (800 samples), which shows that the proposed model gets better with the increasing

number of recognitions.

5.5.1.4 Weights and Quality of the Estimation

It seems to be self-evident that in the case of the uniformly distributed time of interaction,

online learning would provide worse results because the information provided by time will

be unreliable. Hence, the optimisation should find a lower weight for the time parameter.

The parameters corresponding to the optimum loss in Figure 5.4 show otherwise. Weight

for the uniform time is higher than that of the Gaussian for online learning in both datasets.

In general, based on the relatively high weights, age seems to be the most important

parameter, and height the least. This is in contrast with the findings in Chapter 4.

The optimised threshold for the quality of the estimation (θQ) was found to be less than

0.1 in each condition. The underlying reason is the disagreement of the modalities, which

can decrease the differences in posterior probabilities because the results are combined
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through the product rule in the BN. When the modalities agree with high confidences

(probabilities), the quality can be very high, such as Q= 7.44, as shown in Figure 5.12 in

Section 5.5.2 for the probe of the second user.
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Figure 5.4: Values of the optimised parameters through Bayesian optimisation of 303
iterations over 5-fold cross-validation for hybrid normalisation for all samples (D-All)
and ten samples (D-Ten) training sets: the weights for gender, age, height, and time of
interaction and the threshold of the quality of the estimation (θQ). In general, age seems
to be the most important parameter, and height the least.

5.5.2 Comparison to Baselines

On the grounds that the optimised parameters of our proposed MMIBN are found, we

can compare its results to FR and SB. FR results are obtained from the NAOqi estimations

by setting FR threshold (θFR) to 0.4, as found in Section 5.5.1.1. SB results are obtained by

giving zero weight to FR, that is, only gender, age, height estimates from NAOqi and time

of interaction are used for identifying a user. The weights of these modalities in SB are the

same as MMIBN, as shown in Figure 5.4. Similarly, the weights of SB:OL are the same as

those of MMIBN:OL.

We transformed a state-of-the-art open world recognition method, Extreme Value Ma-

chine (Rudd et al., 2018) (EVM), as described in Appendix B.3, to accept sequential and

incremental data for online learning by adjusting its hyperparameters to use it as a base-

line. In the original work, batch learning of 50 classes was used with an average of 63806

data points at each update, instead of a single data point that we used in this work. We

compared our methods with the performance of two EVM models: (a) EVM:FR, using

NAOqi face recognition similarity scores as data, (b) Extreme Value Machine trained with
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multi-modal data (EVM:MM) in the same format as it is used for our methods.

Section 5.5.2.1 compares the long-term recognition performance loss (shortly, loss) between

the models. There is a significant correlation between FAR, DIR and loss, as found in

Section 5.5.1.2, which can be observed from the various results during the Bayesian

optimisation of weights and quality of the estimation shown in Figure 5.5. Hence, the

analysis of loss is sufficient to determine how the model performs in comparison to others.

Nevertheless, we will report the results of FAR and DIR of the models in Section 5.5.2.2 to

further observe how the open-set recognition metrics are affected.
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Figure 5.5: ROC curve with long-term recognition performance loss and DIR for varying
FAR, based on the Bayesian optimisation of MMIBN with hybrid normalisation for varying
weights and quality of the estimation for 303 iterations over 5-fold cross-validation, in
the all samples dataset with Gaussian times (D-AllGaussian). FR values are given for
comparison. As DIR increases, loss decreases but FAR increases. The loss parameter (α)
can be adjusted, or a FAR can be set to obtain a different set of weights.

5.5.2.1 Long-term Recognition Performance Loss

As previously mentioned, the proposed models perform better in terms of loss in D-All

than in D-Ten, however, the results for D-Ten datasets show similar patterns to that of

D-All. Taken the same number of recognitions for both D-All and D-Ten, that is equal to

the number of samples in D-Ten for all evaluation sets, ANOVA shows that there is no

significant difference in the sample size (F(1,192) = 0.179,p= .67) as the models perform

equally well for D-All and D-Ten for the same number of samples. In other words, it does

not matter if each user is observed the same number of times or not. This also supports

that a higher number of samples increases the performance of the models. Hence, the

following analysis will only be focused on D-All, but any differences in performance
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between the two datasets will be noted wherever necessary.

Figure 5.6 presents Tukey’s HSD test results on the training, open-set, closed-set (training),

closed-set (open) for D-All datasets with Gaussian and uniform timing of interaction.
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Figure 5.6: Comparison of Tukey’s HSD test results on loss for the proposed Multi-modal
Incremental Bayesian Network (MMIBN), face recognition (FR), soft biometrics (SB) with
online learning condition (:OL), Extreme Value Machine trained with face recognition data
(EVM:FR) and with multi-modal data (EVM:MM). The results are presented for training
(100 users), open-set test (200 users), closed-set (training) (100 users) and closed-set (open)
(200 users) for all samples dataset (D-All) for Gaussian and uniform timing of interaction.
Lower loss is better. Levels that are not significantly different from each other at 0.95
confidence level are represented with the same letter within all separations. The results
show that our proposed approaches significantly outperform FR, SB and EVM in all sets.
The non-adaptive MMIBN performs slightly better than online learning (MMIBN:OL).
MMIBN performs equally well between Gaussian and uniform timing, between training
and open-set cases, and closed-sets, which shows that the model is not significantly
affected by the timing and scales well for an increase in users.

The results show that the proposed approaches (MMIBN and MMIBN:OL) decrease the

long-term recognition performance loss significantly (p= 0) and substantially compared to

FR, supporting the first part of our hypothesis H1. This finding is valid across all datasets

(D-Ten and D-All for Gaussian and uniform times).

MMIBN performs equally well between Gaussian and uniform timing for D-All evaluation

sets (i.e. no significant difference, but slightly worse in uniform), whereas, it does not

perform at the same significance in D-Ten evaluation sets (performs significantly worse).
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MMIBN:OL performance changes depending on the dataset size and the evaluation set

(performs equally well only in closed-sets in D-Ten, and for training and closed-set open

in D-All). Nevertheless, the models have slightly or significantly higher loss in uniform

timing as compared to Gaussian.

Online learning does not perform better than MMIBN because it increases the loss at all

conditions. In fact, except for training set in D-All and D-Ten and closed-sets in D-Ten for

uniform timing where MMIBN and MMIBN:OL perform at the same significance level,

online learning is significantly worse, which is in contrast with our hypothesis H2.

Furthermore, the results show that soft biometric features (SB and SB:OL) are not able

to identify a user on their own. In general, they perform significantly worse than FR.

However, when the interaction is time patterned (Gaussian), SB performs better and closer

to FR as compared to uniform timing. Especially for closed-set training in D-All, it is

remarkable that SB features identify the user with the same significance level performance

as FR. SB and SB:OL perform mostly equally well in D-All datasets, but SB:OL performs

significantly worse in several evaluation sets in D-Ten.

EVM:FR performs significantly better (p < .005) than FR across all conditions. EVM:MM

is significantly worse than EVM:FR (p < .01), and it does not perform better than FR in

most conditions. This shows that although EVM is a good method for clustering face

recognition data, but it does not perform well with multi-modal data.

MMIBN significantly outperforms (p < 2× 10−10) both EVM models across all conditions

in both D-All and D-Ten. This proves that our proposed approach is significantly better

than the state-of-the-art method for incremental open world recognition with multi-

modal biometric information. However, EVM models use online learning instead of fixed

learning rates, which could potentially lead to worse performance as observed for our

model. Nevertheless, comparing EVM models to MMIBN:OL shows that MMIBN:OL

significantly outperforms EVM models (p < .05 to p= .0) in most cases, except for uniform

timing for open-set and closed-set (open) in D-All and open-set in D-Ten, in which, it

performs equally well with EVM:FR.

MMIBN performs equally well between training and open-set cases as well as between

closed-sets, which shows that the model scales well for an increase in users (from 100 to 200

users), suggesting that the proposed approach and the optimised weights can generalise.

Similar to the results in (Rudd et al., 2018), EVM performs equally well between those
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sets, showing that the change in the model from batch updates to incremental updates

have not changed its structure for scaling well. The models perform significantly better

in closed-sets as compared to training or open-set due to the lack of unknown users in

closed-sets where loss only depends on DIR (FAR= 0.0).

The model performance improves with the increasing number of recognitions and sta-

bilises towards the end (around 2000), as can be observed in Figure 5.7. This supports

our initial finding of performance difference between D-All and D-Ten, given that they

perform equally well for the same number of recognitions. Initially, loss increases with

increasing FAR, when the users are introduced to the system (represented by dots in the

plot). As the number of recognitions increases, the introduction of a new user does not

notably increase the loss as can be observed by the final three new users in the training

set. Even though MMIBN models get better over time, they start performing consistently

better than both FR and EVM models throughout both training and closed-set after only a

small number of recognitions (15 to 48 in training, 1 to 6 in closed-set).

The sudden change at the beginning for the training set is due to the sequential calcula-

tion of loss for time plots: a previously enrolled person, which has not been identified

correctly for the first time, changes DIR from 1.0 to 0.5 (one out of two enrolled users was

incorrectly identified). Note that the introduction of new users is at random order due to

ShuffledKFold function described in Section 5.4.1. The results for the open-set, as given

in Appendix B.2, show a similar pattern of loss between open-set and closed-set (of the

open-set cross-validation).

5.5.2.2 Open-Set Identification Metrics: DIR and FAR

The previously presented results confirm our claims that our proposed multi-modal

Bayesian networks perform significantly better than FR, SB and EVM in long-term in-

teractions, because of the significantly high correlation between loss with DIR and FAR.

However, analysing the open-set identification metrics allows us to understand how the

models perform for enrolled and unknown users through DIR and FAR, respectively.

Tukey’s HSD test results for DIR are presented in Figure 5.8. This plot resembles highly that

of Figure 5.6 in a reversed direction, because of α (1 −DIR) component of loss, whereby,

α= 0.9. The increase in DIR is significant (p= 6.1× 10−15) and drastic, from 0.268 of FR to

0.657 with MMIBN and 0.561 with MMIBN:OL averaging over all the conditions in D-All

103



training closed−set

0 500 1000 1500 2000 0 200 400 600

0.00

0.25

0.50

0.75

Number of Recognition

L
o

s
s

isRegistering

TRUE

Models

FR

EVM:FR

EVM:MM

MMIBN

MMIBN:OL

Figure 5.7: The change of loss with the increasing number of recognitions for all samples
dataset with Gaussian times (D-AllGaussian) for training and closed-set (training). The loss
decreases with the increasing number of recognitions.

(timing of interaction and evaluation set). That is 38.9% increase in identifying the users

correctly by using MMIBN, no matter the condition, which is more than double what FR is

capable of providing. Hence, our hypothesis H1 that the loss will be reduced and DIR will

be increased using our proposed models as compared to FR alone is fully and strongly

supported.

It should be noted that the increase in DIR provided by our network is significantly higher

(p < 2× 10−16) than DIR of soft biometrics (0.226 on average for Gaussian timing in D-All).

This shows that soft biometric data are not sufficient to identify an individual, yet when

combined with the primary biometric, they improve the identification rate significantly

(38.9% in D-All, and 31.8% in D-Ten). This conclusion is supported by the datasets where

the time of interaction is uniformly distributed (DIR of SB is 0.013 in average), that is, due

to the high variability of time, the identification rate of SB is close to zero. Nevertheless,

MMIBN performs equally well in Gaussian, and uniform timing within all evaluation sets

in D-All, and MMIBN:OL performs equally well in D-Ten. As previously noted in H4, the

loss is (slightly or significantly) higher, and DIR is (slightly or significantly) lower for all

datasets and MMIBN models between Gaussian and uniform timing.

MMIBN significantly outperforms both EVM methods in DIR in all datasets (p = 0.0).

EVM:FR has significantly higher DIR than FR and EVM:MM (p < 1× 10−9). EVM:FR

performs equally well between uniform and Gaussian timing in all datasets because it

is trained only on FR data. DIR of EVM:MM drops below that of FR for uniform timing
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Figure 5.8: Tukey’s HSD test results for Detection and Identification Rate (DIR) of all
models for D-All datasets. Higher DIR is better. MMIBN outperforms all other methods
in all sets and timing.

for both D-All and D-Ten, which shows that EVM is not a model to be used with time

information, since the pattern of interaction with the user might not be known beforehand.

Similarly, MMIBN:OL provides worse performance for uniform timing in D-All, but it

always performs significantly better than or equally well with EVM:FR.

FR performs similarly in open and closed-sets in terms of loss, because it has significantly

low FAR compared to MMIBN models, as can be observed in Figure 5.9. Even though

low FAR is a desirable feature, the underlying reason of low FAR is that FR has very poor

recognition performance on larger datasets and fails to recognise the users, because the

highest similarity score returned by the identifier is lower than the threshold (θFR = 0.4).

However, as described in Section 5.5.1.1, this threshold ensures the lowest loss for FR.

FAR of the proposed models is high because of the combination of all modalities, which

increase the probability of mixing the unknown user with an enrolled user. Possible

solutions to this problem will be proposed in Section 5.6. For our proposed models, FAR

in the training set is generally slightly less than that of open-set, because of the higher

number of users enrolled, but there are no significant differences across the datasets for

MMIBN, supporting that the model scales well to a larger dataset without a significant

decrease in performance.
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Figure 5.9: Tukey’s HSD test results for False Alarm Rate (FAR) of all models for D-All
datasets. Lower FAR is better. FR outperforms other methods in FAR, mainly due to
identifying most users as unknown.

In the training set, there is no significant difference between MMIBN and EVM models,

and MMIBN:OL performs significantly better than EVM models for uniform timing. In

contrast to MMIBN, EVM provides significantly lower FAR in open-sets than in training

sets. The authors state in (Rudd et al., 2018) that this is due to its ability to tightly bound

class hypotheses by their support.

5.5.2.3 User-Specific Analysis

Confusion matrices presented in Figure 5.10 show how users were identified through-

out the training set in D-All for a fold of the cross-validation, with 0 as the ID of the

unknown user and the remaining numbers corresponding to IDs of the users. The heat

map represents the percentage of identification of the user as the estimated user. Ideally,

the diagonal should be all dark red if users are correctly identified. However, FR (item

a) mostly identifies the users as unknown, resulting in the corresponding vertical axis

of 0 to be mostly red and in a low FAR and a low DIR. MMIBN (item b) has mostly red

coloured dots on the diagonal but has mixed users with other enrolled users as can be

seen from light blue dots all over the matrix. MMIBN:OL shows a similar pattern with

slight deviations.
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(a) (b)

(c) (d)

Figure 5.10: Confusion matrices of user identification for second fold of cross-validation
on D-AllGaussian: (a) face recognition (FR), (b) proposed model (MMIBN), (c) incremental
Extreme Value Machine trained with face recognition data (EVM:FR), (d) incremental Ex-
treme Value Machine trained with multi-modal data (EVM:MM). The heat map represents
the percentage of identification as the estimated user. Ideally, if all users are correctly
identified, the diagonal should be dark red, and the remaining of the matrix should be
dark blue.

Even though EVM:FR (item c) only uses FR information, its confusion matrix is different

from that of FR. The misidentifications are highly concentrated on the final ten users,

suggesting that either FR or EVM might be subject to the catastrophic forgetting problem.

Using multi-modal data overcomes that problem, as can be seen for EVM:MM (item d) as

misclassifications are evenly distributed, similar to MMIBN. However, the diagonals in

EVM models have notably fewer reds than MMIBN.

The significant differences of identification of users over the 5-folds of cross-validation,

as revealed by Figure 5.11, shows another striking result. FR (item a in the figure) does

not perform equally well amongst the users in that there are significant differences of

identification (represented by darker blue colours). Our proposed approach MMIBN (item

b) balances the performance amongst users, thereby, reducing any biases in the system

while improving the performance of the overall system significantly as compared to FR.
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Online learning (MMIBN:OL in item c and EVM:FR5 in item d) balances the performance

further, in contrast to the decrease in performance compared to MMIBN.

(a) (b)

(c) (d)

Figure 5.11: Tukey’s HSD test results for significant differences of user-based identification
over 5-fold cross-validation on D-AllGaussian: (a) face recognition (FR), (b) proposed model
(MMIBN), (c) proposed model with online learning (MMIBN:OL), (d) Extreme Value
Machine trained with face recognition data. The darker blue colours represent significant
differences, whereas lighter blue colours means that the users are identified equally well.
The results show that our approach and online learning decrease the bias and balance the
performance between users.

Figure 5.12 demonstrates examples from D-AllGaussian where face recognition fails to

recognise the user due to the low similarity score (< θFR = 0.4), whereas, our proposed

model identifies the user correctly based on soft biometric information. The quality of

the estimation (Q) varies depending on the highest FR similarity score, as well as the

disagreement between modalities. For example, for the third user (Sandra Oh), the highest

FR similarity score (rank 1) is very low, corresponding to David Schwimmer who is 28

years old in the dataset, has a height of 185 with the enrolment time of interaction on

Tuesday at 18:16. Age did not provide information to differentiate the user from the

incorrect estimation, whereas, height and time of interaction increased the probability

5EVM:MM shows a similar pattern.
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Figure 5.12: Examples of true values and estimated values of modalities from our Multi-
modal Long-Term User Recognition Dataset with Gaussian times (confidence values are
given in brackets) using proposed multi-modal Bayesian network with hybrid normalisa-
tion (referred to as BN in the figure). Highlights in red show the incorrect detection values.
Face recognition was unable to recognise the users (0 represents unknown user) because
the similarity scores were below the threshold (40%). Our proposed BN was successful
(highlighted in green) in correctly identifying the users with varying quality of estimations
(shown in brackets underneath the ID) as a result of the information gathered from soft
biometrics highlighted in blue. 8% confidence value of height corresponds to the σ= 6.3
cm in NAOqi. Images are taken from IMDB-WIKI dataset (Rothe et al., 2015, 2018).

that the user is Sandra Oh, resulting in a correct estimation, but with a low quality score

(0.35 > θQ = 0.013). The second user (Gary Coleman) was identified correctly by FR

with the highest similarity score close to, but slightly lower than θFR. This was enforced

by the age estimation, and the time of interaction, which compensated for the incorrect

recognitions of gender and height, to get a high quality score (7.44).

5.6 Discussion

Our findings showed that from our initial hypotheses H1 and H3 are fully supported,

H4 is supported for hybrid normalisation, and H2 is rejected. In this section, we will

discuss the implications of our results, validate our initial assumptions, and offer other

approaches for our models.
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5.6.1 Baselines and Time Complexity

Our proposed multi-modal models perform significantly better than NAOqi face recogni-

tion and soft biometrics and Extreme Value Machine (EVM) models, which is a state-of-the-

art open world recognition method. We have not used a state-of-the-art deep learning face

recognition algorithm (such as Dlib (King, 2009)) for comparison, because those methods

are not optimised for low computational power systems, hence, they may require a vast

amount of time for encoding images, recognition and re-training6, which makes them

unsuitable for real-time open world user recognition on a robot. The proposed models

can run on a commercial robot with low-computational power (on a single CPU of Pepper

robot), and only require a small amount of time for execution. After the recognition user

study presented in Chapter 4, we optimised the code for the Recognition Architecture

and the MMIBN for decreasing the time it takes for calculating the estimated identity and

saving and loading the model. Consequently, in addition to the time required from FR

and other modalities (M= 0.14 s, SD= 0.001), MMIBN models take 0.01 second for recog-

nition (compared to 0.3 second in user recognition study), significantly outperforming

(p < 1× 10−11) both EVM:FR and EVM:MM, which require 0.32 and 0.34, respectively7.

For enrolling new users, MMIBN requires a significantly lower amount of time equal to

0.39 s (p= 0.002) for scaling the Bayesian network compared to all models. MMIBN:OL

takes 0.54 s, for which 0.17 s is due to online learning. There is no significant difference

between MMIBN:OL and EVM models for enrolling, EVM:FR takes 0.48 and EVM:MM

takes 0.52 s, with 0.20 and 0.23 s for online learning, respectively. The higher amount of

time required for EVM:MM compared to EVM:FR shows that online learning takes longer

time when there is more information to be learned per user.

Moreover, in contrast to deep learning approaches, which require “big data” to be pre-

trained, our proposed models are able to start from a state of no enrolled users, learn users

continuously and incrementally, and improve performance compared to FR after a small

number of recognitions (e.g. 48 for Figure 5.7).

6An implementation of Dlib for open world recognition using re-training on a dataset with a small
number of users is explained in this link, which shows that the recognition can take 6-7 seconds on a single
CPU system for a small number of users: https://www.pyimagesearch.com/2018/06/18/face-recognition-
with-opencv-python-and-deep-learning/

7The results are given for D-All with Gaussian timing on the open-set.
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5.6.2 Dataset Size

In general, FAR and DIR are higher, and loss is lower in D-All than in D-Ten. The increase

in DIR and the decrease in loss, is explained by the higher number of recognitions, which

increases the performance over time. The increase in FAR can be due to different optimised

weights for each dataset (see Figure 5.4). However, both datasets show similar patterns

in differences between FR, SB and MMIBN models. Even though the number of samples

per each user is not the same in D-All, the fact that it performs equally well as D-Ten for

the same number of recognitions shows that our equal priors (P(I)) assumption, which

states that each user is equally likely to be seen, does not have any adverse effect on our

proposed models. We suggest using the optimisation parameters (weights and quality

threshold) that are optimised for D-All datasets since they are optimised using more

samples on this dataset. If the application is based on users to come at specified times

during a week (e.g. in a hospital), the optimised parameters for D-AllGaussian should be

used; otherwise, it is better to use that of D-AllUniform (e.g. for companion robots). These

optimised parameters generally perform significantly equivalent in both timing conditions

in D-All for both models, as shown in Figure 5.6, even though the timing of interaction

does not provide enough information in the uniform timing case.

5.6.3 Effects of the Loss Parameter and the Frequency of Appearance

High FAR of the models is due to the trade-off between identifying known users and

spotting unknown people, which is visible in Figure 5.5. The value of α determines the

importance of this trade-off in the loss function to ensure a higher number of correct

recognitions in a long-term interaction. We found α= 0.9 based on our assumption that

the average number of interactions is 10. Nonetheless, using a varying amount of samples

(D-All) did not change the overall performance in terms of the long-term recognition loss,

when we compared D-All and D-Ten at the same number of total samples (800 for training

and open-set and 200 for closed-sets). In Figure 5.7, 71% of the users had less than 10

recognitions, and 20% had more than 10, before 800th recognition in D-All dataset. This

finding shows that our choice of α did not negatively affect the results.
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5.6.4 Multi-modal Approach

As previously noted, the increase in DIR for MMIBN models (0.328 to 0.479) is higher

than DIR provided by SB models (0.007 to 0.277), especially for uniform timing where SB

provides close to zero DIR. This fact along with the non-zero optimised weights support

that the inclusion of age, gender and height modalities increases the identification rates,

suggesting that the visual modalities contain additional information to FR, and confirming

our initial assumption of conditional independence.

In contrast, EVM:MM performed significantly worse than EVM with only FR information.

Moreover, EVM:MM performance was below FR performance for uniform timing of

interaction, which was not the case for MMIBN:OL. These findings show that our proposed

models are more suitable for multi-modal biometric information than EVM.

5.6.5 Online Learning

We initially assumed that all identifiers work equally well on all users based on the work

in (Jain et al., 2004). However, there can be changes in a person’s appearance, the similarity

between users, as well as changes in the time of interaction, which could negatively affect

the visual identifiers and the time component of our models, respectively. We claimed that

our online learning approach would adjust to these changes and perform better than the

fixed learning rates (H2). The second part of the hypothesis was not supported because

online learning (MMIBN:OL) performed significantly worse or at the same significance as

fixed learning rates (MMIBN). The underlying reason might be the accumulating noise

in the identifiers. Nevertheless, the average learned likelihoods (for 200 users) in online

learning showed that the initial assumptions in Equation 3.7 hold valid. The mean for

face node was 0.913 (compared to the initial assumption of 0.9), with SD= 0.126. For the

gender likelihood, M= 0.978 (the initial assumption was 0.99), SD= 0.058.

FR does not perform equally well on users, as shown in Figure 5.11. Our proposed MMIBN

models decrease the bias in the system using multi-modal information. This finding is also

confirmed for uniform timing of interaction. Moreover, the first part of our hypothesis

that online learning will adjust to these changes is supported, which allowed decreasing

the bias of FR further. We can conclude that for long-term recognition, our multi-modal

incremental Bayesian networks not only perform better than FR alone in all datasets but
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also increases performance on each user to identify them equally well.

5.6.6 Comparison to Previous Work and Real-World Applications

Our previous work, described in Chapter 4, showed that our proposed approach enables

and facilitates incremental identification in a real-world HRI scenario. Our current results

show that the model scales well to a larger dataset and provides significantly more reliable

identification than face recognition alone. The hybrid normalisation method proposed here

performs significantly better in terms of loss as compared to the previous methods used

in earlier work (H3). Moreover, the Multi-modal Long-Term User Recognition Dataset

described in this work contains a higher variability of subject age and heights, as well as

patterned and uniform timing of interaction. Both D-Ten and D-All datasets show that

the models perform significantly better than FR even though there are only 10 samples

per user in D-Ten and a varying number of samples (10 to 41) in D-All, as compared to

66 samples per user in the previous work. Based on these conclusions, we can conclude

that the optimised parameters presented here are more suitable than the ones previously

found to use in real-world deployments for a large number of users.

5.7 Summary

In this chapter, we presented our Multi-modal Long-Term User Recognition Dataset

that we created to simulate long-term human-robot interaction, allowing us to evaluate

and optimise the parameters of Multi-modal Incremental Bayesian Network (MMIBN)

on a large number of users (200) with varying characteristics. Within this dataset, we

generated data with same or varying frequency of appearance of users, and patterned

(Gaussian) interaction times, similar to educational or rehabilitation scenarios, and random

(uniform) interaction times, similar to domestic interactions with a companion robot. We

used simulated height estimations based on the identifier specifications found in the

previous chapter. The remaining identifier estimations were obtained by feeding images

of simulated users, obtained from IMDB-WIKI dataset, to the Pepper robot’s proprietary

algorithms, thereby providing real signals to our Bayesian Network.

We compared our proposed methods to face recognition (FR) and soft biometrics (SB), as

well as a state-of-the-art open world recognition method, Extreme Value Machine (EVM).
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The results show that the proposed MMIBN models with hybrid normalisation decrease

the long-term recognition performance loss significantly and improve the identification

rate significantly and substantially compared to all the baselines, in exchange for a higher

number of incorrect estimations of new users.

Our MMIBN models generally perform significantly equivalent for both random and

patterned timing, even though the time of interaction does not provide reliable information

in the uniform timing case. Moreover, the results revealed that the proposed models

perform equally well for learning new users incrementally sequentially (similar to batch

learning) and at random intervals (similar to a real-world scenario). In addition, they

perform equally well across training and open-set, and between closed-sets, even though

the number of enrolled users is doubled, suggesting that the model scales well to larger

datasets. While the models perform equally well for the same and varying frequency of

appearance of users at the same number of recognitions, the models perform better with

the increasing number of recognitions. Nevertheless, they can perform better than FR and

EVM models after only a small number of recognitions.

Similar to the results in the previous chapter, online learning either decreases recognition

performance or provides the same significance level as the non-adaptive model (MMIBN),

which could be due to the accumulating noise in the network. On the other hand, the

user-based analysis showed that online learning equalises the performance between users

more than the fixed likelihoods, thereby, decreasing the biases in the system caused by FR.

In comparison to the user study presented in the previous chapter, this study showed

that our proposed models scale well to a larger dataset with higher variability of subject

age and heights, in addition to providing significantly more reliable user identification in

comparison to face recognition and a state-of-the-art open world recognition algorithm.

Hence, the optimised parameters in this chapter are more suitable to be used for real-

world applications. Furthermore, our optimised proposed models take significantly lower

amount of times in comparison to the state-of-the-art approaches, hence, MMIBN models

are more suitable to be applied to robots for real-world long-term human-robot interactions

as an initial step towards personalising the interaction.
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Chapter 6

Task-Oriented Dialogue in a Coffee Shop:

Barista Datasets

Key points:

• A text-based Barista Dataset is introduced, which simulates the interactions

between a barista and various customers at a coffee shop.

• The Personalised Barista Dataset is introduced that extends the Barista Dataset

with personalised subsequent interactions, in which the barista recalls and

suggests customers’ most frequent (preferred) orders. This dataset also includes

user recognition information to identify the users. In order to simulate a real-

world scenario with a robot, recognition errors, incorrect recalls and changes to

the customer preferences are part of tasks in this dataset.

• The Personalised Barista with Preferences Information Dataset is introduced

that contains the information of the most frequent order of the customer along

with the user recognition information to simulate a knowledge-base extraction.

The Barista and Personalised Barista Datasets presented in this chapter have been used in

the study described in Irfan et al. (2020b) and in the evaluation of data-driven approaches

for long-term interactions, which will be presented in the next two chapters, respectively.

The datasets are available online1 for academic use based on the license terms.

1https://github.com/birfan/BaristaDatasets
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Parts of the work are under review at the Frontiers in Robotics and AI journal.
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6.1 Motivation

In Chapters 3 to 5, we have described a multi-modal user recognition system that is

suitable for real-world long-term Human-Robot Interaction (HRI). From this chapter

onwards, we will focus on recalling elements of previous exchanges, such as user attributes,

preferences and behaviour patterns, for personalisation of the current interaction. We

will use various memory systems in combination with our multi-modal user recognition

system for designing fully autonomous personalised robots for real-world applications.

Previous research, presented in Chapter 2, shows that personalisation is vital for long-term

interactions. It accommodates differences between individuals to maintain a positive user

experience and facilitates user engagement and responsiveness after the novelty effect

wears off. In addition, incrementally learning aspects about a user gives the impression

of behavioural coherence and plausibility, which positively influences the perception of

intelligence, thus, meeting user expectations and improving the quality of interaction.

Based on our research question (RQ5), we identified the real-world application areas where

personalisation can make an impact on long-term interactions in Section 2.1.4 to be the

customer-oriented service and the healthcare domains. For instance, personalisation may

facilitate familiarity, trust and rapport with users that encourage them to visit the same

shop or restaurant again (Gwinner et al., 1998; Kanda et al., 2010; Niemelä et al., 2019).

Moreover, personalisation may increase task efficiency and awareness of the situational

context of the conversation (Neururer et al., 2018; Kocaballi et al., 2019).

Hundreds of customers visit a coffee shop every day. It would be highly ambitious and

demanding for a barista to recognise “regular” customers and recall their preferences. On

the other hand, robots can more easily recall a high number of customers more accurately.

This would result in an improved user experience and decreased waiting times due to

faster order taking process. Hence, deployment of personalised robots in coffee shops

are desirable and beneficial for both the customers and the businesses. Consequently, in

this thesis, we designed a personalised order-taking barista robot, as our second research

objective (RO2).

Dialogue in a coffee shop is task-oriented, mostly sequential (i.e., requesting drink, fol-

lowed by size and snacks), and limited to a specific vocabulary, such as the list of items in

the menu, the available sizes, and the phrases to take and deliver an order. Hence, these
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interactions can be categorised under closed-domain task-oriented dialogue. Our review

on the appropriate dialogue architectures for long-term interactions (RQ3) in Section 2.3

showed that most research in HRI uses rule-based approaches and knowledge-bases

to obtain, store and recall pre-determined information through close-ended structured

dialogues (Gockley et al., 2005; Kanda et al., 2007, 2010; Giuliani et al., 2013; Kasap &

Magnenat-Thalmann, 2012; Churamani et al., 2017; Williams et al., 2018; Zheng et al., 2019).

However, rule-based approaches might reduce the potential to adapt to variations in user

responses. On the other hand, data-driven approaches offer more flexibility, however,

they require a vast amount of data for training to learn the relevant information and

how to use it. In addition, there are no studies that show how data-driven approaches

perform on personalisation in long-term interactions. In this thesis, we explore both the

potential of a rule-based approach (Chapter 7) and data-driven approaches (Chapter 8) for

personalisation of task-oriented dialogue FOR long-term interactions.

In order to design a dialogue manager, we need to either know the rules that apply to order

taking in a coffee shop or have a corpus of barista dialogues. While there are available

corpora for restaurant booking (Henderson et al., 2014; Bordes et al., 2016; Joshi et al.,

2017) or travel booking (Hemphill et al., 1990; Bennett & Rudnicky, 2002; El Asri et al.,

2017) based on Wizard-of-Oz (WoZ), human-machine interactions, or simulated datasets

(see Serban et al. (2015) for a recent survey on available corpora), there was no publicly

available corpus on barista or personalised barista dialogues with customers at the time of

conducting this work.

There are only two publicly available datasets that evaluate personalisation in any domain:

Persona-Chat (Zhang et al., 2018) and Personalized bAbI dialog (Joshi et al., 2017) datasets.

Persona-Chat dataset contains text-based open-domain conversations of crowdsourced

workers that received a set of sentences determining their personality for the dialogue.

The Conversational Intelligence Challenge2 was created based on this dataset (Dinan

et al., 2019). The Personalized bAbI dialog dataset is a simulated text-based personalised

dataset built upon the bAbI dialog (Bordes et al., 2016) dataset for restaurant booking. The

dataset focuses on adapting conversation and recommendation styles based on the user’s

gender and age, in addition to recommending restaurants based on the dietary preferences

and favourite food item of the user. However, this dataset focuses on personalising the

dialogue based on general attributes (gender and age), instead of adapting to each user.

2http://convai.io
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Moreover, user attributes are pre-defined at the beginning of each dialogue, instead of

obtained from the interaction. Both of these datasets consider only a single user interaction,

instead of long-term interactions.

Previous research in HRI debates against using WoZ as a data collection method, because

it may create unrealistic expectations and may result in findings that are not grounded in

realistic interactions (Fernaeus et al., 2009; Riek, 2012). In addition, a vast amount of data

is necessary to train and evaluate data-driven approaches, and recruiting a high number

of subjects for several subsequent interactions is a challenge of long-term HRI, as we have

previously discussed in Section 2.1.1. Hence, the only remaining option is to generate

simulated datasets based on anticipated phrases in the interaction. Consequently, we cre-

ated the Barista and Personalised Barista Datasets described in this chapter. Personalised

Barista datasets are the first released3 datasets to explore user-specific personalisation in

task-oriented long-term interactions.

6.2 Barista Dataset

The Barista Dataset is designed to model a real-world barista4 who: (1) greets and requests

the drink order, (2) size, and (3) snack, (4) confirms the order, (5) changes the order if

necessary, (6) takes the customer’s name, (7) notes the order pick up location, (8) says

goodbye. Typically, a customer can ask for the order in one sentence, removing the need

of (2) and (3), however, we separated these steps to reduce the errors in rule-based (e.g.,

template matching) or data-driven approaches, and to aid speech recognition for the robot.

This dataset is used for the non-personalised robot in Chapter 7 and to evaluate the

performance of data-driven approaches on non-personalised tasks in Chapter 8. The

Personalised Barista Datasets described in the next sections contain the interactions in this

dataset for new customers (users) and personalise the interaction for known customers on

top of this structure.

Similar to the bAbI dialog (Bordes et al., 2016) and the Personalized bAbI dialog (Joshi

et al., 2017) datasets, we identified the barista dialogue tasks based on the sequential

interactions described above. However, contrary to the bAbI datasets, which structure

3For academic use only: https://github.com/birfan/BaristaDatasets
4The author of this thesis used her previous experience in interacting with baristas at coffee shops to

design the phrases in the Barista Datasets.

119

https://github.com/birfan/BaristaDatasets


tasks to evaluate model’s capability to do application program interface (API) calls or

use knowledge-base (KB) facts, we structure our tasks based on the different interaction

types of dialogues (e.g., ordering only a drink, making changes to an order), which can

occur in a typical scenario, in increasing difficulty of the interaction. In addition, we

initially leave out the “greetings” of the agent, because using the name obtained during

a conversation may decrease the performance for data-driven approaches, as we will

investigate in Chapter 8. Hence, we define the tasks in the Barista Dataset as follows:

• Task 1 (B1): Greetings. This task evaluates greeting and requesting the drink (1),

taking the customer’s name (6), noting the order pick up location (7) and saying

goodbye (8) to the customer. Some of the utterances in this task may not occur in

real-world barista interactions. For instance, the customer can start with the phrase

involving the drink order, without the necessity of the barista requesting their order.

Moreover, in many coffee shops, the order is delivered by the same barista, hence

there is no need to take the name or note the order location. In addition, using the

customer’s name obtained from the dialogue may decrease the performance for

data-driven approaches. Hence, we separately analyse the performance on this task.

No order is made.

• Task 2 (B2): Order drink (without greetings). This task evaluates ordering a drink.

• Task 3 (B3): Order drink with changes. This task evaluates ordering a drink and

changing the order (up to two changes) during the interaction.

• Task 4 (B4): Order drink and snack. This task evaluates ordering a drink and a snack.

• Task 5 (B5): Order drink and snack with changes. This task evaluates ordering a

drink and a snack and changing the ordered items (up to two changes) during the

interaction.

• Task 6 (B6): Order drink and snack with greetings. This task is the combination of tasks

1 and 4.

• Task 7 (B7): Order drink and snack with changes and greetings. This task is the combina-

tion of tasks 1 and 5, and contains interaction types from all tasks.

A dialogue example is given in Figure 6.1 for Task 7. Each interaction type is colour-coded,

and the legend explains the colours corresponding to the task number for clarity. A snack

120



+

+

Hey there!

Hello! Which drink can I get for you?

Can I have an espresso?

Large, please.

Hmm, a veggie tortilla wrap.

I think I will switch large with small.

Oh I am sorry, but I would like a 

pain au chocolat instead.

Yeah.

Thank you!

Which size?

Would you like anything else with that?

Have a nice day!

Great! Can I take your name?

api_call getCustomerName

Sure! So that would be a small espresso

 and a veggie tortilla wrap. Is that right?

Sure! So that would be a small espresso

 and a pain au chocolat. Is that right?

Sarah Michelle Gellar.

Task 1 (B1):

Task 2 (B2):

Task 3 (B3):

Task 4 (B4):

Task 5 (B5):

Task 6 (B6):

Task 7 (B7): all colours

+

++

So that would be a large espresso 

and a veggie tortilla wrap. Is that right?

Your order will be ready at

the next counter, Sarah.

+

+

+

+

++ +

+

Figure 6.1: A dialogue example in the Barista Dataset Task 7, showing all the tasks in the
dataset.
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Table 6.1: Number of phrases for customer and bot (multi-phrases) per each utterance
in the Barista Dataset. Note that in the dataset used in Chapter 8, the bot has a single
phrase per utterance. The utterances are colour-coded according to the interaction type,
corresponding to Figure 6.1.

Customer Bot (Multi-Phrases)

Greeting 4 Greeting and request drink 16
Order drink 16 Request size 3
State size 5 Request snack 4
No snack 9 Confirm order without snack 2
Order snack 17 Confirm order with snack 2
Confirm order 8 Request name 4
Change order with snack 22 Confirm change with snack 6
Give name 2 Note order location with name 3
Farewell 10 Farewell 5

order or a change in the order is not compulsory, and each has a probability (for occurring)

of 0.5, sampled from a uniform distribution. Note that for tasks 2 and 3, instead of “Hmm, a

veggie tortilla wrap.”, the customer says “No.” (or a variant). api_call getCustomerName refers

to using an API call to another resource (e.g., tablet) or a script to obtain the customer’s

name, and it is not said to the customer. The number of conversation turns (i.e., user-bot

utterance pairs) range from 7 (no changes in the order) to 9 (two changes in the order) in

the tasks involving orders.

Table 6.1 shows the number of customer utterances for each type of bot utterance. We

initially designed a dataset with various multiple bot phrases (i.e., bot (multi-phrases)) along

with multiple customer phrases per utterance, however, the data-driven approaches used

in Chapter 8 are not designed to learn multiple phrases of the bot for the same customer

utterance, and preliminary experiments showed very low performance, hence, we used

the same phrase for each bot utterance. However, in long-term HRI, it is common to select

a phrase from a variety of phrases to avoid repetition and sound more natural, thus, we

believe that data-driven approaches in dialogue should also give more importance to

this topic for long-term interactions. Hence, we release an additional set of the datasets

with multiple bot phrases per utterance. This additional dataset was used for the user

study presented in Chapter 7, since using various phrases does not affect the system

performance for a rule-based dialogue manager, but the single bot phrase dataset was

used in Chapter 8.

Similar to bAbI dialog datasets, we divided our datasets into training, validation (develop-

ment), test and out-of-vocabulary (OOV) sets. The training, validation and test sets use the
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same drink, size, and snack types. OOV set contains different drink, size, and snack types

that are not part of (i.e., “seen in”) the other sets. Regardless, all the items come from the

Starbucks menu5 and there are 20 drink types, 3 sizes, and 20 snacks that the customer

can order from in each set. We used a smaller menu based on the store-bought items (11

drinks, 6 snacks) in Chapter 7. The customer and bot phrases used in the OOV set is the

same as the other sets.

Because our datasets focus on the long-term interactions, the identity of the customer is

important, especially for personalisation. In addition, in some coffee shops, the name

is asked to separate the customer orders and for announcing the order when it is ready.

Unlike those coffee shops, we use the full name of a person for the identity, because using

the first name may cause mixtures of orders in a real-world HRI scenario because the

verification of the identity is based only on the customer’s name. We used 100 names (let’s

call it, customer-base A) from the Multi-modal Long-Term User Recognition Dataset (in

Chapter 5) for the training, validation (development) and test sets in the Barista Dataset. We

extracted an additional 100 names from the IMDB-WIKI (Rothe et al., 2015, 2018) dataset

(customer-base C) for the OOV set.

We used two dataset sizes in order to evaluate the task performance depending on the train-

ing and evaluation size: 1,000 dialogues (similar to bAbI datasets) and 10,000 dialogues

to account for the increased difficulty of the tasks arising from the various names in the

dialogues. Table 6.2 presents the task size (i.e., the number of customer-bot utterance pairs

in the task) and the size of the vocabulary (i.e., the unique words in a task). Similar to the

bAbI dialog datasets, the candidate set contains the unique utterances of the bot in all tasks

and sets and is equal to 4,149 in 1,000 dialogues and 5,207 in 10,000 dialogues.

The task difficulty increases when there is a piece of personal information (e.g., customer

name) or order details of the customer in the bot utterance, as the dialogue architecture

should extract this information from the previous exchanges and use it to respond. Hence,

we present the percentage of personal(ised), order details and other (remaining) phrase types

for each task in Table 6.3 for the test set, such that we can evaluate the performance of the

data-driven approaches in this perspective in Chapter 8. The phrase type information for

the remaining sets is presented in Appendix D.1.

We created the dataset in the format suitable for ParlAI6 (Miller et al., 2017) (i.e., line

5https://www.starbucks.com/menu
6https://parl.ai/
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Table 6.2: The task sizes (i.e., number of customer-bot utterance pairs) of training, validation,
test and OOV sets, and the vocabulary (i.e., number of unique words in a task) size for
1,000 and 10,000 dialogues Barista Datasets. The vocabulary size for both dataset sizes is
the same. Note that the task size increases in proportion to the number of dialogues, and
differs according to the task.

Dataset
Size

B1 B2 B3 B4 B5 B6 B7

Training Task Size
1,000 4,000 4,000 4,767 4,000 4,734 7,000 7,764
10,000 40,000 40,000 47,399 40,000 47,378 70,000 77,491

Validation Task Size
1,000 4,000 4,000 4,752 4,000 4,724 7,000 7,740
10,000 40,000 40,000 47,489 40,000 47,486 70,000 77,582

Test Task Size
1,000 4,000 4,000 4,757 4,000 4,760 7,000 7,784
10,000 40,000 40,000 47,467 40,000 47,506 70,000 77,490

OOV Task Size
1,000 4,000 4,000 4,772 4,000 4,718 7,000 7,746
10,000 40,000 40,000 47,547 40,000 47,538 70,000 77,541

Vocabulary Size 432 331 350 333 351 446 463

numbers for each dialogue, and tab-separated customer and bot utterances) platform in

order to evaluate tasks using available models in that platform and to submit the Barista

and Personalised Barista datasets to ParlAI for contributing to the research community in

evaluating their algorithms for personalisation in long-term interactions.

While we created the Barista Dataset due to the lack of an available dataset with barista

and customer interactions at the time (January 2019) and for the corresponding real-world

study (Chapter 7, August 2019), we would like to note that very recently (in October

2019) Google Research released a crowdsourced dataset called the Taskmaster7 (Byrne

et al., 2019) that was obtained from conversations with a personal digital assistant through

WoZ or by “self-dialog” (i.e., crowdsourced workers imagined having a dialogue with a

personal digital assistant and write the interaction for both sides). This dataset contains

Table 6.3: The percentage of personal(ised) (i.e., containing user name), order details (i.e.,
containing an item from the order) and other (remaining) phrase types in the bot utterances
for the tasks of 1,000 and 10,000 dialogue Barista test set.

Dataset Size Phrases B1 B2 B3 B4 B5 B6 B7

1,000
Personal 25 0 0 0 0 14.29 12.85
Order 0 25 36.94 25 36.97 14.29 22.92
Other 75 75 63.06 75 63.03 71.43 64.23

10,000
Personal 25 0 0 0 0 14.29 12.9
Order 0 25 36.8 25 36.85 14.29 22.57
Other 75 75 63.2 75 63.15 71.43 64.52

7https://github.com/google-research-datasets/Taskmaster
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conversations for ordering a pizza, creating auto repair appointments, setting up a ride

service, ordering movie tickets, making restaurant reservations and ordering coffee drinks

for pick up at a store. However, the Taskmaster only includes drink orders, hence,

excluding snacks, which is common to order at a coffee shop. In addition, the changes

to the drink orders only occur if the drink is not available, which is a rare case in real-

world scenarios, whereas we believe it is more reasonable to assume that the customer

can change their mind while ordering. Most importantly, Taskmaster does not contain

customer names or personalised subsequent interactions to evaluate personalisation in

long-term interactions that we present in the next sections.

6.3 Personalised Barista Dataset

As we have previously discussed, recognising “regular” customers and recalling their

preferences are important for long-term deployment of robots in the customer-oriented

service domain. However, which type of information should be recalled for personalisation?

(RQ4). Previous research presented in Chapter 2 revealed that user’s attributes (e.g.,

name), preferences, behaviour patterns and previous shared history are commonly used in

HRI to personalise the interaction. From these aspects, the name and the preferences (i.e.,

the most common order) of a user are suitable to recall in a barista interaction. However,

in a text-based interaction (e.g., for chatbots), the user can log in with their information in

a system, hence, the identity of the user would be already available, whereas, for HRI in

a real-world scenario, the person should be autonomously recognised. In the previous

chapters, we described a user recognition system that is suitable for this interaction. In

order to integrate this information into the text-based dataset, we can use the type of

information obtained from the user recognition system: (1) whether the user is known (i.e.,

False if new, True if enrolled), (2) the identity number (ID) of the user (i.e., 0 if the user is

new, otherwise, the ID of the user which is given in the order of meeting users), and (3) the

name of the user. These three types of user profile information will be sufficient to recall

the favourite orders of the user for a rule-based approach with a knowledge-base, as used

in Chapter 7. On the other hand, while there is no research on personalisation in long-term

interactions using data-driven approaches, the structure of current approaches seems

suitable to track the previous conversations using this information. Consequently, we

extend the Barista Dataset with personalised subsequent interactions and user recognition
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information to create the Personalised Barista Dataset.

In a real-world human-robot interaction scenario, a lot of things can go wrong. For

example, automatic speech recognition (ASR) may not perform well, which may cause the

dialogue manager to receive incomplete or incorrect information. In addition, as we have

seen in the previous chapters, user recognition may not be fully reliable for a high number

of users or due to noisy data. Moreover, especially for data-driven approaches, there may

be incorrect recalls of user information or knowledge-base entities (Bordes et al., 2016).

Therefore, it is important to account for these errors, and know how to recover from them.

Correspondingly, we defined the tasks as follows:

• Personalised Task 0 (PB0): Confirmed personalised order suggestion for new customers.

This task learns and evaluates the recall of the preferences of new customers. The

most common or the most recent (in the case of ties for the most common order) drink

and snack of the customer are suggested, and the customer accepts the suggestion.

This task assumes perfect recognition and recall, and no changes are made by the

customers to their previous preference. An example is given in Figure 6.2.

The training set has 100 users from the customer-base A as described in the previous

section, but the validation and test sets have 100 different users (customer-base B)

from the Multi-modal Long-Term User Recognition Dataset. The OOV set has 100

users from the customer-base C, corresponding to the customer-base in the OOV set

of the Barista Dataset. In other words, this task aims to evaluate the performance of

learning the preferences of a different set of customers than the ones in the training

set. The reason we separate this task (and call it Task 0) is that it evaluates learning

new users incrementally without any prior information (i.e., 0 previous data samples,

known as zero-shot learning) of those users.

• Personalised Task 1 (PB1): Confirmed personalised order suggestion for previous and

new customers. This task has the same type of dialogue interactions as PB0, but the

validation and test sets also have customers from the customer-base A, i.e., a total of 200

customers in both sets. This task requires remembering the orders of the previous

“regular” customers and incrementally learning the preferences of the new ones. In

other words, this task measures the ability of the data-driven approaches to deal

with catastrophic forgetting, which refers to the tendency to forget previously learned

information upon learning new information (McClelland et al., 1995; McCloskey &
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Your order will be ready at

the next counter, Sarah.

Hello!

How did you know?

Thanks!

Have a nice day!

True (Known), 8 (ID),

Sarah Michelle Gellar

Hello, Sarah Michelle Gellar! Would 

you like to have a small espresso 

and a pain au chocolat again? 

Personalised Task 0/1: B7+ ++

Hey there!

Hello! Which drink can I get for you?

Can I have an espresso?

False (New), 0 (ID)

...

Yeah.

Thank you!

Have a nice day!

Great! Can I take your name?

api_call getCustomerName

Sarah Michelle Gellar.

False (New), 8 (ID),

Sarah Michelle Gellar

Subsequent Interactions:

First Interaction:

Sure! So that would be a small espresso

 and a pain au chocolat. Is that right?

Your order will be ready at

the next counter, Sarah.

+

Figure 6.2: A dialogue example in the Personalised Barista Dataset Task 0 and 1 (confirmed
personalised order suggestion).
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Cohen, 1989; Parisi et al., 2019). In other words, this task evaluates the performance

of the data-driven model in learning information continuously, incrementally and

adaptively, while remembering previously learned data, known as continual (or

lifelong) learning in machine learning. The following tasks build upon this task.

• Personalised Task 2 (PB2): Recognition error. This task evaluates the bot to correct

itself after incorrect recognitions in open world recognition. As Chapters 4 and 5

showed, the following type of incorrect recognitions can occur:

– Customer is known, but confused with another customer. An example is shown in

Figure 6.3.

– Customer is known, but not recognised. The dialogue is conducted as if a new

customer is encountered.

– Customer is new, but confused with another customer. The dialogue is similar to a

new customer interaction after the recognition correction.

We used Detection and Identification Rate (DIR) of 0.9 and False Alarm Rate (FAR)

of 0.1. In other words, 90% of the enrolled customers are correctly recognised and

10% of the new customers are confused with an enrolled customer. Hence, this

task contains incorrect recognitions as well as correct ones. The reason we used a

high DIR and a relatively low FAR is to evaluate if the data-driven approaches can

learn to respond to these errors when there is only a small number of erroneous

recognitions in the training set.

• Personalised Task 3 (PB3): Incorrect recall. This task teaches and evaluates the bot to

correct itself after an incorrect recall of the preferences of the customer. A dialogue

example is shown in Figure 6.4. An incorrect memory rate of 0.3 is used, that is 30%

of the dialogues contain incorrect recalls of the preferences of known customers.

In other words, a random order is suggested, and we ensured that it does not

correspond to the preferred order of the customer. Because the customer’s order is

taken after the incorrect recall, this type of dialogue has phrases from the B7 for the

first and subsequent interactions, denoted as B72. Note that the correct labels for

the incorrect recall errors may cause the system to reject some of the correct recall

of preferences during training and evaluations for data-driven approaches, which

may reduce the model performances, however, it is important to train the models

for handling incorrect recalls.
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Hello!

I am not Sarah Michelle Gellar.

Mayim Bialik.

Let me see if I have any

previous records of you, Mayim.

I am terribly sorry! May I take your name? 

api_call getCustomerName 

True (Known), 8 (ID),

Sarah Michelle Gellar

Hello, Sarah Michelle Gellar! Would 

you like to have a small espresso 

and a pain au chocolat again? 

True (Known), 18 (ID),

Mayim Bialik

No worries.

I thought you looked familiar, Mayim!

Would you like a small breakfast tea again?

Yes, thank you!

Okay.

Have a nice day!

Personalised Task 2: B7+ +++ +

Your order will be ready at

the next counter, Mayim.

Figure 6.3: A dialogue example in the Personalised Barista Dataset Task 2 (recognition
error).
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Hey!

That is actually my least favourite!

A peppermint hot chocolate, please.

Which size?

Alright! Which drink can 

I get for you, Ryan?

True (Known), 26(ID),

Ryan Gosling

Hello, Ryan Gosling! Would you like to 

have a medium iced hot chocolate 

and a veggie tortilla wrap again? 

Personalised Task 3: B72+ 

No, thanks.

So that would be a medium peppermint

hot chocolate. Is that right?

That sounds right!

Cheers!

Have a nice day!

Medium, thank you!

Would you like anything else with that?

++

Your order will be ready at

the next counter, Ryan.

Figure 6.4: A dialogue example in the Personalised Barista Dataset Task 3 (incorrect recall).
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• Personalised Task 4 (PB4): Changes to preference. This task acknowledges that cus-

tomers may change their preferences. A dialogue example is presented in Figure 6.5.

In any interaction, the customer may want to have their most common order (as

in PB0) or can ask for some other drink or snack (i.e., including phrases with B72

and the specific interaction phrase for the customer asking for a different drink). A

change in preference has a probability of 0.5, sampled from a uniform distribution.

Your order will be ready at

the next counter, Ryan.

Hi!

Let's try something different. 

I would like a flat white, please.

Which size?

True (Known), 26(ID),

Ryan Gosling

Hello, Ryan Gosling! Would you like to have a 

medium peppermint hot chocolate again? 

I would like a gingerbread cookie, please.

Hmm, can I change to large instead?

Enjoy your day!

Have a nice day!

Small, thank you!

Would you like anything else with that?

So that would be a small flat white

and a gingerbread cookie. Is that right?

Sure! So that would be a large flat white

 and a gingerbread cookie. Is that right?

Indeed!

Personalised Task 4: B72+ ++

Figure 6.5: A dialogue example in the Personalised Barista Dataset Task 4 (changes to
preference).
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• Personalised Task 5 (PB5): Recognition error and incorrect recall. This task is the

combination of tasks 2 and 3, which can occur within the same dialogue or separately.

• Personalised Task 6 (PB6): Recognition error and changes to preference. This task is

the combination of tasks 2 and 4, which can occur within the same dialogue or

separately.

• Personalised Task 7 (PB7): Incorrect recall and changes to preference. This task is

the combination of tasks 3 and 4, which can occur within the same dialogue or

separately.

• Personalised Task 8 (PB8): All tasks. This task is the combination of tasks 2, 3 and

4. This task evaluates all the scenarios that can occur in a personalised barista

interaction.

Personalisation in a real-world HRI scenario involves incrementally and adaptively learn-

ing users, as we emphasised in the previous chapters. Hence, it is required to learn

users’ preferences from a single data point, referred to as few-shot learning. While this

problem is a trivial one for rule-based approaches with a knowledge-base, this poses a

very difficult problem for data-driven approaches, as they require a vast amount of data

for training (Triantafillou et al., 2017). Consequently, in addition to the 1,000 and 10,000

dialogues datasets, we designed the Second Interaction dataset. We use two samples of

data (i.e., the first and second interaction) in the training set for task 0 (i.e., for new users),

and three samples of data (i.e., the first, second and third interaction) in the remaining

tasks to account for learning to suggest the previous order of a new user, and learning to

count the most common or recent order of a previous user. The number of dialogues per

task is presented in Table 6.4 in the format the number of dialogues in PB0 - the number of

dialogues in other tasks, along with the number of customer-bot utterance pairs (i.e., task

size) and the number of unique words in a task (i.e., vocabulary size). The reason why

PB0 has 200 dialogues is that it only has 100 users in the training/evaluation sets, in other

words, previous users are not evaluated in that task. In the validation and test sets, the

previous user (from customer-base A) in the training set will be seen for the fourth or fifth

time, whereas, the new user (from customer-base B) will only be encountered two times. In

the 1,000 and 10,000 dialogue datasets, the number of interactions per user is set to be the

same to avoid certain orders to appear more than others. For example, in PB1, user ID

5 is seen ten times in the 1,000 dialogue training set, and five times in the validation and
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Table 6.4: The task sizes and the vocabulary sizes for Second Interaction, 1,000 and 10,000
dialogue Personalised Barista Datasets. Note that the task size increases in proportion to
the number of dialogues, and differs according to the task.

Dataset
Size

PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8

Train-
ing
Task
Size

200 -
300

1,075 1,377 1,470 1,722 1,728 1,744 1,817 1,921 1,946

1,000 3,482 3,480 3,787 4,765 5,113 5,082 5,348 5,934 6,337
10,000 30,482 30,481 33,424 44,184 48,830 47,289 51,933 57,569 60,355

Valid-
ation
Task
Size

200 -
400

1,080 1,312 1,385 1,720 1,731 1,703 1,819 1,918 1,972

1,000 3,474 3,466 3,748 4,772 5,189 5,017 5,479 5,850 6,176
10,000 30,463 30,480 33,488 44,468 48,749 47,622 51,962 57,459 60,642

Test
Task
Size

200 -
400

1,064 1,298 1,386 1,580 1,715 1,752 1,803 1,860 2,018

1,000 3,471 3,489 3,768 4,728 5,141 5,125 5,460 5,873 6,233
10,000 30,481 30,484 33,404 44,762 49,364 47,515 52,205 57,420 60,689

OOV
Task
Size

200 1,064 1,066 1,106 1,210 1,244 1,286 1,324 1,325 1,426
1,000 3,463 1,967 2,090 2,535 2,766 2,603 2,868 3,070 3,195
10,000 30,469 15,467 16,969 22,540 24,572 23,912 26,184 28,999 30,309

Vocab-
ulary
Size

200 -
400

959 948 959 972 957 973 966 972 980

1,000 959 959 971 975 965 983 977 981 989
10,000 959 959 971 975 965 983 977 981 989

test sets, and user 105 (who is not seen in the training set) is also seen five times in the

validation and test sets.

As can be seen from a comparison of Table 6.2 and Table 6.4, the number of customer-

bot utterances has decreased. The reason is that personalisation decreases the necessary

number of conversation turns to make an order (down to 3 turns), which improves the

efficiency of an agent and decreases the time required to make an order, as we initially

intended. On the other hand, the candidate set (i.e., the unique bot utterances in training,

validation and test sets) is increased substantially: 7,715 for Second Interaction, 13,859 for

1,000 dialogues, and 53,304 for 10,000 dialogues, which is ten times the number in 10,000

dialogues for the Barista Dataset. The reason is the new users and the corresponding orders

in the validation and test sets, in addition to the additional phrases for personalisation

tasks as shown in Table 6.5, which also increases the vocabulary size. Similar to the

Barista Dataset, one phrase is used per bot utterance in the datasets in Chapter 8, whereas,

multiple phrases of the bot are used in the study in Chapter 7 to improve user engagement.

In order to understand how well the data-driven approaches perform for personalisation
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Table 6.5: Number of additional phrases for customer and bot (multi-phrases) per each
utterance in the Personalised Barista Dataset. Note that in the dataset used in Chapter 8,
the bot has a single phrase per utterance. The utterances are colour-coded according to
the interaction type corresponding to the dialogue examples presented.

Customer Bot (Multi-Phrases)

Greeting 4 Known customer - Suggest favourite order 8
Confirm preference 24 Note order location with name 3
Recognition error response 13 Apologise and take name 12
Give name 2 Look into records 2
Waiting for looking into records 5 Known customer - Suggest favourite order 3
Waiting for looking into records 5 New customer - Request drink 3
Incorrect order recall response 12 Request new drink 25
Changes to preference 9 Request size 3

of the interaction, the proportions of personal(ised) bot utterances (i.e., containing user name

or preferences), order details (i.e., containing new order or preferences), the other (remaining)

dialogues, and the phrases belonging to the B7 task are presented in Table 6.6 for the test

set. Note that since both the personal(ised) and order phrases contain user preference in the

Personalised Barista Datasets, the sum of percentages of personal, order and other phrases

is higher than 100%. The percentage information for the training, validation and OOV sets

are presented in Appendix D.2.

For each task, the orders of the customers are stored in a knowledge-base containing the

interaction number, customer identity (i.e., ID number and name), and the final order

in the dialogue. This knowledge-base was used in the experiments in Chapter 8 for

Table 6.6: The percentage of personal(ised) (i.e., containing user name or preference), order
details, other (remaining) and Barista Task 7 (B7) phrase types in the bot utterances for the
tasks of Second Interaction, 1,000 and 10,000 dialogue Personalised Barista test set.

Dataset
Size

Phrases PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8

200 -
400

Personal28.2 39.6 41.7 35.63 29.85 38.18 32.22 30.7 33.15
Order 24.81 27.27 27.71 29.62 32.13 29.79 32.61 31.72 32.11
Other 56.39 49.61 47.98 48.1 50.38 46.23 48.64 49.03 47.13
B7 90.6 83.51 77.85 83.35 87.64 76.77 82.7 85.43 79.88

1,000

Personal54.74 54.46 55.94 45.79 36.96 46.89 38.39 36.69 37.98
Order 30.86 31.21 31.05 32.42 36.12 32.64 36.03 35.28 35.54
Other 40.33 40.13 39.49 40.82 44.43 40.1 43.77 43.35 42.44
B7 74.07 74.2 67.94 75.36 82.49 70.54 78.21 80.33 76.54

10,000

Personal65.29 65.28 65.45 51.18 40.31 52.17 42.1 39.79 41.13
Order 33.07 33.08 33.09 34.25 38.39 34.25 38.03 37.05 36.81
Other 34.12 34.12 34 36.69 41.35 36.4 40.8 40.4 40.06
B7 67.52 67.52 61.56 71.16 79.94 66.88 75.07 77.62 73.67
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evaluating the rule-based dialogue management system (RBDMS) (that will be introduced

in Chapter 7) on the Personalised Barista Datasets, however, data-driven approaches do

not have access to this information.

6.4 Personalised Barista with Preferences Information Dataset

The Personalised Barista Dataset evaluates if the data-driven approaches can learn to

track the previous conversations to extract the most common order of a user, in addition

to using that information to personalise the conversation. Thus, there are two problems

of long-term interactions that it addresses, which is missing in the currently available

datasets. However, the requirement for tracking previous orders and “calculating” the

most common order may pose a high level of difficulty for a data-driven approach, which

is a trivial problem to a rule-based approach that uses a knowledge-base. Hence, we

created the Personalised Barista with Preferences Information (PBPI) Dataset to provide

the information of the most common order of the user at the beginning of the conversation,

to simulate extracting the information from a knowledge-base. This information is given

alongside the user identity information at the beginning of the dialogue, similar to the Per-

sonalized bAbI dialog dataset. For example, for the customer in Figure 6.1, the information

in this dataset will be in the format of [True (Known), 8 (ID), Sarah Michelle Gellar (customer

name), small (the most common size of the most common drink order), espresso (the most common

drink order), pain au chocolat (the most common snack order)]. The tasks, the phrases and the

corresponding task, vocabulary and candidate set sizes of the Personalised Barista with

Preferences Information Dataset are the same as that of the Personalised Barista Dataset.

6.5 Summary

This chapter introduced the text-based Barista and Personalised Barista Datasets, which

contain simulated generic (i.e., non-personalised) and personalised dialogues for long-

term interactions between a barista and a customer. The Personalised Barista Dataset

contains previous and new user interactions, and the user recognition information is given

at the beginning of the dialogue to identify the user. Additionally, the Personalised Barista

with Preferences Information Dataset contains the order and user recognition information

to simulate a knowledge-base query result. These datasets are used for structuring
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the dialogue of the non-personalised and personalised barista robots (Chapter 7) and

evaluating the potential of data-driven approaches in generic and personalised long-term

interactions (Chapter 8).
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Chapter 7

Personalised Barista Robot: Real-World Study

with Non-native English Speakers

Key points:

• Fully autonomous generic and personalised architectures are developed based

on the Barista and Personalised Barista Datasets, using the Multi-modal In-

cremental Bayesian Network (MMIBN) for user recognition, online automatic

speech recognition and a rule-based dialogue management system.

• The first real-world study that explores fully autonomous personalisation in

dialogue for long-term human-robot interactions is conducted at an international

student campus with non-native English speakers.

• Unreliable speech recognition and the inflexible structure of the rule-based

dialogue manager negatively affected the user experience.

• The results indicate that personalisation mitigates the negative user experience.
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Parts of the work presented in this chapter have been published in Irfan et al. (2020b)1.

The final publication is available from ACM in the Companion of the 2020 ACM/IEEE

International Conference on Human-Robot Interaction2, at DOI: 10.1145/3371382.3378278.

1This work was conducted in collaboration with Mehdi Hellou, who was an intern at SoftBank Robotics
Europe between February-August 2019 under the main supervision of the author of this thesis and co-
supervision of Alexandre Mazel. In addition to supervising Mehdi Hellou, the author designed the Barista
Robot and the rule-based dialogue management system (RBDMS) architectures, created the corresponding
datasets, designed the experimental procedure and the evaluation methods for the user study and conducted
the analysis of the study. Mehdi Hellou implemented the rule-based dialogue management system (RBDMS)
and combined the user recognition system developed by the author (as described in Sections 3 and 5) with
automatic speech recognition systems on the robot, conducted the real-world HRI study outlined in this
chapter, and contributed to the analysis of the results.

2Video presentation of the study is available online: https://www.youtube.com/watch?v=_g2H1Dk83wQ
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7.1 Motivation

As we discussed in the previous chapter, our second objective (RO2) in this thesis is to

design a personalised customer-oriented service robot. We hypothesise that the personal-

isation will improve the user experience and increase the task efficiency. We identified

order taking at a coffee shop to be a task-oriented interaction that can be personalised with

the use of a robot in a real-world application. Consequently, we created the Barista and

Personalised Barista Datasets, as described in the previous chapter, to build the interaction

upon. As we previously noted in Chapter 2, autonomy is an integral part of long-term

interaction, especially in a real-world scenario. The previous studies (Kasap & Magnenat-

Thalmann, 2012; Zheng et al., 2019; Churamani et al., 2017) explored fully autonomous

personalisation in dialogue for long-term interactions and showed that personalisation im-

proves the user experience, task efficiency and the perceived social intelligence of the robot.

However, none of these studies was deployed in the real-world. Conducting real-world

studies, as we previously highlighted in Chapter 2, brings additional challenges with it,

such as the lack of robust technology, noisy data, high user expectations, the low number

of users and non-native speakers. In this chapter, we touch upon these challenges and the

impacts of personalisation with the first real-world study in exploring fully autonomous

personalisation in dialogue for long-term Human-Robot Interaction (HRI).

Knowledge-
Base

Multi-modal
Online
User

Recognition

Online
Automatic
Speech

Recognition

["Jack"]

["Jack",	
"small",	
"espresso",
"cookie"]

Rule-Based	
Dialogue

Management
System

["hello	
pepper"]

[greeting]

["Hi!	Which	drink	
can	I	get	for	you?"]

["Hi,	Jack!	Would	
you like	a	small	espresso
and	a	cookie	again?"]

Hello
Pepper!

Hi Jack! Would you
like a small espresso
and a cookie again?

Figure 7.1: The general components of the Barista Robot architecture. The actions and
inputs common to all conditions are coloured in black, and those specific to the generic
barista are coloured in red and the personalised barista in blue. The artwork of the Pepper robot
and the man belong to SoftBank Robotics Europe. Permission was granted for use.
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7.2 Methodology

In the previous chapter, we created a set of rules to build the Barista and Personalised

Barista Datasets to simulate a generic and personalised barista interaction. However, going

from a text-based dataset to a fully autonomous personalised robot, especially for long-

term interactions, is not a trivial task, and requires many robust components, such as

user recognition, online automatic speech recognition (ASR), a dialogue manager and

a knowledge-base (KB), as shown in Figure 7.1. The architecture of the Barista Robot3

and the flow of the interaction is provided in Figure 7.2. This section further explains the

architecture in detail.

 Template
Matching

Knowledge-
Base

NAOqi	
Text-to-Speech

Google	Cloud
Speech-to-Text

Rule-Based
Dialogue	State

Tracking

Multi-modal
Online

User	Recognition

["hello	pepper"] ["hello"]

Rule-Based	
Dialogue
Policy

["Jack"]

["Hi,	Jack!	Would	you	
like	a	small	espresso	
and	a	cookie	again?"]

NAOqi
Voice	Activity
Detection

[user	arrived][user	interacting]
Is	user	present?

[user	left]

[say goodbye]

[update	user]

[update	user	preferences]

["Hi!	Which	drink	
can	I	get	for	you?"]

[request
drink]

NAOqi	People	and
Face	Detection

Start	Interaction

End	Interaction

["Jack",
"small",

"espresso",
"cookie"]

Rule-Based	
Natural	Language

Generation

[greeting]

Rule-Based Dialogue Management System

[suggest
preference]

Figure 7.2: The flow chart of the Barista Robot architecture. The dashed line shows the
actions taken when the user arrives, the solid line represents the action flow during the
interaction of a user, and the dotted line represents the actions taken after the user left.
The actions and inputs common to all conditions are coloured in black, those specific to
the generic barista are coloured in red and the personalised barista in blue.

3Demonstration of the robot behaviours is available at: https://youtu.be/eAOnHlDuHqw
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7.2.1 User Recognition

In Chapters 3 to 5, we described our proposed solution, Multi-modal Incremental Bayesian

Network (MMIBN), which allows fully autonomous and incremental user recognition in

long-term interactions that are fundamental in this real-world study. Our previous results

showed that the non-adaptive MMIBN performed better than the approach with online

learning (MMIBN:OL), hence, we used MMIBN for user recognition in this study.

Our previous results suggested that while our approach significantly improves face

recognition, due to the noise in the identifiers, it cannot provide 100% recognition. Thus,

the confirmation of the identity is necessary to ensure that the correct person has been

identified. In our previous study in Chapter 4, we used explicit confirmation of the

identity. In contrast, in this study, to reduce the efforts necessary by the users and provide

naturalness in interaction, we decided to confirm the identity implicitly from the dialogue.

We assume that if the estimated identity is incorrect, the user will notify the robot of

its error. An example of indirect extraction of the confirmation, and the corresponding

correction of the robot was given in Figure 6.3, and there are other examples of user

utterances for stating the user recognition error in the Personalised Barista Datasets, such

as “That is not my name.”, “I think you are mixing me with someone.”.

In order to fully autonomously detect users to start and end an interaction, in addition

to keep eye contact with the user to improve the naturalness of the interaction, we use

person and face detection modules of NAOqi4. The user model that refers to the identity

information within MMIBN and the user preferences within the knowledge-base, is created

at the first interaction of the user, which is the first time user’s full name is obtained in

the interaction. The user model is updated after each interaction with the corresponding

user. All users are autonomously registered to the user recognition system after their first

interaction, but the estimated user recognition information is only used by the personalised

barista.

7.2.2 Speech Recognition

The interaction with a barista relies only on verbal communication in a coffee shop. Our

aim is to provide an interaction similar to the real-world one, thus, we also rely mainly on

4http://doc.aldebaran.com/2-5
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bi-directional verbal exchanges through automatic speech recognition (ASR) and text-to-

speech (TTS). While we tried to build a representative database of phrases that may be

used in a dialogue with a barista in the Barista Datasets, there may be other phrases that

customers may use to express themselves. While users can adapt their interaction to the

knowledge of the robot (Williams et al., 2018), this may take quite some time, whereas,

our aim is to provide a natural interaction and increase the task efficiency by decreasing

the time it takes to make an order. These objectives required allowing unconstrained

speech (i.e., without a given a list of available sentences). In turn, we needed an online

ASR that allows open-grammar (i.e., unconstrained) recognition, has a wide vocabulary

and is reliable for real-world interactions with adults (Halpern et al., 2016; Ziman et al.,

2018). Thus, we chose Google Cloud Speech-to-Text engine for ASR. We used the Adapted

Pepper robot5, which has an improved microphone system with lower noise compared

to an off-the-shelf robot. In order to enable online speech recognition, we used NAOqi

voice activity detection to determine the beginning and end of user speech, which is sent

to Google ASR for processing, and the result is analysed by the dialogue manager, as

described in the next section.

Speech recognition was optimised with a band-pass filter based on four monologues from

the Personalised Barista Dataset with 12 non-native English speakers. The resulting speech

recognition performance was 47% for exact match accuracy (i.e., percentage of words that

match the ground truth values) and BLEU score6 (Papineni et al., 2002) of 0.66.

While the robot is talking or processing speech, speech recognition is disabled to prevent

loss of information. If the robot is listening green LEDs are lit in the robot’s ears, otherwise,

the light is blue. The participants in the study were requested not to speak when the robot

is speaking, and have been notified of this feature.

Even in a real-world scenario, baristas can sometimes misunderstand the customer names

due to the pronunciation of foreign names. This may pose a major problem for speech

recognition as well, hence, we use the touchscreen interface on the robot to obtain cus-

tomers’ names for robustness. In addition, in order to ensure a natural level of interaction

with mutual understanding, we combine non-verbal features, such as gaze (through face

tracking) and body movements (i.e., animated speech feature of NAOqi).

5Created for MuMMER project: http://mummer-project.eu.
6BLEU score indicates how similar the candidate text is to the reference text, with values closer to 1

representing a higher quality machine translation.
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7.2.3 Rule-Based Dialogue Management System

In Chapter 2, we identified that rule-based approaches that rely on a knowledge-base to ex-

tract and update information are commonly used in HRI for task-oriented dialogue (Gock-

ley et al., 2005; Kanda et al., 2007, 2010; Giuliani et al., 2013; Kasap & Magnenat-Thalmann,

2012; Churamani et al., 2017; Williams et al., 2018; Zheng et al., 2019). Consequently,

we built a rule-based dialogue management system (RBDMS). Similar to a typical task-

oriented dialogue system (Tur, 2011; Young et al., 2013; Gao et al., 2019), a RBDMS is

composed of four modules: natural language understanding (NLU) using template match-

ing, (rule-based) dialogue state tracking (DST), (rule-based) dialogue policy (DP) and

(rule-based) natural language generation (NLG), as shown in Figure 7.2.

As presented in the previous chapter, we allow mixed-initiative communication, in order

to extract particular information from the user and allow the user to change their order

and amend errors in recognition. We apply template matching and dialogue state tracking

based on the phrases in the Barista and Personalised Barista Datasets, using Difflib7 and

Fuzzywuzzy8 Python libraries. For instance, if a drink order is in the previous phrase,

then template matching is applied to size order phrases because it is the next rule in line.

We apply cutoff thresholds of 0.7-0.8 to phrases and 0.5 to order keywords, which were

found using preliminary experiments, in other words, if the similarity score of the received

phrase from the ASR to the expected phrase in the templates from the Barista Datasets is

below 70% or 80% depending on the complexity of the expected phrase or below 50% for

the order details, the robot asks the customer to repeat the phrase again.

Depending on whether a generic barista or a personalised barista robot will be used, the

dialogue policy determines the next state (i.e., utterance type) in line. The NLG uses the

phrase from the Barista Dataset for the generic barista or combines the phrase from the

Personalised Barista Dataset with the user model information from the knowledge-base

(KB) for the personalised barista robot.

The RBDMS was evaluated with the Barista and Personalised Barista Datasets, and the

performance was 100% in each task, as expected.

NAOqi TTS is used to utter the chosen phrase back to the user, which reconnects to the

voice activity detection if the user is still present. The interaction ends if the user said

7https://docs.python.org/3/library/difflib.html
8https://github.com/seatgeek/fuzzywuzzy
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a farewell phrase or if a face is not detected for 30 seconds. Afterwards, the farewell

phrase of the robot is triggered, the conversation is logged and the user model is updated

(only for the personalisation condition). The reason we chose 30 seconds to wait for face

detection is to prevent “losing” users during the interaction if they went out of the view

of the robot.

7.3 Hypotheses

The primary purpose of this study is to answer our research question (RQ6), what is the

impact of personalisation in long-term human-robot interaction? within a real-world application.

In line with this research question and our main thesis, we designed a fully autonomous

personalised customer-oriented service robot for a coffee shop that recognises customers

and recalls their favourite orders, in order to improve user experience and increase the

time efficiency of order taking. Based on the objective of our study and the findings from

previous literature, we derived the following hypotheses for the study, as listed below:

H1 Personalisation will improve the user experience in comparison to a generic interac-

tion for long-term interactions

H2 Personalisation will increase the time efficiency, by decreasing the number of turns

in a dialogue

H3 Personalisation will improve the perceived level of social intelligence of the agent

Consequently, we designed three conditions for this study: (1) the first interaction with the

robot, and the subsequent interactions (second and third interactions) with a (2) generic

barista or a (3) personalised barista. The reason we separate the first interaction from the

other conditions of the study is that the first interaction with the robot for all users will

be non-personalised (i.e., generic) because the robot does not know the user. In addition,

separating the initial interaction allows analysing the long-term perception in comparison

to the short-term one, which may be affected by the novelty effect.
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7.4 Experimental Procedure

We conducted a five day study in the coffee bar of an international student campus, Cité

Internationale Universitaire de Paris, as shown in Figure 7.3.

Menu
Camera

(a) (b) (c)

Figure 7.3: (a) Experiment setup with Adapted Pepper robot, (b) image of the interaction
from the external camera, (c) image of the user from the internal camera of the robot.

7.4.1 Participants

18 non-native English speakers (11 males, 7 females) within the age range of 22-47 (M=

28.2, SD= 7.0) participated in the study. The study was advertised through social media

channels, posters around the campus and actively by the experimenter in the campus. In

exchange for their time, the participants were given (by the experimenter) the drink and

snack that they ordered from the robot. The experimenter was hidden behind a screen

away from the view of the participant, while the participant interacted with the robot. The

experimenter did not interfere with the experiment unless the robot was stuck at a phrase

for a prolonged period of time or had an apparent connection failure, in which case, we

asked if the participant would like to repeat the interaction.

In order to prevent users from being affected by the other users’ interactions, and to avoid

delays and queues which can cause negative perceptions, a schedule was created for the

participants’ attendance times.

Initially, we intended to assign 9 participants each for generic and personalised barista

conditions, however, as this was a real-world long-term interaction, we could not force

the users to come to the experiment in the next days. Hence, only 4 participants in the

generic robot condition visited the coffee bar again (4 of them for the second time, and 2 of
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them for the third time), whereas, it was 5 participants in the personalised barista condition

(5 of them for the second time, and 4 of them for the third time).

7.4.2 Measures

We measured the users’ perception of the social intelligence of the robot through the

Robotic Social Attributes Scale (RoSAS) (Carpinella et al., 2017) questionnaire, that has

factors for measuring the robot’s capability, knowledge, reliableness and competency.

We additionally developed a questionnaire to evaluate the task performance and per-

ceived personalisation of the robot, as presented in Appendix C. Moreover, we used open

questions to allow users to freely express their perception of the robot.

In order to further analyse how the user interacts with the robot, we recorded videos of

the interactions through the robot’s camera and an additional hidden camera, as shown in

Figure 7.3. The audio was recorded through the robot’s microphones for sending the voice

files to speech recognition. In addition, we used the recordings to evaluate whether speech

recognition performed correctly. The participants were notified that the interactions would

be recorded in the consent forms (Appendix C), with the option for the consent of sharing

their videos and images for academic purposes.

7.5 Results

Due to the technical difficulties further outlined in this section, only 5 out of 18 first inter-

action, 4 out of 6 generic barista, 3 out of 9 personalised barista interactions were successful,

that is, completed and the correct order delivered. Due to the low number of subsequent

encounters, the resulting Bayes factors are between 0.3-3, suggesting inconclusive statisti-

cal significance between conditions (Jeffreys, 1939; Lee & Wagenmakers, 2013), thus, we

interpret the implications of the trends in the results.

The results in Figure 7.4 support that a higher percentage of users received the correct

order and had more complete interactions in the generic barista condition. However, a

higher percentage of users enjoyed the interaction, looked forward to the next one, and

preferred to interact with the robot as a barista in a coffee shop (in contrast to the findings

by Churamani et al. (2017)) in the personalised barista condition in comparison to the other

conditions, supporting H1 (although not significantly). Also, the user experience has
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Figure 7.4: Perceived task performance and user experience from the task-specific question-
naire. The results show that while there was a lower percentage of successful interactions
in the personalised barista condition, a higher percentage of users enjoyed the interaction
and reported a more positive user experience, looked forward to the next interaction and
preferred to interact with the robot as a barista in the real world.

improved in the personalised robot condition in comparison to the first interaction. The

results for the additional questions for the personalised robot condition that evaluate the

task performance of the robot were in correspondence with the actual performance of the

robot, and the users were generally pleased that the robot was able to remember their

previous orders (Likert Scale rating of 7-9), except for two users who experienced full

speech and user recognition failures that resulted in the low scores from the participants.

A participant additionally noted his delight about the personalisation of the robot in the

open questions with “I was very pleased to hear my name and my preferences”. These findings

suggest that personalisation can mitigate the negative user experience, which is a key

result of conducting a real-world study.

1
2
3
4
5
6
7
8
9

Capable Knowledgeable Reliable Competent

Li
ke

rt
−

S
ca

le
: A

gr
ee

m
en

t

First Interaction Generic Barista Personalised Barista

Figure 7.5: User responses for the factors of RoSAS that evaluate the user perception of
the robot in terms of task performance. The generic barista was rated generally higher in
capability and reliability in correspondence to the robot’s task performance, whereas, the
personalised barista was perceived to have a higher competency.
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The RoSAS questionnaire results are in line with the perceived task performance of the

robot. There were no significant differences between the conditions, as can be observed

in Figure 7.5, however, the participants that interacted with the generic barista rated its

capability and reliability generally higher, as expected, because of the higher percentage of

success in the generic barista condition. Nonetheless, the competency ratings of the generic

barista and the personalised barista are comparable in contrast to the poor performance

of the personalised barista robot. However, due to the varying performance between the

conditions, we cannot conclude support for H3.

The primary cause of failure was speech recognition, which often caused frustration

(Figure 7.6), because users had to repeat phrases several times, as evident in Figure 7.7

and 7.8. Overall, only 30.2% of the utterances were processed (i.e., understood), and from

those only 55.4% of the processed utterances matched correctly to the user utterances

(i.e., per-response accuracy), 69.4% of the words were correctly recognised (i.e., exact

match score) and the BLEU score was 0.49. The underlying reasons for failures in speech

recognition are:

• Foreign accents of non-native speakers, which caused the ASR to match certain order

words incorrectly (e.g., “MIT” for “a mint tea”, “black deer” for “a black tea”, “Arch”

for “large”, “eliminated” for “a lemonade”)

• Latency due to connection problems, which caused the customers to repeat their

phrases because the robot was not responding

• Quietly speaking users

• User’s distance from the robot, which decreased the quality of the audio. However,

users mentioned in the open questions that they were uncomfortable in staying at a

close distance to the robot

Figure 7.6: Examples of negative reactions from the users when the robot does not un-
derstand the order due to speech recognition or rule-based structure of the dialogue
manager.
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• Accuracy of the ASR on the audio obtained from the robot’s microphones

• Delay between voice activity detection and recording of the voice, which caused

“no” to not be recognised due to the corrupted phonemes in the voice recordings

processed by the ASR

Due to the speech recognition errors, incorrect or incomplete phrases were delivered

to the rule-based dialogue management system (RBDMS), which severely affected its

performance. Repetitions of users also worsened the performance of the RBDMS because

Profile: True (Known), 3 (ID), X (Name)
Preference: Black tea, medium, chocolate cookie

Customer: Hello
Speech recognition: Hello

Personalised barista: Hello, X! Would you like to have a medium black tea and a
chocolate cookie again?

Customer: No, thanks! [speech not detected] No, thank you!
Speech recognition: [Unable to process speech]

Personalised barista: Sorry, I am having trouble understanding you. Could you speak
a little louder?

Customer: No!
Speech recognition: No

Personalised barista: Ah, I must be mixing orders! Which drink I get for you, X?
Customer: A coffee.

Speech recognition: Purses
Personalised barista: Which size for the cup?

Customer: Medium. [speech not detected] Medium!
Speech recognition: [Unable to process speech]

Personalised barista: I am having trouble hearing you. Could you repeat please?
Customer: Medium size. [speech not detected] Medium.

Speech recognition: [Unable to process speech]
Personalised barista: Could you repeat please?

Customer: Medium.
Speech recognition: Medium

Personalised barista: Can I offer you anything to go with your drink?
Customer: A sponge cake.

Speech recognition: A sponge cage
Personalised barista: So that would be a medium coffee and a sponge cake. Did I get

that right?
Customer: Yes! [speech not detected] Yes!

Speech recognition: [Delayed] Yes
Personalised barista: Could you repeat please?
Personalised barista: We will get that ready for you at the next counter, X.

Customer: Thank you!
Speech recognition: Thank you

Personalised barista: Have a great day!

Figure 7.7: Example of a successful dialogue from the study, where the personalised barista
recognised the customer and recalled their preference correctly, but the customer wanted to
order something else, and the robot was correctly able to update the order, corresponding
to Task 4 in the Personalised Barista Dataset (Figure 6.5). The speech detection and
recognition errors made the interaction tedious and longer than desired (2.5 minutes).
Customer’s name replaced with X for anonymity.
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Profile: False (New), 0 (ID)

Customer: Hi! [speech not detected] Hi!
Speech recognition: Hi

Generic barista: Hello! Which drink can I get for you?
Customer: Erm, please lemonade. [speech not detected] A lemonade? [incorrect

pronunciation of lemonade]
Speech recognition: [Delayed] Please

Generic barista: Which size for the cup?
Customer: A medium [pause] please. [wait for robot] Medium? [speech not

detected] Please medium. Medium. [pause] Medium. [incorrect
pronunciation of medium]

Speech recognition: Please medium medium medium
Generic barista: Can I offer you anything to go with your drink?

Customer: Erm, yes. Please a chocolate cookie. [pause] Chocolate cookie.
[pause] Chocolate cookie. [incorrect pronunciation of chocolate]

Speech recognition: [Unable to process speech]
Generic barista: I am sorry. Could you repeat please?

Customer: Erm, a pound cake. [incorrect pronunciation of pound]
Speech recognition: [Unable to process speech]

Generic barista: I am sorry. Could you repeat please?
Customer: Erm, a chocolate biscuit. [pause] A chocolate biscuit. [long pause]

A chocolate biscuit? [incorrect pronunciation of chocolate]
Speech recognition: [Unable to process speech]

Generic barista: Sorry, I did not get that!
Customer: [inaudible voice]

Speech recognition: [Unable to process speech]
Generic barista: Could you speak a little louder?

Customer: Yes, sure. A chocolate cookie! [speech not detected] A chocolate
cookie. [speech not detected] A chocolate cookie.

Speech recognition: [Delayed] Is chocolate cookie
Generic barista: Could you speak a little louder?
Generic barista: Your order is a medium coffee and a chocolate cookie. Is that

right?
Customer: Yes yes yes yes yes. Thank you.

Speech recognition: [Unable to process speech]
Generic barista: Sorry, I am having trouble understanding you.

Customer: What I should do?
Speech recognition: [Unable to process speech]

Generic barista: Could you repeat please?
Customer: Yes

Speech recognition: Yes
Generic barista: May I take your name, please? Please use the tablet for that.

Customer: Okay! [enters name on tablet]
Generic barista: You can pick up the order at the next counter, Y.

Customer: Okay, thank you!
Speech recognition: Ok, thank you

Generic barista: I wish you an amazing day!

Figure 7.8: Example of an unsuccessful dialogue from the study, where the generic barista
delivered the incorrect order (coffee instead of lemonade) due to errors in speech recogni-
tion. The interaction corresponds to Task 6 in the Barista Dataset (Figure 6.1). The speech
detection and recognition errors made the interaction frustrating and longer than desired
(3.07 minutes), which caused the customer to accept the wrong order. Customer’s name is
replaced with Y for anonymity.
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the delivered phrase from the ASR included these repetitions (e.g., “Please medium medium

medium” in Figure 7.8), which reduced the similarity score to the template phrases. Incom-

plete phrases also caused the RBDMS to misinterpret the user’s response. For instance,

when the personalised barista robot offered the user their previous preference, the ASR

returned “Thank you” instead of “May I have a coffee, please? Thank you!”, hence, the RBDMS

processed it as a confirmation instead of a change in the order. In addition, the fixed

order structure of RBDMS, prevented users to change their order after confirmation. The

system failed to understand when the user ordered the items in a combined sentence

(e.g., “I would like a small coffee and chocolate cookie please.”) or switched the order of items.

Moreover, the RBDMS was unable to understand “What is my order?” and “What snack

do you have?”, because these phrases were not in the Barista Datasets. The reason is that

the user was presented with a menu behind the robot (as shown in Figure 7.3), hence, we

assumed that the user would not ask the robot for the information.

Blurry images due to user movement, as well as bad lighting conditions in the cafeteria,

reduced the performance of the user recognition system. In addition, the users did not

realise when the robot incorrectly identified them, thus, MMIBN and RBDMS updated the

wrong user, thereby, causing the personalised barista to have a worse success rate. Conse-

quently, 11 users were enrolled in the user recognition system and the knowledge-base,

instead of the 18 recruited participants. Only in 4 of the personalised barista interactions,

the participant was identified correctly, and the previous orders of the users were remem-

bered, however, 2 of these interactions were incomplete. In these interactions, because

the speech recognition and RBDMS worked sufficiently correctly, the number of dialogue

turns has decreased to 3 turns instead of 7 in support of H2, however, due to the problems

encountered during the study and the several repetitions necessary to make an order, we

cannot conclude that the personalisation increased the time efficiency, as presented in

Figure 7.9.

The video analysis showed that most of the users who learn to give short and specific

orders and speak loud and clear got their order right, and this interaction style was

retained in the subsequent interactions. In addition, the users changed their phrasing

during repetitions, in order for the robot to understand them, which is similar to the

results in (Williams et al., 2018).
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Profile: True (Known), 1 (ID), Z (Name)
Preference: Coffee, small, chocolate cookie

Customer: Hi!
Speech recognition: Hi

Personalised barista: Hello, Z! Would you like to have a small coffee and a chocolate
cookie again?

Customer: Yes, please! [speech not detected] Yes, please!
Speech recognition: Yes please

Personalised barista: You can pick up your order at the next counter, Z.
Customer: Thanks!

Speech recognition: [Unable to process speech]
Personalised barista: Sorry, I did not get that!

Customer: [walks out, then walks back in front of the robot] Thanks!
Speech recognition: Thank you

Personalised barista: Enjoy your day!

Figure 7.9: Example of a successful dialogue from the study, where the personalised
barista recognised the customer and recalled their preference correctly, and the customer
confirmed the suggestion, corresponding to Task 1 in the Personalised Barista Dataset
(Figure 6.2). The interaction took 1.17 minutes. Customer’s name is replaced with Z for
anonymity.

7.6 Discussion

The technical difficulties in this study caused the participants to repeat their phrases

several times, change their wording, and even accept wrong orders, but these are unlikely

to happen in the real world when the customers are in a hurry. For deploying robots to

the real world, we need solutions that are reliable and can recover from failures.

Our results showed that ASR is not accurate enough for real-world applications, hence,

a touchscreen interface for text or image-based interaction can be used. However, such

methods decrease the naturalness of the interaction. Thus, it is preferable to improve

the accuracy of ASR, by constraining grammar of ASR (Kennedy et al., 2017), ensuring a

reliable internet connection or using an onboard ASR, and using high-quality microphones.

Low ASR accuracy in foreign accents can be overcome by personalising the interaction

with the user’s native language, which was even requested by some of our participants in

the open questions.

We should also account for user errors by designing systems that are flexible and robust.

For example, explicit confirmation of the identity before the order can overcome errors in

MMIBN. Moreover, a neural network with a long-term memory could be more suitable

than a rule-based dialogue management system for reverting changes in the state of the

dialogue (Bordes et al., 2016) and dealing with the combination of order items. We will
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evaluate the potential of such systems based on the Barista Datasets in the next chapter.

Nevertheless, these failures enabled us to observe the high positive impact of person-

alisation on the negative user experience, which showed the importance of evaluating

technologies outside of controlled environments and studying how people respond to

failures.

7.7 Summary

This chapter described the fully autonomous generic and personalised Barista Robot

architectures built upon the Barista and Personalised Barista Datasets. We conducted

the first real-world study that explores fully autonomous personalisation in dialogue

for long-term human-robot interactions in an international student campus for five days

with non-native English speakers. We evaluated how personalisation affects the user

experience, task efficiency and user perception of social intelligence. We experienced

several challenges due to speech recognition failures, arising from the foreign accent of

non-native speakers, latency due to connection problems, quietly speaking users, user’s

distance from the robot, low accuracy due to the robot’s microphones, and the delay

between voice activity detection and recording. Nonetheless, these failures showed that

personalisation can overcome a negative user experience.
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Chapter 8

Towards Using Data-Driven Approaches in

Personalised Long-Term Interactions

Key points:

• State-of-the-art retrieval-based and generative data-driven dialogue models are

evaluated on the Barista Datasets to evaluate their potential in generic and

personalised long-term interactions.

• The (generative) vanilla Sequence-to-Sequence model achieves the best and

near-perfect per-response accuracy in generic task-oriented dialogue.

• The (retrieval-based) vanilla End-to-End Memory Network achieves best accu-

racy in personalised task-oriented dialogue, but it does not perform sufficiently

well to be deployed in personalised long-term real-world interactions.

• Most models cannot learn new customer names or new order items, which

decreases the performance in continual (or lifelong) learning (i.e., incremental

learning with adaptation) for personalised task-oriented dialogue. Thus, user

preferences information that simulates a knowledge-base extraction only slightly

improves the accuracy, and the separate profile memory architectures do not

markedly improve the performance.

• Time order within the conversation context is important for dialogue state

tracking and detecting changes in the user orders.
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• Generative models learn sentence grammar and structure well and perform best

in dialogue state tracking and few-shot learning.

• High sample size improves model accuracy for generic task-oriented dialogue,

however, it has a varying effect on personalisation depending on the model and

task.

• Memory Network and Split Memory Network have the lowest time complexity,

but all models are suitable for real-time interaction.

Parts of the work are under review at the Frontiers in Robotics and AI journal. The

Barista Datasets and the adapted data-driven dialogue models described in this chapter

are available online1 for academic use based on the license terms.

1https://github.com/birfan/BaristaDatasets

156

https://github.com/birfan/BaristaDatasets


8.1 Motivation

While previous research in Human-Robot Interaction (HRI) pre-dominantly uses rule-

based architectures for communication, the previous chapter showed that these approaches

are not robust or flexible enough for long-term interactions in the real world. In contrast,

data-driven approaches map the user input to the agent output directly, hence, provide

more flexibility with the variations in user utterances without requiring any set of rules.

However, previous research in data-driven approaches focused on the current dialogue

exchange with a single user and does not build up a memory over long-term conversation

with different users (Dodge et al., 2015), whereas this is essential for long-term interac-

tions and personalisation in HRI. The models need to learn users and their preferences

incrementally and recall previous interactions with users to adapt and personalise the

interactions, which is a continual (or lifelong) learning problem. Continual learning in ma-

chine learning refers to learning information continuously, incrementally and adaptively,

on top of previously learned information. In other words, it refers to incremental learning

with adaptation, but it covers both batch and online (sequential) learning. In addition,

it is desirable for the model to learn users preferences from a few samples of interac-

tions (i.e., few-shot learning). These are challenging problems in machine learning (Parisi

et al., 2019; Triantafillou et al., 2017), while they are trivial for rule-based approaches.

Correspondingly, in this chapter, we explore the state-of-the-art data-driven dialogue

models, namely the variants of Memory Networks (Bordes et al., 2016; Joshi et al., 2017;

Zhang et al., 2018), Supervised Embeddings (Bordes et al., 2016; Joshi et al., 2017), and

Sequence-to-Sequence (Sutskever et al., 2014) to evaluate their potential in generic and

personalised long-term interactions, based on the Barista Datasets. These approaches

are strong baselines in other domains of personalisation based on single interactions,

such as adapting to general user attributes in task-oriented dialogue (Joshi et al., 2017)

or “person”alising an open-domain dialogue by maintaining a given personality (Zhang

et al., 2018).

8.2 State-of-the-Art Data-Driven Approaches

In Section 2.3, we outlined the state-of-the-art data-driven approaches for task-oriented

interactions and personalisation of the interaction. These approaches can be categorised
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based on the response generation: retrieval-based and generative models. Retrieval-based

models choose a response from a list of phrases (called the candidate set), hence, the

response can be syntactically correct, but these models may fail to respond appropriately

to novel questions. Generative models form a response iteratively (i.e., word-by-word),

thus, novel responses can be generated. However, it is challenging to learn the grammar

and the structure of the sentence, in addition to learning the correct responses, hence, they

are prone to grammatical errors.

As previously described in Section 6, while there are no publicly available datasets for

user-specific personalisation in dialogue, there are two publicly available datasets for

other applications of personalisation in dialogue: Personalized bAbI dialog (Joshi et al.,

2017) and Persona-Chat (Zhang et al., 2018).

The Personalized bAbI dialog is a simulated text-based dataset for personalising conver-

sation style and recommendations in task-oriented dialogue according to general user

attributes, such as gender, age, favourite food item and dietary preference. Retrieval-

based models, namely Supervised Embeddings (Dodge et al., 2015; Bordes et al., 2016),

End-to-End Memory Networks (MemN2N) (Sukhbaatar et al., 2015) and Split Memory

architecture (Joshi et al., 2017) were evaluated on this dataset. The best performing model

for the complete dialogue task was found to be Split Memory.

Persona-Chat is a crowd-sourced text-based dataset that contains conversation based

on assigned personalities, which was created to increase user engagement and improve

consistency of the agent in open-domain dialogue. Several retrieval-based models, such

as Nearest Neighbor Information Retrieval (Sordoni et al., 2015), Ranking Profile Memory

Network, Key-Value Profile Memory Network based on (Miller et al., 2016) and a super-

vised embedding model, StarSpace (Wu et al., 2017), along with generative models, such

as Generative Profile Memory Network and Sequence-to-Sequence (Seq2Seq) (Sutskever

et al., 2014), were evaluated on the Persona-Chat dataset. The best performing model was

found to be the Key-Value Profile Memory Network, in terms of automated metrics and

human evaluation (for fluency, engagingness and consistency).

We evaluate the baselines from the Personalized bAbI dialog and the best performing

baseline from the Persona-Chat dataset, in addition to the generative baselines, to get an

insight on their potential for user-specific personalisation in long-term interactions. Instead

of the user (customer) attributes (e.g., gender, age, favourite food) in the Personalized
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bAbI dialog or the personality determining sentences in the Persona-Chat dataset, we use

user identity information (i.e., whether user is enrolled (True or False), user’s ID number

and name) in the Personalised Barista Dataset, and the user identity information along

with the user preferences (i.e., most preferred drink, size and snack) in the Personalised

Barista with Preferences Information Dataset, which we call user profile, similar to earlier

work. In this section, we briefly describe these approaches and their performance in the

previous literature.

8.2.1 Supervised Embeddings

Word embedding models are generally used for learning unsupervised embeddings over

unlabeled datasets such as in Word2Vec (Mikolov et al., 2013). However, they are strong

baselines for predicting the response given the previous conversation in both open-domain

and (bAbI) task-oriented dialogue (Dodge et al., 2015; Bordes et al., 2016).

One common approach in the previous literature (Bai et al., 2009; Dodge et al., 2015; Bordes

et al., 2016; Joshi et al., 2017) sums the bags-of-embeddings of the input and the target,

and then scores the inner product of the candidate responses against the input (e.g., user

response). The embeddings are trained with stochastic gradient descent (SGD) using a

margin ranking loss to ensure that the correct targets are ranked higher than any other

targets (i.e., negative candidates). This approach corresponds to a Memory Network with

no attention over memory (Dodge et al., 2015) and a classical information retrieval model

where the matching function is learnt (Bordes et al., 2016).

We use the implementation2 of Supervised Embeddings used in (Joshi et al., 2017). Similar

to that work, we do not handcraft any special embeddings for the user profile, and treat it

as a turn in the dialogue. The Adam optimiser (Kingma & Ba, 2014), which is an extension

of SGD, is used for minimising the model loss.

Inputs and outputs are represented with binary bag-of-words vectors that have a size

equal to that of the vocabulary. Each item (i.e., words and punctuations) in the input text is

represented with 1 corresponding to its order in the vocabulary and the remaining vector

is filled with 0’s. For example, for the user utterance “Hi there!”, the vector representation

will be [1,0,0,0,1,...,0,1,0], because Hi is the 5th item, there is the 1st item and ! is the

399th item for a vocabulary size of 400. This vector representation is then converted to

2https://github.com/chaitjo/personalized-dialog
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an embedding of a specified size (e.g., 32). Note that due to the structure of this method,

the order of the words within the input (e.g., user utterance, bot response or conversation

context) is not preserved, that is, the embedding only contains the list of words instead of

a sentence. In addition, repeating words would also be lost in the embedding. Hence, we

believe that this model is not suitable for dialogue with the implementation used in (Joshi

et al., 2017). Moreover, it performed poorly in Personalized bAbI dialog dataset. However,

we selected it as a baseline to determine its strong and weak points for user-specific

personalisation in comparison to generic dialogue.

8.2.2 Sequence-to-Sequence

Sutskever et al. (2014) introduced the Sequence-to-Sequence (Seq2Seq) model, which is

a generative data-driven model for language translation. The model uses a long short-

term memory (LSTM) (Hochreiter & Schmidhuber, 1997; Graves, 2013) to read the input

sequence (i.e., as the encoder) to obtain a fixed-dimensional vector representation, and

another LSTM to extract the output sequence from that vector (i.e., as the decoder). The

order of the words in the sentence is reversed for the input sequence, which improves

the performance due to the closer proximity of the input to the output while using SGD

for optimising the loss. The original paper showed that the model performs well for

language translation (English to French). The model was shown to differentiate between

the different ordering of the words, e.g., “John admires Mary” and “Mary admires John”

were in separate clusters based on their meaning. In addition, the clusters of the active

voice formulation of a sentence (e.g., “She gave me a card in the garden.”) and the passive

voice formulation (e.g., “I was given a card by her in the garden.”) were close, meaning

that the model is fairly insensitive to the voice. These properties make the model suitable

for dialogue. Correspondingly, it was shown to be a strong baseline in task-oriented and

open-domain dialogue (Vinyals & Le, 2015; Sordoni et al., 2015; Li et al., 2016a,b; Zhang

et al., 2018).

We use the implementation from ParlAI3 that was used at ConvAI24 challenge (Dinan

et al., 2019) with the Persona-Chat dataset. The final hidden state is fed into the decoder

as the initial state. For each time step, the decoder produces the probability of a word

occurring in that place via a softmax of the weighted hidden state. An example of the
3https://github.com/facebookresearch/ParlAI/tree/master/projects/convai2/baselines/

seq2seq
4http://convai.io
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True 26 Ryan Gosling Hi !

<EOS>

,

Hello , RyanGosling ! Would you like to have a medium
pepper
mint hot chocolate again ? <EOS>

Encoder

Decoder

Figure 8.1: An illustrative example for encoding (of the user response) and decoding (of
the bot response) within the Sequence-to-Sequence (Seq2Seq) model. <EOS> token is
used to determine the end of the sentence within the fixed embedding structure. The user
profile information (i.e., user identity and preferences) is concatenated to the beginning of
the input. The example corresponds to the beginning of the interaction in Figure 6.5.

encoder-decoder structure of the Seq2Seq is given in Figure 8.1. In (Zhang et al., 2018),

GloVe (Pennington et al., 2014) word embeddings were used. However, we found that

using randomly initialised embeddings that are trained with the data performed better

than pre-trained GloVe embeddings in Personalised Barista Datasets (e.g., achieving

60.58% accuracy in comparison to 41.75% in task 8 for 1,000 dialogues dataset), whereas,

GloVe performed slightly better in the Barista Dataset (99.85% with random embeddings

and 99.94% with GloVe). Since the difference is considerably higher in the Personalised

Barista Datasets, we chose random embeddings. In addition, in contrast to (Zhang et al.,

2018), using previous sentences in the dialogue (i.e., conversation context) performs better

in Personalised Barista Datasets. This is expected because the order is made in several

dialogue turns, hence, the model should keep the previous history to gather all of the

items in the order, whereas in open-domain dialogue the dependency to the context is less.

Similar to (Zhang et al., 2018), we train the model with negative log likelihood and we

prepend the user profile to the input sequence (i.e., concatenated to the beginning of the

input).

8.2.3 Memory Networks

Humans focus on salient parts of information to efficiently accomplish a task at hand or

for recalling the key aspects of an event. Similarly, attention in deep learning focuses on

particular elements of a task to respond to queries, through non-uniformly weighting

parts of the input to optimise the learning and recall processes. Attention mechanisms

161



Input

Update memories 
(mi)

mi= G(mi, I(x), m)

Convert to 
internal feature 
representation

I(x)

Decode o for final 
response

r = R(o)

Compute output 
(o) from input and 

memory

o = O(I(x), m)

𝑥 I(𝑥) I(𝑥), 
m

o r
Output

Inference

Generalization (G)Input Feature Map (I) Output Feature Map (O) Response (R)

Figure 8.2: Components of the Memory Network. The mapping and scoring functions
within the components vary depending on the implementation.

are especially important for personalisation of the dialogue in long-term HRI, such that

the responses of the robot can be selected more efficiently and more correctly given the

expanding volume of data over time.

A Memory Network (Weston et al., 2014) is an attention-based model with a long-term

memory, which was initially designed for question answering (QA). The initial model

required full supervision, that is, during training, the correct answer to the question had to

be labelled, along with (two) supporting memories which are sentences that carry additional

information to answer the question. The system is composed of memory, input feature

map, generalization, output feature map, and response, as shown in Figure 8.2. The memory

stores the representations of information (e.g., character, word, sentence, image, or audio

signal) converted by the input feature map, e.g., parsing. The generalization component

writes into and updates memory, which can be organised into categories or topics by

hashing or clustering. The output feature map scores the input and the memory to find

the highest scoring candidate(s) (e.g., through hard max of all scores), and the response

module decodes the output to produce the response.

The relative time of the events (e.g., sentences) is encoded into the memory, which allows

keeping the memory up-to-date and maintaining to-and-fro relations between events.

Memory Networks can discover simple linguistic patterns based on verbal forms, such

as (X, took, Y) for “Alice took the teacup.”, hence, it can generalise the meaning of their

instantiations for previously unseen vocabulary.

In general, the model is flexible and allows using different machine learning architectures

for its components, such as decision trees, Support Vector Machine (SVM), recurrent

neural networks (RNN), long short-term memory (LSTM) (Hochreiter & Schmidhuber,

1997), and it can be used as a generative or a retrieval-based approach.
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End-to-End Memory Networks (MemN2N) (Sukhbaatar et al., 2015) removed the need

for supporting memories. The input (i.e., query) is converted to an internal state with an

embedding matrix and the previous input sentences (called context or conversation history)

is converted to a memory representation using another embedding matrix. The match

between the input embedding state and each memory is computed via an inner product

followed by a softmax (instead of the hard max in the original Memory Network). The

output is a weighted sum of the resulting probability vector over the inputs multiplied

by another embedding matrix representation of the context. Due to the smooth function

between input and output, the gradients can be computed that allows training the system

end-to-end with backpropagation. The final prediction of the bot response is found

through the weighted sum of the output and the input embedding state with a softmax

applied over it. They also introduced hops, which processes the sum of the input query

and the output of the network in multiple layers, enforcing the network to increase its

attention on the correct supporting sentences. For dialogue, the query corresponds to the

last user utterance, and the context consists of the previous utterances of the user and

the responses of the bot. The dialogue examples from the recognition error task (2) of

the Personalised Barista (PB2, Table E.2 in Appendix E.2) and Personalised Barista with

Preferences Information (PBPI2) Datasets (Table 8.1) show the attention weights on the

conversation context in varying hops.

MemN2N outperformed Supervised Embeddings and information retrieval approaches,

such as the Term Frequency-Inverse Document Frequency (TF-IDF) and the Nearest

Neighbor in task-oriented dialogue (Bordes et al., 2016). In addition, the vanilla model

outperformed Supervised Embeddings in the Personalized bAbI dialog.

Similar to the Supervised Embeddings, we use the implementation2 used in (Joshi et al.,

2017), which is a retrieval-based model for vanilla End-to-End Memory Networks. Similar

to that work, we do not handcraft any special embeddings for the user profile, and

treat it as a turn in the dialogue. The embedding vectors for the inputs contain indices

of the words in the vocabulary (i.e., the numbers denoting the order of the words in

the vocabulary) and have 0 if the word is not in the vocabulary. The embeddings and

memory have a fixed size, hence, the beginning of the conversation context may be cut

off. The answer array is returned as a one-hot encoding. The Adam optimiser is used for

minimising the cross entropy loss.
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Table 8.1: A dialogue example from the recognition error task (2) of the Personalised
Barista with Preferences Information Dataset (PBPI2) shows the attention weights in
the End-to-End Memory Networks (MemN2N) model for varying hops. In contrast
to the Personalised Barista Dataset (Table E.2 in Appendix E.2), the model focuses on
the customer preferences information to predict the correct response, especially with
increasing hops. Zero attention weight signifies a very small value (< 10−5).

Time Speaker Conversation Context Hop1 Hop2 Hop3
1 True , 182 , Tom Welling , large , latte 0.029 0 0
2 Customer Hey there ! 0.115 0.00004 0
3 Barista Hello , Tom Welling ! Would you like

to have a large latte again ?
0.047 0 0

4 Customer That is not my name . 0.067 0.0002 0
5 Barista I am terribly sorry ! May I take your

name ? api_call getCustomerName
0.041 0.0002 0

6 Customer It is Anne Hathaway . 0.334 0.04 0
7 Barista Let me see if I have any previous

records of you , Anne .
0.258 0.023 0

8 True , 23 , Anne Hathaway , small ,
mocha , blueberry muffin

0.108 0.937 1

Customer Input Okay .
Correct Response I thought you looked familiar , Anne ! Would you like a small

mocha and a blueberry muffin again ?
Predicted Response I thought you looked familiar , Anne ! Would you like a small

mocha and a blueberry muffin again ?

8.2.4 Split Memory Network

The Split Memory (Joshi et al., 2017) architecture combines two MemN2Ns at each layer:

one for conversation context (i.e., dialogue history) and the other for the user profile

attributes to ensure that attention is paid to the user’s profile. The outputs from both

MemN2Ns are summed element-wise to get the final response of the bot for each conver-

sation turn. For multiple hops, each MemN2N separately processes the output in multiple

layers, and then the resulting outputs are summed.

Split Memory outperformed Supervised Embeddings in the Personalized bAbI dialog

dataset in all tasks, and outperformed MemN2N in recommending the correct restaurant

and conducting a full dialogue, however, it performed worse for responding to user

queries and when the user requested changes (e.g., requesting a different type of cuisine

than the previously requested one), suggesting that the simpler MemN2N model is more

suitable for tasks which do not require compositional reasoning over various entries in

the memory. In contrast to MemN2N, their results showed that performing multiple hops

might perform worse when there is more than one aspect (e.g., favourite food and dietary

preference) or memory event to focus on, as evident in Table 8.2.
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Table 8.2: A dialogue example from the recognition error task (2) of the Personalised Barista
with Preferences Information Dataset (PBPI2) shows the attention weights in the Split
Memory model for varying hops. Split Memory allows focusing attention separately
on the user profile (i.e., the customer’s identity and most preferred order), in addition
to the last bot response (containing the customer’s name to be used in the response),
which reinforces dialogue state tracking and predicting the correct response. Preferences
information helps choose the correct items in the suggestion, which decreases the risk
of mixing customers (and preferences), in contrast to the Personalised Barista Dataset
(Table E.3 in Appendix E.2). Hops facilitate focusing attention to relevant inputs, however,
it can decrease the performance when there are multiple target items (for preference
suggestion or order confirmation), as evident in Hop 3. Zero attention weight signifies a
very small value (< 10−5).

Profile Hop1 Hop2 Hop3
True 0.077 0.012 0.00002
23 0.087 0.033 0.031

Anne Hathaway 0.24 0.412 0.777
small 0.087 0.004 0.00002

mocha 0.244 0.297 0.18
blueberry muffin 0.265 0.241 0.012

Time Speaker Conversation Context
1 Customer Hey there ! 0.145 0 0
2 Barista Hello , Tom Welling ! Would you

like to have a large latte again ?
0.06 0 0

3 Customer That is not my name . 0.151 0.0002 0
4 Barista I am terribly sorry ! May I take

your name ? api_call
getCustomerName

0.055 0.006 0

5 Customer It is Anne Hathaway . 0.251 0.00009 0
6 Barista Let me see if I have any previous

records of you , Anne .
0.339 0.994 1

Customer Input Okay .
Correct Response I thought you looked familiar , Anne ! Would you like a small

mocha and a blueberry muffin again ?
Predicted Response I thought you looked familiar , Anne ! Would you like a small

mocha and a blueberry muffin again ?

We use the implementation2 used in (Joshi et al., 2017), which is a retrieval-based model.

The embedding and memory structures are the same as MemN2N. The Adam optimiser is

used for minimising the cross entropy loss. The profile attributes are added as separate

entries in the memory before the start of the dialogue. In contrast to (Joshi et al., 2017), in

our datasets, the profile can be updated during the conversation, such as for registering

a new user or due to a recognition error, hence, in those cases, we overwrite the profile

memory with the new profile information. Moreover, we found that the implementation

of the Split Memory2 contained an error, which causes the context memory to have only

the most recent utterance (i.e., the last bot utterance), instead of the full dialogue history,

in contrast to the reported results in (Joshi et al., 2017). This decreases the performance
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accuracy of the model in the majority of the tasks. For instance, for the task 8 of the

Personalised Barista Dataset (PB8) with 1,000 dialogues, the model has 66.95% accuracy

with the context, whereas 64.78% without the context; for the task 8 of the Personalised

Barista Dataset with Preferences Information (PBPI8) with 1,000 dialogues, the model has

71.65% with the context, whereas 68.71% without the context. Hence, we modified the

code to include all the conversation context, and we report the corresponding results. Split

Memory is equivalent to the MemN2N without the profile information, thus, this method

is not evaluated with the Barista Dataset.

8.2.5 Key-Value Profile Memory Network

Key-Value Memory Network (Miller et al., 2016) is an extension of retrieval-based MemN2N,

which stores facts in key-value structured memory slots before reasoning on them to pre-

dict an answer. The keys are used to address (lookup) relevant memories concerning

the input, and the corresponding values are returned. This structure allows end-to-end

training with standard backpropagation via SGD. The input query can be used to pre-

select a small subset of the memory, where the key shares at least one word with the input.

The subset is assigned a relevance probability by comparing the question to each key.

Subsequently, the output is found by reading the values of the memories by taking their

weighted sum using the assigned probabilities. This key addressing and value reading

can be done repeatedly with hops to focus on and retrieve more pertinent information

in subsequent accesses. If the key and value are set to be the same for all memories,

the model becomes equivalent to the MemN2N. However, Key-Value Memory Network

outperformed MemN2N in QA in various datasets (Miller et al., 2016).

Zhang et al. (2018) applied Key-Value Memory Network to dialogue by using dialogue

history from the training set as the keys, and the values as the next dialogue utterances,

such as the user response, which allows the model to have a memory of past dialogues

that can be used to predict for the current conversation. Profile attributes are separately

used to perform attention to find the relevant lines from the profile to combine with the

input, which is used to predict the next utterance, hence, it is called Key-Value Profile

Memory Network, but we will here on refer to it as Key-Value. The next utterance is found

by computing the cosine similarity of the input to the profile attributes and applying

softmax, taking the weighted sum with profile sentences and summing with the input
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query. The candidate set responses are ranked according to their similarity for this value

to determine the bot response. For multiple hops, this value is used to attend over the keys

and output a weighted sum of values as before, which is again used with the candidate

set to predict the next utterance. Key-Value outperformed Seq2Seq and Generative Profile

Memory Network in both automated metrics and human evaluation (in terms of fluency,

engagingness and consistency).

We use the implementation5 that was used at the ConvAI2 challenge. Similar to the Split

Memory, we overwrite the user profile attributes if it is updated during the conversation.

We only evaluate the 1-hop model, similar to (Zhang et al., 2018). Similar to (Zhang et al.,

2018), but in contrast to the other methods, we only keep the last bot utterance and the

corresponding last user response in the dialogue context. This was reported to perform

better in the implementation, and our results in the majority of the tasks also support

this: using all dialogue context provides 55.68%, 19.2%, 23.15%, whereas, using only last

bot-user utterance pair provides 70.98%, 40.09%, 42.95% in the task 7 of the Barista Dataset

(B7), task 8 of the Personalised Barista Dataset (PB8), and task 8 of the Personalised Barista

with Preferences Information Dataset (PBPI8), respectively. We have not evaluated other

methods in this way, either because the structure was not implemented or a difference

was not reported in the original work.

Because the set of (key-value) pairs is large in Key-Value, the training of the model is

very slow. In (Zhang et al., 2018), they trained the Ranking Profile Memory Network

(equivalent to the first layer of Key-Value without keys) and used the set of weights from

that model and applied Key-Value architecture at test time instead. However, the authors

noted that training the model directly would give better results, hence, we trained the

model directly on the datasets.

8.2.6 Generative Profile Memory Network

Generative Profile Memory Network (Zhang et al., 2018), here on referred to as Profile

Memory, extends the Seq2Seq model by encoding each of the profile entries as individual

memory representations in a Memory Network. Words are weighted with their inverse

5https://github.com/facebookresearch/ParlAI/tree/master/projects/convai2/baselines/
kvmemnn
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term frequency6. The decoder attends over both the encoded profile entries and the

context as illustrated in Figure 8.3.

Profile Memory was shown to outperform Seq2Seq for automated metrics in the Persona-

Chat dataset, however, it performed considerably worse than Key-Value (e.g., next-

utterance classification (Lowe et al., 2015) score of 0.125 in comparison to 0.511 by Key-

Value).

We use the implementation from ParlAI7 that was used in (Zhang et al., 2018). Similar to

the work in (Zhang et al., 2018), we use GloVe embeddings (Pennington et al., 2014) and

train with the Adam optimiser, however, we also use the previous context (i.e., history

of the user and bot utterances) in the dialogue, because we found that this improves the

accuracy as in the Seq2Seq model in the majority of the tasks (e.g., for 1,000 dialogues

datasets, 57.82% accuracy with context, 55.22% without context for the PB8; 58.98% with

True 26 RyanGosling

Hi !
...

<EOS>

,

Hello , Ryan Gosling ! Would you like to have a medium
pepper

mint hot chocolate again ? <EOS>

User Profile

Encoder

Attention

Decoder

Figure 8.3: A diagram of the Generative Profile Memory Network that shows the archi-
tecture consisting of an encoder (for the user response), decoder (for generating the bot
response), user profile embeddings and the attention mechanism. The decoder attends
over both the encoded profile entries and the context. The attention returns higher prob-
abilities (represented with darker red colours) when the network is more certain of the
response (e.g., when using profile information). <EOS> token is used to determine the
end of the sentence within the fixed embedding structure. The example corresponds to
that of Figure 8.1.

6Term frequency (tf) represents how frequently a word occurs in a document, and is computed in (Zhang
et al., 2018) from the GloVe index using Zipf’s law, tf= 1e6/(index1.07). The weights of words are then
calculated by αi = 1/(1 + log(1 + tf)).

7Note that while this baseline was used in (Zhang et al., 2018) with the Persona-Chat
dataset, it was deprecated from the ParlAI library on March 2019. Hence, we use the
last available version before the deprecation: https://github.com/facebookresearch/ParlAI/tree/
6a76a555ea84b06e2914cdea4c56a46a5f495821/projects/personachat
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context, 55.13% without context for the PBPI8). While Profile Memory implementation

in (Zhang et al., 2018) uses the user response-correct bot responses pairs in training for

the conversation context, it uses user response-model’s prediction pairs in the validation,

test and out-of-vocabulary (OOV) sets. This surprisingly performs better than using the

correct response (e.g., 51.93% in PB8 and 42.39% in PBPI8). Hence, we kept this method

and it also allowed us to have a fair comparison of this baseline to its performance in the

Persona-Chat dataset. Similar to the Split Memory, we overwrite the profile attributes if it

is updated during the conversation. Profile Memory is equivalent to the Seq2Seq without

the profile information, hence, this method is not evaluated with the Barista Dataset.

8.3 Research Questions

Which dialogue architectures are appropriate for long-term interactions in the real world? This

research question (RQ3) led us to explore rule-based and data-driven approaches. Conse-

quently, we generated the text-based Barista Datasets based on sets of rules that simulate

real-world interactions with a barista, to form the base of the rule-based dialogue man-

agement system (RBDMS) and as training and evaluation data for the data-driven archi-

tectures. While our RBDMS achieved 100% accuracy in each of the text-based tasks, the

results of the study described in Chapter 7 suggested that it is not suitable for real-world

interactions. Data-driven approaches may offer more flexibility in dealing with various

user responses in the real-world interactions, however, they have not been previously

evaluated for long-term interactions or user-specific personalisation. Hence, we cannot

hypothesise which model would be more appropriate, or if any would be suitable at all

for real-world interactions. Thus, we need to explore the performance of the data-driven

architectures on the simulated text-based Barista Datasets to determine which model can

perform sufficiently well (i.e., at least 90% accuracy). Consequently, we formulated the

following sub-questions to our original research question to explore in this chapter:

• RQ3.1: Which architecture is the most suitable for generic (non-personalised) task-oriented

dialogue? We will explore the answer to this question using the Barista Dataset.

• RQ3.2: Which architecture is the most suitable for personalised interactions in task-oriented

dialogue? We will explore the answer to this question using the Personalised Barista

Dataset.
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• RQ3.3: How much improvement do user preferences information provide? The Person-

alised Barista with Preferences Information Dataset simulates extracting user pref-

erences information from a knowledge-base and providing this alongside the user

identity information at the beginning of a conversation. We will evaluate the results

of the two Personalised Barista Datasets comparatively to identify the effects of the

external information.

• RQ3.4: What causes inaccuracies in a model? In Chapter 6, we categorised the bot

utterances in the Barista Datasets in terms of phrase types, such as personal(ised) (i.e.,

containing user name or preference), order details and other (remaining) phrases, in

addition to the phrases specific to task 7 of the Barista Dataset (B7). Here we will

investigate the errors of the models in the corresponding categories to determine the

underlying reasons for inaccuracies in the models. Moreover, we will evaluate the

performance in dialogue state tracking (DST), i.e., how well the models choose the

correct template corresponding to the dialogue turn.

• RQ3.5: What is the effect of the out-of-vocabulary (OOV) words, such as new menu items,

on the performance? We will explore the answer to this question using the OOV sets.

• RQ3.6: What is the effect of the dataset size? We will examine the performance on

few-shot learning with the Second Interaction sets within the Personalised Barista

Datasets to see whether the models can learn from only a few samples of data.

Moreover, we will compare the results of the 1,000 and 10,000 dialogue datasets to

observe how much performance improvement does the increase in training data

bring.

• RQ3.7: What is the applicability of the architectures to real-time interaction? We will

evaluate the training and computation time for response generation in the models to

understand whether they can be utilised for real-time interactions.

8.4 Experimental Procedure

The experiments relied on the Ghent University IDLab cloud servers and took 6 months

to run (February to August 2020). We trained and evaluated the described baselines on

the Barista, Personalised Barista and Personalised Barista with Preferences Information
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Datasets with varying dataset sizes (i.e., 1,000, 10,000 dialogues and Second Interaction)

based on the test and OOV sets and separately for each task.

The hyperparameters for each method are given in Appendix E.1. The hyperparameters

used in the experiments have by no means been extensively explored, and correspond to

the hyperparameters from the original implementations (Joshi et al., 2017; Zhang et al.,

2018), unless otherwise noted in the text for creating a more fair comparison without

decreasing the performance of the original models, based on the limitations of our systems.

For instance, in contrast to the original work, we used 100 epochs for training each

baseline to ensure equal comparison, except for Key-Value and Supervised Embeddings,

which were only trained for 25/15 epochs due to the vast amount of time required to

train them (Section 8.5.7 shows the training and test times in more detail). However,

the corresponding number of epochs or training time given in the original work were

less than or equal to ours. Key-Value was trained for 20 hours (in equivalence to our

computational power) on the Persona-Chat dataset, whereas, in our case, the training

lasted between 17 to 40 days per task in the 10,000 dialogues datasets, even though the

tasks in our datasets have 1/5th number of utterances. In addition, we increased the

batch size of the Supervised Embeddings to 128 (was 32 in the original implementation) to

decrease the training time, and used a batch size of 1 for Seq2Seq and Generative Profile

Memory Network on the test and OOV sets due to out-of-memory errors.

Key-Value, Seq2Seq and Generative Profile Memory Network were trained and evaluated

using the ParlAI8 (Miller et al., 2017) framework with PyTorch (1.1.0) on Python 3.6, while

the MemN2N, Split Memory and Supervised Embeddings use Tensorflow (1.13.1) on

Python 3.6, without an external framework. A Docker9 container was created with the

code for the modified baselines10 and the datasets, and the experiments were run in

parallel on (a limited number of) cloud servers for each baseline. The training is separate

for each task, that is, we do not use the trained model on Task 1 for training on Task 2.

Each training, validation and test set are randomly divided into batches of dialogue exam-

ples, in which the conversation context (i.e., the conversation history), the user query (i.e.,

the last user response), and the correct response (i.e., the correct bot response) are given. All

methods have access to the candidate set (i.e., set of all bot responses) from all sets during

8https://parl.ai/
9www.docker.com

10Available online at: https://github.com/birfan/BaristaDatasets
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training and test. The task is to predict the correct response. The correct response is com-

pared with the predicted response for text (i.e., string) or embedding equality comparison,

depending on the model. Correspondingly, the model performance is measured by the

per-response accuracy metric (Bordes et al., 2016; Joshi et al., 2017), which is the percentage

of correct matches within the number of total examples. For the retrieval-based tasks, this

metric is also known as Next-Utterance-Classification (Lowe et al., 2016). We evaluate both

retrieval-based and generative models using the per-response accuracy metric, because

each response must be completely correct in a task-oriented dialogue for the interaction to

be successful. However, as previously mentioned, Supervised Embeddings, the (predicted

and correct response) bag-of-embeddings do not preserve the order of the words in the

phrase, and contains the unique words in the utterance, as used in (Joshi et al., 2017).

For other models, the word order and the exact words in the phrase are preserved. The

validation set is used for finding the best performing model during training after each

epoch.

Beyond the intrinsic difficulty of each task, OOV sets evaluate whether the models could

generalise to new entities (i.e., drinks, size types, and snacks) unseen in any training

dialogue, which embedding methods are not capable of doing. Thus, Persona-Chat, and

(bAbI and) Personalized bAbI dialog papers have a different approach to this evaluation.

The former builds a vocabulary from the training, validation and test sets leaving out the

OOV set, and replaces unknown words with a special token. The latter papers add them

to the vocabulary during training due to the fixed size vectors used in MemN2N, Split

Memory and Supervised Embeddings. Since we wanted to remain faithful to reproduc-

ing these approaches within a different context, we did not change this structure. In

addition, removing the OOV words from the vocabulary causes erroneous performance

measurement in the latter methods. Thus, we will cautiously examine the OOV results.

8.5 Results

In this section, we present the results from our experiments that we will examine under

the research questions described in Section 8.3 to explore the potential of data-driven

approaches in personalised long-term interactions. It is important to recall that the RBDMS,

presented in Chapter 7, performs 100% on these datasets because the datasets were created

from a set of rules with deterministic bot utterances.
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Similar to the evaluations in (Bordes et al., 2016), the best performing methods or the

methods that perform within 0.1% margin of the best performing method are highlighted

in bold for the per-response accuracy metric11. We will report the performance of each

method in the order of its average rank in performance.

8.5.1 RQ3.1: Generic Task-Oriented Dialogue

The Barista Dataset consists of non-personalised (i.e., generic) barista interactions. As

described in detail in Section 6.2, we defined seven tasks to evaluate the performance of

data-driven approaches on various barista interactions that can occur in a coffee shop:

• Task 1 (B1): Greetings. This task consists of greeting the customer, requesting their

drink order, taking the customer’s name, noting the order pick up location and

saying goodbye to the customer. No order is made in this task.

• Task 2 (B2): Order drink (without greetings). In this task, the customers order only a

drink.

• Task 3 (B3): Order drink with changes. The customers order a drink, but they can

change the order (up to two times) during the interaction.

• Task 4 (B4): Order drink and snack. The customers order a drink and (probably) a

snack without changes. The probability of ordering a snack is 0.5 (i.e., 50% chance),

sampled from a uniform distribution.

• Task 5 (B5): Order drink and snack with changes. The customers order a drink and a

snack (50% chance), but they can change the order (up to two times). The probability

of a change is 0.5, sampled from a uniform distribution.

• Task 6 (B6): Order drink and snack with greetings. This task is the combination of tasks

1 and 4.

• Task 7 (B7): Order drink and snack with changes and greetings. This task is the combina-

tion of tasks 1 and 5, and contains interaction types from all tasks.

The training, validation and test sets have the same customers and drink, size, and snack

types, but the customer orders vary randomly. The corresponding performances of
11No statistical analysis can be performed on the results, because each method could only be trained and

tested once due to the training times and the available resources. Hence, we apply the method of Bordes et al.
(2016), which is a common practice in comparing performances of dialogue models in machine learning.
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the state-of-the-art data-driven approaches on Barista Dataset with the test set on 1,000

dialogues are presented in Table 8.3 based on the per-response accuracy metric.

Sequence-to-Sequence: Best model Seq2Seq model performs best between all models

for generic task-oriented dialogue, except in the first task where it is a close second. This is

a remarkable result, given that Seq2Seq is a generative model that forms sentences word-

by-word, meaning that it learned both the grammar and the correct responses, in contrast

to the retrieval-based models which only need to learn the correct responses. It also

provides a near-perfect performance, showing that it is suitable for generic task-oriented

dialogue.

Memory Network While End-to-End Memory Networks (MemN2N) achieves 100%

accuracy in the greetings (B1) and ordering a drink without greetings (B2) tasks, the

introduction of changes (B3) and an additional order item (B4) decreased its performance.

Even though using 2 hops provides the best of MemN2N in B7 (that contains interaction

types from all tasks), this model performed poorly in B5. On average, using 3 hops

performs the best, which suggests the importance of focusing the attention.

Supervised Embeddings This model was seen as a strong baseline in other works,

hence, we used it as a baseline in our evaluations. The results show that it performs well

in greetings (B1) task, as reported in (Bordes et al., 2016), but not as favourable as the other

models. However, as previously mentioned, Supervised Embeddings model does not

preserve the order of the words within the sentence or the time order of the conversation

Table 8.3: The test set results of the Barista Dataset with 1,000 dialogues. The best per-
forming methods (or methods within 0.1% of best performing) are given in bold for the
per-response accuracy metric. The results show that on average and for task 7 (containing
all tasks), Seq2Seq is the best performing model, providing near-perfect accuracy.

Task
MemN2N

Key-Value Seq2Seq Supervised
Hop1 Hop2 Hop3

1 100 99.98 100 98.8 99.85 98.72
2 100 99.98 99.95 75.3 99.92 76.33
3 97.96 97.73 97.67 65.9 99.98 63.59
4 93.33 95.85 98.45 65.7 99.95 85.25
5 91.97 79.92 94.85 60.46 98.97 69.54
6 96.66 98.7 99.69 78.27 100 89.64
7 94.78 96.29 95.99 70.98 99.85 80.25
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context (i.e., the user utterance or the conversation context is embedded according to

their order in the vocabulary) and embeddings contain only unique words, both reasons

resulting in a poor performance in changes in the order (B3) task. Therefore, we believe

that it is not appropriate for dialogue12.

Key-Value Profile Memory Network While Key-Value was the best model in the Persona-

Chat dataset, our results show that, in general, it is the worst in performance for generic

task-oriented dialogue. Its initial good performance in the greetings (B1) task may be

attributed to its chit-chat capabilities in open-domain dialogue.

8.5.2 RQ3.2: Personalised Task-Oriented Dialogue

The Personalised Barista Dataset, as described in Section 6.3, contains personalised sub-

sequent barista interactions in which the barista recognises customers and recalls their

preferences, in terms of the most common (or most recent) drink, size, and snack, and

suggests to the customer whether they would like to have it again. These interactions are

built on top of the Barista task 7 (B7), that is, the customers’ initial interactions corresponds

to a dialogue from B7, and the subsequent interactions may contain relevant phrases. The

personalised phrases depend on the interaction, which we defined as tasks:

• Personalised Task 0 (PB0): Confirmed personalised order suggestion for new customers.

This task consists of recalling and suggesting the preferences of new customers

(i.e., customers that are not in the training set). The customers always confirm the

suggestion.

• Personalised Task 1 (PB1): Confirmed personalised order suggestion for previous and new

customers. This task has the same type of dialogue interactions as PB0, but contains

(previous) customers from the training set, as well as the new customers to evaluate

continual learning. The following tasks are built upon this task.

• Personalised Task 2 (PB2): Recognition error. This task evaluates the bot to correct

itself after incorrect recognitions in open world recognition, where 90% of the known

customers are recognised correctly and 10% of the new customers are confused with

another customer.
12This conclusion applies to the Supervised Embeddings implementation of Joshi et al. (2017). An

implementation that uses an embedding to preserve the word order in the sentence would be more appropriate
and may provide different results.
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• Personalised Task 3 (PB3): Incorrect recall. This task evaluates the bot to correct itself

after an incorrect recall of the preferences of the customer, with 30% of the dialogues

containing incorrect recalls.

• Personalised Task 4 (PB4): Changes to preference. The task evaluates whether the

barista can learn the most common preferences of the customer, as the customer may

ask for a different drink/size/snack at each interaction. A change in preference has

a probability of 0.5, sampled from a uniform distribution.

• Personalised Task 5 (PB5): Recognition error and incorrect recall. This task is the

combination of tasks 2 and 3.

• Personalised Task 6 (PB6): Recognition error and changes to preference. This task is the

combination of tasks 2 and 4.

• Personalised Task 7 (PB7): Incorrect recall and changes to preference. This task is the

combination of tasks 3 and 4.

• Personalised Task 8 (PB8): All tasks. This task is the combination of tasks 2, 3 and

4. This task evaluates all the scenarios that can occur in a personalised barista

interaction.

The user identity information is presented at the beginning of a dialogue and after the

customer gives their name (e.g., for new customers or recognition errors), in the format:

True (for known customer/ False for new customer), 8 (customer ID/ 0 for new customer),

Sarah Michelle Gellar (customer name/ empty for new customer). The training, validation

and test sets have the drink, size, and snack types, but the customer orders vary randomly.

The performance of the data-driven approaches on this dataset, based on the per-response

accuracy metric, are presented in Table 8.4. The results show that in all the models, the

performance drops considerably below the level in the generic task-oriented dialogue,

showing that personalisation in long-term interactions is a challenging problem for the

state-of-the-art data-driven approaches. This is, of course, anticipated due to the catas-

trophic forgetting problem (i.e., drastic loss of performance on previously learned classes

upon learning a new class) in continual learning. Especially when the test set contains

completely different users than those in the training set (PB0), the accuracy drops substan-

tially in all the models, except for Key-Value, which surprisingly performs almost equally
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Table 8.4: The test set results of the Personalised Barista Dataset with 1,000 dialogues. The
best performing methods (or methods within 0.1% of best performing) are given in bold
for the per-response accuracy metric. The results show that on average and for task 8
(containing all tasks), MemN2N is the best performing model.

Task
MemN2N Split Memory Key-

Value
Profile

Seq2-
Seq

Super-
visedHop1 Hop2 Hop3 Hop1 Hop2 Hop3

0 42.52 43.01 43.27 44.97 44.89 44.63 61.91 40.91 40.28 55.85
1 70.42 70.97 70.82 71.83 71.34 71.05 61.97 69.73 50.21 67.03
2 69.35 69.32 69.77 70.25 70.06 69.93 55.28 69.32 41.45 63.65
3 68 67.22 67.51 66.24 67.53 66.69 47.65 61.42 46.24 62.06
4 72.71 76.58 75.67 72.44 74.42 74.81 47.31 63.86 64.33 61.16
5 62.83 63.82 65.37 63.45 62.83 63.8 43.2 59.73 45.13 57.61
6 70.48 74.71 73.85 69.98 72.99 72.88 44.38 62.22 54.78 57.12
7 70.42 72.77 72.04 68.26 70.2 63.9 43.74 58.18 68.43 60.26
8 68.8 71.81 70.01 64.93 66.95 66.95 40.09 57.79 60.58 56.17

well in tasks 0 and 1. While the personalised barista can decrease the number of turns,

the presence of user recognition errors (PB2) and incorrect recalls (PB3) may increase

the number of turns. Hence, the additional turns that contain misinformation about the

customer or their order decrease the performance of the models in those tasks. Overall,

the results show that MemN2N model shows potential for user-specific personalisation in

task-oriented dialogue, however, none of the models perform adequately well to be used

in real-world interactions. Below we analyse the performance of each of the models in

detail.

Memory Network: Best model On average (in 6/9 tasks) and in task 8, which contains

all non-generic and personalised tasks, MemN2N performs best of all models, especially

using 2 hops. However, in task 0, the performance is poor and below that of the Split

Memory and Key-Value, indicating that this model is not appropriate for applying it to

only new users. Moreover, it performs slightly worse than Split Memory for PB1 and

recognition errors (PB2), however, it is more competent in handling incorrect recalls (PB3)

and changes to preference (PB4) than all other models, showing that it is more capable of

changing an incorrect order and also tally orders to find and suggest the most preferred

order.

Split Memory Network While it is the second best model based on the results, we ex-

pected Split Memory to perform better overall than MemN2N because it pays separate

attention to the user identity information (as shown in Table 8.2), which is why it per-
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forms slightly better than MemN2N in tasks 0, 1 and 2 (recognition error). However, for

overcoming incorrect recalls (PB3) and making changes to preference and tallying (PB4),

the model is not as good as MemN2N. We believe this is due to its inferior performance

in issuing application program interface (API) calls (i.e., choosing the correct response

based on the user utterance) and updating (the response according to changes in the user

requests), as reported in (Joshi et al., 2017), suggesting that the simpler MemN2N model is

more suitable for tasks which do not require compositional reasoning over various entries

in the memory.

Supervised Embeddings Within a close competition with the Generative Profile Mem-

ory Network, the Supervised Embeddings is the third best model on average. Its perfor-

mance in dealing with changes to the preference (PB4) or the order (in the Barista tasks

3 and 5) is in contrast with the findings of Joshi et al. (2017), in which it performed very

poorly (12%) in updating API calls.

Generative Profile Memory Network Profile Memory allows focusing on the user iden-

tity information, thus, performs better than Seq2Seq in tasks focusing on such information.

However, it performs worse in tasks that involve changes to the preference. The most

prominent reason is that it uses the model predictions, in the validation and test sets, instead

of the correct labels, which may have decreased its performance in tracking the dialogue

state or the order items in the dialogue. On the contrary, using correct labels surprisingly

decreases the performance of the model, as we previously mentioned.

Sequence-to-Sequence Despite achieving near-perfect accuracy in generic task-oriented

dialogue, the Seq2Seq model does not perform well in personalising the dialogue.

Key-Value Profile Memory Network While for open-domain dialogue, Key-Value con-

siderably outperformed (30-50% accuracy) both Profile Memory and Seq2Seq (8-10%

accuracy) as well as the other retrieval-based models (Zhang et al., 2018), the results show

the contrary in personalised long-term task-oriented dialogue. Nonetheless, the model

is indifferent to the customer database (i.e., performing almost equally in PB0 and PB1),

which is an important aspect, for instance, for deploying the model in different locations

of the same coffee shops. However, this model is not able to handle the inaccuracies of

real-world dialogue (PB2 and PB3), as well as changes in customer preferences.
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8.5.3 RQ3.3: User Preferences Information

Rule-based approaches relying on a knowledge-base have the advantage of knowing the

preferences of the user prior to the conversation, whereas, this information needs to be

obtained from dialogue within the Personalised Barista Dataset, which makes it a very

challenging dataset. Thus, we created the Personalised Barista with Preferences Informa-

tion Dataset, as described in Section 6.4, by providing the user preference information (e.g.,

small (the most common size of the most common drink order), espresso (the most common

drink order), pain au chocolat (the most common snack order) ), alongside the user identity

information, at the beginning of the conversation, similar to the Personalized bAbI dialog

dataset (Joshi et al., 2017). The resulting performance of the data-driven approaches on

this dataset, based on the per-response accuracy metric, are presented in Table 8.5.

We expected that adding user preference information, alongside the user recognition

information, would improve the accuracy of all the models, especially for tasks focusing

on learning and recalling the user preference (0, 1, 4). However, it seems to have a varying

effect depending on the task and model. Nonetheless, it improved the accuracy in all

models for task 8 up to an increase of 15.58% (for Seq2Seq). Similar to the Personalised

Barista Dataset, on average MemN2N performs the best, however, in contrast, Seq2Seq

performs best in task 8. However, the overall accuracy still remains considerably below

that of the RBDMS (100%), consequently, no model is adequate for personalised long-term

interactions in the real world.

Table 8.5: The test set results of the Personalised Barista with Preferences Information
Dataset with 1,000 dialogues. The best performing methods (or methods within 0.1% of
best performing) are given in bold for the per-response accuracy metric. The results show
that on average MemN2N is the best performing model, however, Seq2Seq performs best
for the task 8 (containing all tasks).

Task
MemN2N Split Memory Key-

Value
Profile

Seq2-
Seq

Super-
visedHop1 Hop2 Hop3 Hop1 Hop2 Hop3

0 42.9 41.75 43.01 43.39 44.31 43.04 62.37 41.37 40.33 53.05
1 70.71 70.42 70.19 70.59 70.39 70.91 62.28 69.13 42.62 69.56
2 68.84 68.92 68.82 69.32 69.16 69.29 54.54 67.65 40.79 65.75
3 70.3 70.26 70.05 68.44 68.06 69.01 49.39 62.67 66.73 65.27
4 73.6 76.15 75.92 74.17 75.96 76.31 50.9 63.68 68.92 67.15
5 65.93 66.2 66.13 64.47 65.23 64.76 45.35 60.82 62.48 61.86
6 71.94 74.82 75.15 71.14 74.3 74.21 45.86 62.31 52.51 61.96
7 73.66 74.34 73.88 70.65 72.19 72.96 45.72 59.12 75.21 63.47
8 73.19 72.98 73.3 68.75 71.65 69.73 42.95 58.96 76.16 60.66
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8.5.4 RQ3.4: Reasons for Inaccuracies

In the previous sections, we compared the performance of the methods task-by-task.

However, the overall accuracy in a task does not provide much information about the

underlying reasons for the inaccuracies in the models. Hence, we recorded logs during the

test sets to categorise each error according to the phrase types we presented in Tables 6.3

and 6.6 in Chapter 6, namely in terms of personal(ised) (i.e., containing customer name or

preferences), order details (i.e., containing order item), other (remaining) phrases and Barista

Task 7 (B7) phrase types. In addition, we evaluated the dialogue state tracking (DST) errors,

that is, whether the model responded with the correct template for the conversation turn,

regardless of the specific details (i.e., order or user name) in the response. Table 8.6 presents

the results of the tasks that contain all the tasks within the Barista (B7), Personalised Barista

(PB8) and Personalised Barista with Preferences Information (PBPI8) datasets, in addition

to the personalisation tasks where the customer preferences are recalled and suggested,

and the customers confirm the suggestion (PB0 and PB1). These latter tasks show whether

the models can learn and use customer names and preferences for new customers (PB0)

and additionally for previous customers (PB1).

The percentage of errors corresponds to the number of errors divided by the task size

(number of user-bot utterance pairs), that is, it corresponds to the percentage of the error

in the overall task performance, which can help identify the most common errors in the

overall performance and facilitate equal comparison between the models. The percentage

of errors within the parentheses correspond to the percentage of the error within the

respective phrase types, calculated by the number of errors within the phrase type divided

by the total number of user-bot utterance pairs in the phrase type. The sum of errors in

personal(ised), order details and other phrases (i.e., phrases without customer name or order

item) equal the total error in the per-response accuracy for the Barista Dataset. In contrast,

in the Personalised Barista Datasets, personal(ised) phrases also include order items (i.e.,

for suggesting customers their most preferred order). Similarly, B7 phrases also include

order details (i.e., for the confirmation of the order) and personal(ised) phrases (i.e., for

noting the order location referring to the customer name). Hence, the total error of these

categories would be higher than the overall error. However, this allows evaluating the

errors within each perspective. Note that while the error within the total utterances may

seem low, it may correspond to a high error within the phrase type (given in parentheses).
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Table 8.6: Percentage of errors in dialogue state tracking (DST), personal(ised), order details,
other and Barista Task 7 (B7) phrase types for 1,000 dialogue test sets. The best performing
methods (or methods within 0.1%) are given in bold for the error in per-response accuracy,
and the error percentage within the phrase type is given in parentheses.

Task
Error
Type

MemN2N Split Memory Key-
Value

Profile
Seq2-
Seq

Super-
visedHop1 Hop2 Hop3 Hop1 Hop2 Hop3

B7

DST 0.54 0.35 0.18 - - - 1.89 - 0 0.78
Person-
al

0.36
(2.80)

0.15
(1.20)

0.14
(1.10)

- - - 0.00
(0.00)

- 0.00
(0.00)

3.87
(30.09)

Order 4.84
(21.13)

3.48
(15.19)

3.87
(16.87)

- - - 20.97
(91.48)

- 0.15
(0.67)

15.03
(65.58)

Other 0.01
(0.02)

0.08
(0.12)

0.00
(0.00)

- - - 8.05
(12.54)

- 0.00
(0.00)

0.85
(1.32)

PB0

DST 21 2.13 0.49 22.62 21.78 3.03 28.44 0 0.29 1.73
Person-
al

53.36
(97.47)

52.58
(96.05)

52.52
(95.95)

50.79
(92.79)

50.16
(91.63)

50.99
(93.16)

29.13
(53.21)

54.22
(99.05)

54.74
(100.00)

52.95
(96.74)

Order 29.85
(96.72)

30.11
(97.56)

29.90
(96.91)

30.14
(97.65)

30.74
(99.61)

30.14
(97.65)

30.74
(99.61)

30.80
(99.80)

30.86
(99.99)

30.25
(98.03)

Other 0.20
(0.50)

0.23
(0.57)

0.23
(0.57)

0.03
(0.07)

0.14
(0.36)

0.17
(0.43)

4.06
(10.07)

0.00
(0.00)

0.06
(0.14)

0.86
(2.14)

B7 4.12
(5.56)

4.41
(5.95)

4.21
(5.68)

4.24
(5.72)

4.96
(6.69)

4.38
(5.91)

8.96
(12.10)

4.87
(6.57)

4.98
(6.73)

5.19
(7.00)

PB1

DST 8.97 4.36 0.66 11.84 8.46 0.97 33.08 0 0.29 1.63
Person-
al

24.79
(45.52)

24.85
(45.63)

24.33
(44.68)

23.65
(43.42)

24.08
(44.21)

24.62
(45.21)

28.52
(52.37)

24.85
(45.63)

44.22
(81.21)

33.99
(62.42)

Order 16.19
(51.89)

15.59
(49.96)

16.05
(51.43)

15.96
(51.15)

15.71
(50.33)

15.65
(50.14)

30.84
(98.81)

17.02
(54.55)

29.75
(95.32)

24.13
(77.32)

Other 0.06
(0.14)

0.14
(0.36)

0.26
(0.64)

0.03
(0.07)

0.34
(0.86)

0.14
(0.36)

4.21
(10.50)

0.00
(0.00)

0.14
(0.36)

4.53
(11.28)

B7 4.79
(6.45)

4.18
(5.64)

4.84
(6.53)

4.53
(6.10)

4.59
(6.18)

4.33
(5.83)

9.52
(12.82)

5.42
(7.30)

5.56
(7.49)

9.37
(12.63)

PB8

DST 2.81 2.87 4.89 2.57 3.45 1.96 49.67 2.09 0.29 9.88
Person-
al

21.24
(55.93)

21.92
(57.70)

22.20
(58.46)

22.11
(58.21)

23.31
(61.38)

23.46
(61.76)

22.33
(58.80)

23.63
(62.22)

25.43
(66.95)

31.53
(83.01)

Order 20.39
(57.38)

16.89
(47.54)

18.47
(51.96)

23.68
(66.63)

20.79
(58.50)

20.76
(58.41)

34.11
(95.97)

30.07
(84.60)

29.78
(83.78)

33.72
(94.89)

Other 0.71
(1.66)

0.56
(1.32)

0.66
(1.55)

0.66
(1.55)

0.58
(1.36)

0.51
(1.21)

18.02
(42.45)

0.71
(1.66)

0.03
(0.08)

2.68
(6.31)

B7 9.67
(12.64)

6.27
(8.20)

7.60
(9.94)

12.87
(16.81)

9.74
(12.72)

9.47
(12.37)

36.05
(47.10)

18.56
(24.25)

14.04
(18.34)

20.47
(26.75)

PBPI8

DST 4.17 2.68 2.89 3.1 2.79 2.39 55.54 0.34 0.75 4.2
Person-
al

27.56
(72.57)

21.34
(56.18)

21.76
(57.28)

20.55
(54.11)

21.15
(55.68)

21.08
(55.51)

22.00
(57.91)

21.72
(57.20)

18.76
(49.38)

27.24
(71.73)

Order 18.02
(50.70)

13.91
(39.14)

13.27
(37.33)

19.17
(53.95)

16.24
(45.68)

17.92
(50.42)

21.05
(59.23)

29.36
(82.61)

13.52
(38.06)

27.77
(78.14)

Other 0.85
(2.00)

0.47
(1.10)

0.48
(1.13)

0.48
(1.13)

0.24
(0.57)

0.48
(1.13)

15.48
(36.48)

0.05
(0.11)

0.05
(0.11)

2.89
(6.80)

B7 6.32
(8.26)

5.58
(7.29)

4.76
(6.23)

10.62
(13.88)

7.19
(9.39)

9.11
(11.91)

33.53
(43.81)

19.30
(25.22)

5.12
(6.69)

19.43
(25.38)
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For instance, MemN2N with 1-hop has 29.85% error due to order phrases in the PB0

task, but this makes up 96.42% of all the order details phrases, which means almost all the

phrases containing an order is wrong. The key points derived from the detailed analysis

of the logs based on these categories will be presented in this section.

New customer names cannot be learned All models except Key-Value can only use

names that occur in the training set, showing that they are not suitable for incremental

learning of new names. Which is why the performance is very low for personal(ised) and

order details utterances in PB0 in comparison to PB1 or PB8. Note that each model has

in its vocabulary the customer names from training, validation and test sets, as well as

candidates from all sets. This finding is similar to the findings in (Bordes et al., 2016;

Joshi et al., 2017)13, which showed that the performance decreased substantially when

entities (e.g., restaurant names, cuisines) are not seen in training, which they defined as

out-of-vocabulary (OOV). However, those works have not examined the details of these

errors. Because of this reason, having a separate memory for user profile information or

using preferences information (e.g., in PBPI8) does not markedly improve the performance,

as evident in Table 8.7.

Table 8.7: Incorrectly predicted customer name in the PBPI0 task due to the lack of training
on the name in the Split Memory model for varying hops. While the model focuses on the
name and the preferences of the customer, especially in the first two hops, the predicted
response contains a customer name from the training set, because the model is unable
to learn or use new names for any of the hops. Similar to Table 8.2, using multiple hops
resulted in low attention weights in the relevant items and a wrong item suggestion, in
contrast to the higher overall accuracy of hop 3 in the datasets. Note that there is no
conversation context, because this is the beginning of the dialogue.

Profile Hop1 Hop2 Hop3
True 0.02 0.001 0.00001
119 0.234 0.201 0.027

Jared Padalecki 0.236 0.236 0.032
small 0.166 0.112 0.015

espresso con panna 0.179 0.059 0.0001
chocolate chip cookie 0.165 0.39 0.926

Customer Input Hi !
Correct Response Hello , Jared Padalecki ! Would you like to have a small

espresso con panna and a chocolate chip cookie again ?
Predicted Response Hello , Angie Harmon ! Would you like to have a small break-

fast tea and a chocolate chip cookie again ?

13The OOV results of (Joshi et al., 2017) are presented in: https://github.com/chaitjo/
personalized-dialog/tree/master/MemN2N-split-memory
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Customer: Hello!
Barista: Hello! Which drink can I get for you?
Customer: A hot chocolate please.
Barista: Which size?
Customer: Small cup.
Barista: Would you like anything else with that?
Customer: I would like a doughnut please.
Barista: So that would be a small hot chocolate and a doughnut. Is that right?
Customer: Erm, I would like a slice of banana bread actually.
Barista: Sure! So that would be a small hot chocolate and a slice of banana
bread. Is that right?
Customer: Let’s change slice of banana bread to a croissant instead.

Correct Response: Sure! So that would be a small hot chocolate and a crois-
sant. Is that right?
Predicted Response: Sure! So that would be a small hot chocolate and a slice of
banana bread. Is that right?

Figure 8.4: Incorrectly recalling the previous order item during a change of order in task 7
of the Barista Dataset within the Sequence-to-Sequence (Seq2Seq) model.

Size of the conversation context affects the performance Models are more prone to

errors in longer conversation context, causing confusions of order items (Figure 8.4 and

Figure 8.5) or in dialogue state tracking, thus, increasing the percentage of B7 errors,

especially in the presence of incorrect recalls or user recognition errors. Also, the entities

(e.g., order item or drink size) that did not occur in the conversation context can be used

incorrectly in responses within all of the models, as shown in Figure 8.6, especially during

changes or longer conversation context. Memory Network (MemN2N) performs best in

recalling order details in the conversation for personalised task-oriented dialogue, whereas,

Seq2Seq is the best in generic task-oriented dialogue.

Customer: Hey there!
Barista: Hello! Which drink can I get for you?
Customer: Can I get a cordusio?
Barista: Which size?
Customer: Large, thank you!
Barista: Would you like anything else with that?
Customer: May I get a classic oatmeal?
Barista: So that would be a large cordusio and a classic oatmeal. Is that right?
Customer: Oh I am sorry, but I would like an espresso instead.

Correct Response: Sure! So that would be a large espresso and a classic oat-
meal. Is that right?
Predicted Response: Sure! So that would be a large espresso. Is that right?

Figure 8.5: Missing parts of the order during change of order in task 7 of the Barista
Dataset in the Sequence-to-Sequence (Seq2Seq) model.
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Customer: Hey there!
Barista: Hello! Which drink can I get for you?
Customer: Green tea, please?
Barista: Which size?
Customer: Large, thank you!
Barista: Would you like anything else with that?
Customer: I would like a chocolate caramel shortbread.

Correct Response: So that would be a large green tea and a chocolate caramel
shortbread. Is that right?
Predicted Response: So that would be a large green tea and a chocolate chip cookie.
Is that right?

Figure 8.6: Dialogue example for incorrect item that does not occur in the conversation
context in task 7 of the Barista Dataset in the End-to-End Memory Networks (MemN2N)
with 3 hops.

User recognition errors and incorrect recalls are frequent in all personalised tasks

Even in models with a separate memory for user profile information, customers are

confused with new or other known customers and their preferences are incorrectly re-

called, as shown in Table E.3 (Appendix E.2). These show the importance of training the

models to appropriately react to the corresponding user responses in the presence of these

errors in the real world.

Generative models learn sentence grammar and structure well Despite generating

sentences word-by-word, Seq2Seq and Profile Memory performs very well in learning the

correct grammar and template in responding to the users, with rare errors with missing

words in the response, as shown in Figure 8.7 or mixing words from different phrases.

One peculiar error in the Profile Memory was responding to a variety of user utterances

with “Your order will be ready at the next counter, Rachel.”.

Profile: True, 96, Ariana Grande

Customer: Hi!

Correct Response: Hello, Ariana Grande! Would you like to have a medium
caramel macchiato again?
Predicted Response: Hello, Ariana?

Figure 8.7: Grammatically incorrect bot response with missing words in task 8 of the
Personalised Barista Dataset in the Profile Memory.
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Generative models are better in dialogue state tracking Within all tasks in all datasets,

Seq2Seq or Profile Memory perform best in dialogue state tracking.

Time order within the conversation context is important Supervised Embeddings does

not maintain the time order of the dialogue turns in the conversation context due to its

bag-of-words embedding structure, as described in Section 8.2.1. Due to this, it cannot

track and correctly respond to the changes in the preference, user recognition errors and

the incorrect recalls, because the corresponding words may appear in a different order in

the bag-of-words embeddings than the order of the sentence and the conversation context.

Key-Value is not suitable for task-oriented dialogue Key-Value performs poorly in

dialogue state tracking, and the most prominent reason is that it repeats the previous bot

utterance. It can use the correct customer name, however, it does so frequently within the

wrong context. For instance, instead of suggesting the user preference at the first turn in

the dialogue, it responds with the phrase for the incorrect recall, “Alright! Which drink can

I get for you, Lena?”. In addition, since the method uses only last bot-user response pair in

the context (which performs better than using the full context, as stated in Section 8.2.5),

the performance in the order confirmation is poor because the drink and size are missing

from the conversation context. In contrast, having the last information should improve the

performance for changes in the user preferences, since the previous order confirmation and

the user change is both available in the context (e.g., as evident in Table E.4 in comparison

to Table E.5 in Appendix E.2), however, this also does not appear to be the case. Overall,

the performance of the model is very low in all datasets, hence, we can conclude that this

model is not suitable for task-oriented dialogue.

8.5.5 RQ3.5: Out-of-Vocabulary

The previous section showed that customer names that do not appear in the training set

cannot be used by most of the models in the test sets, hence, the performance of the models

dropped drastically. In this section, we evaluate the performance of the models on new

customers that do not appear in the training set, in addition to new order items (i.e., drinks,

sizes and snacks). In these evaluations, the previous customers from the training set do

not appear, similar to the PB0 and PBPI0. However, as we previously noted, the definition

of out-of-vocabulary (OOV) for Bordes et al. (2016) and Joshi et al. (2017) differs from that
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Table 8.8: The out-of-vocabulary (OOV) set results of the Barista Dataset with 1,000 dialogues.
The best performing methods (or methods within 0.1% of best performing) are given in
bold for the per-response accuracy metric. The results show that on average and for task 7
(containing all tasks), Seq2Seq is the best performing model, similar to the test set.

Task
MemN2N

Key-Value Seq2Seq Supervised
Hop1 Hop2 Hop3

1 79.9 78.62 76 75.15 76.85 77.45
2 74.05 73.8 70 18.07 75 74.28
3 55.07 54.53 58.34 9.01 62.87 60.96
4 67.8 65.58 65.7 11.07 75 74.58
5 60.07 50.32 60.26 6.7 63.59 57.72
6 62.31 59.63 60.03 34.39 71.93 72.64
7 55.42 61.54 60.01 32.83 64.96 61.67

of Zhang et al. (2018): the former work adds the new entities to the vocabulary, whereas

the latter does not. In addition, removing the OOV words from the vocabulary for the

methods implemented by Joshi et al. (2017) resulted in erroneous accuracy metrics. We

followed each work according to their definition to remain faithful to the work. Table 8.8

presents the OOV set results of the Barista Dataset, and the remaining results for the 1,000,

10,000 dialogues and Second Interaction datasets are presented in Appendix E.3 for reasons

of perspicuity. Table 8.9 presents the percentage errors for the OOV sets in personal(ised),

order details, other and B7 phrase types and dialogue state tracking performance within

OOV set of 1,000 dialogues. Note that because the recognition errors (PB2) task may

confuse customers with those from the training set and offer their preferences, there are

a few training set order items within the Personalised Barista tasks within the OOV set.

Thus, the order details errors in the PB8 and PBPI8 tasks is less than that of B7, PB0 and

PB1.

Out-of-vocabulary entities decrease the accuracy drastically The results show that re-

gardless of whether the OOV words are included in the vocabulary or not, all methods

have a drastic drop in performance in the OOV sets. When we compare the performance

of the methods with the performance in the Barista Datasets test sets, most methods lost

20-40% of accuracy. Seq2Seq model still performs best in all the models for the Barista

Dataset containing OOV entities, however, the Supervised Embeddings model performs

best overall in the Personalised Barista Datasets.
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Table 8.9: Percentage of errors in DST, personal(ised), order details, other and Barista Task
7 (B7) phrase types for 1,000 dialogue out-of-vocabulary (OOV) sets. The best performing
methods (or methods within 0.1%) are given in bold for the error in per-response accuracy
metric, and the error percentages within the phrase types are given in parentheses.

Task
Error
Type

MemN2N Split Memory Key-
Value

Profile
Seq2-
Seq

Super-
visedHop1 Hop2 Hop3 Hop1 Hop2 Hop3

B7

DST 19.49 11.5 13.48 - - - 26.57 - 0.8 10.08
Person-
al

10.04
(77.80)

10.41
(80.60)

11.19
(86.70)

- - - 11.55
(89.50)

- 11.95
(92.60)

12.43
(96.30)

Order 22.51
(99.89)

22.30
(98.91)

22.54
(100.00)

- - - 21.38
(94.85)

- 22.54
(100.00)

21.56
(95.65)

Other 12.02
(18.62)

5.76
(8.92)

6.26
(9.70)

- - - 34.30
(53.14)

- 0.54
(0.84)

4.34
(6.72)

PB0

DST 23.19 4.07 2.45 24.23 22.49 4.71 31.33 2.02 2.97 1.76
Person-
al

52.96
(96.52)

52.15
(95.05)

53.05
(96.68)

50.27
(91.62)

51.05
(93.05)

52.18
(95.10)

54.35
(99.04)

53.57
(97.62)

54.87
(99.99)

53.51
(97.52)

Order 30.67
(99.89)

30.70
(99.99)

30.70
(99.99)

30.70
(99.99)

30.70
(99.99)

30.70
(99.99)

30.41
(99.05)

30.70
(99.99)

30.70
(99.99)

30.64
(99.80)

Other 0.64
(1.57)

0.26
(0.64)

1.24
(3.07)

0.90
(2.21)

0.61
(1.50)

1.16
(2.86)

20.33
(50.28)

1.04
(2.57)

0.49
(1.21)

0.92
(2.29)

B7 5.31
(7.18)

4.97
(6.71)

5.95
(8.04)

5.60
(7.57)

5.31
(7.18)

5.86
(7.92)

25.01
(33.79)

5.75
(7.76)

5.20
(7.02)

5.57
(7.53)

PB1

DST 17.9 8.9 7.22 26.33 18.96 6.76 34.37 0.36 1.27 6.3
Person-
al

43.67
(95.45)

43.92
(96.01)

44.23
(96.68)

42.20
(92.23)

42.81
(93.57)

43.72
(95.57)

45.14
(98.68)

44.08
(96.34)

44.94
(98.23)

44.59
(97.46)

Order 28.83
(99.98)

28.83
(99.98)

28.83
(99.98)

28.77
(99.81)

28.83
(99.98)

28.83
(99.98)

28.27
(98.05)

28.83
(99.98)

28.83
(99.98)

28.83
(99.98)

Other 0.31
(0.67)

1.07
(2.33)

4.27
(9.33)

2.54
(5.56)

1.37
(3.00)

2.90
(6.33)

25.72
(56.23)

0.20
(0.44)

0.56
(1.22)

8.08
(17.67)

B7 8.80
(11.04)

9.56
(12.00)

12.76
(16.02)

10.98
(13.79)

9.86
(12.38)

11.39
(14.30)

33.91
(42.57)

8.69
(10.91)

9.05
(11.36)

16.57
(20.81)

PB8

DST 10.74 16.4 18.31 11.55 17.59 12.46 59.84 9.48 1.78 17.59
Person-
al

32.61
(92.63)

33.18
(94.23)

33.30
(94.58)

32.83
(93.25)

33.46
(95.03)

33.30
(94.58)

34.52
(98.05)

33.68
(95.65)

32.90
(93.43)

34.68
(98.49)

Order 33.05
(98.31)

32.96
(98.03)

33.08
(98.40)

33.05
(98.31)

33.05
(98.31)

33.11
(98.50)

33.18
(98.68)

33.33
(99.15)

33.55
(99.80)

33.15
(98.59)

Other 5.35
(11.83)

6.79
(15.02)

7.86
(17.37)

4.85
(10.73)

7.92
(17.51)

3.26
(7.20)

31.96
(70.65)

6.85
(15.15)

1.28
(2.84)

1.66
(3.67)

B7 24.76
(31.38)

26.23
(33.24)

27.07
(34.31)

24.29
(30.78)

27.42
(34.75)

22.69
(28.76)

49.92
(63.27)

26.35
(33.40)

20.85
(26.42)

20.72
(26.26)

PBPI8

DST 15.24 16.96 15.71 16.24 16.71 9.7 74.71 7.67 8.48 8.36
Person-
al

33.08
(93.96)

33.68
(95.65)

33.24
(94.40)

33.24
(94.40)

33.15
(94.14)

33.62
(95.47)

31.46
(89.34)

33.99
(96.54)

33.21
(94.31)

34.05
(96.71)

Order 32.71
(97.29)

32.14
(95.61)

32.93
(97.94)

32.55
(96.82)

32.93
(97.94)

32.83
(97.66)

29.86
(88.81)

33.05
(98.31)

33.02
(98.22)

32.68
(97.19)

Other 5.98
(13.22)

7.48
(16.54)

6.60
(14.60)

7.23
(15.99)

10.30
(22.77)

3.76
(8.30)

39.03
(86.29)

3.07
(6.78)

6.82
(15.09)

3.16
(6.99)

B7 25.16
(31.89)

26.10
(33.08)

25.76
(32.65)

26.23
(33.24)

29.70
(37.65)

23.07
(29.24)

57.06
(72.32)

22.44
(28.44)

26.38
(33.44)

22.07
(27.97)
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Customer: Hi!
Barista: Hello! Which drink can I get for you?
Customer: May I have iced pumpkin spice chai latte?
Barista: Which size?
Customer: Grande, please!

Correct Response: Would you like anything else with that?
Predicted Response: Your order will be ready at the next counter, Ariana.

Figure 8.8: Confusion of Ariana Grande with grande drink size in task 8 of the Personalised
Barista Dataset OOV set in the MemN2N with 3 hops.

All models perform poorly for new customer names or new orders Comparatively

analysing the percentage of errors within the phrase types (i.e., the error percentages

are given in parentheses) within the test (Table 8.6) and OOV (Table 8.9) sets show that

all models perform extremely poorly in personal(ised) and order details phrases (with 0

to 11.19% per-response accuracy) in the Personalised Barista Datasets, because of the

new entities. The correct personal(ised) phrases in most models (i.e., all models except

Key-Value) correspond to using the phrase “Your order will be ready at the next counter”

with customers that have their first name same with a customer in the training set. On

a related note, an amusing and peculiar error specific to MemN2N is confusing Ariana

Grande (from the training set) with the grande drink size, as shown in Figure 8.8.

Out-of-vocabulary entities increase dialogue state tracking errors The dialogue state

tracking errors increased in all models due to confusing known customers with new

customers because the models do not have training on these customers.

Key-Value can learn new entities, but performs worst due to dialogue state tracking

errors Despite being able to use new entities (i.e., names or orders), even without having

them in the vocabulary, Key-Value performs extremely poorly in OOV sets, worse than

the other models. The most prominent underlying reason is the increased number of

dialogue state tracking errors, especially due to its tendency to repeat the previous bot

utterance. The other reason is because of the increased number of words in the vocabulary,

it confuses more the orders, names and preferences, as can be seen in Figure 8.9. “Brand”,

“short” and “raspberry lemonade” are not part of the vocabulary, whereas, Russell is a first

name in the training set. The __UNK__ is the special token used to represent words that

are not in the vocabulary in ParlAI framework. Despite the special token in the profile or
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Profile: True, 157, Russell __UNK__

Customer: Hey there!

Correct Response: Hello, Russell Brand! Would you like to have a short
peach iced tea and a chicken and pesto panini again?
Predicted Response: Hello, Russell Brand! Would you like to have a short raspberry
lemonade again?

Figure 8.9: Incorrectly recalling the previous order item during a change of order in task 8
of the Personalised Barista Dataset OOV set in Key-Value.

the conversation context, Key-Value is able to learn and use those new words.

Memory Network can learn new order items, but fails to use them While MemN2N

was not able to use any new customer names, in rare occasions, it was able to use the new

order items. This suggests that the model can learn new entities, in contrast to our initial

conclusion, however, it does not, in general.

8.5.6 RQ3.6: Dataset Size

The accuracy of machine learning approaches tends to improve with more data, as the

models have more data to better learn the correlations between correct labels and the

queries. On the other hand, few-shot learning is a challenging problem (Triantafillou

et al., 2017), because the model only has a few samples to learn the patterns in the

responses. Especially in combination with continual learning and out-of-vocabulary

words, it becomes very difficult for the models to learn new entities, thus, the accuracy may

drop. Thus, in this section, we evaluate the effects of the dataset size on the per-response

accuracy of the models using Second Interaction dataset that has only 2-3 dialogues per

customer in the training set, and the 10,000 dialogues datasets which has more data (100

dialogues per customer). Note that directly comparing the performances between Second

Interaction, 1,000 dialogues and 10,000 dialogues may result in incorrect conclusions,

because the percentage of personalised and order phrases differ between datasets. Hence,

we instead compare the percentage of errors within the phrase types across datasets (based

on Table 8.6 and tables in Appendix E.4) and compare the performance of the models

within each dataset based on the per-response accuracy.
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8.5.6.1 Second Interaction

Table 8.10 shows the few-shot learning performance of the models on the Personalised

Barista Dataset using the Second Interaction set. The results for the Personalised Barista

with Preferences Information Dataset are presented in Appendix E.4.1.

Sequence-to-Sequence is the best model for few-shot learning While there is a varying

effect of using few samples on models depending on tasks, Seq2Seq performs best overall

in all datasets. For task 0, the performance of most models (i.e., all models except Key-

Value and Supervised Embeddings) seems to have remarkably improved, whereas, for the

task 8, the performance dropped in all models except Seq2Seq.

Low sample size causes high dialogue state tracking errors The analysis of the types of

errors in the models (presented in Table E.14 in Appendix E.4.1) provides the underlying

reason for the inaccuracies. The errors in dialogue state tracking increased in most of the

models, which caused an increase in the error for B7 phrases. This is anticipated because

models have less training on responding correctly to the user utterances, thus, they make

more mistakes. In addition, most models perform worse in personal(ised) and order details

phrases in task 8, however, there is no clear pattern for PB0 and PB1.

Table 8.10: The test set results of the Personalised Barista Dataset with Second Interaction
set (few-shot learning). The best performing methods (or methods within 0.1% of best
performing) are given in bold for the per-response accuracy metric. The results show that
on average and for task 8 (containing all tasks), Seq2Seq is the best performing model.

Task
MemN2N Split Memory Key-

Value
Profile

Seq2-
Seq

Super-
visedHop1 Hop2 Hop3 Hop1 Hop2 Hop3

0 59.3 58.55 58.83 59.02 59.49 57.99 55.17 56.02 56.95 43.99
1 74.19 74.27 73.34 73.27 75.27 73.81 54.62 71.26 62.56 61.52
2 70.06 68.76 68.11 68.4 70.56 70.2 46.97 70.13 60.46 55.99
3 62.41 62.85 62.66 63.48 62.85 62.28 45.51 64.81 62.91 60.03
4 66.36 67.17 63.97 64.66 64.9 64.02 41.34 66.36 80.29 56.3
5 56.56 57.02 55.02 57.53 57.65 56.16 37.33 62.27 62.04 50.35
6 59.84 59.29 56.52 60.07 60.73 58.57 37.88 62.73 78.31 54.85
7 60.16 61.83 58.87 60.32 59.57 60.81 41.67 62.63 68.92 58.3
8 55.55 51.93 55.65 54.26 54.96 55.45 36.17 45.54 63.43 51.6
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8.5.6.2 10,000 Dialogues

Table 8.11 and 8.12 show the performance on the Barista and Personalised Barista Datasets

with 10,000 dialogues, respectively. The results for the Personalised Barista with Prefer-

ences Information Dataset and the error analysis based on phrase types are presented in

Appendix E.4.2.

Sequence-to-Sequence is the best model for generic task-oriented dialogue Similar

to the results in Table 8.3, Seq2Seq performs best in all models, performing perfect or

near-perfect in all tasks. MemN2N is also able to respond fully accurately in four out

of seven tasks in generic task-oriented dialogue, which shows that the high number of

samples improved its accuracy efficiently. The consistent results in both small and large

sets confirm that these two models are suitable for generic task-oriented dialogue.

None of the models is suitable for personalised task-oriented dialogue in real-world

interactions Split Memory performs more accurately in both Personalised Datasets

with a higher number of samples, outperforming the previously best performing model,

MemN2N, in most of the tasks except tasks 5, 6 and 8. However, none of the models

performed sufficiently well (i.e., above 90% accuracy) to be deployed in personalised

long-term real-world interactions. The reasons behind this, as previously discussed, is the

lack of ability to learn or use new customer names, as evidenced by the poor performance

in task 0 in both Personalised Barista Datasets and the high percentage of error (i.e., mostly

above 90%) in personal(ised) and order details phrases.

Table 8.11: The test set results of the Barista Dataset with 10,000 dialogues. The best
performing methods (or methods within 0.1% of best performing) are given in bold for the
per-response accuracy metric. The results show that on average and for task 8 (containing
all tasks), Seq2Seq is the best performing model.

Task
MemN2N

Key-Value Seq2Seq Supervised
Hop1 Hop2 Hop3

1 100 100 100 100 99.9 100
2 100 100 99.99 75.19 100 66.33
3 99.02 99.49 99.31 67.24 100 63.08
4 100 99.99 99.99 75.45 100 72.73
5 98.87 99.13 98.74 63.83 99.93 70.34
6 100 99.99 100 85.39 99.98 97.23
7 99.26 99.38 99.12 74.84 99.98 87.37
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Table 8.12: The test set results of the Personalised Barista Dataset with 10,000 dialogues.
The best performing methods (or methods within 0.1% of best performing) are given in
bold for the per-response accuracy metric. The results show that on average, Split Memory
is the best performing model, however, End-to-End Memory Networks (MemN2N) is the
best model for task 8 (containing all tasks).

Task
MemN2N Split Memory Key-

Value
Profile

Seq2-
Seq

Super-
visedHop1 Hop2 Hop3 Hop1 Hop2 Hop3

0 35.19 35.79 37.01 39.1 40.8 40.82 34.3 34.53 34.89 51
1 68.17 67.44 68.19 69.73 70.57 69.54 72.87 63.54 64.74 68.17
2 69.39 69.37 69.65 70.33 70.21 69.63 68.83 64.15 65.07 63.44
3 69.78 71.22 70.8 69.5 71.56 71.79 47 58.09 65.27 61.59
4 80.05 79.91 79.42 80.49 79.88 79.23 47.77 62.48 75.29 61.1
5 69.44 72.35 72.05 69.28 70.88 71.6 42.72 57.1 58.47 58.09
6 80.61 79.73 79.12 79.42 79.43 79.01 44.62 32.92 75.03 58.55
7 78.05 77.7 76.9 78.05 78.34 78.19 41.79 73.03 75.78 61.5
8 78.13 77.79 78.18 77.32 77.41 77.32 39.88 55.35 71.34 56.42

High sample size improves model accuracy for generic task-oriented dialogue As

expected, the performance of the models improved with a higher number of training

samples in the Barista Dataset and in the B7 and other phrases for the Personalised Barista

Datasets. However, the results suggest that the sample size has a varying effect on

recalling or using customers’ names or preferences within the dialogue, as evidenced

by the inconsistent model performance in tasks based on the percentage of error in

personal(ised) and order details phrases. Nonetheless, most models perform better on task 8

with more training data.

8.5.7 RQ3.7: Training and Execution Times

The quality of real-world interaction depends on the real-time capabilities of the sys-

tem. Hence, we analyse the training and test times on task 8 of the Personalised Barista

Dataset14, as presented in Table 8.13. The test time per example is calculated by dividing

the execution time for the task (in the test set) by the number of utterances in each dataset

(as given in Table 6.4). Thus, the test time corresponds to the average amount of time the

model takes to respond after the user utterance. Hence, we can determine if the model

can be used in real-time for human-agent (or human-robot) interaction.

All models are suitable for real-time interaction Based on the training and test times,

MemN2N and Split Memory have the lowest time complexity, thus, they are the most

14The results are similar in other tasks.
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Table 8.13: Training and test times of the models for the task 8 of the Personalised Barista
Dataset. The test time per example is calculated by dividing the executing time for the task
by the number of utterances in each dataset. The MemN2N and Split Memory models
have the lowest time complexity.

Dataset Dataset
Size

MemN2N Split
Memory

Key-
Value

Profile Seq2Seq Super-
vised

Training
time
(hours)

300 0.02 0.03 2.70 0.86 0.21 3.98
1,000 0.08 0.09 13.79 2.13 0.87 30.58
10,000 1.46 1.65 1049.87 29.55 6.18 805.28

Test time
per
example
(seconds)

400 0.0005 0.001 0.25 0.06 0.15 0.29
1,000 0.0006 0.0006 0.39 0.22 0.27 0.41
10,000 0.0003 0.0004 0.68 0.52 0.15 1.22

suitable for real-time interaction. Nonetheless, even with training on 10,000 dialogue

dataset, most models (i.e., all models except Supervised Embeddings) can respond under

1 second, which is sufficient for a dialogue model. However, in verbal interaction (e.g.,

human-robot interaction), the time to process the audio (i.e., voice detection and automatic

speech recognition) can increase the time to respond, hence, the lower the response time,

the better would be the interaction quality.

Memory Networks and Split Memory are suitable to learn progressively Given the

short training and test times required for these models in all dataset sizes, new customer

names and preferences can be learned progressively from sequential interactions by

re-training the models, which can improve their task performance for personalised task-

oriented dialogue.

8.6 Discussion

For the past decade, deep learning approaches have been in high demand and they have

achieved great performance in some areas, such as closed-set face recognition, and even

“near-human” open-domain conversation capabilities (Adiwardana et al., 2020). Our

results show that they are indeed suitable for generic task-oriented dialogue, especially

Sequence-to-Sequence and Memory Networks models. However, for long-term human-

robot interaction, as we have repeatedly stated in the previous chapters, personalisation

is necessary to achieve a good quality interaction to meet user expectations. We have,

thus, evaluated the state-of-the-art data-driven approaches in personalised long-term
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conversation in the task-oriented domain. Our results show that they are not suitable for

continual learning. Hence, they are currently not in the stage to be applied to real-world

long-term interactions, thus, we cannot compare their real-world performance with that

of the rule-based dialogue management system. This is not to say that these models do

not have potential. For instance, End-to-End Memory Networks (MemN2N) performs

best in the Personalised Barista Datasets, however, it fails to use new customer names or

entities. Key-Value Memory Networks, on the other hand, can use new entities, however,

performs poorly overall due to dialogue state tracking errors. This suggests that there is

potential in using Memory Networks, however, not solely in either form. Since MemN2N

can also train and respond to users in a short amount of time, new customer names and

preferences can be learned progressively by re-training the model, such that the model

can recall these names in the subsequent interactions.

Another important note is that contrary to the usual belief, our results show that gen-

erative models are very good in learning grammar and perform best in dialogue state

tracking in all models. Moreover, Seq2Seq model also performs best in few-shot learning.

While it does not perform as well as Memory Networks in personalised task-oriented

dialogue, we believe that it is also a fundamental approach and variants of it (e.g., using

transformers (Vaswani et al., 2017) as used by Roller et al. (2020)) may also be the right

approach in solving personalisation with data-driven approaches.

8.7 Summary

In this chapter, the state-of-the-art data-driven approaches in dialogue, namely Super-

vised Embeddings, Sequence-to-Sequence (Seq2Seq) (Sutskever et al., 2014), End-to-End

Memory Networks (MemN2N) (Sukhbaatar et al., 2015; Bordes et al., 2016), Split Memory

Networks (Joshi et al., 2017), Key-Value Profile Memory Networks (Miller et al., 2016;

Zhang et al., 2018) and Generative Profile Memory Networks (Zhang et al., 2018), were

evaluated in the Barista and Personalised Barista Datasets developed in Chapter 6. The re-

sults showed that Seq2Seq model achieved best and near-perfect per-response accuracy in

generic task-oriented dialogue, and MemN2N achieved the best accuracy in personalised

task-oriented dialogue, however, no model performed sufficiently well to be deployed

in personalised long-term real-world interactions. The reasons behind the inaccuracies

of the models in the personalised task-oriented dialogue were identified to be the lack of
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capability to use new customer names or order items, the poor performance in recalling the

user preferences, and user recognition errors. When the user preference information was

provided within the dialogue, similar to a knowledge-base extraction, the performance

improved only slightly due to the poor performance in (or lack of ability to) using the new

customer names. Our results also showed that generative models learn grammar well and

are the best methods in dialogue state tracking. In addition, Seq2Seq model performs best

when the training data only contains a few examples (few-shot learning), however, the

performance drops in all models for few-shot learning due to increased dialogue state

tracking errors. Increasing the dataset size, as expected, improves the performance for

generic task-oriented dialogue, however, the effect on suggesting the preferences of the

customers varies from model to model, depending on the task. The time order within

the conversation context was also noted to be an important factor in the accuracy for

dialogue state tracking and detecting changes in the user orders. Finally, our evaluations

showed that while all models are suitable for real-time interactions, MemN2N and Split

Memory Networks have the lowest time complexity in training and test, which makes

them suitable for learning new customer names and preferences progressively through

re-training.
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Chapter 9

Personalisation in Socially Assistive Robotics:

A Long-Term Real-World Study

Key points:

• The components of a personalised socially assistive robot architecture for car-

diac rehabilitation are described: (a) the sensor interface provides continuous

monitoring based on physiological (i.e., heart rate, exertion level) and spatiotem-

poral (i.e., gait, step length, cadence) parameters and treadmill inclination, (b)

the social robot gives immediate feedback and motivation based on the sensor

values and cervical posture, and (c) the therapy progress of the patient is tracked

and the user is recognised to personalise the feedback with the aim to improve

user motivation and adherence.

• The real-world long-term study ran for 2.5 years in the Fundación Cardioinfantil-

Instituto de Cardiología clinic and is presented with the corresponding condi-

tions for each of the components. A therapy session ran for 18 weeks or 36

sessions per patient.

• The majority of the patients in all conditions had an improvement in the recovery

heart rate, which supports the benefits of cardiac rehabilitation programme.

• The long-term perceptions of the personalised robot were highly positive and

maintained throughout the programme.
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• Both robot conditions improved the expectations about the robot and the system

and improved motivation to attend the cardiac rehabilitation sessions.

• The personalised robot was perceived slightly more positively than the social robot

for perceived sociability, ease of use, safety and social presence, but the user

recognition errors arising from the face recognition failures resulted in a drop

for perceived usefulness, utility and trust.

• Multi-modal Incremental Bayesian Network with Online Learning performed

better than the non-adaptive model (MMIBN) and the base face recognition, in

the presence of malfunctioning in face recognition.

• The patients in the personalised robot condition maintained gaze and social in-

teraction with the robot throughout the programme, and fully complied to the

robot’s posture correction requests, suggesting that the user engagement was

maintained throughout the programme.

• The low exertion levels self-reported by the patients need to be combined with

continuous monitoring for reliability and robustness and to facilitate immediate

intervention by the medical team in critical situations.

• Continuous monitoring allowed high-intensity training in personalised robot

condition.
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Parts of the work presented in this chapter1 have been published in Lara et al. (2017a,b);

Casas et al. (2018a,b,c, 2019, 2020); Irfan et al. (2020a). Additionally, two articles are

under review at the Frontiers in Neurorobotics and the User Modeling and User-Adapted

Interaction journals.

1This chapter presents the methodology and findings from 3.5-year collaboration with the research
group in Colombian School of Engineering Julio Garavito (Nathalia Céspedes Gomez, Jonathan Casas,
Juan S. Lara and Andres Aguirre, under the supervision of Marcela Munera and Carlos A. Cifuentes),
the medical specialists from Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia (Monica
Rincon-Roncancio and Luisa F. Gutiérrez) and two PhD students from the University of Plymouth (the author
of this thesis and Emmanuel Senft, under the supervision of Tony Belpaeme). The contributions of each
group are as follows: the research group in Colombian School of Engineering Julio Garavito designed the
sensor interface for obtaining continuous and online measurements of the patients, integrated the sensor
interface with the robot, conducted the experiments and questionnaires, and contributed to the analysis of
the results; the medical specialists from Fundación Cardioinfantil-Instituto de Cardiología contributed a
clinical point of view on the design and execution of the overall system, provided feedback on the clinical
implications of the results, and applied the designed systems in real-world cardiac rehabilitation programme
at the hospital; Emmanuel Senft designed and implemented a robot with generic feedback based on the sensor
values, designed the gaze estimation system for posture correction and contributed to the analysis of the
results; the author of this thesis designed and implemented the personalised feedback of the robot, integrated
the multi-modal user recognition system, and contributed to the design process of the overall system and
the analysis of the findings. This work was supported in part by the Royal Academy of Engineering IAPP
project Human-Robot Interaction Strategies for Rehabilitation based on Socially Assistive Robotics (grant
IAPP/1516/137), Colciencias (grant 813-2017), the EU H2020 Marie Skłodowska-Curie Actions ITN project
APRIL (grant 674868), the EU FP7 project DREAM (grant 611391) and the Flemish Government (AI Research
Program).
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9.1 Motivation

Cardiovascular diseases, which are the disorders of the heart and blood vessels, are consid-

ered to be the most critical causes of death, costing 17.7 million lives a year that represent

31% of the global deaths2. Cardiac rehabilitation (CR) is the Class I recommendation of

the European Society of Cardiology, the American Heart Association, and the American

College of Cardiology following a cardiovascular event (Thomas et al., 2007; Piepoli et al.,

2010). CR aims to provide therapy to those who have suffered a cardiovascular event to

accelerate recovery and reduce the risk of suffering recurrent events through structured

exercise prescription, education, and risk factor modification (Giuliano et al., 2017; Kraus

& Keteyian, 2007). CR is a long-term programme often lasting 13-14 months, where ad-

herence is vital for the complete recovery of a patient and reduce the risk of suffering

recurrent events (Jolly et al., 2007; Suaya et al., 2009; Hammill et al., 2010). Nonetheless,

in addition to the low participation in the programme (Altenhoener et al., 2005; McKee

et al., 2014), a high percentage (24-50%) of patients who enrol in cardiac rehabilitation

programs drop out (Carlson et al., 2000; Scane et al., 2012). The reasons behind dropout

or non-attendance vary, such as motivation factors (e.g., lack of interest or faith in the

programme, increasing lack of motivation throughout the duration of the programme,

anxiety about the exercise component, group cohesion), presence of comorbidities (e.g.,

depression, obesity, diabetes), health coverage, location and accessibility, and scheduling

or work commitments (McKee et al., 2014; Maclean & Pound, 2000; Siegert & Taylor, 2004;

Beswick et al., 2005; Cooper et al., 2007; Bethell et al., 2009; Shahsavari et al., 2012; Turk-

Adawi et al., 2013; Ruano-Ravina et al., 2016). While other factors are beyond the control

of the clinicians, motivational issues can be addressed by providing individual support

within the sessions, such as through rigorous supervising during the patient’s exercise and

quick support in emergent situations (Shahsavari et al., 2012). Moreover, while physical

training during the CR is required to enable increased fitness and is safe, it is important to

closely monitor the patient’s physiological parameters to avoid any complications that

may arise during the therapy (Bethell et al., 2009). However, CR programme is generally

conducted with large groups, and it is challenging for clinicians to provide continuous

and individual support during the session.

2World Health Organization statistics: https://www.who.int/en/news-room/fact-sheets/detail/
cardiovascular-diseases-(cvds)
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As the previous research presented in Chapter 2 shows, a socially assistive robot can

provide monitoring, feedback and assistance, increase user motivation, adherence and

improve task performance and progress. This, in turn, can facilitate the clinicians to

focus on the individual needs of the patients, immediately detect any complications

during the session, analyse the patient’s progress within the therapy in more detail and

provide a more tailored plan. Nevertheless, as previously highlighted, while short term

interactions benefit from the novelty effect for high user engagement, long-term studies

require robust and complex systems, because the limitations of the robot often come to

the fore with repeated interactions, which may result in a decrease of user interest and

engagement (Leite et al., 2013). Moreover, the behaviour of the robot might not be attractive

enough to keep up with the patient’s expectations, and interest by the patient and medical

staff might wane over time (Süssenbach et al., 2014; Kidd & Breazeal, 2008), resulting

in a declining frequency of use and interaction with the robot (Fernaeus et al., 2010).

Thus, designing a physically embodied socially assistive agent that is pleasant and valued

to interact with in long-term interactions, and demonstrates a marked improvement

in training or recovery of the user in a therapy remains a grand challenge of socially

assistive robotics (SAR) (Tapus et al., 2007). Moreover, because the robot is deployed

in a real-world therapy with non-expert users (e.g., doctors, nurses, patients), it should

be autonomous and require minimal effort from users and medical staff (Feil-Seifer &

Matarić, 2005). Personalisation (e.g., addressing the patient with their name, and referring

to previous sessions) has been shown to have added benefits in improving user motivation

and engagement, helping the clinicians monitor the progress of the patient, and facilitating

rapport and trust over long-term interactions (Richardson et al., 2018; Scassellati et al.,

2018; Winkle et al., 2018; Clabaugh et al., 2019).

Motivated by improving user’s motivation, engagement and adherence to the programme,

we established our third and last research objective (RO3) as designing and deploying a

fully autonomous personalised socially assistive robot in a real-world cardiac rehabilitation

programme at the Fundación Cardioinfantil-Instituto de Cardiología (FCI-IC) hospital

(Bogotá, Colombia), as shown in Figure 9.1. In this chapter, we describe the components

of the designed system, analyse the impacts of personalisation of the robot in long-

term interactions (RQ6) through the physiological evolution of patients throughout the

programme, the long-term perceptions of the patients and their interactions with the robot,

and an overall comparison of the conditions within the study.
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Figure 9.1: Setup of our system for cardiac rehabilitation programme at the Fundación
Cardioinfantil-Instituto de Cardiología (FCI-IC) (Bogotá, Colombia): patient interacting
with the (a) tablet interface, (b) personalised socially assistive robot.

9.2 Methodology

CR is conducted in FCI-IC through three phases: (I) inpatient, (II) outpatient and (III)

maintenance phase. The patient begins the inpatient phase after being hemodynamically

stable, and its duration depends on the severity of the cardiac event (e.g., 48 hours). In this

phase, the patient is asked to perform passive movements for maintaining muscular tone

and reducing risks or any complication. The outpatient phase begins immediately after

the patient leaves the hospital, lasts an average of 18 weeks with sessions twice a week,

in which the patient performs various physical exercises at the hospital, and receives an

education program about the risk factors and learning healthy habits (e.g., controlling

blood pressure, cholesterol, weight, and stress management). The maintenance phase lasts

Figure 9.2: A conventional training stage of the outpatient phase of cardiac rehabilitation
programme at Fundación Cardioinfantil-Instituto de Cardiología (Bogotá, Colombia).
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on average about nine months with one or two sessions per week, with the aim to reinforce

the information and habits gained during the previous phase.

A conventional outpatient CR session lasts 20-30 minutes and consists of three main

sub-stages: (1) warm-up via stretching exercises, (2) training through physical exercises

on a treadmill (Figure 9.2), and (3) cooldown, in which low intensity exercises are carried

out. During the warm-up and cooldown stages, the medical staff measures the initial and

final heart rate (HR), as well as the initial and final blood pressure (BP). During training,

the medical staff regularly asks for the exertion level of the patient using the Borg scale

(BS) (Borg, 1998; Aamot et al., 2014). The training performance of the patient depends

highly on the intensity of the session, which is determined by the treadmill speed and

inclination. The intensity of the exercise sessions increases through these parameters to

improve the physical fitness of the patient (Simms et al., 2007). The overall progress of the

patient guides the physiatrists in determining these parameters. In the face of any alerts

during the session (e.g., high Borg scale or heart rate), the intensity should be promptly

adjusted by the physiatrist. However, because of the high number of patients in the

programme and the lack of a telemetry in the CR unit, it is very difficult for the medical

staff to monitor the patient continuously during the sessions. Hence, our work addresses

the training stage to provide continuous and personalised monitoring and feedback to

support the medical staff in providing immediate assistance in emergent situations and

help them focus more directly on the patients.

It is important to structure the social interaction such that the therapy is not negatively

affected, especially considering the medical context, the vulnerability of the patient, the po-

tential of unanticipated events and the typical noise of a real-world environment (Goodrich

& Schultz, 2007). Thus, in collaboration with medical specialists, we designed a rule-based

system for providing and adapting feedback by the robot to the patient. The architecture of

the system, as shown in Figure 9.3, is composed of three main parts: (a) sensor interface for

collecting physiological and session parameters, (b) socially assistive robot for providing

immediate feedback and motivation, and (c) personalising the feedback according to the

patient’s progress and adherence.
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Figure 9.3: The architecture of our system with a personalised socially assistive robot for
cardiac rehabilitation programme.

9.2.1 Sensor Interface for Continuous Monitoring

A sensor interface is designed to continuously measure the physiological parameters of

the patient and the intensity of the exercise sessions:

• heart rate (HR) and recovery heart rate (R-HR) are estimated with an electrocardio-

gram (ECG: Zephyr HxM, Medtronic, USA) on the patient during both training and

cooldown,

• Borg scale (BS) is regularly requested through a tablet interface on the treadmill

console, as shown in Figure 9.4,

• the spatiotemporal parameters (i.e., patient’s gait, step length, cadence) are estimated

by a laser range finder (LRF: URG-04LX-UG01, Hokuyo, Japan) that uses infrared

electromagnetic wave (785nm) to measure the distance based on the light phase

difference,

• the session intensity parameters are estimated by an inertial measurement unit (IMU:

MPU-9150, Invensense, USA) for treadmill inclination up to 5 degrees, and the LRF

for treadmill speed,

• the cervical posture of the patient is determined by the gaze direction obtained from

the tablet camera,

• the systolic blood pressure (BP) is taken by the physiatrist at the beginning and end

of a session and entered through the tablet interface.
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The tablet interface is also used to provide online (bio)feedback (Figure 9.4) to help

the physicians assess the patient more closely and reduce the risks inherent to the CR

programme.

Figure 9.4: Graphical User Interface (GUI) on the tablet for obtaining Borg scale and
visualising the sensory information.

9.2.2 Socially Assistive Robot for Immediate Feedback and Motivation

A large body of work in Human-Robot Interaction (HRI) supports the importance of

physical embodiment (Fasola & Matarić, 2013b; Deng et al., 2019), including its role

in increasing compliance (Bainbridge et al., 2008), likeability (Fasola & Matarić, 2013b;

Li, 2015), social engagement (Lee et al., 2006; Wainer et al., 2006; Vasco et al., 2019),

adherence (Bickmore & Picard, 2005; Kidd & Breazeal, 2007) and task performance (Vasco

et al., 2019), which are essential in, especially long-term, therapy. The main factors that

affect user expectation, engagement and motivation, as we discussed in Chapter 2, are the

appearance and the behaviour of the robot. A child-like appearance or anthropomorphic

but less realistic appearance is more suitable for assistive tasks (Tapus et al., 2007), hence,

we use a NAO robot (Softbank Robotics, France) for the therapy, as shown in Figure 9.1.

As SAR focuses on providing assistance through social interaction instead of physical

interaction (Feil-Seifer & Matarić, 2005), the robot’s behaviour relies on the communication
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and interaction skills that allow it to properly act in a human environment (Shin &

Choo, 2011), which leads us back to our research question (RQ2): How should the robot

communicate with users to acquire and convey information? Previous research shows that

socially assistive robots require a set of features, especially for long-term deployment,

such as a high level of autonomy, automated perception of human behaviour, quantitative

diagnosis and assessment, sensor-based automated health data acquisition and context-

appropriate assistance through user interfaces (Okamura et al., 2010; Prescott & Caleb-

Solly, 2017). In addition, verbal and non-verbal communication play a crucial role in

SAR to increase the ease of interaction and make the robot appear more intuitive and

natural (Tapus et al., 2007). However, as Chapter 7 highlighted, current automatic speech

recognition (ASR) approaches are not suitable for real-world interactions. Especially since

the environment for therapy in FCI-IC contains a high level of noise arising from exercise

machines, motivational music and the conversations of the physiatrists with the patients.

A tablet interface enables more effective communication by giving visual feedback and

providing a means for the user to easily provide more precise input (Liappas et al., 2019).

Hence, we use the tablet and sensor interface described in the previous section, and a fully

autonomous socially assistive robot that uses verbal and non-verbal communication (i.e.,

body movements and gaze).

We observed typical physiatrist-patient interactions and collaborated with medical spe-

cialists to develop suitable behaviours for giving feedback and motivation. The resulting

various types of robot feedback and requests are as follows:

• announcing the session parameters (speed and inclination of the treadmill) at the

beginning of a session,

• motivating the patient throughout the session (e.g., “Let’s go! You can do it!”),

• requesting for entry of the Borg scale (BS) on the tablet interface at certain periods,

• requesting correction of the cervical posture (i.e., ask the patient to look straight

ahead instead of down to the treadmill) to reduce the risk of dizziness, falls and

nausea,

• warning high heart rate (HR) and requesting confirmation from the patient of the

health status, which leads to an alert to the medical staff if the patient is not feeling

well (e.g., “You seem like you are starting to get tired, is everything all right?”),

206



• requesting confirmation of the Borg scale (BS) on the tablet interface if the value

exceeds the critical threshold, but the heart rate value is in a healthy range,

• alerting the medical staff when the heart rate or Borg scale exceed critical values

(“Your heart rate is too high, I am calling for help. Doctor, could you please come

here?” with a waving gesture),

• ending the session with a farewell.

The corresponding finite state machine (FSM) is shown in Figure 9.5. The warning

and critical alert thresholds of heart rate are determined by the physiatrists based on

the progress of the patient throughout the programme. The critical heart rate threshold

corresponds to the maximum heart rate allowed for the patient (HRmax), calculated using

the Karvonen formula (She et al., 2014) by the clinicians as presented in Equation 9.1,

where HRoptimal represents the optimal heart rate during the exercise, IHR refers to

the initial resting HR (taken by the clinicians when the patient arrives to the clinic), and

%Effort represents the percentage of desired exercise intensity. Exceeding this level may

result in complications, hence, it is extremely important to immediately alert the medical

team when this value is reached. Correspondingly, the robot directly alerts the medical

team without confirmation from the patient. While the high heart rate warning does not

represent a critical situation, it can give an initial warning to the medical staff about the

patient’s condition. The critical Borg scale value is considered to be above 12 in FCI-IC. In

Posture

Correction

Borg

Scale Motivation

Shutdown

EmergencyWarning

FarewellStart Welcome Monitor

Figure 9.5: Finite state machine (FSM) of the robot behaviours.
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order to ensure that the medical staff has heard the robot’s alert, the alert (for critical heart

rate or Borg scale) is repeated until the medical staff comes and touches the robot’s head.

Similarly, Borg scale requests and high heart rate confirmation are compulsory, i.e., the

robot repeatedly requests these parameters if the patient does not respond within a given

time. We use body movements (i.e., animated speech) and face tracking (for gaze) using

NAOqi to improve the naturalness of the communication of the robot.

HRoptimal = [(HRmax − IHR) ∗%Effort] + IHR (9.1)

9.2.3 Personalised Socially Assistive Robot

In order to personalise the interaction, we need a system that can autonomously and

incrementally recognise users in a real-world therapy, with minimum efforts from the

patients and the doctors. Hence, we used Multi-modal Incremental Bayesian Network

with Online Learning (MMIBN:OL) with explicit confirmation of identity in order to avoid

any errors in the therapy. The reason we chose online learning on the contrary to our

findings in Chapter 5 is to track the attendance of the user and evaluate MMIBN:OL in a

real-world environment.

As previously pointed out, personalisation has been identified as a critical tool to im-

prove user compliance, engagement and motivation, and in turn, the adherence. The

type of information that should be recalled for personalisation (RQ4) varies depending on

the application of rehabilitation, but a common technique includes user profiling (e.g.,

name, performance, preferences, schedule) to adapt the feedback within short-term and

long-term therapy (Tapus et al., 2007; Ahmad et al., 2017). Therapists also personalise

their feedback for improving motivation, and use reminders and prompts for holding

the patient accountable (Winkle et al., 2018). In addition, the medical team in FCI-IC

identify personalisation, sociability and social presence of the robot as the key elements

for motivation, engagement and compliance in the CR programme (Casas et al., 2019).

Based on the input of medical specialists in FCI-IC, we decided to use the patient’s name,

therapy progress and attendance for personalising the feedback, as described in detail

below.

In order to increase the sociability of the robot, we personalise the robot’s feedback by

referring to the patient with their name periodically throughout the session. In addition,
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the progress of the patient (based on the number of alerts experienced) and the relative

intensity of the sessions are tracked, which is used to motivate the patient for the current

and upcoming sessions. (1) At the beginning of a session, the current session parameters

are announced along with the relative intensity of the session and the previous session

progress, such as “In the previous session, you experienced an alert for the heart rate. I am sure

it will be all fine this time!”. The relative intensity is defined (by the physiatrists in FCI-IC)

as higher if either the speed or inclination of the treadmill is higher than the previous

session, and lower if both of these parameters are lower. (2) At the end of the session,

session progress is compared based on the relative intensity, e.g., “We had a lower number

of alerts in this session than the previous one, even though the session intensity was higher. Let’s

keep up the good work, [PATIENT_NAME]!”, “We had more alerts... Next time will be better,

[PATIENT_NAME]!” or “Wonderful, we had no alerts this session... I am glad to have been here

for you, [PATIENT_NAME]!”. In order to provide only positive feedback (as decided by

the physiatrists), we removed the comparison of the relative intensity if it was less intense.

We enforce social presence by tracking the attendance of the patient to improve the

adherence to the CR programme. If a patient does not attend the therapy sessions twice a

week except for national holidays, the robot comments on the situation with “You didn’t

come to the session last (X) session(s). I hope everything is all right!”. We also aim to increase

positive sociability by commenting on the weekend/national holiday, e.g., “I hope you had

a nice weekend/holiday!” based on the date of the session.

9.3 Experimental Procedure

The primary purpose of this collaborative project is to evaluate the applicability and effects

of a socially assistive robot and personalisation in a cardiac rehabilitation programme.

Consequently, we designed three conditions within the project to evaluate the effects of

using a robot and personalisation:

• Control: using only the sensor and tablet interface, as described in Section 9.2.1. No

feedback is given by the tablet in order to closely resemble the conventional CR

programme conditions.

• Social robot: combining the sensor and tablet interface with a socially assistive robot,

as described in Section 9.2.2.
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• Personalised robot: recognising patients and tracking their progress and attendance to

adapt the feedback and motivation of the robot, as described in Section 9.2.3.

Our work focuses on the personalised robot condition, which is aimed to improve user

engagement and motivation in order to increase adherence to the programme, in addition

to helping the medical team and patients to track the therapy progress.

The study took place directly at the Fundación Cardioinfantil-Instituto de Cardiología

(FCI-IC) clinic (Bogotá, Colombia) for treating patients in the outpatient phase of the CR

programme lasting 18 weeks with two sessions per week. There was an experimenter

present in the room during the therapy sessions for safety purposes, but the experimenter

did not interfere with the therapy, except in the case of system failures. We validated the

reliability, robustness and suitability of both the sensor interface and the social robot for

the CR programme under laboratory and clinical settings (Lara et al., 2017a,b; Casas et al.,

2018a,b,c) before starting the clinical trials.

9.3.1 Participants

The study started in August 2017 for the control and social robot conditions, and in October

2019 for the personalised robot condition. The patients’ schedules were arranged such

that during a therapy session with 20 patients, only one subject at a time participated

in the session. We recruited 15 patients each (with various starting times) for the control

and social robot conditions and 13 patients for the personalised robot condition. Initially,

18 weeks were considered as the programme duration, in which patients would attend

twice per week. However, some patients missed therapy sessions, correspondingly, this

initial policy resulted in a shorter programme for the patients (23-33 sessions). Hence,

we revised this policy in 2018 to improve the CR programme offered to the patients for

instead lasting 36 sessions. In addition, we introduced the “dropout criteria”, such that if

the patient does not attend three sessions in a row without a justification, the patient is

dropped from the study (i.e., they would continue the CR programme without the robot).

In addition, there were patients that could not complete the programme due to a critical

health condition, funding, or because of the outbreak of COVID-19, which halted all the

cardiac rehabilitation programme in FCI-IC in March 2020. We considered this situation

as an “incomplete therapy”, since these reasons were beyond the control of the patients,

and were not related to motivation. Correspondingly, we had 26 patients that actively
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Table 9.1: Demographic data of the patients who have finished the outpatient phase of the
cardiac rehabilitation programme within the study.

Control Social
Robot

Personalised
Robot

Participants 9 11 6
Gender 9 males 10 males,

1 female
6 males

Age (years), mean (SD) 56.6 (7.8) 55.7 (11.2) 60.3 (6.5)
Body Mass Index, mean (SD) 26.2 (2.6) 29.2 (3.9) 25.0 (2.1)
- Obese 54.5%
- Overweight 66.7% 36.4% 50%
- Healthy weight 33.3% 9.1% 50%
Level of education
- Elementary school degree 22.2% 18.2% 16.7%
- High school degree 22.2% 27.3%
- Technologist 18.2%
- Bachelor’s studies/ degree 55.6% 18.2% 50%
- Postgraduate studies/ degree 18.2% 33.3%

participated in the rehabilitation and completed the outpatient phase as established by the

medical team, as presented in Table 9.1.

The patients who attended the study did not have any visual, auditive, cognitive or

physical impairments. Only patients with acute myocardial infarction, percutaneous

coronary intervention, coronary artery bypass graft, valve replacement, ischemic heart

disease, hypertension and ejection fraction greater than 40% were recruited for the study

to allow comparability between the patients. The patients signed consent forms (presented

in Appendix F) to take part in the study.

9.3.2 Measures

A variety of evaluation methods exist for HRI depending on the task at hand (see Steinfeld

et al. (2006) and Bartneck et al. (2019) for extensive lists of approaches and methodologies).

Combining different types of methods, based on objective and subjective measurements

increase the quality and the reliability of the data (Ganster et al., 2010), hence we decided

to use both quantitative (i.e., physiological analysis) and qualitative (i.e., questionnaires and

video material) methods. All of the questionnaires applied in the study can be found in

Appendix F.

According to the medical team in FCI-IC, the most important parameters that determine

the therapy progress of a patient during CR are the heart rate (HR) during the training, and
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the recovery heart rate corresponding to the difference between the heart rate at training

and the heart rate acquired one minute after cooldown begins. Additionally, the Borg scale

(BS) and the blood pressure (BP) are also important to observe the exertion level and the

effects of the exercise throughout the programme.

For socially assistive robotics, adapted Unified Theory of Acceptance and the Use of

Technology (UTAUT) (Heerink et al., 2010; Venkatesh et al., 2003) questionnaire (also

known as the Almere model) and the Working Alliance Inventory (WAI) (Horvath &

Greenberg, 1989) are commonly used to evaluate the task performance of a robot. UTAUT

evaluates the key aspects of a socially assistive therapy through several concepts. An

adapted version of UTAUT questionnaire, in addition to open questions, were applied

to the patients who completed the social robot condition, in the constructs of perceived

utility (PU), usefulness (U), sociability (SP), trust (T), social presence (SP) and safety (S), as

presented in Table F.1 in Appendix F (more details of the study and the constructs can be

found in Casas et al. (2019)). In order to evaluate the perception of the robot with patients

without any prior experience with robots or our system, a focus group was formed of 20

patients in their early outpatient or maintenance phase, without any prior experience with

robots or our system. This focus group did not include the patients in the control condition,

because we did not want to affect the expectations and perceptions of the patients in that

condition. A debriefing was made about the systems, their benefits and the parameters

measured in the system, followed by a video presentation of the social robot condition. The

UTAUT questionnaire was applied after this presentation. Similarly, another focus group

was formed of 15 clinicians (e.g., nurses, occupational therapists, physiatrists) in FCI-IC

who did not have prior experience with the robot. The clinicians filled the questionnaire

before being described the benefits of the socially assistive robot by the research group

in Colombia. Afterwards, a discussion was conducted with the clinicians to determine

the needs, challenges, modifications, and improvements that can be developed in the

interface.

For the personalised robot condition, additional questions were developed, in the constructs

of perceived usefulness (U), utility (PU), enjoyment (PE), sociability (PS) and adaptivity

(PA), social presence (SP) and attitude (A), for the UTAUT questionnaire to measure the

perceived personalisation features, as shown in Table 9.2. The questionnaire was applied

after the final session of the patient in both robot conditions. In addition, we adapted

the WAI questionnaire (Table F.2 in Appendix F) and applied it in the personalisation
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Table 9.2: Additional questions developed for the Unified Theory of Acceptance and the
Use of Technology (UTAUT) questionnaire to evaluate the perceptions of the patients
specific to the personalised robot condition, in terms of perceived usefulness (U), perceived
utility (PU), perceived enjoyment (PE), perceived adaptivity (PA), perceived sociability
(PS), social presence (SP) and attitude (A).

Construct No. Question

U

1 I feel encouraged to come to the sessions.
2 I feel engaged in the therapy.
3 I feel that the robot helped me progress in my therapy.
4 I feel encouraged about my therapy when the robot comments on my

session performance.

PU
1 The robot recognises me correctly.
2 The robot remembers my previous sessions correctly.
3 The robot tracks my session performance correctly.

PE

1 I am pleased that the robot recognises me.
2 I am pleased that the robot uses my name.
3 I am pleased to hear about my therapy progress.
4 I am pleased that the robot remembers me.
5 I am pleased to work with the robot.

PA 1 I feel that the robot personalises its interaction.

PS 1 I feel that the robot knows me well.

SP
1 I feel that the robot has a personality.
2 I feel compelled to come to the sessions because the robot comments

on my absence.

A 1 I feel attached to the robot.

condition at the middle and end of the study to analyse the long-term perception of the

robot by the patient. The WAI questionnaire measures the performance of the robot in

terms of Task, Bond, and Goal. It uses negative (e.g., I feel uncomfortable with the help of

the robot.) and positive (e.g., The robot perceives my objectives of the rehabilitation properly.)

formulations to limit the bias in the results. Additionally, we recorded the sessions in the

personalised robot condition to evaluate the interaction with the robot more closely. The

analysis of the video was performed by an independent coder, who labelled various types

of interactions (i.e., medical staff interaction, response to robot requests, posture correction,

gaze to the robot, and social interaction) based on a previously-established protocol. In

contrast, we do not have video recordings of the control or social robot conditions due to the

varying ethical concerns at the beginning of the study and the lack of available resources.

WAI was not applied to the other conditions.

We use Bayesian analysis, as previously used in Chapter 7, for comparing patients’

progress and perceptions over the duration of the programme in the personalised robot
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condition and for analysing the differences between the conditions. Bayesian analysis

is a powerful tool to inspect the main effects in modelling the data, especially when the

sample size is low (Biel & Friedrich, 2018). A null hypothesis is formed and the alternative

hypothesis is compared against the null using the Bayes factor (Jeffreys, 1939) to determine

whether the results suggest a tendency towards one or the other. We use the R package

BayesFactor3 (Morey & Rouder, 2018) and, unless otherwise stated, default parameter

values are used. When reporting the Bayes factors (BF), we apply the methodology

of Navarro (2018) in which the level of evidence4 for or against a main effect of a variable

in modelling the data is presented. In other words, the presence of a main effect suggests

that the data varies due to the variable, whereas, evidence against an effect suggests

that the data does not depend on the variable. Our study is a long-term study with the

same measurements taken at each session with three conditions. Correspondingly, we

use a Bayesian one-way repeated measures analysis of variance (ANOVA) for evaluating

the progress of the patients throughout the CR programme within the personalised robot

condition and a Bayesian two-way mixed-factor ANOVA (i.e., the combination of repeated

measures and between-subjects) for comparing between the conditions. The random factor

is the patient and the independent variables are the stage of the programme (e.g., the first

stage corresponds to sessions 1-4, the second stage for sessions 5-8) as the within-subjects

factor and the condition (i.e., control, social robot, personalised robot) as the between-subjects

factor. The assumptions of the ANOVA5 are validated. We compared questionnaires using

Wilcoxon signed rank test and Mann-Whitney U-test for WAI and UTAUT, respectively, as

Likert scales are ordinal, and applying ANOVA may produce incorrect results, in addition

to violations in the assumptions of the ANOVA test. For comparing all conditions, we

applied a robust two-way mixed ANOVA using the trimmed means, using WRS2 package

in R (Wilcox, 2017) (bwtrim function), because the ANOVA assumptions were violated

due to the varying variances between conditions and the presence of non-normality in

3https://richarddmorey.github.io/BayesFactor/#mixed
4 Jeffreys (1939)’s levels of evidence for an effect: BF > 100 is decisive; 30-100 is very strong; 10-30 is strong;

3-10 is moderate; 1-3 is anecdotal. BF=1 is no conclusive evidence for or against an effect. Levels of evidence
against an effect: 0.33-1 is anecdotal; 0.1-0.33 is moderate; 0.033-0.1 is strong; 0.01-0.033 is very strong; BF <0.01 is
decisive.

5Assumptions of ANOVA: (1) Continuous dependent variable, (2) Normally distributed dependent
variable and residual for all combinations of factors, (3) Homogeneity of variance between conditions/stages,
(4) No outliers. Note that the central limit theorem in statistics states that, given a sufficiently large sample
size (generally greater than 30), the sampling distribution of the mean for a variable will approximate a
normal distribution and ANOVA is robust to violations of this assumption. In the presence of outliers, the
results were compared to the analysis without outliers, but no considerable differences were found in terms
of evidence levels or ANOVA. Hence, ANOVA still holds valid and we report the values for analysis with the
outliers. Outliers can be observed from the boxplots.
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the data resulting from low and unequal group sizes, which may have resulted in lower

significance values in these comparisons.

9.4 Results

As previously mentioned, not all patients who enrolled in the CR programme completed it.

Figure 9.23 shows the proportion of therapy status of patients in each condition. While the

control condition has finished, one patient in the social robot condition and six patients in

the personalised robot condition could not complete the programme due to the outbreak of

COVID-19. The patient in the social robot condition had three sessions left, and the patients

in the personalised robot condition had less than 18 sessions (half the programme). At the

time of writing of this thesis, CR programme (conventional or with our system) is ceased

in FCI-IC, since patients with cardiovascular diseases carry a high risk from the virus.

As this work focuses on personalisation, we will do an in-depth analysis of a patient in

the personalised robot condition, which will allow us to interpret the factors that affect the

perception of a patient. We will then compare the case study to the other patients in the

personalised robot condition to evaluate the generalisability of the findings, and finally

compare the personalised robot condition to the other conditions.

9.4.1 Personalised Robot: A Case Study

While a quantitative analysis enables examining the overall effects of a study, it prevents

detecting the reasons behind the perception of users. Since our work focuses on the

individuality and the personalisation of a long-term therapy, a case study of a patient can

enable an in-depth look into each of the sessions and see how the interaction between

the robot and the patient occurred and varied throughout time. That is why, this section

describes the case study of a male patient (60 years old, body mass index: 25.7 - over-

weight, high school degree - studying towards a Bachelor’s degree) in the personalised

robot condition. The patient was diagnosed with myocardial infarction and underwent an

angioplasty procedure. After being discharged from the hospital, the patient started the

outpatient phase of the CR programme.

Within the first session of the outpatient phase, the patient was informed about the purpose

of this study and the role of the robot. Upon this information, the patient agreed to take
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part in the study, hence, throughout the remaining 35 sessions of the outpatient phase, the

personalised robot was present and took an active role in supporting and monitoring the

session’s progress. The 13th session is of note. During that session the patient experienced

fatigue, and his heart rate was very high over a critical threshold. This was detected by the

robot and the medical staff were called over for an intervention. This patient was referred

to the Emergency Room and a percutaneous transluminal coronary angioplasty plus stent

was performed.

This section will analyse the overall physiological progress of the patient along with an

in-depth look at this “critical” session. In addition, the results of the WAI and UTAUT

questionnaires and the video analysis are presented in order to observe the long-term

perception of the patient.

9.4.1.1 Physiological Progress

While the relative intensity of the sessions has progressively increased (visible in Figure 9.6),

the very mild exertion level perceived by the patient and the physiological progress of the

patient (Figure 9.7) show a positive outcome regarding the patient’s cardiovascular health

and the success of the CR programme. As we previously indicated, the most important

parameters showing the physiological improvement of a patient in CR is the training heart

rate (HR, Figure 9.7a) and the recovery heart rate (R-HR, 9.7b). The average heart rate of

the patient mostly stayed below the critical level (120 bpm) that corresponds to the robot

alerting the medical staff. Moreover, the threshold for the critical value was increased by

the physiatrists, showing that the physical fitness of the patient improved. Recovery heart

rate was higher at the end of the programme than the first session, which the physiatrists

identified as an important improvement on the patient’s health. In addition, the systolic

blood pressure (BP) (Figure 9.7c) was maintained in a safe range (110-130 mmHg as

determined by the physiatrists) in most of the sessions.

However, the number of alerts in a session (Figure 9.8) lights a different perspective than

the average heart rate and Borg scale. While the average heart rate hardly increased over

the critical limit throughout the programme, in 9 out of 35 sessions6, the medical staff

were alerted to help the patient, which was critical to the therapy.

6The number of alerts in the 24th session corresponds correctly to the detected critical rates, but in session
27, there was an excessive number of alerts due to a problem with the sensors of the robot.
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Figure 9.7: Physiological evolution of the patient during 35 sessions: (a) Average heart
rate (HR) during training, (b) Recovery heart rate (R-HR) and (c) Systolic blood pressure
(BP). The patient mostly stayed below the critical heart rate (corresponding to the call
medical staff alert). The recovery heart rate was higher at the end of the programme than
the first session, which shows an improvement on the patient’s health. The systolic BP
was maintained in a safe range (110-130 mmHg) in most of the sessions.

217



0

10

20

30

40

50

4 8 12 16 20 24 28 32 36
Session

N
um

be
r o

f A
le

rts

Alert Types
Call Medical Staff
High HR
Posture Correction

Relative Intensity
Higher Intensity
Lower Intensity

Figure 9.8: Robot alerts for the heart rate and cervical posture during the cardiac reha-
bilitation programme. These alerts show that continuous monitoring is vital in cardiac
rehabilitation programme.

9.4.1.2 The Critical Session

The 13th session is an important example of the interest of continuous monitoring of

patients and social robots. In this session, the patient had a higher heart rate compared

to the previous ones, crossing a critical threshold set by physiatrists on two instances

which resulted in two calls to the medical staff (red dotted points in Figure 9.9). The

prompt alert of the robot helped the physiatrists as a medical tool to immediately detect

the complication, such that they can instantly intervene by decreasing the intensity of the

exercise. In addition, the alerts in the previous sessions may have increased the awareness

of the physiatrists to detect the complication. Upon the intervention, the patient reported

to the physiatrists, feeling dizzy and very tired and continued the session with low

intensity exercises to progressively decrease the heart rate, as required. Following this

session, the patient was referred to the Emergency Room and a percutaneous transluminal

coronary angioplasty plus stent was performed.

Relying on objective data is important in such situations as self-reports might be biased

and hide underlying conditions: here the patient reported a very mild Borg scale (7),

which contradicts his high heart rate and what he told the physiatrists at the intervention.

Throughout this session, the number of posture corrections was also relatively high, which

may also originate from the high exertion level and dizziness of the patient.
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9.4.1.3 Long-term Perception of the Robot

Qualitative data was collected using the WAI questionnaire at the middle and end of the

study, in order to analyse the long-term perception of the robot by the patient (Figure 9.10).

Results showed that the perception for Goal, Task and Bond was maintained highly positive

throughout the outpatient phase of the CR programme, supporting our objectives with

personalisation of the robot.

In the case of negative formulation, the results show a decrease in Task and Goal category.

These outcomes show that the negative perception of the robot decreases with time.
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Figure 9.10: Working Alliance Inventory (WAI) responses evaluated at the middle of the
therapy and the final session. The result show that the perception for Goal, Task and Bond
was maintained highly positive throughout the cardiac rehabilitation programme. The
negative perception of Task and Goal decreased with time, whereas the negative perception
of Bond increased. The patient noted feeling that the robot would not cooperate with the
patient if he did not comply to its requests, which decreased his bond with the robot.
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The patient is less confused by the tasks (corrections) made by the robot during the

rehabilitation, and the patient believes that the time spent with the robot is of increasing

value over the duration of the CR programme. In contrast, the negative perception of

Bond increased. Detailed analysis of the open-question responses showed that the patient

felt that the robot would no longer cooperate with him during therapy if he did not make

the corrections requested by the robot (e.g., cervical posture corrections and heart rate

warnings).

The UTAUT questionnaire results show that the patient perceived the robot and the

therapy as highly positive: strongly agreeing with 92.9% questions and agreeing with the

rest. The responses of the patient to the open questions in UTAUT support that the robot

was perceived very positively: “I would recommend using the robot as it is a great help during

the cardiac rehabilitation programme.”, “I would not change anything about this system. The robot

interacts in a positive way with me, it helps me along with the medical staff, and it is also a good

tool for them.”.

9.4.1.4 Interaction with the Robot
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Figure 9.11: Interaction results of the video analysis based on 30 sessions (note the expla-
nation of the missing sessions2). The results suggest that the patient socially interacted
and looked at the robot throughout the cardiac rehabilitation programme. The patient
corrected his posture without fail upon a simple prompt by the robot.

We analysed 30 recorded sessions2 to observe the interactions with the robot through-

out the CR programme (Figure 9.11). Four types of interactions were analysed by an

independent coder:

• Medical staff : the medical staff interacts with the robot either through responding to

2Results for sessions 3, 14, 24, 25 and 35 are missing due to technical problems with the recordings.
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the robot’s request for intervention during a critical high heart rate, or talks to the

robot when checking the patient,

• Posture correction: the patient corrects posture upon the robot’s request,

• Gaze: when the patient looks at the robot to pay attention,

• Social interaction: the patient’s verbal (e.g., thanking the robot after the personalised

progress feedback given at the end of the session) and non-verbal (e.g., gesture to the

robot after motivational feedback, or touch the head of the robot) communications

with the robot, and talking about the robot to other patients.

The medical staff worked collaboratively with the robot to intervene in the sessions when

necessary, such as for the 13th session which is discernible in Figure 9.11, or to change the

exercise intensity. The infrequent interactions indicate that the medical staff found the

robot reliable and trusted it as a tool of monitoring the patient adequately and supporting

the CR programme, which is in line with the perceptions of the clinicians from the focus

group (Casas et al., 2019).

Regarding the number of alerts for cervical posture correction (in Figure 9.8), the video

analysis showed that the patient corrected his posture without fail upon a simple prompt

by the robot.

While the gaze and social interaction were higher at the initial sessions due to possibly

the novelty effect and the adjustment process to the technology, these interactions also

occurred throughout the later sessions, which suggest that the patient did not lose interest

in the robot throughout the long-term CR programme. Moreover, the video analysis

showed that the patient is very focused on the exercise as expected, hence, the patient

could mostly look at the robot at the beginning of the treadmill exercise and at the end

of the cooldown stage, which could have resulted in the low number of gaze and social

interactions depending on the session intensity. The patient actively socially interacted

with the robot or talked to the others about the robot through several ways:

• talking to other patients about the robot’s role and its benefits,

• mirroring the robot’s gesture to the Call medical staff alert,

• reacting positively (e.g., smiling or thanking the robot) to the motivational feedback

of the robot,
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• touching (caressing) the robot, which has occurred (once) at the end of a session

after the robot “sighed” going into sleep mode,

• reacting negatively to the robot, in the case of misidentifications from user recogni-

tion, posture correction (once) and alert to the physiatrist (once).

A detailed analysis of the perceived personalised aspects of the system showed that the

patient positively reacted to the positive progress motivation given at the end of the

session for having a lower number of alerts in the session with “Let’s keep up the good work”.

The patient verbally thanked the robot in three of these cases, which did not happen

towards the other motivations of the robot derived from the non-personalised robot.

The user recognition performed poorly (14 out of 387 times), due to the malfunctioning

face recognition (13 times) due to blurry images and cropped faces in the picture, including

the first (enrolment) session of the user. Since the user recognition (MMIBN:OL) uses

online learning, this negatively affected the performance of the system. The video analysis

shows that out of 9 misidentifications, the patient reacted negatively only twice (i.e., he did

not react the other times). The negative reactions of the patient to the misidentifications in

user recognition may further support the social agent perspective since they indicate that

the patient disapproves the behaviour of the robot. It is important to note that the patient

strongly agreed with the question “The robot recognises me correctly.” regardless of the

low performance of the user recognition, which is suggestive of our previous finding in

Chapter 7 that personalisation mitigates the negative user experience.

Additionally, the video recordings showed that the patient responded to all the Borg scale

and High HR warnings of the robot through the tablet, because of the compulsory structure

of the requests. Figure 9.12 shows that initially, the patient had difficulty in interacting

with the system, but he quickly adjusted to the system.

Finally, the analysis of the patient’s attendance shows that the patient attended the CR

sessions twice per week, as required, in 13 out of 18 weeks, missing more sessions in the

beginning, which suggest that the personalised attendance tracking of the robot may have

improved the adherence to the CR programme.

7The patient was recognised more than the number of sessions due to the system restarts to overcome
sensor connection problems during the session.
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Figure 9.12: Exertion level (Borg scale) request response time throughout the cardiac
rehabilitation programme, showing that the patient quickly adjusted to the system, after
the initial difficulty.

9.4.2 Personalised Robot: Comprehensive Analysis

While the in-depth analysis of a patient’s complete CR programme allowed us to under-

stand the factors that affected the perception of the patient, a comprehensive analysis of

the six patients that finished the study will help understanding whether these findings

persist in other patients. In order to reduce the variability between the sessions due to

confounding factors that affect the patients’ health during the sessions, we grouped the

sessions by four. The patient that we analysed in detail in the previous section is referred

to as the patient 3 (P3) in this section.

9.4.2.1 Physiological Progress

Figure 9.13 shows that the training heart rate tended to increase for all patients due to the

increasing intensity of the sessions. The Bayesian analysis supports the decisive evidence
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Figure 9.13: The training heart rate throughout the cardiac rehabilitation programme for
patients in the personalised robot condition. Linear regression lines for each patient suggest
that the training heart rate mainly increased due to the increasing intensity of the sessions.
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Figure 9.14: The recovery heart rate (R-HR) throughout the cardiac rehabilitation pro-
gramme for patients in the personalised robot condition. Linear regression is applied to
the recovery heart rate progress for each patient. Higher recovery heart rate is better.
The results show that 5 out of 6 patients fully improved their recovery heart rate com-
pared to their initial values, which correspond to a successful completion of the cardiac
rehabilitation programme.

for the main effect of the session (BF= 110.1) and very strong evidence for the effect of the

patient (BF= 65.3), suggesting that the training heart rate varies from patient to patient.

Figure 9.14 shows the corresponding recovery heart rate (R-HR). This result shows that

the majority of patients (5 out of 6) fully improved their recovery heart rate compared to

their initial values, which corresponds to a successful completion of the CR programme.

There is very strong evidence for main effects of patients (BF= 58.3), however, anecdotal

(weak) evidence against an effect of the programme stage (session) (BF= 0.79). This result

arises because of the sixth patient (P6), as the plot shows. In addition, an analysis of the

data of the remaining patients shows that there is moderate evidence (BF = 6.4) for the

main effect of stage and anecdotal evidence (BF = 0.34) against an effect of the patient,

suggesting that the 5 patients similarly recovered throughout the CR programme. The

decrease of recovery heart rate for P6 may arise from the relation between the (higher)

training heart rate, which may have caused more difficulties in the CR programme and

for retaining the recovery heart rate.

Similar to the P3, the mild exertion levels (Borg scale) of each patient (Figure 9.15) and

the corresponding number of alerts (Figure 9.16) do not fully agree. While the Borg scale

never reached the intense level (>13) in any session and there is strong evidence (BF= 0.08)

against an effect of the stage, in contrast to the increasing session intensity. Moreover,

high heart rate warnings and critical heart rate alerts happened frequently in some of the

sessions, which allowed the medical to immediately intervene by changing the exercise

intensity. It is important to note that while the average high heart rate warnings (M= 1.14,

SD= 2.02) and critical heart rate alerts (M= 1.47, SD= 4.93) are very low throughout the
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Figure 9.15: Exertion level (Borg scale) of patients in the personalised robot condition, which
show that the patients had very mild (6-9) or mild (10-13) levels throughout the cardiac
rehabilitation programme.
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Figure 9.16: Number of high training heart rate (HR) and critical heart rate (call medical
staff) alerts of the patients in the personalised robot condition. In contrast to low exertion
levels, there are quite a few number of critical alerts in some of the sessions, which allowed
the medical team to immediately intervene.

CR programme, even a single alert is vital for detecting a critical condition, as we have

previously shown in Section 9.4.1.2.

9.4.2.2 Long-term Perception of the Robot

We can analyse how the patients’ overall perception of the robot and the therapy changed

over time through the WAI questionnaire (presented in Figure 9.17). Since the data is

ordinal and violates the normality assumption (and has a low sample size), we apply a

dependent two-group Wilcoxon signed rank test with Bonferroni correction, because the

patients responded to the WAI at different times (i.e., paired measures, testing non-equality

and “greater” hypotheses). There is a significant improvement between the perceived goal

construct in the positive formulation (p = 0.003, r = 0.38 - moderate effect size, V = 42)

from mid-therapy test to the final session. In the other constructs, there is no significant
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Figure 9.17: Working Alliance Inventory (WAI) responses for the personalised robot condi-
tion, evaluated at the middle of the CR programme (18th session) and the final session.
The results suggest that the patients’ positive perception of the robot and the therapy
was maintained over the cardiac rehabilitation programme, in addition to a significant
improvement of the perceived goal construct in positive formulation (p= 0.003, r= 0.38 -
moderate effect size, V = 42).

difference between the tests (p > 0.05). The positive formulation of Bond, Goal and Task all

show that the robot and the therapy were generally positively perceived, and the patients

kept their bond with the robot over the duration of the CR programme. Moreover, the

patients generally disagree with the negative formulations (e.g., “I feel uncomfortable

with the robot.”), showing that in addition to highly positively perceiving the robot, the

majority does not negatively perceive it.

UTAUT questionnaire (Figure 9.18) confirms our previous findings that the personalised

robot was mostly positively perceived by the patients, in terms of perceived usefulness

(U: M = 4.31, SD = 0.63), ease of use (EU: M = 4.27, SD = 0.71), utility (PU: M = 3.83,

SD= 0.99), safety (S: M= 4.5, SD= 0.45), trust (PT, M= 4.25, SD= 0.71), enjoyment (PE:

M= 4.28, SD= 0.71) and attitude (A: M= 3.83, SD= 1.6). The adaptivity (PA: M= 3.5,

SD = 1.38), sociability (PS: M = 3.57, SD = 1.05), and social presence (SP: M = 3.05,

SD= 1.1) was mostly perceived as neutral. Note that some of these constructs presented

here include specific personalisation questions, as presented in Table 9.2. For instance,

the perceived enjoyment construct evaluates the enjoyment (e.g., “I am pleased that the

robot remembers me.”) of the personalisation features (i.e., recognition, referring to

the patient with the name, tracking and referring to the therapy progress, remembering

the user), hence, the very high score of the patients shows that the personalisation was

perceived very positively. Moreover, the questions evaluating user engagement (M= 4.83,

SD= 0.41), motivation for adherence (M= 4.83, SD= 0.41) and motivation arising from

referral to the patient’s therapy progress (M= 4.17, SD= 1.17) also show the robot was
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able to facilitate user engagement and adherence.

Totally Disagree
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P6Disagree

Figure 9.18: UTAUT questionnaire results for the personalised robot condition. The average
of the questions per construct for each patient is denoted with a coloured point on the
plots. The questions are formulated positively. The results show that the personalised robot
was positively perceived by the patients, in terms of high perceived usefulness (U), ease of
use (EU), utility (PU), safety (S), trust (PT), and enjoyment (PE). Patients responded mostly
neutrally for perceived adaptivity (PA), perceived sociability (PS) and social presence (SP)
questions.

Within open questions, the patients noted the need for improving the robustness of the

user recognition and sensors. The user recognition performance was indeed very low

(overall DIR= 0.38, FAR= 0.56 for MMIBN:OL), which, as we previously noted, was due

to the failures arising from face recognition (DIR= 0.35, FAR= 0.11) that caused online

learning to decrease the performance. However, in contrast to the patient in the case

study, the MMIBN:OL performed better overall than face recognition (FR) throughout

the duration of the study, as can be seen in Figure 9.19. The figure also shows how the

non-adaptive model, Multi-modal Incremental Bayesian Network (MMIBN), would have

performed over the data (DIR= 0.36, FAR= 0.67). The results are in contrast to our study in

Chapter 5, showing that MMIBN:OL performs slightly better than MMIBN in identifying

known users, and notably better in identifying new users. FR performs considerably better

in False Alarm Rate (FAR) than our approaches because it identified most (63%) of known

users as new. Both of our proposed approaches perform better in recognising known

users than FR, supporting that our proposed user recognition is suitable for real-world

interactions, and improves the recognition even when the identifiers are malfunctioning.

Other improvements for the system that the patients suggested include repetitiveness

of the phrases, which was also addressed in the previous study with the social robot. In

addition, one patient found the appearance and the sound of the robot to be childish.

Regardless, all patients recommended the system for future patients, and commented on

its usefulness, personalisation and effects on user motivation: “The cardiac rehabilitation
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Figure 9.19: Detection and Identification Rate (DIR) and FAR of user recognition for the
patients in the personalised robot condition. There are more number of enrolled users
(represented with a dot) than the recruited users for the study due to re-enrolment of some
users to the system with a different ID at a later time to overcome the face recognition (FR)
errors encountered initially. Higher DIR and lower FAR are better. The results show that
online learning (MMIBN:OL) performs better than the non-adaptive model (MMIBN) in
both aspects, and both of our proposed approaches outperform FR. FR performs better in
FAR due to estimating most users as unknown.

programme with the robot will help you to recover as quickly as possible, and you will be able to

progress by being linked to the robot.”, “I feel confident in doing the rehabilitation with the robot,

because I know that it is personalised and constantly monitoring my performance and progress.”,

“Working with the robot motivates me.”, “Working with the robot makes me feel happy.”.

9.4.2.3 Interaction with the Robot

Similar to the patient 3, the compliance of all the patients to the posture corrections is very

high, supported with moderate evidence (BF= 0.16), as can be seen from Figure 9.20. In

addition, there is decisive evidence (BF = 0.003) against an interaction between session

and compliance, showing that the patients comply to the robot’s request throughout the

CR programme, even though each patient has a different number of posture correction

feedback (BF= 4958687, decisive evidence).

Figure 9.21 shows that, similar to the patient 3, while the patients gazed at the robot more

frequently initially, in general, gaze has occurred throughout the programme, and there

is anecdotal evidence against an effect for the patient (BF = 0.42) suggesting that each

patient similarly gazes at the robot. On the other hand, there is very strong evidence

(BF= 39.97) that patients differ in their social interactions (as evident in Figure 9.21), but

there is moderate evidence against an effect of the session (BF= 0.21), which suggests that
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Figure 9.20: Number of posture correction requests by the personalised robot and the
patients’ active posture corrections (i.e., compliance to the request). The results show that
all patients complied with the robots requests, regardless of the session.

the patients maintain their social interaction frequency throughout the CR programme.

Similar to the patient 3, other patients interacted with the robot in different ways, such

as talking to the robot, smiling at being recognised or for motivational or attendance

feedback, giving a negative response for an incorrect recognition, or saying “Bye!” to the

robot on the patient’s last session. The video recordings showed that some of the medical

staff also interacted verbally with the robot, such as joking with it, thanking the robot, or
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Figure 9.21: Gaze and social interaction of the patients with the personalised robot throughout
the cardiac rehabilitation programme. The results indicate that the interactions were
maintained in the long-term programme.
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Figure 9.22: Response time of the patients to the Borg scale request of the robot throughout
the cardiac rehabilitation programme for the personalised robot condition. Linear regres-
sion lines per patient suggest that the response time generally decreases throughout the
programme.

talking about its benefits to other medical staff.

While the regression lines suggest that the patients adapt to the system over time and give

faster responses, as shown in Figure 9.22, there is moderate evidence (BF= 0.26) against

an effect of the stages. There is also anecdotal evidence (BF= 0.36) against an effect of the

patient, suggesting that the patients interact similarly with the system.

9.4.3 Comparison of All Conditions

In this section, we compare the results of all the conditions in terms of adherence to the

CR programme, physiological parameters, cervical posture progress, and the perceptions

of the patients. As a result of the dropouts and incomplete therapies, we had a low

group size in conditions, which caused violations to the ANOVA assumptions. Thus, we

applied robust ANOVA (Wilcox, 2017) for comparisons between conditions, as described

in Section 9.3.2.

9.4.3.1 Adherence

This study aimed to improve user motivation and, in turn, adherence to the cardiac

rehabilitation programme, which is vital for the complete recovery of a patient with a

cardiovascular disease. However, as previously described in Section 9.3.1, there were

several patients who could not complete the CR programme due to the reasons beyond the

control of the patients (e.g., funding, medical condition, outbreak of COVID-19). Especially

the outbreak of COVID-19 prevented 6 patients in the personalised robot condition and one

patient in the social robot condition from continuing their CR programme. Thus, we cannot
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Figure 9.23: The therapy status of the users in the control, social robot and personalised
robot conditions: “complete” refers to the completed cardiac rehabilitation programme
as determined by the clinicians; “incomplete” is when patients need to stop the CR
programme due to reasons beyond their control (e.g., funding, medical condition, outbreak
of COVID-19), and “dropout” refers to dropping out of the study or not attending 3
sessions in a row without a justification.

conclude the effects of the personalised robot on adherence. The attended sessions per

condition (as shown in Figure 9.23) shows that the dropouts occur at earlier stages of the

CR programme. Nonetheless, the social robot condition has fewer dropouts compared to

the control condition. Furthermore, the patients in the personalised robot condition attended

their sessions mostly regularly (twice a week), and have rated the motivation for adherence

question highly, as presented in Section 9.4.2.2.

9.4.3.2 Physiological Progress

As mentioned in the previous sections, the training heart rate (HR) and the recovery heart

rate (R-HR) are the most important physiological parameters of the CR programme that
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Figure 9.24: The training heart rate (HR) of the patients increased due to the increase
in session intensity throughout the CR programme in all conditions. No significant
differences were found between the conditions.
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Figure 9.25: Treadmill speed (mph) and inclination (measured in angles) increased through-
out the cardiac rehabilitation programme within all conditions. There are significant
differences (p < 10−8 for speed, p < 2× 10−16 for inclination) between the personalised robot
condition and the other conditions, suggesting that the clinicians applied high intensity
training in the personalised robot condition.

determine the patient’s health progress. Figure 9.24 shows the progress of the training

heart rate throughout the CR programme for all conditions. As expected, the average heart

rate increased throughout the programme (p= 0.02) in all the conditions (no significant

differences), because the session (exercise) intensity, as determined by the treadmill speed

and inclination (Figure 9.25), increased throughout the rehabilitation to improve the health

of the patient. In fact, the personalised robot condition had a significantly higher session

intensity than the other conditions (p < 10−8 for speed and p < 2× 10−16 for inclination).

This shows that the (personalised) robot allowed high intensity training. This type of

training did not have a negative effect on the training heart rate because the medical team

could intervene when the value reaches a critical level, as shown in Section 9.4.1.2. While

this aspect was present in both robot conditions, the high intensity training was only

applied in the personalised robot condition. We think that the initial results of the social robot

condition improved the trust of the clinicians, which facilitated applying this strategy in

the personalised robot condition that started towards the end of the social robot condition.

Figure 9.26 shows that in all conditions, the recovery heart rate (R-HR) of the patients have

improved over the duration of the CR programme, which is supported with significant
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Figure 9.26: The recovery heart rate (R-HR) of the patients improved throughout the
cardiac rehabilitation programme for all conditions with p= 0.005 for differences between
sessions, showing the success of the cardiac rehabilitation programme. No significant
differences were found between the conditions.

differences (p= 0.005) between sessions. No significant differences were found between

the conditions, showing that neither robot negatively affected cardiac rehabilitation pro-

gramme. On the one hand, this suggests the task performance has not changed with

the presence of a robot, against the findings in the literature for different rehabilitation

scenarios. On the other hand, this also suggests that the robot did not negatively affect the

patients’ health, which is a very important finding, because it shows that the robot does

not take away from the success of the CR programme (e.g., through distractions).

Despite the higher session intensity throughout the CR programme, the perceived exertion

level (Borg scale) stayed within the healthy range (6-12) for all patients, and no significant

differences were observed between the conditions or the sessions. In contrast, as previously

observed in the personalised robot condition, patients may have high heart rate warnings

and critical heart rate alerts (Call medical staff ) during the sessions, as shown in Figure 9.28.
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Figure 9.27: The perceived exertion level (Borg scale) of the patients throughout the cardiac
rehabilitation programme within all conditions stayed within the healthy range (6-12). No
significant differences were found between the conditions or the sessions.
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Figure 9.28: Number of high training heart rate (HR) and critical heart rate (Call medical
staff ) alerts of the patients throughout the CR programme. The results show that in
contrast to the low perceived exertion levels (Borg scale), warning and critical heart rate
values may arise in the sessions throughout the CR programme.

No significant differences were found in the alerts between the social robot and personalised

robot conditions, however, critical heart rate depends on the session (p= 0).

9.4.3.3 Cervical Posture Progress

In Section 9.4.2.3, we noticed that the patients complied fully to the robot’s requests for

cervical posture correction. Due to the lack of video data for the social robot condition,

we cannot analyse the compliance between both robots. Nonetheless, we can compare

the number of requests that the robot made to evaluate if the patients’ posture improved

over time. While no significant differences were found between conditions or sessions,

Figure 9.29 shows that number of requests were lower for patients in the personalised robot

condition, suggesting that the patients in this condition generally maintained a better

posture throughout the CR programme.
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Figure 9.29: The number of cervical posture correction requests by the social and the
personalised robot throughout the cardiac rehabilitation programme. The results show that
the corrections were generally less in the personalised robot condition.
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9.4.3.4 Interaction with the Robot

Figure 9.30 shows that patients generally adjust to the robot and the system over time,

which is supported by a significant difference between the sessions (p= 0.007). There are

no significant differences for the response times (p= 0.58) between the robot conditions.

However, there is a significant interaction between the condition and sessions (p= 0.02),

which indicate that the performance within the session depends on the condition.
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Figure 9.30: Response time of the patients to the Borg scale request of the robot throughout
the cardiac rehabilitation programme for social and personalised robot conditions. Patients
in both conditions generally adjust to the robot and the system over time.

9.4.3.5 Perception of the Robot

As previously described in Section 9.3.2, in order to compare the expectations to the expe-

rience with the robot, instead of the patients in the control condition, the Unified Theory of

Acceptance and the Use of Technology (UTAUT) questionnaire was applied to 20 patients

at their early outpatient or maintenance phase without any prior experience with the

Table 9.3: Mann-Whitney U-test results for the Unified Theory of Acceptance and the Use
of Technology (UTAUT) questionnaire for the focus group, the social robot and personalised
robot conditions. The significant differences (p < 0.05) are highlighted in bold.

Construct Focus Group/
Social Robot

Focus Group/
Personalised
Robot

Social Robot/
Personalised
Robot

Perceived Usefulness (U) 0.002 0.35 0.07
Perceived Utility (PU) 0.0007 0.49 0.04
Safety (S) 0.22 0.02 0.28
Ease of Use (EU) 0.03 0.13 0.7
Perceived Trust (PT) 0.0001 0.03 0.17
Perceived Sociability (PS) 0.1 0.26 0.65
Social Presence (SP) 0.17 0.34 0.78
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Figure 9.31: Unified Theory of Acceptance and the Use of Technology (UTAUT) ques-
tionnaire results for the focus group, the social robot and personalised robot conditions. The
patients in the focus group did not have prior experience of the system, and completed
the questionnaire after the debriefing and video demonstrations of the social robot. The
patients in the robot conditions completed the questionnaire after their last session of the
outpatient phase of the cardiac rehabilitation programme (i.e., after completing the study).
Significant differences are denoted with p < 0.05:*, p < 0.01:**, p < 0.001:***, as presented
in Table 9.3.

robot or our system. A debriefing was made about the systems and the parameters

measured in the system, followed by a video presentation of the social robot condition,

before applying the UTAUT questionnaire to the focus group. For the patients in the social

robot and personalised robot condition, the UTAUT was applied after the completion of

their outpatient phase of the cardiac rehabilitation programme with the robot (i.e., after

completing the study). Figure 9.31 and Table 9.3 presents the UTAUT questionnaire (Ta-

ble F.1 in Appendix F) results and the significant differences between the conditions. Note

that the personalisation questions in the UTAUT questionnaire, which was additionally

developed for the personalised robot condition, are not included in this analysis for fair

comparison between the conditions.

There are significant differences between the expectations of the focus group and the

perceptions of the patients that completed the CR programme with the social robot, in

terms of perceived usefulness, utility, ease of use, and trust. On the other hand, the
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patients in the personalised robot condition perceived the robot significantly more safe

and trusted it more than the focus group. The personalised robot was perceived more

positively than the social robot in terms of the perceived sociability, ease of use, safety and

social presence constructs, however, no significant differences were found. On the other

hand, the usefulness, utility and trust were less positive for the personalised robot than

the social robot. We believe this may be due to the user recognition and recall problems

that we experienced within the sessions, which may have caused negative experience, as

previously mentioned in Section 9.4.2.2. Nonetheless, both social robot and personalised

robot conditions improved the expectations about the robot and the system.

The additional feedback (through open questions) of the patients in the social robot condi-

tion was similar to that of the personalised robot condition (Section 9.4.2.2). The patients

reported that the robot increased their confidence in the CR programme (“I was very

insecure at the beginning of the rehabilitation. Thanks to the robot I got confidence.”), as well

as improved their compliance and adherence (e.g., “I want to come to my rehabilitation. I

have the advantage that the robot watches over my health status every second and I feel more

secure.”), and their therapy progress (e.g., “The robot was beneficial to the development of the

CR programme.”). In contrast, the patients in the focus group had lower confidence in using

the robot (e.g., “I would trust more in human physiatrist.”), as can be observed from the

UTAUT results. However, some of the patients acknowledged the potential benefits of

continuous monitoring, as observed within both the social and personalised robot conditions.

Furthermore, as described in Section 9.3.2, the UTAUT questionnaire was also applied to a

focus group of 15 clinicians (e.g., nurses, occupational therapists, physiatrists) without

prior experience with our system or the robot (Casas et al., 2019). Following the ques-

tionnaire, the clinicians were debriefed, similar to the focus group, about the capabilities

of systems and that of our robot, and a demonstration of the social robot condition was

made. Afterwards, a discussion group was formed that focuses on the challenges, modifi-

cations, and improvements that can be developed in the interface. The results showed

that prior to the system’s demonstration, the medical team perceived the robot as a threat

(i.e., potential replacement of clinicians), however, the explanation of the technology and

emphasis on the robot’s use as a tool to improve their efficiency during the therapy, in

addition to improving patients’ engagement, motivation and adherence, the perception

of the clinicians positively changed, similar to the results in (Winkle et al., 2018). The

clinicians also noted that continuous monitoring and feedback mechanism of the robot
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can allow high intensity training in the cardiac rehabilitation that would beneficial for

the programme, as indeed conducted in the personalised robot condition (Section 9.4.3.2).

However, similar to the patients in the personalised robot condition, they noted that social

capabilities (i.e., sociability and social presence) should be improved. The clinicians also

suggested adding a feature for providing statistics of the patients’ performance as the

system was capable to perform online monitoring during the complete outpatient phase.

Since this feature is already implemented in the personalised robot condition to provide

feedback to the patients based on their therapy progress, a graphical user interface (GUI)

can be developed in the future to report this information to the clinicians.

9.5 Discussion

The main challenges of CR are close monitoring of the patient’s progress and assuring

adherence to the long-term program to ensure that the patient recovers fully and retains

healthy habits. Our study aimed to improve user motivation and adherence, by recog-

nising users, providing personalised continuous monitoring and feedback, recalling the

patients’ previous session progress and tracking attendance.

While the CR programme could be successfully completed without the presence of a

personalised robot, continuous monitoring and immediate feedback provided additional

benefits to the patient and the medical team, as highlighted by the alerts during the ses-

sions, the corrections of the posture, the “critical” session and the reported perceptions of

the robot. The results also showed that each patient has different physiological parameters,

showing the importance of individualised and personalised care. In addition, continuous

monitoring enabled the medical staff to perform high-intensity training without a negative

effect on the training heart rate. In fact, the involvement and trust of the medical staff was

the key to the success of the CR programme and the reliableness of our proposed solution.

The patients in all conditions reported having low exertion levels throughout the CR

programme regardless of the session intensity, however, these results did not correlate

with the alerts received during the sessions in the robot conditions, which supported the

significance of continuous monitoring. The low reported results may arise from the self-

presentation (Bond, 1982) effect, which refers to conforming to normative behaviours to gain

the approval of another individual (e.g., doctors) (Ganster et al., 2010; Irfan et al., 2018a).

Hence, it is important to combine self-reports with sensory data to detect any problems,
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which the patient may not realise or admit, and which allows correct intervention during

the therapy.

Through the personalisation of the robot, we aimed to increase the perceived sociabil-

ity and social presence of the robot, and increase the user motivation, engagement and

adherence. While we cannot derive conclusions on the adherence of the patients due to

the outbreak of the COVID-19, the patients in both social and personalised robot conditions

reported that they felt motivated to come to the CR sessions because of the robot. The

patients also acknowledged and remarked the usefulness of the robot over the conven-

tional CR programme and that of its personalisation features, and they remarked that

they would recommend the CR programme with the robot. In addition, the video anal-

ysis in the personalised robot condition showed that posture compliance, gaze and social

interaction with the robot was maintained throughout the CR programme, which is a

valuable result showing that the patient did not lose interest in the robot throughout

the long-term therapy and acknowledged the robot as a social agent, by verbally and

non-verbally interacting with it.

The long-term perception of the robot and the therapy was generally positively perceived,

and the patients kept their bond with the robot over the duration of the CR programme.

In addition, both the social robot and personalised robot improved the expectations about the

robot and the system. The personalised robot was perceived slightly more positively (but not

significantly) than the social robot in terms of the perceived sociability, ease of use, safety

and social presence. In contrast, the usefulness, utility and trust to the robot were less

positive, which we believe was due to the user recognition problems that arose from the

face recognition failures, that the patients also remarked. Nevertheless, our multi-modal

user recognition with online learning (MMIBN:OL) performed better throughout the

personalised robot condition than face recognition and the non-adaptive model, showing

that the proposed user recognition is suitable for real-world interactions, and improves

the recognition even when the identifiers are malfunctioning.

While our proposed robot needs improvements regarding user recognition and repetitive-

ness of the feedback, the results of the study showed that a personalised socially assistive

robot will be beneficial in cardiac rehabilitation to help the patient and the medical team

for monitoring the therapy progress within and throughout the sessions, maintaining the

motivation and adherence, and achieving compliance for the corrective measures.
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9.6 Summary

This chapter described the design and deployment of a personalised socially assistive

robot for cardiac rehabilitation programme in a real-world long-term study (2.5 years) con-

ducted at a hospital in Colombia. Cardiac rehabilitation (CR) is a long-term programme

lasting 18 weeks (or 36 sessions), which is offered to the patients that suffered a cardio-

vascular event, in order to accelerate recovery and reduce the risk of suffering recurrent

events. We conducted three conditions within the study: (1) control condition that closely

resembles the conventional CR programme, with the additional sensory interface to obtain

physiological (i.e., heart rate and blood pressure) and spatiotemporal parameters (i.e., gait,

cadence, step length) and exertion level, (2) social robot for providing non-personalised

continuous monitoring of these parameters and the cervical posture to provide immediate

feedback based on the sensory interface, (3) personalised robot that recognises patients,

personalises the feedback, recalls the patients’ previous session progress and tracks their

adherence, with the aim to improve user motivation and adherence to the CR programme.

While we could not analyse the adherence to the programme due to the outbreak of

COVID-19 that prevented some of the patients to complete the CR programme, the pa-

tients in both social and personalised robot conditions reported an increase in motivation to

come to the sessions because of the robot. The majority of the patients in all conditions

that actively participated and successfully completed the CR programme, as established

by the medical team, had an improvement in their health, as measured by the recovery

heart rate. Both the social robot and personalised robot improved the expectations about the

robot and the system. The personalised robot was perceived more positively than the social

robot in terms the perceived sociability, ease of use, safety and social presence constructs,

but no significant differences were found. In contrast, we noticed a drop in perceived

usefulness, utility and trust, which may have originated from the user recognition errors

due to the face recognition failures. Nevertheless, our multi-modal user recognition with

online learning (MMIBN:OL) performed better than the face recognition and the non-

adaptive model, supporting its suitability for real-world interactions even in the presence

of malfunctioning identifiers. The personalised robot was also perceived very positively by

the patients throughout the CR programme, and the patients reported that they would

recommend the CR programme with the robot. The patients maintained gaze and social

interaction with the robot, often in response to the personalised behaviours of the robot. In
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addition, they fully complied to the robot’s posture correction requests throughout the CR

programme. Continuous monitoring was found to be prominent to cardiac rehabilitation,

as it allowed high-intensity training and facilitated immediate intervention by the medical

team in critical situations, which may not have been detected otherwise, due to the low

reported exertion levels. Overall, this study demonstrated the potential and benefits of

long-term personalised interaction in socially assistive robotics.
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Chapter 10

Discussion and Conclusions

The main thesis that this work sought to put forward is as follows:

User experience in long-term human-robot interactions can be improved by

personalising the interaction through recognising users and recalling previ-

ously learned information.

Correspondingly, we developed a novel user recognition method in Chapter 3 and val-

idated its reliability and robustness in Chapter 4 and Chapter 5. Following that, we

designed applications and explored methods for personalisation of the interaction, within

customer-oriented service robotics to improve user experience relying on dialogue in

Chapter 6 to Chapter 8, and within socially assistive robotics to improve user motivation

and adherence to the cardiac rehabilitation (CR) programme in Chapter 9.

This chapter summarises our findings, explains how our research questions were ad-

dressed, restates the contributions within our work, discusses the limitations of our work

and suggests future directions for research that could build on the findings from this thesis.

Following this, the thesis is concluded with the primary outcomes of this work.

10.1 Summary

Initially, Chapter 1 provided an introduction to the motivation, the underlying research

questions and the contributions of this thesis. Following that, Chapter 2 presented a

background for the three main topics of this thesis: personalisation in long-term Human-

Robot Interaction (HRI), user recognition and conversational agents. Our review showed
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that long-term HRI necessitates fully autonomous robots, especially in real-world in-

teractions, however, user expectations and interest may still wane over time. Several

long-term studies showed that personalising the interaction by recalling user’s personal

attributes, preferences and behaviour patterns, along with previous shared history with

users, can improve user interest and engagement and facilitate building rapport with

users, particularly in customer-oriented service robotics and socially assistive robotics

for healthcare applications. The first step towards personalisation is recognising the user,

and in long-term HRI, this requires learning and identifying users autonomously and

incrementally, possibly starting from a state without any known users, and adapting to

the changes in the user appearances and behaviours. In addition, relying on a uni-modal

identifier, such as face recognition, may result in misidentifications due to the noise in the

data, such as a blurry image or bad lighting conditions. Combining a primary biometric

(e.g., face recognition) with other types of biometric information, such as soft biometrics

(e.g., gender, age), was found to improve user recognition. However, our review showed

that there are no existing or commercial user recognition systems with such capabilities.

Interactions in service robotics and socially assistive robotics are generally closed-domain

and task-oriented, which means the conversations contain a limited range of responses

and contain a task to achieve, such as ordering a drink or giving feedback to a patient.

Our research in conversational agents revealed that most task-oriented dialogue systems

in HRI use rule-based approaches due to their robustness, however, they are restricted to

the hand-crafted set of rules, which may not contain all the set of phrases that users may

use, and none of the proposed rule-based approaches has been evaluated autonomously

in real-world studies. In contrast, data-driven dialogue models offer flexibility and reduce

the costs of laboriously hand-crafting rules, because they can learn these rules from data

itself. However, they have not been applied to user-specific personalisation in long-term

interactions with chatbots or robots.

The lack of an available solution for long-term user recognition led us to build a novel

method in Chapter 3 using a Multi-modal Incremental Bayesian Network with non-

adaptive weights (MMIBN) or with online learning (i.e., learning and updating data sequen-

tially), which is the first user recognition method that can continuously and incrementally

learn users, without the need for any preliminary training. Our approach is also the

first method that combines a primary biometric (i.e., face recognition) with weighted soft

biometrics (i.e., gender, age, height and time of interaction) for improving open world user
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identification in real-time Human-Robot Interaction. Moreover, the proposed approach

can be extended with other biometrics and applied to any commercially available robot

due to its computationally lightweight structure. We introduced methods to allow incre-

mental and online learning in Bayesian networks, building upon previous literature. We

also introduced a loss function for long-term user recognitions and a quality parameter

for improving identification.

We evaluated the reliability and robustness of the proposed user recognition approach in a

long-term (4 weeks) real-world HRI study with a Pepper robot (SoftBank Robotics Europe,

France) and 14 users in Chapter 4. The results showed that the proposed approaches

and the designed recognition architecture are suitable for real-time user recognition in

long-term human-robot interactions, as they allow fully autonomous user enrolment and

recognition, in addition to improving the identification rate compared to face recognition

up to 4.4%. Online learning was able to learn the behaviour patterns of the users correctly

and decrease the incorrect identifications for new users, however, it did not improve the

known user identification rate. While this study was valuable to evaluate its reliability

in real-world interactions and optimise the parameters of the network, we believed that

the results might be biased due to the small population size and the characteristics of the

population.

Correspondingly, in Chapter 5, we artificially generated a Multi-modal Long-Term User

Recognition Dataset with a large number of users (200) that has varying characteristics,

based on a commonly used image recognition dataset, which contains images of celebrities

in events and movies with age and gender information (IMDB-WIKI in Rothe et al. (2015,

2018)). We simulated two types of time of interactions, with users appearing at random

times during the day (i.e., uniform distribution) similar to a coffee shop interaction, and

with users coming repeatedly at the same time of the day/week, similar to a rehabilitation

appointment, and we artificially generated heights. The remaining biometrics are obtained

through the Pepper robot’s proprietary algorithms using the images of the chosen users

in IMDB-WIKI dataset, thereby providing real signals to our Bayesian Network. We

compared our non-adaptive and online learning model with various normalisation meth-

ods on this dataset to a state-of-the-art open world recognition approach, Extreme Value

Machine (Rudd et al., 2018), and the base face recognition and soft biometrics identifiers on

the Pepper robot. The results show that the proposed Multi-modal Incremental Bayesian

Network (MMIBN) models with hybrid normalisation decrease the long-term recognition
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performance loss (L) significantly and improve the identification rate significantly and

substantially compared to all the baselines, in exchange for a higher number of incorrect

estimations of new users. Both MMIBN models perform significantly equivalent for both

random and patterned timing and scale well to larger datasets. However, similar to the

previous study, online learning did not improve the user recognition performance, on the

other hand, decreased the bias in the system caused by face recognition (FR) by equalising

the performance between the users. Both models perform better with the increasing

number of recognitions and outperform FR and Extreme Value Machine models after

only a small number of recognitions. These findings showed that our MMIBN models are

suitable to be applied to robots for real-world long-term human-robot interactions as an

initial step towards personalising the interaction.

We identified coffee shop interactions to be suitable for personalisation in long-term inter-

actions under the customer-oriented service robotics domain. Similar to user recognition,

personalisation requires incremental learning of users requests and adapting the inter-

action accordingly, which is known as continual (or lifelong) learning in machine learning.

While this is a trivial problem for rule-based approaches, it poses a challenge to data-driven

approaches due to the catastrophic forgetting problem, which refers to forgetting previously

learned classes upon learning new classes (Parisi et al., 2019).In addition, it is desirable for

a data-driven model to learn users preferences from a few samples of interactions, known

as few-shot learning, which is also a grand challenge in machine learning (Triantafillou et al.,

2017). Due to the lack of available corpora for human-human interaction or HRI and the

challenges in collecting thousands of interactions, we artificially generated the text-based

Barista Datasets to evaluate the rule-based and data-driven approaches on generic and

personalised long-term interactions, as described in Chapter 6.

Based on these datasets, in Chapter 7, we designed fully autonomous generic and person-

alised Barista Robots with our multi-modal user recognition method, an online automatic

speech recognition (ASR), and a rule-based dialogue management system (RBDMS). We

conducted the first real-world study that explores fully autonomous personalisation in

dialogue for long-term (5-days) human-robot interactions in an international student

campus for five days with non-native English speakers. During the experiments, we

experienced several challenges due to speech recognition failures, arising from the foreign

accent of non-native speakers, latency due to connection problems, quietly speaking users,

user’s distance from the robot, low accuracy due to the robot’s microphones, and the delay
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between voice activity detection and recording. Nonetheless, these failures showed that

personalisation can overcome a negative user experience. Our study also showed that a

rule-based dialogue manager lacked flexibility in responding to various user responses.

Subsequently, in Chapter 8, we explored the potential of data-driven approaches for

personalisation in long-term interactions, based on the Barista Datasets. We used the state-

of-the-art dialogue models, namely the variants of Memory Networks (Bordes et al., 2016;

Joshi et al., 2017; Zhang et al., 2018), Supervised Embeddings (Bordes et al., 2016; Joshi

et al., 2017), and Sequence-to-Sequence (Sutskever et al., 2014), which are strong baselines

in other domains of personalisation based on single interactions, such as adapting to

general user attributes in task-oriented dialogue (Joshi et al., 2017) or “person”alising

an open-domain dialogue by maintaining a given personality (Zhang et al., 2018). Our

evaluations showed that while the generative Sequence-to-Sequence (Seq2Seq) model and

the retrieval-based End-to-End Memory Networks (MemN2N) performed exceedingly

well in generic task-oriented dialogue, none of the state-of-the-art data-driven dialogue

models performed sufficiently well to be deployed in personalised long-term interactions

in the real world. The prominent underlying reason was found to be the lack of capability

to learn new customer names or new order items for most models. Hence, providing the

user preferences information at the beginning of a dialogue, similar to a knowledge-base

extraction, or the separate user profile memory architectures did not markedly improve

the performance. The models had high dialogue state tracking errors in the few-shot

learning scenario where generative models performed best, whereas, a larger training set

improved accuracy in generic task-oriented dialogue, however, no marked improvement

was found on suggesting personalised phrases. Moreover, all models were found to be

suitable for real-time interaction, but Memory Network and Split Memory Network take

the minimum time for training and responding to user queries.

Lastly, in Chapter 9, we described the design and deployment of a personalised socially

assistive robot for cardiac rehabilitation programme (of 18 weeks) in a real-world long-term

study that ran for 2.5 years at the Fundación Cardioinfantil-Instituto de Cardiología (FCI-

IC) hospital in Colombia. The robot used MMIBN with online learning for user recognition,

and provided personalised and immediate feedback based on patients’ attendance, session

and therapy progress, using a sensory interface for continuously measuring physiological

(i.e., heart rate, blood pressure) and spatiotemporal (i.e., speed, cadence, step length),

and session intensity (i.e., exertion level, and treadmill inclination) parameters. The
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personalised robot was compared to using a generic (non-personalised) robot and to

conventional cardiac rehabilitation programme without a robot. While half of the patients

in the personalised robot condition could not complete their therapies due to the outbreak

of COVID-19, our initial findings suggest that the personalised robot was perceived very

positively throughout the programme, and the patients complied with the robot and the

social interaction was maintained for 18 weeks, suggesting that the user motivation and

engagement was maintained in the long-term interaction. Both robot conditions improved

the perceptions about the therapy with the robot and improved motivation to attend the

rehabilitation sessions. The personalised robot was perceived slightly more positively

than the generic robot in terms of sociability, ease of use, safety and social presence.

The face recognition failed frequently due to the noise in the data (e.g., blurry images

and cropped faces), which resulted in a drop for perceived usefulness, utility and trust,

however, MMIBN with online learning was found to perform better than the non-adaptive

model and face recognition. The fact that the robot monitored the patients continuously,

and alerted the medical staff when the values reached a critical level, enabled trust in

the clinicians to provide high intensity training, and allowed immediate intervention in

critical situations.

Overall, our findings in this work provide conclusive evidence for our main thesis, that is,

personalisation improves user experience in long-term human-robot interactions.

10.2 Contributions

Based on the models we developed for evaluating the research questions and their con-

clusions, the main scientific contributions of this thesis can be summarised as follows, as

stated in Chapter 1:

• Design and implementation of a multi-modal user identification system with

incremental and online learning to enable personalisation in long-term interac-

tions. This contribution is one of the cornerstones of this work and constitutes a

fundamental step towards personalising the long-term human-robot interactions in

the real world. It is the first method for sequential and incremental learning in open

world user recognition, without any need for pre-training. In addition, this proposed

approach is the first in combining soft biometrics with a primary biometric for open
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world user identification in real-time in human-robot interaction (Chapter 3; Irfan

et al. (2018b, under review)).

• Extension of an online learning method for Bayesian networks based on Voting

Expectation Maximization (EM) (Cohen et al., 2001a,b) and Maximum Likelihood

estimation was proposed for modelling the noise in the modalities and adapting

the learning rate based on the frequency of user appearances (Chapter 3; Irfan et al.

(under review)).

• Introduction of quality of the estimation and long-term recognition performance

loss enabled improving recognition within long-term interactions (Chapter 3; Irfan

et al. (2018b, under review)).

• Evaluation of MMIBN in a real-world long-term user study, which showed that

the proposed model is applicable for user recognition in real-world human-robot

interactions. Moreover, the proposed model outperformed base face recognition

based on higher user identification rate (Chapter 4; Irfan et al. (2018b)).

• Creation of a multi-modal long-term user recognition dataset with 200 users of

varying characteristics based on the IMDB-WIKI dataset (Rothe et al., 2015, 2018) en-

abled evaluating our user recognition model with a large number of users (Chapter 5;

Irfan et al. (under review)).

• Evaluation of MMIBN with the multi-modal long-term user recognition dataset

showed that the proposed model significantly outperforms base face recognition,

soft biometrics and a state-of-the-art approach in open world recognition. In contrast

to our initial expectations, the model with online learning was found to decrease

the recognition performance in comparison to a non-adaptive model with fixed

likelihoods. However, it was shown to decrease the bias in face recognition and

equalise the performance between users (Chapter 5; Irfan et al. (under review)).

• Creation of the text-based simulated Barista Datasets for generic and person-

alised task-oriented closed-domain dialogue enabled creating a rule-based dia-

logue manager as an order-taking barista in a coffee shop, in addition to serving as a

baseline to train and evaluate data-driven dialogue models (Chapter 6).

• Design of a fully autonomous barista robot with MMIBN, automatic speech recog-

nition and a rule-based dialogue management system for generic and personalised
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long-term barista interactions (Chapter 7; Irfan et al. (2020b)).

• Evaluation of the barista robot in a real-world long-term study with non-native

English speakers showed that personalisation can mitigate interaction failures and

the negative user experience. This study is the first study for fully autonomous per-

sonalisation in dialogue for long-term HRI conducted in the real-world (Chapter 7;

Irfan et al. (2020b)).

• Exploration of the potential of the state-of-the-art data-driven dialogue models

using the Barista Datasets showed that Seq2Seq model achieves near-perfect accu-

racy in generic long-term interactions, whereas, no model was found to be suitable

to be applied to personalisation in real-world long-term interactions. Nevertheless,

End-to-End Memory Networks model also performed well in generic long-term in-

teractions and showed potential for personalised long-term interactions (Chapter 8).

• Design and evaluation of a personalised socially assistive robot for cardiac reha-

bilitation to improve user motivation and adherence in the real-world long-term

clinical therapy of patients. The results showed that the personalised robot was

perceived positively throughout the CR programme. Moreover, the gaze, social inter-

action and the compliance to the robot’s requests were maintained in the long-term

and the personalisation features were appreciated by the patients. The patients in

both robot conditions reported that working with a robot improved motivation to

attend the rehabilitation sessions. Moreover, continuous monitoring of the patient

facilitated immediate intervention by the medical team in critical situations and en-

abled high-intensity training. In addition, our multi-modal user recognition model

with online learning was found to perform better than the non-adaptive model,

when the identifiers are malfunctioning (Chapter 9; Lara et al. (2017a,b); Casas et al.

(2018a,b,c); Irfan et al. (2020a)).

10.3 Experimental Limitations and Future Work

Long-term human-robot interaction in the real world is a very challenging and complex

problem, which requires a high level of autonomy and adaptability. Correspondingly, the

designed solutions need to be a combination of various features for verbal and non-verbal

interactions. In this thesis, we explored various topics as initial stepping stones towards
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personalised interactions that can meet and maintain user expectations in the long-term.

However, each topic we have undertaken is a wide research area by itself, hence, we had

to limit our vision, and thus, our experimental work, based on the restrictions of resources

and time. In this section, we will touch upon these limitations, and highlight areas where

future work could be performed based on our findings.

10.3.1 Multi-modal User Recognition

Our proposed Multi-modal Incremental Bayesian Network (MMIBN) is the first method

for sequential and incremental learning in open world user recognition, without any

need for pre-training. In addition, this proposed approach is the first in combining

soft biometrics with a primary biometric for open world user identification in real-time

in human-robot interaction. However, in our experiments, we used only one primary

biometric (i.e., face recognition), hence, in the absence of facial information, the recognition

could not be made. In such a case, the image was discarded, and another image is taken, or

multiple images were taken to increase the reliability, as used in Chapter 4. However, the

frequent presence of face recognition failures resulted in low user recognition performance,

which negatively affected the user experience in Chapter 7 and Chapter 9. Hence, other

primary biometrics, such as voice for speaker identification, can be used. However, there is

no reliable open-set speaker identification (i.e., recognising new users, as well as previous

users) method (Togneri & Pullella, 2011). While fingerprint identification is a reliable

method, especially in combination with soft biometrics (Jain et al., 2004), it has an intrusive

nature which is not desirable in HRI. Similarly, QR codes or access cards can be used,

however, these are external devices which the user can easily lose, and they reduce the

naturalness of the interaction. Therefore, other soft biometrics that do not rely on intrusive

methods can be used such as posture, hair colour, location (e.g., in an office), eye colour,

gait, clothing and facial marks (Jain & Park, 2009; Scheirer et al., 2011; Arigbabu et al., 2015;

Park & Jain, 2010; Zewail et al., 2004; Ouellet et al., 2014; Al-Qaderi & Rad, 2018). Our

proposed models allow extension with other biometric traits, they can be applied to any

(robot) platform and we are releasing the code of our models, thus, we suggest combining

other modalities within our models to improve incremental recognition in real-world HRI.

Our proposed models assume that there is a single person in the image. This can be

ensured by using a face detection algorithm prior to using our model to detect the faces in
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the image, and then align and extract them to apply identification on each separate user.

For instance, NAOqi face recognition, used in this work, has that feature. Many other

face detection algorithms also provide positions of the boundary of the face in the image,

allowing cropping images prior to recognition. After the recognition of the user, a face

tracking method can be used to identify if the user has changed for HRI or video-based

recognition with multiple users.

We have not compared MMIBN to a state-of-the-art deep learning approach, because

there does not exist a method for open world user recognition due to the catastrophic

forgetting problem (McClelland et al., 1995; McCloskey & Cohen, 1989; Parisi et al., 2019),

which refers to forgetting previously learned classes when a new class is introduced.

In addition, our method allows starting from a state without any known users, which

deep learning methods cannot offer. Furthermore, our method is suitable to be applied

to low-computational power systems, such as robots. Deep learning structures are not

optimised for such systems, and open-set methods with re-training can take a considerable

amount of time (e.g., 6-7 seconds for the encode-train-recognise cycle per user within a

small dataset1), which is not suitable for real-time interactions, and the previous data may

not be available for re-training.

Online learning was found to decrease the bias in face recognition and improve the recogni-

tion in the presence of identifier failures, however, it did not have a marked improvement

over the non-adaptive MMIBN. We suggest three possible solutions for improving online

learning: (a) identifiers with lower noise can be used, which can be difficult to achieve

in real-world scenarios, (b) similar to the work in (Cohen et al., 2001b; Liu & Liao, 2008),

increase the learning rate when there is a large error between the estimated parameter

and its mean value, and decrease when convergence is reached, (c) confidence value of

the identifiers or the quality of the estimation (Q) can be used to determine whether the

likelihoods should be updated at each iteration, to avoid updating when the noise is

high. We believe that online learning is beneficial for user recognition, thus, strongly

suggest MMIBN:OL to be explored with these suggestions. Online learning can also allow

detecting anomalies in the data (e.g., the user seen at 1 am in Figure 4.6 in Chapter 4), for

security purposes, such as detecting intruders in a house, which may a future application

for robots. However, our online learning method requires supervised learning through

a “human-in-the-loop” system. There are approaches that allow unsupervised online

1https://www.pyimagesearch.com/2018/06/18/face-recognition-with-opencv-python-and-deep-learning/
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learning (e.g., clustering), but this may result in worse performance due to inaccuracies in

the data. In addition, the privacy concern is a point that would need to be addressed in that

case and in user recognition, in general. Currently, the model only allows removing the

last user, since online learning in the Bayesian network adapts the likelihoods accordingly,

hence, a previously added user cannot be simply removed as this would cause errors in

likelihoods. However, if all the previous user data is available, the model can be re-trained

without the user in question. Our implementation provides a function for this, and the

training is relatively fast even when the dataset is large.

The presented results are dependent on the noise level of the identifiers, characteristics

of the population (i.e., the distribution of parameters within the population), the defined

loss function and α (i.e., the long-term recognition performance loss function parameter

that determines the importance of identifying previous users, Detection and Identification

Rate (DIR), to identifying new users, False Alarm Rate (FAR), in long-term interactions).

However, the Multi-modal Long-Term User Recognition Dataset encapsulates a diverse set

of characteristics (i.e., soft biometrics) for a large number of users, thus, we believe that the

optimised parameters (i.e., weights, normalisation method, the quality of the estimation)

are suitable for deployment to real-world applications, as we have demonstrated in

Chapter 9, with the identifiers that we used (i.e., the proprietary algorithms of the Pepper

and NAO robots). However, by using other algorithms for the identifiers or by setting

a desired FAR depending on the application, a different set of weights can be achieved

( using the Multi-modal Long-Term User Recognition Dataset) with lower/higher FAR

and consequently lower/higher DIR. Moreover, we suggest using a variable threshold

for the quality of the estimation (θQ) based on the number of users in the dataset to

ensure that the quality is higher when the number of users is low. In addition, we use a

fixed set of weights (of likelihoods) for the modalities, however, using adaptable weights

per user may provide a better performance, as the performance of the identifiers may

change depending on the user. For instance, for a very tall user, the height would be more

powerful in identifying the user, as we have seen in Chapter 4.

10.3.2 Personalised Service Robot

In Chapter 7, we presented the first real-world study that explores fully autonomous

personalisation in dialogue for long-term human-robot interactions, which was conducted
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at an international student campus with non-native English speakers. Our study showed

that ASR is not reliable in real-world human-robot interactions, even in a structured task-

oriented dialogue. Due to a variety of factors (e.g., unreliable internet connection, noise in

the environment, quietly speaking users, short sentences that prevented voice detection

failures) 69.8% of the utterances were not processed and only 55.4% of the processed ones

were correctly recognised, which caused users to repeat their phrases several times and

resulted in failed interactions, and in turn, a negative user experience. Nonetheless, our

findings also suggested that personalisation mitigates interaction failures and the negative

user experience. However, while the experiments were conducted at the coffee bar of

the campus, the location was reserved for the experiment and a schedule was created

to avoid delays in the experiment and to evaluate the perceptions of the users without

being affected by another user’s experience. Because of this aspect, the participants had to

sign up prior to the experiment, which may have caused participation by people that are

interested in interacting with a robot (Kanda et al., 2010). In addition, we had a low number

of users due to the challenges in recruiting subjects in long-term experiments, as described

in Section 2.1.1. In addition, the duration of the experiment (5 days) may not have been

long enough to decrease the novelty effect. We acknowledge that these restrictions may

have caused a decrease in the reliability of our findings and their applicability for real-

world interactions. In the future, when the technology is robust enough to provide reliable

ASR and robust dialogue management, we suggest the experiment to be repeated in a

field trial, that is, at a busy coffee shop to confirm our findings. Note that all our findings

within real-world HRI studies apply to adults, mostly because of the application areas,

thus, they may not apply to interactions with children.

Natural language interaction is a grand challenge in HRI, not only due to the necessity of a

high level of automatic speech recognition and language understanding, but also because

it contains multi-modal and mixed-initiative interaction (i.e., the robot or human can start

or change the interaction) and necessitates cognitive modelling (e.g., understanding the

state of the user) (Goodrich & Schultz, 2007). Moreover, user expectations vary between

robots and spoken dialogue systems (e.g., Alexa). For instance, if the user says “I would

like to order something”, the agent should further explore the item the user desires,

which could result in a whole chain of to-and-fro questions on the exact nature of the

order, which is a more challenging problem than receiving a command such as “Play Bob

Marley” (Bartneck et al., 2019). However, the users expect the same level of capability in
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dialogue with robots, which result in a decrease in user experience, as seen in Chapter 7.

Thus, it is important to clearly state the capabilities of the robot (Forlizzi & DiSalvo, 2006),

however, the information forms are not sufficient to overcome these expectations, as

revealed by our study.

In order to improve the accuracy of ASR, we suggest constraining grammar of ASR (Kennedy

et al., 2017), ensuring a reliable internet connection or using an onboard ASR, using high-

quality microphones, and adapting the interaction to the native language of the user.

However, even when these factors are taken into consideration, there may still be inac-

curacies in ASR due to a noisy environment. While rule-based approaches are the most

common dialogue managers in HRI, our results showed that they are not suitable in

the presence of inaccuracies (Chapter 7). Moreover, rule-based approaches require users

to respond in a particular manner, which causes frustrations and loss of time as in our

real-world study (Williams et al., 2018; Bartneck et al., 2019; Irfan et al., 2020b). Similar

to (Williams et al., 2018), we have observed that users repeat their phrases several times,

adapt their speech and even accept wrong orders, if the robot fails to understand them.

However, in a real-world scenario, in case of failures, the customers are likely to walk

away and never return to the shop. Thus, in contrast to our motivation, it would instead

decrease user visits. In addition, instead of decreasing the time for taking an order, it will

increase the time, lower the satisfaction (Giuliani et al., 2013), and increase the number of

people waiting in the line. On the other hand, Chapter 8 demonstrated that data-driven

approaches are not suitable for personalisation in long-term interactions either. Thus, a

probabilistic approach, such as a Partially Observable Markov Decision Process (POMDP),

can be used which would allow the system to recover from incorrect states due to speech

recognition errors, and allow user adaptation (Young et al., 2013; Mo et al., 2016). In

addition, user emotions (e.g., negative reactions in Figure 7.6 in Chapter 7) can be detected

and modelled (e.g., with a POMDP as in Yuan (2015)) to evaluate the user satisfaction with

the bot response, which can also allow recovering from speech recognition errors. In fact,

most of the publicly available and commercial task-oriented chatbot systems (e.g., Alexa,

Siri, Google Assistant) are often a combination of hand-crafted components, which allow

extracting information through common queries, and statistical methods that provide

robustness to noise and ambiguity and allow learning through data (Gao et al., 2019).

Thus, we suggest comparing a rule-based dialogue manager with a probabilistic one for

personalised long-term HRI in a real-world experiment.
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Our study showed that explicit confirmation of the user identity was necessary before

suggesting the user preference, because users do not pay enough attention to the robot’s

responses or do not understand it well, which causes further errors in recognition and

recall. As previously discussed in Chapter 6, while it is uncommon to give a full name at a

coffee shop, using only the first name could result in confusing the users, and thus the

most preferred order of the customers with that of another customer with the same first

name, because the verification of the identity is based only on the customer’s name. This

is also undesirable in terms of data sensitivity and privacy, especially in the presence of

others (Hedaoo et al., 2019).

Additionally, an interesting research direction might be designing a bartender in multi-

party scenarios, similar to (Giuliani et al., 2013; Foster et al., 2012), and personalising the

subsequent interactions based on the customers’ orders and behaviours towards the robot.

10.3.3 Data-Driven Approaches in Personalised Long-Term Interaction

Using our text-based Barista and Personalised Barista Datasets, we evaluated the potential

of the state-of-the-art data-driven dialogue models for user-specific personalisation in

task-oriented dialogue for long-term interactions. For these evaluations, we selected the

models that are strong baselines for other domains of personalisation based on single

interactions, such as adapting to general user attributes in task-oriented dialogue or

“person”alising an open-domain dialogue by maintaining a given personality, namely

Supervised Embeddings (Bordes et al., 2016; Joshi et al., 2017), Sequence-to-Sequence

(Seq2Seq) (Sutskever et al., 2014), End-to-End Memory Networks (MemN2N) (Weston

et al., 2014; Sukhbaatar et al., 2015; Bordes et al., 2016), Split Memory (Joshi et al., 2017),

Key-Value Profile Memory Networks (Zhang et al., 2018), and Generative Profile Memory

Networks (Zhang et al., 2018) based on the Seq2Seq model. The results showed that

Seq2Seq and MemN2N performed very well for generic task-oriented dialogue, however,

no model could perform sufficiently well for user-specific personalised task-oriented

dialogue in long-term interactions.

While our experiments evaluated the performance of data-driven approaches in long-term

interactions from a variety of perspectives (i.e., style of the interaction, dataset size, out-of-

vocabulary (OOV) entities, inaccuracies and time complexities), there are by no means

extensive. We could only train and evaluate each model once, due to the limited available
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computational power and the vast amount of time required to train some of the methods.

Moreover, we used the hyperparameters from the original work, with slight modifications

for improved performance or due to the restrictions on resources, however, we have not

conducted additional tuning of these parameters, which may provide different results

than those presented in this thesis.

Another limitation of our experiments was using implementations based on different

definitions of out-of-vocabulary (OOV): (a) words that are not seen in the training set, but

are included in the vocabulary (Bordes et al., 2016; Joshi et al., 2017) for MemN2N, Split

Memory and Supervised Embeddings models, (b) words are not seen in the training set

or included in the vocabulary (Zhang et al., 2018) and ConvAI challenge2. We have done

so to remain faithful to the original work and also because the latter definition caused

erroneous accuracy calculation in the former methods. Including the words in the OOV

set within the vocabulary for Seq2Seq, Profile Memory and Key-Value may improve

the performance, however, based on the timing limitations and the vast amount of time

required to train these methods, we could not compare that aspect. Nevertheless, we

believe that the definition of out-of-vocabulary should, in fact, not include these words,

because in a real-world scenario, a barista can come across new customer names (e.g.,

foreign names), which they cannot know beforehand. Moreover, the detailed analysis

of the inaccuracies, as presented in Section 8.5.4, showed that data-driven approaches

are not capable of dealing with that scenario even if they have this information in their

vocabulary, whereas this is a trivial slot-filling task for rule-based approaches.

Our Barista Datasets simulate interactions with a barista at a coffee shop and contain

a variety of utterances to make or change an order, based on the author’s personal

experiences interacting with baristas. However, as our real-world study showed, users

can use a variety of other (similar) phrases. Hence, a Wizard-of-Oz (WoZ) method can be

used to collect further data, as well as add the additional phrases that appeared in our

study for improving the dataset. Google very recently released a crowd-sourced dataset,

Taskmaster3 (Byrne et al., 2019), collected with WoZ (i.e., a person responded to the user

queries, acting in place for the Google Assistant) or self-dialogues (i.e., crowd-sourcers

imagine responding to the assistant and write responses for both sides), which contains

ordering a drink from coffee shops, among other tasks. This dataset does not contain

2http://convai.io/
3https://github.com/google-research-datasets/Taskmaster
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personalised long-term interactions, does not include accompaniments in the order, nor

is it based on direct interactions with baristas (i.e., the user interacts with the Google

Assistant, which orders the drink for them). However, it contains additions to the drinks

such as milk types, other flavours or whipped cream, however, these options are not

widely available in all coffee shops. Moreover, it contains combined orders (e.g., a small

breakfast tea and a chocolate cookie) and multiple orders (e.g., a large coffee and a small

breakfast tea), which our datasets lack, since our main goal was to evaluate personalisation

in long-term interactions, which is already a challenging task without these components,

as we saw in Chapter 8. Nonetheless, our datasets can be extended with these components,

and new tasks can be correspondingly designed for generic task-oriented dialogue, as a

future direction. In addition, while the Barista datasets contain a large variety of menu

items obtained from the menu of a coffee shop chain, if researchers would like to evaluate

or use a barista robot for a different range of menu items, we would be happy to offer

them an adapted barista dataset according to their need. In addition, transfer learning, i.e.,

transferring skills learned in one task to another, can be evaluated based on the incremental

aspect of our tasks.

We strongly suggest conducting a real-world experiment with the best (trained) models in

our work (i.e., Seq2Seq for generic task-oriented dialogue and MemN2N for personalised

task-oriented dialogue) to evaluate whether these approaches are, in fact, flexible for

responding to various user queries and can deal with automatic speech recognition errors,

in comparison to a rule-based approach. A real-world experiment can also allow using

human-evaluation to determine the models’ fluency, consistency and task performance,

which may provide different results than the automated metrics (Zhang et al., 2018). This

would also be the first study to explore data-driven approaches in long-term HRI. Note

that in our datasets each user interacts the same number of times with the barista, since

we desired to eliminate any bias in learning for the data-driven approaches. However, we

acknowledge that in a real-world scenario, data-driven approaches may perform worse

for some users that interact less with the barista, because of this learned bias.

Due to the “black box” structure of deep learning methods, we do know the exact reason

behind some of the patterns we observed in our analysis. For instance, using the model’s

own (incorrect) responses in the conversation context performed better than using the

correct labels for Profile Memory, which does not correlate with our expectations. We

may speculate that the model learned to pay more attention to the user responses, and
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this hypothesis may be partially tested because the attention probabilities are available.

However, because this cannot be automatised, the analysis on a specific example cannot

be generalised (i.e., it would be “cherry-picking”). Similarly, while we identified that the

vanilla MemN2N can learn new entities in the OOV datasets, we do not know why it does

not use them, especially for new customer names. This is referred to as the explainability

(or interpretability) problem that the deep learning approaches generally face, whereas,

rule-based and probabilistic approaches, such as Bayesian networks and POMDPs, are

explainable. In order to understand why such a phenomenon occurs, we need new

automated metrics that can evaluate the underlying reasons behind the inaccuracies,

similar to our methodology in this work, such that new models can be developed to

overcome these deficiencies. In addition, we need explainable methods that can learn

from feedback during deployment, similar to (Hancock et al., 2019).

Our results showed that Memory Network (MemN2N) shows potential for personalised

long-term interactions. Moreover, since our experiments demonstrated that MemN2N

and Split Memory models could train and respond to users in a short amount of time, they

are suitable to learn new examples sequentially through re-training, such that (potentially)

they can recall new customer names in the subsequent interactions. Correspondingly, for a

future direction, we propose developing “Episodic Memory Networks” with a generic pre-

trained memory for responding to new users, and a separate memory structure, similar

to the Split Memory, for each user that contains the previous dialogue history with the

user, learned progressively through re-training or online learning. We believe that this

can improve both continual and few-shot learning because pre-trained information will

be available for generic dialogue and new information will be learned sequentially per

user. In addition, this model could improve attention and preference recalling because

the previous user history will be contained in a separate memory. Moreover, a forgetting

mechanism or other biologically-inspired methods (Kirkpatrick et al., 2016; Wang et al.,

2020) can be introduced to remove very old memories for increasing the efficiency of

memory retrieval and reducing catastrophic forgetting.

Another future direction, based on our findings, is combining a generative (e.g., Sequence-

to-Sequence) model with a retrieval-based (e.g., Memory Network) approach, similar

to (Madotto et al., 2018), or combining data-driven models with probabilistic approaches,

e.g., Markov Decision Processes as in Microsoft’s XiaoIce (Zhou et al., 2018) chatbot, or

combining Seq2Seq with transformers (Vaswani et al., 2017) as used in (Roller et al., 2020),
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to compensate for the deficiencies in the models. In addition, Memory Network models

can be improved with methods to improve retrieval, such as word-based hashing (We-

ston et al., 2014; Dodge et al., 2015), clustering word embeddings (Weston et al., 2014),

organising memories in a hierarchical system (e.g., Maximum Inner Search Product (MIPS)

in (Chandar et al., 2016)), using match-type entities (Bordes et al., 2016) (especially for

OOV entities) to help access relevant memories efficiently.

We would like to emphasise that our Barista Datasets and the modified baselines for our

experiments are available online4 for academic use, and we provided all the information

about the dataset statistics, hyperparameters and the computational power. Correspond-

ingly, all our results are reproducible, according to the Machine Learning Reproducibility

Checklist5. We encourage future researchers to evaluate the performance of their baselines

using our datasets to develop reliable data-driven approaches for personalised long-term

interactions and move the state-of-the-art forward in continual learning.

10.3.4 Personalisation in Socially Assistive Robotics

Our long-term clinical study for cardiac rehabilitation programme with a personalised

socially assistive robot demonstrated the positive impact that a robot can have on the

patients’ health, motivation and perceptions of the programme, which are invaluable

findings for both rehabilitation and robotics. However, some of these findings were not

statistically significant, hence, making them difficult to generalise. The reason was, of

course, the small group size, which mostly originated due to the outbreak of COVID-19

which prevented patients from completing the programme, in addition to other reasons

(e.g., funding, medical condition) for dropout, and in turn, the study could not be con-

cluded. We hope to continue the personalised robot condition (with new patients) in the

future after the cardiac rehabilitation programme restarts in Fundación Cardioinfantil-

Instituto de Cardiología, however, this depends on our project funding, the clinic and

external circumstances. Nonetheless, our initial findings demonstrated that a personalised

robot is promising for improving motivation in long-term interactions and is suitable for

real-world clinical cardiac rehabilitation programme.

Incorporating a robot in a clinical therapy poses several challenges, such as user recog-

nition failures and technical failures in the other sensors (e.g., incorrect measurements

4https://github.com/birfan/BaristaDatasets
5https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
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in heart rate or gait, and malfunctioning tablet interface), which led to slow response

times, incorrect reactions, as well as low interactivity, which may have resulted in a drop

the user’s interest and trust in the system in the long-term interaction, as we have also

observed in our study (Section 9.4.3). While these challenges will always be present due

to the noise in the environment or the sensors, they should be addressed with the best

available methods before deploying robots to clinical therapy without the supervision of

the experimenter. Correspondingly, our multi-modal user recognition method should be

improved with previously suggested approaches, and robust additional sensors should be

added to the system.

Based on the suggestions of the patients and the clinicians, novel and a larger variety of

robot responses should be added to decrease the repetitiveness of the robot, especially

in long-term interactions. Moreover, a future research direction can be to adapt these

responses over time based on the patient’s sensory values to keep the interactions engaging

and interesting in the long-term (Matarić & Scassellati, 2016). For instance, if the user has

a high heart rate or becomes tired, this can be addressed in the feedback. An emotion

detection method can be used (Tapus et al., 2007), however, this may not be robust because

the patient is mostly focused and tired during the exercise, hence, the detected emotions

may not reliably model the user.

In addition, as suggested by the clinicians, a feature to display the patients’ performance

can be added to help the clinicians in closely monitoring the progress of the patient. This

is partially implemented in the personalised robot condition, but a graphical user interface

(GUI) needs to be developed for presenting the results to the clinicians.

Our study was brought to a halt in May 2020 because of the COVID-19 pandemic, which

stopped the CR programme in Fundación Cardioinfantil-Instituto de Cardiología clinic

because the patients with cardiovascular diseases carry a high risk in mortality. While we

fully agree with the risks and the decisions of the medical staff, our proposed solution can

allow reducing the necessary physical contact with the medical staff, hence, it is an ideal

solution for continuing the cardiac rehabilitation programme, which is vital for patients

with cardiovascular diseases. However, as we previously stated, its components need to

be improved for reliability and robustness for deploying it without the supervision of the

experimenters. Nonetheless, we would like to emphasise that the success of the robot

and the study relies heavily on the adoption of the method by the clinicians and their
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immediate interventions in critical situations. Prior to their experience with the robot, the

clinicians were reluctant to use a robot, mostly out of fear that the robot would replace

their jobs, as presented in Chapter 9. However, the demonstrations of the robot positively

changed their perceptions and allowed them to understand that the robot is there as a tool

to help them improve the CR programme, but relies fundamentally on their collaboration.

Moreover, the continuous monitoring aspect of the robot allowed high intensity training,

as observed in the personalised robot condition, without any negative consequences. How-

ever, the robot might have introduced additional duties for the clinicians, hence, it would

be beneficial to interview the medical staff (e.g., occupational therapists, physiatrists,

nurses) involved in the study to evaluate their long-term perspectives of the robot.

In all our real-world experiments, we used the Pepper and NAO robots from SoftBank

Robotics Europe. The Pepper robot was chosen for the user recognition study (Chapter 4)

because of its noticeable height and integrated tablet. We used the Adapted Pepper for the

barista robot study (Chapter 7) due to its improved microphones and height appropriate

for a barista. In contrast, we used the NAO robot for cardiac rehabilitation (Chapter 9),

because the literature suggests using a robot with a child-like appearance for assistive

tasks (Tapus et al., 2007). However, one of the patients in the personalised robot condition

considered its appearance and voice as childish and not appropriate for rehabilitation

therapy, while other patients in the robot conditions did not express this. It could be

interesting to repeat the study with a more adult-like robot (e.g., Pepper) to evaluate

whether that improves the perceived social presence. Thus, it is unclear as to whether

the findings of this thesis would translate to robots of a different size, appearance, or

morphology. Nonetheless, due to the current wide availability and the common use of

these robots, the findings in this thesis are still directly relevant to many other researchers

regardless of whether the results generalise to other platforms. Moreover, in general,

our findings agree with that of the previous research conducted with other robots and

supports our main thesis, that is, personalisation improves user experience in long-term

human-robot interactions.

10.4 Conclusion

While a robot may seem engaging and interesting at first sight or in short-term interactions,

the generic and repetitive behaviours of the robot may cause the user engagement and
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interest to wane over time. The thesis presented here is that user experience in long-

term human-robot interactions can be improved by personalising the interaction through

recognising users and recalling previously learned information. Correspondingly, we

developed the first multi-modal incremental user recognition algorithm suitable for real-

world interactions and designed personalised robots for long-term real-world applications,

namely, a barista robot for a coffee shop and a socially assistive robot for a clinical

cardiac rehabilitation programme. On the one hand, our experiments showed that fully

autonomous personalisation is not sufficiently robust for real-world interactions with the

current state-of-the-art architectures, such as user or speech recognition, or rule-based or

data-driven dialogue models. On the other hand, personalisation mitigated the interaction

failures and the negative user experience within diverse fields, and helped maintain

motivation and engagement in long-term interactions, supporting our thesis. These are

promising findings to further design and deploy personalised robots in health-care and

service domains, building on top of our proposed solutions, as well as potentially for

education and domestic applications with long-term interactions. However, reliable and

adaptable fully autonomous solutions that can handle the variability in user behaviours,

learn incrementally and sequentially, and recover from failures need to be developed in

parallel to real-world studies, in order to attain personalised robots that can meet user

expectations and provide long-lasting and pleasant interactions.
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Appendix A

Information Form for User Recognition Study

This appendix section presents the self consent and information form used in the long-term

user study in recognition, presented in Chapter 4.
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PLYMOUTH UNIVERSITY 
 

FACULTY OF SCIENCE AND ENGINEERING  
 

 
CONSENT TO PARTICIPATE IN RESEARCH PROJECT 

 
___________________________________________________________________ 
Name of Principal Investigator 
Tony Belpaeme 
 
___________________________________________________________________ 
Title of Research  
Social Learning through Contingent Interaction 
 
___________________________________________________________________ 
Aim of research 
The aim of the research is to test the recognition rate of the multi-modal person 
recognition system. 
 
___________________________________________________________________ 
Description of procedure 
You will initially register into the system with your name, gender, birth year, height 
through the tablet interface of Pepper robot, and it will take a picture at the end of the 
registration. The robot will use this information to guess who you are in the following 
encounters and it will ask for confirmation of the guessed name through the tablet 
interface. The recognition will happen at least every half an hour when the robot 
sees you, unless the head of the robot is touched. The study will last four weeks. 
You will be asked to complete a questionnaire at the end of the study about your 
opinions of the recognition system. Consent form includes an option to opt-in for 
sharing of your images in academic publications and presentations. 
 
___________________________________________________________________ 
Description of risks 
Risks are minimal – there will be no physical contact with any other people, and the 
only physical contact with the robot is through the tablet interface on the robot.  
 
___________________________________________________________________ 
Right to withdraw 
You may withdraw from the study at any time – simply inform the experimenter and 
you will be withdrawn from the study. Any data collected at this stage will be 
destroyed if requested. 
 
___________________________________________________________________ 
 
The objectives of this research have been explained to me.   
 
I understand that I am free to withdraw from the research at any stage, and ask for 
my data to be destroyed if I wish.  
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I understand that the personal information will be anonymized and will be securely 
stored on university servers. 
 
I understand that the Principal Investigator of this work will have attempted, as far as 
possible, to avoid any risks, and that safety and health risks will have been 
separately assessed by appropriate authorities (e.g. under COSHH regulations)  
 
If you are dissatisfied with the way the research is conducted, please contact the 
experimenter, Bahar Irfan, in the first instance through email on 
bahar.irfan@plymouth.ac.uk . If you feel the problem has not been resolved please 
contact the secretary to the Faculty of Science and Environment Human Ethics 
Committee:  Mrs Paula Simson 01752 584503. 
 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
 
 
We might be asked to share images when we present or publish our work.  Please 
tick one of the following boxes regarding your consent: 
 
I consent to the sharing of my images. 
 
I do not wish the researchers to share the images.  
 
 
Under these circumstances, I agree to participate in the research. 
 
 
 
Name:        ……………………………………….   
 
 
Signature:   .....................................……………..                    Date:   ……………… 

295



296



Appendix B

Additional Evaluations on Multi-modal Long-

Term User Recognition Dataset

This section presents the additional findings on multi-modal long-term user recognition

dataset, presented in Chapter 5. In addition, we describe our modifications on the Ex-

treme Value Machine (EVM) algorithm to accept sequential increments, along with the

hyperparameters we used in the comparisons.
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B.1 Evaluation of Normalisation Methods in Ten Samples Dataset

Comparison of the long-term recognition performance loss between the normalisation

methods for the ten samples dataset (D-Ten) is shown in Figure B.1. Similar to the results

for the all samples dataset (D-All) shown in Chapter 5, hybrid normalisation achieves sig-

nificantly lower loss than the other normalisation methods within all conditions. Further

analysis can be found in Section 5.5.1.3.
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Figure B.1: Results of Tukey’s Honestly Significant Differences (HSD) test of loss in the
open-set for normalisation methods with optimised weights for the ten samples dataset
(D-Ten) dataset: softmax, minmax, tanh, normsum, and hybrid. Lower loss is better.
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B.2 Time Plot for Open-Set Recognition

The time plot for open-set recognition in Figure B.2 shows the change in long-term recog-

nition loss with the increasing number of recognitions. The results are consistent with the

results for the training set, presented in Section 5.5.2.1. Multi-modal Incremental Bayesian

Network (MMIBN) and Multi-modal Incremental Bayesian Network with Online Learning

(MMIBN:OL) have higher loss in the open-set compared to the training, due to the higher

number of users to recognise. Extreme Value Machine trained with face recognition data

(EVM:FR) has a lower loss during the enrolment period due to lower False Alarm Rate

(FAR) compared to MMIBN models, and a higher Detection and Identification Rate (DIR)

compared to Extreme Value Machine trained with multi-modal data (EVM:MM), but the

MMIBN models significantly outperform it overall and in the closed-set, as shown in

Figure 5.6.
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Figure B.2: The change of loss with increasing number of recognitions for the all samples
dataset with Gaussian times (D-AllGaussian) for open-set and closed-set (open). The loss
decreases with increasing number of recognitions.
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B.3 Adapting Extreme Value Machine for Sequential Learning

EVM1 (Rudd et al. 2018) is a state-of-the-art open world classifier based on the Extreme

Value Theory, as described in Section 2.2. However, it was only evaluated using batch

learning, which is not suitable in real-world human-robot interaction, because the users

will be encountered sequentially. Hence, we transformed the method for accepting se-

quential data and incremental online learning to compare its performance to MMIBN.

The hyperparameters of EVM are tail size (τ, the number of points that constitute extrema

for Extreme Value Theory), number of models to average (k), coverage threshold (σ,

probabilistic threshold to designate redundancy between points), and open set threshold

(δ, if maximum probability is below this threshold, the identity is estimated as unknown).

The ranges considered for these hyperparameters in (Rudd et al. 2018) are as follows: 100-

32000 for τ (can be minimum 2), 1-10 for k, [0.008,0.186,0.492,1.0] for σ, and [0.05,0.1, ...,0.3]

for δ. Moreover, Euclidean distance or cosine similarity can be used as the distance function

to compute margins for the EVM.

As described in Section 3.2.4, we set MMIBN to declare the user as unknown in the

first 5 recognitions, in order to allow the network to make meaningful estimations. This

was achieved for EVM by setting τ = 3. After the initial training, sequential learning

is achieved with updating the model with a single data point (i.e., a single recognition)

at each recognition, by setting k = 1. We optimised σ and δ over the ranges given, and

found that σ= 1.0 and δ= 0.05 resulted in the lowest long-term performance loss. Cosine

similarity is used as the distance function, as it is stated in (Rudd et al. 2018) that Euclidean

distance led to poor performance for EVM. It is important to note that in (Rudd et al.

2018), τ= 33998, k= 6, and σ= 0.5. However, the authors stated that σ and k had a slight

impact on performance (2% increase in accuracy and F1 score), whereas, the vast majority

of performance variation was attributed to τ.

We use the same data with the structure described in Section 5.4.1 for evaluating MMIBN

and EVM models. Note that for EVM models, we only normalise the soft biometrics

using norm-sum (dividing by the total sum). The reason is that hybrid normalisation is

optimised for MMIBN and results in poor performance in EVM.

1https://github.com/EMRResearch/ExtremeValueMachine
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Appendix C

Information Form and Questionnaires for

Barista Robot Study

This appendix section presents the self consent and information form and the evaluation

questionnaires used in the barista robot study, presented in Chapter 7. The questionnaire

composed of three parts and varied according to the conditions: (A) perception of the robot

based on Robotic Social Attributes Scale (RoSAS) (Carpinella et al. 2017), (B) task-specific

questions to evaluate the capabilities of the robot, (C) additional questions for obtaining

user attributes, user experience and an additional comments. The italicised questions in

section (B) are asked only in the personalised condition, whereas the ones in section (C)

are only asked after the first interaction of the user (enrolment condition).
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UNIVERSITY OF PLYMOUTH 
 
FACULTY OF SCIENCE AND ENGINEERING  
 
 
CONSENT TO PARTICIPATE IN RESEARCH PROJECT 
 
___________________________________________________________________ 
Name of Principal Investigator 
Tony Belpaeme 
 
___________________________________________________________________ 
Title of Research  
Social Learning through Contingent Interaction 
 
___________________________________________________________________ 
Aim of research 
The aim of the research is to evaluate repeated interactions with a robot in a coffee-
shop scenario. 
 
___________________________________________________________________ 
Description of procedure 
You will greet the robot to start the interaction, with a phrase such as “Hi” or “Hello”. 
Upon greeting, the robot will ask you for your drink choice. You should respond 
accordingly to the questions of the robot to have a smooth interaction. The interaction 
will follow the steps of order taking in a coffee-shop scenario. The interaction will be 
autonomous and the experimenter will not be present during the interaction. Please 
make sure to speak clear and loud (without shouting) with a normal speaking pace for 
achieving the optimal speech recognition. The robot might ask you to repeat or 
rephrase your responses if there are problems. You will receive a free drink and a 
snack of your choice at each interaction with the robot as a compensation for your 
participation. If you change your mind about your order and would like to change it, 
you can do so after the robot asks for the confirmation of the order. The robot will 
update your order accordingly.  
 
Please do not speak when the robot is speaking, as the robot cannot listen to you 
while it speaks. When the robot asks, please enter your full name (first and last name 
with a space between them) on the tablet. 
 
The robot may be interacted at most two times a day. The study will last 5 days. You 
will be asked to complete a questionnaire after the first, third and the last day of the 
study about your opinions of the robot. The interaction will be video recorded. Consent 
form includes an option to opt-in for sharing of your images and videos in academic 
publications and presentations.  
 
Please keep in mind that taking photographs or videos is strictly forbidden for the 
participants to protect the anonymity of the participants and the intellectual property of 
this research. 
 
______________________________________________________________ 
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Description of risks 
Risks are minimal – there will be no physical contact with any other people, and the 
only physical contact with the robot is through the tablet interface on the robot.  
 
___________________________________________________________________ 
Right to withdraw 
You may withdraw from the study at any time – simply inform the experimenter and 
you will be withdrawn from the study. Any data collected at this stage will be destroyed 
if requested. 
___________________________________________________________________ 
The objectives of this research have been explained to me.   
 
I understand that I am free to withdraw from the research at any stage, and ask for my 
data to be destroyed if I wish.  
 
I understand that the interaction will be video recorded. These videos will not be 
distributed and will primarily be used for analysis of the interaction. I understand that 
the personal information will be anonymized and will be securely stored on university 
servers. 
 
I understand that the Principal Investigator of this work will have attempted, as far as 
possible, to avoid any risks, and that safety and health risks will have been separately 
assessed by appropriate authorities (e.g. under COSHH regulations)  
 
If you are dissatisfied with the way the research is conducted, please contact the 
experimenter, Bahar Irfan, in the first instance through email on 
bahar.irfan@plymouth.ac.uk . If you feel the problem has not been resolved please 
contact the secretary to the Faculty of Science and Environment Human Ethics 
Committee:  Mrs Paula Simson +441752 584503. 
 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
 
 
We might be asked to share images and short clips of videos, when we present or 
publish our work. Please tick one of the following boxes regarding your consent: 
 
I consent to the sharing of my images and video. 
 
I do not wish the researchers to share the images and video.  
 
 
Under these circumstances, I agree to participate in the research. 
 
 
 
Name:        ……………………………………….   
 
 
Signature:   .....................................……………..                    Date:   ……………… 
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Barista Robot Evaluation Form 
 
Is this your first, third, or last day of interaction with the robot? Please circle the correct one. 
 
Please give ratings based on your overall experience to the questions below. 
 
A. Using the scale from 1 = “definitely not associated” to 9 = “definitely associated”, how 
closely are the words below associated with the category for the robot?  
 
 

Dangerous 1-2-3-4-5-6-7-8-9 

Compassionate 1-2-3-4-5-6-7-8-9 

Capable 1-2-3-4-5-6-7-8-9 

Scary 1-2-3-4-5-6-7-8-9 

Social 1-2-3-4-5-6-7-8-9 

Aggressive 1-2-3-4-5-6-7-8-9 

Knowledgeable 1-2-3-4-5-6-7-8-9 

Awful 1-2-3-4-5-6-7-8-9 

Reliable 1-2-3-4-5-6-7-8-9 

Happy 1-2-3-4-5-6-7-8-9 

Responsive 1-2-3-4-5-6-7-8-9 

Organic 1-2-3-4-5-6-7-8-9 

Feeling 1-2-3-4-5-6-7-8-9 

Awkward 1-2-3-4-5-6-7-8-9 

Interactive 1-2-3-4-5-6-7-8-9 

Competent 1-2-3-4-5-6-7-8-9 

Emotional 1-2-3-4-5-6-7-8-9 

Machine-like 1-2-3-4-5-6-7-8-9 

Strange 1-2-3-4-5-6-7-8-9 
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B. Please rate the following questions, according to the scale from 1 = “strongly disagree” to 
9 = “strongly agree”. 
 
1. The robot was able to take my orders correctly. 1-2-3-4-5-6-7-8-9 

2. The robot was able to change my orders correctly. 1-2-3-4-5-6-7-8-9 

3. The robot was able to respond promptly to my requests. 1-2-3-4-5-6-7-8-9 

4. The utterances said by the robot during the interaction(s) were 
clear. 

1-2-3-4-5-6-7-8-9 

5. The robot responded correctly to my requests. 1-2-3-4-5-6-7-8-9 

6. The robot made many mistakes during the interaction(s). 1-2-3-4-5-6-7-8-9 

7. The robot was able to recover from its mistakes. 1-2-3-4-5-6-7-8-9 

8. The robot delivered the right order(s). 1-2-3-4-5-6-7-8-9 

9. The interaction(s) could not be completed. 1-2-3-4-5-6-7-8-9 

10. The interaction(s) ended abruptly. 1-2-3-4-5-6-7-8-9 

11. I would like to have another interaction with the robot. 1-2-3-4-5-6-7-8-9 

12. The interaction(s) flowed smoothly. 1-2-3-4-5-6-7-8-9 

13. I was very dissatisfied with the conversation(s). 1-2-3-4-5-6-7-8-9 

14. The interaction(s) was too long. 1-2-3-4-5-6-7-8-9 

15. I enjoyed interacting with the robot. 1-2-3-4-5-6-7-8-9 

16. The robot repeated itself many times. 1-2-3-4-5-6-7-8-9 

17. I felt uncomfortable while interacting with the robot. 1-2-3-4-5-6-7-8-9 

18. It was easy for me to communicate with the robot. 1-2-3-4-5-6-7-8-9 

19. After the interaction, I was looking forward to meeting the robot 
the next day. 

1-2-3-4-5-6-7-8-9 

20. The vocabulary and the speech of the robot became more fluid 
and rich. 

1-2-3-4-5-6-7-8-9 

21. I feel attached to the robot. 1-2-3-4-5-6-7-8-9 

22. I felt that the robot was autonomous. 1-2-3-4-5-6-7-8-9 

24. I would be willing to interact with the robot if it was a barista in a 
coffee shop. 

1-2-3-4-5-6-7-8-9 

25. I felt that the robot personalised its interaction. 1-2-3-4-5-6-7-8-9 

26. The robot recognised me correctly. 1-2-3-4-5-6-7-8-9 

27. I feel that the robot knows my preferences well. 1-2-3-4-5-6-7-8-9 

28. The robot remembered my previous order(s) correctly.  1-2-3-4-5-6-7-8-9 

29. I was pleased that the robot was able to remember my previous 
orders. 

1-2-3-4-5-6-7-8-9 
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C. Additional information: 
 
  1. How old are you?  
 
  2. What is your gender? (If you do not wish disclose it, you can leave this question empty.)   
 
  3. What is your approximate height in centimeters?  
 
4. For a scale, 1 = “not at all” to 9 = “very familiar”, how familiar 
were you with robots before the experiment? 
 

1-2-3-4-5-6-7-8-9 

5. For a scale, 1 = “none” to 9 = “substantial”, what is your level of 
previous experience with robots? 
 

1-2-3-4-5-6-7-8-9 

6. For a scale, 1 = “not at all” to 9 = “every day”, how frequently 
do you go to a coffee shop? 
 

1-2-3-4-5-6-7-8-9 

7. For a scale, 1 = “very dissatisfactory” to 9 = “very satisfactory”, 
how would you rate your overall experience? 
 

1-2-3-4-5-6-7-8-9 

  8. Any additional comments or suggestions about the robot or interaction?  
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Appendix D

Additional Information on the Barista Datasets

This section presents the additional information for the Barista and Personalised Barista

Datasets, presented in Chapter 6.
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D.1 Barista Dataset

This section contains the additional tables for the proportion of personal(ised), order

details and other (remaining) phrase types in the training, validation and out-of-vocabulary

(OOV) sets of the Barista Dataset.

Table D.1: The percentage of personal(ised), order details and other (remaining) phrase
types in the tasks of 1,000 and 10,000 dialogue Barista training set.

Dataset Size Phrases B1 B2 B3 B4 B5 B6 B7

1,000
Personal 25 0 0 0 0 14.29 12.88
Order 0 25 37.07 25 36.63 14.29 22.72
Other 75 75 62.93 75 63.37 71.43 64.4

10,000
Personal 25 0 0 0 0 14.29 12.9
Order 0 25 36.71 25 36.68 14.29 22.57
Other 75 75 63.29 75 63.32 71.43 64.52

Table D.2: The percentage of personal(ised), order details and other (remaining) phrase
types in the tasks of 1,000 and 10,000 dialogue Barista validation set.

Dataset Size Phrases B1 B2 B3 B4 B5 B6 B7

1,000
Personal 25 0 0 0 0 14.29 12.92
Order 0 25 36.87 25 36.49 14.29 22.48
Other 75 75 63.13 75 63.51 71.43 64.6

10,000
Personal 25 0 0 0 0 14.29 12.89
Order 0 25 36.83 25 36.82 14.29 22.66
Other 75 75 63.17 75 63.18 71.43 64.45

Table D.3: The percentage of personal(ised), order details and other (remaining) phrase
types in the tasks of 1,000 and 10,000 dialogue Barista out-of-vocabulary (OOV) set.

Dataset Size Phrases B1 B2 B3 B4 B5 B6 B7

1,000
Personal 25 0 0 0 0 14.29 12.91
Order 0 25 37.13 25 36.41 14.29 22.54
Other 75 75 62.87 75 63.59 71.43 64.55

10,000
Personal 25 0 0 0 0 14.29 12.9
Order 0 25 36.9 25 36.89 14.29 22.62
Other 75 75 63.1 75 63.11 71.43 64.48
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D.2 Personalised Barista Dataset

This section contains the additional tables for the proportion of personal(ised), order

details and other (remaining) phrase types in the training, validation and OOV sets of the

Personalised Barista Dataset.

Table D.4: The percentage of personal(ised), order details, other (remaining) and Barista
Task 7 (B7) phrase types in the tasks of Second-Interaction, 1,000 and 10,000 dialogue
Personalised Barista training set.

Dataset
Size

Phrases B0 B1 B2 B3 B4 B5 B6 B7 B8

200 -
400

Personal27.91 36.31 38.91 33.16 28.94 35.78 30.6 29.36 30.99
Order 25.58 27.38 28.16 29.56 31.6 29.36 31.43 31.18 30.99
Other 55.81 50.84 48.71 48.9 51.04 47.94 50.36 49.87 49.38
B7 90.7 85.48 79.32 84.26 88.43 79.82 84.53 86.26 83.35

1,000

Personal54.57 54.6 56.25 45.58 37.16 46.89 39.17 36.52 37.92
Order 31.07 31.03 31.19 32.51 35.77 32.61 35.83 35.27 35.71
Other 40.21 40.23 39.21 40.8 44.67 40.1 43.51 43.38 42.31
B7 74.15 74.14 67.28 75.4 82.4 70.9 77.82 80.33 76.11

10,000

Personal65.28 65.29 65.31 51.58 40.75 52.33 42.14 39.76 41.12
Order 33.08 33.07 33.05 34.21 38.19 34.19 37.94 37.1 36.88
Other 34.12 34.12 34.11 36.62 41.34 36.44 40.87 40.34 40.01
B7 67.52 67.52 61.71 71.05 79.73 66.79 75.21 77.61 73.83

Table D.5: The percentage of personal(ised), order details, other (remaining) and Barista
Task 7 (B7) phrase types in the tasks of Second-Interaction, 1,000 and 10,000 dialogue
Personalised Barista validation set.

Dataset
Size

Phrases B0 B1 B2 B3 B4 B5 B6 B7 B8

200 -
400

Personal27.78 38.95 41.88 33.66 29.35 37.29 30.95 29.87 32.2
Order 25.93 27.13 28.3 29.3 32.29 29.36 32.27 32.12 31.9
Other 55.56 50 47.22 48.84 50.38 47.27 49.75 48.91 48.02
B7 90.74 83.92 77.76 83.78 87.98 78.74 84.17 85.77 81.44

1,000

Personal54.69 54.82 55.66 45.47 36.62 47.22 38.58 36.79 38.44
Order 30.92 30.76 31.38 32.73 35.9 32.67 35.85 35.38 35.15
Other 40.3 40.39 39.27 40.65 44.83 40.06 43.88 43.21 42.63
B7 74.09 74.03 68.68 75.48 82.66 70.68 77.77 80.31 76.08

10,000

Personal65.33 65.29 65.41 51.4 40.82 52.27 42 39.74 41.05
Order 33.03 33.07 33.09 34.19 38.17 34.19 37.99 37.1 36.8
Other 34.14 34.12 34.04 36.68 41.31 36.45 40.9 40.39 40.06
B7 67.5 67.52 61.46 71.09 79.69 66.58 75.4 77.66 73.85
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Table D.6: The percentage of personal(ised), order details, other (remaining) and Barista
Task 7 (B7) phrase types in the tasks of Second-Interaction, 1,000 and 10,000 dialogue
Personalised Barista out-of-vocabulary (OOV) set.

Dataset
Size

Phrases B0 B1 B2 B3 B4 B5 B6 B7 B8

200 -
400

Personal28.2 28.14 30.29 27.27 24.12 29.63 27.27 24.53 26.86
Order 24.81 24.95 25.77 26.45 27.33 27.37 29.23 28.98 28.96
Other 56.39 56.29 54.25 54.55 56.59 52.26 52.95 54.04 52.45
B7 90.6 90.62 86.53 89.26 91.96 84.37 85.95 90.57 85.9

1,000

Personal54.87 45.75 47.75 40.28 32.54 41.99 35.67 33.55 35.21
Order 30.7 28.83 29.67 30.45 33.91 31.04 33.93 33.03 33.62
Other 40.43 45.75 43.73 45.05 48.01 43.87 46.3 46.45 45.23
B7 74.01 79.66 74.16 79.45 85.54 75.68 79.81 82.74 78.9

10,000

Personal65.31 64.01 64.3 50.51 40.29 51.78 41.89 39.34 40.9
Order 33.05 32.76 32.84 34.09 37.89 34.03 37.53 36.97 36.53
Other 34.13 34.91 34.7 37.13 41.76 36.82 41.31 40.58 40.37
B7 67.51 68.32 62.21 71.67 80.06 66.98 75.18 77.9 73.95
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Appendix E

Hyperparameters and Additional Results on

Data-Driven Approaches

This section presents the additional findings on Barista and Personalised Barista Datasets,

presented in Chapter 8. In addition, we present the hyperparameters for the baselines

used in the evaluations, and dialogue examples with attention weights.
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E.1 Hyperparameters

This section presents the hyperparameters of the models used in the experiments for

the Barista Datasets. These hyperparameters correspond to the parameters from the

original implementations (Joshi et al. 2017; Zhang et al. 2018), unless otherwise noted in

Chapter 8. For the graphics processing unit (GPU), we used GeForce GTX 1080 Ti or Tesla

V100-SXM3-32GB, depending on the availability.

Table E.1: Hyperparameters of the models used in the experiments for the Barista Datasets.
These correspond to the parameters from the original implementations (Joshi et al. 2017;
Zhang et al. 2018), unless otherwise noted in Chapter 8.

Hyper-
parameter

MemN2N Split
Memory

Key-
Value

Profile Seq2Seq Supervised

Learning
Rate

0.001 0.001 0.1 0.001 3 0.01

Embedding
Size

20 20 1000 300 256 32

Negative
Candi-
dates

100 100 10 All All 100

Optimiser Adam Adam SGD Adam SGD Adam
User
Profile

Dialogue
turn

Separate Separate Separate Prepended Dialogue
turn

Hops 1-3 1-3 1 1 - -
Batch Size 32 32 1 128/ 1 (for

test)
64/ 1 (for
test)

128

Training
Epochs

100 100 25 100 100 25/
15 (for
10,000 dia-
logues)

Resource 1 GPU+
1 CPU

1 GPU+
1 CPU

16-18
CPUs

1 GPU+
1 CPU

1 GPU+
1 CPU

1 GPU+
1 CPU

Vocabulary all sets all sets training,
validation,
test

training,
validation,
test

training,
validation,
test

all sets

Context Previous
user-bot
labels
(may be
cut off)

Previous
user-bot
labels
(may be
cut off)

Last
bot-user
labels

Previous
user-bot
labels
(training)/
Previous
user-
predicted
bot
responses
(valida-
tion and
test)

Previous
user-bot
labels

Previous
user-bot
labels
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E.2 Attention Weights for End-to-End Memory and Split Mem-

ory Networks

Table E.2: A dialogue example from the recognition error task (2) of the Personalised
Barista Dataset (PB2) shows the attention weights in the End-to-End Memory Networks
(MemN2N) model for varying hops. The training set includes dialogue examples of Anne
Hathaway, which enable the model to correctly predict the response without available
preferences information. Hops direct the focus to the most relevant dialogue history input,
which contains the name of the customer. Zero attention weight signifies a very small
value (< 10−5).

Time Speaker Conversation Context Hop1 Hop2 Hop3
1 True , 182 , Tom Welling 0.221 0.0004 0
2 Customer Hey there ! 0.032 0 0
3 Barista Hello , Tom Welling ! Would you like

to have a large latte again ?
0.027 0 0

4 Customer That is not my name . 0.029 0 0
5 Barista I am terribly sorry ! May I take your

name ? api_call getCustomerName
0.009 0 0

6 Customer It is Anne Hathaway . 0.105 0.0007 0
7 Barista Let me see if I have any previous

records of you , Anne .
0.24 0.913 1

8 True , 23 , Anne Hathaway 0.337 0.086 0
Customer Input Okay .
Correct Response I thought you looked familiar , Anne ! Would you like a small

mocha and a blueberry muffin again ?
Predicted Response I thought you looked familiar , Anne ! Would you like a small

mocha and a blueberry muffin again ?
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Table E.3: A dialogue example from the recognition error task (2) of the Personalised Barista
Dataset (PB2) shows the attention weights in the Split Memory model for varying hops.
The profile memory in the Split Memory architecture focuses mostly on the customer’s
ID (23) instead of the customer’s name, which might be the reason behind mixing the
customer and their preference in contrast to the End-to-End Memory Networks (Table E.2),
especially in hops 2 and 3. Note that both customers appear in the training set. Zero
attention weight signifies a very small value (< 10−5).

Profile Hop1 Hop2 Hop3
True 0.323 0.079 0.002
23 0.551 0.892 0.998

Anne Hathaway 0.122 0.03 0.0002
Time Speaker Conversation Context

1 Customer Hey there ! 0.098 0.00009 0
2 Barista Hello , Tom Welling ! Would you

like to have a large latte again ?
0.045 0.0005 0

3 Customer That is not my name . 0.218 0.006 0
4 Barista I am terribly sorry ! May I take your

name ? api_call getCustomerName
0.059 0.79 1

5 Customer It is Anne Hathaway . 0.126 0.002 0
6 Barista Let me see if I have any previous

records of you , Anne .
0.454 0.201 0

Customer Input Okay .
Correct Response I thought you looked familiar , Anne ! Would you like a small

mocha and a blueberry muffin again ?
Predicted Response I thought you looked familiar , Roseanne ! Would you like a

large cappuccino and a slice of banana bread again ?
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Table E.4: A dialogue example with a change of order in the changes to preference task (4)
of the Personalised Barista Dataset (PB4) shows the attention weights in the End-to-End
Memory Networks (MemN2N) model for varying hops. In contrast to Table E.5, the model
focuses only on the last bot response, which contains the previous order that needs to
be changed, in order to update correctly the remaining parts of the order. Zero attention
weight signifies a very small value (< 10−5).

Time Speaker Conversation Context Hop1 Hop2 Hop3
1 True , 90 , David Boreanaz 0 0 0
2 Customer Hello ! 0 0 0
3 Barista Hello , David Boreanaz ! Would you

like to have a large peppermint hot
chocolate again ?

0 0 0

4 Customer No . Can I get an espresso macchiato
?

0.00007 0 0

5 Barista Which size ? 0 0 0
6 Customer Medium would do . 0.00001 0 0
7 Barista Would you like anything else with

that ?
0 0 0

8 Customer A breakfast tortilla wrap . 0.00001 0 0
9 Barista So that would be a medium espresso

macchiato and a breakfast tortilla
wrap . Is that right ?

1 1 1

Customer Input Can I get small instead ?
Correct Response Sure ! So that would be a small espresso macchiato and a

breakfast tortilla wrap . Is that right ?
Predicted Response Sure ! So that would be a small espresso macchiato and a

breakfast tortilla wrap . Is that right ?
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Table E.5: A dialogue example from the changes to preference task (4) of the Personalised
Barista Dataset (PB4) shows the attention weights in the End-to-End Memory Networks
(MemN2N) model for varying hops. The model should ideally focus on both the new drink
order and the requested size. In all hops, the model primarily and correctly focuses on
the new drink item. However, the attention weight on the size is not high enough, which
caused an incorrect response in hop 1 (large instead of small), while it was unexpectedly
correct in the other hops. Zero attention weight signifies a very small value (< 10−5).

Time Speaker Conversation Context Hop1 Hop2 Hop3
1 True , 58 , Shane West 0 0 0
2 Customer Hey ! 0.00002 0 0
3 Barista Hello , Shane West ! Would you like

to have a medium Earl Grey and a
classic oatmeal again ?

0.001 0 0

4 Customer Nope . 0.00007 0 0
5 Barista Alright ! Which drink can I get for

you , Shane ?
0.0008 0 0

6 Customer Can I get a green tea ? 0.998 1 1
7 Barista Which size ? 0.00001 0 0
8 Customer Small would do . 0.00003 0 0
9 Barista Would you like anything else with

that ?
0 0 0

Customer Input Could I get a pain aux raisins ?
Correct Response So that would be a small green tea and a pain aux raisins . Is

that right ?
Predicted Response So that would be a small green tea and a pain aux raisins . Is

that right ?
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E.3 Out-of-Vocabulary Sets

E.3.1 1,000 Dialogues

Table E.6: The out-of-vocabulary (OOV) set results of the Personalised Barista Dataset with
1,000 dialogues. The best performing methods (or methods within 0.1% of best performing)
are given in bold for the per-response accuracy metric. The results show that on average
and for task 8 (containing all tasks), Supervised Embeddings is the best performing model.

Task
MemN2N Split Memory Key-

Value
Profile

Seq2-
Seq

Super-
visedHop1 Hop2 Hop3 Hop1 Hop2 Hop3

0 41.73 42.88 41 43.52 43.63 41.96 20.88 40.69 39.94 55.16
1 47.53 46.52 43.01 46.82 47.33 44.89 20.84 47.23 46.01 53.14
2 43.59 45.02 43.83 44.11 44.93 45.02 20.29 47.8 42.73 52.76
3 43.08 42.01 38.38 43.63 44.38 41.78 19.8 45.64 43.83 55.73
4 44.29 43.46 42.52 42.95 44.54 41.4 16.45 47.51 49.24 57.72
5 42.64 42.84 40.99 39.61 44.37 40.07 16.52 43.76 43.53 53.26
6 40.73 44.32 45.82 43.79 42.75 39.71 32.46 46.97 42.82 54.6
7 41.21 43.91 41.99 39.38 40.03 41.04 14.53 47.88 46.74 55.72
8 42.47 40.56 39.31 42.79 39.06 43.88 13.87 39.91 46.26 53.82

Table E.7: The out-of-vocabulary (OOV) set results of the Personalised Barista with Pref-
erences Information Dataset with 1,000 dialogues. The best performing methods (or
methods within 0.1% of best performing) are given in bold for the per-response accuracy
metric. The results show that on average and for task 8 (containing all tasks), Supervised
Embeddings is the best performing model, similar to the Personalised Barista Dataset.

Task
MemN2N Split Memory Key-

Value
Profile

Seq2-
Seq

Super-
visedHop1 Hop2 Hop3 Hop1 Hop2 Hop3

0 41.41 41.52 40.11 40.83 39.56 40.77 17.35 40.54 39.39 53.71
1 46.57 46.77 44.18 46.52 43.21 42.65 17.79 46.31 43.42 51.11
2 44.35 44.21 40.96 40.96 43.64 41.72 16.27 45.84 43.64 56.59
3 40.87 45.88 44.02 40.43 39.68 38.3 14.99 44.42 45.25 54.9
4 45.73 43.89 42.77 41.94 46.89 42.34 10.99 47.29 45.55 57.93
5 40.99 42.37 38.61 37.99 38.65 37.92 11.33 44.41 43.3 54.12
6 44.74 45.92 42.02 44.32 44.21 45.4 11.3 46.55 42.96 55.22
7 41.66 39.8 40.98 41.92 38.4 40.91 11.76 47.46 44.07 55.64
8 41.63 40.13 40.66 40.38 37.09 43.19 9.92 43.38 40.41 53.19
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E.3.2 Second Interaction

Table E.8: The out-of-vocabulary (OOV) set results of the Personalised Barista Dataset for
Second Interaction set (few-shot learning). The best performing methods (or methods within
0.1% of best performing) are given in bold for the per-response accuracy metric. The results
show that on average and for task 8 (containing all tasks), Supervised Embeddings is
the best performing model, similar to the out-of-vocabulary (OOV) set of the Personalised
Barista Dataset with 1,000 dialogues.

Task
Memory Networks Split Memory Key-

Value
Profile

Seq2-
Seq

Super-
visedHop1 Hop2 Hop3 Hop1 Hop2 Hop3

0 56.39 56.02 54.42 54.51 51.69 55.17 18.98 56.02 55.45 41.35
1 56.38 53.38 55.25 53.75 57.5 51.31 23.83 50.47 56 50.66
2 52.62 54.52 46.65 48.73 54.16 53.44 20.98 55.79 55.33 52.87
3 54.38 50.58 51.24 53.31 50.74 54.05 21.49 55.12 55.54 61.59
4 53.54 56.03 55.71 55.14 52.25 55.47 16.4 56.51 53.78 56.8
5 46.58 48.21 46.42 48.68 47.2 46.5 15.47 49.92 54.43 55.01
6 47.66 50.91 51.81 48.11 47.96 51.13 18.5 53.25 53.47 57.45
7 51.47 51.17 52 53.43 53.43 49.43 16.3 53.66 50.42 61.42
8 45.51 50.56 48.18 50.42 50.63 50.28 15.64 44.04 52.24 58.27

Table E.9: The out-of-vocabulary (OOV) set results of the Personalised Barista with Pref-
erences Information Dataset for Second Interaction set (few-shot learning). The best per-
forming methods (or methods within 0.1% of best performing) are given in bold for the
per-response accuracy metric. The results show that on average, Sequence-to-Sequence is
the best performing model, whereas Supervised Embeddings model performs best in task
8 (containing all tasks).

Task
Memory Networks Split Memory Key-

Value
Profile

Seq2-
Seq

Super-
visedHop1 Hop2 Hop3 Hop1 Hop2 Hop3

0 53.38 55.73 53.95 56.67 55.36 55.55 26.5 56.3 55.64 25.95
1 56.85 56.94 54.03 53.66 56.29 55.25 22.61 51.22 54.97 42.97
2 51.9 54.79 50.81 49.01 53.35 53.35 23.24 54.52 54.52 47.98
3 53.39 51.98 50.66 48.02 54.38 47.52 21.65 50.58 53.06 59.74
4 53.46 54.82 53.7 53.22 57.4 50.4 22.03 54.66 56.59 57.25
5 49.22 49.38 47.9 44.09 49.61 43.23 16.41 47.59 52.72 51.19
6 51.06 50 48.19 46.9 46.07 50.68 15.03 51.89 53.32 44.93
7 51.17 53.58 50.64 50.79 48.91 50.26 19.09 52.53 55.47 59.2
8 48.53 45.72 48.95 49.72 46.21 48.25 18.02 52.17 52.66 53.31
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E.3.3 10,000 Dialogues

Table E.10: The out-of-vocabulary (OOV) set results of the Barista Dataset with 10,000
dialogues. The best performing methods (or methods within 0.1% of best performing) are
given in bold for the per-response accuracy metric. The results show that on average and
for task 8 (containing all tasks), Sequence-to-Sequence (Seq2Seq) is the best performing
model.

Task
Memory Networks

Key-Value Seq2Seq Supervised
Hop1 Hop2 Hop3

1 80.02 79.73 76.14 75.26 78.53 78.46
2 72.39 50.5 67.58 18.65 75 64.73
3 52.14 49.65 53.7 7.97 61.99 62.56
4 49.64 71.11 66.79 10.99 75 73.81
5 61.13 53.01 41.9 5.94 63.11 46.68
6 57.64 65.69 58.29 28.21 70.13 65.65
7 56.62 49.45 59.2 31.25 65.3 65.04

Table E.11: The out-of-vocabulary (OOV) set results of the Personalised Barista Dataset
with 10,000 dialogues. The best performing methods (or methods within 0.1% of best
performing) are given in bold for the per-response accuracy metric. The results show that
in all tasks, Supervised Embeddings is the best performing model.

Task
Memory Networks Split Memory Key-

Value
Profile

Seq2-
Seq

Super-
visedHop1 Hop2 Hop3 Hop1 Hop2 Hop3

0 36.42 36.2 36.4 35.13 38.59 39.08 30.61 35 35.38 50.85
1 38.13 37.25 37.84 41.58 41.34 38.74 29.41 35.42 35.99 51.21
2 40.73 40.9 39.71 33.48 39.04 40.08 28.3 38.28 36.38 49.2
3 31.27 32.58 30.72 38.9 29.66 31.88 18.6 39.02 37.76 50.07
4 32.4 35.1 37.27 41.63 32.19 32.52 15.47 43.33 42.76 51.19
5 33.54 33.14 32.08 32.2 34.91 34.34 19.58 39.91 38.79 46.4
6 35.55 40.63 32.71 29.48 28.28 39.27 18.48 18.75 43.13 49.39
7 35.65 26.58 30.47 29.54 35.97 37.46 15.5 39.35 38.27 45.89
8 32.3 32.56 35.97 34.36 31.81 34.0 15.48 37.28 41.64 47.96
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Table E.12: The out-of-vocabulary (OOV) set results of the Personalised Barista with Pref-
erences Information Dataset with 10,000 dialogues. The best performing methods (or
methods within 0.1% of best performing) are given in bold for the per-response accuracy
metric. The results show that in all tasks, Supervised Embeddings is the best performing
model.

Task
Memory Networks Split Memory Key-

Value
Profile

Seq2-
Seq

Super-
visedHop1 Hop2 Hop3 Hop1 Hop2 Hop3

0 36.4 35.39 34.6 36.75 36.74 36.23 15.1 34.12 34.9 50.45
1 36.58 35.24 35.37 38.7 39.19 39.32 13.23 33.79 34.29 51.28
2 39.28 39.48 39.42 38.98 40.31 38.82 13.58 36.35 34.5 50.24
3 31.61 31.23 32.13 29.86 35.01 34.69 6.74 36.81 35.61 50.4
4 37.05 41.23 38.47 30.48 34.32 35.2 4.86 42.43 41.45 51.29
5 31.89 33.86 36.2 32.06 31.49 35.25 8.15 38.52 38.78 48.28
6 35.4 35.88 37.97 32.17 33.81 33.97 6.05 41.6 42.16 51.54
7 30.13 33.07 28.87 28.8 33.11 31.06 6.07 37.59 40.46 41.31
8 31.18 31.81 33.79 27.41 30.1 32.92 6.85 40.24 40.5 48.23
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E.4 Test Set Results for the Second Interaction and 10,000 Dia-

logue Datasets

E.4.1 Second Interaction

Table E.13: The test set results of the Personalised Barista with Preferences Information
Dataset with Second Interaction set (few-shot learning). The best performing methods (or
methods within 0.1% of best performing) are given in bold for the per-response accuracy
metric. The results show that on average and for task 8 (containing all tasks), Sequence-to-
Sequence (Seq2Seq) is the best performing model.

Task
MemN2N Split Memory Key-

Value
Profile

Seq2-
Seq

Super-
visedHop1 Hop2 Hop3 Hop1 Hop2 Hop3

0 59.87 59.96 59.77 59.68 59.3 58.65 54.61 56.67 56.86 33.87
1 73.65 73.34 74.19 70.03 74.5 73.96 54.7 70.34 60.94 56.95
2 69.99 68.54 68.9 64.86 68.11 67.32 50.14 72.01 64.5 56.55
3 65.25 65.7 63.92 61.58 62.59 62.22 45.44 44.94 71.33 60.59
4 67.06 68.8 64.78 65.25 65.66 63.32 42.27 67.52 78.66 57.82
5 60.39 59.65 59.3 56.22 56.22 56.79 38.36 45.49 74.43 50.12
6 63.28 60.07 59.68 58.68 60.62 59.01 32.45 62.34 76.82 51.47
7 64.14 61.94 61.34 61.13 58.76 59.78 40.16 60.97 60.86 59.99
8 58.52 59.46 55.95 53.52 55.8 55.45 35.73 59.32 74.43 50.91
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Table E.14: Percentage of errors in dialogue state tracking (DST), personal(ised), order
details, other and Barista Task 7 (B7) phrase types for Second Interaction test sets. The
best performing methods (or methods within 0.1%) are given in bold for the error in
per-response accuracy metric, and the error percentages within the phrase types are given
in parentheses.

Task
Error
Type

MemN2N Split Memory Key-
Value

Profile
Seq2-
Seq

Super-
visedHop1 Hop2 Hop3 Hop1 Hop2 Hop3

PB0

DST 7.8 5.45 2.91 11.09 4.32 3.29 19.27 1.5 0.38 16.64
Person-
al

27.07
(95.98)

27.54
(97.65)

27.07
(95.98)

26.41
(93.65)

26.41
(93.65)

27.07
(95.98)

8.36
(29.66)

28.20
(99.98)

28.20
(99.98)

28.01
(99.32)

Order 22.46
(90.54)

22.37
(90.16)

22.56
(90.92)

23.31
(93.95)

22.84
(92.05)

23.97
(96.60)

23.31
(93.95)

24.81
(100.00)

24.44
(98.49)

24.06
(96.98)

Other 0.56
(1.00)

0.94
(1.67)

0.94
(1.67)

0.66
(1.17)

0.66
(1.17)

0.38
(0.67)

21.33
(37.83)

0.38
(0.67)

0.00
(0.00)

29.14
(51.67)

B7 13.63
(15.04)

13.91
(15.35)

14.10
(15.56)

14.57
(16.08)

14.10
(15.56)

14.94
(16.49)

36.47
(40.25)

15.79
(17.43)

15.04
(16.60)

43.80
(48.34)

PB1

DST 6.24 2.47 3.16 6.01 3.24 3.39 28.51 0.15 0.39 5.39
Person-
al

16.49
(41.63)

16.02
(40.47)

15.95
(40.27)

17.03
(43.00)

14.79
(37.35)

15.64
(39.49)

15.87
(40.08)

16.26
(41.05)

29.04
(73.35)

30.35
(76.65)

Order 13.94
(51.14)

14.41
(52.83)

15.02
(55.09)

15.02
(55.09)

14.56
(53.40)

14.79
(54.24)

25.73
(94.36)

15.56
(57.07)

21.65
(79.39)

23.96
(87.86)

Other 0.31
(0.62)

0.23
(0.47)

0.62
(1.24)

0.31
(0.62)

0.39
(0.78)

0.69
(1.40)

19.41
(39.13)

2.16
(4.35)

0.00
(0.00)

9.94
(20.03)

B7 9.32
(11.16)

9.71
(11.62)

10.71
(12.82)

9.71
(11.62)

9.94
(11.90)

10.55
(12.64

29.51
(35.33)

12.48
(14.95)

8.40
(10.06)

19.57
(23.43)

PB8

DST 10.9 13.73 11.2 10.36 9.17 10.01 49.65 5.2 1.73 9.07
Person-
al

25.82
(77.88)

27.06
(81.62)

26.36
(79.53)

24.78
(74.74)

25.02
(75.49)

24.98
(75.34)

19.52
(58.90)

33.00
(99.56)

21.56
(65.03)

29.78
(89.84)

Order 26.26
(81.79)

26.91
(83.80)

25.62
(79.79)

28.64
(89.20)

28.74
(89.51)

27.45
(85.50)

30.97
(96.45)

32.06
(99.85)

27.21
(84.72)

30.43
(94.76)

Other 2.58
(5.47)

4.31
(9.15)

2.53
(5.36)

3.22
(6.83)

2.18
(4.63)

2.33
(4.94)

24.98
(52.99)

1.78
(3.79)

0.15
(0.32)

9.86
(20.92)

B7 17.29
(21.65)

19.72
(24.69)

17.34
(21.71)

19.82
(24.81)

19.18
(24.01)

18.53
(23.20)

42.47
(53.16)

20.91
(26.18)

14.92
(18.67)

27.55
(34.49)

PBPI8

DST 12.09 12.49 16.85 10.6 9.51 11.11 59.27 0.79 1.68 13.28
Person-
al

23.44
(70.71)

23.49
(70.86)

25.97
(78.33)

26.36
(79.53)

26.16
(78.93)

25.22
(76.09)

18.53
(55.91)

21.01
(63.38)

20.91
(63.08)

29.19
(88.05)

Order 21.51
(66.98)

22.10
(68.83)

23.04
(71.76)

27.80
(86.58)

25.12
(78.24)

26.51
(82.56)

20.71
(64.51)

28.84
(89.82)

12.49
(38.89)

29.58
(92.13)

Other 3.77
(7.99)

3.07
(6.52)

3.72
(7.89)

2.82
(5.99)

2.97
(6.31)

2.38
(5.05)

26.16
(55.52)

0.10
(0.21)

0.30
(0.63)

10.70
(22.71)

B7 16.70
(20.91)

15.86
(19.85)

17.00
(21.28)

18.88
(23.64)

16.95
(21.22)

18.09
(22.64)

43.90
(54.96)

19.57
(24.50)

4.41
(5.52)

28.74
(35.98)
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E.4.2 10,000 Dialogues

Table E.15: The test set results of the Personalised Barista with Preferences Information
Dataset with 10,000 dialogues. The best performing methods (or methods within 0.1% of
best performing) are given in bold for the per-response accuracy metric. The results show
that on average and for task 8 (containing all tasks), Split Memory is the best performing
model.

Task
MemN2N Split Memory Key-

Value
Profile

Seq2-
Seq

Super-
visedHop1 Hop2 Hop3 Hop1 Hop2 Hop3

0 34.39 34.56 35.59 37.94 36.69 38.63 66.15 33.78 34.37 50.43
1 67.66 67.46 67.73 69.37 67.84 69.99 69.26 62.24 63.82 70.33
2 68.06 69.24 68.76 68.31 69.69 68.89 74.23 64.44 63.13 67.54
3 75.15 75.05 75.39 75.75 75.38 76.01 54.47 58.88 72.05 66.3
4 79.58 79.75 79.21 77.3 80.49 79.65 61.12 62.28 76.51 66.66
5 75.45 75.94 75.61 75.38 74.91 75.18 55.24 57.51 70.72 63.12
6 79.41 79.38 79.25 74.53 72.03 75.84 56.67 61.29 74.9 61.58
7 80.73 79.56 80.34 72.27 80.79 81.1 49.79 55.63 71.8 66.39
8 81.07 79.39 80.85 72.82 63.38 81.02 46.64 58.45 75.93 62.92
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Table E.16: Percentage of errors in DST, personal(ised), order details, other and Barista Task 7
(B7) phrase types for 10,000 dialogue test sets. The best performing methods (or methods
within 0.1%) are given in bold for the error in per-response accuracy metric, and the error
percentages within the phrase types are given in parentheses.

Task
Error
Type

MemN2N Split Memory Key-
Value

Profile
Seq2-
Seq

Super-
visedHop1 Hop2 Hop3 Hop1 Hop2 Hop3

B7

DST 0.02 0.01 0.02 - - - 0 - 0 0.33
Person-
al

0.01
(0.09)

0.01
(0.07)

0.01
(0.09)

- - - 0.00
(0.00)

- 0.00
(0.00)

1.06
(8.20)

Order 0.73
(3.21)

0.60
(2.68)

0.86
(3.83)

- - - 22.24
(98.54)

- 0.02
(0.08)

10.80
(47.86)

Other 0.01
(0.01)

0.00
(0.01)

0.00
(0.00)

- - - 2.92
(4.53)

- 0.00
(0.00)

0.77
(1.19)

PB0

DST 21.99 3.22 0.79 27.97 26.36 23.58 33.16 1.36 0.78 0.28
Person-
al

64.39
(98.62)

63.72
(97.59)

62.05
(95.04)

60.41
(92.53)

58.71
(89.92)

58.00
(88.84)

64.09
(98.16)

63.58
(97.38)

64.05
(98.10)

63.92
(97.90)

Order 32.89
(99.46)

32.97
(99.71)

33.05
(99.94)

32.95
(99.63)

32.96
(99.66)

32.43
(98.05)

32.09
(97.03)

33.07
(100.00)

33.07
(100.00)

33.05
(99.95)

Other 0.01
(0.02)

0.00
(0.01)

0.00
(0.00)

0.01
(0.02)

0.01
(0.02)

0.01
(0.02)

1.02
(2.98)

1.30
(3.80)

0.47
(1.37)

0.74
(2.17)

B7 0.42
(0.62)

0.50
(0.74)

0.57
(0.85)

0.48
(0.71)

0.49
(0.72)

0.56
(0.84)

1.60
(2.38)

1.89
(2.80)

1.06
(1.56)

1.32
(1.95)

PB1

DST 13.43 10.19 0.13 15.41 13.29 13.68 10.62 1.25 0.24 0.18
Person-
al

31.21
(47.80)

31.96
(48.96)

31.26
(47.89)

29.69
(45.48)

29.22
(44.76)

29.79
(45.63)

25.27
(38.71)

34.85
(53.38)

34.27
(52.50)

41.44
(63.49)

Order 16.53
(49.96)

16.66
(50.37)

16.61
(50.20)

16.62
(50.23)

16.62
(50.24)

16.58
(50.12)

16.19
(48.95)

20.01
(60.50)

19.85
(60.02)

25.78
(77.94)

Other 0.02
(0.05)

0.02
(0.05)

0.02
(0.05)

0.03
(0.09)

0.03
(0.08)

0.00
(0.00)

1.26
(3.70)

1.01
(2.96)

0.38
(1.11)

0.34
(1.01)

B7 0.50
(0.73)

0.60
(0.89)

0.55
(0.81)

0.57
(0.85)

0.57
(0.85)

0.57
(0.85)

1.86
(2.76)

1.61
(2.39)

0.98
(1.45)

0.93
(1.38)

PB8

DST 6.89 5.64 2.19 0.59 8.79 1.01 50.18 0.59 0.62 3.66
Person-
al

20.98
(51.00)

21.21
(51.56)

20.55
(49.97)

21.81
(53.02)

21.55
(52.40)

21.56
(52.43)

27.09
(65.87)

25.71
(62.50)

25.96
(63.13)

32.10
(78.04)

Order 12.87
(34.95)

12.99
(35.30)

13.10
(35.58)

12.90
(35.04)

12.95
(35.17)

12.99
(35.28)

34.06
(92.54)

33.40
(90.73)

17.59
(47.79)

32.74
(88.93)

Other 0.02
(0.04)

0.02
(0.06)

0.03
(0.09)

0.03
(0.09)

0.04
(0.09)

0.08
(0.19)

14.20
(35.45)

0.31
(0.78)

0.03
(0.08)

4.69
(11.70)

B7 0.88
(1.20)

0.98
(1.33)

1.21
(1.64)

0.87
(1.19)

0.98
(1.33)

1.09
(1.47)

31.32
(42.52)

18.94
(25.71)

2.78
(3.78)

19.24
(26.12)

PBPI8

DST 0.31 0.48 0.58 5.84 4.67 4.67 43.87 0.33 0.3 3.46
Person-
al

18.12
(44.05)

19.76
(48.04)

18.95
(46.06)

21.60
(52.52)

26.43
(64.26)

26.43
(64.26)

25.62
(62.30)

22.76
(55.34)

21.71
(52.79)

26.16
(63.61)

Order 9.81
(26.66)

9.85
(26.76)

9.89
(26.86)

16.17
(43.94)

25.30
(68.73)

25.30
(68.73)

28.18
(76.56)

29.97
(81.42)

12.46
(33.85)

27.39
(74.41)

Other 0.01
(0.02)

0.03
(0.09)

0.02
(0.06)

1.21
(3.03)

1.24
(3.08)

1.24
(3.08)

8.92
(22.27)

0.16
(0.40)

0.21
(0.53)

3.25
(8.11)

B7 0.81
(1.10)

0.83
(1.13)

0.90
(1.23)

5.58
(7.57)

10.18
(13.82)

10.18
(13.82)

26.06
(35.37)

18.79
(25.51)

2.36
(3.20)

17.62
(23.91)
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Appendix F

Information Forms and Questionnaires for

Socially Assistive Robotics Study

This appendix section presents the self consent and information form and the evalua-

tion questionnaires used in the socially assistive robotics study in cardiac rehabilitation,

presented in Chapter 9. The first document is the consent form used for all of the con-

ditions. The next two documents contain the information and additional questions for

control (no robot) and social robot conditions, respectively. All conditions have been evalu-

ated with a modified version of Unified Theory of Acceptance and the Use of Technology

(UTAUT) (Venkatesh et al. 2003; Casas et al. 2019) questionnaire, as shown in Table F.1. The

personalised robot condition have been evaluated additionally with a set of personalisation-

specific questions (presented in Table 9.2 in Section 9.3.2) and the Working Alliance

Inventory (WAI) (Horvath & Greenberg 1989) (Table F.2).
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1 2016 
 

Información	para	el	paciente	y	formulario	de	consentimiento	
informado	

	
	Este	 es	 un	 formulario	 de	 consentimiento	 informado	 diseñado	 para	 invitarlo	 a	 participar	 en	 forma	
voluntaria	en	la	investigación	descrita	a	continuación:	
	
Nombre	 de	 la	 investigación:	 Evaluación	 del	 impacto	 de	 la	 intervención	 de	 un	 robot	 social	 en	 las	
respuestas	 cardiovasculares	 de	 los	 pacientes	 del	 programa	de	Rehabilitación	 Cardíaca	de	 la	 Fundación	
Cardio-Infantil	Instituto	de	Cardiología.	
	
Investigador	Principal:	Carlos	Andrés	Cifuentes	García,	Mónica	Rincón	R	
Coinvestigador:	Luisa	Fernanda	Gutiérrez,	Lorena	Pinzón,	Marcela	Cristina	Múnera	R.,	Wilson	
Alexander	Sierra,	Luis	Eduardo	Rodríguez	
	
Entidades	participantes:	Escuela	Colombiana	de	Ingeniería	Julio	Garavito,	Fundación	Cardio	
Infantil	Instituto	de	Cardiología	
	
			Este	documento	de	Consentimiento	Informado	tiene	dos	partes:	
	

§ Información	sobre	el	estudio	
	

§ Formulario	de	Consentimiento	para	firmar	si	está	de	acuerdo	en	participar	
	

Parte	I:	Información	
	
Introducción	
	
					Estas	hojas	de	consentimiento	informado	pueden	contener	palabras	que	usted	no	entienda.	Por	favor	
pregunte	 al	 investigador	 principal	 o	 a	 cualquier	 persona	 del	 estudio	 para	 que	 le	 explique	 cualquier	
palabra	o	información	que	usted	no	entienda	claramente.	Se	le	dará	una	copia	del	documento	completo	
de	consentimiento	informado.	
	
Propósito	
	
					Las	 enfermedades	 cardiovasculares	 son	 la	 principal	 causa	 de	 mortalidad	 en	 países	 en	 vía	 de	
desarrollo;	 específicamente,	 en	 Colombia	 en	 el	 2010,	 fue	 reportado	 que	 hubo	 un	 total	 de	 muertes	
prematuras	por	enfermedades	cardiovasculares	equivalentes	a	14.589	hombres	y	9.910	mujeres	por	
cada	100.000	habitantes.	El	mayor	porcentaje	de	dichas	muertes	están	dadas	por	enfermedad	isquémica	
del	corazón	(57	%),	enfermedad	cardiovascular	(20	%),	otras	enfermedades	cardiovasculares	(12	%),	
enfermedad	hipertensiva	(7	%),	insuficiencia	cardíaca	(4	%)	y	enfermedad	reumática	(0,5	%).	Dentro	de	
este	contexto,	la	rehabilitación	cardiovascular	(RC)	es	una	herramienta	fundamental	para	la	mejoría	de	
la	calidad	de	vida	de	pacientes	con	alguna	patología	cardiovascular,	y	del	mismo	modo	para	prevenir	la	
reincidencia	en	dichas	patologías.	RC	constituye	actividades	físicas	las	cuales	buscan	que	los	pacientes	
consigan	niveles	óptimos	físicos	y	mentales	para	reintegrarse	a	la	vida	cotidiana.		
En	este	estudio	los	pacientes	serán	escogidos	al	azar	para	que	estén	frente	a	un	robot	y	otros	no	estarán	
frente	al	robot.	
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El	propósito	de	esta	investigación	es	hacer	mediciones	de	su	caminata	sobre	la	banda	sin	fin	(Caminadora	
o	trotadora),	con	unos	electrodos	que	se	colocarán	sobre	la	piel	a	nivel	del	tronco	y	el	brazo	y	serán	
detectados	por	un	robot	que	estará	frente	a	su	banda	sin	fin,	dichos	electrodos	y	el	robot	no	tienen	ningún	
efecto	sobre	su	salud	y	no	producen	molestia	ya	que	no	son	invasivos.	Posteriormente	se	analizarán	los	
datos	medidos	 y	 servirán	 para	 analizar	 el	 efecto	 del	 robot	 en	 la	motivación	 y	 el	 desempeño	 de	 los	
pacientes	a	hacer	mejor	el	ejercicio.	Con	el	fin	de	realizar	una	evaluación	de	su	respuesta	cardiovascular	
(del	corazón	y	los	vasos	sanguíneos)	se	harán	mediciones	de	frecuencia	cardiaca	y	tensión	arterial,	antes,	
durante	y	después	del	ejercicio.	Esto	servirá	para	ver	si	los	pacientes	que	están	frente	a	un	Robot	tienen	
mejor	desempeño	en	el	ejercicio,	están	más	motivados	y	mejoran	su	condición	física	Si	usted	queda	en	el	
grupo	sin	Robot	tendrá	las	mismas	mediciones	que	el	otro	grupo	que	tiene	el	robot.	
	
Tipo	de	Intervención	de	Investigación	
	
					Esta	investigación	incluirá	un	protocolo	de	medidas	no	invasivas	durante	la	sesión	de	rehabilitación	
cardíaca	sobre	banda	sin	fin	durante	36	sesiones	en	la	fase	II	o	III.	Se	harán	mediciones	de	como	usted	
realiza	la	caminata	sobre	la	banda	sin	fin	como	son:	la	velocidad,	la	amplitud	del	paso.	De	igual	manera	
se	 le	 registrará	 la	 frecuencia	 cardiaca	 y	 tensión	 arterial,	 antes,	 durante	 y	 después	 del	 ejercicio.	 Su	
participación	en	esta	investigación	es	totalmente	voluntaria.	Usted	puede	elegir	participar	o	no	hacerlo.	
Tanto	 si	 elige	 participar	 o	 no,	 continuarán	 todos	 los	 servicios	 que	 reciba	 en	 esta	 institución	 y	 nada	
cambiará.	Usted	puede	cambiar	de	idea	más	tarde	y	dejar	de	participar	aun	cuando	haya	aceptado	antes.	
	
Riesgos	
	
					Al	participar	en	esta	investigación	usted	no	se	expone	a	un	riesgo	mayor	que	si	no	lo	hiciera.	
	
Molestias	
	
					Al	participar	en	esta	investigación	puede	existir	una	mínima	molestia	ocasionada	por	el	contacto	de	
electrodos		con	la	piel	al	nivel	del	tronco	y	el	brazo.	
	
Incentivos	
	
					No	se	le	dará	ningún	dinero,	regalos	o	incentivos	por	tomar	parte	en	esta	investigación.	
	
Confidencialidad	
	
					En	 este	 proyecto	 la	 información	 será	 vinculada,	 es	 decir,	 la	 información	 puede	 relacionarse	 o	
conectarse	con	la	persona	a	quien	se	refiere.	Sin	embargo,	esta	información	será	registrada	de	forma	
anónima,	en	este	caso	no	se	puede	vincular	con	la	persona	a	quién	se	refiere	excepto	mediante	un	código	
u	otros	medios	conocidos	solo	por	el	titular	de	la	información.	De	esta	forma	se	protege	la	información	
personal	de	los	sujetos	participantes.	Su	identidad	nunca	será	revelada	o	publicada	
	
Compartiendo	los	Resultados	
	
					Durante	 el	 estudio,	 los	 participantes	 podrán	 conocer	 en	 todo	momento	 el	 estado	del	 proyecto	 de	
investigación	y	los	resultados	preliminares,	se	buscará	la	divulgación	de	los	resultados	definitivos	que	se	
obtengan	de	esta	investigación,	para	que	otras	personas	interesadas	puedan	aprender.	No	se	compartirá	
información	confidencial.	
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Derecho	a	negarse	o	retirarse	
	
					Usted	no	tiene	por	qué	tomar	parte	en	esta	investigación	si	no	desea	hacerlo.	Puede	dejar	de	participar	
en	 la	 investigación	 en	 cualquier	 momento	 que	 quiera.	 Es	 su	 elección	 y	 todos	 sus	 derechos	 serán	
respetados.	
	
A	Quién	Contactar	
	
					Si	tiene	cualquier	pregunta	puede	hacerlas	ahora	o	más	tarde,	incluso	después	de	haberse	iniciado	el	
estudio.	 Si	 desea	 hacer	 preguntas	más	 tarde,	 puede	 contactar	 cualquiera	 de	 las	 siguientes	 personas	
Mónica	 Rincón	 R.	 Correo	 electrónico:	 mrinron@hotmail.com,	 Teléfono-Extensión:	 6672727	 ext	
51401,51402,	51406	
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Parte	II:	Formulario	de	Consentimiento	
	
Yo,	 _________________________________________________________,	 identificado	 con	 cedula	 de	 ciudadanía	 número	
__________________________________,	 declaro	que	 he	 leído	 y	 comprendido	 el	 presente	 documento	 y	 que	mis	
preguntas	han	sido	respondidas	satisfactoriamente;	por	lo	tanto	doy	mi	consentimiento	informado	para	
participar	en	la	investigación	llamada	“Evaluación	del	impacto	de	la	intervención	de	un	robot	social	en	
las	 respuestas	 cardiovasculares	 de	 los	 pacientes	 del	 programa	 de	 Rehabilitación	 Cardiaca	 de	 la	
Fundación	Cardio-Infantil	Instituto	de	Cardiología.".	Estoy	de	acuerdo	en	que	mi	nombre,	edad	y	otros	
datos	 antropométricos	 sean	 almacenados.	 Sé	 que	 puedo	 retirarme	 del	 experimento	 en	 cualquier	
momento.	
	
					Sujeto	Participante:	
Nombre:	_________________________________________	
Dirección:	_________________________________________	
Teléfono:	_________________________________________	
Firma:	_________________________________________	Cédula:	_________________________________________	
	
					Declaración	del	investigador	
Yo	certifico	que	le	he	explicado	a	esta	persona	la	naturaleza	y	el	objetivo	de	la	investigación,	y	que	esta	
persona	entiende	en	qué	consiste	su	participación,	los	posibles	riesgos	y	beneficios	implicados.	Todas	las	
preguntas	que	esta	persona	ha	hecho	le	han	sido	contestadas	de	forma	adecuada.	Así	mismo,	he	leído	y	
explicado	adecuadamente	las	partes	del	consentimiento	informado.	Hago	constar	con	mi	firma.	
	
	
Testigo:	
	
Nombre:	_________________________________________	Cédula:	_________________________________________	
Firma:	_________________________________________	
	
	
	
					Investigador:	
Nombre:	_________________________________________	Cédula:	_________________________________________	
Firma	Investigador:	_________________________________________	
	
					Fecha	(aaaa/mm/dd):	_________________________________________	
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Colombian School of Engineering Julio Garavito 
 
Fundación Cardioinfantil – Instituto de Cardiología 
 
Project: Protocol 2 – Study in perception of a social robot for personalised cardiac 
rehabilitation 
 
Date: ___________ 
Name: ______________________________________________ 
ID:__________________________________________________ 
Age:________________________________________________ 
Gender: M____ F____ 
Level of Education: Primary School__   High School__  Bachelors__  Postgraduate__ 
 
 
The following questionnaire attempts to evaluate five key concepts of the perception of social 
robotics focused on cardiac rehabilitation. This questionnaire is aimed at patients who have 
NOT had any therapy assisted by the robot. 
It is very important to read the following introduction so that all patients have the same 
information about the robot, its operation and the purpose of this type of therapy. You must 
have a robot while we are giving this information in order to understand its functionality.  
 
Physical activity has had multiple health benefits, such as reducing mortality rates caused by 
heart disease, making it one of the most prominent components of the cadiaca rehabilitation 
program. This program aims to evaluate the progress of the patient suffering from these 
diseases. On the other hand, there is evidence that robots can motivate patients during 
therapeutic procedures, why, this project is oriented to the evaluation of routines typical of 
cardiac rehabilitation through the integration of a robotic agent. The system has sensors that 
control the values of the variables used by therapists to monitor the progress of therapy: 
 

● Cardiopulmonary parameters: Heart rate and its evolution through the sessions. 
● Gait spatio-temporal parameters: cadence, step length, and gait velocity. 
● Exertion parameters: Borg scale 

 
 
 
Additional Questions: 
 

1. Would you use the robot during the therapy? Why? 
 

2. What expectations do you have about the therapy assisted by a robot? 
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Colombian School of Engineering Julio Garavito 
 
Fundación Cardioinfantil – Instituto de Cardiología 
 
Project: Protocol 1 – Study in perception of a social robot for personalised cardiac 
rehabilitation 
 
Date: ___________ 
Name: ______________________________________________ 
ID:__________________________________________________ 
Age:________________________________________________ 
Gender: M____ F____ 
Level of Education: Primary School__   High School__  Bachelors__  Postgraduate__ 
 
 
The following questionnaire attempts to evaluate five key concepts of the perception of social 
robotics focused on cardiac rehabilitation. 
 
 
Additional Questions: 
 

1. Would you recommend the use of the robotic system to the patients that are starting 
the rehabilitation therapy?  
 

2. According to your experience, what would you recommend to improve the robot-
based therapy?  
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Table F.1: Adapted Unified Theory of Acceptance and the Use of Technology (UTAUT)
questionnaire developed for all conditions, in terms of perceived usefulness (U), per-
ceived utility (PU), perceived safety (S), ease of use (EU), perceived trust (PT), perceived
sociability (PS) and social presence (SP).

Construct No. Question

U

1 I consider that a robot is a good tool to assist cardiac rehabilitation
therapies.

2 I consider that my interaction with the robot was comfortable.
3 I enjoyed when the robot gave me verbal encouragement when I did a

good job.
4 I am satisfied with the work that the robot did.
5 I consider that the robot adapts to my needs.

PU
1 I consider that the interaction with the robot was beneficial for my

recovery.
2 I consider that the role of the robot was important for the therapy

development.
3 I think that the use of the robot helps me to commit doing my task

well.

S
1 I feel safe during the sessions when working with the robot.
2 I consider it easy to give information to the robot.

EU
1 I consider that the robot is ease to use.
2 I consider that using the robot did not affect the time of the therapy

sessions.
3 I consider that the robot’s instructions were clear.

PT
1 The robot made me confident.
2 I did instruction the robot told me because I trusted it.
3 I like using the robot during the therapies.
4 It gave me confidence that the robot guides my therapy.

PS
1 I consider the robot to be a pleasant conversational partner.
2 I find the robot pleasant to interact with.
3 I feel the robot understands me.
4 I think the robot is nice.

SP
1 When interacting with the robot I felt like I am talking to a real person.
2 It sometimes felt as if the robot was really looking at me.
3 I can imagine the robot to be a living creature.
4 I often think the robot is not a real person.
5 Sometimes the robot seems to have real feelings.
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Table F.2: Adapted Working Alliance Inventory (WAI) questionnaire that measures the
long-term perception of the robot within the personalised robot condition, with Bond, Task
and Goal constructs.

Construct Formulation Question

Bond

Positive

The robot and I understand each other.
I believe the robot likes me.
I believe the robot is genuinely concerned for my welfare.
The robot and I respect each other.
I am confident in the robot’s ability to help me.
I feel that the robot appreciates me.
The robot and I trust one and other.
My relationship with the robot is very important to me.
I feel the robot cares about me even when I do things that the robot
does not understand me.

Negative
I feel uncomfortable with the robot.
I feel the robot is not totally honest about its feelings toward me.
I have the feeling that if I say or do the wrong things the robot will
stop working with me.

Task

Positive

The robot and I agree about the things I will need to do in the
therapy to help improve my situation.
What I am doing in the therapy gives me new ways of looking at my
problem.
I am clear on what my responsibilities are in therapy.
I feel that the things i do in therapy will help me to accomplish the
changes that I want.
I am clear as to what the robot wants me to do in these sessions.
The robot and I are in agreement on what is important for me to
work on.
I believe the way that the robot and I are working in my problem is
correct.

Negative

I find what I am doing in therapy confusing.
I believe the time robot and I are spending together is not spent
efficiently.
I find that the robot tasks during the therapy are unrelated to my
concerns.
I am frustrated by the things I am doing in therapy.
The things that robot is requesting me do not make sense.

Goal

Positive

The robot perceives accurately what my goals are.
I wish that the robot could configure the therapy according the
purpose of our session.
The goals of these session are important to me.
The robot and I are working towards mutually agreed upon goals.
As a result of these session I am clearer as to how I might be able to
change.
The robot and I collaborate on setting goals for my therapy.
The robot and I established a good understanding of the kind of
changes that would be good for me.

Negative

I am worried about the outcome of these sessions.
I disagree with the robot about what I ought to get out of therapy.
The robot does not understand what I am trying to accomplish in
therapy.
The robot and I have different ideas on what my problems are.
I do not know what to expect as the result of my therapy.
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Glossary

D-All All samples dataset: Each user is encountered different amount of times (10-41) in

the dataset. xxv, 91, 93–95, 97–108, 110, 111, 113, 298, 299

D-Ten Ten samples dataset: Each user is encountered exactly ten times in the dataset. xxv,

91, 93–95, 97–105, 111, 113, 298

attention Attention in this thesis refers to attention mechanisms, which focus on particular

elements of a task to respond to queries, through non-uniformly weighting parts of

the input to optimise the learning and recall processes. 49, 51, 54, 159, 161–164

Bayesian network Bayesian network is a probabilistic graphical model which represents

conditional dependencies of a set of variables through a directed acyclic graph. 5,

40, 58

catastrophic forgetting Catastrophic forgetting refers to the drastic loss of performance

on previously learned classes when a new class is introduced. 5, 42, 107, 126, 176,

246, 252, 259

closed-set recognition Closed-set recognition assumes that the probe should belong to a

known user, that is, all users to be identified are previously enrolled in the system.

38, 81, 86

continual learning Continual (or lifelong) learning in machine learning refers to learning

information continuously, incrementally and adaptively. In other words, it refers to

incremental learning with adaptation, but it covers both batch and online (sequential)

learning. 58, 128, 155, 157, 175, 176, 189, 246

data-driven Data-driven approaches rely on extracting the structures and values from

the training data, instead of using a knowledge-base or rules. vii, 4, 8, 9, 12, 15, 17,

335



20, 32, 33, 48, 49, 51, 53, 115, 118–120, 122, 123, 125, 126, 128, 132, 133, 135, 136, 155,

157, 160, 169, 172–174, 176, 179, 193, 194, 244, 246, 247, 250, 255–260

DIR Detection and Identification Rate is the fraction of correctly classified probes (sam-

ples) within the probes of the enrolled users. See Equation 3.13. xv, 66, 73, 89, 128,

228, 253, 299

end-to-end End-to-end learning is training the system from input-to-output as a whole,

thereby, removing the need of any intermediate steps of processing. 4, 163, 166

FAR False Alarm Rate is the fraction of incorrectly classified probes within the probes of

unknown users. See Equation 3.14. xv, 66, 78, 89, 128, 227, 253, 299

few-shot learning Few-shot learning refers to the ability to learn from a few labeled

samples in machine learning. 156, 157, 170, 189, 190, 194, 195, 246

FTC Failure to Capture error occurs when a biometric system cannot obtain meaningful

data (e.g., a face cannot be detected in the image). 39

FTE Failure to Enroll error is fraction of users that cannot be successfully enrolled in a

biometric system because of FTC error. 39, 78

generative model Generative models generate a response word-by-word based on the

conversation history (context). 48, 50, 158, 174, 194, 195

hybrid normalisation Hybrid normalisation is an introduced normalisation technique

that combines the normalisation methods that achieve the lowest loss for each modal-

ity. In other words, hybrid normalisation uses the best performing normalisation

method for each modality. 68, 87, 90, 92, 97–100, 109, 113, 114, 245, 300

incremental learning Incremental learning refers to expanding a model for new users or

attributes with input data. 4, 5, 32, 38, 42, 43, 157

knowledge-base Knowledge-base is a structured database with entities and their corre-

sponding values and relations. 4, 47, 120, 140

long-term recognition performance loss The introduced performance metric that creates

a balance between DIR and FAR for long-term interactions, based on the average
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number of observations per user, as presented in Equation 3.15. 23, 67, 68, 70, 89, 92,

114, 245, 253

online learning Online learning is updating the model sequentially with incoming infor-

mation. 4, 43, 58, 71, 89

open world recognition Open world recognition refers to incremental learning of new

(“unknown”) classes, in addition to recognising previously learned classes. 5, 38,

41–43, 57, 70, 72, 84, 87, 89, 128, 175, 245

open-set recognition In open-set recognition, the probe might belong to a previously

enrolled user or an “unknown” user, and it should be identified as such. 38, 41, 42,

44, 71, 81, 86

primary biometrics Primary biometrics are identifiers that can help uniquely identify a

person, such as face recognition or fingerprints. 5, 41, 57, 60

quality of the estimation The introduced confidence measure that compares the highest

posterior probability to the second highest that enables decreasing the number of

incorrect recognitions. See Equation 3.5. 23, 62, 67, 68, 70, 72, 76, 83, 84, 86, 94,

98–100, 108, 252

retrieval-based model Retrieval-based (ranking) models select a dialogue response from

a set of predefined responses (candidates). 48, 49, 158, 163, 165, 174, 178

service robot A service robot is a robot that performs useful tasks for humans or equip-

ment excluding industrial automation applications, based on its current state and

sensing without human intervention. 9, 35

socially assistive robotics Socially assistive robotics refers to the assistive and supportive

robotics applications in social interactions, such as in healthcare and therapy. 9, 36,

201

soft biometrics Soft biometrics are ancillary physical or behavioural characteristics, such

as age and gender, that cannot uniquely identify a person. 5, 41, 59, 89
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Acronyms

AI Artificial Intelligence. 1, 7, 11, 25, 46

ANOVA analysis of variance. 95, 96, 100, 214, 230

API application program interface. 47, 120, 122, 178

APRIL Applications of Personal Robotics for Interaction and Learning. 21

ASR automatic speech recognition. vii, 6–8, 16, 22, 27, 47, 126, 137, 140, 142, 143, 148, 149,

151, 152, 193, 206, 246, 249, 254, 255, 258

BN Bayesian network. 5, 6, 40–42, 58, 59, 62–64, 69, Glossary: Bayesian network

BP blood pressure. 203, 204, 212, 216, 217

BS Borg scale. xxii–xxiv, 203, 204, 206–208, 212, 216–219, 222–225, 230, 233, 235

CR cardiac rehabilitation. vii, xxiv, 10, 12, 18, 20, 200, 202–205, 208–211, 214–216, 219–226,

228–234, 236–241, 243, 248, 250, 260–262

DIR Detection and Identification Rate. xv, 66, 67, 73, 78, 81–86, 89, 92, 94, 96, 100, 103–106,

111, 112, 128, 228, 253, 299, Glossary: DIR

DM dialogue manager. 47

DMN Dynamic Memory Networks. 49

DP dialogue policy. 47, 143

DST dialogue state tracking. xvi, xviii, 47, 143, 155, 156, 170, 180, 181, 183, 185–188, 190,

194, 195, 247, 321, 323

EM Expectation Maximization. 19, 44, 55, 64, 249
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EVM Extreme Value Machine. 15, 42, 89, 99, 101, 106, 110, 112–114, 245, 246, 297, 300

EVM:FR Extreme Value Machine trained with face recognition data. 99, 101, 102, 104, 105,

107, 108, 110, 299

EVM:MM Extreme Value Machine trained with multi-modal data. 99, 101, 102, 104, 107,

108, 110, 112, 299

FAR False Alarm Rate. xv, 66, 67, 78, 79, 81–86, 89, 94–96, 100, 103, 105, 106, 111, 128, 227,

228, 253, 299, Glossary: FAR

FCI-IC Fundación Cardioinfantil-Instituto de Cardiología. 197, 201, 202, 206–212, 215,

247, 260, 261

FR face recognition. 4, 5, 38, 41, 44, 58, 60, 62, 64, 68, 69, 73, 74, 76, 79–81, 83–85, 89, 92, 94,

95, 99–114, 227, 228, 246, 252

FSM finite state machine. 47, 207

FTC Failure to Capture error. 39, Glossary: FTC

FTE Failure to Enroll error. 39, 78, 80, Glossary: FTE

GRU gated recurrent neural networks. 49

GUI graphical user interface. 238, 261

HR heart rate. xxii–xxiv, 203, 204, 206–208, 211, 212, 216–219, 221–225, 231–234, 238

HRI Human-Robot Interaction. vii, 1–3, 5–9, 11, 13, 15, 17, 19–21, 23–27, 29, 31, 32, 34, 36,

37, 41, 44, 45, 48, 51–54, 57, 58, 60, 63, 65, 69, 70, 72, 73, 76, 84, 89–91, 113, 117–119,

122, 123, 125, 132, 139, 143, 157, 162, 205, 211, 243–246, 250–252, 254, 255, 258

HSD Honestly Significant Differences. xxv, 97, 101, 103, 105, 106, 108, 298

KB knowledge-base. 4, 32, 33, 47, 50–53, 115, 120, 125, 126, 132, 134, 135, 140, 141, 143,

151, 155, 170, 179, 195, 247, Glossary: knowledge-base

LSTM long short-term memory. 48, 160, 162

MemN2N End-to-End Memory Networks. xvi, 50, 51, 158, 163–166, 171, 172, 174, 177–179,

182–184, 188, 189, 191–195, 247, 250, 256–259, 313, 315, 316
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MMIBN Multi-modal Incremental Bayesian Network. vii, 18, 19, 22–24, 55, 56, 58, 59, 65,

67–74, 76, 79–81, 83–89, 92, 94, 98–108, 110–114, 137, 141, 151, 152, 227, 228, 244–249,

251, 252, 299, 300

MMIBN:OL Multi-modal Incremental Bayesian Network with Online Learning. 65, 73,

76, 78, 79, 81, 83, 84, 89, 92, 94, 99, 101–106, 108, 110, 112, 141, 198, 208, 222, 227, 228,

299

NLG natural language generation. 6, 27, 47, 143

NLP natural language processing. 6, 8

NLU natural language understanding. 6, 27, 47, 143

OL online learning. 4, 6, 11, 13, 15, 18, 19, 23–25, 28, 29, 32, 43, 44, 50, 53, 55, 58, 64–66,

70–74, 79, 81, 83–85, 89, 92–94, 96, 98, 99, 101, 102, 108, 110, 112, 114, 141, 208, 222,

227, 228, 244–249, 252, 253, 259, Glossary: online learning

OOV out-of-vocabulary. xvi–xviii, 122, 123, 126, 134, 169–172, 182, 185–189, 256, 257, 259,

260, 308–310, 317–320

POMDP Partially Observable Markov Decision Process. 32, 48, 255, 259

QA question answering. 49, 162, 166

R-HR recovery heart rate. xxiii, 204, 212, 216, 217, 224, 231–233

RBDMS rule-based dialogue management system. 7–9, 12, 15, 16, 47, 135, 138, 143, 149,

151, 169, 172, 179, 194, 246, 249

RNN recurrent neural networks. 162

ROC receiver operating characteristic. 78

RoSAS Robotic Social Attributes Scale. xxi, 146–148, 301

SAR socially assistive robotics. 9, 10, 36, 37, 201, 205, 206, 212, 236, 237, Glossary: socially

assistive robotics

SB soft biometrics. 5, 25, 41, 45, 58, 59, 69, 89, 99, 101–104, 111–113, Glossary: soft

biometrics
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Seq2Seq Sequence-to-Sequence. 20, 48, 157, 158, 160, 161, 167–169, 171, 174, 178, 179,

183–186, 190, 191, 193–195, 247, 250, 256–259, 320

SGD stochastic gradient descent. 159, 160, 166

SVM Support Vector Machine. 39, 41, 42, 44, 162

TTS text-to-speech. 7, 47, 142, 143

UTAUT Unified Theory of Acceptance and the Use of Technology. xvi, xviii, 212–214, 216,

220, 226, 227, 235–237, 325, 329

WAI Working Alliance Inventory. xviii, xxiii, 212–214, 216, 219, 225, 226, 325, 330

WoZ Wizard-of-Oz. 4, 27, 35, 52, 118, 119, 124, 257
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