Correction: Ocean acidification at a coastal CO2 vent induces expression of stress-related transcripts and transposable elements in the sea anemone Anemone viridis

Urbarova, I

http://hdl.handle.net/10026.1/16712

10.1371/journal.pone.0230397
PLOS ONE
Public Library of Science (PLoS)

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Correction: Ocean acidification at a coastal CO₂ vent induces expression of stress-related transcripts and transposable elements in the sea anemone *Anemonia viridis*

The *PLOS ONE* Staff

A low-resolution version of Fig 3 was published in error. The authors have provided a higher resolution version for this Correction. The publisher apologizes for this error. Please see the updated Fig 3 here.
Fig 3. Differential gene expression profiles of *Anemonia viridis* and *Symbiodinium* sp. at the sampling sites. Differential expression (DE) pipeline using a glm edgeR approach was applied to account for both the day of sampling and the different pH where samples were taken. The DE analysis was performed separately for *A. viridis* and *Symbiodinium* sp. (A) Principal component analysis (PCA) plots show clustering similarity of individual samples. Numbers in the PCA plots represent different individuals sequenced. (B) Shown are heatmaps with hierarchically clustered, significantly differentially expressed (DE) transcripts between the sampling sites separately for *A. viridis* and *Symbiodinium* sp.
Symbiodinium sp. (C) Venn diagrams visualize the number of private and shared DE-transcripts at pH 7.6 and pH 7.9 compared to normal conditions (pH 8.2). A. viridis contained 526 private DE-transcripts at pH 7.6 and 318 private DE-transcripts at pH 7.9. The symbiont contained 61 and 123 private DE-transcripts at pH 7.6 and pH 7.9, respectively. Venn diagrams were created using venneuler in R software.

https://doi.org/10.1371/journal.pone.0230397.g001

Reference