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Abstract 26 

Understanding species-environment relationships is key to defining the spatial 27 

structure of species distributions and develop effective conservation plans. However, 28 

for many species this baseline information does not exist. With reliable presence 29 

data, spatial models that predict geographical ranges and identify environmental 30 

processes regulating distribution are a cost-effective and rapid method to achieve 31 

this. Yet these spatial models are lacking for many rare and threatened species, 32 

particularly in tropical regions. The harpy eagle (Harpia harpyja) is a Neotropical 33 

forest raptor of conservation concern with a continental distribution across lowland 34 

tropical forests in Central and South America. Currently the harpy eagle faces 35 

threats from habitat loss and persecution and is categorised as Near-Threatened by 36 

the International Union for the Conservation of Nature (IUCN). Within a point process 37 

modelling (PPM) framework, we use presence-only occurrences with climatic and 38 

topographical predictors to estimate current and past distributions and define 39 

environmental requirements using Ecological Niche Factor Analysis. The current 40 

PPM prediction had high calibration accuracy (Continuous Boyce Index = 0.838) and 41 

was robust to null expectations (pROC ratio = 1.407). Three predictors contributed 42 

96 % to the PPM prediction, with Climatic Moisture Index the most important (72.1 43 

%), followed by minimum temperature of the warmest month (15.6 %) and Terrain 44 

Roughness Index (8.3 %). Assessing distribution in environmental space confirmed 45 

the same predictors explaining distribution, along with precipitation in the wettest 46 

month. Our reclassified binary model estimated a current range size 11 % smaller 47 

than the current IUCN range polygon. Paleoclimatic projections combined with the 48 

current model predicted stable climatic refugia in the central Amazon, Guyana, 49 

eastern Colombia, and Panama. We propose a data-driven geographical range to 50 



 

 

complement the current IUCN range estimate, and that despite its continental 51 

distribution this tropical forest raptor is highly specialized to specific environmental 52 

requirements. 53 

 54 
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 57 

Introduction 58 

Defining species distributions in geographical and environmental space is a 59 

fundamental component of conservation management (Peterson et al. 2011). Yet 60 

this information is lacking for many rare and threatened taxa in a rapidly changing 61 

environment (Miller 2010; Lawler et al. 2011). Assessing geographic distribution and 62 

environmental requirements of rare, poorly studied and cryptic species can be 63 

problematic due to scarce occurrence data, resulting in limited information for 64 

conservation managers to act upon (Pearce & Boyce 2006). For these under-65 

documented species this baseline spatial information is either inadequate, or non-66 

existent, especially in highly biodiverse tropical regions, often where organismal 67 

biology is also poorly known (Rodríguez et al. 2007; Tobias et al. 2013; Wilson et al. 68 

2016, Buechley et al. 2019). In response to this knowledge gap, spatial modelling 69 

techniques have been developed to help direct conservation actions and implement 70 

research programs.  71 

 72 

Species Distribution Models (SDMs) can overcome deficiencies in information 73 

regarding distribution by correlating the underlying environmental data at known 74 

occurrences to predict the areas of highest environmental suitability (Scott et al. 75 



 

 

2002; Elith & Leathwick 2009). On the other hand, ordination approaches define the 76 

underlying environmental factors that explain the most suitable environmental 77 

conditions for where a given species is found. Combining both SDMs and ordination 78 

is an effective method to define the distributional and ecological constraints of a 79 

given species (Chase & Leibold 2003; Soberón & Nakamura 2009; Peterson et al. 80 

2011). These methods are particularly useful when using species occurrences 81 

generated from biodiversity databases when modelling distributions for species in 82 

remote, difficult to survey regions (Peterson 2001; Rhoden et al. 2017; Sutton & 83 

Puschendorf 2018).  84 

 85 

The Neotropics are well-known for high avian biodiversity. Yet many birds, including 86 

raptors, face multiple threats across the area, largely driven by human activities such 87 

as habitat loss, agricultural development and resource over-exploitation (Tobias et 88 

al. 2013; Sarasola et al. 2018, McClure et al. 2018, Buechley et al. 2019). Due to the 89 

difficulties of sampling across the extensive and complex terrain of the Neotropics, 90 

applying SDMs using open-access distribution data can generate baseline 91 

information on species distributions in a rapid and cost-effective manner (Cayuela et 92 

al. 2009; La Sorte & Somveille 2020). The harpy eagle (Harpia harpyja) is a large 93 

Neotropical raptor, with a broad yet shrinking range across Central and South 94 

America from southern Mexico to northern Argentina (Ferguson-Lees & Christie 95 

2005; Vargas González  et al. 2006). Harpy eagles generally occur at low population 96 

densities in lowland tropical forest (Vargas González  & Vargas 2011) but are nearly 97 

extinct in Brazil’s Atlantic forest (Srbek-Araujo & Chiarello 2006; Meller & Guadagnin 98 

2016) and in forest enclaves such as riparian forests in open savannahs (Silva et al. 99 

2013).  100 



 

 

 101 

With generally low population densities and a 3-year long breeding cycle, the harpy 102 

eagle is considered a species of conservation concern due to continued habitat loss 103 

and persecution (Vargas González  et al. 2006; Miranda et al. 2019). Currently 104 

categorised as ‘Near-Threatened’ by the International Union for the Conservation of 105 

Nature (IUCN; Birdlife International 2017), local extirpations have occurred in most of 106 

Central America, and the population status of the species across its continental 107 

range is largely unknown (Vargas González  et al. 2006). The current IUCN 108 

geographic range for the harpy eagle estimates an Extent of Occurrence (EOO) of 109 

17.6 million km2 and an unknown Area of Occupancy (AOO, Birdlife International 110 

2017). EOO measures the area within a minimum convex polygon (MCP) from all 111 

known species occurrences, while AOO is a subset of the EOO where the species 112 

actually occurs in occupied grid cells of 2x2 km, excluding vagrancy (Gaston & Fuller 113 

2009; Brooks et al. 2019). Both measures are based solely on spatial locations and 114 

not on underlying environmental information.  115 

 116 

One of the main criticisms of using EOO is that it often includes unsuitable areas, 117 

overestimating the true range, which is more likely to show a discontinuous pattern 118 

of distribution (Jetz et al. 2007; Peterson et al. 2016; Breiner et al. 2017; Ramesh et 119 

al. 2017). SDMs are useful as an alternative measure to complement IUCN 120 

estimates, intermediate between EOO and AOO, especially for rare and under-121 

sampled species (Breiner et al. 2017). SDMs should not be viewed as surrogates for 122 

IUCN criteria but can provide a basis for estimating AOO (Gaston & Fuller 2009; 123 

Breiner et al. 2017; IUCN 2019), especially in the case for the harpy eagle where this 124 

figure is unknown. Using the underlying environmental signature of the species as a 125 



 

 

guide for model interpolation may produce a more realistic data-driven estimate of 126 

distribution area (Peterson et al. 2016). Global range size is a key parameter for 127 

assessing threat status and extinction risk, thus overestimating this figure could lead 128 

to increasingly threatened species being missed (Ramesh et al. 2017). Predicting 129 

areas with the highest environmental suitability can thus focus research effort and 130 

update threatened species’ conservation status (Bierregaard 1998).  131 

 132 

Miranda et al. (2019) produced the first SDM for the harpy eagle, identifying its close 133 

relationship to lowland tropical forest. We build on the strengths of this initial SDM, 134 

first by incorporating extra presence-only occurrences with the Miranda et al. location 135 

data, and second using an expanded set of environmental predictors. Additionally, 136 

we project current predictions into two paleoclimatic scenarios and predict how past 137 

distributions may influence present and future distribution. Long-term ecological 138 

perspectives from paleoclimate models are important for comparing current 139 

distribution to past fluctuations (Nogués-Bravo 2009; Fuller et al. 2011). Further, 140 

having a long-term perspective of past distributions is critical to interpreting current 141 

distribution and can point towards potential refugia expected from future changes in 142 

range size (Fuller et al. 2011; Keppel et al. 2012). Understanding the species-143 

environment relationships regulating current and historical harpy eagle distribution 144 

can therefore help direct conservation management by identifying the spatial extent 145 

for the species.  146 

 147 

Here, predictive spatial models are developed for the harpy eagle in geographical 148 

space using a point process modelling (PPM) framework. Recently, PPMs have 149 

been shown to be most effective for modelling distributions using presence-only 150 



 

 

occurrences (Warton & Shepherd 2010; Renner et al. 2015). PPMs model the 151 

intensity of occurrence points across a given area, thus under low spatial 152 

dependence of occurrences the resulting outputs can be interpreted as either the 153 

relative (Renner et al. 2015), or potential abundance of focal species (Phillips et al. 154 

2017). An ecological profile is then developed using ordination with an Ecological 155 

Niche Factor Analysis (ENFA) to best explain the environmental requirements of the 156 

harpy eagle, compared to the background environmental conditions available. 157 

Specifically, we aim to: (1) re-evaluate current harpy eagle distribution and establish 158 

its ecological niche as a function of climatic and topographical predictors, (2) revise 159 

the estimated current coarse-scale IUCN distributional area and provide 160 

complementary range maps, and (3) predict past distributions from two paleoclimatic 161 

time periods and combine with the current model to identify stable refugia. 162 

 163 

Materials and Methods 164 

Harpy Eagle occurrence data 165 

Harpy eagle occurrences were sourced from the Global Raptor Impact Network 166 

(GRIN, The Peregrine Fund 2018) a data information system for all raptor species. 167 

For the harpy eagle, GRIN consists of occurrence data from the Global Biodiversity 168 

Information Facility (GBIF 2019), which are mostly eBird records (89.88%, Sullivan et 169 

al. 2009), combined with two additional datasets of nests and observations (Vargas 170 

González & Vargas 2011; Miranda et al. 2019). Occurrence data were cleaned by 171 

removing duplicate records, those with no geo-referenced location and for spatial 172 

auto-correlation (see Appendix 1 in Supporting Information). To account for sampling 173 

bias in occurrences, a 4 km spatial filter from each occurrence point was used to 174 

minimise the effects of survey bias, using the ‘thin’ function in the R package spThin 175 



 

 

(Aiello-Lammens et al. 2015). The 4 km thinning distance was selected as a proxy of 176 

mean inter-nest distances based on breeding pairs in the Darien region of Panama 177 

(Vargas González  & Vargas 2011). We used 4 km as a minimum distance knowing 178 

that inter-nest distances recorded across the harpy eagle range can vary (Piana 179 

2007; Muñiz-López 2008). After data cleaning, a total of 1179 geo-referenced 180 

records were compiled for inclusion in model calibration, generally within the current 181 

range defined by the IUCN (Fig. S1, see Appendix 3 in Supporting Information; 182 

Birdlife International 2017). Applying the 4 km spatial filter, resulted in 742 183 

occurrence records for use in the calibration models. The resulting occurrence points 184 

are thus best reported as locations in continuous space, providing the primary 185 

motivation for using the PPM regression framework for subsequent spatial analysis 186 

(Renner et al. 2015). 187 

 188 

Environmental predictors 189 

Thirty-seven bioclimatic and topographical predictors were obtained from the 190 

WorldClim (v1.4, Hijmans et al. 2005) and ENVIREM (Title & Bemmels 2018) 191 

databases. WorldClim variables (n = 19) are generated through interpolation of 192 

average monthly weather station climate data from 1960-1990. The ENVIREM dataset 193 

includes 16 climatic and two topographic variables to complement the WorldClim 194 

dataset providing a wider range of potential variables from which to select model 195 

predictors. Raster layers were cropped and masked to a delimited polygon 196 

consisting of all known range countries (including the states of Formosa, Jujuy, 197 

Misiones and Salta in northern Argentina, and the states of Chiapas, Oaxaca, and 198 

Tabasco in southern Mexico), to extend into potential areas of marginal habitat on 199 

the distribution edges. Reducing the accessible area to the known range improves 200 



 

 

model predictive power by reducing the background area used for testing points 201 

used in model evaluation (Barve et al. 2011; Radosavljevic & Anderson 2014). 202 

 203 

For past predictions, three General Circulation Models (GCMs, Table 1) were used 204 

from the Coupled Model Inter-comparison Project Phase 5 (CMIP5) and 205 

Paleoclimate Modelling Inter-comparison Project Phase 3 (PMIP3) databases for two 206 

paleoclimate scenarios in the Mid-Holocene (~6,000 cal yr BP) and Last Glacial 207 

Maximum (~22,000 cal yr BP). Three GCMs were used to account for variation and 208 

uncertainty in model predictions (Nogués-Bravo 2009), and a summed prediction 209 

calculated from all models for both paleoclimate scenarios. Each summed paleo-210 

distribution was then stacked with the current distribution and overlaid to provide a 211 

summed estimate of environmental stability (Peterson et al. 2017), using the 212 

‘stability’ function in the R package ‘sdStaf’ (Atauchi 2018). Summed stability can 213 

predict areas of stable refugia, where a species is predicted to be present 214 

irrespective of time period (Carnaval et al. 2009). Geographic niche overlap from the 215 

individual GCMs was tested using Schoener’s D (Schoener 1968, Warren et al. 216 

2008), which ranges between 0 (no overlap) to 1 (identical overlap). Paleoclimate 217 

raster data were downloaded from the WorldClim (v1.4, Hijmans et al. 2005) and 218 

ENVIREM (Title & Bemmels 2018) databases and masked to the current range 219 

extent to predict areas of past climatic suitability compared to the current range.  220 

 221 

Multicollinearity between environmental predictor variables can bias models by over-222 

representing the biological relevance of correlated variables (Franklin 2009; Phillips 223 

et al. 2006). Before model construction, environmental cells containing occurrence 224 

records from all 37 variables were tested for multicollinearity using Variance Inflation 225 



 

 

Factor (VIF) analysis (Guisan et al. 2006; Hair et al. 2006) with the ‘corSelect’ 226 

function in the R package fuzzySim  (Barbosa 2015, 2018). A stepwise elimination of 227 

highly correlated variables was used retaining predictors with a VIF threshold < 10 228 

considered as suitable for multi-variable correlation (Dormann et al. 2013). The 229 

remaining variables were then checked for collinearity using Spearman’s Correlation 230 

Coefficient with only variables rs ≤ |0.7| retained for consideration as predictors. We 231 

used solely climatic and topographical predictors as to our knowledge there are no 232 

reliable estimates of landcover extent or anthropogenic impact extending back to the 233 

two paleoclimate scenarios used here.  234 

 235 

After removing highly correlated variables, eight climatic variables (isothermality; 236 

maximum temperature warmest month; precipitation wettest month; precipitation 237 

warmest quarter; Climatic Moisture Index (CMI); minimum temperature warmest 238 

month, potential evapotranspiration (PET) driest quarter; PET wettest quarter), and 239 

one topographic variable, Terrain Roughness Index (TRI), were included as 240 

predictors at a spatial resolution of 2.5 arc-minutes (~4.5km resolution). Final 241 

predictor selection was based on representing monthly and seasonal climatic trends, 242 

extremes and limiting environmental factors strongly related theoretically and 243 

empirically to species distributions (Stockwell 2006; Bradie & Leung 2017; Guevara 244 

et al. 2018; see Appendix 1 in Supporting Information). For example, in tropical 245 

forests rainfall regime and seasonality are predicted to have a strong effect on avian 246 

survival, food availability, and reproductive effort (Stotz et al. 1996; Williams & 247 

Middleton 2008). Therefore, predictors were selected based on seasonal and 248 

monthly precipitation interacting with temperature, as potential limiting factors on 249 

harpy eagle distribution (Williams & Middleton 2008; Busch et al. 2011).  250 



 

 

 251 

Species Distribution Models 252 

SDMs were fitted using a point process modelling (PPM) framework as a form of 253 

infinitely-weighted logistic regression via penalized maximum likelihood (Fithian & 254 

Hastie 2013), treating occurrences as points rather than grid cells in the R package 255 

maxnet (Phillips et al. 2017) and maximum entropy software, MAXENT (v3.4.1). 256 

Recent theoretical work has demonstrated the equivalence of MAXENT to an 257 

inhomogeneous Poisson process (IPP; Fithian & Hastie 2013; Renner & Warton 258 

2013; Renner et al. 2015), which is the most appropriate method for fitting presence-259 

only SDMs (Warton & Shepherd 2010).The complementary log-log (cloglog) 260 

transform was selected as a continuous index of environmental suitability, with 0 = 261 

low suitability and 1 = high suitability. Phillips et al. (2017) demonstrated the cloglog 262 

transform is equivalent to an IPP and can be interpreted as a measure of relative 263 

occurrence probability proportional to a species relative abundance.  264 

 265 

We randomly selected 10,000 background absences recommended for regression-266 

based modelling (Barbet-Massin et al. 2012) and to sufficiently sample the 267 

background calibration environment (Guevara et al. 2018). Convergent threshold 268 

was set at 10-5 and iterations increased to 5000 from the default (500) allowing for 269 

model convergence. Optimal-model selection was based on Akaike’s Information 270 

Criterion (Akaike 1974) corrected for small sample sizes (AICc; Hurvich &Tsai 1989), 271 

to determine the most parsimonious model by tuning two key MAXENT parameters: 272 

regularization multiplier and feature classes (Warren & Seifert 2011). Eighteen 273 

candidate models of varying complexity were built by comparing a range of 274 

regularization multipliers from 1 to 5 in 0.5 increments, and two feature classes 275 



 

 

(Linear and Quadratic) in all possible combinations using the ‘checkerboard2’ 276 

method of cross-validation (k-folds = 5) within the ENMeval package in R (Muscarella 277 

et al. 2014). Response curves, parameter estimates, percent contribution, 278 

permutation importance and a jack-knife test were used to measure variable 279 

performance within the best-fit model (see Appendix 1 in Supporting Information). 280 

 281 

Model evaluation 282 

Optimal model selection was evaluated using Area Under the Curve (AUC), and 283 

omission rates. AUC is a non-parametric, threshold-independent measure with AUC 284 

= 1.0 indicating maximum predictive performance, and AUC = 0.5 being no better 285 

than a random prediction. AUCDIFF (AUCTRAIN - AUCTEST) was used to quantify model 286 

over-fitting (Muscarella et al. 2014), with a value close to zero indicating a low over-287 

fit model (Warren & Seifert 2011). AUC metrics were used as a measure of optimal 288 

model selection, best suited to comparing a range of candidate models (Lobo et al. 289 

2008; Jiménez-Valverde 2012). Omission rates are threshold-dependent metrics for 290 

evaluating discriminatory ability and over-fitting at specified thresholds. Lower 291 

omission rates show improved discrimination between suitable and unsuitable areas 292 

(indicating higher performance), whilst overfitted models show higher omission rates 293 

than expected by theory (Radosavljevic & Anderson 2014). Omission rates were 294 

calculated based on two threshold rules: minimum training presence (MTP) and 10% 295 

training presence (10TP). For low over-fit models the expectation in MTP is a value 296 

close to zero and for 10TP a value close to 0.10.  297 

 298 

Two further test metrics were used to evaluate the final best-fit model. First, model 299 

accuracy was tested against random expectations using partial receiver operating 300 



 

 

characteristic (pROC), which estimates model performance by giving precedence to 301 

omission errors over commission errors (Peterson et al. 2008). Partial ROC ratios 302 

range from 0 – 2 with 1 indicating a random model. Function parameters were set 303 

with a 5% omission error rate, and 1000 bootstrap replicates on 50% test data to 304 

determine significant (𝛼 = 0.05) pROC ratios >1.0 in the R package ENMGadgets 305 

(Barve & Barve, 2013). Second, Continuous Boyce Index (CBI, Hirzel et al. 2006) 306 

was used to measure how much environmental suitability predictions differ from a 307 

random distribution of observed presences (Boyce et al. 2002). CBI is consistent 308 

with a Spearman correlation (rs) with values ranging from -1 to +1. Positive values 309 

indicate predictions consistent with observed presences, with values close to zero no 310 

different than a random model. Negative values indicate areas with frequent 311 

presences having low environmental suitability. Mean CBI evaluation was calculated 312 

using five-fold cross-validation on 20% test data with a moving window for threshold-313 

independence and 101 defined bins in the R package enmSdm (Smith 2019). 314 

 315 

Reclassified binary prediction 316 

To calculate potential range size, the continuous current prediction was reclassified 317 

to a binary (suitable/unsuitable) prediction to complement the current IUCN 318 

geographic range polygon (BirdLife International 2017). Currently there is no 319 

consensus on choosing binary thresholds and threshold selection can be an arbitrary 320 

process (Liu et al. 2013; 2016). We selected 10% training presence (10TP), a 321 

threshold that removes the lowest 10 % of predicted values accounting for any 322 

uncertainty in the occurrence data (Pearson et al. 2007), and visually best fitted 323 

current expert knowledge on harpy eagle distribution. We used the same 10TP 324 

threshold for the paleoclimate predictions because this provided a more realistic 325 



 

 

estimate for current range size to use for projecting into past climatic scenarios. 326 

Finally, we calculated Extent of Occurrence (EOO) with a minimum convex polygon 327 

around all our occurrence points (excluding the ocean) following IUCN guidelines 328 

(IUCN 2019). General model development and spatial analysis were performed in R 329 

(v3.5.1; R Core Team, 2018) using the dismo (Hijmans et al. 2017), raster (Hijmans 330 

2017), rgdal (Bivand et al. 2019), rgeos (Bivand & Rundle 2019) and sp (Bivand et 331 

al. 2013) packages.  332 

 333 

Environmental ordination 334 

To determine species-environment relationships in environmental space, the 335 

underlying environmental data at occurrence points were extracted using the three 336 

most important predictors from their contribution to model prediction. A random 337 

sample of 100,000 background points were extracted to represent the background 338 

environment, with occurrence data and environmental space defined using a 339 

minimum convex polygon. Ecological Niche Factor Analysis (ENFA, Hirzel et al. 340 

2002; Basille et al. 2008) was calculated using all unfiltered occurrence points (n = 341 

1179), against the background environmental data. ENFA directly measures 342 

environmental conditions at the presence points, thus spatial auto-correlation in 343 

occurrence data is not considered a serious issue (Basille et al. 2008). Including as 344 

many presence points as possible is therefore advisable in ENFA to obtain accurate 345 

measures of occupied environmental space (Hirzel et al. 2001).  346 

 347 

ENFA is a multivariate, factorial analysis extracting two measures of a species 348 

realized niche along two axes. The first axis metric, marginality (M), measures the 349 

position of the species ecological niche, and its departure relative to the available 350 



 

 

environment. A value of M >1 indicates that the niche deviates more relative to the 351 

reference environmental background and has specific environmental preferences 352 

compared to the available environment. The second axis metric, specialization (S), is 353 

an indication of niche breadth size relative to the environmental background, with a 354 

value of S >1 indicating higher niche specialization (narrower niche breadth). A high 355 

specialization value indicates a high reliance on the environmental conditions that 356 

mainly explain that specific dimension. ENFA was calculated in the R package 357 

CENFA (Rinnan 2018), using a corrected calculation on the coefficient matrix for 358 

specialization and weighting all cells by the number of observations (Rinnan & 359 

Lawler 2019). Predictors were rescaled thus the resulting ENFA can be interpreted 360 

similar to a PCA with eigenvalues and loadings represented along the first axis of 361 

marginality and the following secondary orthogonal axes of specialization (Basille et 362 

al. 2008).  363 

 364 

Results 365 

Species Distribution Models 366 

The best-fit model (ΔAICc = 0.0) had feature classes Linear and Quadratic with a 367 

regularization multiplier of β = 1. AUC metrics showed moderate predictive 368 

performance (AUCTRAIN = 0.698, AUCTEST = 0.692), with minimal overfitting (AUCDIFF 369 

= 0.06) and high discrimination ability with omission rates close to expected values 370 

(MTP = 0.003, 10TP = 0.11). Testing the model against random expectations 371 

resulted in robust mean pROC ratios (pROC = 1.407, SD ± 0.057, range = 1.235-372 

1.577), with high calibration accuracy between predicted environmental suitability 373 

and test occurrence points (Mean CBI = 0.838). The continuous best-fit model 374 

defined the spatial complexity in distribution for the harpy eagle, and identified an 375 



 

 

area of highest abiotic suitability across Amazonia (Fig. 1), with patchier distribution 376 

across southern Brazil and north into Central America (Fig. S3, see Appendix 3). 377 

Reclassifying the continuous prediction using the 10TP threshold (0.415; Fig. 2) 378 

gave an estimate for geographic range size of 9,844,399 km2. Based on our 379 

occurrence data we estimated an EOO of 13,050,940 km2. 380 

 381 

Environmental predictors 382 

From parameter estimates, the harpy eagle was more likely to be associated with 383 

CMI and minimum temperature of the warmest month (Table 2). Overall, three 384 

predictors contributed 96 % to model prediction. Climatic Moisture Index (CMI) 385 

contributed the highest percentage (72.1 %, Table 3), with minimum temperature in 386 

the warmest month (15.6 %) and Terrain Roughness Index (TRI, 8.3 %) the next two 387 

highest contributions (Table 3). CMI had the highest regularized training gain, 388 

followed by precipitation in the wettest month and minimum temperature in the 389 

warmest month (Fig. S4, see Appendix 3). CMI had the highest gain when used in 390 

isolation, so had the most useful information on suitable environmental conditions 391 

when used alone. CMI decreased the gain the most when omitted and could best 392 

explain the environmental requirements of the harpy eagle not present in the other 393 

predictors.  394 

 395 

From the response curves there was a positive response to CMI peaking at ~0.4, 396 

with highest suitability for the minimum temperature of the warmest month increasing 397 

rapidly after 10°C, peaking at 25°C (Fig. 3). Precipitation in the wettest month 398 

peaked at 90 mm/month, before levelling off up to 100 mm, with highest suitability for 399 

precipitation in the warmest quarter at 200 mm. Isothermality peaked at 9-10 %, 400 



 

 

reflecting the constant temperatures harpy eagles need in lowland tropical forests. 401 

PET in the driest quarter had highest suitability at 100 mm/month, but with highest 402 

suitability for PET in the wettest quarter at 50 mm/month indicating a preference for 403 

climates with greener vegetation. TRI peaked at 100 indicating high preference, as 404 

expected, for lowland flat areas with low terrain complexity. 405 

 406 

Environmental ordination 407 

Within selected axes of environmental space harpy eagle occurrences were 408 

clustered within a Climatic Moisture Index ranging between -0.5 and 0.7 (Fig. 4a). 409 

Harpy eagle occurrences showed a lower limit for minimum temperature with no 410 

location points below 10.5 °C in the warmest month. Most occurrences were 411 

clustered around or above 20 °C (Fig. 4a), linked to the harpy eagle’s preference for 412 

generally flat, lowland areas with low terrain complexity (Fig. 4b). Harpy eagle 413 

environmental space did not deviate substantially from the average background 414 

environment available, with the ENFA marginality factor slightly below the available 415 

background environment (M = 0.99; Fig. 5, red circle). However, the harpy eagle is 416 

restricted to a particular environmental space relative to the reference environmental 417 

background with a narrow environmental niche breadth indicating highly specialized 418 

environmental requirements (S = 1.431). Five significant ENFA factors explained 419 

80.75 % of the total variance in niche structure, with the first specialization axis 420 

(Spec1) explaining 28.81 % of this total (Table 4). CMI and precipitation in the 421 

wettest month were the two highest coefficients on the marginality axis, with 422 

minimum temperature in the warmest month the highest on the specialization axis.  423 

 424 

Paleo-distributions 425 



 

 

All individual paleoclimate GCMs predicted similar paleo-distributions with high 426 

geographical niche overlap (Table S1, see Appendix 2 in Supplementary 427 

Information; Figs. S5-S6, see Appendix 3). From the mean projections, hindcasting 428 

the current prediction to the LGM defined a large area of high suitability across 429 

northern-central South America. A further strip of high suitability extended from 430 

present-day Panama, south along the Pacific slope west of the Andes into the 431 

present-day Chocó region and west Ecuador (Fig. S7, top left). In the Mid-Holocene 432 

high suitability areas increased, extending north into Central America, across 433 

Amazonia and east in present-day Brazil (Fig. S7, top right). During the LGM mean 434 

range size was 17 % smaller (Fig. S7, bottom left; Table S2, see Appendix 2), 435 

compared to the current 10TP geographic range size (9,844,399 km2). In the Mid-436 

Holocene, range size had increased from the LGM, but was still 6 % smaller than the 437 

current 10TP range size estimate (Table S2, see Appendix 2; Fig. S7, bottom right). 438 

Areas of highest stable refugia were identifed in the central Amazon basin north into 439 

Guyana, south-east Colombia and Panama (Fig. 6), consistent with these areas 440 

having continuous high suitability since the LGM.  441 

 442 

Discussion 443 

More than half of all global raptor species have declining populations, and there is a 444 

significant knowledge gap on the extent of their distribution and ecological 445 

requirements (McClure et al. 2018). In particular, accurate distribution estimates are 446 

lacking for many tropical forest raptors (Sarasola et al. 2018; Buechley et al. 2019). 447 

We provide an analytical framework for applying predictive spatial models to address 448 

these fundamental issues to a tropical forest raptor. More broadly, we propose this 449 

analytical framework as an efficient and cost-effective approach to tackling this 450 



 

 

problem across all taxa. Using a PPM regression framework is now viewed as one of 451 

the most effective methods to determine species distributions and relative 452 

abundance (Aarts et al. 2012; Renner et al. 2015; Isaac et al. 2019), as supported by 453 

our results. Using climatic and topographical predictors resulted in high model 454 

predictive performance, defining in more detail the spatial and environmental 455 

requirements for the harpy eagle across its geographical range. However, we 456 

recognise that including predictors such as landcover and human impact, which are 457 

changing rapidly, would improve predictions. These, however, will be analysed and 458 

presented elsewhere.  459 

 460 

Spatial requirements 461 

How species are distributed in geographical and environmental space is fundamental 462 

to conservation planning (Loiselle et al. 2003; Pearce & Boyce 2006). Yet accurate 463 

and reliable spatial information, such as geographic range size and environmental 464 

constraints, are often lacking in many tropical biodiversity assessments (Cayuela et 465 

al. 2009; Tobias et al. 2013), and specifically for Neotropical raptors (Sarasola et al. 466 

2018). Using a PPM framework enables the predictions given here to be interpreted 467 

as areas of relative abundance (Renner et al. 2015; Philips et al. 2017) under the 468 

assumption that historical habitat is still intact. Building on a previous SDM (Miranda 469 

et al. 2019), our continuous prediction adds further spatial detail showing a 470 

discontinuous distribution. This is likely a consequence of patchy environments, 471 

resulting in spatial heterogeneity in harpy eagle distribution. Miranda et al. (2019) 472 

used both climatic and vegetation predictors, and there is a close visual 473 

correspondence between their predictions and both our continuous and binary 474 

models. This suggests that at the continental scale biologically relevant climatic and 475 



 

 

topographical predictors alone can accurately predict the distribution for the harpy 476 

eagle.  477 

 478 

Our models refine previous coarse estimates of harpy eagle distribution (Ferguson-479 

Lees & Christie 2005; Birdlife International 2017), providing an empirically-derived 480 

range size to complement the species’ current IUCN status. Our binary threshold 481 

polygon estimate of geographic range size (Fig. 2; 9,844,399 km2), was 11 % 482 

smaller than the current IUCN polygon (11,064,295 km2), and our estimated EOO 483 

(13,050,940 km2) was 25.9 % less than the current IUCN EOO (17,600,000 km2). 484 

Based on these figures we recommend reviewing the IUCN distributional area for the 485 

harpy eagle, which can over-estimate avian geographic range sizes (Jetz et al. 2008; 486 

Peterson et al. 2016; Ramesh et al. 2017). Specifically, the removal of semi-arid 487 

areas (such as the Caatinga in eastern Brazil) from across the IUCN range would 488 

show a more realistic geographic distribution. The Caatinga area had low predicted 489 

suitability, no current or historical occurrence records, and was not predicted suitable 490 

for the harpy eagle including during the last glacial maximum (LGM). Similarly, the 491 

Cerrado (in central Brazil) was not predicted as suitable for the harpy eagle either 492 

during the LGM, and all recent records for the species show no evidence of breeding 493 

in the area. Although early naturalists reported breeding harpy eagles in this region 494 

(Sick & Barruel 1984), there is no evidence of a functional population and the area 495 

should be removed from the IUCN range polygon (and any present range 496 

projections) following IUCN guidelines for not including areas where the species 497 

does not exist (IUCN 2019). 498 

 499 

Species-Environment relationships 500 



 

 

The continuous model highlighted distinct areas of high environmental suitability 501 

(Fig. 1), with the binary model closely matching the primary vegetation types for 502 

recognized harpy eagle habitat (lowland tropical broadleaf forest, Beck et al. 2018). 503 

Thus, in the Chocó biogeographic region of north-west Ecuador and south-west 504 

Colombia west of the Andes, the current model defined areas of high environmental 505 

suitability, which correlate with new records of harpy eagles in the Pacific slope 506 

region (Muñiz-López 2005; Muñiz-López et al. 2007; Zuluaga et al. 2018). However, 507 

due to continued habitat loss in this area and across the species range, climatically 508 

suitable areas predicted for some regions may over-represent suitability where there 509 

is no longer harpy eagle forest habitat. Our models also defined previously 510 

unrecognized areas of high environmental suitability in south-east Colombia, 511 

northern Guyana, and along the east Andean slope of Peru and Bolivia. All these 512 

regions may hold viable populations of harpy eagles, with further research and 513 

continued surveys in these areas recommended where possible.  514 

 515 

Environmental suitability predicted for the harpy eagle largely correlates with habitat 516 

selection studies from Amazonian Peru (Robinson 1994). Here, highest frequency of 517 

harpy eagle sightings were recorded in mature flood plain forest, with high nesting 518 

densities below 300 m elevation in lowland humid forest in Darien, Panama (Vargas 519 

González  & Vargas 2011), analogous to the environmental suitability predictions 520 

here. Due to the rarity and large home range sizes of harpy eagles, Thiollay (1989) 521 

was not able to provide population density estimates from French Guiana, but 522 

suggested harpy eagles are rare but widespread throughout the largely tropical 523 

lowland forest in the region, consistent with our results. Although largely thought to 524 

be extirpated from much of Central America, our models identify areas of high 525 



 

 

suitability for harpy eagles along the Caribbean slopes of Costa Rica, Honduras, 526 

Nicaragua and Panama (Fig. S3), which should be prioritised for continued surveys 527 

and habitat protection.  528 

 529 

Using the combined analytical approach enabled a further development of the spatial 530 

modelling process by unravelling the preferred environmental space and ecological 531 

conditions where harpy eagle abundance should be at its highest (VanDerWal et al. 532 

2009; Osorio-Olvera et al. 2019). Climatic Moisture Index (CMI) was the most 533 

important environmental variable defining harpy eagle distribution, with a preferred 534 

CMI = ~ 0.4 (Fig. 3), along with the highest model gain when used solely in a jack-535 

knife test, demonstrating its importance to account for harpy eagle distribution. This 536 

indicates a preference for wet, moist environments, correlating with lowland tropical 537 

forest across Central and South America (Willmott & Feddema 1992; Beck et al. 538 

2018), and suggests that CMI may be a useful surrogate predictor for habitat in 539 

tropical areas. Aligned with CMI and lowland tropical forest distribution was the 540 

positive response to higher minimum temperatures in the warmest month (Fig. 3). 541 

Harpy eagle environmental suitability was highest in areas with a minimum 542 

temperature of ~24°C, reflected in the stable temperature conditions found across 543 

lowland tropical forests. 544 

 545 

Assessing harpy eagle distribution in environmental space revealed similar patterns 546 

of environmental tolerances to the geographical models (Figs. 4 & 5), with CMI 547 

having the highest positive correlation with harpy eagle occurrence. However, 548 

precipitation in the wettest month was also highly correlated with harpy eagle 549 

occurrence (Table 4), following the general observation for tropical regions that 550 



 

 

seasonal rainfall patterns are the main limiting factor for primary productivity and 551 

therefore species distributions (Schloss et al. 1999; Williams & Middleton 2008). The 552 

ENFA confirmed the specialized environmental requirements for the harpy eagle, 553 

strongly linked to CMI and precipitation, which are likely operating as useful 554 

surrogate predictors of lowland tropical forest habitat. Importantly, minimum 555 

temperature of the warmest month (MTWM) had a high negative coefficient value on 556 

the specialization axis (Table 4). This indicates that MTWM is a key climatic predictor 557 

restricting harpy eagle distribution, linked to harpy eagle preference for lower 558 

elevations (Piana 2007; Muñiz-López 2008; Vargas González  & Vargas 2011). 559 

Harpy eagle nests are rarely found above an altitude of 300m (Vargas González  & 560 

Vargas 2011), and as temperature and elevation are closely correlated it seems 561 

likely the harpy eagle is negatively responding to lower temperatures at higher 562 

elevations restricting breeding distribution. 563 

 564 

Paleo-distributions 565 

The two paleoclimate predictions given here place current harpy eagle distribution in 566 

context. During the LGM, highest suitability was centred on northern and western 567 

Amazonia and present-day Panama. This follows current evidence that suggests 568 

during the LGM much of Amazonia was forested (Mayle et al. 2004), contrary to the 569 

rainforest refugia hypothesis (Haffer 1969). However, forest structure was likely quite 570 

different from the present-day, due to lower temperatures, rainfall and atmospheric 571 

CO2 (Mayle et al. 2004), resulting in mixed-forest communities. Climate 572 

reconstructions from Amazonia during the LGM show that temperatures were 5°C 573 

cooler than today (Guilderson et al. 1994; Stute et al. 1995), and that rainfall was 574 

spatially highly variable, as it is in the present-day. Thus, dry forest-savannahs may 575 



 

 

have dominated the region of central and southern Amazonia during the LGM, which 576 

may explain the low environmental suitability for the harpy eagle in this region from 577 

the LGM paleo-climate model. 578 

 579 

During the Mid-Holocene the continuous prediction was similar to the current model 580 

with expansion of high suitability across Amazonia and north into Central America 581 

(Fig. S7, top right, Appendix 3). This may be explained by the correlation of these 582 

areas with expansion of deciduous broadleaf forest in the region during the Mid-583 

Holocene, ultimately related to changing precipitation levels (Mayle et al. 2004). The 584 

increase in distributional area size during this period correlates with a population 585 

expansion identified from genetics from 60,000 cal yr BP, well before the LGM, and 586 

subsequently through the Mid-Holocene (Lerner et al. 2009). The population 587 

expansion prior to the LGM occurred with climatic changes in Amazonia, leading to a 588 

reduction of tropical forest (Mayle et al. 2004), followed by expansion of forest 589 

through the LGM and Mid-Holocene up to pre-Industrial times. Thus, harpy eagle 590 

distribution area is strongly associated with changing climatic conditions (and 591 

therefore vegetation), which suggests a potential reduction in range size under future 592 

drier climate change conditions predicted across much of Central and South America 593 

(da Costa et al. 2010). However, our stable refugia prediction identified key areas of 594 

stable conditions since the LGM where a suitable climatic envelope for the harpy 595 

eagle is likely to persist into the future (Fig. 6). We recommend these areas be 596 

prioritized for conservation and research, holding some encouragement for the future 597 

survival of the species as long as habitat can be maintained. 598 

 599 



 

 

Explaining the observed distribution and ecological constraints of an organism by 600 

reference to its environmental requirements is one of the central goals in ecology 601 

(Krebs 2009). Species at high trophic-levels with slow life histories are often at 602 

increased risk of extinction (Purvis et al. 2000). Therefore, understanding the 603 

environmental processes regulating distribution of apex predators is an especially 604 

pressing conservation need. By refining previous range estimates using relevant 605 

abiotic variables (including those that may act as vegetation surrogates), our models 606 

define the ecological processes shaping both current and past harpy eagle 607 

distribution. However, future distribution models should include variables such as 608 

biotic interactions, landcover and human impacts at broad and fine scales to improve 609 

current predictions, and project into future climate change scenarios. With recent 610 

work demonstrating strong relationships between suitability predictions from SDMs 611 

and species abundance (Weber et al. 2017, Osorio-Olvera et al. 2020), we 612 

confirmed the suitability of spatial point process models to deliver cost-effective and 613 

reliable first estimates of relative abundance for species conservation management. 614 

Having accurate distributional data on the current ranges of tropical birds and raptors 615 

has long been a priority in the Neotropics (Snow 1985; Bierregaard 1998). Using a 616 

range of spatial modelling methods, we were able to establish a baseline of 617 

ecological constraints for the harpy eagle that may help to better plan its 618 

conservation across its vast continental distribution. 619 
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Tables 1014 

Table 1. General Circulation Models (GCMs) from the Coupled Model Inter-comparison Project Phase 1015 

5 (CMIP5) and Paleoclimate Modelling Inter-comparison Project Phase 3 (PMIP3) databases used to 1016 

predict past distributions for the harpy eagle to two paleoclimate scenarios in the Mid-Holocene 1017 

(~6,000 cal yr BP) and Last Glacial Maximum (~22,000 cal yr BP). 1018 

 1019 

GCM Acronym Citation 

Community Climate System Model, v4 CCSM4 Gent et al. 2011 

Model for Interdisciplinary Research on Climate  
  

– Earth System Model MIROC-ESM Watanabe et al. 2011 

Max Planck Institute for Meteorology  
  

– Earth System Model - Paleo MPI-ESM-P Giorgetta et al. 2013 

 1020 

 1021 

Table 2. Parameter estimates derived from beta-coefficients for the harpy eagle distribution model fitted 1022 

using Linear and Quadratic feature classes.  1023 

 1024 

Predictor Linear Quadratic 

Climatic Moisture Index 1.38 -3.62 

Minimum temperature warmest month 0.13 * 
Maximum temperature warmest month 0.05 * 

PET driest quarter 0.03  0.00 

Precipitation wettest month 0.02 * 

Terrain Roughness Index 0.02  0.00 

Precipitation warmest quarter 0.00 * 

Isothermality^2 * -0.01 

PET wettest quarter^2 *  0.00 

 1025 

 1026 

 1027 

 1028 

 1029 

 1030 



 

 

Table 3. Percent contribution and permutation importance for variables used as environmental 1031 

predictors in the current distribution model for the harpy eagle. All values are %.  1032 

 1033 

Predictor Percent contribution Permutation importance 

Climatic Moisture Index¹ 72.1 43.1 
Minimum temperature warmest month 15.6 22.8 

Terrain Roughness Index²   8.3 12.4 

PET driest quarter   3.0   9.8 

PET wettest quarter   0.5   5.2 

Isothermality³   0.2   5.2 

Precipitation wettest month   0.2   5.2 

Precipitation warmest quarter   0.0   0.7 
Maximum temperature warmest month   0.0   0.4 

 1034 
¹ Ratio of annual precipitation to annual evapotranspiration 1035 
² Variation in local terrain around a central pixel 1036 
³ Mean diurnal temperature range/temperature annual range*100. 1037 
 1038 
 1039 

Table 4. Variance explained by the five most significant factors (Marg. = marginality; Spec = 1040 

Specialization) in an Ecological Niche Factor Analysis (ENFA) for suitable harpy eagle environment 1041 

space. Coefficient values for the nine environmental predictors are ordered according to the highest 1042 

coefficient values in the marginality factor.  1043 

 1044 
ENFA axis Marg Spec1 Spec2 Spec3 Spec4 
Variance explained (%) 14.05 28.81 13.82 12.51 11.56 

      
Predictor         

 
Climatic Moisture Index  0.56  0.24 -0.08 -0.24  0.26 

Precipitation wettest month  0.47  0.04  0.00 -0.05 -0.04 

Min. temp. warmest month  0.36 -0.72 -0.30 -0.28 -0.27 
Isothermality  0.28  0.12  0.03  0.08  0.33 

PET wettest quarter -0.26 -0.35 -0.31 -0.40  0.20 

Precipitation warmest quarter  0.25 -0.07  0.01  0.15 -0.15 

PET driest quarter  0.23 -0.39 -0.49 -0.19 -0.56 

Max. temp. warmest month  0.21  0.31  0.73  0.77  0.57 

Terrain Roughness Index -0.12 -0.17 -0.18  0.23  0.21 

 1045 
 1046 



 

 

Figure legends 1047 

 1048 

Figure 1. Predicted current distribution for the harpy eagle with values closer to 1 having highest 1049 

environmental suitability. Grey borders represent national borders and internal state boundaries for 1050 

Argentina, Brazil, and Mexico. Black points define harpy eagle occurrences. 1051 

 1052 

Figure 2. Reclassified binary range prediction for the harpy eagle using 10% training presence (10TP 1053 

= 0.415) threshold. Khaki area is the suitable environmental space above the 10TP threshold, white 1054 

areas not suitable. Red polygons define current IUCN range for the harpy eagle. Grey borders 1055 

represent national borders and internal state boundaries for Argentina, Brazil, and Mexico. Blue points 1056 

define harpy eagle occurrences. 1057 

 1058 

Figure 3. Response curves for predictors used in the current distribution model for the harpy eagle. 1059 

 1060 

Figure 4. Distribution of harpy eagle occurrences in selected pairs of environmental variables. Grey 1061 

points are random background environmental points, red points are harpy eagle occurrences. Black 1062 

hashed line defines the minimum convex polygon of harpy eagle occurrences.  1063 

 1064 

Figure 5. Ecological Niche Factor Analysis (ENFA) for suitable harpy eagle environment space 1065 

(khaki) within the available background environment (grey) shown across the marginality (x) and 1066 

specialization (y) axes. Arrow length indicates the magnitude with which each variable accounts for 1067 

the variance on each of the two axes. Red circle indicates niche position (median marginality) relative 1068 

to the average background environment (the plot origin).  1069 

 1070 

Figure 6. Predicted climate stability for the harpy eagle summed from the current, Last Glacial 1071 

Maximum (LGM, ~22,000 years ago) and Mid-Holocene (~6,000 years ago) predictions. Values of -2 1072 

indicate species absence, -1 to 0 shows colonizable areas, 0 to 1 defines areas of highest stability 1073 

and values of 2 (dark red patches) show the most unstable areas. Map defines summed prediction 1074 

masked to current geographic extent and geo-political boundaries. 1075 


