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Abstract

This thesis describes the classification human activity for the purpose of
detecting falls, later extended to multiple activities. This was done with the
final intention of implementing a robotic companion for older persons that
can provide a certain level of automated care in case of some sort of emer-
gency. The complexity of this work, combined with restrictions of the robot,
motivated a creation of an infrastructure abstraction to allow deferred (de-
centralized) processing. The initial work was done by implementing classifiers
that work use pre-processed skeleton data extracted from RGB plus Depth
(RGB-D) sensors and implements some steps in order to make classification
robust to changes. RGB-D classification first focused on falling detection and
then extended into general activities which could be classified from skeleton
data. A later attempt used Convolutional Neural Networks (CNNs) for classi-
fication of video footage of activities. All of those algorithms were modified to
output classifications in real time. Results achieved were around 90% in accur-
acy for a simple fall vs. not fall activity in the TST fall v2 dataset, 70% global
combined accuracy for the 12 actions of the Cornell activity dataset (CAD60)
using skeleton data and 75% accuracy for the 51 actions on the Human Mo-
tion recognition Database with 51 actions as described in [97] (HMDB51), all
of those showing close to state-of-the-art performance on datasets. On new
activity data based on skeletons and video, however, results were less encour-
aging with 33.5% accuracy on skeleton data and 37.9% accuracy based on
video.

While these results do not allow for a robotic platform to perform action
detection currently, the overarching structure of systems necessary to execute
it was demonstrated and used successfully, opening up doors for future re-
search using more complex systems.
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Introduction

I was interested in investigating social assistive robots to track the habits of people

and how could this information be used to foster wellbeing. The impact of healthy

life-style choices, such as not smoking, a healthy diet, moderate alcohol consumption

and physical exercise are associated with an overall lower mortality rate [51]. How-

ever, accurate long-term information is difficult to gather [156] and health scientists

are still not certain on what are best strategies to foster healthy behaviour.

It is reasonable to assume that, if one wishes to intervene on those variables, first

they need to be measured properly. Socially Assistive Robots (SARs), were they to

be present in people’s homes, would be the ideal platform to solve this problem.

As populations across the globe get older, and gradually lose their independence,

there is a growing concern about who will take care of this population. SARs has

been proposed as a possible solution for this issue. As the possibility of having

robots in older person’s homes increases, more interest is put on studying how to

make use of this new interesting data, one of those is activity related information.

In this context, I explored what I assumed is a desirable feature of a SAR: distress

detection. Acute distress can have very negative outcomes if the person can’t,

themselves, ask for help. While acute distress can manifest itself in a number of

different ways, the prototype for such a situation would be a fall event.

From my personal experience, a recurrent concern reported on doctor’s appointments

by older persons living alone is that ”they could become sick and no one will be there

to help them”. This fear alone can be enough to motivate an otherwise healthy and

independent adult to move into a retirement facility; a detrimental occurrence, as it
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is known that changing the surrounding environment of an older person can cause

disorientation and compromise cognitive functions. Institutionalisation itself has

negative effects in terms of mortality rate and perceived quality of life of elderly

persons [148]. While research has tried to address this issue [23], most current

extant technology for elderly care consists on gadgets that each offers only limited

functionality and often require considerable changes to a person’s house and lifestyle.

A robot has the potential of condensing the capabilities of multiple different devices,

however, to be useful in this context, it should (among other things) be able to

”understand” what the user is doing.

With these considerations in mind, fall detection poses an interesting problem as it

is a hallmark of distress and could add great value to a robotic care platform.

Falling events are, however, very uncommon; in the domain of Human Activity

Recognition (HAR), it would be most advantageous if robots could detect many

different actions from a human user and react accordingly. These are the subjects

that will be examined and explored in this thesis.

Thesis Structure

This document starts with a literature review of the context of elderly care (see

Chapter 1). It explores medical aspects (see Section 1.1) and elderly care technolo-

gies (see Section 1.2 and Section 1.3), as a background that justifies the study of fall

detection and activity detection. This chapter also reviews assistive robotics (see

Section 1.4) with an overall view of general assistive robots (see Section 1.4) with

a focus on assistive robotics for the elderly (see Section 1.4.2) and the progression

into more specific uses cases that could be deployed on a robot, with a review of fall

detection (see Section 1.5) and generalising this idea to more general actions (see

Section 1.6). In the end of this chapter a brief summary of the expected

In Chapter 2, we present the infrastructure used for the present study, namely the

design implementation structure chosen (see Section 2.1), an overview of Active

Vision and Face Detection implementations (see Section 2.3).
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Subsequent chapters 3, 4 and 5, represent different study cases of the evolution of the

approach to classifiers of human activity, starting with fall detection using skeletons

a falling stick model (Chapter 3). This structure is used and developed further to

classify activities in general, which is described in chapter 4. Chapter 5 describes

the deep learning implementation and my attempts at classifying real data obtained

with the robot.

In Chapter 6, a general discussion is presented with reflections on the challenges

related to the work presented in chapters 3, 4 and 5. In that chapter I also present

ideas for future work to improve and build upon the activity classifiers, and how

this could hope to improve the classification.
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Chapter 1

Current state of research

In this chapter I aim to answer the question of how can one use a socially assistive

robot to help promote health of older persons, by monitoring habits related to health,

namely activities and among others occurrence of falls. I aim to demonstrate is that

health monitoring is an important aspect of this task, both in monitoring acute

ailments as well as state of chronic conditions. As such it can provide a safety net

that promotes independent living in old age (see Section 1.1). In this context, a robot

can provide additional gains over other types of devices by providing a privileged

monitoring point which can substantiate adequate prompt interventions to improve

quality of life for older persons.

Sections are constructed including an overview, a discussion and closed with a a

conclusion about how knowing specifically the state of the art of this particular field

has influenced me and the specifications of the platform design.

The starting point is reviewing the general outline of technical advances made in

older person care (see section 1.1) and consider what kinds of functionality can

potentially be condensed into a single device, a robot, and such topics will be in-

vestigated further (see section 1.2).

The first major technology investigated was Telemedicine (TM) (see section 1.3).

TM serves as an important paradigm, because it uses very little infrastructure, it

has been widely studied and it attempts at not only detecting conditions, but also
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treating them, providing a useful ground comparison for a more complex system

I wish to build. Additionally I consider that one can potentially include TM in

a robotic platform as a way of combining additional gains from TM into other

functionalities SARs have.

Socially Assistive Robot are reviewed on its current state of the art (see Section 1.4),

both in general (see Section 1.4.1) and more specifically for elderly care (see Sec-

tion 1.4.2). Adding functionality to SARs would increase its usefulness for the

end-user. Possible additions I considered in this thesis were fall detection (see sec-

tion 1.5) with Red Blue and Green, i.e. 3 channel colour image (RGB) and RGB-D

sensor data, later generalized to activity detection (see section 1.6).

A final section 1.7, will propose expected contribution to the knowledge of this

study.

1.1 Independent Living in Old Age

The concern of older persons living alone is not unfounded: quick access to health

care saves lives. It is a medical fact [74] that diseases that can present themselves

as a loss of conscience, such as strokes and heart infarctions - those two, the leading

causes of death worldwide - can have an excellent prognosis if treated within 3

hours. Particularly cardiac arrests present a survival rate of about one in each three

subjects, if Cardiopulmonary Resuscitation (CPR) and defibrillation are initiated in

less than 5 minutes, whereas the probability of survival without any help is virtually

zero [171]. Also other diseases such as pneumonia or Chronic Obstructive Pulmonary

Disease (COPD) exacerbations do tend to have a faster recovery [183] if treated

promptly. One must take care as to not make bold assumptions, even more in the

scope of major reviews [48] are yet to reveal clear benefits of TM. Some interesting

recent results [45] [46] [143] [70], however, hint COPD as a likely candidate to benefit

from remote monitoring, as it could mean the provision of this fast access. Accurate,

robust health monitoring of acute events is certainly a desirable feature to enable

independent living in old age.
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Not only acute events could benefit from persistent health monitoring; also chronic

conditions and their progression is certainly of interest. One must note the high

prevalence of chronic illness in older adults. Multimorbidity, that is, having 2 or

more chronic health conditions, is reported to prevalent in 40%-80% of older adults.

One study [106] from Sweden reported 55% prevalence of multiple comorbidities of

the older adults population enrolled in its Kungsholmen Project in Stockholm, and

an additional 30% having one chronic illness. Another study prepared from data of

the Statistics Canada Research Data Centre at McMaster University, reported that

79.3% of persons in the age group 50-64 had at least one chronic condition, 90% of

persons in the age group 65-79 and 93.3% of persons over 80 years of age.

Moreover, not only illnesses could benefit from careful health monitoring, but also

lifestyle. With ageing, considerable changes occur in eating habits. Irregular nu-

tritional status has been recognised as having important effects in the outcomes of

morbid conditions, such as cancer, heart disease and dementia [181]. Malnutrition

in older patients is presumed to be underdiagnosed due to normal loss of muscle

mass associated with ageing and combined obesity and protein malnutrition which

is common in this population, and is in itself a harder condition to evaluate in med-

ical practice. The prevalence of malnutrition in persons over 65, when described

as either deficits in protein, calories, vitamins or micronutrients, can be as high as

35% [181]. In elderly living in nursing homes this value may be even higher, with

a study from Finland reporting 86% of 267 nursing patients from 3 different cites

presenting malnutrition or being at risk [79]. It is also reported that polypharmacy

(taking multiple medications), declining cognitive skill (evaluated as a Mini Mental

State Examination score of under 20) and depression (evaluated with the Geriat-

ric Depression Scale) were independent factors that were correlated to malnutrition

risk. A reasonable hypothesis would be to assume that regular evaluation of eating

habits of older persons (evaluated in terms of quantity and frequency), may make

it easier to detect dysfunctional eating habits even before malnutrition may present

itself.

Perhaps more importantly is to note that evidence shows that many of the so-called
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age-associated illnesses can be prevented or even reversed with adequate life-style

changes [50].

With these considerations in mind, the motivation for this Ph.D. thesis was broadly

defined as: ”How can one use automatic systems to evaluate the well-being of elderly

persons”, and then, upon detecting that something is wrong, implement another

system to take the appropriate actions to mitigate negative consequences. Several

assumptions were made a priori, so as to limit the work and try to make sure it

could be realised in a reasonable amount of time by a single person, namely:

� Early detection of acute events: the prototype of these events is a fall. My

focus on acute events has a simple rationale to enable a study to be carried out

on a short amount of time as this would be a part of a Ph.D. thesis, which is

limited in its duration. More scientifically, chronic issues are also more likely

to be caught by physicians or family members, so adding a system to focus on

those would probably not be as effective in promoting well-being.

� Should enable long term detection and logging of multiple events of interest.

This refers to the extension of fall detection to multiple activities and should be

the basis of a detector of appropriate and inappropriate lifestyle so as to thwart

development of chronic conditions. As suggested by my literature review, I

wish to track eating and drinking habits, exercise patterns, mobility, taking

medications and smoking habits, among others.

� The proposed system does not rely on wearable devices. Patients tend to not

use devices or medication when they consider themselves to be fine. This is a

very serious issue and one of the reasons why high blood pressure or diabetes

are so difficult to control. This would also be an issue for fall detection, if

it relied on a wearable sensor that was not being worn at the time of falling.

This is a strong concern as most falls tend to occur at night [14, 187] and it

would be very likely that a patient would not be wearing the sensor in this

case.

� A system should not majorly modify the person’s living environment. Modific-
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ations to someone’s house are quite effective, but difficult to implement, since

they depend on the person’s house layout, habits and current health status.

It would be more convenient to come up with a system that does not rely on

such changes to facilitate adoption.

A robotic system, with appropriate sensors, that could position those sensors ap-

propriately to gather data of interest seem to solve those issues. This is the kind of

system I wish to investigate in the context of evaluating and promoting well-being.

As this task, as stated, was too broad, I limited the explorations to detection and

limited detection to initially of falls (see Section 1.5 for review and Chapter 3 for

experiment and implementation) with an attempt at extending this investigation to

a classifier of different activities (see Section 1.6 for a review and Chapters 4 and 5

for implementations of a skeleton based activity classifier and a deep learning based

activity classifier respectively).

1.2 Assistive Technology for Older Person Care

With the ageing of populations around the world, elderly care is a field of growing

concern. Many different technological aids [23] are being developed specifically for

this population and robotics has emerged as a possible solution, as the mobilisation

of human caretakers for such a large amount of persons seems unfeasible. While

robots - regarding human-robot-interaction - are yet to find a particular field in

which they are undeniably useful, an interesting approach [132] to their use is finding

newer areas in which they can nothing but excel, simply because there are neither

persons nor other technology available to perform that task.

A literature review was done in the topic of assistive technology for elderly care,

which organised and described ad hoc roughly as follows (slightly modified version

of Katchouie’s paper classification [78]):

� Telemedicine (TM)

– Human Supervised TM
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– Automatic TM

� Smart Sensors: Internet of Things (IoT) 1,2

– Ambience Intelligence

– Wearable Devices

� Electromechanical Assistive Devices

– Orthopaedic (Adnexal) devices: wheelchairs, walking aids, exoskeletons,

reaching arms

– Embodied systems, viz., Robots

* Service Robots

* Socially Assistive Robot

The classification presented here had the initial aim to be broad, yielded a vast

number of papers and poses quite a difficult task for a single person to review

properly. A decision was made to narrow down on its scope to focus mostly tasks

that could be migrated and combined into a single robotic platform. I marked in

bold letters the items which I will investigate further, namely Human Supervised

TM and SARs2.

Ideally I would also review different sensors and their use in an elderly care scenario,

so as to determine what kind of information would not be obtainable without those

specific sensors, but upon reviewing the subject, it was recognised that this task

would be too broad and it could be integrated in a future step. A smaller more

focused overview of wearables and smart sensors will be presented on the context of

fall detection in section 1.5.1 . An additional remark must be made as there is quite

a great degree of overlap in some of those technologies, with many studies doing

interventions with one or more of those modalities combined.

1Considerable overlap with TM applications, many commercial products.
2I will also review indirectly some functionalities which are currently proposed to be implemen-

ted by smart sensors when I review fall detection.
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1.3 Human Supervised Telemedicine

Telemedicine (TM) is an obvious choice of application that could be implemented

in a robot [89, 147, 152], but itself does not necessarily require such a complex

infrastructure as the one that a robot implements. The rationale here is very simple:

assuming that, for whatever reason, there is already a service robot inside someone’s

residence, then deploying an algorithm that increases functionality adds very little

cost with enormous potential additional gain to the user. Depending on how good a

set of algorithms the scientific community may develop, this collection alone could

justify a robot’s existence in people’s residences and be a basis for this technological

ecosystem.

An excellent review article was found in the subject of TM done by the Cochrane

Collaboration [48]. This systematic review’s outcomes still hold true today[49, 52]

and will hence be examined in greater detail. it listed around 10000 studies, but

included only 93 studies with around 22k participants. The focus was on sick in-

dividuals and not elderly per se - however one must note the high prevalence of

chronic illness in this population (see Sec. 1.1), which, in my view makes this topic

relevant.

The intervention types were divided by technical outline and scope of intervention

(note that some of them overlap):

� Technical outline:

– Remote telemonitoring (55 studies)

– Real-time conferencing (38 studies)

� Scope:

– Early detection of a chronic condition (41 studies)

– Provide treatment/rehabilitation (12 studies) 3

– Education/self-management (23 studies) 4

3E. g., delivering Cognitive Behavioural Therapy (CBT)
4E. g. education for diabetics
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– Specialist consultation for diagnosis/ treatment (8 studies)

– Real time assessment of health status (8 studies)

– Screening (1 study)

This review presented no benefit for hard outcomes such as all cause mortality (n

= 5239), risk ratio (95% confidence interval): 0.89 (0.76-1.03, p=0.12 for a 6 month

follow up) and admission to hospital (n=4529) risk ratio with range 0.36-1.60.

In some soft outcomes, however, improvements were statistically significant, such

as improving quality of life of patients with heart failure (n = 482, follow-up range

3-6 months, mean difference = -4,39, QoL measured by the MLHFQ questionnaire),

improving diabetes control, cholesterol levels and blood pressure.

Some considerations must be made about the Cochrane review on TM, which curtails

the extent on which conclusions can be drawn based on this review. Those are related

to study size, heterogeneity, failure reporting and Machine Learning (ML) use.

Size and heterogeneity influence conclusions to be drawn from a meta-analysis [69],

as a large number of very small studies with varied implementations and outcomes

measurements make results difficult to compare and may have even hide desirable

outcomes. The most likely possibility is that the differences between in person

interventions and TM are most likely small, and that would require a larger studies

with a very precise methodology to demonstrate. This is of special importance, since

conditions in scientific studies are prepared to be as close to ideal as possible and

one must expect a real world implementation of a system to fall short from the study

design. A conservative interpretation of these results is that one may not expect

to demonstrate any large effect benefit with TM unless considerable methodology

changes are made over what has already been experimented. Another issue brought

on by this great number of small studies is that even positive results end up being

disputed, as this design indirectly enables multiple comparisons [138].

Another issue is that most studies did not report system failures and the few that do,

report numbers as high as 30% system communication failures. Finally an additional
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issue is that no ML was used in these studies (one study used automatic reasoning

for diagnosis and was excluded because of that).

As specifications for an effective TM system, it seems reasonable that a common

framework would produce more homogeneous results and thus enable to demonstrate

smaller size effects. Such a system also should be simple, to show cost-benefits

over traditional care and it should be robust, to be dependable and trusted by

professionals and patients.

We Need Better TM Studies To avoid some of the issues that were brought

by the Cochrane review5 of TM, a sound TM paradigm should aim to have an

infrastructure that is (1) common to all, so as to facilitate analysis and reduce het-

erogeneity of interventions; (2) Simple in its structure (to be also cost-effective), as it

is known cost-effectiveness is a major metric used by policy makers and dictates ad-

option of a technology in the majority of medical interventions by the health sector;

and (3) robust, which is a requirement of most, if not all, medical devices, when one

considers that a failure in some scenarios could cause disastrous consequences.

With such an infrastructure, more studies should be performed that enrol more pa-

tients (to demonstrate more subtle effects) with a high quality layout (double-blind

randomised controlled trials) and over a longer time scale (longitudinal studies).

Those studies should probably focus on some of the effects that were shown to be

improved by TM, like symptom control in Congestive Heart Disease, which, with

a higher population sample, could demonstrate cost-effectiveness by avoiding un-

necessary doctor visits. The same goes for other indirect metrics, such as tighter

control of blood sugar levels in diabetic patients, cholesterol levels and blood pres-

sure, which should, on longer term studies demonstrate benefits of TM in preventing

deaths from vascular disease. Important unknown variables here are (1) the novelty

effect, which could have improved the results for some metrics more than they would

in a longer study (2) adoption rate and dropout, as perhaps this type of intervention

5The Cochrane board itself acknowledges, based on their work, the difficulty in reviewing the
huge number of academic productions on the field of TM [133], indicating it would wish there was
a way to automate the review process so that state of the art information about TM could be
available constantly.
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is considered much too intrusive and could cause patients to stop using the system,

even though it remain theoretically effective.

A more important realisation would be that using a robot solely for TM is prob-

ably not an economically justifiable idea, unless the robotic platform used is very

inexpensive, unlike pure TM interventions shown on some cases to be more cost-

effective than traditional approaches [41]. The reason behind this is simple: the cost

of the robot’s hardware makes it a less favourable alternative if all you need is a

much more affordable smart sensor or communication platform. However this may

change depending on robots already being deployed for whatever other reason, if,

say, a points of failure analysis may show that a robot is more reliable than hav-

ing multiple sensors around the environment, or the price of robots changes or if

some perception modalities are shown to be much better perceived with a moving

robot than with ambient intelligence. Additional aspects may influence one or the

other approach, such as, low adherence to the usage of wearable devices, perceived

higher invasion of privacy with a distributed home camera surveillance system when

compared to a single robot, individual preferences, etc.

Roughly, one can estimate the economical gains of this implementation modality by

examining an example study from 2015 done on the prediction of acute exacerbations

of COPD [46] (not on the Cochrane review) that used ML to achieve a 5 +/- 1.9

days prediction of exacerbation by evaluating respiratory sounds. Assuming that

on average 22% of exacerbations require hospitalization [1] in moderate or severe

COPD, assuming no errors on the system this saves 1.1 hospitalisation days, which

is around £300 pounds (∼ 270£/day in COPD [65]) per year.

COPD is of course an extreme case, with only around 15.3% of older adults having

one or more hospital stays (percentage from the CDC/US in 2016 [20]) and with an

average time of hospitalisation for persons older than 65 being around 5.4 days [21],

yielding a total of 41,680k days of hospital care. As in 2010, 12.972% of the US

population was 65 and over [10] with a total population in 2010 of 308,745,538, one

can estimate the number of elders to be around 40 million. This results in an average

elderly person from the US spending around 1 day in hospital care per year. Similar
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data from Germany [96] puts the number of average around 3.3 hospital days per

year. This study also reports in this age bracket, doctor visits for men at 14.6 per

year, 15.1 visits per year for women, costs that could be offset if a TM robot, at

least in some cases, were able to correctly examine a patient.

Cost of a day of hospital care varies considerably between countries [114], estimated

in 2015 to be from US$ 424 in Spain to US$ 5,220 in the United states. This

would put the expected return from saving an average of one day of hospital care

somewhere between £ 270/day to US$ 5,220/day depending on the country. With

rising costs of hospital treatment as well as life expectancy, there is definite potential

for TM to prove its worth in this scenario, however one must recognise that expected

cost savings alone are not enough to justify a £ 5,000 Nao Robot or a US$ 400,000

PR2 [161]. Those robots may not be the most appropriate for the job of TM, but they

represent the average cost of a simpler models (Nao) to more capable models (PR2).

As more functionality would be required from the robot, the price would gravitate

more towards the Willow’s Garage 2010 PR2 robot - a 20 Degrees of Freedom (DOF)

prototype research robot - which would be in turn offset by the price reductions

from mass production. Simpler Skype on Wheels (SoW) robots [189], such as the

US$ 3,999 Double 3 [72].

This review of TM thus brings me to the conclusion that investigating TM is

probably outside the scope of these studies and would require a much

larger project with mature infrastructure. However it also gives us useful in-

formation about what requirements my Socially Assistive Robot (SAR) implement-

ation should provide, name my item 1 of expected contributions in Section 1.7.

1.4 Assistive Robotics

1.4.1 General Overview of Assistive Robotics

The current uses of assistive robots and robotic companions for the elderly was

also reviewed (see Sec. 1.4.2), with particular mention to cornerstone papers of

Rabbitt [132] that review and propose a new paradigm in which to view the role of
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socially assistive robotics.

The focus of this particular aspect of the literature review is to examine the po-

tential of robots to improve and act on mental health related issues. It is perhaps

worth stressing the difference in focus when discussing service robots and assistive

robots [78]. While both are intended to provide assistance, the former is a kind of

robot that would not only be used in homes, but also office environments and would

tend to perform more manual tasks. The focus of its study would be how to perform

tasks together with a human, manipulate tools, receive directions, navigate cluttered

environments, pick and place objects and related activities. Assistive robots would

tend to focus more on human robot interaction from a psychological aspect and

evaluate positive outcomes that could come from this interaction [132]. It embodies

the idea of a robotic companion, more than just that of an augmented tool to carry

on activities. While the end goal is to have both of those systems hopefully working

on the same platform, currently most of these tasks are research topics and for this

reason the separation here will be made. This section of the review will focus on

the interaction aspects, rather than the service aspects.

It is perhaps worth mentioning that TM alone (without the use of embodied systems,

that is, robots) was analysed for mental health outcomes by the TM Cochrane

review [48]. In total it evaluated 7 studies showing no difference in outcomes, quality

of life or costs, however there is no information on particulars of the design of the

studies or whether they were non-inferiority type studies.

A key paper identified on this topic is a non-systematic review of SARs for mental

health done by Rabbitt, Kazdin and Scassellati [132]. This paper suggests not only

(1) adapting robots to existing interventions, but also (2) use robots for specific novel

research that would not be possible to be implemented by anything else other than

a robot. This paper evaluates usage of robots as a companion, as a therapeutic play

partner and as a coach. While Rabbitt et al. fails to demonstrate any unquestionable

or promising use of robots in this context, it mentions that this may be to the small

size of studies performed.
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A special mention should be given here to coaching, where 2 different studies seemed

to show promising results for robotic coaches. More particularly, a study coaching

elderly to do physical exercise [44] (with 33 participants) found that a robotic exer-

cise coach is more effective than a computer screen coach, where participants found

the robot ”more helpful and attractive” than its screen version, also rating the activ-

ity more ”enjoyable and more useful”, however not detecting any difference between

performance among groups. Additionally another study evaluating a weight loss

coach [84] (with 45 participants) found that training with robots was engaging for

longer (50.6 days usage with robot on average, 36.2 days with a computer, and 26.7

days with a paper log). It however failed to show differences in weight loss, possibly

due its short duration. Caution should be exercised in evaluating this result as the

studies were small, the samples were compose mostly of women participants (27

females and 6 males on Fasola and Mataric’s study and 36 females and 9 males for

the Kidd and Breazeal’s study), and very likely dependent on how good the screen

interface was done as well as other effects that could be at play, such as novelty bias

and social desirability bias. On the other hand, it may as well be that the perceived

embodiement of the robot helps users relate to the task and works by creating a

deeper sense of responsibility and engagement towards the exercise or weight loss

program.

Another important paper in this context was the 2011 Sharkey and Sharkey’s re-

view paper on the ethics of using robots as companions for elderly and younger

children [152]. In those contexts the authors seem to believe that older adults were

better emotionally equipped to deal with robots and draw benefits from this inter-

action as drawing from benefits in healthcare and welfare, while younger children

would possibly suffer mostly negative consequences due to an emotional attachment

that would be based on deceit and anthropomorphization of robots and ascribing

to them characteristics that they do not have. Note that the authors mention both

healthcare and welfare, which does imply that the robotic companions in question

would not only be providing social assistance, but also service robots functionality,

which drives those conclusions further from actual state of research, as they imply
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robotic companions would be quite capable in general to justify their existence in

people’s homes.

1.4.2 Assistive Robotics for Older Person Care

A very good overview of assistive robotics in the context of elderly care is provided

by Kachouie’s paper from 2014 [78], a mixed methods Cochrane library style review.

The author tries to answer the question of what can currently SARs do. Kachouie’s

review is thorough, but limited by the methodologic limitations of the original re-

search, which calls out to more strict experimental conditions in studies in the field

of robotics for elderly care.

Katchouie finds around 1000 studies, including 34 of those in its analysis. The stud-

ies referred are small (number of participants from 1 to 67) and divided into:

� Physically assistive non-embodied: wheelchair, exoskeleton, artificial limb

� Embodied assistance:

– Service robots: independent living, bathing, mobility, navigation

– Socially Assistive Robot: companion

What is related in the reviewed literature seems to demonstrate that the effects

of interacting with these SARs resemble (but were not limited to) those of anti-

depressants [78, 145]: improved mood, reduced stress, increased activity, calmer

and richer expressions.

Although the authors intentions and methodology are sound, it is limited by the

studies which it included, namely their small size, but mostly the fact that most of

the studies had a predominant population of women and that the participants had

multi-factorial dementia. What this review indirectly points out is that if SARs are

in fact useful in this context, adequate studies to confirm this hypothesis are still

lacking. Some important biases could be noted when the table of included studies

was analysed, to name a few (as highlighted by Katchouie et al. [78]):

� Cultural background affects results and attitude towards robots, however most
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robot studies included are from Japan;

� Uneven amount of men in the samples - and gender was recognised as affecting

robot acceptance;

� Many studies included participants with dementia (without specifying cause)

- dangerous to generalise that these results would hold for elderly without

cognitive impairment;

� Most robots used animal looking robots and studies indicate that appearance

influences its acceptance;

� Studies were done mostly in health care facilities, not on subjects’ houses;

� No control for biases (such as the possibility of Hawthorne effect [111]), not

randomised, blinded, experimental, outcomes not standardised or unclear;

� Most studies were short duration with small sample size (most less than a

year, except of Wada et al. [174])

� Weak methodologies [78] makes most studies outcomes possibly very hard to

reproduce.

My Conclusion: Proposed Improvements for SARs Studies The simplest

solution to getting more results in the field of SARs would be bigger (larger number

of participants to reduce random effects and get better estimation of effect sizes, and

reduce Type I and Type II errors), multi-centric studies (to account for different

countries’ perception of robotics) with longer duration (eliminates novelty effect)

and a high quality methodology: clear interventions, randomised and controlled

and blinded if possible, with clear measurable outcomes (assessed by validated tests

or clinically meaningful measures).

Those studies do raise interesting research questions, such as:

� The educational level is inversely associated with overall robot rating: is this

because more educated persons can perceive more of the robots’ shortcomings

or are other dimensions affecting this?
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� Also, people can become attached to very simple robots (e.g Roomba): is this

a global capacity a specific type of person has?

� Is it even ethical to use a machine to provide support for people by exploring

this trait [153]?

� What are the effects on elderly without dementia and what are their effects

on men?

While those studies did raise interesting research questions, I did not find any par-

ticular one that could be tested by the infrastructure the University provided (most

of these questions could be solved with longer and larger studies with many par-

ticipants and robots). Those were similar issues that were presented by the TM

paradigm. What instead seemed to be within the realm of possibilities - and this

would be this thesis’ contribution - is to add more capabilities to SARs, to increase

their potential use (item 1 of my expected contribution in Section 1.7). An addi-

tional item is added to that list, inspired by my desire to have reproducible strong

results, namely item 4. I proceeded with my initial idea of using the robot as a mo-

bile sensing unit and to investigate how well could distress or absence of well-being

be detected by a robotic platform.

1.5 Fall Detection

A vast whilst incipient literature was found in fall detection, particularly oriented

in detecting falls of older individuals [24, 29, 47, 58, 56, 108, 119, 186].

This realisation, together with the fact that unimodal systems could have great

accuracy [120] motivated further studies to initially involve only RGB-D data (ima-

gining a static optimally positioned observer) and consider multi-sensor or sensor

fusion implementations of fall detection more of engineering challenges than scientific

barriers. It is expected that multiple modalities might be necessary on a more ad-

vanced stage after closing an experimental loop and evaluating real-world scenario

causes for failures in detection, however at this stage, for all the aforementioned

reasons, I chose to focus on a single sensor implementation.
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This is an a priori requirement, item 2 on my list of expected contributions in

Section 1.7.

1.5.1 Using Smart Sensors

Detecting falls can be done with very high accuracy with the use of sensor fusion

and wearable devices [58, 108, 186], being already implemented in many consumer

products [168, 22, 128, 150]. These implementations have, however the disadvantage

of requiring installation or to be worn by the subject all times, which greatly reduces

compliance and overall effectiveness.

The specific task of fall detection has recently attracted a lot of research, with a

lot of focus on smart home environments. Most fall detection systems [186] involve

wearing special sensors device with accelerometers or detectors built on the floor or a

combination of video and wearable devices with a sensor fusion approach in order to

increase the accuracy of detection even further. These approaches although simpler

(and therefore robust) have however the limitation of needing either a sensor to be

worn at all times, or that the person’s house to be adapted for this, which in practice

will vastly limit its adherence. I see coding fall detection into some sort of a multi-

functional robotic companion - that could have as one of its many functionalities:

fall detection - as a reasonable solution to this problem. A robot can follow the

user in a different environment, position itself in order to prevent image occlusion

and this avoids the need to renovate someone’s house or remember always to wear

a sensor. Moreover the robot has only to add, as it could serve also as an additional

sensor for a sensor fusion approach in case of a smart home environment.

1.5.2 Remote Assessment of Falls

My intention is to detect falls remotely, that is, without a specific sensor that needs

to be used by the person, for the reasons mentioned in Section 1.5.1. This is a

narrower scope than the detection of falls with any type of sensor, but which already

presents a number of interesting publications. A review of Cippitelli et al. [30], did a

great job in reviewing fall detection with both radar and RGB-D sensors. Although

20



radar implementations would fulfil the requirements of remote assessment of falls,

an additional sensor would also incur in additional cost.

I chose to focus my approach on RGB-D sensor data classifiers, as those have been

made affordable and common with the release of Microsoft Kinect, and reserve the

possibility of adding additional sensors to a platform in the future, if this information

would be proven necessary.

Cippitelli et al. relates 26 different papers that focus on classification of fall X

non-fall events, under 8 different datasets, namely , Falling Event Detection [190],

ATC42 [28], TST Fall Detection v2 [56], Falling Detection [193], UR Fall Detec-

tion [98], SDUFall [6], EDF (itself introduced in the review article ”A Survey on

Vision-based Fall Detection” by Zhang et al.) [195] and OCCU [194]. An addi-

tional dataset that includes falls was mentioned by Zhang et al. [191], the UWA3D

Multiview [134].

Some of those datasets are more challenging than others. I will focus the discussion

on the dataset I used for the first study, the TST Fall Detection v2. Although this

dataset was classified with very high accuracy by the authors (100% accuracy ) [56],

it had done so using IMU data. Rougier et al.’s paper ”Fall Detection from Depth

Map Video Sequences” [139], using centroid’s velocity threshold for classification

of falls, combined with Parisi and Wermter’s ”Hierarchical SOM-Based Detection

of Novel Behavior for 3D Human Tracking” [120], indicated that this was likely a

consistent approach, which coincided with the physical intuition of a falling event

and motivated my first experiment.

1.6 Activity Detection

The accurate detection of human poses and actions has many uses from robotics,

to gaming, security, human-computer interaction, human-robot interaction, telep-

resence and healthcare just to name a few, with this list getting larger each time

accuracy improves. In the field of robotics, activity detection [93] is a fundamental

concept if the robots are used in a setting where they are expected to cooperate
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with humans. The initial approaches to the detection of human actions involved

the processing of RGB images, and as such activity detection was shown to be a

hard problem due to (1) the difficulty in segmenting the human body from the

background, (2) estimating pose and (3) accurately processing pose information.

Recently however this task was made considerably easier with the introduction

of skeleton tracking based on depth-sensing cameras such as implemented by the

Microsoft Kinect, which implement task (1) and (2). As this technology steadily

improves, with the introduction of novel algorithms [157], it also allowed for more

complex perception tasks that depend accurate pose, such as activity recognition,

to be investigated.

While falls are rare, activities happen all the time. In this sense, when compared

to fall detection HAR is perhaps much more widely useful goal (see item 3 in Sec-

tion 1.7). It is a very important intermediate goal if one is aiming to develop a

capable and useful automatic assistant and/or service robot, especially in health-

care applications. In the special case of elderly care, it is fundamental that a helper

system would work with as little as possible input from the user, in a virtually

autonomous way, as one of the goals for such an assistant is that it would be able

to provide care when the user is not at their full capacity. In this sense, recognition

of human activity plays a fundamental role and it is desirable for this activity re-

cognition to be based on as little as possible actively gathered information, and in

this context, RGB-D, by adding another dimension to video data provides a much

simpler to analyse paradigm when compared with the challenged of normal 2D col-

our video. One of the many interesting features of RGB-D data is the ease with

which one may extract useful skeleton poses, which enable works such as the present

one and those of many others [24, 191, 63, 121, 151, 42, 31] to implement activity

recognition based on these time skeleton sequences (see subsection 1.6.1).

More recently, due to great advances done in classifying images using deep net-

work architectures, more complex activity classification algorithms using RGB data

were developed and seem a promising approach to solve this class of problems (see

subsection 1.6.2).
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1.6.1 Skeleton Based Activity Detection

Specifically in this case, I chose to extend the work on fall detection to multiple

activities detection as this is a more complex work, but also enables to test the fall

detection, or the fall detection principles as a specific action, that is, falling, with

other types of activities as proxies for that, as to get people to do realistic falls is

hard and it would be difficult to conceive of a practical way to test such a classifier

in a more realistic scenario, given the rarity of falls.

A vast literature already exists in activity recognition through RGB-D data as it

has in normal video (RGB) data [24]. A high quality, thorough and lengthy review

was done by Zhang et. al. [191], and relates the most widely used datasets for

activity detection as well as the benchmark holder algorithms for such datasets. As

different activities have different levels of interaction between subjects, objects and

the environment as well as different datasets offer varying complexity with different

number of different classes, wider (kicking, running) or more finely grained tasks

(hand movements), I will focus on methods that use skeletons and try to classify

whole body postures - mostly related to my initial goal task of classifying falls.

I will review the state of the art results of CAD-60 in chronological order. Initially

this paper along with the dataset was published in 2012 and it utilises a two-layered

maximum entropy Markov model with a on-the-fly graph structure selection [162]

presenting a (excerpt from the paper)“precision/recall of 84.7%/83.2% in detect-

ing the correct activity when the person was seen before in the training set and

67.9%/55.5% when the person was not seen before”. A comprehensive list of preci-

sion and recall is available at Cornell’s website [136] for conference.

To name a few, Gupta et al. in 2013 [63] classified this dataset without using the

skeleton information (using only the depth maps), using depth information for bet-

ter segmentation and code descriptors to feed an ensemble discriminator achieving

78.1% precision and 75.4% recall. Shan and Akella using skeleton information, in

2014 [151] implemented a classifier that estimates key poses based on estimation of

kinetic energy and a support vector machine to achieve a global precision of 93.8%
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and 94.5% recall, Faria et al. in 2014 [42] used a dynamic bayesian network model to

assign weights to multiple classifiers and implement an ensemble learning technique

to achieve 91.1% precision and 91.9% recall overall. Particularly the architecture

that I was trying to replicate from Parisi et al. 2015 [121] uses a chained growing

when required neural gas classifier to achieve a global 91.9% precision and 90.2%

recall on this dataset. Cippitelli in 2016 [31] uses K-Means and a multiclass support

vector machine with a radial basis function kernel to achieve a global 93.9% preci-

sion and 93.5% recall on the CAD-60 dataset. More recently in 2017, Manzi [105],

using a combined approach (X-Means and Support Vector Machines (SVM)) very

similar to Cippitelli, achieved perfect recognition on this dataset.

1.6.2 Image Based Activity Detection

The works on image based activity detection, that is, the recognition of a human

activity based on a sequence of RGB images can be approached as an extension

of classification of still images so as to accommodate for time variations. As such,

the recognition of human actions in videos is currently still a very challenging re-

search task as it provides and requires additional cues in the motion sequence when

compared to image classification [158].

Earlier attempts at human activity detection employed different complex hand craf-

ted features to better encode spatiotemporal attributes [101, 184, 38, 76] of a motion

sequence. Many different works explore the advantage of those custom features, usu-

ally based on extrapolations of classic image features to deal with temporally chan-

ging data, such as 3D-SIFT [149] (an extension of the Scale Invariant Image Trans-

form (SIFT) algorithm [104]), histogram of 3D gradient orientations (HOG3D) [85]

(an extension of HOG for activity detection [36]), histogram of optical flow (HOF),

Fisher Vectors [142] among many others [179].

As expected from the development of CNN (see subsection 5.2.2 for more details)

and their overall performance in image recognition, a similar process took place in

video recognition, with extensions of 2D CNNs to deal with image sequences (3D

CNNs) [167].
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The “Two-Stream Convolutional Networks for Action Recognition in

Videos” paper from Simonyan and Zisserman Another common approach

employed to improve recognition of action sequences was to use not only the raw

RGB images but also perform time dependent operations to that datastream and

use this data combined with the still images to better capture the time changing

aspect of image sequences. A prominent work that combined those two modalities

and used CNNs for classification was the ”Two-Stream Convolutional Networks for

Action Recognition in Videos” from Simonyan and Zisserman [158] to classify the

UFC101 and the HMDB-51 datasets. Perhaps most importantly in this work was

establishing a way of implementing a CNN based network that could take advantage

of temporal information as it is often the case that image based classifiers extended

to deal with temporal changes use mostly the information just from still images,

citing the work of Karpathy et al. [80], in which a network working on single frames

performs similarly to a network using stacks of frames and was 20% less accurate

than hand-crafted state-of-the-art trajectory based representation classifiers [124]

(65.4% accuracy vs 87.9% on UCF-101).

The key idea for the temporal stream is the use of a multi-frame dense warping

optical flow to construct a frame sequence such as described by Brox et al. [18]. In

order to implement this structure which is used side by side with the RGB frame

classifier, different options of stacking are evaluated (single frame optical flow, that

is, stacking is not used; optical flow stacking with different window lengths, L=5 and

L=10, trajectory stacking or optical flow stacking, unidirectional vs. bi-directional

flows and mean subtraction vs. no mean subtraction) with its best performance

achieved on the UCF-101 dataset with optical flow stacking, stack size L =10, with

mean subtraction and a bi-directional flow of 81.2% when evaluated on split 1 of

UCF-101. The results when combined via a fusion layer using SVM match state-

of-the art recognition performance on the UCF-101 dataset with 88.0% average

accuracy over 3 splits, just slightly outperforming Peng et al. [124] on this dataset,

but not on HMDB51 (accuracy of 59.4% vs 66.79% state of the art at the time,
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”Action Recognition with Stacked Fisher Vectors” from Peng et al. [125])6.

The network used for this work was the CNN-M-2048 architecture of [25] and it is

conceivable that a network with superior image recognition capabilities would also

improve action detection. This possibility was tested and successfully developed by

the TSN and served as the starting point for explorations.

Temporal Segment Network (TSN): the first state-of-art Convolutional

Neural Network for action recognition on HMDB51 dataset The “Tem-

poral Segment Networks: Towards Good Practices for Deep Action Recognition”

by Wang et al. paper from 2016 [178] is a recent important benchmark algorithm

when discussing classification of human actions from datasets such as the UCF101

and the HMDB51.

Several small improvements were added to the TSN classifier so as to enable it to

beat state of the art hand-crafted feature based classifiers. Important is to note

its title as it refers to a temporal subsampling of videos, which is considered by

the authors as its main contributing feature, as this is said to prevent overfitting,

as currently available video actions datasets that have proper annotations are still

fairly small in size.

Additional improvements are the use of other modalities of dense flow computation

methods (aside from Brox [18]) such as Farneback’s dense flow [43] and TV−L1 [188].

More implementation details and considerations are presented in section 5.2.3.

Newest developments and current state of the art classifiers for HMDB51

From the publication of the TSN paper in 2016, 32 other papers have achieved better

accuracy on HMDB51 see Fig. 1.1.

According to the HMDB51 website, as of September 2019, the current highest

accuracy obtained on the HMDB51 dataset is 82.48% from ”Hallucinating IDT

Descriptors and I3D Optical Flow Features for Action Recognition with CNNs” by

Wang et al. [176]. This algorithm employs Improved Dense Trajectory descriptors

6For a good overview on Fisher Vectors see [142].
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Figure 1.1: All the 32 new publications from 2016 until today indexed by HMDB51
website as having higher accuracy than 69.5% TSN. Marked with a blue circle are
the peer-reviewed submissions and with a red cross are the not peer-reviewed ones.
Results are grouped by year and do not represent actual dates in which those were
published.

(IDT) [175], which is a combination of either Bag of Words or Fisher Vectors with

CNNs, more specifically employing the I3D model ”Two-Stream Inflated 3D Con-

vNet (I3D)” [19].

Perhaps also worth mentioning is the second best result, the 2017 article ”End-

to-end Video-level Representation Learning for Action Recognition” from Zhu et

al. [196] built with the Deep networks with Temporal Pyramid Pooling (DTPP)

architecture which makes use of a dual flow and RGB acquiring sparse samples

and the aggregated both in space and time to achieve a video-level representation

on multiple timescales. To note is that this structure is a descendant of many of

the ideas behind TSN, however using a more fine-tuned pre-trained models from

http://yjxiong.me/others/kinetics_action/#transfer; it uses sparse frames

to avoid overfitting, 2 streams design (flow +RGB) and has a model based on the

BN-inception network. Also worth noting is that the code is available for direct

testing in https://github.com/zhujiagang/DTPP.

My Conclusion: Design Specifications for a Robotic Classifier These ob-

servations substantiated my approach on how to design a reasonably generic infra-

structure for classifiers, more specifically, action classifiers, that would be based on

the idea of improving general performance by reuse and combining different existing
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algorithms. Moreover, it is expected that more heterogeneous algorithms (by having

low error correlations) would give the most increase in performance possible.

This is the basis of choosing a skeleton based, topological GWR classifier (see sec-

tions 3.2.4 to 3.2.7 and chapter 3 ) as a starting point for this investigations, as I

suppose should have a low error correlation with classifier responses from promising

structures involving image-based CNN (see chapter 5).

Additionally, the need for multiple algorithm deployment (see item 1) is also the

basis for implementing the ROS-docker encapsulation infrastructure (see section 2.2).

1.7 Expected Advancements to the Science and

Technologies

Considering the landscape of research presented with the current state of TM, HAR,

fall detection and activity detection and progress in the latest years, we aim for our

work to bridge this gap and investigate the implementation of those systems in a

mobile robotic platform.

As an expected contribution to current scientific knowledge, I expect from this

work:

1. Devise an efficient way of deploying a ML algorithm for fall and action detec-

tion on a robotic platform;

2. Implement one or more fall detection algorithm that is testable on a robotic

platform;

3. Implement one or more activity detection algorithm that is testable on a ro-

botic platform;

4. Test the implemented algorithms with a strict cross-validation method, either

cross-dataset validation or real-time classification of data obtained from a ro-

botic platform.

As we want to work with deployment and implementation of many algorithms to

28



hopefully implement ensemble learning and fusion strategies, we see that the infra-

structure needs to be built to allow multiple instances and training modalities at

once. With the idea of ensembles in mind, it is known that algorithms with greater

variability produce better ensembles in the end. The GWR was chosen because of

this feature: it may produce a classifier that excels in situations where others do

not and should improve the overall accuracy of a combined system. CNN was used

as it is the state-of-the-art today in classifiers and as it is a technology that simply

must be used when classifying images, we see (as does the literature) as it being

paramount to classification of moving pictures.

Initial plans and necessary changes During this work, we planned for en-

sembles from the beginning and having multiple algorithms working concurrently

was one of the necessary building blocks of this plan. These implementations, how-

ever, turned out to be much more involved than we estimated and this part of our

plan had to be amended. Another issue was also execution times and processing

loads of running many algorithms at once. Clustering and parallelism were needed to

achieve reasonable performance and structures also needed to be simplified to reduce

network load and latency. The necessity of a solid infrastructure (see Chapter 2) to

isolate classifiers and provide proper networking made itself necessary and a consid-

erable amount of time was spend in devising a proper ROS nvidia-docker interface

and having algorithms work in a distributed way. As I see this work now, it is more

suitable for a team than for a single Ph.D. student, as there are many independent

parts to optimize at once.

All things considered, I am glad with the overall result of this work. The infrastruc-

ture built, although complex, seems evident now if a cluster-like robotic platform

is to be attempted. I believe the ideas presented here should serve as a good step-

ping stone to bigger and more challenging robotic implementations of perception

systems.
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Chapter 2

Infrastructure

2.1 Implementation Overview

My initial implementation (see Chapter 3) of the classifier algorithm for fall detection

did not focus on deployment on the robot. Its main goal was to serve as proof of

concept for a later implementation. As such it was undertaken using Matlab in a

Windows system, so as to be able to conduct tests using the Kinect for Windows1

version of the sensor and its Matlab Software Development Kit (SDK). Most of

the work, however, was done using either the TSTv2 dataset [56]2 or the CAD60

dataset [162]3 . The initial plan was to wrap the classifier and use Matlab’s ROS

interface (and perhaps a simple embedded computer with Matlab and the Kinect for

Windows drivers) and ROS networking capabilities to deploy and test this system,

however the classifier’s performance (see Tab. 4.4) was not considered good enough to

warrant this implementation and newer structure was adopted to be described below.

An overview of the present work implemented to easily deploy docker-encapsulated

deep-learning classifiers in a robotic platform can be seen in Fig. 2.1.

Data is acquired from an ASUS Xtion sensor (see Fig. 2.3a) [7] , whose image frames

are published as a ROS topic and compressed to be sent to the remote ROS network

(see Section 2.2). Frames from this image topic are resized (to a smaller and constant

1Uses Kinect for Windows type skeletons, that is, skeletons defined by 20 joints.
2Uses Kinect v2 type skeletons, that is, skeletons defined by 25 joints.
3Uses Kinect v1 type skeletons, that is, skeletons defined by 15 joints.
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Figure 2.1: Diagram of a general ROS network architecture with fast loop (red) and
slow computationally intensive remote loop (green).

height and width) and used to calculate dense optical flows by the deepflow node

which is used by the classifier. A full resolution version is fed to face detection node,

which will be used by the active vision node.

The active vision node uses the last known tracked face position and image flows to

estimate the current position of the head in the picture frame. This (x,y) position is

used for feedback to a controller node that positions the pan-tilt unit so as to have

the face within a certain portion of the image being acquired by the sensor.

I also implemented a classifier, which is the deployment of a pre-trained model of

the Temporal Segment Network (see section 5.2.3 for overview and chapter 5 for

implementation) using features from a model trained on the HMDB51 dataset [97],

stripped down from its last layer in a transfer learning strategy, feeding theses inter-

mediate values to another network (implemented in pyTorch) which was trained on

and enlarged dataset containing both HMDB51 data samples and my own acquired

dataset (MYSET).
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Figure 2.2: Diagram of the ROS network architecture with Scitos G5 robot as built
with VPN.

2.2 Infrastructure

As the Robot Scitos G5 is not fitted with a CUDA capable graphics card - necessary

for the algorithms I wanted to test - it was decided that a deep learning classifier

would be implemented using a ROS network. The simplest way of doing this would

be to install the necessary packages and repositories from the provided TSN GitHub

page, however, as it was foreseen that maybe more than one implementation of

Deep Learning classifiers would be tried, for portability, I chose to implement a

more complex system that ran inside a docker image. The basic network structure

outline can be seen in Fig. 2.2.

Using docker allowed me to avoid at least partially dependency hell and having

to install multiple versions of software in the same machine as different algorithms

were configured to use slightly different libraries. Docker allows for a more responsive

system when compared to a virtual machine and prevents tainting of the main system

by trying over and over to set up dependencies, failing and have to do a clean install.

Each image can be generated from a Dockerfile script on-the-fly and that script can

be later deployed on a different host, in case I need to restructure the network for

any reason.

The biggest advantage of this system is empowering simple robots in combination

with high-processing capabilities by using workstations that were designed to run
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General-purpose computing on graphics processing units (GPGPU), e. g., CUDA

applications, with minimal changes to the host system.

I believe that this is the most natural deployment of a ROS network in which a

robot is required to use to multiple concurrent deep-learning algorithms and that,

since it relies on ROS and docker, it can be easily extendable and highly modu-

lar. Those are features I want, as they aid in developing speed and help with fast

prototyping, characteristics which are highly desirable for testing multiple different

architectures.

The setup presented here could and should probably be implemented using a docker

compose and docker swarm, but due to a foreseen complexity of starting off with

these models, these were not used. I implemented a simpler version of these systems

which was adequate to run the desired structure, however I advise strongly that the

correct way of running this infrastructure (and make use of more advanced load-

balancing, for instance), should make use of docker compose and docker swarm (see

Future work, Section 6.9.1).

The idea implemented here was heavily inspired by Aquila [126], incorporating ideas

from Elastic Thought [102] and the new paradigm of Edge Computing [155].

2.2.1 Docker Images

As I was interested in running code that required CUDA, each particular docker

image was instantiated from a cuda-ubuntu16.04 with cudnn5 already installed and

then adjusted to have ROS installed.

So as to keep the images to a manageable state, ROS was compiled from source and it

was used mostly to implement the communication protocols, that is, to publish and

subscribe to topics, read and create custom messages, have access to ImageTransport

and openCV-bridge. So as to enable remote deployment from a ROSMASTER, an

ssh server was also installed in all docker images.

The common structure of each image is to have also a docker network setup (one per

host) in a start-up script, along with a ssh-fs mount that enabled the code within
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the docker image to be edited from the host computer. This mount had the catkin

workspace for that image, which would be setup each time the docker image is

compiled, and had the additional packages necessary for that docker-image to do its

tasks. This setup was not strictly necessary, but it ensured I had a single version of

the most current code and it allowed for easier version control (using git for version

control, in this case).

Additionally, as I did not use docker compose, it was necessary to keep track of all

the host images’ IP addresses and their names, if any of the ROS nodes were to

directly communicate with a ROS node contained within that docker image.

2.2.2 Docker Hosts

The common setup necessary on the docker host was kept quite slim, as I inten-

ded for the code to be straightforward and the complexity to be dealt within the

docker images and ROSMASTER. Strictly, the docker hosts only needed to have

docker ce installed and be capable of retrieving docker images. But as I aimed to

use CUDA optimized versions of algorithms, NVIDIA drivers and nvidia docker2

were also needed to be installed.

Each host also contained a folder in which the docker image packages would be

contained, and was setup to have an openssh-server, so that docker image packages

startup scripts could be called remotely.

2.2.3 Docker Image Package

So as to launch each docker image, a git package was organized containing scripts

to set up the docker image and build it, as well as the catkin workspace (with its

packages as submodules) that would be shared between host and docker image.

Each docker host was set-up as to do forwarding (which was setup automatically if

needed by a startup script to be run on the docker host), so that the docker machines

that it would spawn could communicate with the ROSMASTER. The docker startup

script also set up manually docker network bridges that were set on host basis, that
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is, each host had its own docker bridge and provided the docker images with an IP

in its range.

Additionally the script would have each host have access to a shared samba mount,

for common file sharing among all ROS network nodes.

2.2.4 Rosmaster

As I did not use docker compose, the ROSMASTER needed to keep track of all

docker images’ IP addresses so it would adequately set up communications back

and forward. An adequate ip routing table also needed to be set, as each docker

host was also forwarding packages to each of its containing docker images. This was

done manually by a script that would add all the hosts in my network and create

the adequate routing table. This package would also be responsible with setting

up ’ssh-rsa’ keys with docker images so that ROS’s paramiko could ssh into docker

images and launch nodes remotely (using launch files <machine>tags).

2.2.5 Virtual Private Network (VPN)

Another issue I needed to solve when deploying this structure is that, although

the robot is mobile, my ROS network is not and the robot needs to connect to it

somehow.

My initial idea was to have the robot physically near the network and have a net-

work cable, so that neither security nor bandwidth issues would arise. This would

also remove worries about time delays and package loss, especially when streaming

multiple video channels.

An idea that would provide some bandwidth and network limitations was then to

evolve the structure a little bit and connect the robot via WiFi to our ROS network,

however, none of those approaches was possible, since I did not have a testing space

near the ROS network computers or within WiFi range. The solution I adopted

for this issue was to use eduroam with a Virtual Private Network (VPN) tunnel

and to stream compressed video between the robot and the network. Inside local
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the network, video topics would be streamed uncompressed, for speed and ease of

use. An encrypted tunnel was used, because otherwise the robot’s software interface

would be exposed to the outside world. Not only could the video stream be watched

by anyone else, which would raise privacy concerns, but also commands to move the

robot could be issued, which could pose serious physical harm.

This approach has the advantage of enabling use of the robot with remote pro-

cessing at any point within coverage of eduroam, however it creates a bottleneck

in terms of bitrate, which requires the use of compressed Video or Theora encoded

image transport topics. Unexpectedly to me, this is more of an issue than I assumed

initially, as it places more restrictions on what kind of processing can be done re-

motely. Compressed video using a resolution of 640x480@30fps is forwarded through

a VPN usually quite well, however transient artefacts are occasionally present in the

video, possibly due to spikes in network usage within the university’s infrastructure.

Additionally, I also can’t use caching strategies, due to small delay requirements

from nodes such as the active vision implementation (see Section 2.3). Moreover,

I noticed that quick movements of the subject or quick camera movements would

generate lots of artefacts, which are detrimental for video capture and those would

most likely degrade the classifier’s performance.

In my tests, so as to mitigate this issue, I thus, decided to try to avoid quick camera

movements and position the subject slightly further away from the robot than I

would believe optimal, so as to minimise frame changes, which is perhaps a sub-

optimal solution, but that still produces videos visually similar to the ones in the

base dataset, that is, the HMDB51, which includes lower frame-rate videos, and

some compression artefacts (see Future Work Section 6.9 for ideas on how to deal

with this issue).

2.3 Active Vision

Active vision, as described by Aloimonos et al. [3], is defined by having an active

observer which tries to control some geometric parameter of the sensory apparatus.
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It stresses that human perception is not passive, but active, with humans observing

scenes while adjusting eyes for the level of illumination, focusing on objects of in-

terest and adjusting the angle of their eyes and head so as to observe a scene better.

One of the main motivations of using active vision is to mitigate some of the issues

that passive vision have and thus observing images that are hopefully easier for the

classifier to process. Ballard describes a similar concept which he refers to as an-

imate vision [9], in which the goal is to control the direction of gaze and thus get

a better representation of the environment. The paper also bases its justification

on biologically inspired works that link perception with action. One particularly in-

teresting example comes from seminal research from Yarbus [2] that shows, among

other things, how different instructions affect how a participant views a particular

image. This finding is taken as a cornerstone for eye tracking research [165]. Bal-

lard’s paper also describes gaze control algorithms that although focus on moving

stereo camera systems, do apply to some of the issues I was facing when using a

static camera paradigm.

More specifically, in order to detect an action using a video-feed, one needs to track a

subject within its environment, to make sure the action is being captured on camera.

For this I sought to devise an active vision strategy that would allow me to keep the

subject within the frame all of the time.

As this was not the main focus of the investigations, I tried to deploy a system that

was only good enough for the task, and with that a simplified strategy was sought.

The strategy chosen was not the detection of the whole person, but mainly focusing

on the subject’s head (using for this a face detection algorithm). Later a simple

controller would move the head so as to keep the person in the frame.

The code necessary to run this is available in (face detection docker image launcher:

https://github.com/mysablehats/FT, from ROSMASTER repo, use the move-

head package https://github.com/mysablehats/wholerobot_act and denseflow

docker image launcher, nested branch: https://github.com/mysablehats/dt/

tree/nested).
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2.3.1 Face Detection and Fast Feature Tracking using Op-

tical Flow

Face detection is considered a mature image classification problem and I chose to

make use of available of the available computational resources and went for the most

accurate CNN classifier open source face detection algorithm I could find. In doing

so I hoped to not have this subsystem in any way degrade the performance of the

other challenging tasks I needed to perform.

For face detection I used the algorithm provided with full code from https://

github.com/ageitgey/face_recognition [57] based on the dlib library with a

.9938 mean accuracy on the Labelled faces in the Wild dataset [170] - note human

mean accuracy was measured to be 0.9920. While dlib is not state of the art,

many of the highly performing systems are commercial software, while dlib has

freely accessible code. Dlib allows face detection, using a 640x480 resolution up to

5 meters away, which was suitable for my experiments. However, deploying such

algorithm with this required accuracy, would run at maximum frame-rate of 2-6fps,

which was too slow to allow proper PanTilt Unit (PTU) control.

In order to improve the speed of accurate face-detection, another strategy was

used, based on the fact that I am already calculating optical flows for the clas-

sifier. Namely, with dense optical I have dense motion vectors for a whole image,

so integrating these vectors over time allows me to estimate where the face might

have moved during the time with which I don’t have any response from the face

detection algorithm. A better estimate of face’s position is thus calculated using

both response from the neural network and the estimated position from the sum of

vectors from the whole area where the face was last seen in the picture, namely, if I

define M to be the motion vector at instant t, f to be a function proportional to the

flow vector of each pixel within the image and A as the area of interest constituted

by ∆Ai pixel elements, for a generic mask I have:

M(t) =
n∑

i=1

f(t)(xi, yi)∆Ai
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where:

(xi, yi) ∈ Ai.

and k is a constant specific to the flow algorithm being used.

For a simpler case of a not using a custom mask, but instead considering a rectan-

gular approximation, with time dependent limits [x0, x1][y0, y1], I have a more easily

computable formula as:

M(t) = k

x1∑

x=x0

y1∑

y=y0

f(t)(x, y)

With the updated position of the object’s centre C from t0 until a time t being given

by:

C(t) = C(t0) + k
t∑

τ=t0

M(τ)

This idea mimics behaviours of the human eye saccades and could probably be

extended to tracking of any particular object, with a reduction in Neural Network

(NN) computational costs, if I assume that calculating dense optical flows is less

complex than object identification.

2.3.2 PanTilt Unit (PTU) Control

The PTU used in the Scitos G5 robot’s head is the PTU-D46 from direct perception

(see figure 2.3). Drivers for this unit were available for ROS in https://wiki.

ros.org/flir_ptu_driver, however since the robot was using an older version of

ROS, due to its operating system being 32 bits, and older version had to be used

which caused additional issues. Moreover faulty hardware (a serial port problem)

presented as an intermittent problem was causing issues with control and limited

the amount of tests I could perform.

The control strategy used was a simple proportional gain control, with values meas-

ure experimentally so as to avoid overshooting. Those were set to be kx = 0.0011◦/pixel
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(a) (b)

Figure 2.3: Scitos G5 head (a) with Xtion sensor and 2 firewire cameras (not used)
and a detail of its pan-tilt unit (b), the PTU-D46-17.5.

and ky = 0.0012◦/pixel and set velocity to a constant 0.9◦/s. An attempt to im-

plement indirect velocity control was attempted, but due to low baud rate (9600

bps), unnecessary data sent through the serial port by the old ROS driver imple-

mentation (specifications form the unit recommend Encoded Mode (binary format

for higher bandwidth computer control) and the driver was implemented with In-

teractive Mode (ASCII command set) and the option for velocity control was not

implemented), the fastest I could get information to and from the PTU was 6hz

(surprisingly much slower than the sped up face recognition algorithm running at

30fps, possibly limited by camera frame-rate). A proper implementation of very fast

head tracking would also entail coding the correct driver options (encoded mode and

velocity control), or using another PTU (or even designing another proper PTU, as it

is not such a complex unit, with say, dynamixel motors and 3D printed parts).

This speed limitation was not too much of an issue, however it did make it so

that fast movements, especially near the robot, would cause the face tracking to be

lost.

For the controller set-point, I chose not to position the head in the middle of the

frame, but rather have it a bit up, so as to make sure that most of the body of

the subject would be present within the captured frame. In the end, experimental

testing showed that the optimal position so as to have the head not leave the frame
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too often, was to position it in the middle of the first third (from top to bottom) of

the picture frame.

So as to minimise the need for constant camera movement (and avoid image com-

pression artefacts), a deadband was also implemented, comprising 30% of picture

size in the x axis (horizontal axis) and 20% in the y axis (vertical axis).

2.4 TSN docker specific implementation details

The choice for classifier that guided this whole structure was for the python-Caffe

TSN https://github.com/yjxiong/temporal-segment-networks. As in the pa-

per that described it, I used both RGB and flow trained networks to attempt clas-

sification of actions. In my implementation, the classifier’s GitHub package itself

was divided into 2 docker image loader repositories, namely one that provided the

dense optical flows (https://github.com/mysablehats/dt/tree/nested) and an-

other that implemented the caffe wrapper (https://github.com/mysablehats/CT/

tree/nested).

To use the pyTorch architecture as well, the images were grouped into another repos-

itory, available in https://github.com/mysablehats/whole_f1/. A pre-experimental

setup of the robot with already all of the individual components working concur-

rently can be seen in Fig. 2.4.

2.4.1 Dataset Loader

My initial experiments were in implementing this algorithm were to make sure one

could do real-time classification using this neural network, as the paper is focused

mainly in the classification of the datasets UCF101 [160] and HMDB51 [97] and not

its possible deployment.

In order to test whether I implemented a proper classifier, a dataset loader module

for ROS was implemented. This was done by using a video publisher to act as if it

were a camera connected to a robot. The advantage of doing this is that once the

structure is finished, loading datasets or image from an external sensor would be
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Figure 2.4: Pre-experimental setup of the robot with face tracking already im-
plemented. For the data gathering, the console was occluded and a simple word
representing an action would be shown on the screen, together with pre-recorded
synthetic audio instructions. Initially the plan was to gather a dataset with multiple
subjects, but in the end the set was simplified to a single subject, me.
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seamless.

I implemented a loader node based on ROS services controls, so as to be able to

play and stop playback, reload splits and choose only some portions of the dataset

to be published, limiting the actions to a smaller subset. Reducing to a smaller set

is useful since this classifier was planned to be used in a robot to be operated inside

one’s house, so many outdoor activities could be completely disregarded.

Further reduction of the scope of the classifier was done as to make data acquisition

of testing test simpler, as some actions involved more than one person or were not

performed indoors.

The end activity list that was used for most tests was composed of 14 actions,

namely: ’brush hair’, ’chew’, ’clap’, ’drink’, ’eat’, ’jump’, ’pick’, ’pour’, ’sit’, ’smile’,

’stand’, ’talk’, ’walk’ and ’wave’. This subset of the HMDB51 dataset will be referred

to as HMDB14 from now on in this text. More details about this subset can be read

in section 5.2.1.

An outline of the dataflow structure can be seen in Fig. 2.5. I chose this slightly

more elaborated, ROS network based, using docker containers, so as to abstract

learning from any image dataset (given a proper structure with classes and split

definitions) in the same way I would learn from a robot camera. Additionally, I

chose to allow for preprocessed data to be saveable in a samba share, so as to avoid

having to run the whole state machine all the time. The structure chosen seems

to me to be fairly general and makes deploying a classifier straightforward, a useful

feature if many different classifier structures want to be tested. Additionally, it

enforces real-time classification strategies, as using data such as action lengths and

ending events becomes evident.

2.4.2 Denseflow

The denseflow is originally a wrapper of dense flow algorithms from a GitHub

repository implementation from Limin Wang [177], with a slightly modified ver-

sion implemented in the TSN as an additional modality to still RGB, so as to
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Figure 2.5: A block diagram structure of the dataflow of ROS nodes used. The
camera is abstracted and allows for seamlessly loading of either a dataset (as a fake
camera node) or the camera and other robot functions (marked with dashed lines).

increase the overall classifier performance. It basically consists of a C++ wrapper

of openCV functions to run on video files which can be compiled to be executed

with CUDA.

As my initial idea was to simply implement a real-time ROS version of this package,

little was changed in its overall structure. It was just made into a ROS package,

reading and writing ROS image topics using CVbridge and deployed in a docker

container with a bare-bones ROS kinetic distribution.

Alterations were intended not to change function, but to facilitate integration with

ROS, and as such, instead of writing video files, the video frames are now video-

topics (and thus streamed), the flow that was decomposed into X and Y components

of grey images was composed into a Blue-Green image as to avoid the need to use

message filters and having to deal with message synchronisation between topics and

finally a cast that was used to convert flow floating point images to grayscale was

substituted by the adequate openCV version of such function.

My latest denseflow docker image is available in full in: https://github.com/

mysablehats/dt/tree/nested if a docker deployment is to be attempted. In case

one may choose to install OpenCV with CUDA bindings and run the algorithm on

the host’s OS, one may use the repository: https://github.com/mysablehats/
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dense_flow [88].

2.4.3 State Machine

A simple state machine to follow through the steps of learning procedure was created

as a python script. This was necessary because with the proposed implementation,

systems run on multiple machines, forming effectively a cluster that needs to have

its behaviour synchronized. This state machine ran on the same host responsible

for active vision nodes, but their implementations were separate as we ideally would

have the active vision controlled as close to the robot as possible. Old legacy software

was an issue and some nodes could not be run in the Scitos robot, and hence the

structure presented here. The signals from the docker image were also published

which allowed for control within this state machine as can be seen in Fig. 2.6.
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(a) Loss and accuracy of training set on the whole 4 testing conditions over all splits and
2 different modalities.

(b) Same graph with added control signals and testing accuracy that show clear demarc-
ations of splits, modality and test options.

Figure 2.6: Graph of both loss and accuracy with and without control signals. I
can see that the network gets close to 100% accuracy on training set, however the
testing data shows it is beneath 40%, clearly showing overfitting.
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Chapter 3

Fall Detection

3.1 Introduction

In this chapter I present an extended methods and results section from the work done

on fall and - to a limited extent - activity detection with some extended explanation

about the structure of my classifier and details of my falling stick model, as it was

presented in ICONIP 2016 [86]. I also provide the full source code (this version

of the code is available in in www.github.com/frederico-klein/ICONIP2016) of the

Growing When Required Neural Gas implementation (in Matlab and Julia), as well

as the full classification architecture and the inverted pendulum model (only in

Matlab).

3.2 Materials and Methods for Fall Detection

The methodology is described first with a general overview of the whole architecture,

followed by a description of the datasets used (the TST v2 and the Falling Stick

Model) and the classifier’s most key components. I will focus on the differences

from my implementation and Parisi’s - that is, my implementation of the GWR

Neural gas, followed by sliding window implementation, the hierarchical aggregation,

preconditioning and ending with labelling.
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3.2.1 Justification for the Chosen Architecture: a Chained

GWR Sliding Window Topological Classifier

GWR Neural Gas

Perhaps the simplest way to describe the Growing When Required Neural Gas is as

an evolution of Self Organising Maps (SOMs) that aims to fix some of its shortcom-

ings for specific tasks. SOMs form a description of data by adjusting a fixed grid

(usually a 2 dimensional rectangular or hexagonal lattice) of points (or neurones)

based on their relationships with their neighbours in higher dimensional space. One

of the limitations of a SOM is that with a fixed grid adapting to data with more

complex representations (say a complex topology with disjoint sets) renders less

than optimal solutions. In order to tackle this limitation, Martinetz presented the

Neural Gas [110], in which the neurones would not have a fixed topology, but could

roam the space in order to describe data better. The Neural Gas itself had limit-

ations and many others have made improvements [130] of the basic algorithm, the

most relevant to me is the Growing Neural gas [53] which adds neurones to the set

in order to give a better representation of the set, and the Growing When Required

neural gas [109] that by setting an activation parameter threshold a priori limits

the addition of neurones. For a more in depth understanding of these methods one

should refer to the original papers which implemented them (in References).

Without knowing the literature (that says this method is effective for this particular

task), one may reason that the use of a topological unsupervised learning method for

topologies is adequate for this task, as, in a sense, an action sequence is a topological

space, as a person’s limbs must follow continuous trajectories, that is, there are no

jumps, with limbs disappearing in one place and appearing on another and also, the

particular velocities or positions are not exactly the most relevant descriptors of an

action sequence, but their relations. The justification of using multiple chained gases

(as opposed to one) is, first the biological plausibility reviewed extensively by Parisi

but secondly probably due to necessity regarding the way too long execution time of

a gas with a high number of dimensions. Finally one must add that, although neural
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gases, due to their nature, adjust to data that changes over time, this feature does

not seem useful in tracking movement. For this function a sliding window scheme

was used.

3.2.2 Classifier Methods

In this section, I will review the non-linear classifier methods (K-Nearest Neighbour

(KNN) and Neural Gas (NG) family of methods) and the general structure of the

BN-Inception network used by the TSN classifier.

A review of the KNN algorithm is in order, as it is a building block for the usage of

topological descriptor algorithms (SOM and NG), in essence unsupervised classifiers,

and assigning labels. This is done by relying on the idea of distance function as

representative of similarity1.

I will review the progression of topological descriptor algorithms from the Neural

Gas family, briefly explain their relationship with SOMs, with each other and general

behaviour as classifiers and the chosen classifier structure for chapters 3 and 4.

3.2.3 K-Nearest Neighbours Classifier

A KNN [35] is arguably one of the simplest non-linear classifiers possible. In a

sense it implements an extension of a table look-up with the addition of a similarity

measure, known as distance metric [4]. For a classification attempt of a point P

of dimensionality N, a set of labelled observations (from your training data) could

be imagined as a cloud of points represented in a hyperspace of size N and uses a

parameter K to consider the K-nearest labelled points to our point P, i.e., have the

smallest value of the distance metric to that observation, and computes what is the

most common class label ascribed to those observations and returns the result.

This supervised classification method was successfully used both as a way to apply

labels to the unsupervised Growing when Required Neural Gas and to classify skel-

etons for my work on Fall Detection [86] and used solely to classify actions with good

1This labelling does not need to be non-linear and can also be done by other algorithms, say
an SVM with a linear or custom kernel.
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results for my attempt at an activity classifier (see Chapter 4). Different values of K

were used, but it was found that generally considering K=1 or 1-NN, that is, only the

label of the closest neighbour, is a sound strategy [121, 35]. Also additional common

distance metrics were evaluated (such as cab-drive, generalised Minkowski distances

and Malahanobis) as well as my own custom distance function (see section 4.2.6 for

more details), however my testing indicated that the Euclidean distance performed

better.

Slight Alterations to KNN to Deal with Time Sequences The use of KNN

in the context of classifying skeletons is based on the assumption that a particular

skeleton pose represents an action. A natural extension of this use, implemented

by others[121] is to use not only the pose but a sliding-window pose sequence (see

section 3.2 for more details). This slice of skeletons should represent an instance

that only happens on a particular action, that is, it does not account for hidden

states or transitions. So as to mitigate that, a sliding-window was used and often

in my tests combined with a custom low-pass filter, more specifically a moving

mode based filter, which is a small extension of the idea of a low-pass filter to

handle labelled classes. The way this mode based low pass filter works is, for an

observation P (t0) made in time t0, if I have a parameter called the mode length

M, by ascribing to this point P (t0) the most common observation label from the

set of {P (t0 − M), ..., P (t0)} classified skeleton poses (or sliding pose sequence).

This type of filtering was used in my Fall Detection (see section 3.3.3) to improve

classification considerably, however it did not seem to be particularly useful in a

more general action classifier (see Chapter 4).

3.2.4 Neural Gas

A NG is described by Martinetz [110] as a data compression technique. The basis

of this approach is to represent a manifold of data by employing a finite number

of samples, i. e., a ”codebook”, to represent the whole manifold. This is done by

matching each observation data to a specific code in the codebook, which is found

by a ”distortion measure”, which I, for practical reasons describe as a distance
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Figure 3.1: A sample example of a SOM from MATLAB’s nctool being fit with the
test 4 shapes clusters (square, triangle, line and circle). Note some points in between
shapes (extraneous); those could, in my implementation of a topological based classi-
fier represent missclassifications if the datapoint being presented is between a shape
and the extraneous point, but the extraneous point itself is near another shape.
Using 10x10 grid, i.e. 100 points.

metric.

One may draw a parallel here with the situation of the 1-NN(see section 3.2.3), in

which I use for the codebook the whole training dataset. This way one may view

the neural gas as one of many compression techniques used to make a KNN search

set more manageable, that is, limit the number of distance functions that need to

be calculated to identify the closest match. Note that the compression algorithm

itself does account for labelling and as such its core functionality is unsupervised in

nature.

One of the most widely used compression algorithms of this type is the Kohonen’s

Self-Organizing Map (SOM) [91], however a SOM has itself a predefined topology,

that is, the spacial relationships between the codebook units is fixed and the points

or codes or neurons merely adapt their positions so as to represent the training

data. Moreover, the number of code units in a SOM is fixed. One of the main

motivations of the Neural Gas was to define a type of codebook compression that

would allow for topologies themselves, that is, the relations between the points in

their neighbourhoods to be discovered as well (see Fig. 3.1).

The basis of the working of this algorithm is to implement an adaptation rule where

the adaptation steps from presenting data causes the points to jitter and converge
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to the topology being presented by using a Hebbian rule - hence the name neural

gas.

A simplified description of the algorithm would be that for each new point from a

training set being presented to the gas, for each gas unit I find the set of points which

are closer to it, order those points using a distance metric and use an exponential

adaptation rule, as well as set the index ij of a binary matrix C (initially zeroed) to 1,

so as to represent the digraph which is the representation of the topological structure

of the presented data. Age of connections are also tracked (as when neurons from

the gas move, their connectivity patterns may change) and are set to zero if the

point is closer to the gas unit than the unit being matched, or if it is further from

it, the age of connections is increased. After this age reaches a certain threshold,

the connection is dropped, that is, the index ij of matrix C is set to zero.

For a more complete an formal description of the Neural Gas algorithm, I suggest

referencing to the original paper from Martinetz [110].

3.2.5 Growing Neural Gas

The GNG was described by a 1995 paper by Fritzke [53]. It presents an important

extension of the basic NG compression algorithm by extending a later version of the

algorithm that employs competitive Hebbian learning. The major improvement,

however, done by Fritzke was to provide a rule to allow for increasing neural units,

as the NG algorithms and its improvement, all seem to predefine a certain number

of points and just adapt their positions (much like a traditional SOM would). This,

however, was a limitation to its use, as it was difficult a priori to know how many

units would be enough to describe a particular topological structure.

The paper shifts focus from describing neural units to point nodes or reference

vectors and it also cements the idea of creating a topological map by just finding

the closest two units, which limits the number of edge updates as well as restricting

the created topology to a fixed dimensionality (usually 2 or 3).

This method implements considerable improvements in comparisons with the ori-
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ginal NG in terms of usability, but still presents many different parameters, such

as the insertion parameter λ, adjustable movement fractions εb and εn, maximum

age amax, error decay d as well as not indicate clearly a criterion to decide when

to stop the gas growth - it mentions using maximum net size as a parameter or a

performance measure, however no clear suggestion is made on to what such criterion

should be. This is an important aspect of training the GNG which was attempted

to be solved by the GWR.

As a starting point of this implementation of the Growing when required Neural Gas

(GWR), I used a Matlab implementation available from Matlab FileExchange [92].

A simple example of the use of a GNG on 2D input data (graphed as x,y coordinates)

as a simple classifier of clusters with different shapes, using 100 nodes and running

for 2 epochs can be seen in Fig. 3.2.

3.2.6 Growing When Required Neural Gas

The GWR was proposed by Marsland et al. in a paper from 2002 [109] and it

aimed at solving some of the issues with the GNG, namely how to manage the

gas growth. I mention in section 3.2.5 the insertion parameter λ, which works by

adding with a fixed step frame a new node to the digraph for the unit with the

highest accumulated error with its neighbour, which required to keep track of unit

errors and limited the growth speed of the topological map, particularly in the initial

steps when the network is small.

Marsland suggestion on improving node creation was to use a function to add nodes

whenever the existing network did not sufficiently match the input. This had the

effect of allowing the network to increase in size very quickly when new data was

added and allowing for the network to stop growing naturally when the matching was

considered to be of a sufficient quality, addressing two important issues of the NG

creating procedure. Additionally, this feature enabled the topological distribution to

change through time and also enables the NG to adapt to a changing topology.

This is done by defining an activation measure a and an insertion threshold aT ,
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(a)

(b)

Figure 3.2: In (a) left: 4 shapes to show topology learned by the gas (blue lines)
and (points in red) the gas units; on (a) top right the error, (a) bottom right the
number of nodes reached. In (b) we can see the confusion matrix, which in this
case (GNG) is a perfect classifier (shapes are simple). Note some points are not
completely inside the figure, this is due to low number of epochs. Parameters for
this test are: amax = 500, εn = 0.006, εb = 0.2, ageinc = 1, λ = 0.5, d = 0.99.
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which are values between 0 and 1 that represents how well a particular observation

is accounted for by gas units. A value of 1 represents that a particular node and

the presented data are the same and zero means they are completely different. The

measure of similarity between nodes in the gas and the presented data is defined

by a distance metric that compares the observation to the existing NG nodes. This

activation a is defined as a = e−‖ξ−ws‖, where ξ is the observed data sample and ws

is the weight of the best matching neuron node and ‖P‖ is the distance function, the

norm of P in a given metric (usually Euclidean). If this activation a is considered

below the threshold aT , then the network grows and a new node is added in a

similar fashion to the node adding from the GNG. An important addition of this

paper is, as well, presenting a use for NG in anomaly detection in robotics, showing

that only the GWR (when compared to a GNG and a Reduced Coulomb Energy

network [135]) was able to present a steady progression of presentations of novel and

not novel stimuli during different runs of the experiment.

For a more complete and formal description of the whole GWR algorithm one may

refer to the original paper from Marsland et al. [109] which also presents a good

review of different compression and topological descriptor algorithms based neural

gases.

My initial implementation of the GWR, built with direct comparison with the GNG

is available in its Matlab version in Matlab File Exchange [11] and on GitHub in

https://github.com/frederico-klein/GWR_GNG_classifier. An Octave com-

patible and a Julia implementation of just the GWR algorithm are also available

under https://github.com/mysablehats/gwr.

As I did for the GNG, a simple example of the use of a GWR on 2D input data as a

simple classifier of clusters with different shapes, also using 100 nodes and running

for 2 epochs can be seen in Fig. 3.3. Note a perhaps slightly better representa-

tion with the GWR when compared with GNG; results however depend on proper

gas parameters being set and on particular random seed from MATLAB’s Random

Number Generator function.
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(a)

(b)

Figure 3.3: In (a) left: 4 shapes to show topology learned by the gas (blue lines) and
(points in red) the gas units; on (a) top right the activation of the closest node, (a)
bottom right the number of nodes reached. In (b) we can see the confusion matrix,
which in this case (GWR) is a perfect classifier (shapes are simple). Note some
points are not completely inside the figure, this is due to low number of epochs.
Parameters for this test are: amax = 500, εn = 0.006, εb = 0.2, at = 0.80, h0 = 1,
ab = 0.95, an = 0.95, tb = 3.33, tn = 3.33 ( Parameters were chosen to output a
similar node distribution to Fig. 3.2).
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3.2.7 Multilayer Growing When Required Classifier

Using an unsupervised method for topological description [55] of tasks is not a new

idea, since these methods have many possible advantages such as the ability to ”op-

erate autonomously, on-line or life-long, and in a non-stationary environment”.

The basis for using a NG type is to use as inputs the skeletons, treated as a multi-

dimensional vector, that is, a 3*N vector, where N is the number of joints under a

particular type of representation, and obtain a set of prototype nodes with a gas

that describe possible configurations of skeletons in a 3D space. What I expect is

that, by averaging nearby skeletons, as a NG does, I get a more stable representation

of that particular pose, that is less noisy than the original data, with the additional

compression which is provided by having a number of nodes smaller than the number

of data-points in the original dataset.

I chose to replicate the infrastructure implemented by [121] for its overall perform-

ance in the CAD60 database and the theoretical generality of the method. From

my personal understanding, the GWR as a GNG or a Self-Organizing Map (SOM),

implements a data compression and filtering algorithm that uses later a KNN for

classification. In this sense, the performance should be similar with the KNN (the

best or second best method in the work of Akella et. al [151]), to a degree in which

it should be slightly worse - as it loses some information - or better - if it manages

to filter out noise and thus increase its generalisation properties. This is inspired by

the idea that most of the learning could be on the feature selection as Akella tried

to demonstrate.

A complete implementation of this hierarchical design, a dataset loader with many

preconditioning and post-conditioning functions and custom distance measures, as

well as visualisations for multidimensional gases, gas fitness and utilities for estimat-

ing model fitness are available in GitHub under https://github.com/frederico-klein/

classifier.
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3.2.8 Skeleton Data

More thorough descriptions [129] of the data obtained from the depth sensor should

be referenced, but basically it is basically a set of J points (where J is the number

of joints) with x, y and z coordinates, each representing a landmark on the body in

time [33] in a 3D space. I represent thus a particular pose as the concatenation of

these J points, such as that for each time frame k I have a pose p represented by

the matrix:

p(k) =




j1x(k) j1y(k) j1z(k)

j2x(k) j2y(k) j2z(k)

. . .

jJx(k) jJy(k) jJz(k)




(3.1)

An action sequence represented on discrete time steps 1..K could therefore be rep-

resented as the multidimensional array resulting from the sequential concatenation

of the k-th pose matrices. To use the pose information with a gas I change the rep-

resentation of the pose matrix p(k) into a vector size 3 ∗ J and the action sequence

is the horizontal concatenation of the all the k-th, p(k) matrices. One may thus

understand the pose vector as a single point in a high dimensional space and an

action sequence as a necessarily continuous trajectory in that space.

3.2.9 Sliding Window

The sliding window is a simple solution to a hard machine learning problem which

is temporal change representation. With say a window of 2 samples, one records

the data from the previous time step, say a vector of length w, and concatenates it

with the present data sample, so to have a vector size 2w as its input vector. More

formally, in a k time step, with an input w(k), a sliding window size of q, I will have

concatenated input as:

W (k) =

[
w(k) w(k − 1) . . . w(k − q)

]
(3.2)
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In my case, I construct input for the next layer not from the raw data, but by

doing the concatenation of best-matching neurons from the mapped gas. Let A be

a matrix with the set of prototypical neurons, then let the definition of a remapping

function M as a minimizer of a simple Euclidean distance be:

M(A,w) =
{
w |M(A,w) min

w′∈A

J∑

j=1

(wj − w′j)2
}

(3.3)

Then, the response from the gas as the best matching neuron of an input pose w(k)

is defined as:

ŵ = M(A,w) (3.4)

Using as an example the next concatenation step q = 3, for the first layer (l = 1) I

would have the sliding window of matched neuron units:

Wlayer1(k) = [ŵ(k)ŵ(k − 1)ŵ(k − 2)] (3.5)

The concatenated vector for the second layer (l=2) would be:

Wlayer2(k) =
[
Ŵlayer1(k)Ŵlayer1(k − 1)Ŵlayer1(k − 2)

]
(3.6)

Which expands into:

Wlayer2(k) =

[
[ŵ(k)ŵ(k − 1)ŵ(k − 2)]̂[ŵ(k − 1)ŵ(k − 2)ŵ(k − 3)]̂

[ŵ(k − 2)ŵ(k − 3)ŵ(k − 4)]̂

]
(3.7)

Which does not agree with the presented on my reference paper as it was described

that the whole algorithm takes 9 sample steps to produce a result. I introduced an

additional sampling parameter p, which is the number of time samples to jump after

constructing a concatenated long vector. It implements undersampling by discarding
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the p interleaving samples from the full sliding window, defined as:

Wq,p(k) =





ŵ(k)ŵ(k − 1) . . . ŵ(k − q) if k (mod p+ 1) = 1

not defined otherwise

In my case, I use the parameters (q = 3, p = 2) in most simulations, the first layer

concatenation stays the same long vector Wlayer1(k), except that the p interleaving

samples are missing and I have for my second concatenation the resulting best

matching neuron would be:

Wlayer2(k) =

[
̂[ŵ(k)ŵ(k − 1)ŵ(k − 2)] ̂[ŵ(k − 3)ŵ(k − 4)ŵ(k − 5)]

̂[ŵ(k − 6)ŵ(k − 7)ŵ(k − 8)]

]
(3.8)

Which requires the 8 previous data samples as well as the current value (so 9 samples

in total) as I wanted.

3.2.10 Classifier Architecture

The classifier was implemented as a serial chaining of gas subunits. This was done

to enable different structures to be tried with minimal effort. Although more ar-

chitectures, with just 1 or even 7 chained gases, were tried, those did not seem to

outperform the version with 5 gas subunits implemented by Parisi’s [121] paper (see

Fig. 3.4). All classification attempts in this text were thus done using the same

version as Parisi’s, that is, 2 parallel sets of 2 gas subunits in series, each stream

dealing with either pose positions or pose velocities and the last gas that integrates

both.

3.2.11 Gas Subunits

For each gas there are 5 main chained elements that are responsible for implement-

ation estimation and classification:

� Sliding Window: implements the temporal concatenation of sample (also im-
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(a)

(b)

Figure 3.4: (a) diagram for each gas subunit. (b) diagram of end architecture
after linking all gas subunits. This particular structure was chosen to replicate
Parisi’s [121].

plements concatenation of multiple streams in case they exist).

� Gas Creator: receives data samples p(k) or concatenated poses Wl(k) and

implements the learning algorithm for either the Growing When Required

neural gas or the Growing Neural Gas.

� Mapping: finds the best matching pose from the nodes matrix A corresponding

to each sample from the dataset.

� Labeller: simple labelling function that assigns the label of the estimated

concatenated pose as the same as the label of the pose to which it best matches.

� Activation checker: during training, checks to see if points are able to be well

represented by the gas, and if not removes them from the sample.

3.2.12 Whole Implemented Architecture Overview

A simple description of the gas classifier is as follows. I start start with a data-

set with a set of action sequences (sequence of points in high dimensional space),
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calculate velocities from it and construct 2 distinct vectors from the data that are

processed in parallel. One for positions and another for velocities. Afterwards I

separate it into training and validation set. For the training set I take the paral-

lel streams of positions and velocities are then presented to their respective GWR

neural gas (one may also choose a GNG for comparison). The gas function con-

structs 2 matrices as a result: a matrix with a set of prototypical neurones (or in

my case skeleton poses) that best represent my dataset and an Edges matrix that

represents the neighbourhood relationships of these neurones. Currently I disregard

their neighbourhoods, and consider only the prototypical neurones. After this, I

use the prototype neurones to reconstruct my initial dataset using instead of the

original data, these prototypical neurones, in the following manner: for each point

in my dataset I calculate the distance between itself and all prototypical neurones

from the gas and I consider the best matching neuron as the one with the smallest

distance. The best-matching neuron is then used to construct a new input dataset

for the next layer. These best-matching units (or neurones or prototypical poses) are

then temporally concatenated (usually with parameter q = 3 and p = 2) and are fed

to the next layer of gas. After all gases are obtained, a simple labelling procedure

is performed, where the label of each prototypical neuron is taken as the label of

the point in the dataset to which it is closest. For the validation set the procedure

is slightly simpler: I merely find the best-matching unit from the trained gas, label

it and do the temporal concatenation in the same structure as dictated by the ar-

chitecture network. The sequence of gases and their interconnections is defined by

simple graph network model that accept some variation in the construction of the

layers. What was most commonly used was to separate velocities from positions in

parallel streams, process a gas for each, then concatenate q poses (usually q = 3)

and create the input from the next layer, again separating positions and velocities,

concatenate again q times and combine both poses and velocities into a longer vector

to create the input from last layer.
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3.2.13 Construction and Randomisation of Validation and

Training Sets

The implemented architecture allows currently for loading 3 different datasets, the

TST v2 fall dataset, the CAD60 dataset and an artificially generated simplified

Falling Stick model Dataset for testing purposes. The datasets in question present

a set of N subjects, each of them performing M actions. The data from each par-

ticular datasets are randomised between validation and training sets in 2 distinct

manners:

- Type 1 (known subjects): all the actions are put in one group and validation and

training sets are picked from M ×N possible actions;

- Type 2 (unknown subjects): each subject is assigned to be a part of the validation

or the training set, from a N set of subjects.

As I understand, the type 2 randomisation is a more realistic test scenario, as perhaps

the heights or limb lengths or mannerisms from the subjects I trained my algorithm

on maybe be different from the actual end user. Unfortunately I do not have all

participants performing all tasks on the CAD60 database, so this test is not possible

on that set. The dataset was separated into Validation and Training sets containing

80% and 20% of data respectively, before each training. They were separated by

subject, so that each subject had all of its actions belonging exclusively to one set.

Since actions did not last exactly the same amount of time, the percentage of this

separation was not necessarily accurate.

3.2.14 Preconditioning

The GWR algorithm is not translation invariant, so the first action performed on

the data was to select a joint - based on my reference algorithm I used the hips and

subtracted the offset from the hips joint in both the z and x coordinates from that

from all other joint vectors. Secondly, I normalised (scaled) the data so that after

scaling variance of the data would be equal to 1. The final step was to implement a

centroid generating function, so to generate a smaller dimensionality representation
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of the skeleton poses, in a similar fashion to the function tested by Parisi. I created

a model of 3 centroids that were the average position of the skeleton points such

that the upper centroid was composed by the joints: head, neck, left shoulder,

right shoulder, left elbow, right elbow; middle centroid corresponded to torso and

lower centroid: left knee, right knee, left hip, right hip. Many other preconditioning

functions are available on the supplied code and maybe be tried by the interested

reader.

Gas Chained Network

The architecture I implemented is a reproduction of the modular gas architecture

implemented by Parisi. Basically the skeleton poses are used to construct a velocities

matrix v(k) = (w(k)−w(k− 1))/∆t (∆t here being the time-step between samples,

although its importance may be limited as the sample rate is supposed to be con-

stant and I use normalisation procedures) separated into pose and treats poses and

velocities independently. The algorithm implemented can deal with an arbitrarily

long chain of linked gas classifiers and other structures may be tried. Most tests

use 2 sequential gases for position and velocity and a final gas that is fed the con-

catenated data from the previous layers. If all dimensions of pose vector were used

(for the TST database, that means 25 joints ×3), the first layer would have poses

described by 75 dimension vectors for both poses and velocities, the second layer (as

it does a temporal concatenation with sliding window q=3) would have length 225

for both position and velocities and the final aggregation layer has input vector size

of 1350 (225 from each position and velocity layers concatenated by 3).

3.2.15 Dataset Loader

A generic dataset loader was devised to create suitable validation and training sets

from the following datasets, in a way that they could be easily compared with Mat-

lab’s standard neural networks classifier implemented by the nnstart wizard. This

was done in such a way that the datasets would be separated between training and

validation sets (80% of data samples being used for training and 20% for valida-
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tion23) in two different ways: you could have either known subjects, that is, both

validation and training set had all the subjects, but different actions performed by

them, or with unknown subjects, where the subjects in the validation set where

completely different from the ones in the training set.

3.2.16 Datasets Used

The skeleton datasets present actions as a sequence of skeleton poses that change

over time. Skeleton descriptions vary in the number of points that describe them,

depending on version of KINECT algorithm employed to generate them, with KIN-

ECT v1 having 15 points per skeleton, KINECT v2 having 25 points to define a

skeleton (with more points used to describe hands and feet) and KINECT for Win-

dows using 20 points to describe a skeleton.

As such they often contain RGB-D data (and in the case of the TST v2, IMU data as

well), but this information was not used for the work presented here. I will present,

from this class the Tstv2 dataset (see Section 3.2.16), the falling stick model (see

Section 3.2.16), the CAD60 (see Section 4.2.1) and my own collected version of

CAD60 actions, Ourset (see Section 4.2.1).

TST Fall Detection ver.2 Dataset The TST v2 dataset contains skeleton po-

sitions Microsoft Kinect v2 and IMU data for 11 subjects performing either ADLs

(activities daily living) and simulated falls. The subjects were between 22 and 39

years old, with different height (1.62-1.97 m) and build. Each of the two main groups

(ADLs or Falls) contains 4 activities is repeated three times by each subject [56].

For the present study only the skeleton joints in depth and skeleton space and time

information were used. The accelerometer, as well as other data, were not used for

2This proportion was chosen as it is commonly used in the literature, however a more precise

estimation of the best validation training ratio can be done using the formula f∗

g∗ =
√

Cln(N/α2)
hmax

,

where N is the number of families of recognizers, in our case the number of nodes used, e. g.
1000, α, the risk of being wrong, chosen to be 0.05 as in the paper from Guyon that proposed this
formula [64], C = 1.5, the constant of Chernoff bound, the largest complexity hmax = 405 to be
considered on the last gas with 9 samples long with 15 joints in 3D space, f∗ the fraction of t that
should be reserved for validation and g∗ the fraction of t reserved for training. The results give us
0.2186, very close to our 20% used empirically.

3Note that since actions are kept as a whole, depending on the randomization chosen, these
split ratios will vary.
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(a) (b)

Figure 3.5: Two typical results (a) and (b) from my mathematical model. Both of
them generated with the equations 3.9 and 3.10.

this algorithm.

Falling Stick Model A simple stick model was developed to test the ability of a

Growing When Required multilayer with a sliding window classifier to discriminate

between action sequences that included a fall. I modelled 2 different activities, a fall

and a walk as the movement of a stick in a 3D space and then simply substituted

the stick for a typical skeleton.

Fall

I simulated the fall of a person by a free falling inverted pendulum rod with a random

initial pitch angular velocity θ and perfect slippage. It can be shown [122] that the

kinematic differential equations that describe angle and position changes for a rod

are:

−mgL
2
cosθ =

(
Ic +

mL2

4
cos2θ

)
θ̈ − mL2

4
cosθsinθ̇2 (3.9)

0 = mẍc (3.10)

The equation 3.10 basically means that the perfect slippage does not alter the x

position of rod’s centre of mass. And, approximating a person by a slender rod, one

has Ic = mL2

3
. Some alterations were done to this model, so that when reaching a
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(a) (b)

Figure 3.6: (a) Pendulum ODE45 solver reaching an unstable point due to numerical
approximations. (b) The corrected version stabilises the angle output with a random
noise after reaching a resting position within a certain range of resting positions.

resting position, it would stay there, as the ODE solver can sometimes yield unstable

solutions (see Fig. 3.6).

The model also was given simulation parameters to add random noise in the variables

of height (1.6 - 1.9m), initial position (within a square area) and any initial yaw

angle.

Walk

The simulation of a person’s walk was done by simply doing a linear space of dis-

placements inside the area that would be covered by the Kinect sensor, with random

initial positions and walking angle. The end results after a skeleton is overlaid on

top of the simple stick model of both the non-linear differential equation model and

the simple walk model (and their comparison with the dataset data) can be seen in

Fig. 3.7.
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(a) (b) (c) (d)

Figure 3.7: (a) a typical fall from TST v2 dataset. (b) one of the ADLs from the
TST v2 dataset, a walk. (c) a typical fall from this model. (d) a “walk” from this
model.

3.3 Results4

For all the results here presented, the simulation parameters for the GWR neural

gas are the same as in the Parisi reference paper[121]. One of my main concerns

while evaluating the performance of such an algorithm was to avoid cherry picking,

a sample of different learned gases was created, by randomising data presentation

to the gas after temporal concatenation.

For both of my models I present the results of a set of gases with the same parameters

only differing random initialisations. To avoid cherry-picking, I choose the best

performing gas under training measures and show the measure of its validation

counterpart.

3.3.1 Cornell CAD60 Dataset

As a means of comparing my implementation with that of Parisi, I also tested my

architecture on the CAD60 dataset. I used the same simulation parameters described

in his paper (preconditioning was also different, with only the removal of feet joints

and no normalisation), only a smaller number of epochs (10 epochs). Apparently

my implementation does a lot of overfitting, as it reaches 99.6% accuracy on the

4Initially I had reported the variations (in form of ± 1 standard deviation) of most gas results,
however under a deeper scrutiny, those were removed, as their behaviour is still debatable and
dependant on both the specific model used as classifier and the specific dataset [12, 90, 192]. While I
still believe that the estimation of variations were adequate under the published study [86], a proper
evaluation would require a more strict analysis of the specific NG algorithm and require more data,
which is a limitation of our studies (relatively small datasets) to demonstrate stability [15, 83].
Under these circumstances it is uncertain what kind of information would a statistic such as
a binomial test really represent. Most of the variation results are still available for conference
however, under bound copies of relevant papers chapter of this thesis.
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training set (average: 99.38% for 8 trials) but only reaches 71.7% on the validation

set. It is interesting to notice that the misclassifications were limited to some specific

actions , with others having the same accuracy (greater than 90%) in both training

and validation set (see chapter 4 for more details).

3.3.2 Falling Stick Model

My algorithm, even with a much smaller network (100 nodes), seems to be quite

consistently capable of classifying my faux fall/walk model. I simulated 20 subjects

with varying height and starting orientations performing either a fall or a walk. The

peak accuracy on the validation set of my implementation was 98.33% (average:

97.12% for 8 trials).

3.3.3 TST Fall Detection ver.2 Dataset

As a means of comparing the performance of my implementation, I also classified the

TST v2 dataset using a Recurrent Self-Organising Map (RSOM) implementation.

The RSOM used the same preconditioning as I did for the chained gas classifier and

a set of 3 consecutive poses (p(k), p(k − 1), p(k − 2)). The simulation parameters

were: 900 nodes, 30 epochs, method ’RSOMHebbV01’, chosen to be as close as

possible to the implemented gas classifier. The peak accuracy on the validation set

of the RSOM with these parameters was 78.76% (average: 77.67% for 5 trials). The

accuracy on the validation set of my implementation will be discussed in detail in

the next sections.

Effects of Increasing Epochs

Upon visual inspection, no clear real pattern emerges from increasing the number

of epochs on the gas architectures with the parameters tested. Some tests with

small number of nodes (from 20-100 nodes) had smaller effect on changing number

of epochs, while more epochs were required to have a gas express units from more

than some actions (results not shown). The gas has a tendency of populating units

with very similar ones, if parameters are not set correctly and increasing number of
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Epochs Validation Set Training Set Maximum

E = 10 73.99% 88.35% 75.6%
E = 20 72.74% 88.06% 74.9%
E = 30 77.3% 90.8% 77.3%

Table 3.1: Change in accuracy for TST v2 dataset with varying number of epochs
for chained GWR classifier with 1000 nodes with N = 8 trials except for 30 epochs,
where N = 1.

epochs fixes those issues naturally, but at cost of unreasonable running times.

This effect is consistent with what was expected from the system, that is, as the

datasets in question were several hundred times larger than the gas I wanted to

train, there is a similar effect on changing gas unit as does training over many

epochs.

Additional steps were taken to make sure unit representation was evenly distributed

among gas units (see Chapter 4), like making sure α insertion parameter would

increase progressively and as such we would not have the issue of having too many

very similar skeletons added as nodes an a single ”more common” skeleton that

would be updated most often. Again, due to chaotic behaviour of the NG, statistical

analysis of variability of the results would entail verifying not only classifier stability,

but also cross-validation stability, which is hard to demonstrate generally and would

be of limited use. We refrained from using statistical analyses here as this is still a

contentious point in literature and was not clear exactly how such results could be

interpreted.

Learning across layers

In order to understand how learning happens across layers I analyse the output

classification from 5 gases with 1000 nodes run over 10 epochs (see Table 3.2) the

results reflect what I would expect: there is a steady increase as I progressed through

the layers and there is a gain in accuracy.
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Table 3.2: Progression of classification accuracy within different layers for chained
GWR Neural Gas classifier with 1000 nodes and run over 10 epochs (for 8 trials).

Gas Element Validation Set Training Set

GWR gas 1 Pos 67.69% 93.04%
GWR gas 2 Vel 64.80% 69.43%
GWR gas 3 Pos 66.93% 90.45%
GWR gas 4 Vel 65.14% 70.66%
GWR gas 5 STS 73.99% 88.35%

Table 3.3: Accuracies (in %) after applying the moving mode filter on classification
results of the final gas unit of the classifier (for 8, 8 and 1 trials respectively).

Epochs 10 20 30
Filter length Val Train Val Train Val Train

5 81.25 95.05 79.72 79.72 82.7 94.9
10 85.95 95.74 83.87 96.00 86.9 95.5
15 88.57 95.31 85.91 95.46 88.6 97.0
20 89.95 95.34 86.70 95.26 88.6 95.0
25 90.16 94.32 87.37 94.47 89.2 95.4
35 90.20 92.29 88.49 92.44 91.5 93.3
40 89.28 91.23 87.75 91.33 91.5 92.2
50 87.39 88.84 85.35 88.80 91.3 89.9

Mode Filter

With the intention of performing some sort of temporal filtering, I implemented

a moving mode filter. The moving mode filter had very interesting effect on the

classification results of the TST v2 database (see table 3.3.3). Highest classification

accuracy achieved (See table 3.4) was 94.2% on the validation set by 3rd gas with

1000 nodes and 10 epochs with mode filter length of 35 data samples.

Table 3.4: Confusion matrix for my most accurate gas classifier. The calculated
accuracy for the validation set is 94.2%, higher than the 92.0% training set.

Validation Set
Target

1 2

Output
1 1532 36
2 124 1054

Training Set
Target

1 2

Output
1 4006 258
2 328 2746
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3.4 Conclusion and Discussion

The resulting classification scheme does the task which I want, that is, discriminate

falls within the TST v2 dataset, it does it better than the RSOM and it does it

consistently with around 90.2% accuracy while using the mode filter. One must

note that adding a moving mode filter of size 35 means a delay of 11.67 s (since I

need (9 + 1) × 35 samples @30Hz) much more than the 0.6s Parisi reported, since

he achieves high accuracy without needing a filter. Another possibility for this is

could be due to my decision of implementing noise detection only on the training

run, but there may be other causes for this issue. Nonetheless, the delay we have

of 11 seconds is still adequate for the application and as such, I believed I achieved

my goal and I have now a classifier of falls with openly accessible code.

Another important discussion is related to the convergence or not of classifier re-

sponses to a ”good” classifier and how the GWR and other NGs behave. I had

initially reported the variations of classification results of most gas classifiers, how-

ever under a deeper investigation motivated by review of this work, I decided those

would better not be included in the final version of this document. The behaviour

of a classifier under variation of cross-validation folds alone is still debatable and

can be shown to decrease (which is expected, under higher number of folds) but also

increase, depending on classifier stability [83] [15] and interactions with a specific

dataset [12, 90, 192]. While I consider that the estimation of variations were ad-

equate enough for the published study [86], a more proper evaluation of these effects

would require a much more stringent analysis of the specific NG algorithms used,

should also include more data (hard to achieve in our studies as we have relatively

small datasets) and different datasets entirely, to study stability and convergence.

Considering all of those circumstances it is unclear what information would normal

statistic analysis confer and as such those could not be interpreted.

A final remark refer to the extension of the results and analysis presented here. This

is a sequential work and will be examined further in the chapter 4.
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Chapter 4

Activity Detection Using Skeleton

Data

4.1 Introduction

In this chapter, I present an extension of the architecture from ICONIP2016[86] pa-

per to attempt to better classify the CAD60 and check for generalisation properties

by testing it on my own acquired set (see Section 4.2.1). I also show best results so far

and their comparisons with KNN and SVM with a linear kernel as well as present

some details about changes done to the Marsland GWR algorithm, necessary for

speed-up and to adequate it as a classifier (initially a topological learning method).

This algorithm was implemented fully in Matlab1 and in its latest version is available

in full in https://github.com/frederico-klein/cad-gas/. A condensed version

of this updated implementation and results is available in arXiv.org [87]. As this

chapter is heavily based of the work done on fall detection (see Chapter 3), a jus-

tification (see Section 3.2.1) and explanations about the general behaviour of NGs

can be read in Section 3.2.2.

1Matlab R2017a.
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4.2 Materials and Methods for Activity Detection

using Skeletons

The main structure of the classifier used in this work is described in the following

algorithm (Alg. 1): The description of this methods section follows the order with

which each function is called within the classifier algorithm, with the referring sec-

tion added as a comment in the pseudocode table Alg. 1. I also added most of the

optional variations that were implemented in the following text for completion pur-

poses - it may not make much sense to correct for rotation variation twice, or to use

different distance metrics for finding neighbouring points in the gas and another one

to find the best matching unit for creating input for next levels and labelling, but

the implemented algorithm allows this to be possible and those options explorable.

4.2.1 Datasets Used

For the presented work I intended to classify the data from the CAD60 and its 4

subjects and 12 actions (see subsection 4.2.1 for more details). I trained mostly

on this set and aimed to extrapolate the model obtained from this data to classify

my own captured set to hopefully cross-validate my classifier method. For this

extended testing, I used a smaller dataset captured (Ourset) by my own MATLAB

implementation using 2 subjects in an office environment (see section 4.2.1 for more

details). Training and validation splits will thus refer to splits of the CAD60. For

the training of the model and classification of Ourset I used the whole CAD60 and

tested on Ourset.

A special mention should be done involving the representation of skeletons used

in Ourset when compared to the representation used in CAD60, since considerable

differences exist. This is due to Kinect v1 and Kinect for Windows having different

representations of 3D space (with different units being used for lengths), so skeletons

needed to be normalised for their sizes to be comparable and different skeleton

2Later expanded to ’compressors’ structure which allowed also for GNG and SOMs to be used.
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Algorithm 1 Main Classifier structure

1: simvar← simulation variables
2: params← parameters for gases
3: data← dataset . See Sec. 5.2.1
4: for all Subjects (or Actions depending on validation type) do
5:

6: function RandomizeDataset(data,simvar) . See Sec. 4.2.2
7: According to simvar:
8: Choose validation type
9: Choose ordering type

10: Divide data into validation and training sets
11: return trainingDataset
12: return validationDataset
13: Preconditioning(trainingDataset,simvar) . See Sec. 4.2.3
14: Preconditioning(validationDataset,simvar)
15: SaveDataset(trainingDataset,validationDataset,simvar) . For

replicability
16: for All layers do
17: for trainingDataset,validationDataset do
18:

19: function GasTraining(trainingDataset,params) . See Sec. 4.2.4
20: longInput← SetInput(trainingDataset,params) . See Sec. 4.2.5
21: if trainingSet then
22: gas← CreateGWR2(longInput,params) . See Sec. 4.2.6
23: else
24: gas← alreadyTrainedGas

25: bestMatchingUnits← GenerateBestMatching(longInput,gas,metric)
26: if trainingSet then . See Sec. 4.2.8
27: Labeller← CreateSomeLabeller(gas,targets,metric)
28: else
29: Labeller← LabellerFromTraining

30: output← Labelling(longInput,Labeller,bestMatchingUnits,params)

31: Calculate Metrics
32: Save Current Trial
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joint description, with the Kinect v1 using 15 joints and the Kinect for Windows

describing a skeleton with 20 joints (see Fig. 4.1). 3

So as to be able to compare those 2 different skeleton definitions, a simple conversion

table was used (see Appendix A.1 for details), however the matching was not precise

as can be seen in Fig. 4.1.

CAD-60 For this work I chose to classify the activities from the CAD-60 available

at [162] and my own dataset (Ourset see subsection 4.2.1) created in the mould

of CAD60. The CAD60 is a dataset containing 4 subjects performing 12 different

actions, captured by a Kinect version 1. The dataset contains 320x240 pixels RGB-D

(RGB plus Depth) motion sequences and skeletal information acquired at a constant

frame rate of 30fps [34]. The skeletal information is composed of 15 points per

skeleton with x,y and z coordinates corresponding to the best estimate location of

joint positions in a 3D space as extracted by its algorithm from the depth data. For

the present work the RGB-D will be disregarded and only these joint positions will

be used.

The 14 actions were: ’brushing teeth’, ’cooking (chopping)’, ’cooking (stirring)’,

’drinking water’, ’opening pill container’, ’random’, ’relaxing on couch’, ’rinsing

mouth with water’, ’still’, ’talking on couch’ , ’talking on the phone’, ’wearing contact

lenses’, ’working on computer’, ’writing on whiteboard’, with ’still’ and ’random’

generally not used for analysis. Some actions, such as ’wearing contact lenses’ and

’opening pill container’ tended to be shorter than others (around 500 samples for

’wearing contact lenses’ and 300 samples long for opening pill container’; normal

actions had between 1000 and 2000 samples) and so as to have a more balanced

dataset, those actions were repeated twice in case of ’wearing contact lenses’ and

3 times in case of ’opening pill container’, resulting in 15 samples per subject, and

hence the name CAD60 - as there are 60 ’valid’ actions in total.

3Review of literature and resources from Microsoft did not report how differently joint values
would change from sensor to sensor, nor could we find any information regarding average errors. As
subjects used to gather different datasets vary, we did not see any possible to get an estimate of the
error without physically testing the devices under same conditions. This investigation was initiated,
but was dropped as our work shifted towards deep learning and networks such as OpenPose [169]
would render it obsolete.
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These actions were also separated by room (as some actions would be more likely to

be done in a specific environment) and often accuracies under this smaller sets are

reported, namely: bathroom (’brushing teeth’ , ’rinsing mouth with water’, ’wearing

contact lenses’), bedroom (’drinking water’ , ’opening pill container’, ’talking on

the phone’), kitchen (’cooking (chopping)’ , ’cooking (stirring)’ , ’drinking water’ ,

’opening pill container’), living room (’drinking water’ , ’relaxing on couch’ , ’talking

on couch’ , ’talking on the phone’) and office (’drinking water’ , ’talking on the phone’

, ’working on computer’ , ’writing on whiteboard’).

In addition to the skeleton poses, joint orientations were also provided and as well

RGB and depth frames for every action collected, however those were also not used

in this work.

My Version of the CAD-60 Actions: Ourset So as to enable testing of the

classifiers obtained from training on the CAD60 for generalisation properties, I cap-

tured activities from 2 subjects (one male and one female) in the moulds of the

CAD60 (see subsection 4.2.1). This dataset was created with a KINECT for Win-

dows - a slightly different sensor from KINECT version 1; it was constructed using

the same actions producing 640x480 RGB-D motion sequences and a 20 points per

skeleton corresponding to locations of 20 different joints. Additional differences in-

clude different scaling of skeletons, capacity to track up to 6 simultaneous skeletons

among others.

The sequences were chosen to be roughly the same length in duration as the ones

from CAD60. However, unlike CAD60, the lengths of the actions were not manually

cropped, with the length being specified before each action was captured.

In Ourset, the 14 different actions (12 plus ’random’ and ’still’) are performed by

subjects in a fairly standardised manner and with a simplified office environment.

Depth and Image frames were also captured for completion purposes, however those

were not used in this work. A detailed table of the actions acquired by subject and

their frame lengths are provided in Tab. 4.1.
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Subject 1 Subject 2 Total
Action Actions Frames Actions Frames Actions Frames

1. brushing teeth 1 1500 1 1750 2 3250
2. cooking (chopping) 1 1500 1 1500 2 3000
3. cooking (stirring) 1 1400 1 1400 2 2800

4. drinking water 1 1500 1 1500 2 3000
5. opening pill container 3 300 3 250 6 1650

6. random 1 1900 1 1900 2 3800
7. relaxing on couch 0 - 1 1450 1 1450

8. rinsing mouth with water 1 1700 0 - 1 1700
9. still 1 1000 1 1000 2 2000

10. talking on couch 1 1700 1 1700 2 3400
11. talking on the phone 1 1400 1 1200 2 2600

12. wearing contact lenses 1 440 2 440 3 1320
13. working on computer 1 1900 1 1800 2 3700
14. writing on whiteboard 1 1800 1 1800 2 3600

Total 15 18640 16 18630 31 37270

Table 4.1: Actions performed by subject and length of one or multiple actions and
total included in dataset.

Figure 4.1: In red a skeleton CAD60 and in blue a skeleton from Ourset, both
seen with hips facing the sensor. Even though the skeletons correspond to different
persons in different poses, note the seemingly different definitions for spine and
torso (higher in Kinect v1) as well as wider hips and difference in neck joints. These
differences are due to a combination of: (1) different person with different limb
lengths and position (2) possible different algorithm implementation.
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4.2.2 Building Training and Validation Dataset Splits4

Segmentation

The separation of validation and training data was a cornerstone step while train-

ing this classifier, as improper division might present an oversimplified problem and

present a nonworking classifier as a functional one. Conversely, an overly stringent

cross-validation strategy, might not present enough data for the algorithm to gen-

eralise its response and make it unable to learn the desired problem and/or be too

time consuming.

Leave-one-subject-out The cross-validation method used was a leave one sub-

ject out approach. This was chosen as I see it as a more realistic approach, in which

a trained classifier is provided as is, without any data being required as input or

in a setup phase from the user what will employ it. For most trials, a randomised

subject from the four was excluded from the training set and used to calculate ac-

curacy, and for my end result the gas accuracies were calculated 4 times, each time

excluding one of the subjects from the set and then averaging the results. According

to Zhang [191], the de-facto validation scheme is leave one subject out, perhaps for

its simplicity in implementation but also as it seems to be a robust and sensible way

to perform cross-validation. One may consider unlikely -or at least cumbersome to

implement - to have to train a learning algorithm using the data from the very sub-

ject I am analysing (although this was not an impediment for commercial software

to be deployed, such as with voice recognition and OCR of handwritten data).

Leave-One-Action-Out for All Subjects5 The dataset was separated by ac-

tion, in a leave one action out cross-validation strategy, namely on my case this

means using 47 actions for training 4 × 12 − 1 and the remaining action for valid-

ation. The classifier was then run 48 times, each time with one action per subject

being excluded from the training set. This validation method was used initially and

4This would ideally be performed by our docker based dataset loader as explained in
Chapter Chapter 2, however, since the HMDB51 dataset has fixed training set splits (to avoid
this issue and make results more easily comparable with each other), this was only implemented
in the Matlab version of the code.
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would, in practice mean that before being able to classify an action, an initial setup

would be necessary for a new subject. It was deprecated due to my algorithm of

choice not making use of this information and the time increase in testing with this

partitioning.

Leave-One-Action-Out for Random Subjects5 The dataset was separated

by action, in a leave one action out cross-validation strategy, namely on my case

this means using 47 actions for training 4 × 12 − 1 and the remaining action for

validation, making sure to pick only one of each action from random subjects. As

I have 12 actions, the classifier was then run 12 times, each time with one action

per subject being excluded from the training set. Faster than ”Leave one action

out for all subjects”, but also deprecated in favour of Leave-one-out, due to low

performance.

80% Training, 20% Validation The dataset was separated randomly, having

80% of the data being used for training and the remaining 20% used for validation.

The classifier was then run multiple times but there is no guarantee that all actions

will be present on the training and the validation dataset. Common validation

strategy, however, the accuracy of classifiers oscillated too much depending on the

particular partition chosen, which complicated analysis.

Dataset Ordering

Another aspect of data presentation was its order on the set. The Growing when

required Neural Gas (GWR), does present a rather chaotic behaviour, with the end

resulting gas varying immensely based on initial gas nodes and the order with which

the data is presented for the gas to learn it.

5As we have a peculiar dataset with same subjects executing multiple actions, it may be the
case that we learn information from those subjects (such as limb lengths) or leg positions, or even
other examples of them doing such an action, that would make it easier for us to classify actions
from this subject, given that it is a person whose information we already have in our training
dataset. The leave-one-out strategy here would give us an inflated better performance, which we
are trying to avoid by having other partition modalities. This is not technically an issue, but it
just would mean that training the classifier would be done in a slightly different way. Such aspect
is mentioned briefly in the [162] paper, but no suitable generic solution is presented, we aim here
to provide some rational which was tested by this work.
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Sequential Ordering The data is fed into the gas in the sequence which is read

from the dataset as subjects are labelled 1,2,3 and 4 and the actions are alphabet-

ically ordered. This is mainly a choice for its repeatability, but there is no reason

to believe that this is the best way to present data for learning, as different wording

on labels or subjects would change the resulting trained gas.

Random Ordering After the dataset is constructed in an ordered fashion, a

random permutation of the total size of training and validation actions - respectively

- is built, and the activities are learned in an arbitrary sequence, as each next action

can be any action from any subject.

Random Organised Ordering It may be the case that the gas learns better

if it learns all actions of a specified type one after the other, that is, all subjects

performing the same action, say brushing teeth, to then change into learning the

next action. This ordering was constructed based on the random ordering from

above, only that after randomisation, the labels are also randomised (can be any

of the 12 possible actions on the CAD60 dataset) and the dataset is ran through

to find all the actions with that label. These is done sequentially and results in a

dataset in which all the actions are shuffled and the subjects are shuffled, but the

actions have the examples of all 3 participants (for the training set) condensed. For

the validation set this procedure only reshuffles the set. This idea was born from

inspiration in Curriculum Learning concepts [13, 40].

4.2.3 Preconditioning: Achieving Translational, Mirror, Scale

and Rotational Invariance

Data preconditioning was implemented in order to achieve invariance in regards

to translation - as an action should be classified the same way, no matter what

displacement it has in regards to the origin. As in my last implementation of a

growing when required neural gas classifier [86], translation invariance was obtained

by centring the skeleton around the hips, that is, the average between left and right

hip joints was taken and subtracted from all other joints removing any displacement
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the skeleton pose may have accumulated.

Mirroring

Additionally, to correctly classify actions done with the non-dominant hand, the data

was doubled with an inverted horizontal axis version of itself, so as to achieve the

correct classification of chiral skeleton action sequences (mirror symmetry). Initially

this procedure was done as a pre-conditioning step, however testing showed that a

more generic option was to modify the distance metric and correct for this effect

there (see section 4.2.7).

Normalisation

A normalisation procedure was undertaken so as to make the set of all the skeletons

joints have each joint a variance equal to one. Even though this procedure was

effective for my presented classifier, some problems arise when I try to use this

approach for smaller sets without much variation - as it would happen in a real-time

implementation of such classifier. A method simpler to implement in a real-time

scenario was proposed for achieving scale invariance, based on the fact that during

each action sequence limb sizes are constant - even though measurement from Kinect

for such lengths might vary due to noise (see Fig. 4.2). The present normalisation

procedure then calculates the sum of all limb lengths, that is, the summation of

the norm of all connected joint points during the whole action sequence and then

calculates the median of that measure, making it a normalisation factor for all joint

points, so that the end total limb length would equal one.

Rotation Invariance

Lastly a procedure to rotate the skeleton to a canonical position - facing the sensor -

was implemented. My first naive approach was to rotate the skeleton so as to make

sure that the hips would face the sensor, that is, let O(k)Hip be the old hip position

for a pose p(k) on an instant k; J(k)LeftHip and J(k)RightHip be 3D (x,y,z) vector

coordinates of the positions of the left and right hip joints respectively, components

from p(k). I want to find a 3x3 instant rotation matrix R(k) that ensures that the
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Figure 4.2: An example of the normalisation for cooking(chopping) action. On top
5 action sequence skeleton plots, coded from blue to teal (winter colormap); on
bottom the limb lengths (y axis) by frame (x axis). Note that limb lengths are
noisy, but rather stable for same subject (4 first plots, from left to right). When
there is considerable noise, limb lengths are no longer reliable (rightmost sequence).

new joint hip vector Nhip has only components along the x axis (NT
hip = [1, 0, 0]),

that is:

R(k)O(k)Hip = cNhip (4.1)

Where c is the magnitude of the hip vector and:

O(k)Hip = J(k)LeftHip − J(k)RightHip and Nhip =




1

0

0




(4.2)

I can remove c by normalising:

R(k)
J(k)LeftHip − J(k)RightHip
‖J(k)LeftHip − J(k)RightHip‖

=




1

0

0




(4.3)

This problem can be seen as optimisation problem and solved numerically, however

since this procedure needs to be performed many times (once per skeleton in the
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(a) (b)

Figure 4.3: (a): Colour coded by activity, the outer shell represents head joint
positions vector in 3D space and the inner smaller shell the JLeftHip − JRightHip hip
vector. (b): After the correction 2 effects can be seen: first that the head positions
tend to clump together, making the dataset harder to classify; second, the rotation
procedure alters skeleton rotation in undesired ways, which can be seen by the
incorrect orientation of the head on one of the actions from the set (yellow cluster).

action sequence), I chose to use a more computationally efficient algorithm [115].

This procedure however was proven to be inadequate to correct rotations as I can

see from Fig. 4.3 as it rotates for the correction around the vector O(k)×Nhip.

A seemingly more adequate procedure as to how to optimally rotate a skeleton

as to match a specific was seen to be similar to the the orthogonal Procrustes

problem [146] or Wahba’s problem [107] and as such I decided to implement the

Kabsch algorithm [77]. This algorithm is familiar to roboticists, as a more complete

version of 3D point matching, the Iterative Closest Point(ICP) [27] is often used

to piece together point-cloud data to generate map terrains. Wahba’s algorithm is

sufficient for my needs, as I have one-to-one correspondence of points (provided by

my skeleton definition).

First correlation matrices of an k-th skeleton of my set, described by p(k) was

calculated against a sample template most common standing skeleton M (a skeleton

from the dataset that has the smallest sum of distances when compared to all others),

then a cross-covariance matrix H was calculated between that template and the pose
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p(k) as:

H(k) = MTp(k) (4.4)

And calculate the Singular Value Decomposition (SVD) of H, such as:

H = U(k)S(k)V (k)T (4.5)

and define the the rotation matrix R(k) to be:

R(k) = V (k)U(k)T (4.6)

Note that I deliberately chose not to correct rotations matrices with negative de-

terminants, an improper rotation6, as this rotation and mirroring is also desirable,

as for my problem, an action performed in a mirrored fashion is also supposed to be

the same action. Lastly from this rotation matrix, I calculated the Euler angles and

selected only the yaw angle to generate a new rotation matrix that would multiply

every joint point and move the k-th to be facing the sensor, but with pitch and roll

angles preserved (see Fig. 4.4).

4.2.4 Training the Neural Gas

In order to minimise comparison between many poses and to achieve a filtration

of skeleton poses, each pose (or concatenation of poses) is matched to prototypical

poses that are constructed by the Growing when required Neural Gas (GWR) (see

section 3.2.7 for more details). In my implementation, the relationships between

neighbouring points are not utilized and the neural gas can be seen as a compression

algorithm or a filter of sorts that either (a) averages similar poses (or concatenation of

poses), if they are similar enough, given a distance metric and a threshold parameter,

or if the pose is considerably different from all the other poses (or concatenation of

6An improper rotation is a rotation that has rotations on the three axes combined with a flipping
of one of these axes (mirroring operation), giving it a negative determinant [116].
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(a) (b)

Figure 4.4: (a): An example of rotation correction for a single skeleton (not an action
sequence). The skeleton starts with quite a deal of rotation along the Z axis (yaw,
seen in blue) and is corrected until its final zero yaw rotation (teal). The process
is divided into 100 equal steps to show better the operation; in the algorithm only
the last skeleton (lightest teal) is used. (b): A fully corrected sequence (opening pill
container in blue-teal) with a correctly matched template (red-yellow).

poses, which are points in a hyperspace or nodes of the neural gas) (b) adds a new

point (or node) to my ensemble of points (the neural gas). By averaging points

that are similar enough (pass the threshold), the GWR performs compression, not

only reducing the dataset with which a naive k-nearest neighbours would need to

go through (as a condensed nearest neighbour would do [66]), but also implements

filtering.

Some small alterations to the structure of the GWR were implemented, namely to

either optimise speed or make it more appropriate to solving my particular problem,

namely:

� time invariant: although the GWR can deal with time sequences, I used the

algorithm in its static version, using a sliding window scheme to deal with time

changes in my data (see 3.2.9)

� the number of nodes limit: as it is described by [109], the GWR doesn’t stop

growing until the points being presented to the gas approach the limit imposed

by the alpha activation threshold. As in the seminal paper [121] implement-

ation, I impose a restriction to this growth by stopping adding points as the

gas reaches that limit. The end result is having an effective mean activation
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on the whole gas that is smaller than I would expect when the gas reaches its

learned state, but with the advantages of being able to pre-allocate matrices

and gain time during training. A further improvement here to reduce the num-

ber of epochs a gas needs to run is increase the alpha progressively until its

endpoint, so as to have better unit representation with less total epochs. This

was implemented with defined alpha increments αi = αi + 1, which increase

at progressively from at0 = 0 based on the rule at = 1− e−αi until a threshold

defined to be our old at. This increased performance of the algorithm enorm-

ously while guaranteeing more random point insertion and unit representation,

lowering the necessity of running the algorithm for many epochs.

� uncommon sample removal: the noise from the skeleton tracking data behaves

in a complex manner with joint tracking failure - for one or multiple joints -

producing sometimes very unexpected skeleton positions. As we expect the

sensor to work properly most of the time, a simple algorithm based on the fact

that we expect for errors to be few7 and present low activation from the gas,

enables removal of points based on the activation value provided by the gas

and a measure of mean activation and its standard deviation. These values

are calculated for the whole trained set after each epoch and the points are

then compared to this mean subtracted from a γ parameter times the standard

deviation, that is, if the point is gamma times the standard deviation too off

from the expected value it will be cut off from further calculations and not be

a part of the set. This was implemented in the Parisi et al. paper [121] and

set to 4 as we are aiming here to remove long tails, were a small number of

values have a large error.

4.2.5 Gas Chaining

To detect time changes with the classifier, multiple gases were chained together,

composing higher hierarchical structures of the matched data. More specifically,

7In unexpected body positions or in tricky situations for the depth sensor (e. g. where there is
not a lot of depth difference between the subject and the background), this assumption does not
hold.
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across different layers, sequences of skeleton poses were concatenated together using

not the initial skeleton poses, but their best matched nodes from the gas of the

previous layer. This was done using a sliding window scheme for both velocities

and poses. For a more detailed explanation about how the sliding window was

implemented I refer to Sec. 3.2.9 .

Parameters

Differential parameters were used in each layer as changing the amount to dimen-

sions of the neural gas (a concatenation of 3 skeleton poses increases dimensionality

by a factor of 3) will affect the measured distance threshold. Moreover the velo-

cities layer has quite different dimensions from the start. The parameters used for

each layer8 (for the CAD60 dataset unless otherwise noted) were a1 = 0.99983; a2 =

0.99999; a3 = 0.99995; a4 = 0.999998; a5 = 0.9999. These were chosen based on

visual inspection of plot data and inclusion behaviour to suit my normalised skelet-

ons.

4.2.6 Gas Distance Kernels

Simple Kernel

The simplest kernel I can use to calculate distance is a euclidean metric in which

each of the joint 3d coordinates is concatenated into a long vector and distance is

the euclidean norm from this point in a higher dimensional space and all other nodes

from the gas. That is, for a pose matrix p(k) of a k time-step represented as:

p(k) =




j1x(k) j1y(k) j1z(k)

j2x(k) j2y(k) j2z(k)

. . .

jJx(k) jJy(k) jJz(k)




(4.7)

8Note that here those thresholds are limit thresholds that the algorithm gets to eventually using
our sped up implementation based on alpha increments.
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I have it’s vector representation ξ(k):

ξ(k) =

[
[j1x(k)j2x(k) . . . jJx(k)][j1y(k)j2y(k) . . . jJy(k)][j1z(k)j2z(k) . . . jJz(k)]

]

(4.8)

It’s distance from a node ni that compose the gas matrix A, will be:

d(ni, ξ(k)) =

√√√√
3J∑

j=1

(nij − ξ(k)j)2 (4.9)

Sum of Euclidean Distances

A perhaps more intuitive distance measure would be to consider the distance dif-

ference from each joint and add all of those distances to obtain a similarity metric.

As such, the total distance is calculated as the sum of the individual joint to joint

distances between the gas node and the current presented skeleton pose or concat-

enation of poses. In this case the I represent the node ni in its matrix representation

with the respective x, y and z coordinates and I have the distance as:

d(ni, p(k)) =
J∑

j=1

√
(nijx − j(k)jx)2 + (nijy − j(k)jy)2 + (nijz − j(k)jz)2 (4.10)

4.2.7 Gas Distance Conditioning

At first glance, this step seems to be the same as the procedure in section 4.2.3, with

the main difference in being whether the data itself was changed or not. This allows

for more than one distance to be tested at a time and to choose the smallest one

as opposed to changing the data in the dataset itself and assuming that transform-

ation was a rightful correction. This was necessary since Mirroring and Rotation

Correction were implemented on visual inspection alone and unfortunately I could

not guarantee these procedures will necessarily create a better matching skeleton.

However, keeping a normal dataset and applying corrections on each skeleton as

needed was a much more time consuming procedure.
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Mirroring

The adequate procedure to mirror a skeleton involves mirroring it around its axis of

symmetry, that is, a simple inversion of the x, y or z axis is not sufficient as they also

affect its rotation. To preserve rotation and just flip left-right, the procedure used

was to rotate the skeleton so as it would have their hips parallel to x axis with a

rotation matrix R, then invert x coordinates, change the positions of left joints (for

a version 1 Kinect joint enumeration that is J4: left shoulder, J5: left elbow, J12:

left left hand, J8: left hip, J9: left knee and J:14 left foot) for the respective position

of right joints (J6: right shoulder, J7: right elbow, J13: right hand, J10 right hip,

J11:right knee and J15: right foot), then apply the inverse rotation RT (as the

inverse of a rotation matrix is also its transpose) to recover a skeleton with the same

orientation as the original one, only with left and right handedness flipped. The

advantage of using this procedure when calculating a distance function, as opposed

to use it to just double the training set, is that it allows for me to keep the number

of units in the gas a stable number (as I would 2 different templates to match either

correct skeleton if it was used as a preconditioning).

This procedure was not very computationally expensive as the simple rotation pro-

cedure (not Wahbas’ algorithm) from subsection 4.2.3 could be used, as it is enough

that the axis of symmetry coincides with the plane that is being mirrored, the matrix

rotation inversion is trivial and the same for all points in the skeleton pose p(k) and

it did not increase the overall running time, as doing it while the gas is comparing

points and check 2 values (either normal or mirrored).

Rotation Correction

It uses Wahba’s algorithm to calculate the best possible rotation that minimises

distance from the current presented skeleton pose and the gas node, updating the

current pose to the canonically rotated one. As this rotation correction procedure

is done to each node from the gas, although inherently parallel, this procedure in

my current implementation is very time consuming. I intentionally did not correct

the negative determinant case of Wahba’s algorithm (that can produce mirrored
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images), so that it could produce on demand fix for mirrored images (in case of

left-handed action), but as this procedure is not precise for unequal skeleton poses,

this may also be a source of error. Additionally it may also be used together with

mirroring function, e. g., for testing purposes.

4.2.8 Labelling

Labelling is done by identifying the ”nearest” pose and assigning a label according

to that prototype’s; in a sense it is a k-nearest neighbour algorithm with k set to one.

First, to each node from the resulting gas (representing a pose or concatenation of

poses), a label is applied from the training dataset using the methodologies described

below. Then to classify data, using some metric I compare distances from each node

to each data point and find for each pose from the dataset, the node to which it

most closely matches. The classifier node receives then this label.

Node Labelling - Best Matching Pose

I label the nodes from the gas finding the pose from the training dataset that has the

minimal distance to the current node and assign its label to the gas node. This is the

strategy used by the Parisi’s paper [121]. From this I construct a zero vector, whose

length is the number of possible labels, with a one on the corresponding dimension

to the matching label.

Node Labelling - Effective Node Match9

Effective node matching can be seen as a backwards matching of sorts. It is inspired

on the idea that some poses are common and not specific to a certain pose (shared

positions), while others only occur in a certain action. Using the best matching pose

will not account for this. In this way, the whole dataset is matched with their best

matching node points - that is, the node with which they have a smallest distance

9Note that these implementations make most sense when trying to classify actions as a sequence
of skeletons, with the correct label being the weighted sum of the classifier’s response over time.
For individual frames, for the classifiers attempted there is virtually no change in results. For this
reason, the ”Combined Effective node match and best matching pose” combined with a argmax
was used, instead of the original ”Best matching pose”, as it allowed for possibly more accurate
time filtering.
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according to the chosen metric - and count for each node point, to which action

labels it was mapped. This is then normalized10; it is divided by the sum of matched

points from the dataset, so that the sum of vector components is one. The node

label will now instead of a single number, be a vector with the number of dimensions

equal to the number of possible labels, with fractional values, corresponding to how

specifically that vector will match to each action.

Node Labelling - Combined Effective Node Match and Best Matching

Pose9

As the effective node matching can produce nodes that are not matched to any

element in the training set, it is necessary an additional step to ensure that every

point will have at least a single match. This is achieved by first labelling nodes with

their best matching pose and counting that as a first match for the effective node

match - although this is arbitrary and there is no reason to believe a priori that

counting the best matching pose as a single effective node match is adequate.

4.3 Results

Currently best results from the GWR neural gas are around 70% (see Tab. 4.2)

within the CAD60, with simple euclidean gas metric kernel, 1000 nodes, 10 epochs,

without normalisation, mirror or rotation correction, using only position - no tem-

poral concatenation - best matching pose labelling, without any gas distance condi-

tioning under a leave-one-subject-out for all subjects cross validation scheme. Res-

ults can be seen discriminated per action type in Tab. 4.5.

Although described in methods (see section 4.2) are many more options for the

classifier configuration, not all possible combinations were tested and only some

options that seemed of interest and worthy of discussion will be presented here in

more detail. The high variability in results from the gas depending on the number

10Here perhaps a better option would have been to use a softmax function. However since
back-propagation was not attempted, I considered the exponential superfluous and used a simple
normalization instead. Moreover, the exponentiation would bring the result closer to argmax which
was the exact issue this function was trying to mitigate.
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of epochs used and order of presentation of skeletons required many runs to detect

small improvements and testing all possible permutations is not feasible with its

current implementation11. Some of those address similar issues with only slight

improvements with negative effect on performance (like pre-condition mirroring vs.

distance metric mirroring) and a detailed breakdown of all its effects would be a

rather lengthy enterprise. These features however, possibly have their use in an

algorithm fusion approach, as they are seen to capture different information about

the set [117], which may contribute to higher accuracy.

The best results were achieved with Random organised ordering (where each action

is learned with all data from that action being presented at the same time), which

was used for presenting the following results. In general, it presented similar results

to a sequential ordering and around 0.5% superior on neural gases (however results

were variable due to random nature of NGs) than testing with truly random order.

However, as I theoretically see this presentation as more general than presenting

always the same sequence, Random Organised Ordering - our simplified curriculum

learning attempt - was thus used.

The calculation of measures was done following the recommendations of Sokolova’s

paper [159] and as such we report global accuracy (AGlobal) as it is a robust meas-

ure for the overall performance of an algorithm and has low sensitivity to extreme

performances on a specific class [159]. One may see the confusion matrices (see

Fig. 4.5 and A.1 ) from the classifier for all actions combined together, as the left

side showing the labelling done on training data, and right below the same results

discriminated by subject, that is, from subjects 1 through 4 (Fig. A.1), also with

the left displaying training data and the right validation data.

If Cn×n be the confusion matrix of the multiple class classifier with n classes, I can

define a global accuracy AGlobal as:

AGlobal =

∑n
i=1Cii∑n

i=1

∑n
j=1Cij

(4.11)

11Each run with 10 epochs with 5 gases with 1000 nodes would require roughly 3.5 hours, which
was unfortunately very variable depending on the preconditioning options and distance function
used.
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Table 4.2: Overall global accuracy (in %) for all actions and all subjects on CAD60

SVM KNN GNG GWR

No preconditioning 55.43% 53.76% 46.44% 47.27%
Centring and mirroring 66.36% 83.02% 75.97% 75.2%
Centring, mirroring and normalizing 67.27% 82.48% 78.37% 79%

The first thing that may be observed from such matrices is the discrepancy in the

global accuracy from the results in the training and validation data, where most of

the training data is correctly classified (accuracy around 90% - results not shown),

whilst the accuracy on validation data is around 70%, showing a great deal of overfit-

ting and not correct generalisation of the current presented classifier structure.

Something else that may be apparent is that for instance for subject 2 and 4

(Fig. A.1c and A.1g), not even the training data is correctly classified as for in-

stance for subject 2 in actions 4 and 6 (corresponding to actions ‘drinking water’

and ‘relaxing on couch’ respectively) or in subject 4 on action 6.

4.3.1 Comparisons Between Algorithms

The classifiers were run and compared in a “by scene” manner, in which the available

actions to be classified were not all the 12 different actions, but given a particular

scene, say bathroom or bedroom, a smaller set containing between 3 and 4 classes

of actions was examined.

The results from each of the 4 different methods, namely SVM12, KNN, GNG and

GWR (with simple preconditioning) and the effects of varying that preconditioning

can be seen in table 4.2. This was done to separate the effects of the pre-processing

stage from the learning algorithms efficacy. For a simpler comparison on which was

the best method of all, the overall global accuracies were used, here defined as the

sum of the traces of the confusion matrices of all scenes and all subjects divided

by the total number of poses (see eq. 4.11). As the method KNN has shown to

be the more accurate one, details of its accuracy by activity type can be seen in

12Support Vector Machine (SVM) with linear kernel trained for multiple classes using Error-
Correcting Output Codes (ECOC) [103].
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Table 4.3: Precision and recall of the best-found algorithm (1NN, centred and
mirrored skeletons) in the different environments of CAD-60 for all subjects com-
bined.

“New-person”
Location Activity Precision Recall

Bathroom

Brushing teeth 96.46% 93.11%
Rinsing mouth 87.68% 100.00%

Wearing contact lens 99.11% 88.82%
Average 94.42% 93.98%

Bedroom

Talking on phone 63.12% 60.44%
Drinking water 55.47% 65.81%

Opening pill container 98.83% 77.85%
Average 72.47% 68.03%

Kitchen

Cooking-chopping 96.86% 75.97%
Cooking-stirring 56.35% 81.43%
Drinking water 73.41% 74.46%

Opening pill container 98.83% 81.06%
Average 81.36% 78.23%

Living
room

Talking on phone 63.12% 60.44%
Drinking water 81.28% 79.30%

Talking on couch 100.00% 99.42%
Relaxing on couch 100.00% 100.00%

Average 86.10% 84.79%

Office

Talking on phone 63.12% 60.44%
Writing on whiteboard 89.64% 100.00%

Drinking water 82.06% 76.45%
Working on computer 100.00% 100.00%

Average 83.71% 84.22%

Global average 94.42% 81.95%

table 4.313.

Regarding the optimal value for k on the KNN classifier: this value seemed to vary

considerably. Depending on how many classes there were to be chosen from, its

optimal value ranged from around 320 (when all tasks are possible classes) to the

optimal value 8 (when there are only 3-4 possible tasks using only centring and

mirroring preconditioning) and to the optimal k = 2 (when centring, mirroring and

normalizing was used). As the difference between the maximum value achieved and

13Initially I had reported the variations of results upon a cross-validation strategy chosen of
Leave-One-Subject-Out for All Subjects, however under a deeper analysis, those were removed, as
their behaviour is still a debatable and dependant on the specific dataset [12, 90, 192]. The original
table for reference is still present for conference in the appendix (see Table A.5).
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the value for k = 1 was usually around 0.5% or less (83.65% vs. 83.02% and 82.91%

vs 82.48% respectively) in those particular cases, I chose to report the outcomes

with k = 1, which seem to yield a simpler classifier with accuracy very close to the

optimal.

The table 4.2 shows clearly that disregarding the translation of the skeleton pose

in regard to the origin is advantageous in every method, as well as indicate that

the idea to normalise the skeleton based on neck to torso distance is in most cases

helpful - however not in the best performing method only by a small margin (83.02%

against 82.48%). The interesting results when analyzed by scene, where clearly in

some environments as “bedroom” I have a lower than expected precision and recall,

were not only occurring in the KNN approach, but in both the gas implementations

as well as in the SVM.

I consider negative results of also being of interest in this context, as one considers

options so as to improve current classifiers. The tests were done in a greedy manner,

that is, each alteration was tested on a base GWR implementation with 1000 nodes

and running for 10 epochs, for consistency, with only one of the tested properties

changed.

Preconditioning So as to achieve translation invariance, I centre the skelet-

ons around the hips, however, I wondered if that was the optimal place. I also

tested centring around the shoulders, that is, considering the middle point between

shoulders as a zero. Another alternative was to consider the middle point between

the hips, but not remove the height, that is, centring around the projection of the

hips on the ground. Of those, centring around the hips seems to yield the best

results.

Perhaps of most interest in this section is the influence of removing rotations. This

task has proven to be slightly more complex than anticipated, mostly due to the fact

that Wahba’s algorithm expects an object to be known a priori and only present

alterations in its rotation. This is not the case for skeletons as the configuration of

the skeleton is not know, therefore I have no good skeleton to match it to and detect
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Table 4.4: Results for the CAD60 dataset for all subjects leave-one-out with a
chained GWR classifier (results for last layer) with 600 nodes with N = 4 trials

% Overall result for all actions

PrecisionM 69.45%
RecallM 70.85%
F1M 70.15%

rotations. The initial approach tried to solve this first by matching it against ”the

most common skeleton”, that is, the skeleton that had the smallest distance to all

others. This works reasonably well if the skeletons being matched are quite alike,

but if the template and the tested skeleton are on very different configurations, the

rotation correction obtained was often very poor. Moreover, it had the bad property

of putting two similar amongst themselves, but very different from the template into

very different configurations. An attempt to fix this was to test among all gas nodes,

i. e., prototypes, but this idea was abandoned due to high computational costs.

Moreover, the rotation angles themselves were shown to have some information

about the class membership in this dataset (as can be seen in head positions from

Fig. 4.3). One may argue that skeleton pose orientation does not correlate with the

actions being performed in the general case and only shows a quirk of my dataset

and how it was acquired (the Kinect has requirements in terms of occlusions) and

should not be considered at all, but this small dataset does not allow for such an

assumption to be tested.

Distance Functions Euclidean metric was considered superior on most of my

tests among those tested (tested also Malahanobis, sum of euclidean distances, con-

versions to polar and spherical representations and use of Euclidean distances on

those), with other alternatives performing worse or equal (but with increase in com-

putation times), but with loss in performance.
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(a)

(b)

Figure 4.5: Confusion matrix for the combined data for subjects 1,2,3 and 4. Figure
(a) shows training data and (b) validation data. Indices 1-12 correspond to the
actions on the dataset: 1- ’brushing teeth’ , 2- ’cooking (chopping)’, 3- ’cooking
(stirring)’, 4- ’drinking water’, 5- ’opening pill container’ , 6- ’relaxing on couch’,
7- ’rinsing mouth with water’, 8- ’talking on couch’, 9- ’talking on the phone’, 10-
’wearing contact lenses’ , 11- ’working on computer’, 12- ’writing on whiteboard’.
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Table 4.5: Classification of each action sequence in a leave one subject out validation
type with optimal parameters for (1000 nodes) GWR without filtering

Activity index Activity label Precision Recall

1 ’brushing teeth’ 69.87% 39.15%
2 ’cooking (chopping)’ 79.60% 76.71%
3 ’cooking (stirring)’ 69.22% 64.84%
4 ’drinking water’ 20.50% 33.82%
5 ’opening pill container’ 92.41% 87.91%
6 ’relaxing on couch’ 60.44% 68.43%
7 ’rinsing mouth with water’ 55.08% 82.64%
8 ’talking on couch’ 74.47% 67.27%
9 ’talking on the phone’ 52.21% 65.91%
10 ’wearing contact lenses’ 95.01% 69.00%
11 ’working on computer’ 100.00% 100.00%
12 ’writing on whiteboard’ 64.62% 94.53%

4.3.2 Across real world application: Results on the dataset

Ourset

So as to test the capacity of my implemented approach to generalise on data that

would be similar on that captured by a robot under optimal conditions, a dataset

was constructed and tested on the trained models using CAD60 skeletons. The

acquisition of this data was performed under controlled conditions to mimic as close

as possible data that would be acquired real application.

The results were not encouraging and thus a wider range of different approaches

were attempted and are reported in the confusion table 4.6, namely a single hidden

layer neural network with either 10 (10-NN) or 100 (100-NN) hidden units trained

with the scaled conjugate gradient backpropagation14 , the default configuration for

a neural network model from Matlab’s nntool. Note that since the data collected

from Ourset dataset has a slightly different skeleton definition (20 joints from Ourset,

obtained with a Kinect for Windows sensor vs. 15 joints from CAD60, obtained

from a v1 Kinect), with different numerical representation (units of length differ),

the normalisation step was used for all tests, as it was necessary. The rotation

correction chosen used was the single rotation correction on distance function with

14This optimizer was used as it is the default in Matlab. Other more modern methods, such as
ADAM (Adaptive Moment Estimation) were only introduced in newer versions, namely R2018a.
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Table 4.6: Overall global accuracy (in %) for all actions and all subjects on Ourset

10-NN 100-NN SVM KNN GNG GWR

Centring, mirroring and normalising 19.1% 22.6% 26.2% 25.1% 32.6% 33.5%
Centring, mirroring, normalising and rotation correction 23.4% 20.5% 15.2% 25.1% 20.5% 18.8%

Wahba’s algorithm (more time consuming version) as it was considered a superior

choice.

4.4 Conclusion and Discussion

From the analysis I performed there seems to be conflicting results when comparing

the classifiers used under the CAD60 dataset alone when compared with results from

Ourset.

One may reason that Ourset was not constructed adequately, mostly because the

sensor used was of a different kind and is thus not appropriate. Although this is per-

haps a fair conclusion, it does not come naturally from visual inspection of the data-

set. As visual inspection of the skeletons shows, the differences from the model are

not obvious and may be only related to different body proportions (longer/shorter

limbs, head, feet hands, wider/narrower hips and shoulders) and body poses. An

algorithm that aims to classify skeleton poses should deal gracefully with such dif-

ferences. My understanding is that the dataset Ourset is a challenging, but still

valid test for an activity detection algorithm.

Another point that needs to be addressed is the small size of these datasets. This is

an important issue, but due to the difficulty in getting adequate full body skeletons

(no missing data) without an active system (active vision), this is an issue that will

affect all work done in this way. The small size of Ourset (N = 2) is not considered

an issue, since it was used only for validation of the results and not for training.

This can be an issue, since having more data from the Kinect for Windows sensor

would allow us to test the extent to which the sensor and set-up affects the results.

The interpretation we have is that these 31 actions with 37k frames is enough to

evaluate performance.
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I most likely need to run additional tests using other and larger datasets with ad-

ditional types of action, but as it appears, even though the simple KNN algorithm

with just centring the skeletons gives the best accuracy, it seems to fail to generalise

with that representation.

A detail about Random organised ordering to be evaluated is the tendency of the

NG algorithms to fuse points that may represent different actions, which I could

mitigate if a not truly random order was presented to the gas. This, combined

with the random nature of NGs, made trying different configuration of the NG

architectures, very time consuming as I needed to test the NGs algorithms under

many iterations to make sure the effects observed were significant. 15

I should also mention the reasons why I believe that solving rotation issues seemed

to do more damage than good in my classifiers. It may be that I am exploiting a

characteristic of the set, that for a particular action, only a certain type of angles

would give you a complete skeleton with no occlusions and as such the act of acquir-

ing a dataset with properly defined skeletons creates an inherent bias that will not

be present if data is capture in ”wild” conditions. If this is the case, a real working

classifier needs in fact to do rotation correction, such as the Wahba’s algorithm and

I would be in fact less close than first assumed in coming up with a classifier struc-

ture that can really generalise. An opposing idea would be to assume that I need

in fact a person to be in a particular angle to understand what they are doing, as

sometimes it is even difficult for a human to understand what is happening when

viewing a situation from a certain unexpected angle. 16

An additional issue that must be pondered is the use of different skeleton repres-

entations from the learning dataset and the testing dataset, which is not ideal and

could be responsible for a substantial amount of the mismatches encountered.

15This was motivated by our desire to get a better more shuffled gas unit representation without
needing to increase number of epochs, which added up runtime, as it was mentioned in the results
section from Chapter 3.

16In the literature, these are the so called mental rotation tasks [154, 172] and can be themselves
quite challenging. The fact the people must think and have a hard time in rotating objects to
different orientation are a slight indication to me that object appearances - and probably actions
as well - are learned in a certain orientation and rotation is not performed automatically. Perhaps it
is even possible to test this given that men and women typically display different levels of aptitude
for these tasks.
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These conflicting findings, point in the direction of using larger datasets with an

algorithm that of which I have full control, not based on proprietary software such

as Kinect’s toolkit, so that these conflicts can be solved.

Additionally, perhaps combining skeletons with other strategies to limit the number

of possible classes such as using a state machine that encodes knowledge about the

task, or other information, such as the detection of objects that are being grasped or

sound (talking on the phone and drinking water would be much more easily discrim-

inated in that manner, as for with pose detection, considerations of where the hand

is when the head is modelled as a single point, can be tricky for this approach) and

this multi-modal information could be integrated in an additional layer to correct

inaccuracies inherent to only performing HAR with pose detection.

An additional important observation about this task, based on this work, was con-

cerning the difficulty testing multiple similar conditions and the recognition that

this task is, as Herlihy et al. puts it [68], ”embarrassingly” parallel17, that is, I can

test different architectures of classifiers very easily if I have more CPUs. It became

clear to me that to solve this sort of problem, I needed a system that would allow

me to test many different scenarios simultaneously, with plenty of data, and possibly

recognise that for slightly different actions, or context, perhaps one or another type

of classifier is superior and somehow choose the most appropriate one, or combine

their outputs somehow (see section 6.8 ).

These realisations motivated me into implementing my docker based system (see sec-

tion 2.2), to hopefully implement systematic training of multiple architectures (not

implemented due to time constraints) and the extension of my investigations into

deep learning, so as to be able to cope with larger datasets and faster training.

17An ”embarrassingly” parallel problem is one that can be easily divided into parallel processing
units and those can be executed in parallel with no crosstalk between processes.
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Chapter 5

Deep Learning Implementation

5.1 Introduction

In this Chapter, I explore a deep learning implementation of action recognition,

namely the one from the paper ”Temporal Segment Networks: Towards Good Prac-

tices for Deep Action Recognition” by Wang et al. [178], which I altered to make it

real-time1, and my attempt to deploy such classifier in the robotic platform Scitos

G5 using ROS. This particular implementation was chosen for its high accuracy on

the HMDB51 dataset [97], which made it a common benchmark for other works

to compare against and - perhaps most importantly - because the source code was

openly available, which would aid in quick deployment.

5.2 Materials and Methods for Activity Detection

using Video Sequences

5.2.1 Datasets Used

The datasets used for the following investigations were the HMDB51 [97] with a

restricted version of it to include actions that can be performed indoors by a single

person (often referred to as Human Motion recognition Database with 14 actions

1Real-time being interpreted in the sense of having a time constraint, as opposed to waiting for
an event, in this case, for the action to end, to output a result.
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(HMDB14)) and my own acquired data using the same 14 actions (often referred

to as MYSET). One of the reasons for using this dataset was that it was already

successfully classified with good performance with the TSN algorithm, which re-

duced the uncertainty about whether I can actually classify activity data well with

this architecture and enables me to focus on other aspects of the implementation.

The second main reason for this dataset to be used for most investigations was that

the set of activities it contains is more indicative of actions that can be performed

indoors, when compared to UCF101.

More details on the datasets used can be seen in subsections 5.2.1 and 5.2.1.

The image-only datasets do not contain depth information, are thus easier to gather,

and with that present wider collection of data samples. I will present the dataset

HMDB51 (see Section 5.2.1 ), the HMDB14 (see Section 5.2.1) and my own version

of the HMDB14 actions, the Myset dataset (see Section 5.2.1).

Human Motion Database: HMDB51 The HMDB dataset was introduced by

Kuehne et al. in the IEEE paper from 2011 ”HMDB: A Large Video Database for

Human Motion Recognition” [97]. It introduced a challenging annotated dataset of

action videos based containing 6’766 video clips in 51 distinct actions, each action

having at least 101 video clips, obtained from the internet. Moreover, it tackles some

of the difficulties of classifying videos by employing video stabilisation preprocessing

step (using the RANSAC algorithm).

Actions sequences were divided into 5 categories namely:

� General facial actions: smile, laugh, chew, talk;

� Facial actions with object manipulation: smoke, eat, drink;

� General body movement: cartwheel, clap hands, climb, climb stairs, dive, fall

on the floor, backhand flip, handstand, jump, pull up, push up, run, sit down,

sit up, somersault, stand up, turn, walk, wave;

� Body movements with object interaction: brush hair, catch, draw sword,

dribble, golf, hit something, kick ball, pick, pour, push something, ride bike,
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ride horse, shoot ball, shoot bow, shoot gun, swing baseball bat, sword exer-

cise, throw;

� Body movements for human interaction: fencing, hug, kick someone, kiss,

punch, shake hands, sword fight.

Note that these activities do describe many common actions that I might expect

to be observed in a SAR use case, however many of those would be quite rare

occurrences in a home environment, especially in an elderly house (such as cartwheel,

golf, handstand, kick, draw sword or sword fight). This motivated me to use a subset

of this dataset for my studies (see subsection 5.2.1).

Human Motion recognition Database with 14 actions (HMDB14) In

short, the HMDB14 dataset is a sub-set of HMDB51 containing 14 actions that

are performed indoors, with a single agent; an idea that shares some elements with

the creation of the J-HMDB dataset [75], mostly on implementation idea, which was

motivated by the facts that most action recognition algorithms fail when presented

with real world data. As in the J-HMDB dataset, in which a subset was chosen from

HMDB51, I chose to limit the set, but not limit the dataset to the same actions and

also, since I am not currently using Joint information, I did not particularly care for

videos that shown full body poses. Moreover, J-HMDB included outdoor activities

such as golf, kick ball, pull-up, shoot ball, shoot bow, shoot gun, swing baseball and

throw - actions I cannot reasonable expect to happen often in an indoors setting

of a robot being used for elderly care - and removed some actions which seemed

important to me, such as chew, drink, eat, pick, smile, stand and talk - actions that

seem to be important to describe the behaviour of the elderly in their homes - and

which I expect a CNN based network to be able to classify; a fact that also I aimed

to check.

For those reasons I chose a different subset of 14 actions, namely: ’brush hair’,

’chew’, ’clap’, ’drink’, ’eat’, ’jump’, ’pick’, ’pour’, ’sit’, ’smile’, ’stand’, ’talk’, ’walk’

and ’wave’. However, unlike the J-HMDB dataset, no additional joint information

or annotation of puppet masks as was done as those were not planned to be needed
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(a) (b)

Figure 5.1: A picture of the end of a standing up action both in Ph.D. common
office lab (a) and empty office (b). Both actions were shot while no other person
was in close proximity.

for the architecture used.

Own Acquired Data: the MYSET Dataset The MYSET dataset was ac-

quired using Scitos G5’s Xtion head mounted sensor, recorded with 640x480 on both

RGB and Depth channels (although depth was not used for the work presented in

this section). So as to emulate different recording styles, videos were recorded with

both a moving pan-tilt unit (active vision) and static camera, using both close-ups

and distant subjects. So as to simplify data collection (and data analysis), videos

were collected of only one subject, with a fixed duration of either 4 or 5 seconds in

2 different rooms (this PhD’s office lab and an empty office - see Fig. 5.1).

Videos were recorded from compressed video streams (so some compression artefacts

are present). In order to make sure the dataset was classifiable, videos with too

many recording artefacts, as well as videos that were improperly labelled, or were

improperly executed were manually removed from the set. Data acquisition was

performed 14 times for all actions, 11 times in the PhD office lab and three times in

the empty office. The total playback duration of the acquired set is 8 minutes and

7 seconds.

Note that, unlike the HMDB51, the video streams acquired were not stabilised.

I assume this to be not of major importance, due many of the MYSET videos

being recorded with a static camera and the simple movement of the active vision
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Action Office Lab Empty Office Total Included Removed
1. Brush Hair 8 2 10 4

2. Chew 9 2 11 3
3. Clap 7 2 9 5
4. Drink 6 2 8 6
5. Eat 3 1 4 10

6. Jump 6 2 8 6
7. Pick 6 2 8 6
8. Pour 5 2 7 7
9. Sit 6 3 9 5

10. Smile 8 1 9 5
11. Stand 4 1 5 9
12. Talk 7 2 9 5
13. Walk 3 3 6 8
14. Wave 8 2 10 4

Total 86 27 113 83

Table 5.1: Actions performed by action, by room and total included in the dataset.
Under the label ’Removed’ is the number of actions that were not considered well
executed or had video artifacts and did not make it into MYSET.

node.

A summary of the dataset acquired can be seen in Tab. 5.1.

5.2.2 Artificial Neural Networks (ANNs) and Deep Convo-

lutional Neural Networks (CNNs)

The underpinning ideas behind Artificial Neural Networks (ANNs) date back to

1940s and 1950s with the works of D.O. Hebb with the introduction of the notion of

Hebbian Learning and Rosenblatt that coined the term perceptron [137] when trying

to build a model of the human brain [140]. Slowly ideas were added to this simple

model, such as the addition of multiple layers, so that a network could be fitted

to learn more complex functions such as the XOR and proper training procedures

with the proposal from Werbos in 1974 [182] and Rumelhart et al. in 1986 [141] of

back-propagation training.

More recently great progress has been achieved in using ANNs to classify images

by using deep neural networks, i. e., networks with a larger number of layers and

efficient GPU based computing methods to train them [95]. This result may come as

a bit of a surprise when I consider that a single hidden layer ANN with a limited finite
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number of nodes using a sigmoid activation functions is capable of approximating

any function on a compact subset of Rn or conversely, that the error of a decision

function based on an ANN can be made arbitrarily small. This came to be known

as the Universal Approximation Theorem [113].

One of the reasons for this more intricate structure is that, even though simple single

hidden layer ANN are universal approximators, this result does not specify how one

would go about finding the weights that would enable this architecture to fit a con-

tinuous function. A CNN2 (see Eq. (5.1)) makes the process of training an artificial

neural network much faster, by having a much smaller number of connections and

parameters that need to be set for a network of similar size layer.

It achieves this functionality by sharing weights between many units that are close

to each other [95]. This is done by employing multidimensional discrete convolution

filter weights, instead of considering each individual data sample as an isolated

entity.

Simply put, the convolution (f ∗ h)(x, y) of two 2D signals [26] f(x, y) and h(x, y)

is defined by the equation:

(f ∗ h)(x, y) =
∞∑

i=−∞

∞∑

j=−∞

f(i, j)h(m− i, n− j) (5.1)

Where usually one of the signals is the image and the other signal is the kernel. In

the case of image convolutions, the domain is bound to the size of the image (so not

infinity) and we usually effect the transformation over three channels (Red, Blue

and Green), so the expression is slightly altered. Another important realization

about this process is that a convolution can be broken apart into chunks and is

therefore an ”embarrassingly” parallel problem. This feature enables convolutions

to be performed extremely fast in graphics hardware.

2A proper explanation of what a 2D discrete convolution is and how it can be used to limit
the number of learnable parameters in a neural network is much too broad and thus outside
the scope of this text. For a good review of discrete convolutions we recommend reading [67].
Neocognitron [54] is probably the earliest work using a CNN and presents a good explanation of
the use of convolutions for image analysis, which is the basis of the work that is presented here.
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A simplified way of considering a CNN would thus be the problem of optimizing a set

of 2D kernels so as to have such a set of kernel output different convolution results

to images of different classes. Kernel values are usually initialized with white noise

and numerical methods are used to improve classification accuracy upon a series of

iterations. These kernels are often stacked on top of each other for mathematical

efficiency in computing the convolutions and with all of these tricks combined, a

great number of images can be used to train a network in a reasonable amount of

time.

The convolution process has the additional characteristic of being translation in-

variant, which is a property that many physical processes have, such as speech and

image data, that is, for example, a phone is a phone, no matter where it is present

in a picture and its pixel value representation will locally be the same. Finally, one

must add that one of the main advantages of such a network type is that it was

demonstrated to be very proficient in the task of image classification and coping

with very large datasets and network models of this type can be trained efficiently

by current existing computer hardware, i. e., namely GPUs, in a reasonable amount

of time34.

5.2.3 The Temporal Segment Network Architecture

In this section I aim to briefly review the deep neural network design classifier used

in the TSN used in chapter 5, its overall structure and some of the network layers

and methods employed by this structure.

The basic structure of the TSN is to use a combination of static image classification

combined with classification of optical flows. This idea was introduced by Simonyan

and Zisserman’s 2014 paper ”Two-stream convolutional networks for action recog-

nition in videos” [158] and in short reduces a video classification problem to two

3A single CNN layer is not enough to produce a classifier and usually a single layer fully
connected NN is used as the last layer to output classes.

4A more efficient CNN is a deep convolutional neural network. It uses not a single layer
convolution, but many stacked on top of each other so as to be able to compose features in
an image. A process called back-propagation is used as the numerical optimization method to
determine the weights, that is, the kernel values that will be used for classification.
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image classification problems, one on static images and another done on optical

flows. This allows us to reuse successful image classification architectures to classify

actions as well as a lot of the improvements that were done to those image classifiers

over the years.

More specifically, the architecture for the CNN used in the TSN classifier was

Inception with Batch Normalization (BN-Inception), described in more detail in

[73].

Inception Modules Worth describing is the use of inception modules for the

CNN. These were first introduced in the context of the ImageNet Large-Scale Visual

Recognition Challenge 2014(ILSVRC14), on a paper from Google, with the GoogLe-

Net architecture [164]. The justification for the introduction of such architecture is

suggested as an intermediate approach between pure sparse matrix multiplications

(which are hard to optimise under current hardware) and dense models, which in

effect is an indirect way of increasing the network size.

The paper introduces the idea of the inception module (see Fig. 5.2) as a com-

bination of multiple convolution filter sizes that are stacked together to create a

higher depth output, by just concatenating the outputs of those convolutions to-

gether. More specifically it uses 1x1, 3x3 and 5x5 convolution kernels; additionally

it adds a 3x3 max pooling kernel and the outputs from all those functions are fed

into a concatenation filter. One may easily see how the dimensionality of the output

would grow enormously, especially in a network architecture with many layers. The

complete design of the inception module uses compression, implemented as a 1x1

convolution layer applied before higher length 3x3 and 5x5 convolutions.

As important modifications to inception modules, one must note the implementation

of factorisation for larger convolutions, which would be explained in more detail as

a principle in a December paper of the same year [163] - more details below. One

must also point out the introduction of a new approach to training so as to allow

increase learning rates, which is using normalisation each mini-batch, so as to deal

with a problem of having outputs distributions from layers change too much during
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(a) (b)

Figure 5.2: Naive (a) and complete (b) inception v1 module diagram with dimension
reduction (from GoogLeNet [164]).

learning, a problem named internal covariance shift.

Later, the work with inception style networks continued and additional improve-

ments in the modules were implemented in versions 2 and 3 described by Szegedy

et al. in ”Rethinking the Inception Architecture for Computer Vision” paper from

2015 [163]. In this paper, focus is being put into optimising computationally inef-

ficient large convolutions and make better use of currently available hardware by,

for example, (1) avoiding representation bottlenecks, especially in the first layers

of the network, which limits representation and (2) factorising large convolution,

which entails replacing such large convolutions, say a 5x5 convolution by 2 serial

3x3 convolutions without losing much representational power [163]. I see fitting

mentioning this work here, because it seems to go more in depth on explaining the

reasons for some of the alterations that were already introduced in the BN-Inception

model [73]. Additional design optimisations and considerations are made and I refer

the original paper [163] for a more careful explanation of all the design principles

used to optimise those inception modules.

More generally, the TSN implementation of the BN-Inception model using this ar-

chitecture has a number of stacked inception modules, with occasionally interposed

max pooling layers to reduce grid size, commonly employing more traditional con-

volution layers first and using the inception modules only at the end so as to limit

the issue of dimensionality growth. A diagram of the full network can be seen in

Appendix B.
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Pre-training The datasets used in Two-Stream architecture [158] and the Tem-

poral Segment Network architecture [178] both decided to use the UCF101 [160] and

the HMDB51 [97] datasets for their exploration. Those datasets, although rather

large (with around 9.5K and 3.7K videos) are still too small to allow training of very

deep models such as the ones that are being employed currently and require a very

large number of images to train. The risk here is to have your particular network

overfit too much, which is an issue.

So as to mitigate this, pre-training strategies were employed in both of those studies.

For the static image classifier (spatial stream), this endeavour seems more straight-

forward as typical cross-dataset fashion, employing a pre-trained network fed with

images from the much larger ImageNet dataset [37] with 3.2M images in total.

For the optical flow, however, since this input depends on time adjacent frame se-

quences, the ImageNet dataset pre-training was not adequate and Two Streams [158]

and TSN [178] diverge on setting up initial weights for those networks. The idea

from Two Streams was to train optical flows with both UCF101 and HMDB51

together and use two different soft-max layers on top of the final fully connected

layer and their own separate loss function as it was suggested by Collobert and

Weston [32] in the multi-task learning framework model. The overall training loss

is then computed by summation of training losses from the 2 different tasks (i.e.

learning either HMDB51 or UCF101) and the weights’ derivatives found by using

back-propagation.

TSN uses a much simpler approach which is grounded on using the same general

architecture for optical flows as it is used for static frames. The calculated flows,

which are represented as a floating point matrix, are discretised and converted to a

0 to 255 interval so as to be represented as a grey-scale image, and as such the sizes

of images of both RGB and flow channels match. Now, to initialise the weights,

the weights of the pre-trained static image are averaged over the RGB channels and

those are replicated to match the depth, i.e. the number of frames, of the flow

channel. The TSN implementation paper suggests that this initialisation tends to

work well to reduce the effect of overfitting.
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Figure 5.3: TSN structure model (adapted from [178]). Note special and temporal
ConvNets, i.e., image frames and optical flow respective inferences. On vertical
axis there is time progression. Segment consensus over time can be as simple as an
averaging function.

5.2.4 Classifier Architecture

The classifier is a wrapper for a caffeNet in python, which was modified to load from

streams instead as loading from video files. Again not much was changed from its

original structure (see Fig. 5.3), but mostly the portions pertaining loading of the

datasets.

One important change that needs to be mentioned concerns a hard problem in

action recognition, which is, how long does an action last. The TSN architecture

tries to optimise training by regularly sampling frames in a rate which is smaller

than the real frame rate, going by the assumption that, in a well trained network,

similar frames will have similar output and as such, neighbouring frames can often be

skipped without much impact on overall performance. Moreover, it reads more often

short duration activities than longer activities, so as to try to not miss important

stages that can help a classifier grasp the underlying structure of an action.

This variable sampling requires that one must know the video duration before going

through the frames, so as to classify only the smaller subset that would present the

novel information.

In a real-time implementation, this is unfortunately not possible and other strategies

must be used.
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As with my initial tests, I was still relying on playing back recorded videos of the

HMDB51 dataset and then my own videos, this could still be done, but later for

deployment, it would mean that I would have a classifier working in a different

way from which it was trained, which could negatively affect performance in an

unpredictable way.

The way I chose to solve this issue was to remove this feature and simply skip a fixed

number of frames. Unless otherwise noted, the results contained in this document

were elaborated with this frame skipping constant set to 5 frames, that is, in a 30fps

video, I would examine 6fps, which I view as a reasonable compromise between

performance and speed.

The algorithm was implemented with 3 different outputs:

� one that uses services to start and stop the classifier and consider the whole

action sequence in order to make the classification, published as /action own;

� an instant classifier that uses only the current frame (or in case of flow, the

current last 5 frames from a stack), published as /action;

� a compromise between those two which uses a moving window to classify the N

last frames, with N generally chosen to be 50 frames, published as /action fw;

And each of those outputs was published in 3 different ways so as to allow visual-

isation and further processing if needed:

� The most probable class output from the classifier, std msgs.msg.String out-

put, published with the base topic’s name, that is, either /action, /action fw

or /action own;

� The most probable class with the confidence level, a custom caffe tsn ros.msg.Action

message, published under base topic’s name with label appended to it;

� A dictionary of labels and their respective confidence levels, a custom caffe tsn ros-

.msg.ActionDic message, published under base topic’s name with label dic

appended to it;
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A further modification implemented was to remove the last fully connected aggreg-

ation layer [scores] that gets results from the convolutional layers and outputs class

memberships. The layer was removed and instead of returning classification results

and confidence levels, the full 10240 array defining response from the algorithm was

published as a ROS multiarray. This node was initially deployed using only instant

frame responses (corresponding to the /action topic), due to difficulties in storing

and stacking the output from many frames (variable size array) and loading them.

However, due to my hypothesis that this could be negatively affecting results too

greatly, multi-array stacks were also implemented.

The idea behind this splitting of networks was that of hopefully generalising the

process of transfer-learning, in which a network’s last layer is removed to allow

similar classifiers to be used without extensive training of the whole network in

cases only a small dataset is available (see Section 5.5).

This node was as well deployed in its own Docker image, with its own catkin work-

space. The full code for the ROS package is available at: https://github.com/

mysablehats/caffe_tsn_ros.

5.3 First Experiment: Replication of Temporal

Segment Network Results

The first experiment implemented was the validation of whether or not I successfully

could replicate the results from TSN in a real-time classification.

Results from my implementation, running a real-time classifier on a dataset, using

the pre-trained model provided yielded the resulting confusion matrices in Fig. 5.4.

This was trained using the whole movie segment (/action own topic) and classifying

the most probable action it represented considering the set of samples for that

segment using the RGB data only without re-sizing, that is, without reading the

modified frame data from denseflow, but using the dataset frame data itself. The

accuracies for splits 1-3 and average overall were respectively: 0.60131, 0.84248,
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(a) Split 1: RGB (b) Split 2: RGB

(c) Split 3: RGB (d) All splits combined: RGB

Figure 5.4: Confusion matrix responses from the vanilla TSN classifier ran on test
splits of HMDB51, by split with RGB modality, running on full actions .

0.845 and 0.78303.

I am also interested in the responses from the indoors single person smaller set of

actions, the HMDB14, which are plotted in Fig. 5.5. The accuracies for splits 1-3

and average overall were respectively: 0.51778, 0.88667, 0.89111 and 0.75823. The

responses from the moving window with window size N=50 (topic /action fw) were

also analysed and are presented in the Fig. 5.8. The accuracy of this configuration

was for splits 1-3 and global, respectively: 0.6171, 0.8614, 0.8519 and 0.7955. For

the HMDB14 the results were respectively 0.5477, 0.8904, 0.8701 (splits 1-3) and

0.7589 globally (confusion matrices not shown).

An additional test that was performed (and used for the following examinations)

was to determine how good were classifications when I considered not each action as

a whole, but only one frame of each action (topic /action). These instant responses
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(a) Split 1: RGB (b) Split 2: RGB

(c) Split 3: RGB (d) All splits combined: RGB

Figure 5.5: Confusion matrix responses from the vanilla TSN classifier ran on test
splits of HMDB14, by split with RGB modality, running on full actions - responses
from /action own topic.

from each time frame (as opposed to best label per action video) can be seen in

Fig. 5.6 and Fig. 5.7. Average accuracy over all splits of the restricted set with in-

stant responses (HMDB14): flow network: 0.432894; RGB network: 0.580788.

As one can see, using a fixed time step did not negatively affect the overall per-

formance, with my implementation achieving very similar results to the ones from

the paper that introduced TSN for both /action own and /action fw implementa-

tions. Using only instant frame classifications, that is /action topic results, however

seemed to have bit more of an impact on decreasing accuracy.
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(a) Split 1: RGB (b) Split 1: flow

(c) Split 2: RGB (d) Split 2: flow

(e) Split 3: RGB (f) Split 3: flow

Figure 5.6: Confusion matrix responses from the vanilla TSN classifier ran on test
splits of HMDB14, by split and modality, e.g., flow or RGB, running on instant
actions - responses from /action topic.
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(a) All splits combined: RGB (b) All splits combined: flow

Figure 5.7: Combined confusion matrix responses from the vanilla TSN classifier
ran on HMDB14, by split and modality, running on instant actions - responses from
/action topic.

(a) Split 1: RGB (b) Split 2: RGB

(c) Split 3: RGB (d) All splits combined: RGB

Figure 5.8: Confusion matrix responses from the vanilla TSN classifier ran on test
splits of HMDB51, by split with RGB modality, running on moving window size 50
- responses from /action fw topic.
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5.4 Experiment 2: Real Time Classification on

Scitos G5

The next experiment was to test whether the classifier as it is would be capable of

classifying real-time data from an unknown origin not from the dataset.

This is necessary as there is likely to be a difference between dataset (which is a

restricted set) and real file captured actions.

The experiment design consisted of a single room with the robot positioned station-

ary, only moving a pan-tilt unit in which the kinect sensor was mounted, running the

active vision algorithms and the ROS infrastructure necessary to run the pre-trained

TSN. A simple script was implemented to say and show to a subject on video screen

what sort of action he should perform from the list of restricted actions. I replaced

the dataset loader topic for the kinetic videocamera and both recorded the video

and depth channels for later use and did a real time classification.

Results of such single first experiment yielded the following confusion matrix which

can be seen in Fig. 5.9. For this experiment, the more accurate version of the

classifier’s output was used, namely the topic /action own. The experiment was

performed twice with similar responses both times, yielding a global accuracy of

21.43%.

Surprisingly the algorithm here (ran with RGB input only) made most mistakes by

marking actions as being ’pour’, not a common error in subsequent runs for RGB

(where most actions were considered ’smiles’).

Subsequent runs yielded similar results. The confusion matrices for the combined

results can be seen in Fig. 5.10. Accuracy for each classifier considered in isolation

was cf1 rgb : 0.13428, cf1 flow : 0.29204, cf2 rgb : 0.23941, cf2 flow : 0.26519,

cf3 rgb : 0.1434, cf3 flow : 0.19057. Their average accuracy of all RGB classifiers

was 0.17206 and all flow classifiers was 0.25031.
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Figure 5.9: Response for first experiment with robot and full loop with vanilla TSN
classifier with only RGB channel. Experiment was performed twice with 3 actions
correctly classified in the first try and 3 actions more on second try.

(a) All splits combined: RGB (b) All splits combined: flow

Figure 5.10: Combined confusion matrix responses from the vanilla TSN classifier
ran of MYSET, by split and modality.
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5.5 Experiment 3: Transfer Learning

The next investigation attempt was to try to identify whether I could train only the

last layer of the model to deal with unseen data and increase its overall perform-

ance.

In a usage case, this would be akin to a robot having to be calibrated first before use,

so as to know the subjects house and how he performs actions, which is a reasonable

requirement.

5.5.1 Sklearn Explorations

For this experiment I wanted to use any suitable model to replace the last layer

of the network so as to try to optimise the response for the data I gathered with

the robot. The idea is to perhaps optimise the response by adding more features,

so as to enable a classifier to be able to also optimise the response from the flow

and RGB layers (as opposed to just using the argmax for the combination of those

two). Initially, I just tried to fit a model with the combined output of RGB and

flow models, namely a one-to-one matching of RGB and flow responses form global

layers. This was done so as to be able to use the data I already gathered with the

robot implementation and allow for further explorations using it.

Frame matching was done in an approximate manner as the data from the 2 networks

was neither synchronised nor time-stamped. I only removed the samples which

didn’t line up based on real class differences when compared to the last classes for

each of those streams, that is, if the responses from the i-th element where, say for

the RGB ’dive’, last action ’dive’ and for the flow ’clap’, last action ’dive’; then the

flow network was already on a newer class, so the RGB samples will be dumped

until they line up again. Note that the reading of the datasets is not randomised in

order, all of the instances from each action being lumped together, so some of the

matchings were also not lining up, however they would remain undetected. I hope

that those, however are few, and should not compromise the end results that much,

considering the number of samples I have.
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Train Test

RGB flow combined RGB flow combined
Split 1 13463 13463 13461 6215 6215 6206
Split 2 14213 14214 14208 6365 6365 6360
Split 3 14290 14289 14286 6023 6023 6017

Table 5.2: The complete table of loading frames with RGB and flow channels com-
bined frame by frame for HMDB51.

Train Test

RGB flow combined RGB flow combined
Split 1 1197 1198 1190 509 509 509
Split 2 1231 1231 1228 478 478 478
Split 3 1084 1084 1084 506 506 506

Table 5.3: The complete table of loading frames with RGB and flow channels com-
bined frame by frame for MYSET.

Trying this algorithm with my own initially acquired data for the first training split

caused only 8 frames from over 1197 not to line up, 4 from flow and 4 from RGB,

dropping from a total of 1197 samples to 1190 samples - these being the worst results

on MYSET. The complete alignment results for both sets initially used can be seen

in the tables 5.2 and 5.3 5,6.

It should be noted that these numbers are underestimating alignment, since the

loading of the datasets is done class by class and some misalignment could be hidden.

This is a known issue and should have been solved using message filters in ROS

and direct saving of the matched data, however creating these sets is rather time

consuming and I expect the number of transitions to be small in comparison with

the lengths of the videos. That is, for my reduced split 3 from HMDB51 there are

420 included in the test which resulted in 6023 samples. If I assume 50% of those

will be improperly aligned for at most 1 frame, I get roughly 200 frames out of 6000,

which is around 3% error being introduced by this procedure. I expect this not to be

5Note that these frames were subsampled from the video input, with a step = 6, that is, only
1 every 6 frames was captured

6These values are unfortunately also not a conservative estimate of the number of misaligned
frames, since I am only considering class differences as misalignments and I have 100 video changes
per class and only 14 class changes - a more conservative estimate would be to estimate the
misalignment error as 7.2 times larger than 8/1190 so around 4.8%; using time-stamped topics,
message filters and a time synchronizer, this initial implementation was simplified and thus the
usage of time-stamped synchronized topics was skipped due to time constraints.
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Estimators 10 30 100* 200*

Training Testing Training Testing Training Testing Training Testing

split1 0.99925 0.52304 1 0.57638 1 0.62053 1 0.61731
split2 0.99944 0.50031 1 0.56038 1 0.61006 1 0.61918
split3 0.99965 0.53714 1 0.61359 1 0.63038 1 0.6347
average 0.9994 0.5202 1 0.5835 1 0.6203 1 0.6237

Table 5.4: Performance of different classifiers on training and testing splits of
HMDB51 with combined RGB and flow channels by number of estimators. * ran-
dom state=0 for reproducibility.

a major issue, but it will be kept in mind as one of the points where improvements

can be made.

Initial Tests: sklearn.ensemble.RandomTreeClassifier It has come to my

attention that my dataset has a lot of features, that is 10240 per modality, totalling

20480 for both RGB and flow channels. I have in my restricted set from HMDB51

only 13000 samples, which would allow for immense amounts of overfitting. In order

to try to go around it, I tried a robust classical method to try to go around this

problem.

The first attempt was to try to fit a Random Tree Classifier and see what kind of

performance that would give when compared with a NN last layer. I wanted to know

if it was also feasible to test multiple parameters of such a classifier giving that the

size of my dataset is quite large. Using both flow and RGB combined stream features

the test finished in under a minute with 10 estimators with responses below.

Another reasoning for using a Random Tree Classifier is its overall high performance

with few parameters to tune. This would hopefully provide a reasonably good

classifier that is fast enough and can serve as a ball park for some refinements. A

table with the results obtained from trying to classify the features extracted from

HMDB51 dataset with different number of classifiers is presented in Tab. 5.4.

A graph of the overall behaviour can be seen below (see Fig. 5.11):

As a next test, so as to try to reduce overfitting I tried reducing the maximum

number of features used by each classifier - the default is sqrt(n features), which in

this case would be 143 features for only 14 classes. I tried another common setting
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Figure 5.11: Accuracy responses from classifier using RGB+Flow with random forest
classifiers with varying number of estimators (n estimators = [10, 30, 100, 200]).
Dashed red line is a fitted curve of type a+(b−a)e−kn, with a = 0.6228, b = 0.4575,
k = 0.048. *Note that graph was zoomed to 0.50-0.70 to highlight differences.

Training Testing

split 1 1 0.61086
split 2 1 0.60613
split 3 1 0.63767
average 1 0.6182

Table 5.5: Reduced number of features to log2 for combined RGB and Flow features
from HMDB51 dataset.

which is ’log2’, which in this case would yield 14 max features. Results from this

test can be seen in Tab. 5.5. Actually with 1 single feature and 200 estimators I can

already overfit as shown in table 5.6.

This algorithm is clearly overfitting and other attempts to prevent it (such as re-

ducing max features) were not successful. However, it may be interesting to know

whether it can classify the initial captured dataset MYSET and whether it does

Training Testing

split 1 1 0.58153
split 2 1 0.53884
split 3 1 0.59914
average 1 0.5732

Table 5.6: Reduced number of features to 1 for combined RGB and Flow features
from HMDB51 dataset.
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Training Testing

split 1 1 0.178782
split 2 1 0.267782
split 3 1 0.201581
average 1 0.2160

Table 5.7: Combined RGB and Flow features trained on HMDB14 dataset data
(training) and tested on MYSET (testing).

RGB FLOW
Split 1 0.11002 0.29666
Split 2 0.22176 0.24686
Split 3 0.17787 0.17787

Average 0.16879 0.24046

Table 5.8: Accuracy (testing) for RGB and flow modalities for Random Forest
classifier, trained on HMDB14, tested on MYSET.

improve on just using the normal fully connected last layer from the already trained

Caffe network.

Using sklearn.ensemble.RandomTreeClassifier without additional train-

ing data As a first test, I want to be able to compare how well this replaced last

layer would perform when compared to the original algorithm with no help from

training it on the acquired data, that is: train on HMDB14 and test on MYSET.

I chose as frame of comparison a random tree classifier with 100 estimators and

the normal number of max features, only using random state=0 for repeatability

(results in Table 5.7).

The confusion matrices for combined flow and RGB can be seen in Fig. 5.12.

For comparison purposes, also the isolated flow and RGB results are presented in

Fig. 5.13 and Fig. 5.14 and Tab. 5.7.

These results are very similar to the Neural Network model, which may indicate

that MYSET does not have actions matching those of the HMDB14, that is, sit

on HMDB14 is not the same sit as in MYSET. Another possibility is that the

features themselves that were acquired are basically different from those in an office

environment. Finally it may be that the structure itself of TSN is adequate to train

HMDB51 (and datasets acquired in similar fashion), but does not perform well on
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(a) Split 1: combined flow and RGB (b) Split 2: combined flow and RGB

(c) Split 3: combined flow and RGB (d) All splits combined: combined flow and
RGB

Figure 5.12: Confusion matrix responses from the vanilla TSN classifier ran on test
splits of HMDB14, by split with combined flow and RGB modality, running on
instant actions - responses from /scores topic.
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(a) Split 1: RGB (b) Split 1: flow

(c) Split 2: RGB (d) Split 2: flow

(e) Split 3: RGB (f) Split 3: flow

Figure 5.13: Confusion matrix responses from the Random Forest Classifier with
TSN features ran on test splits of MYSET, by split and modality, e.g., flow or RGB.
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(a) All splits combined: RGB (b) All splits combined: flow

Figure 5.14: Combined confusion matrix responses from the Random Forest Classi-
fier with TSN features ran on test splits of MYSET, by split and modality.

a set of actions in the wild.

If the first or second case is true, then acquiring enough data to train the last layer

model on only the dataset should resolve the problem. Finally, if it is the case that

TSN structure itself cannot be used, perhaps it can be extended (with some ensemble

method) or other architectures could be used (see section 1.6.2) instead.

Using sklearn.ensemble.RandomTreeClassifier with additional training

data A next test was done to see if adding my own acquired data and training

on larger dataset would improve those results. Two different scenarios were tried,

namely:

� use my dataset MYSET and HMDB14 combined to train the classifier, and

test on MYSET, so as to test whether I need to add new data to the original

dataset HMDB14 to make it more complete and descriptive of those set of

actions;

� use my set MYSET and its appropriate splits to both train and test, so as to

check whether the action set, as it was captured, was describing considerably

different actions from the original set and would award it having complete new

categories so as to classify them.

This was the best results I obtained so far in the testing set MYSET, which can
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be seen with confusion matrices in Fig. 5.15 and Fig. 5.16. For the RGB classifier,

testing accuracy for splits 1-3 and combined are 0.18271, 0.10251, 0.2253 and 0.1702,

however for the flow classifier, accuracy was considerably higher, for splits 1-3 and

combined respectively: 0.34185, 0.39749, 0.39921 and 0.3795.

It may be that due to the number of tests performed the results obtained here are

only due to cherry-picking and the results here do not represent a step forward

to solving the problem, however this will only be known with further tests with a

larger dataset. For the moment, however, I will assume that these results point to

something about the dataset I hasn’t been considered before.

I suspect that these results together with the similarity in responses from both

Fig. 5.10 and Fig. 5.14 point to the fact that these actions, as captured, do not

constitute a group that is contained within HMDB14. Or better said, the resulting

classifier that is generated from using HMDB14 does not generalise towards the set

of actions I gathered on my own set. It may be that it does not even capture the

correct features necessary for it to happen, or simply that the data sources are too

different (either from the cinematography choices or from a different understanding

of what ’smile’ or ’sit’ means).

It may also be the case that not considering the action as a whole and only classifying

it frame by frame is too strict a requirement from this classifier (that hypothesis is

corroborated by the fact that flows - which use consecutive frames - yield better

results than RGB images). Those hypothesis guided the future investigations.

The results from Fig. 5.16 motivated me to try and see if I could improve it further

with a combination of both RGB and Flow features. The responses for the Random

Forest classifier for this approach can be seen in Fig. 5.17. The recorded accuracy for

splits 1-3 and average were respectively: 0.210216, 0.184100, 0.332016 and 0.2431,

not better than just using FLOW modality alone.

I can see that this combination approach, at least as it was implemented, did not

increase the accuracy of the random tree classifier, most probably due to the high

number of features present in comparison to the size of the dataset. As a matter of
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(a) Split 1: RGB (b) Split 1: flow

(c) Split 2: RGB (d) Split 2: flow

(e) Split 3: RGB (f) Split 3: flow

Figure 5.15: Confusion matrix responses from the Random Forest Classifier with
TSN features trained and tested on splits of MYSET, by split and modality, e.g.,
flow or RGB.
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(a) All splits combined: RGB (b) All splits combined: flow

Figure 5.16: Combined confusion matrix responses from the Random Forest Classi-
fier with TSN features trained and tested on splits of MYSET, by split and modality.

fact, this was investigated before during the second experiment while classifying the

CAD-60 dataset. Then I found that for datasets with high feature dimensionality,

methods such as SVM and especially KNN were considered superior7 [5].

5.5.2 Pytorch Explorations

As a first attempt, I wanted to check if I could retrain the last layers of a NN

to the same level of accuracy as the originally trained algorithm using a pyTorch

implementation instead of Caffe. This problem, although seemingly trivial, should

allow us to automate transfer learning. Given the high dimensionality of the data

received as input, and that the original network form TSN has a single layer fully

connected layer as input, I decided first to try to fit a net without any hidden layers.

For loss function I used the mean square error, using a learning rate of 5E-6 with

100 batches of 1000 epochs.

I performed the same procedure as before, first testing the HMDB14 set with its

training and testing splits, then training on HMDB14, testing on the splits from

MYSET, then training on HMDB14+MYSET testing on splits of MYSET and fi-

nally training and testing on MYSET splits.

The loss function and accuracy over time can be seen in Fig. 2.6, as well as the

7Under the set of supervised classifiers and datasets tested by Amancio et al., that is kNN,
Perceptron, Random Forests, Naive Bayes, SVM, Logistic, Simple Cart, C4.5, Bayes Net.
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(a) Split 1: combined flow and RGB (b) Split 2: combined flow and RGB

(c) Split 3: combined flow and RGB (d) All splits combined: combined flow and
RGB

Figure 5.17: Confusion matrix responses from a random forest classifier with features
from TSN, trained on MYSET, ran on test splits of MYSET, by split with combined
flow and RGB modality, running on instant actions - responses from /scores topic.
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control signals that show which test was performed. I can see from those graphs

that the network is clearly overfitting the data, probably due to the relatively high

number of features when compared to the size of the dataset (10240 features vs.

13000 images on the whole HMDB14). The problem is even more pronounced when

just training on MYSET due to greater disparity in dataset size and number of

features.

This is a known issue when using BN-Inception to classify the HMDB51 dataset and

has been addressed by using heavy dropout (0.8) [196]. The paper [127] suggests that

in a similar scenario of using a single hidden layer, that dropout may be superior to

L2 regularisation and other works also seem to use heavy dropout when classifying

HMDB51 [80].

5.6 Conclusion and Discussion

It was interesting to us that flow seemed to give better predictions than RGB frames.

Perhaps one of the reasons for this was that the environment in which I recorded

the actions was really unknown to the classifier, or that RGB classifier relies too

much on queues from the environment to correctly classify actions.

I succeeded in constructing a valid framework to deploy quite generally learning

algorithms within a ROS system. I also managed to adapt the TSN classifier to a

real-time implementation (with varying delays, depending on whether a long win-

dow, instant results or whole action classification was chosen) using the previous

knowledge from skeleton classifiers to enable good classification (79.55% accuracy

on the HMDB51 set using N=50, topic /action fw) without relying on knowing when

exactly an action finishes.

I was interested in the fact that responses for HMDB14 were quite similar to the

ones from HMDB51. These were quite similar to the responses from the whole set,

which is not necessarily the case: as I am dealing with a smaller set, one would

expect it to be easier to classify. This effect in turn could be counterbalanced by

having a smaller set concentrating more similar tasks (which is certainly the case
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here, due to our interest in indoor only, single person tasks, which most likely offer

lower quality visual cues), or it shows that the ”resolution” we have for binning

tasks is such that any grouping may be possible. This effect interests me because it

may point to ways our implementation may be lacking in training data as well as

ways in which the model could be improved to get more accurate descriptors (and

not just linearly independent noise that would cause our model to overfit).

However, it seems as if the results obtained do not translate well into a real-world,

in the wild, activity classifier. The optimisation of this framework is a laborious en-

deavour and issues with generalisation are reported in the pertaining literature [75].

One of the reasons for this may be that the classifier relies on cues from the envir-

onment and particular framing, as I noticed upon visual inspection of the HMDB51

dataset that certain actions such as smiling, tended to be mostly close-ups, which

was not the case from data from MYSET.

My aim with the structure I chosen was to have a robot actively data-gathering

from long periods and thus provide us with the larger amount of data that I believe

necessary to train a proper activity classifier, as my chosen dataset, the HMDB51,

most likely does not have sufficient examples (on average only 8 repetitions of each

action) for this to be possible.

While the training of a neural network in a transfer learning style was not adequate,

other methods such as random-trees should have given a moderately good estimate

of what the lower bound of a functioning activity recognition classifier’s accuracy

should be under the conditions I presented it. The moderate results I achieved

seem to indicate that I need to improve upon these bases (larger datasets, more

descriptive models), rather than trying to get the optimal structure of the algorithm

as it is.

I presented a real-time classifier implementation of the TSN algorithm completely

built under ROS that allows multiple machines and algorithms to be used simultan-

eously, achieving a near state of the art performance for HAR (79.5% accuracy on

the HMDB51 dataset), successfully replicating results from the literature.

135



For generalisation and real deployment in robotic platforms, however, more work

is necessary to validate the approach attempted in this particular study case. I

believe to have validated the infra-structure used so as to facilitate immensely future

works with more descriptive models, i.e. better neural network structures, and that

allow for more relevant data to be captured - in the very likely case that observer

positioning and framing of actions play a role in describing adequately HAR.
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Chapter 6

Lessons learned and potential

improvements

Most of my discussion was done under the pertaining chapters, however some general

discussion seems in order as it involves the totality of this work.

The goal with this project was initially to solve falling detection for elderly people

in home environments. I hand-crafted a model based approach (see Chapter: 3)

to this problem using a known skeleton classifier structure with over 90% accuracy

on the TSTv2 dataset( a falling action vs activity of daily livings (ADLs) dataset).

Due to the difficulties in testing and validating such a system and the availability of

cheap commercial accelerometer based alternatives, the goal was extended to classify

actions in general, as such classifier could be more easily validated.

More broadly, it is my current understanding that HAR is a more challenging prob-

lem than it seems at first. It seems to rely intensely on abstracted information from

the environment and proper statement of the problem is not only hard, but also did

not seem to conduct to any groundbreaking work, at least so far as the literature

review showed.

Moreover, its uses were for it to work properly would be of huge gain to many

different applications. From simpler use cases of those of describing a video, to

more ambitious ones such as crime detection or even robotic learning of actions and
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its autonomous execution.

This goal seems to be, given the current state of technology, a far one. With the here

presented work, at least in its structure and approach, I expect to have contributed

to the development of Human Activity Recognition.

6.1 Active Vision

My work suggests that the problem of active vision may be coupled with activity

recognition. Only keeping the subject in frame is not enough to reproduce video

sequences of the same style as those that are captured by humans with cameras,

which influences recognition. This is a particularly important issue as, not only there

are different movement styles based on the type of activity being captured, but also

differences in zooming and framing that are likely correlated to the type of activity,

which likely makes HAR using videos captured by people, i.e. videos from YouTube,

an easier problem than classifying activities in the wild (with no zooming or proper

framing). Examples from the HMDB51 are ’smile’ or ’chew’ sequences, that have a

clear face focus, while ’jump’ or ’walk’ usually show whole body poses.

6.2 Skeletons

The most basic problem when attempting HAR based on skeletons, and that was

dealing with noise. It is conceivably harder to identify an action, if the range of

movement that describes it is with the same order of magnitude of sensor impreci-

sion. This is especially troublesome if this noise is unpredictable and depends on the

skeleton’s pose and the environment in a way that cannot be easily modelled.

Velocities streams suffered more from this effect, which resulted in very noisy output

for the classes under this layer. More accurate joint positions would likely benefit

the skeleton classifier.

Second, the work on activity detection by classifying skeleton positions has some

limitations as many actions cannot be interpreted as a simple sequence of skeleton
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positions. To illustrate this, one may think of a picking action. Depending on where

the object is, its size, where the person is and the constraints of the environment,

the picking action may present itself as a completely different set of skeleton poses.

One may circumvent this by having an enormous set with many different picking

actions, however it is difficult to guarantee that every possible picking action will be

present in the training set. Moreover it does not account for possible compositions

of actions, such as picking something while sitting on a chair, or even laying down

(as a mechanic would do while working on a car engine, for instance).

A more accurate description of an action seems to be necessary in order to solve

these sorts of problems.

6.3 Deep Learning

I believe I only scratched the surface of the advantages that deep learning can offer

us in terms of activity recognition. The fact that many architectures rely heavily

upon models used for image recognitionis perhaps a reflection of this.

It may as well be the case that HAR relies on object recognition and I am indirectly

using this fact on the proposed network structures. Although there is reason to

believe that perhaps those two (object recognition and activity recognition) are very

different problems, requiring different NN structures I am unaware of any work that

has done so and shown better results than using custom features (the sometimes

called ”handcrafted features” [25], see Section 1.6.2). It is probable that Deep

Learning techniques need to be used in conjunction with recurrence (say RNNs and

LSTMs) or more complex models with hidden states. The organization of such a

network is not yet known and may require biologically inspiration from neuroscience

studies to narrow down its structure.

If, on the other hand, Deep Learning merely requires more data, or concurrent data

from multiple modalities (say 3D information, flow information, position of objects

and limbs), than we believe we are on the correct path with our proposed modular

docker based ROS infrastructure.
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6.4 Infrastructure

Much of my effort was put into creating an infra-structure necessary to be able to

test the algorithms with which I was working. Problems with replicability gave rise

to more commonly scientists publishing not only their papers, but also the code with

which those were created. Moreover, I noted that many recent works were developed

using available open-source implementations. I believed to have made a correct

choice with the ROS implementation, even though it took considerable time to

develop, as it allowed deployment of many more different architectures than would be

possible if I wasn’t using a docker encapsulated, multi-computer infrastructure.

Even with the computing power I had available, frequently I would run into problems

with efficiency when deploying real-time computations and having more than one

system to do load balancing was certainly beneficial.

Although I did not manage to completely implement my initial idea (of a skeleton

classifier in ensemble with a deep-learning classifier), I believe that further work in

this direction would have given me positive results, especially considering how the

classifiers behaved under my own acquired datasets (Ourset and Myset).

The implementation we used is a natural one and has been used for a number

of other applications. The slight complexity it has on the robotics side, due to

having multiple components, should be alleviated in the future by creation of more

and better adapter layers as this technology solidifies itself. Such adoption should

simplify concurrent execution of multiple complex networks and allow for better

testing as well as meta-learning [173], which today is a challenge to researchers

without access to extensive resources.

6.5 Future prospects for TSN and the Deep Learn-

ing Implementations

As this work on activity detection of a robotic platform did span over a varied

number of topics, my deep-learning implementation suffered from not being explored
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well enough.

As future work, I would hope to re-implement the learning of the last layer of

the network using my ROS infrastructure. Literature review indicates that the

implementation of heavy drop-out (80-90%) with adequate training times should be

sufficient to improve the results we have to match TSNs expected performance. This

was not our focus in the beginning of this work and was thus relegated to background

as merely an oversight, and is an area which certainly can be improved.

Additionally, I also want to systematically try out different approaches to fusion

layers. In the literature not much attention seemed to be testing different modes of

fusion, with most employing a weighted average, or on some cases SVM, without

visible improvements in performance. I believe additional gains in accuracy can

be made by employing a cleverer fusion modality with the use of ensembles (see

Section 6.8).

Given the complexity of action recognition, it is expected that only a multi-modal

approach will be sufficient to accurately describe actions in a way in which results

can be generalized. Our very capable infrastructure (see Chapter 2) can be leveraged

and used in its full potential for such tests. For that, object recognition with useful

descriptions must play a role. With this objective in mind image classifiers focused

on regions such as R-CNN [59] and Facebook’s Detectron [60] should also be a useful

addition to an ensemble model. Additional useful information may be available by

considering object 6D information [71, 185, 123] and even concurrently with CNN

skeleton pose data [169].

Additional work needs to be done to consider how would be the best way to take

advantage of this information.

6.6 Extending Active Vision

Obtaining data that is as close as possible from the data your system was trained

in seems to be a cornerstone of achieving an accurate classifier.
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As most current activity datasets were captured by humans, if one wishes to use

this kind of data, two main approaches seems to present themselves: (1) emulate as

close as possible video capturing as a human would or (2) abstract camera motion

and position, as well as other factors present in videos captured by people. Some

methods, such as Improved Dense Trajectories (IDT) [175] compensate for camera

motion, so using a method based on IDT, such as currently state-of-the-art for the

HMDB51, the classifier from Wang et. al. [176], could potentially alleviate this

issue.

Another possibility is however, to use data captured ”in the wild”, so as to have

more representative data, or even, make use of my ROS implementation and record

data on the very same way that it will be used for classification - full robot loop.

The basis for this was already set, it merely depends on having the computers close

to a room where the robot could be placed, and acquire data over a long period of

time.

6.7 Better Skeleton Classification

I believe that skeleton representations are not only biologically plausible [8], but

also seem to have promise in recognition of higher level scene representations (such

as action recognition). The continuation of this work should be based on extracting

more accurate and useful activity skeleton data. I started on this endeavour with the

use of the CMU’s OpenPose Caffe based CNN classifier [169]. Some issues involving

speed and not having complete skeletons or joint information from the dataset videos

prevented the skeleton classifier from being fused with the CNN classifier, but I

believe they are solvable by using a cleverer skeleton representation (that allows

comparison of incomplete skeletons) with optical-flows to increase performance. I

am halfway in this implementation and hope to publish results from this study, upon

solving these issues.

So as to have access to larger datasets I believe I can use a combination of RGB-D

datasets, skeleton estimation from 2D images [180] and depth estimation from 2D
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images [61, 62, 99] and obtain a very large set of actions with skeletons. Some of

the hurdles involving skeleton stabilization and missing limbs across frames as well

as performance enhancement with optical flows (an extension of section 2.3.1) were

already implemented (solved with a similar idea as employed) as it was my initial

idea to deploy this algorithm (which was put aside due to time constraints).

Moreover, perhaps a better description of skeleton poses, based on limb prototype

motions, such as Sanzari’s approach [144] show promise and should be a part of my

proposed ensemble approach.

6.8 Ensembles

The idea of increasing the accuracy of algorithms by implementing a set of ”weak

learners” and combining their output to produce what Kearns and Valiant [81] refer

to as group learning, now referred to by ”strong learner” [82]. The idea, presented by

Kearns as a collection of similar algorithms collectively trained (group learning) to

outperform a single algorithm in the concept of boosting, was extended to multiple

methodologies and now describes a meta algorithm that can be implemented in

multiple ways, but with the same underlying statistical basis, that is, that using

algorithms that are weakly correlated to the output one wishes to obtain, but not

correlated with each other, enables to produce an Ensemble that has itself a higher

accuracy than each of those basis algorithms used in isolation. While this is not

always the case and depends on the dataset, what kinds of algorithms are used as

a basis for the ensemble, as well as the number of weak algorithm used , the basic

idea still holds, with the resulting classifier generally being more accurate than each

of the individual classifiers making up the ensemble [118].

Opitz [118] shows that for Arcing [17], Bagging [16] and Boosting methods, that the

initial addition of weak learners seem to be more important than having a very large

number of learners (e.g. more than 100), with an almost linear fast decrease up to

20 classifiers and a much slower decrease after that - compare to my own attempt at

a random tree forest classifier ensemble (See Fig. 5.11) implemented in section 5.5.1.
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An additional important idea substantiated by empirical research is that a good

ensemble is one that has individual algorithms that are accurate in different parts

of the input space.

Moreover, the ensemble idea is also useful when mixing heterogeneous strong al-

gorithms, which was demonstrated among others, by Dzeroski’s 2004 paper [39]

with the introduction of a meta-learning algorithm for an optimised tree stacking

method, showing that with an adequate strategy, it is possible to improve results

from simply choosing the best algorithm by cross-validation strategies. It also sub-

stantiates the idea further that error correlation between algorithms is inversely

correlated to the performance gain.

Perhaps it is worth mentioning the 2009 Netflix competition, which has its awar-

ded winner group Bellkor using a combination of methods (blending) and gradient

boosted decision trees(GBDT) an ensemble method to achieve top performance [94].

More currently I can cite ”WatsonPaths: Scenario-based Question Answering and

Inference over Unstructured Information” from Lally et al., a IBM’s Watson archi-

tecture, which uses ensembles [100].

I mention ensembles many times in this document, however the only attempt done

with an ensemble method used was the random forest classifier, used in order to

gauge the expected lower bound of a proper NN in the context of transfer learning

with TSN on my own dataset Myset. This implementation did not use the whole

potential of ensembles, which was my initial intention and could not be completed

due to time constraints.

Ensembles, and in particular stacking, should be carefully tested for fusion layers,

as it has the promise of improving recognition even above the recognition accuracy

of the most accurate classifier for a particular action. This possibility should motiv-

ate the use of many algorithms simultaneously and even justify the implementation

of not state-of-the-art algorithms with the hope that overall, I can still boost the

performance of the overall system, or perhaps to, at least, cover gaps in other ap-

proaches. Moreover, for very particular cases, perhaps a hand-made solution may be
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available in the literature and for that, I believe that with my docker encapsulation

implementation, such algorithms will be easier to port and interface.

6.9 Improving Infrastructure: Remote Processing

The ideal structure for remote processing that allows sharing of resources without

hurting performance was sought, but considerable lag occurred when fast camera

motions were performed that created a lot of artefacts in the video feed when using

the VPN structure. This most likely occurred because sending new frames with

the fast changing background was causing a spike in data throughput that could

not be delivered to the networked nodes. Some optimisation may be necessary on

what is processed locally and what can be sent for remote processing. Even though

these obstacles arose when using a remote processing strategy, I believe these can

be overcome just with optimising engineering aspects of my network setup. Those

could include using more modern codecs, improve network physical structure (either

by requiring a direct WiFi link from robot to ROS network) or splitting tasks that

require low-latency video with high-frame rate from other tasks that can handle

more delay and perhaps having some computationally heavy processes run in the

robot after all, but most in the remote ROS network.

I believe that possibly the dense flow computations and should be performed on the

robot (say by just adding a JETSON1 connected to the robot via Gigabit Ethernet),

while object recognition, face-tracking or processing of action sequences can still be

performed with deferred, i.e. remote, processing. This way we perform complic-

ated image analysis with much lower rates (say 1-2 fps) and interleave the unknown

frames with estimations from optical flow. With adequate time-stamping and syn-

chronization of nodes in the network there is no reason to assume this system would

not work. There is good reason to believe that both those types of processing could

be beneficial to optimise learning strategies (see section 6.9.1). I envision that for a

1Lucas-Kanade optical flow is not that computationally intensive, with its computational load
adjustable by changing image resolution. It is also highly parallelizable, but it needs to be com-
puted with the lowest latency possible. Dividing computations here is a reasonable compromise if
adequate bandwidth is available.
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simple camera pan-tilt, background out of the field of view of the camera could be

stored and only frame differences could be sent over the network which should allow

for sufficient speed-up to keep the image feed adequate even with fast panning or

tilting motions. Most importantly is to implement adequate compression without

reasonable increase in lag (i.e. prevent caching), as delays can be hard to deal with

(fast tracking control systems will easily become unstable) and would force too much

processing power to be located within the robot, fact that I hope to avoid. The best

structure that allows this is possibly very task dependent and deserving of future

research and engineering efforts.

6.9.1 Docker Improvements

As mentioned in Section 2.2, a more elegant version of my docker deployment would

perhaps use both docker compose and docker swarm, to facilitate use and to do

more advanced load-balancing, for more complex future applications.

There is likely additional gain in using such a networked, multi-system infrastruc-

ture for learning algorithms, as the sharing of resources could allow for a swarm

to learn a task faster than a single agent could. In the case of activity detection,

multiple agents observing the same scene (with different viewpoints, light expos-

ure and camera movements), is likely to provide a natural dataset augmentation.

Additionally, multiple systems deployed at different locations might have exposure

to a larger range of actions and by sharing their learning algorithms, could learn

from experiences they themselves, never experienced. Another more general use case

would be for reinforcement learning on robots trying to perform similar tasks, where

you would also get hopefully faster learning, by sharing experiences. This encap-

sulation should also enable for meta-learning strategies to be attempted; if CUDA

capabilities are not needed, with the configuration being abstracted, this structure

should still allow for a simpler clustering deployment on academic settings. Cur-

rently commercial products exist to automatically deploy an adequate classifier for

a particular dataset, but as these suits are proprietary (such as those provided by

Microsoft AZURE or IBM’s Watson), results obtained are not adequate for scientific
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studies. I can envision a simple tree search algorithm that should allow for a similar

functionality, e.g. start with Clustering, proceed to single hidden layer NN with

varying number of nodes, then KNN, SVMs with various kernels, GMMs, K-Means

systematically; if it has order, proceed to recurrent types, such as RNNs, MTRNNs,

LSTMs and so on. Base on recent research, this systematic should be the starting

point for any study on any particular dataset.

6.10 Beyond the basics: Datasets May Not Be

Enough

There might be limitations with studies dependent on datasets I am just slowly

uncovering as learning algorithms become more sophisticated and more complex

tasks are attempted [166]. Activity recognition seems to be a complex problem

and it is easy to envision that perhaps no dataset will ever be complete enough to

account for all variations of possible actions. It seems that activity detection lacks a

proper basing theory behind it. Simply stating that activities are state changes with

common properties is much too broad a definition to guide this approach.

The research indicates that, depending on the type of action, very different symbol

groundings may be used. The action of picking, for example, seems to be related

with ”attaching an object’s frame of reference to a frame of reference that is under

control of an agent”. It does not seem to matter which hand is used, if you use

both hands, if you used your mouth (say to get a coffee cup from a table), your

elbow or an instrument, such as tongs. It also does not matter the position in which

other limbs are or anything else. The complete description of this action using a

dataset seems would be very inefficient and even ideally would reach only a plateau

of accuracy, after more common picking actions were presented.

I believe that a model used to describe actions should have representativity for this

kind of structure (in the picking example, attach a frame of reference) and that a

HAR algorithm will thus need to infer the intention (or planning) consistent with

that of attaching a frame of reference, to classify this action correctly. More research
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needs to be done so as to describe this problem generally, as not for all actions this

descriptive grounding is evident. Actions such as open, or close, seem to be, in this

sense, very complex, as they would depend on an understanding of the topology

of different objects (as in open a door, or open a bag seem to be almost different

actions).

Perhaps the act of trying to replicate an action that is learned is necessary to generate

the adequate representation of the action and merely observing it, is not sufficient,

which would point towards a merger of activity detection with reinforcement learn-

ing strategies. Interesting work has been done that integrates planning and visual

feedback under the field of execution monitoring [131], with a robotic implementa-

tion of Google’s Deepmind paper ”Asynchronous Methods for Deep Reinforcement

Learning” from Mnih et al. [112] 2. This implementation, however, uses a set of

predefined actions. It would be highly advantageous to close the loop and have

learned actions be able to be performed by a robotic agent and it is likely that both

execution and recognition could be improved by having a closed loop system.

I hope that with an implementation of encapsulated docker containers for CNN

networks, that the deployment of such testing scenarios would be expedited and

that more time can be spent testing pertaining science, instead of setting-up the

software for robotic platform.

2Based on the Torch implementation of this algorithm from https://github.com/miyosuda/

async_deep_reinforce.
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Conclusion

In this work I approach two different promising approaches to Human Activity

Recognition (HAR), namely using skeleton classifiers and convolutional neural net-

works. My work on falling detection [86] was validated under the TST v2 dataset

to have over 90% accuracy (see chapter 3); with my activity detection with skelet-

ons under the CAD60 dataset showing over 75% accuracy (see chapter 4) and my

TSN, ROS-docker real-time implementation (see chapter 5) showing also over 75%

accuracy on the HMDB51 dataset.

I also present a software infrastructure (see Chapter 2) proposal on ROS network,

multi-node system (see section 2.1), capable of deploying multiple CUDA nodes and

use several different networks simultaneously, to train and test both on datasets

and on real robot data, the accuracy of my classifiers. I also implemented an active

vision system so as to obtain proper video input with a moving subject (see sec-

tion 2.3), along-side an approach to optimise computation load of a CNN to get

objects position by using optical-flow (see section: 2.3.1).

The proposed classifiers however, did not perform as well as expected considering my

validation strategies, but especially on acquired data. I considered some approaches

to improve on those results (see chapter: 6) by both exploring the capabilities of my

ROS-Docker network implementation: in allowing deployment of multiple classifiers

at once (ensembles), make use of the clustered structure to do parameter and network

structure optimisation (meta-learning) and speeding up deployment of new classifiers

(by using containerized images whenever available) as well on ways to extend the

work on each classifier structure attempted.
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On the question of how much did I achieve from my planned contribution to science

from Section 1.7, perhaps the item I went the most far was Item 1, where I have

an infrastructure that can deploy generic algorithms in a fairly clean way, if code

is provided. Item 2 was implemented partially, resulting in my conference public-

ation [86], however it lacked a proper robot implementation as it was considered

difficult to test, as it is uncertain how representative are staged falls into a mattress

in a lab environment, when compared to real falls in a cluttered home environment.

For Item 3, I moved a bit further with 2 different implementations, one using classic

ML techniques another one using more modern CNN. As for Item 4, I believed to

have done an appropriate job, gathering new data that was challenging for the clas-

sifiers, a validation strategy which is, perhaps as good as cross-dataset validation,

if not better, as it would give a good estimate of how well they would perform in a

more realistic deployment.

While still being short from state of the art classifiers, I still believe there is a

contribution to science in this work, namely in establishing a systematic way to

deploy and train those algorithms under a challenging problem. We believe that our

makeshift ROSnvidia-docker cluster should inspire more complex architectures and

hopefully a group will be established to curate such type of implementation. The

adoption of these measures should streamline the study of classifiers and that of

action recognition, by allowing more focus to be put on the task of creating a novel

classifier structure, than on other perfunctory tasks, such as solving dependencies

or trying to replicate code from often unclear paper descriptions. Containerised

deployments make these problems obsolete, while adding only a slight overhead

in terms of initial complexity. Performance and dependency issues were a serious

concern and this work would not have gone as far as it has without containerized

deployment. As an example, the sale of GitHub to Microsoft changed ROS prefixes

and one of my implementations would not compile any more after the latest updates

were applied. If I hadn’t implemented it in Docker and could just load the saved

old image, I would have no choice but to solve this issue. It may seem like a simple

occurrence, but those little snags add up and slow down research.
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I hope to help future researchers in this topic, by providing not only the ideas on how

to make easily shareable classifiers, but also providing the source code of the whole

implementations presented here in full in GitHub under my personal repositories.

If anything it provides a base level that can be used as a frame of comparison and

hopefully easily extended and improved. It is not expected that a host will be

able to carry around all the computational power it needs to execute many possible

computations required by some of the current state-of-the-art learning algorithms.

This fact, combined with the knowledge that environment does not change very fast,

should allow us to share resources an implement decentralized deferred processing

nodes using the tools exposed in this thesis. This area has a lot of possibilities to be

investigated, in particular when it comes to using multiple systems concurrently in

cooperation. Unfortunately, getting to the stage where those ideas can be tested can

be quite arduous as we demonstrated with our explorations, but surely the structure

and approach used here should serve as an adequate stepping stone for future works

done in this area.
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Appendix A

Additional materials for GWR

based activity detection

A.1 Joint enumeration

The joint enumeration for the Kinect v1 (used in the CAD60 dataset) consists of 15

joints as can be seen in table A.1.

The joint enumeration for the Kinect for Windows (used in the Ourset dataset)

consists of 20 joints as can be seen in table A.2.

The joint enumeration for the Kinect v2 (used in the tstv2 dataset) consists of 25

joints as can be seen in table A.3.

So as to be able to train one dataset and test on another (or even combine sets) we

used a simple conversion table based on the text description of what each joint should

be. As there are 3 different sets of skeletons being used, 6 different conversions were

possible, but we will describe here (see Table) the one that was necessary to convert

skeletons from 20 joints to 15 joints (Kinect for Windows skeletons into Kinect v1

skeleton definitions).

Ideally we would use a validated procedure (either from literature or provided by

Microsoft) to convert those skeleton definitions or have data sample skeletons of

the same subject with the same pose collected with the 3 sensors so that a better

152



Table A.1: Joint enumeration for Kinect v1.

HEAD 1
NECK 2
TORSO 3
LEFT SHOULDER 4
LEFT ELBOW 5
RIGHT SHOULDER 6
RIGHT ELBOW 7
LEFT HIP 8
LEFT KNEE 9
RIGHT HIP 10
RIGHT KNEE 11
LEFT HAND 12
RIGHT HAND 13
LEFT FOOT 14
RIGHT FOOT 15

Table A.2: Joint enumeration for Kinect for Windows.

hip center 1
spine 2
shoulder center 3
head 4
shoulder left 5
elbow left 6
wrist left 7
hand left 8
shoulder right 9
elbow right 10
wrist right 11
hand right 12
hip left 13
knee left 14
ankle left 15
foot left 16
hip right 17
knee right 18
ankle right 19
foot right 20
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Table A.3: Joint enumeration for Kinect v2.

SpineBase 1
SpineMid 2
Neck 3
Head 4
ShoulderLeft 5
ElbowLeft 6
WristLeft 7
HandLeft 8
ShoulderRight 9
ElbowRight 10
WristRight 11
HandRight 12
HipLeft 13
KneeLeft 14
AnkleLeft 15
FootLeft 16
HipRight 17
KneeRight 18
AnkleRight 19
FootRight 20
SpineShoulder 21
HandTipLeft 22
ThumbLeft 23
HandTipRight 24
ThumbRight 25
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Table A.4: Joint conversion table of Kinect for Windows skeletons into for Kinect
v1 skeletons.

HEAD head
NECK spine
TORSO shoulder center
LEFT SHOULDER shoulder left
LEFT ELBOW elbow left
RIGHT SHOULDER shoulder right
RIGHT ELBOW elbow right
LEFT HIP hip left
LEFT KNEE knee left
RIGHT HIP hip right
RIGHT KNEE knee right
LEFT HAND (wrist left+ hand left)/2
RIGHT HAND (wrist right+ hand right)/2
LEFT FOOT (ankle left+ foot left)/2
RIGHT FOOT (ankle right+ foot right)/2

conversion strategy could be tried (eg. multivariate regression or a neural network),

but such data was not easily found. So as to have some baseline we proposed to

simply use a table (see Table A.4) and average the results of some redundant joints

(as the skeleton we captured had more information than the one on which we tested).

This procedure was visually inspected and it seemed to output reasonable usable

and comparable skeletons, however we cannot rule out that this imprecise matching

is a cause of classifier mismatches.

A.2 Additional results skeleton action classifier
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Table A.5: Precision and recall of the best-found algorithm (1NN, centred and
mirrored skeletons) in the different environments of CAD-60 for all subjects com-
bined. ± signs indicate 1 standard deviation considering leave one subject out
(LOO) cross-validation strategy.

“New-person”
Location Activity Precision Recall

Bathroom

Brushing teeth 96.46%± 4.29% 93.11%± 6.84%
Rinsing mouth 87.68%± 18.55% 100.00%± 0.00%

Wearing contact lens 99.11%± 0.61% 88.82%± 11.67%
Average 94.42%± 11.18% 93.98%± 8.55%

Bedroom

Talking on phone 63.12%± 46.84% 60.44%± 41.24%
Drinking water 55.47%± 39.08% 65.81%± 45.57%

Opening pill container 98.83%± 2.34% 77.85%± 39.14%
Average 72.47%± 37.50% 68.03%± 38.80%

Kitchen

Cooking-chopping 96.86%± 1.94% 75.97%± 18.23%
Cooking-stirring 56.35%± 39.66% 81.43%± 29.14%
Drinking water 73.41%± 48.97% 74.46%± 49.65%

Opening pill container 98.83%± 2.34% 81.06%± 32.72%
Average 81.36%± 33.54% 78.23%± 30.88%

Living
room

Talking on phone 63.12%± 46.84% 60.44%± 41.24%
Drinking water 81.28%± 17.82% 79.30%± 23.43%

Talking on couch 100.00%± 0.00% 99.42%± 1.17%
Relaxing on couch 100.00%± 0.00% 100.00%± 0.00%

Average 86.10%± 27.43% 84.79%± 27.11%

Office

Talking on phone 63.12%± 46.84% 60.44%± 41.24%
Writing on whiteboard 89.64%± 20.23% 100.00%± 0.00%

Drinking water 82.06%± 18.78% 76.45%± 26.94%
Working on computer 100.00%± 0.00% 100.00%± 0.00%

Average 83.71%± 28.02% 84.22%± 28.02%

Global average 94.42%± 11.18% 81.95%± 28.82%
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.1: Confusion matrix for training (a, c, e and g) and validation (b, d, f and
h) for subjects 1,2,3 and 4 respectively being assigned to validation set. Labels are
the same as in Fig. 4.5
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Appendix B

Diagram of the BN-Inception

network1

I’ve used the provided Caffe python script draw net.py and chose to divide it in 10

pages so as to be able to show at least the overall connectivity. The diagram is

printed top-to-bottom and shows the validation and training version of the RGB

network with its initial full convolution layers (figure B.2, top), followed by 10

inception modules (figures B.2 until Fig. B.11 and its fully connected layer and

output (figure B.11). The flow network has the same overall structure. The complete

network structure is available in https://imgur.com/a/sRdR1BN and can also be

accessed with the QR-code in Fig. B.1.

1The BN-Inception network is quite large and it is a challenge to display it in a sensible way
within the constrains of A4 size papers. We understand the difficulty in reading the network
structure from the given pictures. It is perhaps worth considering if it is possible to continuously
draw network structures upon increasing complexity.

Figure B.1: QR-code for imgur link of the complete structure of TSN image classi-
fication network branch.
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[112] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves,

Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.

Asynchronous Methods for Deep Reinforcement Learning. arXiv:1602.01783

[cs], February 2016.

[113] Mohamad H. Hassoun. Fundamentals of Artificial Neural Networks MIT Press.

MIT Press, 1995.

[114] Mohamud A. Verjee. Home Visits and Home-Based Care: A Necessary, Im-

practical, or Humanitarian Primary Care Service? J Family Med Prim Care

Open Acc, 3(1), January 2019.
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AQ1

Abstract. In this paper we aim for the replication of a state of the
art architecture for recognition of human actions using skeleton poses
obtained from a depth sensor. We review the usefulness of accurate
human action recognition in the field of robotic elderly care, focusing
on fall detection. We attempt fall recognition using a chained Growing
When Required neural gas classifier that is fed only skeleton joints data.
We test this architecture against Recurrent SOMs (RSOMs) to classify
the TST Fall detection database ver. 2, a specialised dataset for fall
sequences. We also introduce a simplified mathematical model of falls
for easier and faster bench-testing of classification algorithms for fall
detection.

The outcome of classifying falls from our mathematical model was
successful with an accuracy of 97.12 ± 1.65 % and from the TST Fall
detection database ver. 2 with an accuracy of 90.2± 2.68 % when a filter
was added.

Keywords: Action recognition · Falls · Neural networks · Neural gas ·
Topological classifiers · Socially assistive robotics

1 Introduction

In the field of robotics, activity detection [11] is a fundamental concept if the
robots are used in a setting where they are expected to cooperate with humans.
The initial approaches to the detection of human actions involved the processing
of RGB images, and as such were proven to be a hard problem due to the
difficulty in segmenting the human body from the background and accurately
processing pose information. Recently however this task was made considerably
easier with the introduction of skeleton tracking based on depth-sensing cameras
as implemented by the Microsoft Kinect and as it steadily improves, it also allows
for more serious tasks that depend on activity recognition to be tackled, such
as activity detection. We will focus on its use in the context of socially assistive
robotics for social elderly care.
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2 F.B. Klein et al.

1.1 Ageing Population

With the ageing of populations around the world, elderly care is a field of grow-
ing concern. Many different technological aids [3] are being developed specifically
for this population and robotics has emerged as a possible solution as the mobil-
isation of human caretakers for such a large amount of persons seems infeasible.
While robots in regards to human-robot-interaction are yet to find a particular
field in which it is undeniably useful, an interesting approach [18] to their use is
finding newer areas in which they can nothing but excel, simply because there
are no persons nor other technology available to perform that task. One of such
tasks is around the clock health monitoring for independent living.

1.2 Our Task of Interest: Fall Detection

It is medical fact [9] that diseases that can present themselves as a loss of con-
sciousness, such as strokes and heart infarctions - those two, the leading causes
of death world wide - can have excellent prognosis if treated within 3 h. Particu-
larly cardiac arrests present a survival rate of about one in each three subjects,
if CPR and defibrillation are initiated in less than 5 min, whereas the probabil-
ity of survival without any help is virtually zero [19]. Also other diseases such
as pneumonia or COPD exacerbations do tend to have better prognosis [20] if
treated promptly. One must take care as to not make bold assumptions, even
more under the light that major reviews [5] are yet to reveal clear benefits of
telemedicine, but some interesting recent results [4,8] demonstrate COPD as a
likely candidate to benefit from remote monitoring.

The specific task of fall detection has recently attracted a lot of research, with
a primary focus on smart home environments. In fact most fall detection sys-
tems [21] involve wearing special sensors device with accelerometers or detectors
built on the floor or a combination of video and wearable devices with a sen-
sor fusion approach in order to increase the accuracy of detection even further.
These approaches although more simple (and therefore robust) have however the
limitation of needing either a sensor to be worn at all times, or that the person’s
house to be adapted for this, which in practice will vastly limit its adherence. We
see coding fall detection into some sort of a multi-functional robotic companion-
that could have as one of its many functionalities: fall detection-as a reasonable
solution to this problem. A robot can follow the user in different environment,
position itself in order to prevent image occlusion and we avoid the need to
renovate someone’s house or remember always to wear a sensor.

1.3 Our Approach: Use the Parisi’s Multilayer GWR Classifier

Using an unsupervised method for topological description [6] of tasks is not
a new idea, since these methods have many possible advantages such as the
ability to “operate autonomously, on-line or life-long, and in a non-stationary
environment”. We chose to replicate the infrastructure implemented by [15] for
it’s overall performance in the CAD60 database and the theoretical generality of
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the method. In this paper we describe our implementation of a classifier based
on an unsupervised Growing When Required Neural Gas with a sliding window
scheme for time integration and chained in multiple layers to implement noise
removal.

Source code (available in www.github.com/frederico-klein/ICONIP2016) of
the Growing When Required Neural Gas implementation (in Matlab and Julia) is
provided, as well as the full classification architecture and the inverted pendulum
model (only in Matlab).

2 Materials and Methods

2.1 Justification for the Chosen Architecture: A Chained GWR
Sliding Window Topological Classifier

A detailed discussion of different types of neural gases is outside of the scope
of this text. For a more in depth understanding one should probably first refer
to Martinetz’s paper [12] that implemented the first neural gas and later to
Marsland’s paper [13], that implemented the Growing When Required neural gas
(GWR). The justification of using multiple chained gases (as opposed to one)
is, first the biological plausibility reviewed extensively by Parisi but secondly
probably due to necessity regarding the way too long execution time of a gas
with a high number of dimensions. Finally one must add that, although neural
gases, due to their nature, adjust to data that changes over time, this feature
does not seem useful in tracking movement. For this function a sliding window
scheme was used.

The dataset we chose to test our implementation was the TST v2 dataset
contains skeleton positions Microsoft Kinect v2 and IMU data for 11 subjects
performing either ADLs (activities daily living) and simulated falls. The sub-
jects were between 22 and 39 years old, with different height (1.62–1.97 m) and
build. Each of the two main groups (ADLs or Falls) contains 4 activities that
are repeated three times by each subject [7]. For our present study only the
skeleton joints in depth and skeleton space and time information were used. The
accelerometer, as well as other data, were not used for our algorithm.

In addition to the real dataset a simplified stick model was developed to test
the ability of a Growing When Required multilayer with a sliding window classi-
fier to discriminate between action sequences that included a fall. We modelled
2 different activities, a fall and a walk as the movement of a stick in a 3D space
and then simply substituted the stick for a typical skeleton.

Fall. We simulated fall of a person by a free falling inverted pendulum rod
with a random initial pitch angular velocity θ and perfect slippage. It can be
shown [16] that the kinematics differential equations that describe angle and
position changes for a rod are:

− mg
L

2
cosθ =

(
Ic +

mL2

4
cos2θ

)
θ̈ − mL2

4
cosθsinθ̇2 (1)
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(a) (b) (c) (d)

Fig. 1. (a) A typical fall from TST v2 dataset. (b) one of the ADLs from the TST v2
dataset, a walk. (c) a typical fall from our model. (d) a “walk” from our model.

0 = mẍc (2)

And, approximating a person by a slender rod, one has Ic = mL2

3 . The model
also was given simulation parameters to add random noise in the variables of
height (1.6–1.9 m), initial position (within a square area) and any initial yaw
angle.

Walk. The simulation of a person’s walk was done by simply doing a linear
space of displacements inside the area that would be covered by the Kinect
sensor, with random initial positions and walking angle (Fig. 1).AQ2

2.2 Skeleton Data

The algorithm presented uses skeleton data and not RGB-D raw images. A more
thorough descriptions [17] of the data obtained from the depth sensor should be
referenced, but in short it is a set of J points (where J is the number of joints) with
x, y and z coordinates, each representing a landmark on the body in time [10] in
a 3D space. We represent thus a particular pose as the concatenation of these J
points, such as that for each time frame k we have a pose p represented by the
matrix:

p(k) =

⎡
⎢⎢⎣

j1x(k) j1y(k) j1z(k)
j2x(k) j2y(k) j2z(k)

. . .
jJx(k) jJy(k) jJz(k)

⎤
⎥⎥⎦ (3)

An action sequence represented on discrete time steps 1...K could therefore rep-
resented as the multidimensional array resulting of the sequential concatenation
of the k-th pose matrices. To use the pose information with a gas we change the
representation of the pose matrix p(k) into a vector size 3 ∗ J and the action
sequence is the horizontal concatenation of the all the k-th, p(k) matrices. One
may thus understand the pose vector as a single point in a high dimensional space
and an action sequence as a necessarily continuous trajectory in that space.
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2.3 Construction and Randomisation of Training and Validation
Sets

The dataset was separated into training and validation sets containing 80 % and
20 % of data respectively, before each training similarly to a repeated learning-
testing method [1,2]. They were separated by subject, so that each subject had
all of its actions belonging exclusively to one set. This was done to describe a
more realistic testing scenario, in which the subject performing the activities is
completely new having no activity data of himself in the training set, preventing
bias in accuracy estimation due to overfitting the training set.

2.4 Preconditioning

The GWR algorithm is not translation invariant, so the first action performed
on the data was to select a joint - based on our reference algorithm we used the
hips and subtracted the offset from the hips joint in both the z and x coordinates
from all other joint vectors. Secondly, we normalised (scaled) the data so that
after scaling variance of the data would be equal to 1. The final step was to
implement a centroid generating function, so to generate a smaller dimensionality
representation of the skeleton poses, in a similar fashion to the function tested
by Parisi. We created a model of 3 centroids that were the average position of
the skeleton points such that the upper centroid was composed by the joints:
head, neck, left shoulder, right shoulder, left elbow, right elbow; middle centroid
corresponded to torso and lower centroid: left knee, right knee, left hip, right
hip. Many other preconditioning functions are available on the supplied code
and maybe be tried by the interested reader.

2.5 Classifier Architecture

The classifier was implemented as a serial chaining of gas subunits. This was done
to enable different structures to be tried with minimal effort. All classification
attempts in this text were done using 5 gas subunits linked in manner as to
implement the architecture in Parisi’s [15] paper (see Fig. 2), that is, 2 parallel
sets of 2 gas subunits in series, each stream dealing with either pose positions
or pose velocities and a last gas that integrates both.

Fig. 2. Diagram of the classifier architecture.
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For each gas subunit there are 5 main chained elements that are responsible
for implementation estimation and classification:

– Sliding Window: implements the temporal concatenation of sample (also
implements concatenation of multiple streams in case they exist).

– Gas Creator: receives data samples p(k) or concatenated poses Wl(k) and
implements the learning algorithm for either the Growing When Required
neural gas or the Growing Neural Gas.

– Mapping: finds the best matching pose from the nodes matrix A corresponding
to each sample from the dataset.

– Labeller: simple labelling function that assigns the label of estimated concate-
nated pose as the same as the label of the pose to which it best matches.

– Activation checker: during training, checks to see if points are able to be well
represented by the gas, and if not removes them from the sample.

3 Results and Discussion

For all the results here presented, the simulation parameters for the GWR neural
gas are the same as in our reference paper [15].

3.1 Cornell CAD60 Dataset

As a means of comparing our implementation with that of Parisi, we also tested
our architecture on the CAD60 dataset. Apparently our implementation does
a lot of overfitting, as it reaches 99.6 % accuracy on the training set (average:
99.38 ± 0.2% for 8 trials) but only reaches 71.7 % on the validation set. We
noticed however that misclassifications were limited to some specific actions,
with most having the same accuracy (greater than 90 %) in both sets. It is our
conjecture that this difference reflects that the CAD60 dataset is too small to
allow our stricter cross-validation method to produce generalization.

3.2 Falling Stick Model

Our algorithm, even with a much smaller network (100 nodes), seems to be quite
consistently capable of classifying our faux fall/walk model. We simulated 20
subjects performing either a fall or a walk. The peak accuracy on the validation
set of our implementation was 98.33 % (average: 97.12 ± 1.65 % for 8 trials).

3.3 TST Fall Detection ver.2 Dataset

Learning Across Layers. In order to understand how learning happens across
layers we analyse the output classification from 5 gases with 1000 nodes run over
10 epochs (see Table 1) the results reflect what we would expect: there is a steady
increase as we progress through the layers and there is a gain in accuracy.
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Table 1. Progression of classification accuracy within different layers for chained GWR
Neural Gas classifier with 1000 nodes and run over 10 epochs (for 8 trials).

Gas element Validation set Training set

GWR gas 1 Pos 67.69 ± 0.73 % 93.04 ± 0.12 %

GWR gas 2 Vel 64.80 ± 0.93 % 69.43 ± 0.66 %

GWR gas 3 Pos 66.93 ± 1.02 % 90.45 ± 0.18 %

GWR gas 4 Vel 65.14 ± 0.77 % 70.66 ± 0.65 %

GWR gas 5 STS 73.99 ± 1.16 % 88.35 ± 0.41 %

Mode Filter. With the intention of performing some sort of temporal filtering,
we implemented a moving mode filter. The moving mode filter had an important
positive effect on the classification results of the TST v2 database (see Table 2).
Highest classification accuracy achieved (See Table 3) was 94.2 % on the valida-
tion set by 3rd gas with 1000 nodes and 10 epochs with mode filter length of 35
data samples. One must note that adding a moving mode filter of size 35 means
a delay of 11.67 s (since we need (9 + 1) ∗ 35 samples @30 Hz) much more than
the 0.6 s Parisi reported.

Table 2. Accuracies (in %) after applying the moving mode filter on classification
results of the final gas unit of the classifier (for 8, 8 and 1 trials respectively).

Epochs 10 20 30

Filter length Val Train Val Train Val Train

5 81.25 ± 1.44 95.05 ± 0.69 79.72 ± 2.09 79.72 ± 2.09 82.7 94.9

10 85.95 ± 2.13 95.74 ± 0.54 83.87 ± 2.93 96.00 ± 0.38 86.9 95.5

15 88.57 ± 2.48 95.31 ± 0.36 85.91 ± 2.93 95.46 ± 0.30 88.6 97.0

20 89.95 ± 2.36 95.34 ± 0.23 86.70 ± 4.08 95.26 ± 0.31 88.6 95.0

25 90.16 ± 2.28 94.32 ± 0.27 87.37 ± 3.79 94.47 ± 0.25 89.2 95.4

35 90.20 ± 2.68 92.29 ± 0.37 88.49 ± 3.83 92.44 ± 0.38 91.5 93.3

40 89.28 ± 2.68 91.23 ± 0.32 87.75 ± 3.82 91.33 ± 0.35 91.5 92.2

50 87.39 ± 2.06 88.84 ± 0.33 85.35 ± 3.39 88.80 ± 0.49 91.3 89.9

Comparison with RSOM. As a means of comparing the performance of our
implementation, we also classified the TST v2 dataset using an RSOM imple-
mentation. The RSOM used the same preconditioning as we did for the chained
gas classifier and a set of 3 consecutive poses (p(k), p(k − 1), p(k − 2)). The sim-
ulation parameters were: 900 nodes, 30 epochs, method ‘RSOMHebbV01’. The
peak accuracy on the validation set of the RSOM with these parameters was
78.76 % (average: 77.67 ± 0.77% for 5 trials).
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Table 3. Confusion matrix for our most accurate gas classifier. The calculated accuracy
for the validation set is 94.2 %, higher than the 92.0 % training set.

Validation set Target Training set Target

1 2 1 2

Output 1 1532 36 Output 1 4006 258

2 124 1054 2 328 2746

4 Conclusion

The resulting classification scheme does the task which we want, that is, dis-
criminate falls within the TST v2 dataset, it does it better than the RSOM and
it does it consistently with around 90.2 ± 2.68% accuracy while using the mode
filter. We believed we achieved our goal and we have now a classifier of falls
with openly accessible code that will hopefully encourage persons into designing
experiments using fall detection or using neural gases for classification of hard
to classify data.
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