Faculty of Science and Engineering

School of Geography, Earth and Environmental Sciences

2021-03

What drives biodiversity patterns? Using long-term multi-disciplinary data to discern centennial-scale change

Woodbridge, Jessie

http://hdl.handle.net/10026.1/16636

10.1111/1365-2745.13565 Journal of Ecology Wiley

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

1	What drives biodiversity patterns? Using long-term multi-disciplinary data to
2	discern centennial-scale change
3	
4	
5	Authors: *Jessie Woodbridge ¹ , Ralph Fyfe ¹ , David Smith ² , Ruth Pelling ³ , Anne de
6	Vareilles ³ , C. Robert Batchelor ⁴ , Andy Bevan ⁵ and Althea Davies ⁶
7	
8	
9	Author affiliations:
10	
11	¹ School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake
12	Circus, Plymouth, PL4 8AA, UK
13	² Department of Classics, Ancient History & Archaeology, University of Birmingham,
14	Edgbaston, Birmingham, B15 2TT, UK
15	³ Historic England, Fort Cumberland, Fort Cumberland Road, Portsmouth, P04 9LD
16	⁴ School of Archaeology, Geography and Environmental Sciences, University of Reading,
17	Whiteknights, Reading, Berkshire, RG6 6AH, UK
18	⁵ Institute of Archaeology, University College London, 31-34 Gordon Square, London,
19	WC1H 0PY, UK
20	⁶ School of Geography and Sustainable Development, Irvine Building, University of St
21	Andrews, St Andrews, KY16 9AJ, Scotland, UK
22	*Corresponding author: Jessie Woodbridge, School of Geography, Earth and Environmental
23	Sciences, University of Plymouth, UK, jessie.woodbridge@plymouth.ac.uk
24	
25	

- 26 Abstract:

28	1.	Biodiversity plays an important role in ecosystem functioning, habitat recovery
29		following disturbance and resilience to global environmental change. Long-term
30		ecological records can be used to explore biodiversity patterns and trends over
31		centennial to multi-millennial time scales across broad regions. Fossil pollen grains
32		preserved in sediment over millennia reflect palynological richness and diversity,
33		which relates to changes in landscape diversity. Other long-term environmental data,
34		such as fossil insects, palaeoclimate and archaeologically-inferred palaeodemographic
35		(population) data, hold potential to address questions about the drivers and
36		consequences of diversity change when combined with fossil pollen records.
37	2.	This study tests a model of Holocene palynological diversity change through a
38		synthesis of pollen and insect records from across the British Isles along with
39		palaeodemographic trends and palaeoclimate records. We demonstrate relationships
40		between human population change, insect faunal group turnover, palynological
41		diversity and climate trends through the Holocene.
42	3.	Notable increases in population at the start of the British Neolithic (~6000 calendar
43		years before present (BP)) and Bronze Age (~4200 BP) coincided with the loss of
44		forests, increased agricultural activity, and changes in insect faunal groups to species
45		associated with human land use. Pollen diversity and evenness increased, most
46		notably since the Bronze Age, as landscapes became more open and heterogeneous.
47		However, regionally-distinctive patterns are also evident within the context of these
48		broad-scale trends. Palynological diversity is correlated with population, while
49		diversity and population are correlated with some climate datasets during certain time
50		periods (e.g. Greenland temperature in the mid-late Holocene).

51	4. Synthesis: This study has demonstrated that early human societies contributed to
52	shaping palynological diversity patterns over millennia within the context of broader
53	climatic influences upon vegetation. The connections between population and
54	palynological diversity become increasingly significant in the later Holocene,
55	implying intensifying impacts of human activity, which may override climatic effects.
56	Patterns of palynological diversity trends are regionally variable and do not always
57	follow expected trajectories. To fully understand the long-term drivers of biodiversity
58	change on regionally-relevant ecological and management scales, future research
59	needs to focus on amalgamating diverse data types, along with multi-community
60	efforts to harmonise data across broad regions.
61	
62	Key words: Biodiversity, Biogeography and macroecology, Global change ecology, Insects,
63	Land-cover change, Landscape ecology, Land-use change, Palaeoecology and land-use
64	history
65	
66	
67	Introduction:
68	
69	Current biodiversity patterns and potential of long-term environmental data
70	
71	Biogeographers aim to understand the importance of different factors governing patterns of
72	biodiversity and increasingly recognise the significance of historic dynamics in shaping
73	current diversity patterns (Gaston, 2000; Birks et al., 2016a). Understanding how climate and
74	human land use shape diversity allows the processes of community assembly to be explored,
75	which can feed into efforts to mitigate the effects of human-driven influences on global

76 biodiversity (Rowan et al., 2019). Biodiversity patterns emerge as a combined result of speciation, extinction and migration, and play an important role in the stability of ecosystems 77 and global climate (Symstad et al., 2003). Environments with higher levels of biodiversity are 78 79 thought to recover faster following natural disasters and experiments have demonstrated that biodiverse ecosystems are more productive (Fargione et al., 2007). Recent debate has 80 questioned whether biodiversity patterns are shaped by local or continental-scale factors 81 (Borregaard et al., 2020); global drivers include climate trends, latitudinal gradients, 82 evolutionary processes and speciation, while local disturbance factors include agricultural 83 84 activity, erosion, grazing animals, changes in soil properties, and water/nutrient availability. Human impact over the last 3000 years has been an increasingly important disturbance factor 85 at sub-continental scales, as illustrated in a recent survey of research community opinions 86 87 (Stephens et al., 2019) and through studies based on empirical data (Roberts et al., 2018). Through analysis of spatially-extensive fossil pollen datasets, Giesecke et al. (2019) 88 demonstrated that past human impacts on the latitudinal diversity gradient in Europe had 89 90 greater impacts on species richness than climate. Long-term multi-millennial scale environmental datasets have been under-utilized in research aiming to understand recent 91 biodiversity trends (Willis et al., 2005; 2006). Such datasets hold great potential to inform 92 restoration ecology (Higgs et al., 2014; Hobbs et al., 2014; Fordham et al., 2020) through 93 revealing ecological legacies and the influence of past human activities on current 94 95 biodiversity patterns, which can be problematic to measure in relation to achieving conservation targets (Watts et al., 2020). 96

97

98 Spatial patterns in diversity derived from fossil pollen datasets (Colombaroli et al., 2013;
99 Matthias et al., 2015; Felde et al., 2016; Reitalu et al., 2019) can reveal information about
100 ecological memory, shifting baselines, and dynamic equilibrium, i.e. the patterns of change in

101 species assemblages that have persisted or changed through millennia. Shifting baseline syndrome (Pauly, 1995; Soga & Gaston, 2018) represents the tendency of modern societies to 102 believe that conditions in recent human memory provide an appropriate reference for a 103 104 particular environment. Such historical baselines are largely a 'snap-shot' of species assemblages that have developed over centuries and millennia of natural and human-induced 105 disturbance. They rarely represent stable or natural 'baselines'. Consideration of the 106 evolutionary and ecological legacies of both the recent and ancient past is key to 107 understanding the forces shaping global patterns of present-day biodiversity (Rowan et al., 108 109 2019). This challenges the concept of stable baselines, demonstrating that communities can re-assemble through millennia (Edwards et al., 2017). Divíšek et al. (2020) incorporated 110 historical processes in modelling current species richness using Holocene species-distribution 111 112 data from central Europe revealing that landscape changes since the Last Glacial Maximum are important predictors of current plant species richness. However, historical effects were 113 found to be habitat specific and often show a non-linear relationship with species richness 114 due to the impacts of recent environmental conditions and anthropogenic activity. This 115 highlights the importance of using multiple data types to tease apart these relationships over 116 time and space. Relationships and thresholds between diversity and ecosystem functioning 117 operate on regional scales (Brooke et al., 2013), therefore the regional vegetation signature 118 captured by fossil pollen datasets provides an ideal data type to explore relationships between 119 120 land use and diversity change.

121

122 Identifying the drivers of biodiversity trends

123

124 Patterns of change in Holocene plant diversity trends have been summarised by Birks et al.

125 (2016a) in a conceptual schematic for north-west Europe, building on McGill et al.'s (2015)

126 biodiversity classification (summarised in Fig. 1). Initial forest development is expected to have involved a period of change from high to lower diversity, which was followed by 127 declining diversity when landscapes became increasingly dominated by closed mixed forests. 128 129 An increase in diversity is then predicted on fertile soils linked to early agriculture, land-use change and natural/human-induced disturbance, which is then followed by recent loss of 130 diversity in the last 200 years associated with major land-use intensification. Plant 131 assemblages in areas with infertile soils are expected to show declining or static diversity 132 during these latter periods. This model has yet to have been tested for the British Isles, 133 134 particularly alongside analyses of how population change and climate interact to affect diversity patterns. 135

136

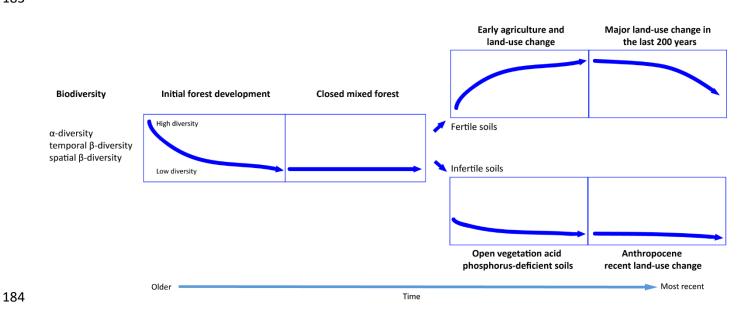
137 Here we present current understanding of long-term changes in land cover, palynological (pollen) diversity and insect faunal groups through the last 10,000 years (Holocene) via a 138 synthesis of pollen sequences, insect faunal group assemblages, human population inferred 139 from radiocarbon-dated archaeological sites from the British Isles, and palaeoclimate records 140 driven by North Atlantic conditions. We aim to test the aforementioned model of Holocene 141 biodiversity trends using pollen datasets. Pollen-derived patterns of vegetation/land-cover 142 change have been established (Fyfe et al., 2013) and these have been compared with 143 archaeologically-derived human population estimates (Woodbridge et al., 2014) across the 144 145 British Isles, but diversity impacts and influence on faunal communities have yet to be investigated. 146

147

148 Periods of human population increase are often associated with major land-cover

149 transformations, such as the loss of woodlands and increasingly open landscapes associated

150 with agriculture (Woodbridge et al., 2014; Roberts et al., 2019). However, deforestation in


151 the British Isles, from the start of the Neolithic around 6000 years ago, is recognised as occurring slightly earlier than major population increases through evidence of axe-production 152 and declining forest vegetation (Schauer et al., 2019). There is no simple correlation between 153 population rise and deforestation; therefore, the way in which people use the land requires 154 investigation as well as understanding of population change. Insect assemblages show a large 155 degree of turnover in lowland Britain as a consequence of prehistoric field system 156 development, with the open ground and dung-associated 'field fauna' replacing woodland 157 insects (Smith et al., 2019; 2020). Similar evidence is now emerging in other regions (e.g. 158 159 Schafstall et al., 2020). Insect datasets reflect land-use/cover change on a finer scale than pollen records, which reflect both local (on-site) and catchment vegetation. Goring et al. 160 (2013) tested relationships between pollen and plant richness and suggested that 161 162 palynological richness cannot be considered a universally reliable proxy for inferring plant richness. However, Matthias et al. (2015) demonstrated that palynological diversity can 163 capture landscape structure and diversity. They found that Shannon index and the number of 164 taxa are highly correlated providing a useful measure of pollen type diversity that reflects 165 landscape diversity. Insect and pollen data therefore allow complementary scales of analysis 166 on community turnover. 167

168

Pollen diversity measures represent both taxa richness and assemblage evenness through estimating particular numerical characteristics of fossil pollen assemblages (Birks et al., 2016b). Quantifying biodiversity trends remains challenging because "there is no single index that adequately summarises the concept" (Morris et al., 2014). These challenges, along with taxonomic precision, the effects of sample size, and pollen representation of different plant types, can result in biases in biodiversity measures (Odgaard, 1994; 2001). Kuneš et al. (2019) demonstrated that ecosystems were most affected by disturbances during the Early

Holocene with lower level disturbance in the mid-Holocene. These shifts in disturbance were
associated with pronounced changes in pollen richness. However, the relationship between
pollen type richness and plant species richness is not straightforward and reflects pollen
population evenness. This is related to vegetation evenness and disturbance (Odgaard, 2001),
which reflects the degree of landscape homogeneity or heterogeneity. These factors require
consideration when interpreting diversity trends derived from pollen data.

- 182
- 183

185 Figure 1. Theoretical model of local to meta-community scale diversity and possible drivers

- 186 of change: summary of trends in biodiversity through the Holocene for fertile and infertile
- soils (based on Birks et al., 2016a).
- 188

- 190 *Methods*:
- 191
- 192 Fossil pollen data:

193 The datasets included in this study (Fig. 2) consist of 269 fossil pollen datasets (SI: Table 2) extracted from the European Pollen Database (Leydet et al., 2007-2020) or provided by data 194 contributors. Pollen datasets were selected based on their radiocarbon dating quality and 195 196 sample size (Fyfe et al., 2013). Sediment core chronologies were taken from Giesecke et al. (2014) or where necessary established through fitting a new age-depth model using CLAM 197 (Blaauw, 2010). Data have been taxonomically harmonised at two levels of aggregation (233 198 and 558 taxa groups) and placed on a common chronological time scale summed into 200 199 year-long time windows, which has been demonstrated in previous studies to be a suitable 200 201 time resolution over which to investigate vegetation turnover (Woodbridge et al., 2014). The relationships between palynological diversity and plant or vegetation diversity are complex; 202 203 however, most studies comparing modern pollen richness with contemporary plant richness 204 show good relationships between the two (Birks et al., 2016b). Within this study, we explore 205 pollen (palynological) diversity as opposed to plant or vegetation diversity. Pollen data are also presented as quantified land-cover types transformed using the REVEALS (Regional 206 207 Estimates of Vegetation Abundance from Large Sites) approach (Sugita, 2007), which converts pollen count data into quantified vegetation using knowledge of the differential 208 209 pollen productivity, fall speed and pollen dispersal distances characteristic of different plant types (Broström et al., 2008; Fyfe et al., 2013). The pollen productivity estimates (PPEs) and 210 211 fall speed of pollen for the 25 taxa in Trondman et al. (2015) were used in this study. These 212 PPEs are derived by investigating relationships between vegetation and pollen abundance in modern landscapes (Broström et al., 2008). A detailed description of the REVEALS method 213 is provided in Fyfe et al. (2013) and Trondman et al. (2015). 214

215

There are numerous approaches for estimating diversity from ecological data (Hill 1973), and most are strongly related (Matthias et al., 2015). Several approaches were provisionally tested

within this work, with Shannon diversity and evenness index identified as the most suitable 218 for capturing broad scale trends alongside rarefaction, which provides a record of species 219 richness accounting for varied sample sizes. Shannon diversity index reflects both taxa 220 221 richness and evenness, which relates to assemblage heterogeneity and can be analysed as a separate component of the index. These indices were calculated using pollen percentages 222 from taxa count data binned into 200-year time windows. As the REVEALS approach can 223 only be applied to a limited number of taxa for which there are reliable PPEs, we chose to 224 estimate diversity using all 233 or 558 land pollen taxa groups rather than REVEALS 225 226 transformed data. Felde et al. (2016) found that results based on transformed and untransformed pollen data show the same patterns and pollen richness and diversity estimates 227 generally increase after transformations. This occurs because greater weight is placed on rare 228 229 taxa as the influence of abundant pollen taxa is reduced. Therefore, we chose not to transform the pollen data in order to retain more information about the assemblage. The R vegan 230 package (Oksanen, 2019) was used to summarise both species richness and relative 231 abundance (Magurran, 2003) within the entire pollen assemblage. Shannon (H) index 232 provides a useful measure of pollen type diversity corresponding to landscape diversity 233 (Matthias et al., 2015). The index reflects the proportion of each taxon in the population 234 relative to the total number of taxa present. Index values are derived by dividing the number 235 of individuals of each taxon in each sample by the total number of individuals of all taxa. 236 237 This value is then multiplied by the fraction by its natural logarithm and the results for all taxa are summed together and multiplied by minus 1. A high value of H represents a diverse 238 and equally distributed community while lower values represent less diverse assemblages that 239 240 are less equally distributed (Gaunle, 2020). The evenness of a community reflects the ratio of observable diversity to maximum diversity. This ranges between 0 and 1, with 1 representing 241 complete evenness (Magurran, 2003). Rarefaction (pollen taxa richness) has been calculated 242

from pollen count data using the R vegan package function 'rarefy' (Oksanen et al., 2019) to 243 generate randomly rarefied community data for a given sample size (based on the mean of all 244 samples) producing species richness estimates for each time window. Typically, the 245 minimum of all samples is used, however, the minimum was not suitable for this dataset due 246 to the presence of time windows with zero values; consequently the mean was selected as an 247 alternative measure. The rarefaction trend is identical to pollen richness derived from Hill 248 numbers; therefore this approach is deemed suitable for capturing diversity change that 249 accounts for varied sample sizes. 250

251

252 Palaeodemographic data:

22,719 archaeological radiocarbon dates for mainland Britain have been extracted from 253 254 Bevan et al. (2017) to infer regional-level palaeodemographic changes (Palmisano et al., 255 2017; Bevan & Crema, 2018). Palaeodemographic trends are inferred using a summed probability distribution (SPD) approach where the number of radiocarbon dates act as a proxy 256 for human population size for a given time period (Shennan et al., 2013). Potential biases 257 resulting from multiple dates being sampled from the same archaeological phase are 258 accounted for by aggregating uncalibrated radiocarbon dates from the same site within 100 259 years of one another and dividing by the number of dates in the 'time bin' (Timpson et al., 260 2014). The resulting SPDs, which represent summed probabilities from each calibrated date, 261 262 are binned into 200-year time windows to allow multi-proxy comparisons. 263

264 Fossil insect data:

265 We used the 30 fossil insect beetle (Coleoptera) datasets from archaeological sites

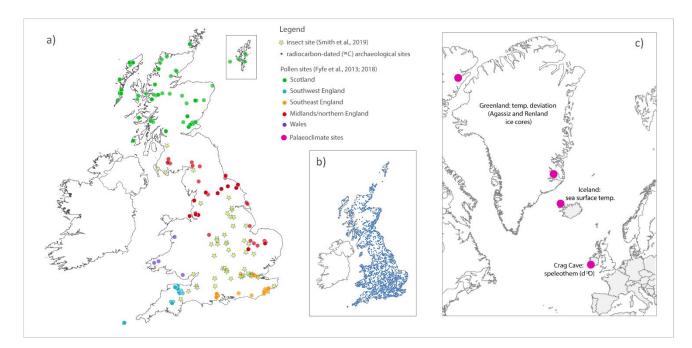
summarised in Smith et al. (2019; 2020) to reconstruct insect turnover. Metadata and

references for the fossil insect sites are provided in Smith et al. (2020). Insect taxa have been

268 allocated to ecological groups where possible and the relative proportions of these groupings calculated. The ecological groups used are a revision of Robinson (1981; 1983). Insect 269 species are also classified as semi- or fully- synanthropic (human-dependent) (Smith et al., 270 271 2020) and this is represented in Fig. 3 by the proportions of Kenward's 'house fauna' recovered for the periods concerned. As the insect data are derived from archaeological sites, 272 it is necessary to aggregate by archaeological period, rather than into time windows that are 273 comparable to the pollen data. Thus, it is not possible to perform detailed statistical 274 comparisons between the insect data and the other proxies presented here. 275 276 Climate data: 277 Palaeoclimate datasets (Fig. 2) were selected to cover the majority of the Holocene and 278 279 characterise North Atlantic atmospheric and oceanic climatic patterns. These include: A record of sea surface temperature (SST) from northwest Iceland (Moossen et al., 280 -2015). This dataset reflects sea surface temperatures reconstructed using the hydrogen 281 isotopic composition of the C29 n-alkane (see Moossen et al., 2015 for further details). 282 An ¹⁸O isotope speleothem record from Crag Cave (southwest Ireland) (McDermott et 283 al., 2001) that provides a regional signal predominantly driven by temperature and North 284 Atlantic Oscillation, but is also influenced by factors such as ice rafting, meltwater input 285 and moisture availability (see McDermott et al., 2001 for further details). 286 A Holocene record of deviation from modern temperature derived from Greenland ice 287 cores reconstructed from ¹⁸O isotopic data (see Vinther et al., 2009 for further 288 information). 289 A cosmogenic isotope and total solar irradiance (TSI) record as a proxy for solar activity 290 (Steinhilber et al., 2012). The reconstruction is based on a combination of different ¹⁰Be 291

293 294 ice core records from Greenland and Antarctica with the global ¹⁴C tree ring record (see Steinhilber et al. (2012) for further information) (site locations not displayed in Fig. 2).

295 General Additive Models (GAMs) were fitted to the climate data using the 'gam' function in the mgcv R package (Wood, 2017) to smooth and interpolate values in the climate data series 296 for time periods that match the pollen and archaeological datasets. GAMs allow flexible 297 modelling of non-linear relationships, such as those displayed in climate data series; 298 therefore we used a smoothing function to capture these non-linear patterns through time. 299 300 Spearman's rank correlation coefficient was used to identify relationships between the datasets, as ranked correlation coefficients are most suitable when a proxy indicator is not 301 302 linearly related to a variable (e.g. SPDs are not linearly related to population, but indicate 303 magnitude of population change). The 'p.adjust' function in R using the 'bonferroni' method was applied to correct p-values for multiple tests and avoid spurious significant correlations 304 (Benjamini & Yekutieli, 2001). The dataset was divided into periods representing the early 305 306 (10000-6000 BP), mid (6000-3000 BP), late (3000-0 BP) and entire Holocene for correlation analysis to explore differences in relationships between the datasets over time. 307


308

309 *Site distribution:*

The fossil pollen sites are generally located within upland regions with data gaps in central England and Wales, while the insect sites are mostly situated in southeast and central England with very few datasets in Scotland. The palaeodemographic archaeological sites are mainly located in England and the coastal regions of Scotland (Fig. 1), which impacts upon the trends identified in the different datasets. We have not included the island of Ireland as it was separate from the British Isles by the start of the Holocene, and therefore might be expected to have different patterns of biodiversity to Britain, which remained connected to

continental Europe until several millennia after the start of the Holocene. The pollen and
palaeodemographic datasets have been analysed at sub-regional scales to address these spatial
biases. Climate records based on sites within the British Isles were explored, but these
datasets largely only cover short periods of the Holocene, therefore we selected records from
different locations within the North Atlantic that principally reflect temperature variation
across the majority of the Holocene epoch.

323

324

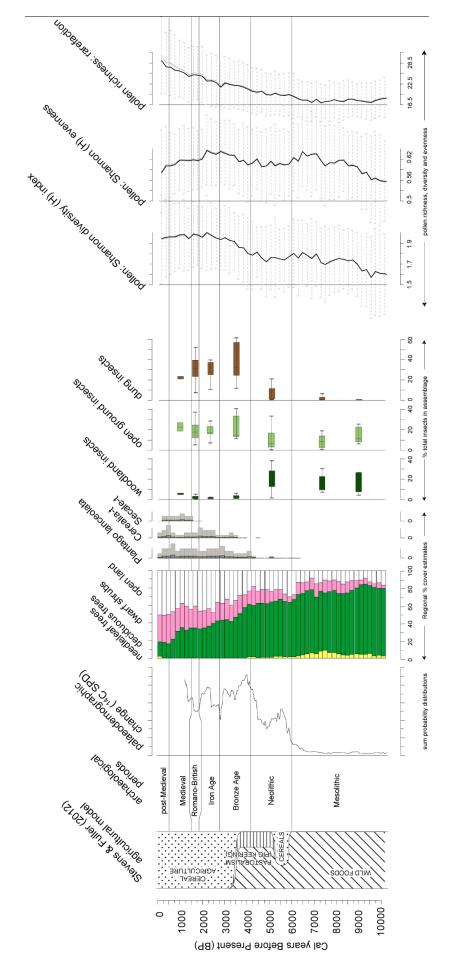
- **Figure 2.** a) Fossil pollen and insect sites, b) radiocarbon-dated archaeological
- 326 (palaeodemographic) site distribution, and c) palaeoclimate sites.

327

328

329 Results:

330


331 Holocene trends in environmental datasets

333 Synthesis of the pollen-inferred land cover, fossil insect faunal groups, palaeodemographic trends, and pollen-derived diversity measures (Fig. 3 and 4), reveals that population increases 334 at the start of the Neolithic, ~6000 BP (Before Present), and Bronze Age, ~4200 BP, 335 336 coincided with declining deciduous forest and increasing open land. The first appearance of plant types indicative of agriculture, such as cereals and plant species associated with 337 disturbance as a result of human land use, is evident from the start of the Neolithic. Marked 338 339 increases in these indicators are not apparent until the Bronze Age (Stevens & Fuller, 2012), which marks the first widespread evidence for cereal cultivation with more pronounced 340 341 increases in the most recent 3000 years. The transition from the Neolithic to the Bronze Age also saw a significant shift in insect fauna from woodland types to open ground and dung 342 insect types associated with agricultural activity and the presence of grazing animals. See 343 344 Smith et al. (2019) for further discussion around the site types investigated. We see an increase in palynological diversity from ~9400 BP, which was followed by a period of stable 345 diversity scores. Shannon diversity index values then increase at the start of the Bronze Age, 346 continue to steadily increase until the Iron Age (~2700 BP), and remain stable until the most 347 recent part of the record with a slight decline since the Medieval period (~1000 BP). The 348 palynological evenness component of the Shannon index shows a similar trend to the index 349 scores that incorporate taxa richness, but evenness values decline more from the end of the 350 Iron Age into the Medieval period, showing that these trends are increasingly decoupled 351 352 during the most recent 2000 years. Calculating diversity measures at different levels of pollen taxonomic resolution (232 and 558 taxa groupings) (e.g. separating or combining pollen 353 taxonomic units) reveals the same trends throughout the Holocene. Rarefaction analysis 354 355 provides a measure of taxa richness that is independent of evenness, and indicates that palynological richness was lowest during periods of high woodland cover, and increased as 356

landscapes became more open, similarly to the Shannon diversity curve. Changes in broadlandscape openness are much more subtle after the middle Iron Age.

359

360 Significant relationships between palaeodemographic, climate and pollen data are mostly evident with palynological richness rather than evenness (Table 1). Palaeodemographic 361 (population) trends are also more strongly correlated with pollen diversity in the later 362 Holocene with higher r-values, although the p-values were not deemed significant after 363 correcting for multiple tests. Some climate datasets show correlations with the pollen datasets 364 365 in the early Holocene (e.g. Iceland temperature) and others in the later Holocene (e.g. Greenland temperature). The strongest relationships are shown with the Greenland ice core 366 temperature deviation and Iceland sea surface temperature records (SST). Population and 367 368 climate trends show the strongest significant relationships for the entire Holocene, but this is likely associated with the higher number of samples compared, which leads to lower p-369 values. The climate record from Iceland indicates that the early Holocene was characterised 370 371 by high air temperatures relative to the later Holocene, but SSTs were dampened by melt water events (Moossen et al., 2015) (Fig. 5). The middle Holocene saw a peak in SSTs, 372 followed by cooling into the late Holocene (Moossen et al., 2015). The Crag Cave 373 speleothem δ^{18} O sequence reflects temperature change with cooling events evident at ~7730, 374 375 7010, 5210 and 4200 BP (McDermott et al., 2001) while the Greenland ice core record 376 reveals a number of abrupt shifts in climate with the most significant ~7600, 6500, 6300 and 4300 BP. The total solar irradiance (TSI) record fluctuates through the Holocene with lowest 377 values in the early and late Holocene. 378

average, minimum, maximum and interquartile range, and pollen taxa richness and evenness (Shannon diversity and rarefaction) indices Figure 3. Synthesis of pollen and insect records from the British Isles: Stevens and Fuller's (2012) model of agricultural changes in the vegetation cover and key land-use indicators (Fyfe et al., 2013), changes in key insect faunal groups (Smith et al., 2019) represented as averaged for all pollen sites. Dashed grey lines show values based on 233 pollen taxa groups and solid black lines show values for 558 UK presented with archaeological periods, radiocarbon-inferred palaeodemographic changes (from Bevan et al., 2017), pollen-based pollen taxa groups. Dotted horizontal lines show the standard deviation.

381 Testing the conceptual diagram presented by Birks et al. (2016a) (Fig. 1) at the scale of the British Isles indicates that loss of diversity associated with initial forest development is not 382 reflected in the current dataset in the early Holocene. However, this may be because the 383 384 transitional phase from late-glacial vegetation to early Holocene forest initiation is not captured by these datasets. Subsequent periods show similar trends to those predicted by the 385 model. Closed mixed forest is characterised by a period of limited change in palynological 386 diversity (~10,000 - 6,000 BP), which is followed by early agriculture and land-use change 387 associated with a clear increase in diversity, particularly since the beginning of the Bronze 388 389 Age when agricultural activity increased (Fig. 3). The final phase in the model for fertile soils, declining diversity associated with recent land-use change in the last 200 years, is not 390 391 clearly captured by the Shannon diversity index. The model predicts no change in diversity 392 in the most recent phase on infertile soils, which may be expected in upland regions and in parts of Scotland and Wales with acid infertile soils, a pattern that is supported by the sub-393 regional analyses for Scotland and the midlands/northern England where little recent change 394 395 is evident (Fig. 4). This final phase may be indistinguishable at the broad spatial and temporal scale used here (200 year-long time windows) and shows the importance of 396 exploring patterns at smaller sub-regional and site-specific scales. It may also reflect the lack 397 of pollen data spanning recent decades in the synthesis, which could capture this more recent 398 decline in diversity (e.g. Hanley et al., 2008). 399

400

At the sub-regional scale (Fig. 4), some of the patterns predicted by Birks et al's (2016a) model are shown more clearly. For example, the decline in palynological diversity in the last five hundred years appears to be reflected in the diversity indices for southwest England and the midlands/northern England pollen sites where a minor recent decline in diversity is evident, but not clearly for sites in southeast England and Scotland. Regional variation is

406 evident when average palynological diversity index scores for the four regions are compared (Fig. 4). The large standard deviation in palynological diversity within the pollen datasets 407 from Scotland reflects the greater number of sites capturing the diverse landscapes within 408 409 this region. Whereas the smaller standard deviation for sites in the southwest, southeast, midlands/northern England, show that palynological diversity trends through the Holocene 410 411 were more similar for sites within these regions, which may represent more similar landscapes or land-use types. Pollen taxa richness (rarefaction) reflects the diversity index 412 and indicates gradually increasing values in all four regions as landscapes became more 413 414 open. The palaeodemographic curves (SPDs of radiocarbon-dated archaeological sites) for these areas indicate increasing population at the start of the Neolithic with all regions 415 416 showing a peak ~5200 BP. This is followed by another population peak ~3500 BP during the Bronze Age, and further increases in the late Iron Age / early Roman period (~2000 BP) and 417 in the Medieval period (~1000 BP) (Fig 4). 418

Southeast England Southwest England and another and a starte hiber of pollen sites ber of poller onthin R R 0 0 1000 1000 2000 2000 3000 3000 Cal BP 4000 4000 Cal BP 5000 5000 6000 6000 7000 7000 8000 8000 9000 9000 10000 -10000 7 Scotland Midlands/Northern England ofpoller R Pale 0 0 1000 1000 2000 _ 2000 3000 3000 4000 4000 Cal BP 5000 5000 6000 6000 7000 7000 8000 8000 9000 9000 10000-10000-0.00 5 2 2 -2 -3 0, 6 diversity pollen taxa richness site count ¹⁴C SPD evenness score index score

420

Cal years Before Present (BP)

Figure 4. Pollen taxa richness and assemblage evenness summarised by Shannon diversity 421 and evenness indices and rarefaction (pollen richness) (with standard deviation and number 422 of pollen sites) averaged for four regions of the British Isles: southeast England, southwest 423 England, Scotland and the midlands/northern England. Dashed grey lines show values based 424 on 233 pollen taxa groups and solid black lines show values for 558 pollen taxa groups. 425

- 426 Palaeodemographic (population) trends are shown for each region (based on the summed
- 427 probability distributions (SPDs) of radiocarbon-dated archaeological sites.

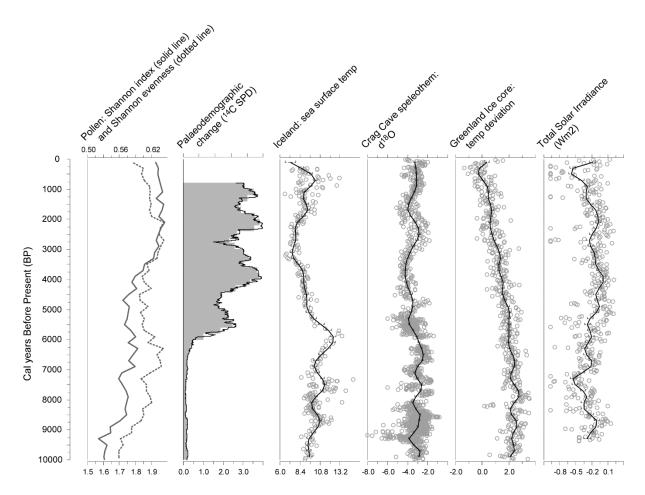


Figure 5. Pollen taxa richness and assemblage evenness summarised by Shannon diversity
and evenness indices for the British Isles presented with palaeodemographic data for all
regions and palaeoclimate datasets: sea surface temperature (SST) from Iceland (Moossen et
al., 2015), an ¹⁸O isotope speleothem record from Crag Cave (Ireland) (McDermott et al.,
2001), temperature deviation from the Greenland ice core (Vinther et al., 2009) and total solar
irradiance (TSI) (Steinhilber et al., 2012). Grey circles represent all data points and black
lines represent smoothed data values derived using a general additive model (GAM).

Table 1 Spearman's rank correlations (r and p-values) between the palaeoclimate records
reflecting North Atlantic patterns, pollen taxa richness and evenness (Shannon diversity index

439	and evenness) and taxa richness (rarefaction), and palaeodemographic change (population)
440	inferred from summed probability density (SPD) functions of radiocarbon-dated
441	archaeological sites. Correlation analyses were carried out for the early, mid, late and entire
442	Holocene and significant relationships are shaded. Dates represent the mid-point of each 200-
443	year time window. Grey shading indicates significant correlations (p < 0.05). P-values
444	corrected for multiple comparisons of significantly correlated variables are shown in
445	brackets.

		Pollen:	Pollen:	Pollen taxa	
	Time period	Shannon	Shannon	richness	
	nine period	diversity index	evenness	(rarefaction)	
		0.768	0.048	0.88	
	9900-1700 BP	0.00	0.762	0.00	
		0.821	0.036	0.679	
Palaeo	2900-1700 BP	0.023 (0.138)	0.939	0.094	
demographic		0.532	0.229	0.746	
change	5900-3100 BP	0.041 (0.246)	0.413	0.001 (0.006)	
		0.102	0.056	0.299	
	9900-6100 BP	0.668	0.816	0.2	
Delesselimente					Palaeo-
Palaeoclimate					demographic
records					change
		-0.547	-0.249	-0.669	(9900-1700 BP)
	9900-100 BP	0.00	0.081 (0.486)	0.00	-0.676
		0.00	0.081 (0.480)	0.00	0.00
Iceland: sea		0.446	-0.411	0.45	(2900-1700 BP)
surface	2900-100 BP	0.095	0.128	0.092	0.5
temperature					0.253
,	5900-3100 BP	-0.689	-0.396	-0.957	-0.746
		0.004 (0.024)	0.143	0.00	0.001 (0.006)
	9900-6100 BP	0.508	0.484	0.008	0.126
		0.022 (0.132)	0.031 (0.186)	0.975	0.596
	0000 100 PD	-0.227	0.041	-0.348	(9900-1700 BP)
	9900-100 BP	0.112	0.779	0.013 (0.078)	-0.584 0.00
Crag Caus	2900-100 BP	-0.257	0.186	-0.111	(2900-1700 BP) -0.214
Crag Cave speleothem: ¹⁸ 0	2500-100 Bi	0.355	0.508	0.694	-0.214 0.645
speleothem. O		-0.421	-0.143	-0.646	-0.925
	5900-3100 BP	0.118	0.612	0.009 (0.054)	0.00
		0.411	0.295	0.352	0.302
	9900-6100 BP	0.072	0.295	0.128	0.195
		0.072	0.207	0.120	9900-100 BP
	9900-100 BP	-0.848	-0.291	-0.94	-0.879
	5500 100 51	0.00	0.04 (0.240)	0.00	0.00
Greenland ice					(2900-1700 BP)
core:	2900-100 BP	-0.057	0.743	-0.882	-0.929
temperature		0.84	0.002 (0.012)	0.00	0.003 (0.018)
deviation	F000 3400 PP	-0.7	-0.411	-0.832	-0.65
	5900-3100 BP	0.004 (0.024)	0.128	0.00	0.009 (0.054)
	9900-6100 BP	0.002	0.002	-0.236	-0.368
	3300-0100 BP	0.995	0.995	0.316	0.11
		0.124	0.079	0.166	(9300-1700 BP)
	9300-100 BP	0.124 0.405	0.596	0.265	0.719
		0.705	0.000	0.200	0.00
		0.261	0.571	-0.471	(2900-1700 BP)
	2900-100 BP	0.348	0.026 (0.156)	0.076	1
Total Solar					0.00
Irradiance (TSI)	5900-3100 BP	0.143	-0.054	0.364	0.375
		0.612	0.85	0.182	0.168
	9300-6100 BP	0.044	-0.123	0.145	0.414
		0.866	0.639	0.58	0.098

449	Discu	ssion:

450

451 *Biodiversity trends in the Holocene*

452

The synthesis presented in this study (Fig. 3) has demonstrated that people and climate have 453 played important roles in shaping past land-cover change with likely impacts on the changing 454 diversity and abundance of vegetation types, which reflects previous literature demonstrating 455 456 the impact of people on past vegetation and pollen richness (e.g. Iversen, 1949; Birks & Line, 1992). However, the relationships between human population, climate, land cover and 457 palynological and insect diversity are not straightforward and consideration of the processes 458 459 involved in landscape transformation and different species traits, which influence species 460 responses, is key to understanding how modern biodiversity patterns emerged within a longterm context. 461

462

Trends identified in the pollen-inferred land-cover types reflect Stevens & Fuller's (2012) 463 agricultural model (Fig. 3), which is based on radiocarbon-dated wild and cultivated food 464 plants. The model recognises an initial phase of arable agriculture in the early Neolithic 465 followed by predominantly pastoral practices and evidence of later more pronounced Bronze 466 467 Age intensification of agriculture. This reflects the patterns shows in Fig. 3 and the findings of Colombaroli et al. (2013) who identified that land clearance promoted diverse open 468 ecosystems, but in the long-term, this led to reduced woodland and forest diversity. In our 469 470 study, this is reflected by decreased deciduous forest cover from the start of the Neolithic, which became more pronounced from the start of the Bronze Age. This was followed by a 471 472 clear increase in cereals and a shift from woodland to open ground insect types.

The palynological diversity indices presented here imply that opening of the landscape, 474 associated with early land-use and forest removal, initially led to an increase in the diversity 475 476 of vegetation types across many sites, which varied regionally (Fig. 4). Similar patterns identified by Kuneš et al. (2019) in central Europe show that diversity increased continuously 477 throughout the Holocene with comparable trends between pollen richness and evenness. This 478 pattern is reflected in the rarefaction curves presented here. Whilst the Shannon index also 479 provides a measure of taxa richness, it does not account for varied sample sizes and slight 480 481 differences in the Shannon and rarefaction figures are apparent (Figure 3). Recent loss of diversity is not clearly reflected by the majority of sites in this study, which is likely the result 482 of pollen records not extending into the most recent period, the amalgamation of pollen data 483 484 from 200 BP until present, the absence of modern (i.e. datasets spanning recent decades) 485 pollen data in the analyses, and as a result of many sites being located on infertile soils, which Birk's (2016a) model predicts should not show a recent decline in diversity. Once 486 487 landscapes have become predominantly open (i.e. by the start of the historic period in Britain), measures such as woodland cover become insensitive proxies for understanding 488 489 biodiversity trends and more ecologically detailed interpretations of pollen assemblages are required. This study also demonstrates that vegetation communities are rarely stable over 490 491 time as assemblages reassemble on centennial to millennial timescales (Edwards et al, 2017). 492

Smith et al. (2020) identified distinct phases in the introduction of synanthropic insects in the
British Isles. This included an initial group of taxa originating from natural ecosystems
during the Mesolithic and Neolithic, followed by a second phase of new insect taxa
associated with pasture, fodder production and animal stocking in the Bronze Age and Iron
Age. This was proceeded by the appearance of strongly-synanthropic insect species, such as

grain pests, during following time periods, which were introduced into Britain during
Romans times (Smith et al., 2020). The agricultural landscape may have become more even
and less diverse in the Roman period as areas became specialised in producing for larger
populations. Insect remains can provide a range of information at an intermediate scale on
land-use nature and practice, particularly the clearance of forest and the development of
pasture, along with indicating the spread and intensity of settlement (Kenward, 1977; Smith,
2012; Smith et al., 2010; 2019; 2020).

505

506 The absence of patterns between the palaeodemographic curves and the palynological diversity indices for each region (Fig. 4) implies that there are no direct detectable regional-507 508 scale relationships between population change and palynological diversity in this study 509 beyond the initial change at the start of the Neolithic at the onset of agriculture. Therefore, 510 the size of the population may be less important than the way in which people used the land. Within some regions, such as the midlands/northern England, palynological diversity appears 511 to have remained stable during multiple population 'boom and bust' cycles; however, 512 changing palynological diversity patterns may not be easily detectable at this spatial scale. In 513 other regions, such as southwest England, highest levels of palynological diversity occur 514 when population peaks in Neolithic times. This implies that low levels of human-induced 515 516 disturbance and associated land-use practices may have initially led to an increase in pollen 517 diversity; however, this pattern is not evident for all regions. In a review of biodiversity trends through the Anthropocene, McGill et al. (2015) highlighted human-induced land-cover 518 change as a major factor influencing biodiversity patterns. They identified that land-cover 519 520 change typically results in decreased species richness in the changed area. They also recognise that by creating more heterogeneous habitat structures, meta-community to 521 biogeographical-scale species richness can increase through integration of edge or open 522

523 habitat species. This is clearly demonstrated in the pollen-inferred diversity trends presented here (Fig. 3), which increase when deciduous forest declines and vegetation becomes more 524 open. During recovery from natural or human-mediated disturbance, species richness often 525 526 peaks during periods of intermediate disturbance, as demonstrated by McGill et al. (2015). This too is reflected in the pollen-inferred diversity trends, such as from the start of the 527 Bronze Age as landscapes became more open as a result of forest removal and use of land for 528 agriculture. This 'intermediate' land use would have been less intensive than later agriculture 529 and forest removal, which is demonstrated in Fig. 3 as woodland/open land cover, increasing 530 531 cereal crops and insect groups indicative of human activity. McGill et al. (2015) identified 15 categories of biodiversity trends based on a range of data types and highlighted the 532 importance of scale in interpreting diversity indices. Pollen data represent different spatial 533 534 scales dependent on taxa group and landscape type, such as closed forest or open grassland. 535 The results presented in this study mostly represent meta-community scales (i.e. spatial heterogeneity with dispersal as the dominant process) as opposed to biogeographical and 536 global scales, which are governed by speciation and global extinction (McGill et al., 2015). 537 This study has highlighted that spatial scale plays an important role in understanding human 538 539 drivers of biodiversity.

540

The results from this data synthesis indicate that patterns of diversity change are more heterogeneous than the theoretical schema presented by Birks et al. (2016a) and highlight that there is a great deal of regional and temporal variability in palynological diversity trends, although the conceptual model may reflect large (continental) scale trends. The relationships between population change, land cover and diversity are not straightforward, which implies that the ways in which people managed the land has greater impact on diversity than changing population levels through the Holocene. Detailed information about the type, scale

548 and intensity of land use is needed to allow diversity patterns to be fully understood in relation to changing human populations over time. The specific combinations of taxa driving 549 diversity change and traits that condition 'success' or 'failure' to persist also require 550 551 exploration alongside diversity, as interpreting diversity indices alone may mask the decline or loss of key taxa or functional types (e.g. Reitalu et al., 2015; Davies, 2016; Carvalho et al., 552 2019). More detailed analysis of species characteristics or traits is needed, which will be 553 addressed in future work on the combined analyses of pollen and archaeobotanical data, 554 which provide information about the scale and intensity of land use (Treasure et al., 2019), 555 556 cultivation practices, cereal and horticultural crops, and the evolution of weed floras. Further work at smaller spatial scales is also needed to explore patterns between demographics, land 557 use, and trends in particular taxa or phytosociological groups, which is demonstrated by the 558 559 high standard deviation in certain sub-regional patterns indicating dissimilar trends between 560 individual sites. Broad spatial scale macroecological syntheses are valuable for understanding to what extent there are generalisable relationships between human land use and biodiversity 561 trends. However, meta-analyses need to consider sub-regional patterns and site-specific 562 characteristics along with exploration of the nature of past land use to assess species 563 sensitivity to change. This has potential to provide answers to questions about the way in 564 which these factors shaped plant assemblages, which can facilitate more efficient 565 communication across palaeo- and neo-ecology and conservation. 566

567

The majority of the significant correlations appear between climate, palaeodemography and the pollen taxa richness component of diversity rather than evenness. This implies that the significant associations with Shannon diversity mostly depend on the richness component and not evenness. Analyses of palaeoclimate trends can also help to address debates about the relationships between climate, land use and land cover over time (Dark, 2006). The climate

573 datasets analysed within this study provided mixed results with some climate trends showing significant correlations with palynological diversity and population change for specific time 574 periods, but not others. Weak correlations are to be expected during periods of stable 575 576 Holocene climate when climatic influence on vegetation change would have been minor. However, the significant correlations identified with climate records from Iceland and 577 Greenland demonstrate a strong relationship between pollen diversity trends and climate, 578 suggesting that the climatic optima and ranges of different taxa played an important role in 579 shaping vegetation patterns. The Greenland temperature deviation record shows strongest 580 581 correlations with population and the diversity indices. Despite the numerous significant correlations between the datasets, we cannot assume that causation directly relates to the 582 variables of interest. Despite statistically significant correlations between population and both 583 584 Shannon index and rarefaction for the entire time period covered by both records (9900-1700 BP), r-values indicate that population change is correlated with palynological diversity more 585 clearly in the later Holocene in comparison with the earlier Holocene. This suggests that 586 people had an increasingly impactful influence on landscapes and palynological diversity, 587 which is reflected by the increase in insect fauna associated with human land use and the 588 589 increasing abundance of cereals and arable pollen indicators.

590

591 *Conclusions*:

592

Synthesis of fossil pollen, archaeological and insect datasets from the British Isles has
demonstrated that humans played an important role in shaping landscape transformation
throughout the Holocene within the context of climatic influences on vegetation change.
However, relationships between population change, land cover and palynological diversity in
the past are not straightforward. Testing a model of biodiversity change has demonstrated that

598	patterns of palynological diversity trends are regionally variable and may not always follow
599	expected trajectories. Current understanding of environmental change is often focused on
600	recent decades, which only represents a 'snap-shot' in time. Exploring trends at smaller
601	spatial scales, and understanding how different types of human-induced disturbance, such as
602	land-use change, lead to loss or increases in diversity, also holds great potential for
603	addressing questions about human impacts on biodiversity change. In order for long-term
604	environmental data to inform modern challenges surrounding land use and biodiversity loss,
605	detailed high-resolution spatial and temporal datasets need to be synthesised through multi-
606	community efforts and large-scale data harmonisation exercises.
607	
608	
609	Acknowledgments:
610	
611	This research has been carried out as part of the "Biodiversity and land-use change in the
612	British Isles" project funded by the Leverhulme Trust (grant reference: RPG-2018-357).
613	Pollen data were extracted from the European Pollen Database
614	(<u>http://www.europeanpollendatabase.net/</u>). The work of the data contributors and the EPD
615	community is gratefully acknowledged and appreciation is given to Michelle Leydet (the
616	EPD manager), as well as many data contributors who have made valuable contributions to
617	this research. We would like to mention some major existing sources for radiocarbon dates
618	from Wales (Burrow and Williams, 2008; Manning et al., 2016), England (CBA 2012;
619	ORAU 2016; Manning et al., 2016; Jordan et al., 1994; Bayliss et al., 2007, 2008, 2012,
620	2013; 2015; 2016; Whittle et al., 2011) and Scotland (Canmore Scottish Radiocarbon
621	Database, 2016; Discovery and Excavation Scotland; Manning et al., 2016). Further dates
622	came from online crowd-sourcing of the UK Archaeology Data Service's grey literature

623	library (aka OASIS) and thanks are therefore extended to the many volunteers who
624	contributed online to MicroPasts. Thanks are also given to Florin Fletcher, who amalgamated
625	many of the datasets for the Quest project (led by Rob Batchelor) and to managers of and
626	contributors to BugsCEP (Buckland & Buckland, 2006).
627	
628	
629	References:
630	
631	Bayliss, A., Bronk Ramsey, C., Cook, G., G. McCormac & van der Plicht, J. (2016)
632	Radiocarbon Dates from Samples Funded by English Heritage between 1998 and
633	2003, English Heritage
634	Bayliss, A., Bronk Ramsey, C., Cook, G., G. McCormac & Marshall, P. (2015) Radiocarbon
635	Dates from Samples Funded by English Heritage between 1993 and 1998, English
636	Heritage
637	Bayliss, A., Bronk Ramsey, C., Cook, G., McCormac, G., Otlet, R. & Walker, J. (2013)
638	Radiocarbon Dates from Samples Funded by English Heritage between 1988 and
639	1993, English Heritage
640	Bayliss, A., Hedges, R., Otlet, R., Switsur, R. & Walker, J. (2012). Radiocarbon Dates from
641	Samples Funded by English Heritage between 1981 and 1988, English Heritage
642	Bayliss, A., Bronk Ramsey, C., Cook, G., van der Plicht, J. & McCormac, G. (2008)
643	Radiocarbon Dates from Samples Funded by English Heritage under the Aggregates
644	Levy Sustainability Fund 2004-7, English Heritage
645	Bayliss, A., Bronk Ramsey, C., Cook, G. & van der Plicht, J. (2007) Radiocarbon Dates from
646	Samples Funded by English Heritage under the Aggregates Levy Sustainability Fund
647	2002-4, English Heritage

648	Benjamini, Y. & Yekutieli, D. (2001) The control of the false discovery rate in multiple
649	testing under dependency. Annals of Statistics, 29, 1165-1188. doi:

650 10.1214/aos/1013699998.

- Bevan, A., Colledge, S., Fuller, D., Fyfe, R., Shennan, S. & Stevens, C. (2017) Holocene
- fluctuations in human population demonstrate repeated links to food production and
- climate. Proceedings of the National Academy of Sciences, 114, E10524-E10531. doi:
- 654 10.1073/pnas.1709190114
- Bevan, A. & Crema, E.R. (2018) rearbon: Methods for calibrating and analysing radiocarbon.

656 R package version 1.2.0. https://github.com/ahb108/rcarbon

- Birks, H.J.B, Felde, V.A. & Seddon, A.W. (2016a). Biodiversity trends within the Holocene.
 The Holocene, 26, 994–1001. doi: 10.1177/0959683615622568
- Birks, H.J.B, Felde, V.A., Bjune, A.E., Grytnes, J.A., Seppä, H. & Giesecke, T. (2016b) Does
 pollen-assemblage richness reflect floristic richness? A review of recent
- developments and future challenges. Review of Palaeobotany and Palynology, 228, 1-
- 662 25. doi: 10.1016/j.revpalbo.2015.12.011
- Birks, H.J.B., & Line, J.M. (1992). The use of Rarefaction Analysis for Estimating
- Palynological Richness from Quaternary Pollen-Analytical Data. The Holocene, 2, 1-
- 665 10. doi: 10.1177/095968369200200101

Blaauw, M. (2010). Methods and code for 'classical'age-modelling of radiocarbon sequences.

- 667 Quaternary Geochronology, 5, 512-518. doi: 10.1016/j.quageo.2010.01.002
- Borregaard, M.K., Graves, G.R. & Rahbek, C. (2020) Dispersion fields reveal the
- 669 compositional structure of South American vertebrate assemblages. Nature
- 670 Communications, 11, 491. doi: 10.1038/s41467-019-14267-y

- Brook, B.W., Ellis, E.C., Perring, M.P., Mackay, A.W. & Blomqvist, L. (2013) Does the
- terrestrial biosphere have planetary tipping points?, Trends in Ecology & Evolution,
 28, 396-401. doi: 10.1016/j.tree.2013.01.016
- Broström, A., Nielsen, A.B., Gaillard, M.J., Hjelle, K.L., Mazier, F., Binney, H.A., Bunting,
- J., Fyfe, R., Meltsov, V., Poska, A., Räsänen, S., Soepboer, W., von Stedingk, H.,
- 676 Suutari, H. & Sugita, S. (2008) Pollen productivity estimates of key European plant
- taxa for quantitative reconstruction of past vegetation: a review. Vegetation Historyand Archaeobotany 17, 416-478.
- 679 Buckland P.I. & Buckland P.C. (2006) BugsCEP Coleopteran Ecology Package. IGBP
- 680 PAGES/World Data Center for Paleoclimatology Data Contribution Series #2006-
- 681 116. NOAA/NCDC Paleoclimatology Program, Boulder CO, USA. (Online:
- http://www.ncdc.noaa.gov/paleo/insect.html or http://www.bugscep.com) Accessed:
 28/4/2020
- Burrow, S. & Williams, S. (2008) The Wales and Borders Radiocarbon Database,
- 685 Amgueddfa Cymru: National Museum Wales (Online:
- 686 <u>http://www.museumwales.ac.uk/en/radiocarbon</u>). Accessed: 2017
- 687 Canmore Scottish Radiocarbon Database (2016) (former lead: Patrick Ashmore) (Online:
 688 https://canmore.org.uk/project/919374). Accessed: 2017.
- 689 Carvalho, F., Brown, K.A., Waller, M.P., Bunting, M.J., Boom, A., & Leng, M.J. (2019) A
- 690 method for reconstructing temporal changes in vegetation functional trait composition
- 691 using Holocene pollen assemblages. PLoS ONE, 14. doi:
- 692 10.1371/journal.pone.0216698
- 693 CBA (Council for British Archaeology) (2012) Archaeological Site Index to Radiocarbon
- 694 Dates from Great Britain and Ireland Council for British Archaeology Radiocarbon

695 Index (lead: Mike Heyworth) (Online:

	696	http://archaeol	ogydataservice.ad	c.uk/archives/view/c14	cba/). Accessed: 2017
--	-----	-----------------	-------------------	------------------------	------	-------------------

- 697 Colombaroli, D., Beckmann, M., Van der Knaap, W., Curdy, P., & Tinner, W. (2013).
- 698 Changes in biodiversity and vegetation composition in the central Swiss Alps during
- the transition from pristine forest to first farming. Diversity and Distributions, 19,
- 700 157-170. Doi: 10.1111/j.1472-4642.2012.00930.x
- 701 Dark, P. (2006) Climate deterioration and land-use change in the first millennium BC:
- perspectives from the British palynological record. Journal of Archaeological Science,33, 1381-1395.
- Davies, A.L. (2016) Late Holocene regime shifts in moorland ecosystems: high resolution
 data from the Pennines, UK. Vegetation History and Archaeobotany, 25, 207-219.
 doi: 10.1007/s00334-015-0544-9
- 707 Discovery and Excavation Scotland (undated) Annual radiocarbon date lists in issues from
 708 1990 to 2016.

709 Divíšek, J., Hájek, M., Jamrichová, E., Petr, L., Večeřa, M., Tichý, L., Willner, W. & Horsák,

710 M. (2020) Holocene matters: Landscape history accounts for current species richness

of vascular plants in forests and grasslands of eastern Central Europe. Journal of

712 Biogeography, 00, 1-15. doi: 10.1111/jbi.13787

- Edwards, K.J., Fyfe, R. & Jackson, S.T. (2017) The first 100 years of pollen analysis. Nature
 Plants, 3, 17001.
- Fargione, J., Tilman, D., Dybzinski, R., Hille Ris Lambers, J., Clark, C., Harpole, W.S.,
- 716 Knops, J.M.H., Reich, P.B. & Loreau, M. (2007) From selection to complementarity:
- shifts in the causes of biodiversity–productivity relationships in a long-term
- biodiversity experiment, Proceedings of the Royal Society B, 274, 871-876. doi:
- 719 10.1098/rspb.2006.0351

720	Felde, V.A., Peglar, S.M., Bjune, A.E., Grytnes, J.A. & Birks, H.J.B. (2016) Modern pollen-
721	plant richness and diversity relationships exist along a vegetational gradient in
722	southern Norway. Holocene, 26, 163-175. doi: 10.1177/0959683615596843
723	Fordham, D.A., Jackson, S.T., Brown, S.C., Huntley, B., Brook, B.W., Dahl-Jensen, D.,
724	Thomas, M., Gilbert, P., Otto-Bliesner, B.L., Svensson, A., Theodoridis, S.
725	Wilmshurst, J.M., Buettel, J.C., Canteri, E., McDowell, M., Orlando, L., Pilowsky, J.,
726	Rahbek, C. & Nogues-Bravo, D. (2020) Using paleo-archives to safeguard
727	biodiversity under climate change. Science, 369, eabc5654, doi:
728	10.1126/science.abc5654
729	Fyfe, R.M., Twiddle, C., Sugita, S., Gaillard, MJ., Barratt, P., Caseldine, C.J., Dodson, J.,
730	Edwards, K., Farrell, M., Froyd, C., Grant, M.J., Huckerby, E., Innes, J.B., Shaw, H.
731	& Waller, M. (2013) The Holocene vegetation cover of Britain and Ireland:
732	overcoming problems of scale and discerning patterns of openness. Quaternary
733	Science Reviews, 73, 132-148. doi: 10.1016/j.quascirev.2013.05.014
734	Gaunle, K. (2020) How to Calculate Species Evenness (Online:
735	https://sciencing.com/calculate-species-evenness-2851.html) Accessed: 22/7/2020.
736	Gaston, K.J. (2000) Global patterns in biodiversity. Nature, 405, 220-227. doi:
737	10.1038/35012228
738	Giesecke, T., Wolters, S., van Leeuwen, J.F.N., van der Knaap, P.W.O., Leydet, M. &
739	Brewer, S. (2019) Postglacial change of the floristic diversity gradient in Europe.
740	Nature Communications, 10, 5422. doi: 10.1038/s41467-019-13233-y
741	Giesecke T., Davis B., Brewer B., Finsinger W., Wolters S., Blaauw M., de Beaulieu J.L.,
742	Fyfe, R.M., Gaillard, M.J., Gil-Romera, G., van der Knaap, W.O., Kuneš, P., Kühl,
743	N., van Leeuwen, J.F.N., Leydet, M., Lotter, A.F., Semmler, M. & Bradshaw, R.H.W.

- 744 (2014) Towards mapping the late Quaternary vegetation change of Europe.
- 745 Vegetation History and Archaeobotany, 23, 75-86. doi: 10.1007/s00334-012-0390-y
- Goring, S., Lacourse, T., Pellatt, M.G. & Mathewes, R.W. (2013) Pollen assemblage richness
- does not reflect regional plant species richness: a cautionary tale. Journal of Ecology,
- 748 101,137-1,145. doi: 10.1111/1365-2745.12135
- Hanley, N., Davies, A., Angelopoulos, K., Hamilton, A., Ross, A., Tinch, D. & Watson, F.
- (2008) Economic determinants of biodiversity change over a 400-year period in the
 Scottish uplands. Journal of Applied Ecology, 45, 1557-1565. doi: 10.1111/j.1365-
- 752 2664.2008.01570.x
- 753 Higgs, E., Falk, D.A., Guerrini, A., Hall, M., Harris, J., Hobbs, R.J., Jackson, S.T.,
- 754 Rhemtulla, J.M. & Throop, W. (2014) The changing role of history in restoration
- ecology. Frontiers in Ecology and Environment, 12, 499-506. doi: 10.1890/110267
- Hill, M.O. (1973) Diversity and evenness: a unifying notation and its consequences. Ecology,
 54, 427-432. doi: 10.2307/1934352
- Hobbs, R.J., Higgs, E., Hall, C.M., Bridgewater, P., Chapin, F.S., Ellis, E.C., Ewel, J.J.,
- 759 Hallett, L.M., Harris, J., Hulvey, K.B., Jackson, S.T., Kennedy, P.L., Kueffer, C.,
- 760 Lach, L., Lantz, T.C., Lugo, A.E., Mascaro, J., Murphy, S.D., Nelson, C.R., Perring,
- 761 M.P., Richardson, D.M., Seastedt, T.R., Standish, R.J., Starzomski, B.M., Suding,
- 762 K.N., Tognetti, P.D., Yakob, L. & Yungm L. (2014) Managing the whole landscape:
- historical, hybrid, and novel ecosystems. Frontiers in Ecology and Environment, 12,
- 764 557-564. doi: 10.1890/130300
- 765 Iversen, J. (1949) The influence of prehistoric man on vegetation. Danmarks Geologiske
 766 Undersøgelse IV.række, 3, 1-25.
- Jordan, D., Haddon-Reece, D. & Bayliss, A. (1994) Radiocarbon Dates from Samples
- Funded by English Heritage and Dated before 1981, English Heritage.

- 769 Kenward, H.K. (1997) Synanthropic insects and the size, remoteness and longevity of
- archaeological occupation sites: applying concepts from biogeography to past
- "islands" of human occupation. Quaternary Proceedings, 5, 135-152.
- 772 Kuneš, P., Abraham, V. & Herben, T. (2019) Changing disturbance-diversity relationships in
- temperate ecosystems over the past 12000 years. Journal of Ecology, 107, 1678-1688.
- doi: 10.1111/1365-2745.13136
- T75 Leydet M. (2007-2020) The European Pollen Database. (Online:
- 776 <u>http://www.europeanpollendatabase.net/</u>). Accessed: 28/4/2020).
- 777 Matthias, I., Semmler, M.S.S. & Giesecke, T. (2015) Palynological diversity captures
- landscape structure and diversity. Journal of Ecology, 103, 880-890. doi:
- 779 10.1111/1365-2745.12404
- 780 Magurran, A.E. (2003) Measuring Biological Diversity, UK: Wiley-Blackwell.
- 781 Manning, K., Colledge, S., Crema, E., Shennan, S. & Timpson, A (2016) The Cultural
- 782 Evolution of Neolithic Europe. EUROEVOL Dataset 1: Sites, Phases and
- 783 Radiocarbon Data, Journal of Open Archaeology Data 5, p.e2 (lead: Stephen
- 784 Shennan) (Online: <u>http://doi.org/10.5334/joad.40</u>). Accessed: 2017.
- 785 McDermott, F., Mattey, D.P. & Hawkesworth, C. (2001) Centennial-scale Holocene climate
- variability revealed by a high-resolution speleothem d18O record from SW Ireland,
- 787 Science, 294, 1328-1331. doi: 10.1126/science.1063678
- 788 McGill, B.J., Dornelas, M., Gotelli, N.J. & Magurran, A.E. (2015) Fifteen forms of
- biodiversity trend in the Anthropocene, Trends in Ecology & Evolution, 30, 104-113.
 doi: 10.1016/j.tree.2014.11.006
- 791 Morris, E.K., Caruso, T., Buscot, F., Fischer, M., Hancock, C., Maier, T.S., Meiners, T.,
- 792 Müller, C., Obermaier, E., Prati, D., Socher, S.A., Sonnemann, I., Wäschke, N.,
- 793 Wubet, T., Wurst, S. & Rillig, M.C. (2014) Choosing and using diversity indices:

794	insights for ecological applications from the German Biodiversity Exploratories.
795	Ecology and Evolution, 4, 3514-3524. doi: 10.1002/ece3.1155
796	Moossen, H., Bendle, J., Seki, O., Quillmann, U. & Kawamura, K. (2015) North Atlantic
797	Holocene climate evolution recorded by high-resolution terrestrial and marine
798	biomarker records, Quaternary Science Reviews, 129, 111-127. (Online:
799	https://www.ncdc.noaa.gov/paleo/study/20023) Accessed: 10/06/20.
800	Odgaard, B.V. (2001). Palaeoecological perspectives on pattern and process in plant diversity
801	and distribution adjustments: a comment on recent developments. Diversity and
802	Distributions, 7, 197-201. doi: 10.1111/j.1472-4642.2001.00110.x
803	Odgaard, B.V. (1994) The Holocene vegetation history of northern West Jutland, Denmark.
804	Nordic Journal of Botany, 123, 3-171. doi: 10.1111/j.1756-1051.1994.tb00625.x
805	Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin,
806	P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E. &
807	Wagner, H. (2019) Vegan: Community Ecology Package. R package version 2.5-4.
808	https://CRAN.R-project.org/package=vegan
809	ORAU (2016) Oxford Radicoarbon Accelerator Unit (ORAU) database. (Online:
810	https://c14.arch.ox.ac.uk/database/). Accessed: 2017.
811	Oxford Laboratory/NERC database (Online: <u>http://www.c14.org.uk/publications.php</u>).
812	Accessed: 2017.
813	Palmisano, A., Bevan, A. & Shennan, S. (2017) Comparing archaeological proxies for long-
814	term population patterns: An example from central Italy. Journal of Archaeological
815	Science 87, 59-72. doi: 10.1016/j.jas.2017.10.001
816	Pauly, D. (1995) Anecdotes and the shifting base-line syndrome of fisheries. Trends in
817	Ecology and Evolution, 10, 430. doi: 10.1016/S0169-5347(00)89171-5

818	Reitalu, T., Bjune, A.E., Blaus, A., Giesecke, T., Helm, A., Matthias, I., Peglar, S.M.,
819	Salonen, J.S., Seppä, H., Väli, V. & Birks, H.J.B. (2019) Patterns of modern pollen
820	and plant richness across northern Europe. Journal of Ecology, 107, 1662-1677. doi:
821	10.1111/1365-2745.13134
822	Reitalu, T., Gerhold, P., Poska, A., Pärtel, M., Väli, V. & Veski, S. (2015) Novel insights into
823	post-glacial vegetation change: functional and phylogenetic diversity in pollen
824	records. Journal of Vegetation Science, 26, 911-922. doi: 10.1111/jvs.12300
825	Robinson, M.A. (1981) The use of ecological groupings of Coleoptera for comparing sites.
826	In: Jones, M. & Dimbleby, G. (eds.) The Environment of Man: The Iron Age to the
827	Anglo-Saxon Period, British Archaeological Reports, British Series 87. Oxford:
828	British Archaeological Reports, pp. 251-286.
829	Robinson, M.A. (1983) Arable/pastoral ratios from insects? In: Jones, M. (ed.) Integrating the
830	Subsistance Economy, British Archaeological Reports, International Series 181.
831	Oxford: British Archaeological Reports, pp 19-47.
832	Roberts, N., Fyfe, R.M., Woodbridge, J. Gaillard, MJ., Davis, B.A.S., Kaplan, J.O.,
833	Marquer, L., Mazier, F., Nielsen, A.B., Sugita, S., Trondman, AK. & Leydet, M.
834	(2018) Europe's lost forests: a pollen-based synthesis for the last 11,000 years.
835	Scientific Reports, 8, 716. doi: 10.1038/s41598-017-18646-7
836	Roberts, N., Fyfe, R., Shennan, S., Bevan, A., Woodbridge, J. & Palmisano, A. (2019)
837	Mediterranean landscape change during the Holocene: synthesis, comparison and
838	regional trends in population, climate and land cover. The Holocene, 29, 923-937.
839	doi: 10.1177/0959683619826697
840	Rowan, J., Beaudrot, L., Franklin, J., Reed, K.E., Smail, I.E., Zamora, A. & Kamilar, J.M.
841	(2019) Geographically divergent evolutionary and ecological legacies shape mammal

842	biodiversity in the global tropics and subtropics. Proceedings of the National
843	Academy of Sciences, 117, 1559-1565. doi: 10.1073/pnas.1910489116
844	Schafstall, N., Whitehouse, N., Kuosmanen, N., Svobodová-Svitavská, H., Saulnier, M.,
845	Chiverrell, R.C., Fleischer, P., Kuneš, P. & Clear, J.L. (2020) Changes in species
846	composition and diversity of a montane beetle community over the last millennium in
847	the High Tatras, Slovakia: Implications for forest conservation and management,
848	Palaeogeography, Palaeoclimatology, Palaeoecology, 555, 109834. doi:
849	10.1016/j.palaeo.2020.109834
850	Schauer, P., Shennan, S., Bevan, A., Cook, G., Edinborough, K., Fyfe, R., Kerig, T. & Parker
851	Pearson, M. (2019) Supply and demand in prehistory? Economics of Neolithic mining
852	in northwest Europe. Journal of Anthropological Archaeology, 54, 149-160. doi:
853	10.1016/j.jaa.2019.03.001
854	Shennan, S., Downey, S.S., Timpson, A., Edinborough, K., Colledge, S., Kerig, T., Manning,
855	K. & Thomas, M.G. (2013) Regional population collapse followed initial agricultural
856	booms in mid-Holocene Europe. Nature Communications, 4, 2486. doi:
857	10.1038/ncomms3486
858	Soga, M. & Gaston, K.J. (2018) Shifting baseline syndrome: causes, consequences, and
859	implications. Frontiers in Ecology and the Environment, 16, 1540-9295. doi:
860	10.1002/fee.1794
861	Smith, D.N. (2012) Insects in the City: An Archaeoentomological Perspective on London's
862	Past, British Archaeological Reports, British Series 561. Oxford: Archaeopress.
863	Smith, D.S., Hill, G., Kenward, H. & Allison, E. (2020) Development of synatrophic beetle
864	faunas over the last 9000 years in the British Isles. Journal of Archaeological Science,
865	115, 105075. doi: 10.1016/j.jas.2020.105075

866	Smith, D., Hill, G. & Kenward, H. (2019). The development of late-Holocene farmed
867	landscapes: Analysis of insect assemblages using a multi-period dataset. The
868	Holocene, 29, 45-63. doi: 10.1177/0959683618804645
869	Smith, D., Whitehouse, N., Bunting, M. J. & Chapman, H. (2010). Can we characterise
870	'openness' in the Holocene palaeoenvironmental record? Modern analogue studies of
871	insect faunas and pollen spectra from Dunham Massey deer park and Epping Forest,
872	England. The Holocene, 20, 215-229. doi: 10.1177/0959683609350392
873	Steinhilber, F., Abreu, J.A., Beer, J., Brunner, I., Christl, M., Fischer, H., Heikkilä, U.,
874	Kubik, P.W., Mann, M., McCracken, K.G., Miller, H., Miyahara, H., Oerter, H. &
875	Wilhelms, F. (2012) 9,400 years of cosmic radiation and solar activity from ice cores
876	and tree rings, Proceedings of the National Academy of Sciences, 109, 5967-5971.
877	doi:10.1073/pnas.1118965109
878	Stephens, L., Fuller, D., Boivin, N., Rick, T., Gauthier, N., Kay, A., Marwick, B Ellis, E.
879	(2019) Archaeological assessment reveals Earth's early transformation through land
880	use. Science, 365, 897-902. doi: 10.1126/science.aax1192
881	Stevens, C. & Fuller, D. (2012). Did Neolithic farming fail? The case for a Bronze Age
882	agricultural revolution in the British Isles. Antiquity, 86, 707-722. doi:
883	10.1017/S0003598X00047864
884	Sugita, S. (2007) Theory of quantitative reconstruction of vegetation I: pollen from large
885	lakes REVEALS regional vegetation composition. The Holocene, 17, 229-241. doi:
886	10.1177/0959683607075837
887	Symstad, A.J., Chapin, F.S., Wall, D.H. Gross, K.L., Huenneke, L.F., Mittelbach, G.G.,
888	Peters, D.P.C. & Tilman, D. (2003) Long-Term and Large-Scale Perspectives on the
889	Relationship between Biodiversity and Ecosystem Functioning. BioScience, 53, 89-
890	98. doi: 10.1641/0006-3568(2003)053[0089:LTALSP]2.0.CO;2

891	Timpson, A., Colledge, S., Crema, E., Edinborough, K., Kerig, T., Manning, K., Thomas,
892	M.G. & Shennan, S. (2014) Reconstructing regional population fluctuations in the
893	European Neolithic using radiocarbon dates: A new case-study using an improved
894	method. Journal of Archaeological Science, 52, 549-557.
895	Treasure, E., Gröcke, D., Caseldine, A. & Church, M. (2019). Neolithic Farming and Wild
896	Plant Exploitation in Western Britain: Archaeobotanical and Crop Stable Isotope
897	Evidence from Wales (c. 4000-2200 cal bc). Proceedings of the Prehistoric Society,
898	85, 193-222. doi: 10.1017/ppr.2019.12
899	Trondman A. K., Gaillard M. J. Sugita S. Fyfe, R., Nielsen, A.B., Twiddle, C., Barratt, P.,
900	Birks, H.J.B., Bjune, A.E., Björkman, L., Broström, A., Caseldine, C., David, R.,
901	Dodson, J., Dörfler, W., Fischer, E., van Geel, B., Giesecke, T., Hultberg, T., Kalnina,
902	L., Kangur, M., van der Knaap, P., Koff, T., Kuneš, P., Lagerås, P., Latałowa, M.,
903	Lechterbeck, J., Leroyer, C., Leydet, M., Lindbladh, M., Marquer, L., Mitchell,
904	F.J.G., Odgaard, B.V., Peglar, S.M., Persson, T., Poska, A., Rösch, M., Seppä, H.,
905	Veski, S. & Wick, L. (2015) Pollen-based land-cover reconstructions for the study of
906	past vegetation-climate interactions in NW Europe at 0.2 k, 0.5 k, 3 k and 6 k years
907	before present. Global Change Biology, 21, 676-97. doi:10.1111/gcb.12737
908	Vinther, B.M., S.L. Buchardt, H.B. Clausen, D. Dahl-Jensen, S.J. Johnsen, D.A. Fisher, R.M.
909	Koerner, D. Raynaud, V. Lipenkov, K.K. Andersen, T. Blunier, S.O. Rasmussen, J.P.
910	Steffensen, & A.M. Svensson. (2009) Holocene thinning of the Greenland ice sheet,
911	Nature, 461, 385-388. doi: 10.1038/nature08355
912	Watts, K., Whytock, R.C., Park, K.J., Fuentes-Montemayor, E., Macgregor, N.A., Duffield,
913	S. & McGowan, P.J.K. (2020) Ecological time lags and the journey towards
914	conservation success. Nature Ecology Evolution, 4, 304-311. doi: 10.1038/s41559-
915	019-1087-8

916	Whittle, A., Healy, F. & Bayliss, A. (2011) Gathering Time: Dating the Early Neolithic
917	Enclosures of Southern Britain and Ireland, Oxford: Oxbow.
918	Willis, K.J. & Birks, H.J.B. (2006) What is natural? the need for a long-term perspective in
919	biodiversity conservation, Science, 314, 1261-1265. doi: 10.1126/science.1122667
920	Willis, K.J., Gillson, L., Brncic, T.M. & Figueroa-Rangel, B.L. (2005) Providing baselines
921	for biodiversity measurement. Trends in Ecology & Evolution. 20, 107-108. doi:
922	10.1016/j.tree.2004.12.003
923	Wood, S. (2017). Generalized Additive Models. New York: Chapman and Hall/CRC,
924	https://doi.org/10.1201/9781315370279
925	Woodbridge, J., Fyfe, R.M., Roberts, N., Downey, S., Edinborough, K. & Shennan, S. (2014)
926	The impact of the Neolithic agricultural transition in Britain: a comparison of pollen-
927	based land-cover and archaeological ¹⁴ C date-inferred population change. Journal of
928	Archaeological Science. 51, 216-224. doi: 10.1016/j.jas.2012.10.025
929	
930	
931	Figures:
932	
933	Figure 1. Theoretical model of local to meta-community scale diversity and possible drivers
934	of change: summary of trends in biodiversity through the Holocene for fertile and infertile
935	soils (based on Birks et al., 2016a).
936	
937	Figure 2. a) Fossil pollen, insect and potential archaeobotanical sites, b) radiocarbon-dated
938	archaeological (palaeodemographic) site distribution.

940 Figure 3. Synthesis of pollen and insect records from the British Isles: Stevens and Fuller's (2012) model of agricultural changes in the UK presented with archaeological periods, 941 radiocarbon-inferred palaeodemographic changes (from Bevan et al., 2017), pollen-based 942 vegetation cover and key land-use indicators (Fyfe et al., 2013), changes in key insect faunal 943 groups (Smith et al., 2019) represented as average, minimum, maximum and interquartile 944 range, and pollen taxa richness and evenness (Shannon diversity and rarefaction) indices 945 averaged for all pollen sites. Dashed grey lines show values based on 233 pollen taxa groups 946 and solid black lines show values for 558 pollen taxa groups. Dotted horizontal lines show 947 948 the standard deviation.

949

Figure 4. Pollen taxa richness and assemblage evenness summarised by Shannon diversity
and evenness indices and rarefaction (pollen richness) (with standard deviation and number
of pollen sites) averaged for four regions of the British Isles: southeast England, southwest
England, Scotland and the midlands/northern England. Dashed grey lines show values based
on 233 pollen taxa groups and solid black lines show values for 558 pollen taxa groups.
Palaeodemographic (population) trends are shown for each region (based on the summed
probability distributions (SPDs) of radiocarbon-dated archaeological sites.

957

Figure 5. Pollen-derived Shannon diversity and evenness for the British Isles presented with
palaeodemographic data for all regions and palaeoclimate datasets: sea surface temperature
(SST) from Iceland (Moossen et al., 2015), an ¹⁸O isotope speleothem record from Crag Cave
(Ireland) (McDermott et al., 2001), temperature deviation from the Greenland ice core
(Vinther et al., 2009) and total solar irradiance (TSI) (Steinhilber et al., 2012). Grey circles
represent all data points and black lines represent smoothed data values derived using a
general additive model (GAM).

966	Table 1 Spearman's rank correlations (r and p-values) between the palaeoclimate records
967	reflecting North Atlantic patterns, pollen taxa richness and evenness (Shannon diversity index
968	and evenness) and taxa richness (rarefaction), and palaeodemographic change (population)
969	inferred from summed probability density (SPD) functions of radiocarbon-dated
970	archaeological sites. Correlation analyses were carried out for the early, mid, late and entire
971	Holocene and significant relationships are shaded. Dates represent the mid-point of each 200-
972	year time window. Grey shading indicates significant correlations ($p < 0.05$). P-values
973	corrected for multiple comparisons of significantly correlated variables are shown in
974	brackets.
975	
976	Supplementary Information, Table 2. Pollen site metadata from data contributors and the
977	European Pollen Database (EPD) Leydet et al. (2007-2020) and Fyfe et al. (2013).
978	
979	Authors' contributions:
980	JW wrote the manuscript, carried out analyses and produced the figures. RF acquired and
981	amalgamated the fossil pollen datasets, wrote R script to carry out pollen data harmonisation
982	and REVEALS reconstructions and conceptualised Figure 3. RF, RP, DS and JW designed
983	the research while JW and RF led the conception and design on the manuscript. DS acquired
984	and amalgamated the fossil insect datasets, RB contributed numerous pollen datasets from the
985	London area and AD contributed several pollen datasets from Scotland. AB acquired and
986	amalgamated radiocarbon-dated archaeological data and wrote R script for producing
987	summed probably distributions (SPDs) as a proxy for population change. JW, RF, RP, DS,

988	AdV, RB, AB and AD contributed to the interpretation of data, revised the manuscript
989	critically, made intellectual contributions and approved the final version for publication.
990	

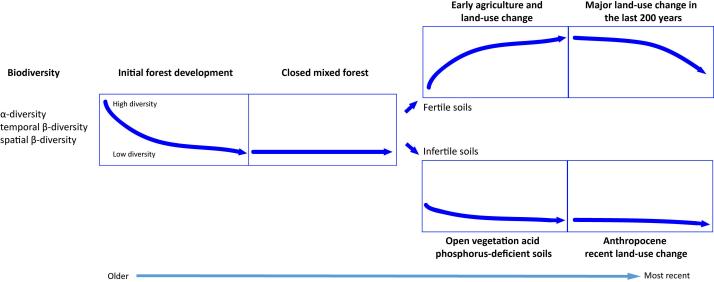
991 Data accessibility statement:

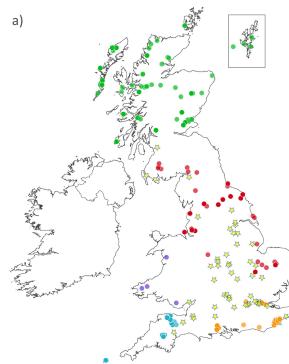
992 The majority of the original pollen and insect datasets used in this study are available from

993 the European Pollen Database (<u>www.europeanpollendatabase.net</u>/), Neotoma

994 (www.neotomadb.org/) and BugsCEP (<u>http://bugscep.com/</u>). For any datasets that are not

available within these databases, readers would need to contact the original author.

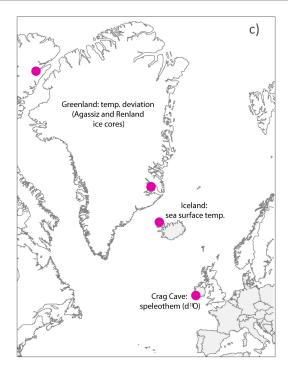

996 Radiocarbon dates used for palaeodemographic reconstructions are available in the

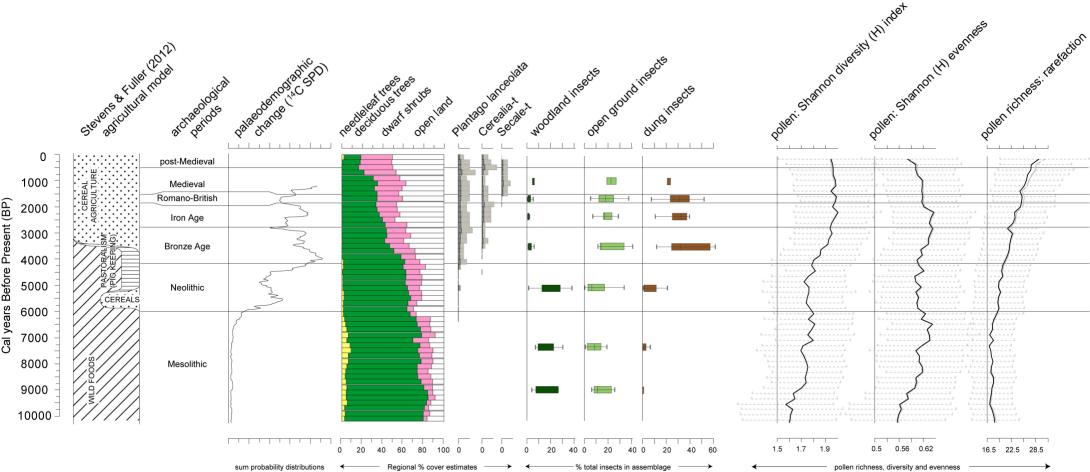

997 University College London's Discovery database (discovery.ucl.ac.uk/10025178/: doi:

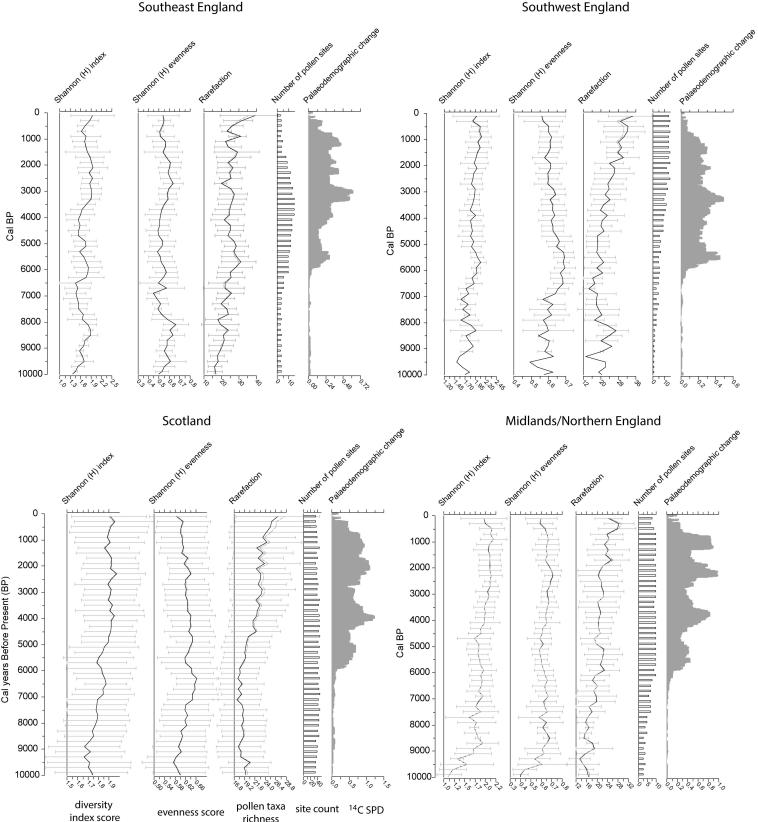
10.14324/000.ds.10025178). For a full set of sources and acknowledgements for the

999 radiocarbon data see Bevan et al. (2017). The climate datasets are available from NOAA

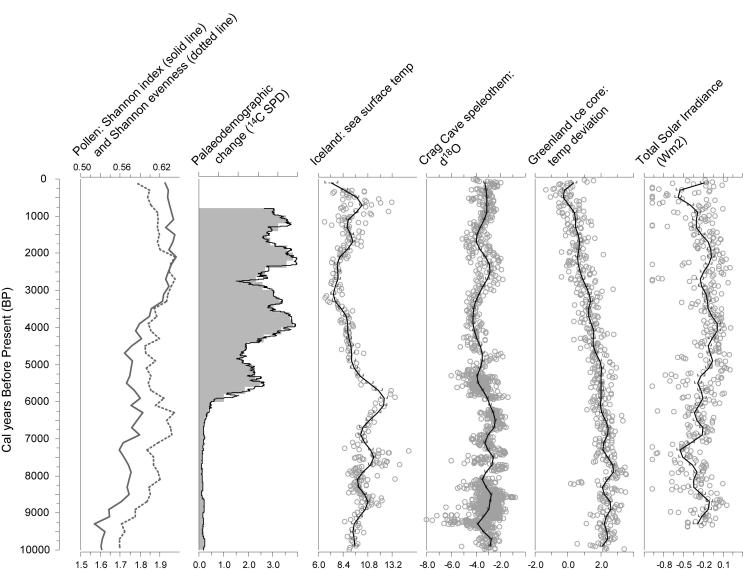
1000 (<u>https://www.noaa.gov/</u>).


Legend


- ✤ insect site (Smith et al., 2019)
- radiocarbon-dated (14C) archaeological sites


Pollen sites (Fyfe et al., 2013; 2018)

- Scotland
- Southwest England
- Southeast England
- Midlands/northern England
- Wales
- Palaeoclimate sites



richness

Supplementary Information, Table 2. Pollen site metadata from data contributors and the European Pollen Database (EPD) Leydet et al.

(2007-2020) and Fyfe et al. (2013).

Site name	Source	Code	Longitude	Latitude	Site type	Reference
Abernethy Forest	EPD	AF1974	-3.710556	57.235278	Bog	Birks, H.H., and R.W. Mathewes. 1978. Studies in the vegetation history of scotland. V. Late Devensian and early Flandrian pollen and macrofossil stratigraphy at Abernethy forest, Inverness-shire. New Phytologist, 80, 455-484.
Aveley marshes	EPD	AMRN	0.2225	51.492222	Bog	Batchelor, C.R. 2009. Middle Holocene Environmental Changes and the History of Yew Taxus baccata L. Woodland in the Lower Thames Valley. PhD Thesis, Royal Holloway, University of London, UK.
Aveley marshes	EPD	AMRS	0.2225	51.492222	Bog	Batchelor, C.R. 2009. Middle Holocene Environmental Changes and the History of Yew Taxus baccata L. Woodland in the Lower Thames Valley. PhD Thesis, Royal Holloway, University of London, UK.
Ballynahatty Bog	EPD	BALLYNA H	-5.953056	54.544167	Bog	Plunkett, G., F. Carroll, B. Hartwell, N.J. Whitehouse, and P.J. Reimer. 2008. Vegetation history at the multi-period prehistoric complex at Ballynahatty, Co. Down, Northern Ireland. Journal of Archaeological Science, 35, 181-190.
Beckton	EPD	GWR	0.058889	51.519444	Bog	Batchelor, C.R. 2009. Middle Holocene Environmental Changes and the History of Yew Taxus baccata L. Woodland in the Lower Thames Valley. PhD Thesis, Royal Holloway, University of London, UK.
Bigholm Burn	EPD	BBURN3	-3.0725	55.120278	Bog	Moar, N.T. 1969. Late Weichselian and Flandrian pollen diagrams from south-west Scotland. New Phytologist, 68, 433-467.
Broad Down	EPD	BROADOW N	-3.962222	50.6125	Bog	Fyfe, R.M., and J. Woodbridge. 2012. Differences in time and space in upland vegetation patterning, analysis of pollen data from Dartmoor, UK. Lanscape Ecology, 27, 745-760.
Butter Mountain	EPD	BUTTER	-6.033333	54.166667	Bog	Holland, S.M. 1975. A pollen-analytical study concerning settlement and early agriculture in County Down, Northern Ireland. Ph.D. Dissertation. Queen's University, Belfast, Northern Ireland.
Caburn	EPD	CABURN	0.050556	50.857222	Bog	Waller, M.P., and S. Hamilton. 2000. Vegetation history of the English chalklands, a mid-Holocene pollen sequence from the Caburn, East Sussex. Journal of Quaternary Science 153., 253-272.
Carrivmoragh	EPD	CARRIV	-5.983333	54.316667	Bog	Holland, S.M. 1975. A pollen-analytical study concerning settlement and early agriculture in County Down, Northern Ireland. Ph.D. Dissertation. Queen's University, Belfast, Northern Ireland.

Clatteringshaws Loch	EPD	CLATTERI	-4.283333	55.066667	Bog	Birks, H.H. 1975. Studies in the vegetational history of Scotland. IV. Pine stumps in Scottish blanket peats. Philosophical Transactions of the Royal Society of London, B 270, 181-226.
Comerslade	EPD	COMERSL A	-3.804722	51.120278	Bog	Fyfe, R.M. 2012. Bronze Age landscape dynamics, spatially detailed pollen analysis from a ceremonial complex. Journal of Archaeological Science, 398., 2764-2773.
Cooran Lane	EPD	COORAN	-4.4	55.116667	Bog	Birks, H.H. 1975. Studies in the vegetational history of Scotland. IV. Pine stumps in Scottish blanket peats. Philosophical Transactions of the Royal Society of London, B 270, 181-226.
Creich Castle	EPD	CREICHCA	-3.083333	56.383333	Lake	Cundill, P.R., and G. Whittington. 1983. Anomalous arboreal pollen assemblages in Late Devensian and Early Flandrian deposits at Creich Castle. Fife, Scotland. Boreas 12, 297-311.
Cut Hill	EPD	CUTHILL2	-3.981944	50.6275	Bog	Fyfe, R.M., and J. Woodbridge. 2012. Differences in time and space in upland vegetation patterning, analysis of pollen data from Dartmoor, UK. Lanscape Ecology, 275., 745-760.
Exebridge	EPD	EXEBRID	-3.517222	51.017222	Bog	Fyfe, R.M., A.G. Brown, and B.J. Coles. 2003. Mesolithic to Bronze Age vegetation change and human activity in the Exe Valley, Devon, UK. Proceedings of the Prehistoric Society, 69, 161-181.
Ferry Lane	EPD	FERRYLAN	0.194444	51.511944	Bog	Waller, M.P., and M.J. Grant. 2012. Holocene pollen assemblages from coastal wetlands, differentiating natural and anthropogenic causes of change in the Thames estuary, UK. Journal of Quaternary Science, 275., 461-474.
Foula	EPD	FOULA6B	-2.1	60.15	Bog	Shotyk, W. 1997. Atmospheric deposition and geochemical mass balance of major elements and trace elements in tow oceanic blanket Bogs, northern Scotland and the Shetland Islands. Chemical Geology 138, 55-72.
Glen West	EPD	GLENWES T	-8.033333	54.416667	Bog	Plunkett, G. 2009. Land-use patterns and cultural change in the Middle to Late Bronze Age Ireland, inferences from pollen records. Vegetation History Archaeobotany, 18, 273-295.
Gors Fawr Bog	EPD	GORSFAW R	-4.718333	51.931667	Bog	Fyfe, R.M. 2007. The importance of local-scale openness within regions dominated by closed woodland. Journal of Quaternary Science, 226., 571-578.
Hangingstone Hill	EPD	HANGINGS	-3.956944	50.654722	Bog	Fyfe, R.M., and J. Woodbridge. 2012. Differences in time and space in upland vegetation patterning, analysis of pollen data from Dartmoor, UK. Lanscape Ecology, 275., 745-760.
Hobbs Lot March	EPD	MARCH	0.071389	52.601667	Bog	Waller, M.P. 1994. The Fenland Project, Number 9, Flandrian environmental change in Fenland. East Anglian Archaeology Monograph No.70.
Hope farm Walland marsh	EPD	HOPEFAR M	0.835556	51.017778	Bog	Waller, M.P., A.J. Long, D. Long, and James Innes. 1999. Patterns and processes in the development of coastal mire vegetation, Multi-site investigations from Walland Marsh, Southeast England. Quaternary Science Reviews 18, 1419-1444.

Hornchurch marshes	EPD	DAGFINAL	0.176944	51.520278	Bog	Batchelor, C.R. 2009. Middle Holocene Environmental Changes and the History of Yew Taxus baccata L. Woodland in the Lower Thames Valley. PhD Thesis, Royal Holloway, University of London, UK.
King's Pool	EPD	KINGS	-2.108333	52.808333	Lake	Bartley, D.D., and A.V. Morgan. 1990. The palynological record of the King's Pool, Stafford, England. New Phytologist, 116, 177-194.
Lackan Bog	EPD	LACKAN1	-6.083333	54.266667	Bog	Holland, S.M. 1975. A pollen-analytical study concerning settlement and early agriculture in County Down, Northern Ireland. Ph.D. Dissertation. Queen's University, Belfast, Northern Ireland.
Lackan Bog	EPD	LACKAN2	-6.083333	54.266667	Bog	Holland, S.M. 1975. A pollen-analytical study concerning settlement and early agriculture in County Down, Northern Ireland. Ph.D. Dissertation. Queen's University, Belfast, Northern Ireland.
Lade Bank	EPD	LBA	0.057778	53.0725	Bog	Waller, M.P. 1994. Paludification and pollen representation, the influence of wetland size on Tilia representation in pollen diagrams. The Holocene, 4, 430-434.
Llanilid	EPD	LLANILID	-3.45	51.516667	Lake	Walker, M.J.C., and D.D. Harkness. 1990. Radiocarbon dating the Devensian Lateglacial in Britain, New evidence from Llanilid, south Wales. Journal of Quaternary Science 5, 135-144.
Llyn Gwernan	EPD	LLYN-JL	-3.921389	52.725556	Bog	Lowe, J.J., S. Lowe, A.J. Fowler, R.E.M. Hedges, and T.J.F. Austin. 1988. Comparison of accelerator and radiometric radiocarbon measurements obtained from Late Devesian late-glacial lake sediments from Gwernan, north Wales. Boreas, 17, 355-369.
Loch a'Chroisg	EPD	CHROISGP	-5.327778	57.568333	Lake	Pennington, W. 1977. The Late Devensian flora and vegetation of Britain. Philosophical Transactions of the Royal Society of London, Series B 280, 247-271.
Loch Clair	EPD	CLAIR	-5.343611	57.558889	Lake	Pennington, W., E.Y. Haworth, A.P. Bonny, and J.P. Lishman. 1972. Lake sediments in northern Scotland. Philosophical Transactions of the Royal Society of London, Series B 264, 191-294.
Loch Laxford	EPD	LAXFORD	-5	58.366667	Peat	 Shotyk, W. 1996. Peat Bog archives of atmospheric metal deposition, geochemical evolution of peat profiles, natural variations in metal concentrations, and metal enrichment factors. Environ. Rev. 4, 149-183. Shotyk, W. 1997. Atmospheric deposition and geochemical mass balance of major elements and trace elements in tow oceanic blanket Bogs, northern Scotland and the Shetland Islands. Chemical Geology 138, 55-72. Weiss, D., W. Shotyk, E.A. Boyle, J.D. Kramers, P.G. Appleby, and A.K. Cheburkin. 2002. Comparative study of the temporal evolution of atmospheric lead deposition in Scotland and eastern Canada using blanket peat Bogs. The Science of the Total Environment 292, 7-18.

Lochan an Druim	EPD	DRUIM	-4.7	58.466667	Lake	Birks, H.H. 1984. Late-Quaternary pollen and plant macrofossil stratigraphy at Lochan an Druim, north-west Scotland. Pages 377-405 in E. Haworth and J.W.G. Lund. Lake sediments and environmental history. Leicester University Press, Leicester, United Kingd
Lochan coir a' Ghobhainn	EPD	GHOBHAI N	-6.3	57.183333	Lake	Birks, H.J.B., and W. Williams. 1983. Late-Quaternary vegetational history of the Inner Hebrides. Proceedings of the Royal society of Edinburgh, 83B, 269-292.
Malham Tarn	EPD	MALHAMT M	-2.163611	54.096389	Lake	Brown, A.D. 2006. Late-Holocene palaeoclimates, cross-validation of multiple proxies from lake and Bog archives in Northern England. PhD Thesis, University of Southampton.
Middle North Coombe	EPD	MIDNORC O	-3.433333	50.933889	Bog	Fyfe, R.M., A.G. Brown, and S.J. Rippon. 2004. Characterising the late prehistoric, "Romano-British" and medieval landscape, and dating the emergence of a regionally distinct agricultural system in South West Britain. Journal of Archaeological Science, 31
Moles Chamber	EPD	MOLECHA M	-3.832778	51.139444	Bog	Fyfe, R.M. 2012. Bronze Age landscape dynamics, spatially detailed pollen analysis from a ceremonial complex. Journal of Archaeological Science, 398., 2764-2773.
Morrone Birkwoods	EPD	MORRONE	-3.4325	56.9975	Bog	Huntley, B. 1994. Late Devensian and Holocene palaeoecology and palaeoenvironments of the Morrone birkwoods, Aberdeenshire, Scotland. Journal of Quaternary Science, 94., 311-336.
Redmere	EPD	REDMERE	0.438056	52.439722	Bog	Waller, M.P. 1994. The Fenland Project, Number 9, Flandrian environmental change in Fenland. East Anglian Archaeology Monograph No.70.
Round Loch of Glenhead	EPD	RLGH3DAT	-4.418889	55.084722	Lake	Jones, V. J., Stevenson, A. C., & Battarbee, R. W. 1989. Acidification of lakes in Galloway, south west Scotland, a diatom and pollen study of the post- glacial history of the Round Loch of Glenhead. The Journal of Ecology, 1-23.
Saham Mere	EPD	SAHAMME R	0.806389	52.581389	Lake	Bennett, K.D. 1988. Holocene pollen stratigraphy of central Est Anglia, England, and comparison of pollen zones across the Isles. New Phytologist, Vol.109, N°2, 237-253.
Slieve Croob	EPD	CROOB	-5.983333	54.333333	Bog	Holland, S.M. 1975. A pollen-analytical study concerning settlement and early agriculture in County Down, Northern Ireland. Ph.D. Dissertation. Queen's University, Belfast, Northern Ireland.
Slieve Naslat	EPD	NASLAT	-5.983333	54.35	Bog	Holland, S.M. 1975. A pollen-analytical study concerning settlement and early agriculture in County Down, Northern Ireland. Ph.D. Dissertation. Queen's University, Belfast, Northern Ireland.
Sluggan	EPD	SLUGGAN M	-6.258333	54.776944	Bog	Plunkett, G. 2009. Land-use patterns and cultural change in the Middle to Late Bronze Age Ireland, inferences from pollen records. Vegetation History Archaeobotany, 18, 273-295.

Tank Hill Road	EPD	TANKHILL	0.234167	51.491944	Bog	Waller, M.P., and M.J. Grant. 2012. Holocene pollen assemblages from coastal wetlands, differentiating natural and anthropogenic causes of change in the Thames estuary, UK. Journal of Quaternary Science, 275., 461-474.
Teanga	EPD	TEANGDA T	-7.284722	57.319167	Lake	Stevenson, A. C., & Rhodes, A. N. 2000. Palaeoenvironmental evaluation of the importance of fire as a cause for Calluna loss in the British Isles. Palaeogeography, Palaeoclimatology, Palaeoecology, 1641-4., 195-206.
The Dowels Walland marsh	EPD	DOWELS	0.828056	51.043611	Bog	Waller, M.P., A.J. Long, D. Long, and James Innes. 1999. Patterns and processes in the development of coastal mire vegetation, Multi-site investigations from Walland Marsh, Southeast England. Quaternary Science Reviews 18, 1419-1444.
The Mere Stow Bedon	EPD	STOWBED O	0.873889	52.529444	Lake	Bennett, K.D. 1986. Comparative interactions among forest tree populations in Norfolk, England, during the last 10000 years. New Phytologist, Vol.103, N°3, 603-620.
Tilbury Fort	EPD	TFT	0.376111	51.455833	Bog	Batchelor, C.R. 2009. Middle Holocene Environmental Changes and the History of Yew Taxus baccata L. Woodland in the Lower Thames Valley. PhD Thesis, Royal Holloway, University of London, UK.
Welney Washes	EPD	WELNEY	0.25	52.516667	Bog	Waller, M.P. 1994. The Fenland Project, Number 9, Flandrian environmental change in Fenland. East Anglian Archaeology Monograph No.70.
William King Flour Mill	EPD	WILLIA17	-0.483889	51.552222	Bog	 Grant, M.J., C.J. Stevens, N.J. Whitehouse, D. Norcott, R.I. Macphail, C. Langdon, N.G. Cameron, C. Barnett, P.G. Langdon, J. Crowder, N. Mulhall, K. Attree, M. Leivers, R. Greatorex, and C. Ellis. 2014. A palaeoenvironmental context for Terminal Upper Palaeolithic and Mesolithic activity in the Colne Valley, Offsite records contemporary with occupation at Three Ways Wharf, Uxbridge. Environmental Archaeology, 19, 131-152.
Winneys Down	EPD	WINNEYS	-3.94271	50.622778	Bog	Fyfe, R.M., and J. Woodbridge. 2012. Differences in time and space in upland vegetation patterning, analysis of pollen data from Dartmoor, UK. Lanscape Ecology, 27, 745-760.
Woolwich Trade Park	EPD	WTP	0.085556	51.491667	Bog	Batchelor, C.R. 2009. Middle Holocene Environmental Changes and the History of Yew Taxus baccata L. Woodland in the Lower Thames Valley. PhD Thesis, Royal Holloway, University of London, UK.
Swap Hill	Ralph Fyfe	SWAPHILL	-3.698869	51.164589	Bog	Davies H., Fyfe, R.M. and Charman D. 2015 Does peatland drainage damage the palaeoecological record? Review of Palaeobotany and Palynology 221, 92-105
Beckham	Ralph Fyfe	BECKHAM	-3.706244	51.165993	Bog	Davies H., Fyfe, R.M. and Charman D. 2015 Does peatland drainage damage the palaeoecological record? Review of Palaeobotany and Palynology 221, 92-105

Larkbarrow	Ralph Fyfe	LARKROW	-3.688389	51.170577	Bog	Davies H., Fyfe, R.M. and Charman D. 2015 Does peatland drainage damage the palaeoecological record? Review of Palaeobotany and Palynology 221, 92-105
Lower Moors LM1019	Ralph Fyfe	LM1019	-6.307	49.92	Bog	Perez, M., Fyfe, R.M., Charman, D.J. and Gehrles, W.R. 2015 Disentangling coastal influence from human land use in pollen diagrams from island contexts Journal of Quaternary Science 30, 764-778
Lower Moores LM1028	Ralph Fyfe	LM1028	-6.306	49.916	Bog	Perez, M., Fyfe, R.M., Charman, D.J. and Gehrles, W.R. 2015 Disentangling coastal influence from human land use in pollen diagrams from island contexts Journal of Quaternary Science 30, 764-778
Higher Moors	Ralph Fyfe	HM1016	-6.286	49.917	Bog	Perez, M., Fyfe, R.M., Charman, D.J. and Gehrles, W.R. 2015 Disentangling coastal influence from human land use in pollen diagrams from island contexts Journal of Quaternary Science 30, 764-778
Porthloo	Ralph Fyfe	PLOO	-6.308	49.921	Bog	Perez, M., Fyfe, R.M., Charman, D.J. and Gehrles, W.R. 2015 Disentangling coastal influence from human land use in pollen diagrams from island contexts Journal of Quaternary Science 30, 764-778
Lochan a'Bhuilg Bhith	Faye Davies	BBTHESIS	-5.446879	56.39402	Lake	Davies, F. M. 1997. Holocene palaeoenvironmental studies in the Oban region, western Scotland Doctoral dissertation, University of Newcastle upon Tyne.; Macklin M, Bonsall C, Robinson M, Davies F. 2000. Human– environment interactions during the Holocene, new data and interpretations from the Oban area, Argyll, Scotland. The Holocene 10, 109-121.
Gallanach Beg	Faye Davies	GBDAVIES	-5.503556	56.39162	Lake	Davies, F. M. 1997. Holocene palaeoenvironmental studies in the Oban region, western Scotland Doctoral dissertation, University of Newcastle upon Tyne.; Macklin M, Bonsall C, Robinson M, Davies F. 2000. Human– environment interactions during the Holocene, new data and interpretations from the Oban area, Argyll, Scotland. The Holocene 10, 109-121.
Lon Mor	Faye Davies	LMDAVIES	-5.480637	56.398021	Bog	Davies, F. M. 1997. Holocene palaeoenvironmental studies in the Oban region, western Scotland Doctoral dissertation, University of Newcastle upon Tyne.; Macklin M, Bonsall C, Robinson M, Davies F. 2000 Human– environment interactions during the Holocene, new data and interpretations from the Oban area, Argyll, Scotland. The Holocene 10, 109-121.
Lochan Cnoc Philip	Faye Davies	PHIALL	-5.339902	56.364496	Lake	Davies, F. M. 1997. Holocene palaeoenvironmental studies in the Oban region, western Scotland Doctoral dissertation, University of Newcastle upon Tyne.; Macklin M, Bonsall C, Robinson M, Davies F. 2000. Human– environment interactions during the Holocene, new data and interpretations from the Oban area, Argyll, Scotland. The Holocene 10, 109-121.
Cruvic	Paula Milburn	CRUVIE	-2.944371	56.393863	Lake	Milburn P 1997. Palaeoenvironmental investigation into aspects of the vegetation history of north Fife and south Perthshire, Scotland. Unpublished PhD Thesis, University of Edinburgh

Pitbladdo	Paula Milburn	PITBLADD O	-3.035396	56.345518	Bog	Milburn P 1997. Palaeoenvironmental investigation into aspects of the vegetation history of north Fife and south Perthshire, Scotland. Unpublished PhD Thesis, University of Edinburgh
Methvern	Paula Milburn	METHVER N	-3.603772	56.395174	Bog	Milburn P 1997. Palaeoenvironmental investigation into aspects of the vegetation history of north Fife and south Perthshire, Scotland. Unpublished PhD Thesis, University of Edinburgh
Hares Down	Ralph Fyfe	HARESDO WN	-3.644	50.978	Bog	Fyfe, R.M., Brown, A.G., Rippon, S.J., 2004. Characterising the late prehistoric, "Romano-British" and medieval landscape, and dating the emergence of a regionally distinct agricultural system in South West Britain. Journal of Archaeological Science 31, 1699-1714.
A'Chrannag	Kevin Edwards	CHRANNA G	-6.171	56.473	Lake	Sugden, H., 1999. High Resolution Palynological, Multiple Profile and Radiocarbon Dating Studies of Early Human Impacts and Environmental Change in the Inner Hebrides, Scotland. University of Sheffield, UK. Ph.D. thesis.
Barrow Moor	Michael Grant	BARROW	-1.711	50.921	Bog	Grant, M.J. 2005. The Palaeoecology of Human Impact in the New Forest. Unpublished PhD Thesis, University of Southampton
Black Loch	Kevin Edwards	BL2	-3.196	56.32	Lake	Whittington, G., Edwards, K.J., Cundill, P.R., 1991. Late- and post-glacial vegetational change at Black Loch, Fife, eastern Scotland e a multiple core approach. New Phytologist 118, 147-166
Bonfield Gill Head	James Innes	BGHLEVE R	-1.081	54.354	Bog	Innes, J.B., Blackford, J.J. and Rowley-Conwy, P.A. 2013. Late Mesolithic and early Neolithic forest disturbance, a high resolution palaeoecological test of human impact hypotheses. Quaternary Science Reviews 77, 80-100
Braeroddach Loch	Kevin Edwards	BRAER	-2.856	57.09	Lake	Edwards, K.J., 1978. Palaeoenvironmental and Archaeological Investigations in the Howe of Cromar, Grampian Region, Scotland. University of Aberdeen, UK. Ph.D. thesis.
Brede Bridge	EPD	BREDCOU N	-0.6	50.933	Bog	Waller, M.P., Alderton, A., Shennan, I.,1994. The Fenland Project, Number 9. Flandrian environmental change in Fenland. East Anglian Archaeology Monograph 70.
Brookland	Martyn Waller	BROOKLA N	0.835	50.996	Bog	Waller, M.P., Long, A.J., Long, D., Innes, J.B., 1999. Patterns and processes in the development of coastal mire vegetation, multi-site investigations from Walland Marsh, southeast England. Quaternary Science Reviews 18, 1419- 1444.
Cess Dell	Kevin Edwards	CESS	-0.088	53.821	Bog	Tweddle, J.C. 2000. A high resolution palynological study of the Holocene vegetational development of central Holderness, eastern Yorkshire, with particular emphasis on the detection of prehistoric human activity. Unpublished PhD Thesis, University of Sheffield
Chapel Bank	Martyn Waller	CHAPEL	0.752	51.041	Bog	Long, A., Waller, M., Hughes, P., Spencer, C., 1998a. The Holocene depositional history of Romney Marsh proper. In, Eddison, J., Gardiner, M.,

						Long, A. Eds., Romney Marsh, Environmental Change and Human Occupation in a Coastal Lowland. OUCA Monograph, vol. 46, pp. 45-63.
Church Moor	Michael Grant	CHURCH	-1.649	50.861	Bog	Grant, M.J. 2005. The Palaeoecology of Human Impact in the New Forest. Unpublished PhD Thesis, University of Southampton
Clickimin	Kevin Edwards	CLICK	-1.166	60.149	Bog	Edwards, K.J., Whittington, G., Robinson, M. and Richter, D. 2005. Palaeoenvironments, the archaeological record and cereal pollen detection at Clickimin, Shetland, Scotland. Journal of Archaeological Science 32, 1741- 1756
Coire Bog	EPD	COIREBOG	-4.417	57.85	Bog	Birks, H.H., 1975. Studies in the vegetational history of Scotland. IV. Pine stumps in Scottish blanket peats. Philosophical Transactions of the Royal Society Series B 270, 181-226.
Cranes Moor	Michael Grant	CRANES	-1.731	50.817	Bog	Grant, M.J. 2005. The Palaeoecology of Human Impact in the New Forest. Unpublished PhD Thesis, University of Southampton
Dallican Water	EPD	DALLICAN	-1.1	60.392	Lake	Bennett, K.D., Boreham, S., Sharp, M.J. and Switsur, V.R. 1992. Holocene history of environment, vegetation and human settlement on Catta Ness, Lunnasting, Shetland. Journal of Ecology 80 2., 241-273.
Dubh-Lochan	Cynthia Froyd	DUBH	-4.439	57.288	Lake	Froyd, C.A. 2006. Holocene fire in the Scottish Highlands, evidence from macroscopic charcoal records. The Holocene 16, 235-249
East Guldeford	Martyn Waller	EGULD	0.766	50.964	Bog	Waller, M.P., Schofield, J.E., 2007. Mid to late Holocene vegetation and landuse history in the Weald of southeast England, multiple pollen profiles from the Rye area. Vegetation History and Archaeobotany 16, 367-384.
Esgryn Bottom	Ralph Fyfe	ESGRYN	-4.942	51.876	Bog	Fyfe, R.M., 2007. The importance of local-scale openness within regions dominated by closed woodland. Journal of Quaternary Science 22, 571-578.
Fenton Cottage Lancashire.	Elizabeth Huckerby	FCP	-2.916	53.9	Bog	Wells, C.E., Huckerby, E., Hall, V., 1997. Mid- and late-Holocene vegetation history and tephra studies at Fenton Cottage, Lancashire, UK. Vegetation History and Archaeobotany 6, 153-166.
Frobost	Kevin Edwards	FROBOST1	-7.379	57.203	Lake	Mulder, Y., 1999. Aspects of Vegetation and Settlement History in the Outer Hebrides, Scotland. University of Sheffield, UK. Ph.D. thesis.
Gilderson Marr	Kevin Edwards	GM	-0.03	53.778	Bog	Tweddle, J.C. 2000. A high resolution palynological study of the Holocene vegetational development of central Holderness, eastern Yorkshire, with particular emphasis on the detection of prehistoric human activity. Unpublished PhD Thesis, University of Sheffield
Gourte Mires	Ralph Fyfe	GOURTEMI RES	-3.678	51.054	Bog	Fyfe, R.M., Brown, A.G., Rippon, S.J., 2003. Mid- to late-Holocene vegetation history of Greater Exmoor, UK, estimating the spatial extent of human-induced vegetation change. Vegetation History and Archaeobotany 12, 215-232.
Greatham Tioxide Pipeline 2003	James Innes	GTP03	-1.214	54.627	Bog	

Hartlepool Bay 4	James Innes	HB4	-1.198	54.678	Bog	Innes, J.B., Donaldson, M. and Tooley, M. 2005. Chapter 4, The palaeoenvironmental evidence. In Waughman, M. ed. Archaeology and Environment of Submerged Landscapes in Hartlepool Bay, England. Tees Archaeology Monograph Series No. 2, 78-142.
Hartlepool Bay 6	James Innes	HB6	-1.198	54.678	Bog	Innes, J.B., Donaldson, M. and Tooley, M. 2005. Chapter 4, The palaeoenvironmental evidence. In Waughman, M. ed. Archaeology and Environment of Submerged Landscapes in Hartlepool Bay, England. Tees Archaeology Monograph Series No. 2, 78-142.
Hockham Mere	EPD	НОСКНАМ	0.833	52.5	Lake	Bennett, K.D., 1983. Devensian late-glacial and Flandrian vegetational history at Hockham Mere, Norfolk, England. New Phytologist 95, 489-504.
Horsemarsh Sewer	Martyn Waller	HMS	0.828	51.051	Bog	Waller, M.P., Long, A.J., Long, D., Innes, J.B., 1999. Patterns and processes in the development of coastal mire vegetation, multi-site investigations from Walland Marsh, southeast England. Quaternary Science Reviews 18, 1419- 1444.
Keiths Peat	Kevin Edwards	KEITHSPE ATB	-3.326	58.883	Bog	Blackford, J.J., Edwards, K.J., Buckland, P.C., Dobney, K., 1996. Keith's peat Bank, Hoy, Mesolithic human impact. In, Hall, A.M. Ed., The Quaternary of Orkney, Field Guide. Quaternary Research Association, Cambridge, pp. 62- 68.
Knowsley Park	James Innes	KNOWSEL Y	-2.822	53.458	Bog	Cowell, R.W., Innes, J.B., 1994. The Wetlands of Merseyside. Lancaster University Press, Lancaster.
Lea Farm	Martyn Waller	LEAFARM	0.717	50.967	Bog	Long, A.J., Waller, M.P., Plater, A.J., 2007. Dungeness and Romney Marsh, Barrier Dynamics and Marshland Evolution. Oxbow Books, Oxford.
Little Cheyne Court	Martyn Waller	LCC	0.832	50.962	Bog	Waller, M.P., Long, A.J., Long, D., Innes, J.B., 1999. Patterns and processes in the development of coastal mire vegetation, multi-site investigations from Walland Marsh, southeast England. Quaternary Science Reviews 18, 1419- 1444.
Little Loch Roag	EPD	ROAG	-6.883	58.133	Lake	Birks, H.J.B. and Madsen, B.J. 1979. Flandrian vegetational history of Little Loch Roag, Isle of Lewis, Scotland. Journal of Ecology 673., 825-842.
Lobbs Bog	Ralph Fyfe	LOBBSBO G	-3.624	50.97	Bog	Fyfe, R.M., Brown, A.G., Rippon, S.J., 2004. Characterising the late prehistoric, "Romano-British" and medieval landscape, and dating the emergence of a regionally distinct agricultural system in South West Britain. Journal of Archaeological Science 31, 1699-1714.
Loch a'Bhogaidh	Kevin Edwards	LAB1	-6.421	55.732	Lake	Edwards, K.J., Berridge, J.M.A., 1994. The Late-Quaternary vegetational history of Loch a'Bhogaidh, Rinns of Islay S.S.S.I., Scotland. New Phytologist 128, 749-769.
Loch a'Chabhain	Kevin Edwards	CHABHAIN	-7.384	57.238	Lake	Mulder, Y., 1999. Aspects of Vegetation and Settlement History in the Outer Hebrides, Scotland. University of Sheffield, UK. Ph.D. thesis.

Loch Airigh na h- Achlais	Kevin Edwards	LAA4	-7.305	57.327	Lake	Mulder, Y., 1999. Aspects of Vegetation and Settlement History in the Outer Hebrides, Scotland. University of Sheffield, UK. Ph.D. thesis.
Loch airigh na h- Aon Oidhche	Kevin Edwards	LAS	-7.308	57.209	Lake	Edwards, K.J., Whittington, G., Hirons, K.R., 1995. The relationship between fire and long-term wet heath development in South Uist, Outer Hebrides, Scotland. In, Thompson, D.B.A., Hestor, A.J., Usher, M.B. Eds., Heaths and Moorlands, Cultural Landscapes. HMSO, Edinburgh, pp. 240-248.
Loch an Amair	Cynthia Froyd	AMAIR	-4.882	57.292	Lake	Froyd, C.A. 2006. Holocene fire in the Scottish Highlands, evidence from macroscopic charcoal records. The Holocene 16, 235-249
Loch Ashik	EPD	ASHIK	-5.833	57.25	Lake	Birks, H.J.B., and W. Williams. 1983. Late-Quaternary vegetational history of the Inner Hebrides. Proceedings of the Royal society of Edinburgh, 83B, 269-292.
Loch Bharabhat	Kevin Edwards	BHARABH AT	-6.942	58.21	Lake	Lomax, T.M., 1997. Holocene Vegetation History and Human Impact in Western Lewis, Scotland. University of Birmingham, UK. Ph.D. thesis.
Loch Cleat	EPD	CLEAT	-6.333	57.067	Lake	Birks, H.J.B., and W. Williams. 1983. Late-Quaternary vegetational history of the Inner Hebrides. Proceedings of the Royal society of Edinburgh, 83B, 269-292.
Loch Davan	Kevin Edwards	DAVAN	-2.925	57.092	Lake	Edwards, K.J., 1978. Palaeoenvironmental and Archaeological Investigations in the Howe of Cromar, Grampian Region, Scotland. University of Aberdeen, UK. Ph.D. thesis.
Loch Doon IV	Kevin Edwards	Doon4	-4.386	55.207	Lake	Newell, P.J. 1990. Aspects of the Flandrian vegetational history of south-west Scotland, with special reference to possible Mesolithic impact. Unpublished PhD Thesis, University of Birmingham.
Loch Lomond Ross Dubh	EPD	LLDR1	-4.583	56.086	Lake	Dickson, J.H., Stewart, D.A., Thompson, R., Turner, G., Baxter, M.S., Drndarsky, N.D., Rose, J., 1978. Palynology, palaeomagnetism and radiometric dating of Flandrian marine and freshwater sediments of Loch Lomond. Nature 274, 538-553.
Loch Maree	EPD	MAREE	-5.483	57.083	Lake	Birks, H.H., 1972. Studies in the vegetational history of Scotland III. A radiocarbon dated pollen diagram from Loch Maree, Ross and Cromarty. New Phytologist 71, 731-754.
Loch na Beinne Bige	Kevin Edwards	BB	-6.73	58.218	Lake	Lomax, T.M., 1997. Holocene Vegetation History and Human Impact in Western Lewis, Scotland. University of Birmingham, UK. Ph.D. thesis.
Loch Olabhat	Kevin Edwards	OLABHAT	-7.455	57.65	Lake	Mulder, Y., 1999. Aspects of Vegetation and Settlement History in the Outer Hebrides, Scotland. University of Sheffield, UK. Ph.D. thesis.
Loch Sionascaig	EPD	SIONASCA	-5.175	58.061	Lake	Pennington, W., E.Y. Haworth, A.P. Bonny, and J.P. Lishman. 1972. Lake sediments in northern Scotland. Philosophical Transactions of the Royal Society of London, Series B 264, 191-294.
Lochan na h- Inghinn	Cynthia Froyd	INGINN	-5.088	58.252	Lake	Froyd, C.A. 2006. Holocene fire in the Scottish Highlands, evidence from macroscopic charcoal records. The Holocene 16, 235-249

Long Breach	Ralph Fyfe	LONGBRE ACH	-3.687	51.066	Bog	Fyfe, R.M., Brown, A.G., Rippon, S.J., 2003. Mid- to late-Holocene vegetation history of Greater Exmoor, UK, estimating the spatial extent of human-induced vegetation change. Vegetation History and Archaeobotany 12, 215-232.
Midgeholme Moss	James Innes	MIDGE	-2.625	54.991	Bog	Wiltshire, P.E.J. 1997. The pre-Roman environment. In Wilmott, T, ed. Birdoswald excavations of a Roman fort on Hadrian's Wall and its successor settlements 1987–92. English Heritage Archaeological Report 14, 25-40
Newby Wiske	James Innes	NEWBY	-1.434	54.272	Bog	Bridgland, D., Innes, J., Long, A. and Mitchell, W. 2009. Late Quaternary Landscape Evolution of the Swale-Ure Washlands, North Yorkshire. Oxford, Oxbow.
North Locheynort	Kevin Edwards	LOCHEYN ORT	-7.341	57.243	Lake	Edwards, K.J., 1996. A Mesolithic of the Western and Northern Isles of Scotland? Evidence from pollen and charcoal. In, Pollard, T., Morrison, A. Eds., The Early Prehistory of Scotland. Edinburgh University Press, Edinburgh, pp. 23-38.
North Twitchen Springs	Ralph Fyfe	NTWITCHE N	-3.822	51.12	Bog	
Pannel Bridge	EPD	PANBRI	0.683	50.9	Bog	Waller, M.P., 1993. Flandrian vegetational history of south-eastern England. Pollen data from Panel Bridge, East Sussex. New Phytologist 124, 345-369.
Pannel Farm	Martyn Waller	PANNELF	0.677	50.905	Bog	Waller, M.P., Schofield, J.E., 2007. Mid to late Holocene vegetation and landuse history in the Weald of southeast England, multiple pollen profiles from the Rye area. Vegetation History and Archaeobotany 16, 367-384.
Park Road Meols	James Innes	PARKMEO L	-3.147	53.403	Bog	Cowell, R.W., Innes, J.B., 1994. The Wetlands of Merseyside. Lancaster University Press, Lancaster.
Parr Moss	James Innes	PARRMOS S	-2.681	53.439	Bog	Cowell, R.W., Innes, J.B., 1994. The Wetlands of Merseyside. Lancaster University Press, Lancaster.
Peasmarsh	Martyn Waller	PEASE	0.692	50.981	Bog	Waller, M.P., Schofield, J.E., 2007. Mid to late Holocene vegetation and landuse history in the Weald of southeast England, multiple pollen profiles from the Rye area. Vegetation History and Archaeobotany 16, 367-384.
Pickletillem	Kevin Edwards	PICKLE	-2.887	56.4	Bog	Whittington, G., Edwards, K.J., Cundill, P.R., 1991. Late- and post-glacial vegetational change at Black Loch, Fife, eastern Scotland e a multiple core approach. New Phytologist 118, 147-166
Rae Loch	Kevin Edwards	RAE2	-3.37	56.584	Lake	Edwards, K.J., Whittington, G., 1997. A 12,000-year record of environmental change in the Lomond Hills, Fife, Scotland, vegetational and climatic variability. Vegetation History and Archaeobotany 6, 133-152.
Red moss of Candyglirach	Kevin Edwards	REDMOSS	-2.422	57.103	Bog	Clark, S.H.E. and Edwards, K.J. 2004. Elm bark beetle in Holocene peat deposits and the northwest European elm decline. Journal of Quaternary Science 19, 525-528.

Reidh-lochan	Cynthia Froyd	REIDH	-4.132	58.035	Lake	Froyd, C.A. 2006. Holocene fire in the Scottish Highlands, evidence from macroscopic charcoal records. The Holocene 16, 235-249
Reineval	Kevin Edwards	REINEVAL	-7.366	57.233	Lake	Edwards, K.J., 1996. A Mesolithic of the Western and Northern Isles of Scotland? Evidence from pollen and charcoal. In, Pollard, T., Morrison, A. Eds., The Early Prehistory of Scotland. Edinburgh University Press, Edinburgh, pp. 23-38.
Romney Marsh 18	Martyn Waller	ROMNEY1 8	0.924	51.058	Bog	Long, A., Waller, M., Hughes, P., Spencer, C., 1998a. The Holocene depositional history of Romney Marsh proper. In, Eddison, J., Gardiner, M., Long, A. Eds., Romney Marsh, Environmental Change and Human Occupation in a Coastal Lowland. OUCA Monograph, vol. 46, pp. 45-63.
Romney Marsh 7	Martyn Waller	ROMNEY7	0.925	51.068	Bog	Long, A., Waller, M., Hughes, P., Spencer, C., 1998a. The Holocene depositional history of Romney Marsh proper. In, Eddison, J., Gardiner, M., Long, A. Eds., Romney Marsh, Environmental Change and Human Occupation in a Coastal Lowland. OUCA Monograph, vol. 46, pp. 45-63.
Seavy Slack	James Innes	SEAVY	-0.617	54.3	Bog	
Sharow mires	James Innes	SHAROW	-1.643	54.138	Bog	Bridgland, D., Innes, J., Long, A. and Mitchell, W. 2009. Late Quaternary Landscape Evolution of the Swale-Ure Washlands, North Yorkshire. Oxford, Oxbow.
Simonswood Moss B	James Innes	SIMONS	-2.837	53.49	Bog	Cowell, R.W., Innes, J.B., 1994. The Wetlands of Merseyside. Lancaster University Press, Lancaster.
Solway Moss Cumbria.	Elizabeth Huckerby	SOLWAY	-3.025	55.009	Bog	Huckerby, E. and Wells, C. 1993. Recent work at Solway Moss, Cumbria. In Middleton, R. ed. North West Wetlands Survey annual report 1990. Lancaster, 36-42
St Fergus Moss	Kevin Edwards	STFERGUS	-1.913	57.569	Bog	Clark, S.H.E. and Edwards, K.J. 2004. Elm bark beetle in Holocene peat deposits and the northwest European elm decline. Journal of Quaternary Science 19, 525-528.
Stonetor Brook	Ralph Fyfe	SBE3	-3.91	50.656	Bog	 Fyfe, R.M., Brück, J., Johnston, R., Lewis, H., Roland, T., Wickstead, H., 2008. Historical context and chronology of Bronze Age enclosure on Dartmoor, UK. Journal of Archaeological Science 35, 2250-2261.
Stoup Beck	James Innes	STOUPE	-0.527	54.4	Bog	
The Dowels	Martyn Waller	DOWELLS	0.828	51.044	Bog	Waller, M.P., Long, A.J., Long, D., Innes, J.B., 1999. Patterns and processes in the development of coastal mire vegetation, multi-site investigations from Walland Marsh, southeast England. Quaternary Science Reviews 18, 1419- 1444.
The Slake, Hartlepool	James Innes	SLAKE	-1.198	54.7	Bog	Innes, J.B., Donaldson, M. and Tooley, M. 2005. Chapter 4, The palaeoenvironmental evidence. In Waughman, M. ed. Archaeology and

						Environment of Submerged Landscapes in Hartlepool Bay, England. Tees Archaeology Monograph Series No. 2, 78-142.
Troni Shun	Kevin Edwards	TRONI	-1.533	60.233	Bog	
West Lomond	Kevin Edwards	WESTLOM	-3.287	56.246	Lake	Edwards, K.J., Whittington, G., 1997. A 12,000-year record of environmental change in the Lomond Hills, Fife, Scotland, vegetational and climatic variability. Vegetation History and Archaeobotany 6, 133-152.
Wet Sleddale	James Innes	WSLEDNE W	-2.684	54.51	Bog	Chin, S.J. and Innes, J.B. 1995. Appendix 3, Pollen analysis from Wet Sleddale, 19-22. In Cherry, J. and Cherry, P.J. Prehistoric habitation sites of the Cumbrian limestone uplands, occupation sites found between 1986 and 1993. Transactions of the Cumberland and Westmorland Antiquity and Archaeological Society 55, 1-22
Willingham Mere	EPD	WILLINGH AM	-0.051	52.333	Lake	Waller, M.P. 1994. Paludification and pollen representation, the influence of wetland size on Tilia representation in pollen diagrams. The Holocene, 4, 430-434.
Windmill Rough	Ralph Fyfe	WINDMILL	-3.633	50.975	Bog	Fyfe, R.M., A.G. Brown, and S.J. Rippon. 2004. Characterising the late prehistoric, "Romano-British" and medieval landscape, and dating the emergence of a regionally distinct agricultural system in South West Britain. Journal of Archaeological Science, 31
Winmarleigh Moss Lancashire.	Elizabeth Huckerby	WINP	-2.286	54.159	Bog	Wells, C.E., Huckerby, E., Hall, V., 1997. Mid- and late-Holocene vegetation history and tephra studies at Fenton Cottage, Lancashire, UK. Vegetation History and Archaeobotany 6, 153-166.
Borve Bog	Kevin Edwards	BORVE	-7.472	56.979366	Bog	Ashmore, P., Brayshay, B.A., Edwards, K.J., Gilbertson, D.D., Grattan, J.P., Kent, M., Pratt, K.E. and Weaver, R.E. 2000. Allochthonous and autochthonous mire deposits, slope instability and palaeoenvironmental investigations in the Borve Valley, Barra, Outer Hebrides, Scotland. The Holocene 10, 97-108.
Camban	Althea Davies	CAMBAN	-5.224088	57.213092	Bog	Davies, A.L. 2000 Fine Spatial Resolution Holocene Vegetation and Land- Use History in West Glen Affric and Kintail, Northern Scotland. Unpublished PhD thesis, University of Stirling; Davies, A.L., Tipping, R., 2004. Sensing small-scale human activity in the palaeoecological record, fine spatial resolution pollen analyses from Glen Affric, northern Scotland. The Holocene 14, 233-245.
Carnach Mor	Althea Davies	CARNACH	-5.154846	57.236424	Bog	Davies, A.L. and Tipping, R. 2004. Sensing small-scale human activity in the palaeoecological record, fine spatial resolution pollen analyses from Glen Affric, northern Scotland. The Holocene 14, 233-245.
Farlary	Althea Davies	FARLARY	-4.075198	58.016328	Bog	Tipping, R., 2008. Blanket peat in the Scottish highlands, timing, cause, spread and the myth of environmental determinism. Biodiversity and

						Conservation, 17, 2097-2113; Tipping R, Ashmore P, Davies AL, Haggart, A., Moir, A., Newton, A., Sands, R., Skinner, T. & Tisdall, E. (2008) Prehistoric Pinus woodland dynamics in an upland landscape in northern Scotland: the roles of climate change and human impact. Vegetation History and Archaeobotany 17, 251-267.
Morvich	Althea Davies	MORVICH	-5.373394	57.233437	Bog	Davies, A.L. 2000 Fine Spatial Resolution Holocene Vegetation and Land- Use History in West Glen Affric and Kintail, Northern Scotland. Unpublished PhD thesis, University of Stirling; Davies, A. (2003) Morvich and Strath Croe: lowland vegetation change and land-use history. In Tipping, R.M. (ed.) The Quaternary of Glen Affric and Kintail. London: Quaternary Research Association, 141-147.
Torran Beithe	Althea Davies	TORRANB	-5.100559	57.241372	Bog	Tipping R, Davies A and Tisdall E. (2006) Long-term woodland dynamics in West Glen Affric, northern Scotland. Forestry 79: 351-359; Davies, A.L., Tipping, R., 2004. Sensing small-scale human activity in the palaeoecological record, fine spatial resolution pollen analyses from Glen Affric, northern Scotland. The Holocene 14, 233-245.
157 Tower Bridge	Rob Batchelor		-0.079208419	51.49943731	Coastal lowland/ floodplain	Batchelor, C.R., Allott, L., Alison, E., Black, S. & Young, D.S. 2010. 157 TOWER BRIDGE ROAD, LONDON BOROUGH OF SOUTHWARK, ENVIRONMENTAL ARCHAEOLOGICAL ANALYSIS. Quaternary Scientific QUEST. Unpublished Report May 2010; Project Number 019x09
161IldertonRoad	Rob Batchelor		-0.054159363	51.48677639	Coastal lowland/ floodplain	Young, D.S. & Batchelor, C.R. 2018. 161 ILDERTON ROAD, LONDON BOROUGH OF SOUTHWARK Environmental Archaeological Assessment Report. Quaternary Scientific QUEST. Unpublished Report November 2017; Project Number 031x17.
20HornLane	Rob Batchelor		0.019159294	51.48977233	Coastal lowland/ floodplain	Young, D.S. & Batchelor, C.R. 2017. 20 HORN LANE, ROYAL BOROUGH OF GREENWICH Environmental Archaeological Assessment Report. Quaternary Scientific QUEST. Unpublished Report September 2017; Project Number 213x16.
2-12HighStreet	Rob Batchelor		-0.01353765	51.53024023	Coastal lowland/ floodplain	Batchelor, C.R & Young, D.S. 2014. 2-12 HIGH STREET, STRATFORD, LONDON BOROUGH OF NEWHAM NGR, TQ 37889 83129., ENVIRONMENTAL ARCHAEOLOGICAL ASSESSMENT REPORT
50LombardRoad	Rob Batchelor		0.036611736	51.49350824	Coastal lowland/ floodplain	Young, D.S., Batchelor, C. R. & Austin, P. J. 2012. 50 Lombard Wall, Charlton, London Borough of Greenwhich SE7 7SQ Site Code, LBW11., Environmental Archaeological Assessment Report. Quaternary Scientific QUEST. Unpublished Report; Project Number 157x11.
65SouthwarkStreet	Rob Batchelor	SOUTHWA RK	-0.098715264	51.48561885	Coastal lowland/ floodplain	Batchelor, C.R., Young, D.S., Cameron, N., Green, C.P. & Allott, L. 2011. 65 SOUTHWARK STREET, LONDON BOROUGH OF SOUTHWARK SITE CODE, SOU11., GEOARCHAEOLOGICAL ANALYSIS REPORT.

						Quaternary Scientific QUEST. Unpublished Report May 2011; Project Number 158x10
75BerwickRoadQB H2	Rob Batchelor	BERWICK	0.031890524	51.51173747	Coastal lowland/ floodplain	Batchelor, C. R., Young, D.S. & Allott, L. 2015. 75 BERWICK ROAD, CANNING TOWN, LONDON BOROUGH OF NEWHAM Environmental Archaeological Analysis Report. Quaternary Scientific QUEST. Unpublished Interim Report October 2015; Project Number 134x15
79-85MonierRoad	Rob Batchelor		-0.023639145	51.53968225	Coastal lowland/ floodplain	Batchelor, C.R., Green, C.P., Young, D.S. & Hill, T. 2016. 79-85 MONIER ROAD, LONDON BOROUGH OF TOWER HAMLETS Geoarchaeological Assessment Report. Quaternary Scientific QUEST. Unpublished Report June 2016; Project Number 032x16
9- 13NewRoadSample s5152	Rob Batchelor	NEWROAD	0.164600176	51.52671029	Coastal lowland/ floodplain	Young, D.S. & Marini, N. A 2014. 9-13 NEW ROAD, RAINHAM, LONDON BOROUGH OF HAVERING SITE CODE, NRO13., ENVIRONMENTAL ARCHAEOLOGICAL ASSESSMENT REPORT. Quaternary Scientific QUEST. Unpublished Report June 2014; Project Number 001x14
AbbeyWoodSchool BH5	Rob Batchelor	ABBEYWO OD	0.105982955	51.49237276	Coastal lowland/ floodplain	Batchelor, C.R., Elias, S., Young, D., Branch, N.P., Green, C.P. & Swindle, G.E. 2008. ST PAUL'S ACADEMY, ABBEY WOOD SCHOOL, EYNSHAM DRIVE, ABBEY WOOD, LONDON BOROUGH OF GREENWICH site code, AWS05., ENVIRONMENTAL ARCHAEOLOGICAL ANALYSIS. ArchaeoScapeTM Unpublished Report 2008.
AbbeyWoodSchool Sample3	Rob Batchelor	ABBEYWO OD3	0.105982955	51.49237276	Coastal lowland/ floodplain	Batchelor, C.R., Elias, S., Young, D., Branch, N.P., Green, C.P. & Swindle, G.E. 2008. ST PAUL'S ACADEMY, ABBEY WOOD SCHOOL, EYNSHAM DRIVE, ABBEY WOOD, LONDON BOROUGH OF GREENWICH site code, AWS05., ENVIRONMENTAL ARCHAEOLOGICAL ANALYSIS. ArchaeoScapeTM Unpublished Report 2008.
AlcatelTelegraphW orks	Rob Batchelor		0.005716804	51.49003901	Coastal lowland/ floodplain	Batchelor, C.R., Young, D. S., & Hill, T. 2017. Alcatel-Lucent Telegraph Works, London Borough of Greenwich. Geoarchaeological & Palaeoenvironmental Analysis Report. Quaternary Scientific QUEST. Unpublished Report April 2017; Project Number 095x14
AlchemyPark	Rob Batchelor		0.15964279	51.49993995	Coastal lowland/ floodplain	Batchelor, C.R., Morandi, L., Young, D.S., Green, C.P. & Hill, T. 2018. ALCHEMY PARK, CRABTREE MANORWAY NORTH,LONDON BOROUGH OF BEXLEY Geoarchaeological & Palaeoenvironmental Analysis Report. Quaternary Scientific QUEST. Unpublished Report April 2018; Project Number 201x15.

AlchemyParkBH1	Rob Batchelor	ALCHEMY	0.15964279	51.49993995	Coastal lowland/ floodplain	Batchelor, C.R., Morandi, L., Young, D.S., Green, C.P. & Hill, T. 2018. ALCHEMY PARK, CRABTREE MANORWAY NORTH,LONDON BOROUGH OF BEXLEY Geoarchaeological & Palaeoenvironmental Analysis Report. Quaternary Scientific QUEST. Unpublished Report April 2018; Project Number 201x15.
AveleyMarshes North	Rob Batchelor	AVELEY	0.222632852	51.49156848	Coastal lowland/ floodplain	Batchelor, C.R. 2007. Middle Holocene environmental changes and the history of yew Taxus baccata L. woodland in the Lower Thames Valley. PHD Thesis.
AveleyMarshes South	Rob Batchelor	AVELEYS	0.219623379	51.4889276	Coastal lowland/ floodplain	Batchelor, C.R. 2007. Middle Holocene environmental changes and the history of yew Taxus baccata L. woodland in the Lower Thames Valley. PHD Thesis.
BarkingRiversideP ollenFB1	Rob Batchelor	BARKING1	0.12465557	51.52216191	Coastal lowland/ floodplain	Batchelor, C. R., Green, C.P., Young, D.S., Brown, A., Austin, P., Cameron, N. & Elias, S. 2010. A Report on the Geoarchaeological Borehole Invesitgations and Environmental Archaeological Analysis on Land at Barking Riverside. Quaternary Scientific QUEST. Unpublished Report December 2010; Project Number 002x10.
BarkingRiversideP ollenFB4	Rob Batchelor	BARKING4	0.12465557	51.52216191	Coastal lowland/ floodplain	Batchelor, C. R., Green, C.P., Young, D.S., Brown, A., Austin, P., Cameron, N. & Elias, S. 2010. A Report on the Geoarchaeological Borehole Invesitgations and Environmental Archaeological Analysis on Land at Barking Riverside. Quaternary Scientific QUEST. Unpublished Report December 2010; Project Number 002x10.
BarkingRiversideP ollenH4	Rob Batchelor	BARKINGH 4	0.12465557	51.52216191	Coastal lowland/ floodplain	Batchelor, C. R., Green, C.P., Young, D.S., Brown, A., Austin, P., Cameron, N. & Elias, S. 2010. A Report on the Geoarchaeological Borehole Invesitgations and Environmental Archaeological Analysis on Land at Barking Riverside. Quaternary Scientific QUEST. Unpublished Report December 2010; Project Number 002x10.
BarkingRiversideP ollenRG10	Rob Batchelor	BARKING1 0	0.12465557	51.52216191	Coastal lowland/ floodplain	Batchelor, C. R., Green, C.P., Young, D.S., Brown, A., Austin, P., Cameron, N. & Elias, S. 2010. A Report on the Geoarchaeological Borehole Invesitgations and Environmental Archaeological Analysis on Land at Barking Riverside. Quaternary Scientific QUEST. Unpublished Report December 2010; Project Number 002x10.
BeamPark	Rob Batchelor		0.158288396	51.52585538	Coastal lowland/ floodplain	Young, D.S., Batchelor, C, R. & Allison, E. 2018. BEAM PARK RIVERSIDE PHASE 1 DEVELOPMENT INCLUDING SURCHARGING., LONDON BOROUGHS OF HAVERING AND BARKING & DAGENHAM. Environmental Archaeological Assessment Report. Quaternary Scientific QUEST. Unpublished Report May 2018; Project Number 216x16.

BeamPark	Rob Batchelor		0.158288396	51.52585538	Coastal lowland/ floodplain	
BeamPark	Rob Batchelor		0.158288396	51.52585538	Coastal lowland/ floodplain	
BearHouseBJH10	Rob Batchelor	BEARH	-0.101765084	51.50582062	Coastal lowland/ floodplain	Batchelor, C. R., Young, D.S., Green, C.P., Cameron, N., Allott, L., Asutin, P. & Elias, S. 2011. Bear House & Bear Lane, London Borough of Southwark, SE1 Site Codes, BJH10 & BLZ07., Environmental Archaeological Analysis Report.
BearLaneBLZ07	Rob Batchelor	BEARL	-0.101763174	51.50517312	Coastal lowland/ floodplain	Batchelor, C. R., Young, D.S., Green, C.P., Cameron, N., Allott, L., Asutin, P. & Elias, S. 2011. Bear House & Bear Lane, London Borough of Southwark, SE1 Site Codes, BJH10 & BLZ07., Environmental Archaeological Analysis Report.
BurnleyRoad BH102	Rob Batchelor	BURN	0.273193582	51.46541847	Coastal lowland/ floodplain	Batchelor, C.R., Young, D.S. & Hill, T. 2017. BURNLEY ROAD, WEST THURROCK, ESSEX Geoarchaeological Fieldwork & Assessment Report. Quaternary Scientific QUEST. Unpublished Report April 2017; Project Number 194x16.
ButterHill	Nick Branch		-0.158909688	51.37138415	Coastal lowland/ floodplain	Branch, N.P. 2003. Environmental Archaeological Analysis at the Former Vinamul Site, Butter Hill, London Borough of Sutton BTG01. ArchaeoScape Unpublished Report 2003.
CanadaWater	Rob Batchelor		-0.050420972	51.49978959	Coastal lowland/ floodplain	Batchelor, C. R., Young, D. Y., Green, C.P., Allott, L., Cameron, N., Elias, S. & Brown, A. 2011. LAND AT SITE A1 TO SITE A4, CANADA WATER, SURREY QUAYS ROAD, ROTHERHITHE, LONDON SE16 SITE CODE, CQH10., ENVIRONMENTAL ARCHAEOLOGICAL ANALYSIS. Quaternary Scientific QUEST. Unpublished Report June 2011; Project Number 007x10
CanadaWater QBH10	Rob Batchelor	CANADA	-0.050420972	51.49978959	Coastal lowland/ floodplain	
CaxtonWorks	Rob Batchelor		0.012662942	51.51103486	Coastal lowland/ floodplain	Young, D.S. & Batchelor, C.R. 2014. CAXTON WORKS, THE MOSS BUILDINGS AND GOSWELL BAKERIES, CAXTON STREET NORTH, CANNING TOWN SITE CODE, CSN14., ENVIRONMENTAL ARCHAEOLOGICAL ASSESSMENT REPORT. Quaternary Scientific QUEST. Unpublished Report October 2014; Project Number 034x14.
CollingtreePark BH2	Nick Branch	COLLING	0.100391832	51.50236515	Coastal lowland/ floodplain	

CrossnessSewageW orks	Rob Batchelor	CROSSNES S	0.142536143	51.50385091	Coastal lowland/ floodplain	Batchelor, C.R., Branch, N. P., Elias, S., Green, C.P., Swindle, G.E. & Wilkinson, K.N. 2007. CROSSNESS SEWAGE WORKS, CROSSNESS, LONDON BOROUGH OF BEXLEY, ENVIRONMENTAL ARCHAEOLOGICAL ANALYSIS SITE CODE, EAW06. ArchaeoScape Unpublished Report 2007
CrownWharfIronW orks	Nick Branch	CROWN	-0.02186325	51.53740417	Coastal lowland/ floodplain	Branch, N.P., Green, C.P., Keen, D., Riddiford, N., Silva, B., Swindle, G.E. & Vaughan-Williams, A. 2005. ENVIRONMENTAL ARCHAEOLOGICAL ANALYSIS AT CROWN WHARF IRONWORKS, LONDON BOROUGH OF TOWER HAMLETS Site Code, DAC03. ArchaeoScape Unpublished Report 2005.
DesignDistrict	Rob Batchelor		0.006517991	51.49975541	Coastal lowland/ floodplain	Young, D.S. & Batchelor. 2018. DESIGN DISTRICT PLOT 11., GREENWICH PENINSULA, ROYAL BOROUGH OF GREENWICH Environmental Archaeological Assessment Report. Quaternary Scientific QUEST. Unpublished Report January 2018; Project Number 109x17
DocklandsNewham	Rob Batchelor		0.043178407	51.50859174	Coastal lowland/ floodplain	Young, D. S & Batchelor, C. R. 2013. A REPORT ON THE ENVIRONMENTAL ARCHAEOLOGICAL ASSESSMENT AND DEPOSIT MODELLING ON LAND AT PLOT 2.3, ROYALS BUSINESS PARK, DOCKSIDE ROAD, LONDON BOROUGH OF NEWHAM NGR, TQ 4189 8083. Quaternary Scientific QUEST. Unpublished Report November 2013; Project Number 008x13
DrapersGardens	Rob Batchelor		-0.087206256	51.51591654	Coastal lowland/ floodplain	Batchelor, C.R., Allott, L., Elias, S., Cambell, G., Branch, N.P., Green, C.P., Marini, N., Austin, P., Giorgi, J. & Jones. L. 2011. DRAPERS GARDENS, 12 THROGMORTON AVENUE, CITY OF LONDON, ENVIRONMENTAL ARCHAEOLOGICAL ANALYSIS SITE CODE, DGT06. Quaternary Scientific QUEST. Unpublished Report October 2011; Project Number 037x08
EnderbyWharf QBH1	Rob Batchelor	ENDERBY	0.003944139	51.49034809	Coastal lowland/ floodplain	Batchelor, C. R. Young, D. S & Green, C.P. 2015. LAND AT ENDERBY WHARF, CHRISTCHURCH WAY, LONDON BOROUGH OF GREENWICH SE10 0AG NGR, TQ 3925 7873., ENVIRONMENTAL ARCHAEOLOGICAL ANALYSIS REPORT. Quaternary Scientific QUEST. Unpublished Report May 2015; Project Number 140x13
EwerStreet Section200	Rob Batchelor	EWER	-0.098398856	51.5043003	Coastal lowland/ floodplain	Batchelor, C. R & Young, D.S. 2013. EWER STREET, LONDON BOROUGH OF SOUTHWARK, LONDON SE1 SITE CODE, EWE10., GEOARCHAEOLOGICAL ANALYSIS REPORT. Quaternary Scientific QUEST. Unpublished Report November 2013; Project Number 022x13
FerryLane	Rob Batchelor	FERRY	-0.043787871	51.5876805	Coastal lowland/ floodplain	Batchelor, C.R. & Young, D.S. 2017. FERRY LANE INDUSTRIAL ESTATE FOREST LANE LONDON BOROUGH OF WALTHAM FOREST

						Geoarchaeological Fieldwork and Assessment Report. Quaternary Scientific QUEST. Unpublished Report February 2017; Project Number 151x15.
FormerFordFactory	Rob Batchelor		0.150218167	51.52898024	Coastal lowland/ floodplain	Young, D.S., Batchelor, C.R. & Hill, T. 2017. FORMER FORD STAMPING FACTORY, KENT AVENUE LONDON BOROUGH OF DAGENHAM Environmental Archaeological Assessment Report. Quaternary Scientific QUEST. Unpublished Report December 2017; Project Number 190x16.
FriaryPlace	Rob Batchelor		0.496584054	51.39585034	Coastal lowland/ floodplain	Batchelor, C. R. 2016. Friary Place Stood, Kent. Quaternary Scientific Quest. Unpublished Report August 2016; Project Number 126x12.
GallionsReach	Rob Batchelor	GALLION	-0.245575288	51.3811041	Coastal lowland/ floodplain	
GolfersDriving Range	Rob Batchelor	GOLFERS	0.060223303	51.51394998	Coastal lowland/ floodplain	Batchelor, C.R. 2007. Middle Holocene environmental changes and the history of yew Taxus baccata L. woodland in the Lower Thames Valley. PHD Thesis.
GoresbrookPark	Rob Batchelor		38.86455035	39.18890341	Coastal lowland/ floodplain	Young, D.S., Batchelor, C.R. & Hill, T. 2017. GORESBROOK PARK, LONDON BOROUGH OF BARKING AND DAGENHAM Environmental Archaeological Assessment Report. Quaternary Scientific QUEST. Unpublished Report December 2017; Project Number 195x16.
GoresbrookPark	Rob Batchelor		38.86455035	39.18890341	Coastal lowland/ floodplain	Young, D.S., Batchelor, C.R. & Hill, T. 2017. GORESBROOK PARK, LONDON BOROUGH OF BARKING AND DAGENHAM Environmental Archaeological Assessment Report. Quaternary Scientific QUEST. Unpublished Report December 2017; Project Number 195x16.
GreatSuffolkStreet	Rob Batchelor		-0.101608182	51.50266169	Coastal lowland/ floodplain	Batchelor, C. R., Green, C.P., Young, D.S. & Cameron, No. 2011. 70 GREAT SUFFOLK STREET, LONDON BOROUGH OF SOUTHWARK SITE CODE, GUF10., ENVIRONMENTAL ARCHAEOLOGICAL ANALYSIS REPORT. Quaternary Scientific QUEST. Unpublished Report March 2011; Project Number 152x10
Greenwich Peninsula	Rob Batchelor		0.006973092	51.50257133	Coastal lowland/ floodplain	Young, D.S. & Batchelor, C.R. 2015. GREENWICH PENINSULA CENTRAL EAST, PLOTS N0205, N0206 AND N0207 SITE CODE, CTT15., ENVIRONMENTAL ARCHAEOLOGICAL ASSESSMENT REPORT. Quaternary Scientific QUEST. Unpublished Report August 2015; Project Number 067x15.
HaleWharf	Rob Batchelor		-0.055081049	51.58892932	Coastal lowland/ floodplain	Batchelor, C.R. & Young, D.S. 2018. HALE WHARF, TOTTENHAM LONDON BOROUGH OF HARINGEY Geoarchaeological and Palaeoenvironmental Assessment Report. Quaternary Scientific QUEST. Unpublished Report February 2018; Project Number 030x17.

HortonKirby	Rob Batchelor	HORTON	0.245426464	51.40305593	Coastal lowland/ floodplain	Batchelor, C.R., Branch, N.P., Allison, E., Elias, S., Denton, K. & Williams, K. 2008. LAND AT THE FORMER HORTON KIRBY PAPER MILL, SOUTH DARENTH, KENT SITE CODE, KHKY06., ENVIRONMENTAL ARCHAEOLOGICAL ANALYSIS. ArchaeoScape Unpublished Report 2008.
ImperialGateway	Rob Batchelor	IMPERIAL	0.144603284	51.50214945	Coastal lowland/ floodplain	Batchelor, C.R., Branch, N.P., Christie, R., Elias, S., Young, D., Austin, P., Williams, K. & Wilkinson, K. 2008. IMPERIAL GATEWAY, BELVEDERE, ENVIRONMENTAL ARCHAEOLOGICAL ASSESSMENT. Quaternary Scientific QUEST. Unpublished Report December 2008; Project Number 056x08
KemsleyFields	Rob Batchelor		0.749975896	51.37143186	Coastal lowland/ floodplain	Batchelor, C.R., Branch, N.P., French, P., Cameron, N., Williams, K., Tyler, J. & Morgan, P. 2008. GAZELEY SITE, LAND AT RIDHAM, KEMSLEY FIELDS, SITTINGBOURNE, KENT SITE CODE, KT-GZK06., ENVIRONMENTAL ARCHAEOLOGICAL ANALYSIS. ArchaeoScape Unpublished Report 2008.
KentWharf	Rob Batchelor	KENT	-0.019914868	51.47927874	Coastal lowland/ floodplain	Batchelor, C.R., Young, D.S. & Hill, T. 2017. KENT WHARF DEPTFORD LONDON BOROUGH OF LEWISHAM Environmental Archaeological Analysis Report. Quaternary Scientific QUEST. Unpublished Report September 2017; Project Number 004x14.
LintonFuels	Rob Batchelor		-0.195747403	51.46087588	Coastal lowland/ floodplain	Batchelor, C.R. 2018. LAND AT LINTON FUELS, OSIERS ROAD, LONDON BOROUGH OF WANDSWORTH Geoarchaeological And Palaeoenvironmental Assessment Report. Quaternary Scientific QUEST. Unpublished Report February 2018; Project Number 085x17.
LondonCableCar NTBH3	Rob Batchelor	CABLE3	0.016866981	51.50800404	Coastal lowland/ floodplain	Batchelor, C.R., young, D.S., Green, C.P., Austin, P., Cameron, N. & Elias, S. 2012. A REPORT ON THE ENVIRONMENTAL ARCHAEOLOGICAL ANALYSIS OF BOREHOLES COLLECTED FROM THE LONDON CABLE CAR ROUTE, LONDON BOROUGHS OF NEWHAM AND GREENWICH site code, CAB11. Quaternary Scientific QUEST. Unpublished Report January 2012; Project Number 140x10
LondonCableCar SSBH1C	Rob Batchelor	CABLE1	0.016866981	51.50800404	Coastal lowland/ floodplain	Batchelor, C.R., young, D.S., Green, C.P., Austin, P., Cameron, N. & Elias, S. 2012. A REPORT ON THE ENVIRONMENTAL ARCHAEOLOGICAL ANALYSIS OF BOREHOLES COLLECTED FROM THE LONDON CABLE CAR ROUTE, LONDON BOROUGHS OF NEWHAM AND GREENWICH site code, CAB11. Quaternary Scientific QUEST. Unpublished Report January 2012; Project Number 140x10
LondonCityAirport	Rob Batchelor		0.048868603	51.50372631	Coastal lowland/ floodplain	Young, D.S., Batchelor, C.R. & Williams, K. 2018. LONDON CITY AIRPORT, HARTMANN ROAD, LONDON E16

LondonDistribution Park	Rob Batchelor	DISTRIB	0.351858446	51.46867788	Coastal lowland/ floodplain	Batchelor, C.R., Young, D.S., Stastney, P. & Cameron, N. 2013. LONDON DISTRIBUTION PARK, SOUTH ESSEX NGR, TQ 6120 7750., GEOARCHAEOLOGICAL ANALYSIS REPORT. Quaternary Scientific QUEST. Unpublished Report October 2013; Project Number 051x09
LondonDistribution Park	Rob Batchelor		0.351858446	51.46867788	Coastal lowland/ floodplain	Batchelor, C.R., Young, D.S., Stastney, P. & Cameron, N. 2013. LONDON DISTRIBUTION PARK, SOUTH ESSEX NGR, TQ 6120 7750., GEOARCHAEOLOGICAL ANALYSIS REPORT. Quaternary Scientific QUEST. Unpublished Report October 2013; Project Number 051x09
LondonDistribution ParkQBH3A	Rob Batchelor	DISTRIB3	0.351858446	51.46867788	Coastal lowland/ floodplain	Batchelor, C.R., Young, D.S., Stastney, P. & Cameron, N. 2013. LONDON DISTRIBUTION PARK, SOUTH ESSEX NGR, TQ 6120 7750., GEOARCHAEOLOGICAL ANALYSIS REPORT. Quaternary Scientific QUEST. Unpublished Report October 2013; Project Number 051x09
LongReach Sewerage	Rob Batchelor		0.234558045	51.4676452	Coastal lowland/ floodplain	Batchelor, C. R. Cameron, N. & Austin, P. 2014. Long Reach Sewerage Treatment works, Dartford, Kent, Palaeoenvironmental Analysis Report. Quaternary Scientific QUEST. Unpublished Report July 2014; Project Number 002x12.
LongReachSewerag eBH6	Rob Batchelor	LONG	0.234558045	51.4676452	Coastal lowland/ floodplain	
MeadLane	Nick Branch	MEAD	-0.484478923	51.38542671	Coastal lowland/ floodplain	Branch, N.P., Armitage, P., Swindle, G.E., Vaughan-Williams, A. & Williams, A.N. 2003. Environmental History of Mead Lane, Chertsey, Surrey. ArchaeoScape Unpublished Report 2003.
Merrielands	Rob Batchelor	MERRIE	0.14578041	51.5299608	Coastal lowland/ floodplain	Batchelor, C.R., Young, D.S., Hill, T. & Austin, P. year. MERRIELANDS CRESCENT LONDON BOROUGH OF BARKING AND DAGENHAM Palaeobotanical Assessment Report. Quaternary Scientific QUEST. Unpublished Report August 2017; Project Number 086x17.
NewWolfsonWing	Nick Branch		-0.090771367	51.50338503	Coastal lowland/ floodplain	Williams, A. & Branch, N. Environmental Archaeological Assessment, New Wolfson Wing, Kings College London, London Borough of Southwark, SE1. ArchaeoScape Unpublished Report.
NineElmsQBH2	Rob Batchelor	NINE	-0.128893025	51.48097851	Coastal lowland/ floodplain	Batchelor, C. R. Young, D.S & Hill, T. 2018. LAND AT WANDSWORTH ROAD & PASCAL STREET, LONDON BOROUGH OF LAMBETH Geoarchaeological and Palaeoenvironmental Analysis Report Quaternary Scientific QUEST. Unpublished Report May 2018; Project Number 055x13.
NormanRoad	Rob Batchelor	NORMAN6	0.153825725	51.50552361	Coastal lowland/ floodplain	Batchelor, C.R., Elias, S., Green, C.P., Branch, N.P., Austin, P., Young, D., Wilkinson, K., Morgan, P. & Williams, K. 2008. FORMER BORAX WORKS, NORMAN ROAD, BELVEDERE, LONDON BOROUGH OF BEXLEY, ENVIRONMENTAL ARCHAEOLOGICAL ANALYSIS Site Code, NNB07. ArchaeoScape Unpublished Report 2008.

NormanRoadTR1	Rob Batchelor	NORMAN1	0.153825725	51.50552361	Coastal lowland/ floodplain	Batchelor, C.R., Elias, S., Green, C.P., Branch, N.P., Austin, P., Young, D., Wilkinson, K., Morgan, P. & Williams, K. 2008. FORMER BORAX WORKS, NORMAN ROAD, BELVEDERE, LONDON BOROUGH OF BEXLEY, ENVIRONMENTAL ARCHAEOLOGICAL ANALYSIS Site Code, NNB07. ArchaeoScape Unpublished Report 2008.
NormanRoadTR4	Rob Batchelor	NORMAN4	0.153825725	51.50552361	Coastal lowland/ floodplain	Batchelor, C.R., Elias, S., Green, C.P., Branch, N.P., Austin, P., Young, D., Wilkinson, K., Morgan, P. & Williams, K. 2008. FORMER BORAX WORKS, NORMAN ROAD, BELVEDERE, LONDON BOROUGH OF BEXLEY, ENVIRONMENTAL ARCHAEOLOGICAL ANALYSIS Site Code, NNB07. ArchaeoScape Unpublished Report 2008.
NorthBexley	Nick Branch		0.153016392	51.4969143	Coastal lowland/ floodplain	Branch, N.P., Silva, B. & Swindle, G. E. 2004. An Environmental Archaeological Assessment, North Bexley Drainage Improvements, Belvedere, Kent EWY01. ArchaeoScape Unpublished Report 2004.
OldSeagers Distillery	Rob Batchelor	OLD	-0.023065078	51.47303701	Coastal lowland/ floodplain	Batchelor, C.R., Allison, E.A., Brown, A., Green, C.P. & Austin, P.A. 2009. OLD SEAGERS DISTILLERY, DEPTFORD BRIDGE, LONDON BOROUGH OF LEWISHAM, ENVIRONMENTAL ARCHAEOLOGICAL ASSESSMENT SITE CODE, DEG00. Quaternary Scientific QUEST. Unpublished Report May 2009; Project Number 074x08.
PassivhausHousing Development	Rob Batchelor		0.185147202	51.52105044	Coastal lowland/ floodplain	Batchelor, C. R. 2013. Passivhaus Housing Development, New Road, Rainahm, Pollen Assessment Report. Quaternary Scientific QUEST. Unpublished Report January 2013; Project Number 230x13.
PearlClose	Rob Batchelor	PEARL	0.060813155	51.5129684	Coastal lowland/ floodplain	Batchelor, C. R. 2013. PEARL CLOSE, BECKTON, LONDON BOROUGH OF NEWHAM SITE CODE, PRL14., POLLEN ASSESSMENT REPORT. Quaternary Scientific QUEST. Unpublished Report June 2013; Project Number 133x14
PierRoad	Rob Batchelor		0.553511022	51.39706946	Coastal lowland/ floodplain	Batchelor, C.R., Branch, N.P., Elias, S., Tate, J. & Williams, K. 2008. FORMER AKZO NOBEL CHEMICAL WORKS, PIER ROAD, GILLINGHAM, KENT NGR, TQ 77700 69400., ENVIRONMENTAL ARCHAEOLOGICAL ANALYSIS. ArchaeoScape Unpublished Report 2008.
PirelliWorks	Rob Batchelor		0.166070328	51.49480335	Coastal lowland/ floodplain	Young, D. S., Batchelor, C. R., Green, C. P. & Braithwaite. 2012. Pirelli Works, Church Manorway, Erith Site Code, PWR12., Environmental Archaeological Assessment Report. Quaternary Scientific QUEST. Unpublished Report September 2012; Project Number 053x12.
PirelliWorks	Rob Batchelor		0.166070328	51.49480335	Coastal lowland/ floodplain	Young, D. S., Batchelor, C. R., Green, C. P. & Braithwaite. 2012. Pirelli Works, Church Manorway, Erith Site Code, PWR12., Environmental Archaeological Assessment Report. Quaternary Scientific QUEST. Unpublished Report September 2012; Project Number 053x12.

PirelliWorks	Rob Batchelor		0.166070328	51.49480335	Coastal lowland/ floodplain	Young, D. S., Batchelor, C. R., Green, C. P. & Braithwaite. 2012. Pirelli Works, Church Manorway, Erith Site Code, PWR12., Environmental Archaeological Assessment Report. Quaternary Scientific QUEST. Unpublished Report September 2012; Project Number 053x12.
PowerwindProject, ErithQBH1	Rob Batchelor	POWER	0.194752656	51.4782715	Coastal lowland/ floodplain	Batchelor, C. R & Young, D.S. 2013. Powerwind Project, Manor Road, Erith, London Borough of Bexley Site Code, PWW12.; Environmental Archaeological Analysis Report. Quaternary Scientific QUEST. Unpublished Report April 2013; Project Number 120x12.
PrestonRoad	Rob Batchelor	PRESTON	-0.008553099	51.50867226	Coastal lowland/ floodplain	Branch, N.P., Batchelor, C.R., Elias, S., Green, C.P. & Swindle, G.E. 2007. PRESTON ROAD, POPLAR HIGH STREET, POPLAR, LONDON BOROUGH OF TOWER HAMLETS SITE CODE, PPP06., ENVIRONMENTAL ARCHAEOLOGICAL ANALYSIS. ArchaeoScape Unpublished Report 2007.
PrioryRoad	Rob Batchelor		0.21367432	51.4523486	Coastal lowland/ floodplain	Batchelor, C. R & Young, D.S. 2014. PRIORY ROAD, DARTFORD, KENT, ENVIRONMENTAL ARCHAEOLOGICAL ASESSMENT REPORT . Quaternary Scientific QUEST. Unpublished Report February 2015; Project Number 193x14
ProjectIndigo	Rob Batchelor		-0.000645711	51.51219774	Coastal lowland/ floodplain	Batchelor, C. R 2015. PROJECT INDIGO, POPLAR, LONDON BOROUGH OF TOWER HAMLETS, POLLEN ASSESSMENT REPORT. Quaternary Scientific QUEST. Unpublished Report May 2015; Project Number 195x14
RamBrewery Phase1.	Rob Batchelor		-0.193170315	51.45796758	Coastal lowland/ floodplain	Young, D.S & Batchelor, C.R. 2015. RAM BREWERY PHASE 1., RAM STREET, LONDON BOROUGH OF WANDSWORTH Environmental Archaeological Assessment Report. Quaternary Scientific QUEST. Unpublished Report October 2015; Project Number 098x14.
RathboneMarket	Rob Batchelor		0.010659134	51.51625801	Coastal lowland/ floodplain	Young, D.S., Batchelor, C. R. & Green, C. P. 2015. Rathbone Market Phases 1 to 3, Canning Town, London Borough of Newham Site code, RBO10., Environmental Archaeological Assessment Report. Quaternary Scientific QUEST. Unpublished Report July 2015; Project Number 165x12.
RawalpindiHouse	Rob Batchelor		0.01190855	51.51975272	Coastal lowland/ floodplain	Young, D. S & Batchelor, C. R. 2014. RAWALPINDI HOUSE, HERMIT ROAD, LONDON BOROUGH OF NEWHAM E16 4PZ SITE CODE, HER14., ENVIRONMENTAL ARCHAEOLOGICAL ASSESSMENT. Quaternary Scientific QUEST. Quaternary Scientific QUEST. Unpublished Report December 2016; Project Number 012x14Unpublished Report November 2014; Project Number 037x14
RawalpindiHouse TP5	Rob Batchelor	RAW	0.01190855	51.51975272	Coastal lowland/ floodplain	Young, D. S & Batchelor, C. R. 2014. RAWALPINDI HOUSE, HERMIT ROAD, LONDON BOROUGH OF NEWHAM E16 4PZ SITE CODE, HER14., ENVIRONMENTAL ARCHAEOLOGICAL ASSESSMENT. Quaternary Scientific QUEST. Quaternary Scientific QUEST. Unpublished

						Report December 2016; Project Number 012x14Unpublished Report November 2014; Project Number 037x14
RenwickQBH1	Rob Batchelor	REN1	0.115849988	51.52780671	Coastal lowland/ floodplain	Batchelor, C. R., Young, D.S & Green, C. P. 2012. Thames View Estate, Renwick Road, Barking, Essex Site Code, TVE12., Geoarchaeological Assessment Report. Quaternary Scientific QUEST. Unpublished Report July 2012; Project Number 069x12.
RenwickRoad	Rob Batchelor		0.115849988	51.52780671	Coastal lowland/ floodplain	
RenwickRoad QBH5	Rob Batchelor	REN5	0.115849988	51.52780671	Coastal lowland/ floodplain	
RomanWay	Rob Batchelor	ROMAN	0.177903314	51.45077047	Coastal lowland/ floodplain	Batchelor, C.R., Allison, E., Maslin, S. & Morandi, L. 2018. ROMAN WAY CRAYFORD LONDON BOROUGH OF BEXLEY Palaeoenvironmental analysis Report. Quaternary Scientific QUEST. Unpublished Report January 2018; Project Number 064x16.
RoneoCorner	Rob Batchelor		0.184069893	51.56509961	Coastal lowland/ floodplain	Batchelor, C. R., Green, C. P., Young, D.S. & Austin, P. 2012. Roneo Corner, Romford Site Code, ROC12., Environmental Archaeological Assessment. Quaternary Scientific QUEST. Unpublished Report June 2012; Poject Number 104x12.
RoseHotel	Rob Batchelor		-0.095145192	51.50561437	Coastal lowland/ floodplain	Young, D.S., Batchelor, C. R., Green., C.P., Austin, P., & Elias, S. 2011. Southwark Rose Hotel, London Borough of Southwark Site Code, SDZ11., Geoarchaeological Assessment Report. Quaternary Scientific Quest. Unpublished Report September 2011; Project Number 078x11.
RotherhitheNew Road	Rob Batchelor		-0.063987528	51.48564413	Coastal lowland/ floodplain	Young, D.S & Batchelor, C. R. 2013. 387-399 ROTHERHITHE NEW ROAD, LONDON BOROUGH OF SOUTHWARK, LONDON SE1 SITE CODE, RON13., ENVIRONMENTAL ARCHAEOLOGICAL ASSESSMENT REPORT. Quaternary Scientific QUEST. Unpublished Report March 2013; Project Number 022x13
RoyalAlbertDock	Rob Batchelor		0.065308	51.50751166	Coastal lowland/ floodplain	Batchelor, C.R. 2007. Middle Holocene environmental changes and the history of yew Taxus baccata L. woodland in the Lower Thames Valley. PHD Thesis.
SouthPoint	Nick Branch	SOUTH	-0.103856083	51.50404694	Coastal lowland/ floodplain	Branch, N.P., Swindle, G.E. & Williams, A.N. 2002. Middle Holocene Environmental History of South Point, Blackfriars Road, Southwark, London. ArchaeoScape Unpublished Report 2002.
StHugh'sChurch	Rob Batchelor		-0.088946503	51.50119709	Coastal lowland/ floodplain	Batchelor, C. R., Young, D.S. & Austin, P. 2012. St Hugh's Church, 32 Crosby Row, London Borough of Southwark Site Code, SHC11.,

						Environmental Archaeological Analysis Report. Quaternary Scientific QUEST. Unpublished Report July 2012; Project Number 145x11.
StHugh'sChurchSec	Rob	STHUGH	-0.088946503	51.50119709	Coastal	Batchelor, C. R., Young, D.S. & Austin, P. 2012. St Hugh's Church, 32
tion1	Batchelor				lowland/	Crosby Row, London Borough of Southwark Site Code, SHC11.,
					floodplain	Environmental Archaeological Analysis Report. Quaternary Scientific QUEST. Unpublished Report July 2012; Project Number 145x11.
StroodRetailPark	Rob		0.496454816	51.3958531	Coastal	Batchelor, C.R. & Hill. T. 2017. STROOD RETAIL PARK COMMERCIAL
	Batchelor				lowland/	ROAD, STROOD, ROCHESTER Palaeobotanical Analysis Report.
					floodplain	Quaternary Scientific QUEST. Unpublished Report August 2017; Project Number 021x16.
StroodRetailPark	Rob		0.496454816	51.3958531	Coastal	Batchelor, C.R. & Hill. T. 2017. STROOD RETAIL PARK COMMERCIAL
	Batchelor				lowland/	ROAD, STROOD, ROCHESTER Palaeobotanical Analysis Report.
					floodplain	Quaternary Scientific QUEST. Unpublished Report August 2017; Project Number 021x16.
StroodRetailPark	Rob		0.496454816	51.3958531	Coastal	Batchelor, C.R. & Hill. T. 2017. STROOD RETAIL PARK COMMERCIAL
	Batchelor				lowland/	ROAD, STROOD, ROCHESTER Palaeobotanical Analysis Report.
					floodplain	Quaternary Scientific QUEST. Unpublished Report August 2017; Project Number 021x16.
SurreyHouse	Rob	SURREY	-0.09824232	51.50494523	Coastal	Batchelor, C.R., Green, C.P., Young, D.S., Walker, T. & Allott, L. 2012.
	Batchelor				lowland/	Surrey House, 20 Lavington Street, London Borough of Southwark, SE1 0NZ
					floodplain	Site Code, LVI11., Environmental Archaeological Analysis Report.
						Quaternary Scientific QUEST. Unpublished Report May 2012; Project
						Number 018x11.
TabardSquare	Naomi	TABARD	-0.090646029	51.50052335	Coastal	Riddiford, N.G. & Batchelor, C.R. 2012. TABARD SQUARE, 34-70 LONG
	Riddiford				lowland/	LANE & 31-37 TABARD STREET, LONDON BOROUGH OF
					floodplain	SOUTHWARK site code, LLS02., ENVIRONMENTAL AND
						VEGETATION HISTORY. Quaternary Scientific QUEST. Unpublished
						Report July 2012; Project Number 087x08
TarlingRoad	Rob		0.013975254	51.51236124	Coastal	Batchelor, C. R & Young, D. S. 2014. 105-107 Tarling Road, London
	Batchelor				lowland/	Borough of Newham Site Code, TAR13., Geoarchaeological Assessment
					floodplain	Report. Quaternary Scientific QUEST. Unpublished Report March 2014;
						Project Number 206x13.
Thameside	Rob	THAMES	-0.172524834	51.48400468	Coastal	Batchelor, C.R. 2017. HMP THAMESIDE EXPANSION, ROYAL
	Batchelor				lowland/	BOROUGH OF GREENWICH Pollen Analysis Report. Quaternary
					floodplain	Scientific QUEST. Unpublished Report July 2017; Project Number 086x15.
Thamesmead8J	Nick		0.078817913	51.49690427	Coastal	
	Branch				lowland/	
					floodplain	

TheAdelphi Building	Rob Batchelor		-0.122231773	51.50920756	Coastal lowland/ floodplain	Young, D.S., Green, C.P., Batchelor, C.R., Austin, P.J. & Elias, S.A. 2015. THE ADELPHI BUILDING, JOHN ADAM STREET, LONDON WC2 SITE CODE, JAD14., ENVIRONMENTAL ARCHAEOLOGICAL ASSESSMENT. Quaternary Scientific QUEST. Unpublished Report March 2015; Project Number 113x14.
TheNationalTheatre	Rob Batchelor		-0.114167863	51.50696493	Coastal lowland/ floodplain	Batchelor, C. R. & Young, D.S. 2014. THE NATIONAL THEATRE, SOUTH BANK, LONDON BOROUGH OF LAMBETH SITE CODE, NTH11., ENVIRONMENTAL ARCHAEOLOGICAL ASSESSMENT REPORT AND ADDENDUM. Quaternary Scientific QUEST. Unpublished Report February 2014; Project Number 132x11
ThePittsHeadPub	Rob Batchelor		0.017114499	51.5152389	Coastal lowland/ floodplain	Batchelor, C. R., Young, D.S., Austin, P. J. & Elias, S. A. 2013. The Pitts Head Public House, 2 Fords Park Road, London Borough of Newham E16 1NL Site Code, PHD12., Environmental Archaeological Assessment. Quaternary Scientific QUEST. Unpublished Report January 2013; Project Number 180x12.
TheReachQBH1	Rob Batchelor	REACH	0.090456116	51.498415	Coastal lowland/ floodplain	Batchelor, C.R., Young, D.S., Hill, T. & Green C.P. 2017. THE REACH, THAMES REACH, ROYAL BOROUGH OF GREENWICH Geoarchaeological & Palaeoenvironmental Analysis Report. Quaternary Scientific QUEST. Unpublished Report April 2017; Project Number 099x16.
TillburyFort	Rob Batchelor	TILL	0.37439812	51.45297093	Coastal lowland/ floodplain	Batchelor, C.R. 2007. Middle Holocene environmental changes and the history of yew Taxus baccata L. woodland in the Lower Thames Valley. Chapter 9. PHD Thesis.
TokenhouseYard	Nick Branch	TOKEN	-0.073712126	51.51497628	Coastal lowland/ floodplain	Branch, N.P., Allison, E., Vaughan-Williams, A., Silva, B., Austin, P., Green, C.P., Swindle, P., Armitage, P., Cameron, N., Keen, D. & Finch P. 2006. ENVIRONMENTAL ARCHAEOLOGICAL ANALYSIS AT 6-8 TOKENHOUSE YARD, CITY OF LONDON SITE CODE, THY01. ArchaeoScape Unpublished Report 2006
WestHamBus Garage	Rob Batchelor	WESTHAM	0.002940693	51.52430363	Coastal lowland/ floodplain	Batchelor, C.R., Branch, N.P., Allott, L. & Young D. 2010. WEST HAM BUS GARAGE THE FORMER PARCEL FORCE DEPOT., WEST OF STEPHENSON STREET, LONDON BOROUGH OF NEWHAM SITE CODE, WHQ09., ENVIRONMENTAL ARCHAEOLOGICAL ANALYSIS. Quaternary Scientific QUEST. Unpublished Report March 2010; Project Number 007x08.
WoodWharf Section11	Rob Batchelor	WOOD11	-0.010243683	51.50294565	Coastal lowland/ floodplain	Young, D.S., Batchelor, C.R. & Hill, T. 2016. WOOD WHARF, LONDON BOROUGH OF TOWER HAMLETS