
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2020-10-29

BAS Optimized ELM for KUKA iiwa

Robot Learning

Li, C

http://hdl.handle.net/10026.1/16629

10.1109/tcsii.2020.3034771

IEEE Transactions on Circuits and Systems II: Express Briefs

Institute of Electrical and Electronics Engineers (IEEE)

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



1

BAS Optimized ELM for KUKA iiwa Robot
Learning

Chunxu Li1,2*, Shuo Zhu1, Zhongbo Sun3, James Rogers1

Abstract—In this paper, an enhanced robotic learning interface
has been investigated using Beetle Antennae Search (BAS) and
Extreme Learning Machine (ELM). The initial values of learning
weights and bias of the network have significant effect on the
performance of the ELM, hence, BAS algorithm was employed
to optimize the initial values of learning weights and bias. Kinect
v2 camera sensor was applied to obtain the endpoint’s position of
the upper limb, MYO armband was used to measure the corre-
sponding joint angle values. Those aforementioned data formed
the dataset to be trained by ELM and after training the ELM
model was able to generate angle values by only giving position
as input without a need to carry out kinematic calculations.
The proposed method has been validated by conducting series of
experimental studies on a KUKA iiwa robot.

Index Terms—Extreme learning machine, Beetle Antennae
Search, MYO Armband, Kinect v2, KUKA iiwa robot.

I. INTRODUCTION

THE field of research with respect to machine learning
attracted great attention during the past decade. Machine

learning has been used in many fields, such as autopilot
filtering system of email, the recommendation system of
e-shopping, handwriting recognition in the post office and
automatic driving system of the vehicle. The research value
of machine learning has attracted a growing number of insti-
tutions, companies as well as researchers devoting themselves
into the field. Google announced its driverless car project in
2010, and released a video, wherein its one of the employees
Steve Mahan who lost 95 percentage of the vision, safely
drove 12 miles [1]. Wherein, ELM is an essential method
employed in many domains already, which is developed from
single-hidden layer feedforward neural networks (SLFNs) [2].
Hence, a growing number of researchers focus on Extreme
Learning Machine in-depth and extensive research. Ding et al
proposed optimization Extreme Learning Machine (OM-ELM)
method of the SMO, however, owing to the large data set
optimal parameters C, the algorithm requires more iterations
to converge to the optimal solution of the optimization problem
[3]. Huang et al., describes the enhanced incremental Extreme
Learning Machine (EI-ELM) and convex incremental Extreme
Learning Machine (Cl-ELM) [4]. Rong et al describes learning
machine algorithm based on fuzzy limits [5]. Li et al proposed
a comprehensive complex Extreme Learning Machine (FC-
ELM) [6]. A research team also describes a wind power pre-
side model of wavelet decomposition and Extreme Learning
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Machine to verify that this method has higher prediction
accuracy [7]. A scientist added a class classification of neurons
to form new network structure in the fermentation process
Nosiheptide, in order to realize a better line estimation [8].
However, using the traditional ELM model alone to make pre-
dictions often has limitations in terms of prediction accuracy.

In recent years, intelligent algorithms such as neural net-
work (NN), genetic algorithm (GA) and particle swarm op-
timization (PSO) were applied to solve the aforementioned
optimization problems. NN has the capabilities of adaptive
learning, which can deal with parallel distributed processing.
GA is often combined with polynomial interpolation for robot
motion planning tasks, with low risk of falling into local opti-
mal solutions [9]. However, GA is with complex proceedings
which needs to go through the encoding, decoding, selection,
crossover and mutation processes. This causes its operation
time being difficult to be guaranteed at all time. The PSO
algorithm is with a simple structure and its parameters are
easy to adjust. Compared to GAs, PSO does not need to
perform for convex problems and the optimal solution can
be found with faster convergence [10]. However, the PSO
needs to randomly generate plenty of particles when the next
populations are generated, which decreases the convergence
rate. To break through the above-mentioned limits, BAS was
selected to perform the optimization of ELM in this paper,
which is a new type of computational intelligence algorithms
developed in [11]. The main contribution of this brief paper
is investigating an ELM model to output angle values while
inputting the endpoint position in Cartesian space for robot
control, which is much faster while learning than traditional
artificial neural network models and can be used to replace the
complicated kinematics calculation; developing a strategy to
create home-made dataset of joint values - endpoint positions;
employing BAS algorithm to optimize the initial parameters
of ELM to maximum the learning accuracy.

II. DATASET ACQUISITION

In this paper, the endpoint position was directly collected
using Kinect SDK 2.0. Kinect v2 produced by Microsoft, is
an RGB-D device, which can capture depth, colour, and IR
images (also sound). Using the SDK, captured colour and
depth information can be consolidated (transformed) into real-
world co-ordinates, called Camera Space; these co-ordinates
are referenced to the centre of the depth sensor [12]. Skeletal
tracking can also be achieved with the use of the Kinect 2.0 S-
DK. Both the colour image, and depth image transformed into
a common frame, the origin of which is located at the centre of
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the depth camera, called Camera space; the co-ordinate system
of this space follows a right-handed convention.

By calculating the joint angles of the human arm joints to
capture the operator’s arm posture, the control of the remote
mechanical arm is realized. The human arm includes 7 degrees
of freedom (DoFs), among which, the shoulder joint has 3
DoFs, the elbow joint has 2 DoFs, and the wrist joint has 2
DoFs. It is assumed that the shoulder and elbow joints of the
human arm are 5 DoFs chain manipulators. The modelling
method of the upper limb using the standard DH parameter
can be found from our previous research [12]. In order to
calculate the joint angles of the operator’s elbow and shoulder
joints (show in Fig.1), the operator will wear pair of MYO
Armbands on the upper arm and lower arm both, and define
the global coordinate system (xg, yg, zg), where: Z axis is up
, Y-axis is forward, X is perpendicular to Z-axis and Y-axis,
pointing to the human body.

On the upper and lower arms of the human body, separate
coordinate systems are established to describe the spatial
posture of the arms. The coordinate system (xu, yu, zu) is
established on the upper arm coordinate system, and (xl, yl, zl)
is the lower arm coordinate system. We assume that initially
the upper frame and the lower arm frame coincides with the
global frame. Define the initial posture of the upper arm and
lower arm as [13]:

Rigl = [xigl yigl zigl], Rigu = [xigu yigu zigu] (1)

where R represents the rotation matrix, the superscript i
represents the initial position, the subscript g represents the
global coordinate system, and u and l represent the coordinate
system of the upper arm and the lower arm, respectively.
The rotation matrix RAB = [xAB yAB zAB ] represents the
spatial posture of the coordinate system A in the coordinate
system B. The vectors xAB , yAB and zAB represent the
position description of the coordinate axis of the coordinate
system B in the coordinate system A. The posture of the

Fig. 1. Schematic diagram of global coordinate system, local coordinate
system and MYO Armband coordinate system

operator’s upper arm in the coordinate system of the first MYO
Armband (worn on the upper arm) and the lower arm in the
coordinate system of the second MYO Armband (worn on the
lower arm) can be expressed as [13]:

RiUu = (RigU )
TRigu, RiLl = (RigL)

TRigl (2)

where the subscript U represents the coordinate system of the
MYO Armband worn on the upper arm, and the subscript L
represents the coordinate system of the MYO Armband worn
on the lower arm. When the operator moves the arm to a new

position, the posture of the operator’s upper arm and lower
arm relative to the global coordinate system can be expressed
as [13]:

Rngu = (RngU )
TRiUu, Rngl = (RngL)

TRiLl (3)

where the superscript n represents the new posture reached by
the operator’s arm.

If we first rotate a coordinate system around the X axis of
a second known coincident coordinate system by an angle of
γ, then rotate around the Y axis by an angle of β, and finally
rotate the coordinate system by an angle of α around the Z
axis. Here the rotation angles γ, β and α are defined as roll
angle, pitch angle and yaw angle respectively. Therefore, the
rotation matrix can be written as (c for cos, s for sin) [13]:

Rngu =

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sγ cβsγ cβcγ

 (4)

Using the MYO’s gyroscope, we can obtain a quaternion
(q = xi + yj + zk + w, where the (x,y,z) is a vector and
w is a scalar quantity) at the configuration with respect to the
corresponding posture, which can be used to calculate the Rngu.
From the rotation matrix of the upper arm MYO Armband
coordinate system, the three joint angles of the shoulder joint
can be calculated as:

α = atan2(2(yz − wx)/sβ, 2(wy + xz)/sβ);

β = atan2(
√
4(xz − wy)2 + 4(wx+ yz)2, 1− 2(x2 + y2));

γ = atan2(2(xz − wy)/sβ,−2(wx+ yz)/sβ)
(5)

Let us define, rij is one element of Rngu, aij is one element
of Rngl, which can be obtianed by the MYO’s gyroscope. The
two joint angles of the elbow joint can be calculated through
the MYO Armband worn on the lower arm:

δ = arccos(a12r13 + a22r23 + a32r33);

ε = arccos(a11r11 + a21r21 + a31r31)
(6)

III. ELM LEARNING MODEL DESIGN METHODOLOGY

In 2006, Professor Huang in Nanyang Technological Uni-
versity proposed limits of learning feedforward neural net-
works, and introduced the basic principles of ELM [3].
Compared BP Algorithm and SVM, ELM has several salient
features: no parameters need to be manually tuned; most
training can be completed in milliseconds; it could obtain
better generalization performance than BP in most cases [14].

ELM is a neural network with only one hidden layer,
which can be obtained through the offline training, wherein
the weights inputted layer to the hidden layer and the bias
system can be a randomly initialized, and the value between
hidden layer and output layer is required in order to adjust the
output of the system to minimum target error. If the endpoint
position data obtained from Kinect sensor is inputted as x,
then the L number of the hidden nodes with output functions
can be expressed as:

fL(x) =

L∑
i=1

βigi(x) =

L∑
i=1

βiGi(x, ai, bi) (7)

ai ∈ Cd, xi ∈ Cd, bi ∈ C, βi ∈ C (8)
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where gi(x) is the activation function, βi is output weights,
ai is the input weights and bi is the input bias.

Given notable N training samples, the output with notable
L of hidden node for learning machine are:

f(x) =

L∑
i=1

βiG(ai, bi, x) = β · h(x) (9)

where h(x) is the output vector of the hidden layer, hidden
layer node parameters (ai,bi)(i=1,2,.....,L) are initialized by
BAS, which is able to connect the i-th hidden node with the
output nodes with learning weights βi.

By analysing, we can work out the matrix representation of
the linear system, which is shown following:

H · β = T (10)

then we have:

β =

β
T
1
...
βTL

T =

t
T
1
...
tTL

 (11)

According to the input xi, there is a network of hidden layer
output matrix H , and the i-th row represents the hidden layer
output vector. Based on the values of all the input(x1,...,xN ),
the output values of the i-th column represents the i-th hidden
node. Hence, we can obtain the least squares solution of linear
systems:

|H · β̂ − T | = min
β
|H · β − T | (12)

where
H(a1, .....,aL; b1, ....., bL;x1, ....., xL) =G(a1, b1, x1) · · · G(aL, bL, x1)

... · · ·
...

G(a1, b1, xN ) · · · G(aL, bL, xN )


N×L

(13)

is the output of the hidden layer nodes. Then we can calculate
out:

β̂ = H ′ · T (14)

where H ′ is the generalized pseudo inverse Jacobian matrix
of H , and the least squares solution of minimum norm β
is unique, which is designed to train error until minimum.
Considered the ELM is supervised-learning based, hence in
this paper, the endpoint position collected from Kinect is as
the input of ELM, the angular joint values measured from
MYO Armband is as output, to train the ELM model. Once
the training has been done with satisfied accurate rate, the
model will be able to direct load to estimate series of joint
angles by giving endpoint position data.

IV. BAS OPTIMIZATION OF THE INITIAL LEARNING
WEIGHTS AND BIAS

In this paper, BAS algorithm is employed to optimize the
ELM model by finding a series of most optimized parameter
set of learning weights and bias. BAS is an intelligent opti-
mization algorithm developed in 2017 inspired by the principle
of beetle foraging. Since the process of network learning
and training is to adjust the learning weights and bias of
each layer, the essence of network training is to continuously

adjust the weights and bias, and the initial weights and bias
are randomly generated, which will have a great impact on
network performance. Therefore, the optimization of ELM
mainly focuses on using optimization algorithms to adjust
weights and bias. Using the optimized weight threshold for
network training can greatly improve the fit of the network
and reduce the error. The specific method is as follows:

1. Establish a random vector of the heading of the beetle,
and normalize it:

−→
b =

rands(k, 1)

‖rands(k, 1)‖
(15)

where rands() is a random function; k represents the spatial
dimension. Assuming that the model structure is N-L-l, N is
the number of nodes in the input layer, L is the number of
nodes in the hidden layer, and l is the number of nodes in the
output layer, the dimensional formula of the search space of
the longhorn beetle search algorithm is: k = N∗L+L∗l+L+l.
In this paper k is 255.

2. Create the spatial coordinates of the left and right
whiskers of longhorn beetle:

xrt = xt + d0 ∗
−→
b /2;

xlt = xt − d0 ∗
−→
b /2

(16)

xrt is the position coordinate of the beetle at the t-th iteration
of the right beard; xlt is the position coordinate of the beetle at
the t-th iteration of the left beard; xt is the centroid coordinate
of the beetle at the t-th iteration; d0 is the distance between
the two beards distance.

Fig. 2. Flowchart of angle joints data generation

3. Judging the odor intensity of left and right whiskers
according to the fitness function, that is, the intensity of f(xl)
and f(xr), where f is the fitness function. This paper uses
the mean square error (MSE) of the test data as the fitness
function.

4. Iteratively update the location of longhorn cattle:

xt+1 = xt − δt ∗
−→
b ∗ sign(f(xl)− f(xr)) (17)

where δt is the step factor of the t-th iteration; sign() is the
sign function. The setting of the step factor in BAS adopts a
linear decreasing method for trial and error. First, determine
the initial step size δ0=1, the number of iterations n=100, and
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the attenuation coefficient eta is a number close to 1 between
[0,1]. The formula is:

δt = δt−1 ∗ eta eta = 1− 5/n (18)

5. Initialization of longhorn position. Select the random
number between [-1,1] as the initial position of the long beetle,
and save this initial position as V ariable1. Solve the fitness
function value corresponding to the left and right sides of the
beetle in the initial position and save it in V ariable2.

6. After calculating the positions of the left and right beards
according to (17), the fitness function values corresponding
to the left and right beards are calculated respectively. After
comparing the sizes, update the positions of the beetles ac-
cording to (18), that is the weight and bias are adjusted, and
the fitness function value at the new position is obtained after
training ELM. If the function value at this time is smaller,
V ariable1 and V ariable2 are updated.

7. When the MSE function value is lower than 0.1 and no
longer decreases or the iteration reaches the maximum number
of times 100, the iteration stops and the optimal solution is
outputted. If the condition is not met, continue to return to
step 6. The whole optimization process is shown in Fig.2.

V. EXPERIMENTAL STUDIES

In this section, we conducted a three-step experimental
study to test the effectiveness of our proposed methodologies.
Kinect SDK 2.0 for windows, Visual studio 2019 and OpenCV
library are used for interaction design. MYO Armband with
its SDK is used for the calculation of arm joints. The ex-
periment environment is an indoor and adequate illumination
environment. There are only 5 joints are selected in the exper-
imental studies, which are ShoulderP itch, ShoulderRoll,
ShoulderY aw, ElbowPitch and ElbowRoll.

A. Dataset generation

The first step of the experiment was generating our own
dataset samples which include endpoint positions of the upper
limb and the aforementioned five joint angles. In order to do
this, a human operator wore a pair of arm band in his arm and
stood in front of a table, where a Kinect v2 sensor was put on
it. The operator smoothly and slowly drew circle patterns with
different radians and positions and sine curves with different
configurations on the table, respectively. It was significant to
synchronize all the devices by setting the “scissor” posture
as the starting signal, when MYO and Kinect detected this
posture, the system began to collect data. The collection
frequency of Kinect and MYO is set to 30 Fps. Each time
the operator draws a graph of different sizes, it lasts for 10
seconds, corresponding to 300 sets of data, a total of 10 circles
of different sizes and positions, and 10 sine curves of different
lengths and small heights, totalling 6000 sets of data. Here we
keep the handmade dataset diversified enough to include differ
patterns, considering the generalization of neural networks. So
far, the dataset has been completely generated, which would
be used to train the ELM as training samples in next step.

After the completion of dataset generation, a sec-
ond/compared group of dataset was also required, where

only the endpoint positions were collected. The collection
frequency of Kinect sensor was set to 15 Fps, and the operator
slowly and smoothly drew a circle last for 10 seconds. The
outputted data for this action would be used as the test sample
dataset of ELM model.

B. Parameter optimization by BAS

The second step was optimizing the learning weights and
bias of the ELM using BAS algorithm. The dataset generated
in the previous step was used to train the ELM model, where
the endpoint positions were as the input samples, joint angles
were as output samples. In this paper, we define the hidden
layer number is 60. The initial step size of BAS is set as 30,
with 100 iterations, the attenuation coefficient eta is set as 0.8.
The second group of dataset collected from step 1 was used to
compare with the estimated joints values. MSE was employed
as the performance index to illustrate the efficiency of the
ELM model with and without BAS optimization, respectively.
The whole principle flowchart of angle joints data generation
using ELM optimized by BAS can be shown in Fig.2. Fig.3 is
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Fig. 4. The best fitness curve for BAS-ELM model

the fitting result of the BAS-ELM network prediction model
training set. Comparing the unoptimized network fitting effect
in Fig.3(a) and (c), it can be seen that the curve of the
simulated value predicted by the BAS optimized model is
closer to the true value of the predicted value shown in
the comparison of Fig.3(a) and (b). In this paper, the MSE
function is used to measure the performance of the ELM
model. From the relative MSE results after optimization, the
average relative error of BAS-ELM is 0.060256, while the
average relative error of the ELM network training results
before optimization is 0.13735, and the average relative error
of prediction is reduced by 56.1%, indicating that after adding
the BAS algorithm optimization, ELM model can deal with
multi-dimensional variable problems more accurately. Fig.4 is
the best fitness curve of the BAS-ELM model, that is, the
curve of the best fitness function value for each update. It can
be seen from the figure that the fitness function value reaches
0.1 after 60 generations and does not decrease anymore. That
is, the optimal solution is found, and the convergence speed
is relatively fast.

C. Estimated trajectory regeneration

The third step was to regenerate the trajectory outputted
from ELM by a KUKA iiwa robot manipulator, whose
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Fig. 3. Fitting result of the BAS-ELM network prediction model

(a) : Snapshots of the KUKA iiwa robot
for drawing the circle under the BAS-ELM
strategy
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Fig. 5. Experimental validation on a real robotic platform

DH parameters can be found in our previous work [9].
All the five joint angles outputted by BAS-ELM with re-
spect to ShoulderP itch, ShoulderRoll, ShoulderY aw,
ElbowPitch and ElbowRoll were sent to the robot controller
for the motion execution, where the angles for WristP itch
and WristY aw were set as the initial constants of the
robot. The parameters of the proposed BAS method follow
the aforementioned configuration discipline. In term of the
performance comparison results have been illustrated in the
previous step (56.1% in error reducing) and the BAS has
shown its sufficiently superiority than without one in pre-
dicting accuracy, we therefore directly use the strategy of
BAS-ELM for experimental validation in the KUKA iiwa
robot’s controller. The resolved joint angles data from the
BAS method are sent into the KUKA manipulator’s operation
system to perform path tracking control. The snapshots of the
experiment session on the KUKA manipulator are shown in
Fig.5(a), and its tracked path in Cartesian space is shown by
Fig.5(b). From the result of trajectory regeneration, we can
conclude that the proposed method can also work well on a
real robotic platform.

VI. CONCLUSION

This paper developed an enhance learning interface for
robotics using EML and BAS. The method of calculating
the data of each joint angle through the MYO Armband has
been studied and the collection of arm endpoint’s coordinate
data with Kinect v2 sensor has been completed, thereby a
mini dataset including joint angles and endpoint positions
was established. A BAS-ELM prediction model was proposed,
which overcame the difficulty of selecting the initial learning
weights and bias for ELM and greatly improves the prediction
accuracy. Several experiments were conducted and validated
the proposed method by increasing the average relative error
of prediction with 56.1% than ELM only without parameter

optimization. The successful running of the trajectory genera-
tion on a real robot platform indicated that when the training
sample size is big enough, the proposed BAS-ELM strategy
can be used to replace the kinematics to map between the
endpoint positions and relevant joint angles. Meanwhile, there
are still some further tasks needing to be done in the future
research works. How to improve the selection of BAS initial
step size and solve the problem of inappropriate convergence
is the direction of the future research.
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