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ABSTRACT   

We discuss a microwave planar evanescent waveguide sensor, based on a patented technology demonstrator (2016), for a 

range of potential UAV platform skin-embedded waveguide sensing applications such as: refractive index sensing, 

temperature sensing, or surface corrosion. Evanescent microwave sensors can probe the near surface region from 

millimetre to metric scales, with minimal direct radiation into the external environment, ideal for evading detection, and 

able of detecting various dielectric or metal materials adjacent to the surface. This paper examines evanescent planar 

sensor use as an environmental evanescent sensor to both detect and quantify metal or dielectrics without direct contact, 

measuring material loss from chosen waveguide materials, and waveguide surface cladding materials. We also present 

microwave transmission for a range of temperature sensor configurations, with good sensitivity across a broad range of 

temperature-related applications, including temperature hysteresis. [1].   

 

Keywords: evanescent, environmental temperature sensing, planar microwave sensor. 

 

1. INTRODUCTION  

We present experimental results here for fabrication of a range of microwave evanescent sensors based on planar optical 

waveguide principles, and the testing of several preliminary technology demonstrators, for scoping a wide range of 

potential sensing applications. Evanescent microwave and optical monitoring of the external surface skin of a UAV 

platform offers interesting design possibilities with low probability of intercept. Further possible microwave based 

evanescent sensors beyond the scope of this paper are discussed in our recent Plymouth University Research and 

Innovation Report [1]. Such evanescent microwave sensors are able to probe the near surface region to many 

centimetres, without any direct radiation of energy into the external environment, with potential for detection of various 

dielectric or metal materials of sensing interest. These devices follow similar optics planar sensor device designs already 

proven by the author [2]. This paper will look at the operation of an evanescent microwave sensor for refractive index 

sensing, an application of a device under patent [3], and presented in contemporary literature [4 - 5]. This paper will start 

by discussing the relevant theoretical background of integrated waveguide sensors before looking at the experimental 

methodology used. Results and a discussion of results are then presented, followed by some ideas for future work and the 

conclusions.  
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2. THEORETICAL BACKGROUND 

2. 1 Integrated Channel Microwave Wave Guide Sensor Devices  
Traditional microwave sensing methods mostly concern direct radiation of microwave energy emitted from a transmitter 

into the external environment, relying on either direct reflection of microwaves for detection or back-scattered from a 

point, surface, or volume source. Current radar sensing methods radiate microwave energy in a dispersive manner with 

cumulative additional losses from absorption and scattering, resulting in high attenuation and likely detection of 

transmitter action, which although not a problem for civilian activities could be disastrous for military operations. A 

possible innovative, and hitherto untried, microwave solution is provided through Attenuated Total Reflection (ATR) 

which has been used for several decades to couple optical radiation into thin film waveguide modes for evanescent 

sensing with prisms [6-8] and in more recent decades in planar waveguide geometries [9], with wave guide modes 

travelling within shallow waveguides, but sensing the near surface interface evanescently. Optical systems have a degree 

of limitation on the scale of environmental applications, as they only sense in close proximity to the surface region to a 

typical range of tens of wavelengths, ideal for bio-sensing applications, but not for large-scale phenomena. However, the 

flat geometry of planar or channel waveguides offers significant sensitivity for in-situ probing of the optical properties of 

attached surface layer properties and adjacent media because of the extended surface path length [9 - 10].  

2.2 Waveguide Advantages 

Practical microwave devices copy similar integrated optics planar sensor designs [2]. Attenuated Total Reflection is used 

widely to couple optical radiation into thin film waveguide modes [2] and in recent planar geometries [3-5]. Our 

microwave waveguides have a high index guide bounded by a lower aluminium metal plate with abrupt fixed field 

boundaries, and an upper surface to the air of lower permittivity which tapers the electric field into the superstrate 

medium (usually air or a cladding layer) on the order of wavelengths. Consider the transverse electric modes between the 

metal plates for TM (transverse magnetic with the electric field in the vertical y direction) with Ex = Ez = 0 whilst Ey ≠  

0   shown in fig. 1.  

 

 
 Fig. 1. Dielectric embedded waveguide inserted into metal waveguide cavity. 

 

Modelling of the waveguide is determined accordingly with Maxwell’s equations. 

Since ∇. 𝐸 = 0 then dEy/dy = 0 so clearly Ey  is not a function of y and thus   
𝑑2𝐸𝑦

𝑑𝑦2 = 0  

Deriving from Maxwell’s equations:  ∇ 2𝐸 =    −   𝜀0 𝜇0 
𝑑2𝐸

𝑑𝑡2    (1)  which expanded is given by: 

           ∇ 2𝐸 =        
  𝑑2𝐸𝑥

𝑑𝑥2      +     
𝑑2𝐸𝑦

𝑑𝑦2 +  
𝑑2𝐸𝑦 

𝑑𝑧2    =    −   𝜀0 𝜇0 
𝑑2𝐸

𝑑𝑡2        (2)    

 

This reduces to:  
  𝑑2𝐸𝑥

𝑑𝑥2      +     
𝑑2𝐸𝑧 

𝑑𝑧2    =    −   𝜀0 𝜇0 
𝑑2𝐸

𝑑𝑡2                       (3) 
With planar waveguides geometries offering high sensitivity for in-situ microwave probing near surface properties 

because of their path length. Microwave guiding is usually considered from a viewpoint they are a passive means of 

passing radiation along metal guides, not that guides may act as sensors in their own right. We select a waveguide 
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surface region to access fields, increasing sensitivity to environment change. Robust dielectric embedded microwave 

planar waveguides can monitor changes in absorption of adjacent ‘optically’ thick surface layers, or changes in 

environmental microwave refractive index properties (due to the different metal / dielectric materials).  
 

Fabrication was divided between planar waveguides some with embedded sensors, others a recess for refractive index 

measurement, or 1-D surface periodic gratings. Various guide materials were used; for demonstration purposes wax 

guides with Aluminium metal boundaries provided greatest design flexibility, regarded as ‘leaky’ Fabry Perot 

waveguides [4], loss increasing with length. Small air inclusions result in low/moderate scatter loss, but improved 

fabrication uses homogeneous materials i.e. (PTFE) [11] fig. 2.   

 

 

    

 

        Fig. 2 Perspex waveguide.                                              Fig. 3  Microwave input/output experimental coupling apparatus.  

 

Wax was used in early designs, it is easy to pour into pre-fabricated moulds, sculpt into intricate designs, or add 

functionality. Guide dimensions are: 2cm thick, 6.5mm wide, 25.2cm long for coupling to a microwave horn, fig. 3.,  In 

this figure a typical microwave cavity arrangement with transmitter to the left, receiver to the right (shown with 

waveguide installed) – TM mode. The horn source was powered by a Farnell LT30-2 dual power supply (output 10V 

nominally, checked with a Farnell DM141 multi-meter for stability monitoring. Receiver output voltage (mV) was 

monitored with digital multi-meters: a RS T100B and Fluke 89 IV data logger. Ambient temperature was monitored with 

a dual readout digital RS 427-461. A thermocouple unit (RS 610-067) measured - test samples, surfaces and waveguides. 

A Fluke 89 IV multimeter logged temperature readings during tests. A cavity shield 300 × 150 × 150 mm was 

constructed, clad with aluminium plate with aluminium foil tape to cover the cavity minimising stray radiation leakage in 

the laboratory (fig. 4).  

 
 

Please verify that (1) all pages are present, (2) all figures are correct, (3) all fonts and special characters are correct, and (4) all text and figures fit within the red
margin lines shown on this review document. Complete formatting information is available at http://SPIE.org/manuscripts

Return to the Manage Active Submissions page at http://spie.org/submissions/tasks.aspx and approve or disapprove this submission. Your manuscript will not
be published without this approval. Please contact authorhelp@spie.org with any questions or concerns.

11525 - 95 V. 2 (p.3 of 9) / Color: No / Format: A4 / Date: 10/22/2020 3:38:06 AM

SPIE USE: ____ DB Check, ____ Prod Check, Notes:



 

 
 

 

 

 

 

Fig. 4 Shielded waveguide cavity.   

 

4. RESULTS AND DISCUSSION 

Waveguide Materials Used:  
Six different prospective waveguide materials were investigated, with maximum output recorded in fig. 5, for a practical 

device length, typically about 25cm. yielding maximum guide output per centimetre length. Fig. 5 of output waveguide 

transmission clearly indicates that both PTFE and Perspex
TM

 waveguides provide the best choices in terms of reduced 

waveguide loss, however, wax was found to be the easiest material to work with and shape for overall initial designs, and 

was generally used in most moulded waveguide work [9]. 

 
Waveguide Cladding Materials:  
Different materials were examined placing 6.5cm square targets on a PTFE guide surface with the near edge placed 

along the guide’s centreline. These materials are then plotted in terms of overall increasing relative microwave 

transmission compared with air superstrate with the exception of a common aviation alloy (Aluminium 2024-T3) 

response before and after immersion in a standard Vernier saline solution. Results for different waveguide cladding 

materials are shown in fig. 6. 

 
  

Fig. 5 Different Waveguide materials. 
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Fig 6. Relative waveguide transmission for a range of different cladding materials. 

 

 
 

Fig. 7 Embedded thermocouple sensor. 
      

Thermal Measurements: waveguide output changes with forced heating. A fabricated wax guide with a small exposed 

area whilst the rest is covered with a reflective non-metal ‘mask’ as metal will make a ‘leaky waveguide’ into a highly 

guiding one. A thermocouple was embedded in the waveguide (fig. 7). A heat source was placed approximately 20 cm 

above the waveguide mask for 2100 seconds, whilst monitoring TM radiation waveguide output. Ambient temperature 

rose 1.6C and the waveguide temperature + 5.4C (fig.8a) plotted over time. The source was then switched off, cooling 

over 5250s with the waveguide temperature falling to ambient. Hysteresis is seen in the waveguide output response 

fig.8b. 
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Fig. 8a: TM Wax guide Heating/Cooling Cycle. 

 

 

 

Fig.8b: Observed Waveguide Temperature Hysteresis of Voltage vs Temperature. 

The waveguide has a repeatable and predictable behaviour response to direct heating which may be modelled. The test 

described here can be repeated and run for longer timescales so a constant elevated temperature could be achieved once 

equilibrium between the waveguide and the ambient air is reached for a given heating load. Extension of such testing 

might include construction of an enclosure with heating and cooling systems allowing full control of the waveguide 

environment temperature. This could be used to yield a relationship between the cavity output signal and waveguide 

temperature at a given ambient temperature. For the result presented here, hysteresis in the heating and cooling cycle was 

identified showing the effect from the ambient environment on heat transfer rates to and from the waveguide. This 

section demonstrates a temperature responsive material can provide a suitable temperature dependent waveguide sensor 

with a variety of surface relief masks and surface embedded sensors, some of which are readily available for purchase 

[12]. 

 
Ice Melting: Studies were also conducted on phase change: as solid to liquid phase changes are present during icing, and 

is highly relevant to manned and unmanned aerial vehicle (UAV) platform surfaces. Small glass pots were filled with 

4ml deionised water, a thermocouple immersed, and then frozen. Pots were then placed on a waveguide, and either 

Transvers Magnetic ™ or Transverse Electric (TE) mode outputs recorded whilst the ice warmed / melted.  
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Fig. 9: Ice – Water phase change monitoring.  

Temperature starts at -2.5C after guide installation. As the test progresses phase transition: ice to water occurs, holding 

about 0C for c. 280s. Subsequently the pot warms to ambient 22.5C. Cavity output rapidly falls, reaching minimum at 

phase change, followed by a rise to a higher steady temperature (fig. 9). 

 

 
 
Fig. 10 FLIR images of frozen water pot left to right then down at regular time intervals showing diffusion related cooling of the 

frozen pot on the wax guide, and the subsequent warming and melting of the water. 

 

The signal ‘dip’ is likely a result of a complex situation where a cavity experiences a combination of chilling when a 

cold pot cools a guide, and changing dielectric behaviour as ice melts to water, altering absorbed evanescent microwave 

energy. Pure water dielectric loss at 10 GHz (near our frequency) and close to common navigation related-radar 

frequencies is maximum close to 0C. A  Forward Looking Infra Red (FLIR) E320 radiometrically calibrated thermal 

camera sequence (fig. 10) shows heating / melting of a frozen pot, (top row left to right then down at 3 minute intervals). 

Initially ice appears cold ‘black’, whilst the guide cools over time with “cold diffusion” transferred from the pot into the 

waveguide. The large difference in the real part of the dielectric constant for radiation around 10GHz at the melting point 

of ice is presented here in fig. 11 [13]. 
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Figure 11: Complex behaviour of the real part of dielectric constant of water and ice at 10 GHz and other frequencies as a function of 

temperature [13]. 

 
The dielectric loss of pure water at around 10GHz (very close to the frequency of the microwave source used here) 

shows a maximum very close to 0C and consequently an anticipated rapid fall and then recovery in output transmission 

[14]. Therefore, during the phase transition when melt water forms and can gather as a film beneath any floating ice in 

the test cell or on the waveguide surface there is likely to be a minimum in the signal response whilst the dielectric loss is 

at a maximum. The prominence of the trough is somewhat less with the ‘drop’ tests compared with a frozen cell owing to 

the much smaller volume of ice/water absorbing the microwave radiation.  

 

5. CONCLUSIONS 

Planar waveguides allows microwave output temperature response to be examined evanescently. The waveguide 

temperature response demonstrated clear hysteresis behaviour. Microwave output transmission also shows loss as a 

function of target material, clearly showing that PTFE or Perspex

TM

 provide the lowest loss per centimetre, and 

exhibiting cladding  material selectivity. In other work metal targets have also been detected through layers of sand as a 

function of depth [5]. Sensitivity over time for small water volume provides good output correlation with temperature. 

Thermal imagery of a combined pot/guide shows guide cooling accompanies cell warming. However, separating the 

contributions of both cooling / heating is difficult.  
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