CONSERVATIVE OR LIBERAL OXYGEN THERAPY IN ADULTS AFTER CARDIAC ARREST

An individual-level patient data meta-analysis of randomised controlled trials

Authors’ Affiliations

Paul J Young1,2*, Michael Bailey3,4, Rinaldo Bellomo3,4,5,6, Stephen Bernard7, Janet Bray7, Pekka Jakkula8, Markku Kuisma6, Diane Mackle1, Daniel Martin10,11, Jerry P Nolan12,13, Rakshit Panwar14,15, Matti Reinikainen16,17, Markus B Skrifvars18, Matt Thomas19

1 Medical Research Institute of New Zealand, Wellington, New Zealand
2 Intensive Care Unit, Wellington Hospital, Wellington, New Zealand
3 Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Victoria, Australia
4 University of Melbourne, Parkville, Victoria, Australia
5 Intensive Care Unit, Austin Hospital, Heidelberg, Victoria, Australia
6 Centre for Integrated Critical Care, University of Melbourne, Parkville, Victoria, Australia
7 Department of Epidemiology and Preventive Medicine, Monash University, Victoria, Australia
8 Department of Perioperative, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Finland.
9 Department of Emergency Medicine, Helsinki University Hospital, Finland.
10 Intensive Care Unit, Royal Free Hospital, London, UK.
11 Peninsula Medical School, University of Plymouth, UK.
12 Warwick Clinical Trials Unit, University of Warwick, Coventry, UK
13 Consultant in Anaesthesia and Intensive Care Medicine, Royal United Hospital, Bath, UK
14 Intensive Care Unit, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
15 School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
16 Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
17 Department of Anaesthesiology and Intensive Care, Kuopio University Hospital, Kuopio, Finland
18 Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Finland
19 Intensive Care Unit, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK

* Corresponding author

Dr. Young at the Intensive Care Unit, Wellington Hospital, Private Bag 7902, Wellington South, New Zealand, or paul.young@ccdhb.org.nz

Abstract word count: 243 words

Manuscript word count: 2822 words
ABSTRACT

Aim: The effect of conservative versus liberal oxygen therapy on mortality rates in post cardiac arrest patients is uncertain.

Methods: We undertook an individual patient data meta-analysis of patients randomised in clinical trials to conservative or liberal oxygen therapy after a cardiac arrest. The primary end point was mortality at last follow-up.

Results: Individual level patient data were obtained from seven randomised clinical trials with a total of 429 trial participants included. Four trials enrolled patients in the pre-hospital period. Of these, two provided protocol-directed oxygen therapy for 60 minutes, one provided it until the patient was handed over to the emergency department staff, and one provided it for a total of 72 hours or until the patient was extubated. Three trials enrolled patients after intensive care unit (ICU) admission and generally continued protocolised oxygen therapy for a longer period, often until ICU discharge. A total of 90 of 221 patients (40.7%) assigned to conservative oxygen therapy and 103 of 206 patients (50%) assigned to liberal oxygen therapy had died by this last point of follow-up; absolute difference; odds ratio (OR) adjusted for study only; 0.67; 95% CI 0.45 to 0.99; P=0.045; adjusted OR, 0.58; 95% CI 0.35 to 0.96; P=0.04.

Conclusion: Conservative oxygen therapy was associated with a statistically significant reduction in mortality at last follow-up compared to liberal oxygen therapy but the certainty of available evidence was low or very low due to bias, imprecision, and indirectness.

(PROSPERO registration number: CRD42019138931)
INTRODUCTION

Withdrawal of life sustaining treatment based on prognostication of a poor neurological outcome following hypoxic ischaemic brain injury is a common cause of death among post cardiac arrest patients on the Intensive Care Unit (ICU)[1]. It is biologically plausible that the liberal use of oxygen that occurs with standard management of comatose post cardiac arrest patients contributes to secondary brain injury[2]. In particular, exposure to hyperoxaemia worsens brain damage in animal models of hypoxic ischaemic encephalopathy[3]. Hyperoxaemia is independently associated with increased mortality risk in some observational studies of post cardiac arrest patients[4-7]. However, this association has not been shown in all studies[8, 9] and conservative use of oxygen may increase hypoxaemia, which is consistently associated with increased mortality risk[4-9]. Thus, clinicians are uncertain about the optimal oxygen target in these patients.

Several randomised controlled trials have compared conservative with liberal oxygen therapy in patients resuscitated from cardiac arrest[10-14]. Some other trials have compared such oxygen therapy regimens in heterogeneous ICU patient populations[15-17] and these trials include patients with possible hypoxic ischaemic encephalopathy. However, no individual patient level data meta-analysis that includes all patients with possible hypoxic ischaemic encephalopathy from randomised controlled trials of conservative vs. liberal oxygen has been performed.
We performed a systematic review, aggregate data meta-analysis and individual level patient data meta-analysis using data from patients post cardiac arrest with possible hypoxic ischaemic encephalopathy from randomised controlled trials that compared liberal versus conservative oxygen regimens. Our primary hypothesis was that conservative oxygen therapy would reduce all-cause mortality at the last point of follow-up. Our secondary hypothesis was that conservative oxygen therapy would increase the proportion of patients with a favourable functional outcome at last point of follow-up.

METHODS

Study design, trial and patient-level eligibility criteria

We performed a systematic review, aggregate data meta-analysis and individual patient data meta-analysis of randomised controlled trials. We searched the Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE from inception to August 11 2020, without language restrictions, for randomised controlled trials comparing the use of liberal and conservation oxygen therapies in adults with suspected hypoxic ischaemic encephalopathy. The specific search strategies used are shown in the eMethods in the Electronic Supplemental Material (ESM). Randomised controlled trials that included heterogeneous populations of patients who were mechanically ventilated in ICU were included provided that individuals who fulfilled our patient level eligibility criteria could be identified using baseline characteristics in respective study databases.
We included adults (aged at least 18 years of age) with possible hypoxic ischaemic encephalopathy, defined as: (i) mechanically ventilated in ICU with an ICU admission diagnosis of cardiac arrest, OR (ii) a clinical ICU admission diagnosis of confirmed or suspected hypoxic ischaemic encephalopathy, OR (iii) unconscious (GCS<9) with an endotracheal tube or supraglottic airway in situ with sustained return of spontaneous circulation (ROSC) following a cardiac arrest. We excluded patients who were pregnant.

This trial was prospectively registered (PROSPERO registration number: CRD42019138931). All trials included in this analysis received ethics approval and additional approvals to allow for data sharing were obtained where required.

Data extraction plan
Titles and/or abstracts of studies were retrieved using the search strategy and those from additional sources were screened independently by two review authors to identify studies that potentially meet the inclusion criteria outlined above. The full text of potentially eligible studies were retrieved and independently assessed for eligibility by two review team members. Any disagreement between them over the eligibility of a particular study was resolved through discussion with a third reviewer.

Risk of bias (quality assessment)
Data supplied for included randomised controlled trials were checked for: missing data; internal data consistency; randomisation integrity (balance of
patient characteristics at randomisation, pattern of randomisation); follow-up
and censoring pattern. Summary tables were checked with the trial protocol
and latest trial report or publication. Any discrepancies or unusual patterns
were checked with the study investigator.

Outcome variables

The main outcomes were pre-specified in advance and were as follows: (i)
mortality at last reported time point (primary end point); (ii) "good" functional
outcome defined at last reported time point based on either: a cerebral
performance category (CPC) score of 1 or 2, OR a Glasgow Outcome Scale -
Extended (GOS-E) score of 5 or more; (iii) survival time; (iv) in-hospital
mortality; (v) 30 day mortality; (vi) 90 day mortality; and, (v) 180 day mortality.

Definitions of intervention and control groups

The treatment arm with the lower oxygen target, measured by any one of the
following: fraction of inspired oxygen (FiO₂), arterial partial pressure of oxygen
(PaO₂), arterial oxygen saturation (measured by blood analysis), or peripheral
oxygen saturation (measured by a pulse oximeter [SpO₂]) was defined as the
conservative arm (intervention).

The treatment arm with the higher oxygen target, measured by any one of the
following: fraction of inspired oxygen (FiO₂), arterial partial pressure of oxygen
(PaO₂), arterial oxygen saturation (measured by blood analysis), or peripheral
oxygen saturation (measured by a pulse oximeter [SpO₂]) was defined as the
liberal arm (comparator / control).
Baseline variables of interest, effect modifiers, and confounders

Investigators for the included studies supplied line by line individual participant data comprising: (i) de-identified patient study number; (ii) treatment group assignment; (iii) baseline characteristics: age; gender; arrest location; bystander response; first monitored rhythm; cause of arrest; presence of ST-elevation myocardial infarction (STEMI); time to response; time to defibrillation; time to sustained ROSC; comorbidities; drugs given during resuscitation; pre-randomisation mean arterial pressure; pre-randomisation arterial partial pressure of carbon dioxide (PaCO$_2$); (iv) co-interventions: use of targeted temperature management; neuroprognostication tests; (v) oxygenation data: all oxygenation data available from all studies; (vi) outcome data: mortality at last reported time point; survival time from randomisation; in-hospital & day 180 mortality; cause-specific mortality (neurological cause of death vs. non-neurological cause of death); neurological outcome at six months following randomisation (based on CPC and/or GOS-E).

Subgroups

Pre-specified subgroup pairs of interest were as follows: (i) patients with in-hospital arrest versus out of hospital arrest; (ii) patients with a medical cause of cardiac arrest versus a non-medical cause of cardiac arrest.

Statistical analysis plan

Aggregate data were initially used for an analysis of all-cause mortality at last follow-up. We recorded numerators and denominators by treatment group
from which estimates of risks of death were derived. Data were pooled using the Mantel-Haenszel weighting method and presented as relative risk (RR) and 95% confidence intervals (CI). All further analyses were conducted using individual level patient data from all randomised participants. Baseline comparisons by treatment group were performed using a X^2 test for proportions or a Fisher’s Exact test where numbers were small, Student’s T-test for normally distributed data and Wilcoxon Rank sum test otherwise with results reported as numbers (%), mean SD, or median [IQR] respectively.

Outcomes were analysed on an intention to treat basis with no imputation unless specified. Mortality and the proportion of patients with a good neurological outcome by treatment group were compared using logistic regression adjusting for study as a fixed effect. The numbers at risk in each group and the number and proportion of events were reported as well as the equivalent absolute risk difference and relative risk along with corresponding 95% confidence intervals (95% CI). The proportion of patients with a good neurological outcome by treatment group were analysed and reported in a similar fashion.

Survival times were compared using Cox-proportional hazards regression adjusted for study as a fixed effect. Results were presented using Kaplan Meier curves with group comparison using a log-rank test. We undertook sensitivity analyses adjusting for pre-specified covariates that predict outcome in cardiac arrest patients (age, whether or not the cardiac arrest was witnessed, whether or not there was bystander CPR, whether there was a
shockable rhythm, the time until sustained return of circulation). We conducted an additional sensitivity accounting for an observed baseline imbalance in the proportions of patients by treatment group who had a previous myocardial infarction and who had a cardiac arrest with a medical cause. In addition, for survival we conducted a sensitivity analysis in which all hospital survivors from the EXACT pilot trial were assigned a survival time of 30 days. This assumption was made because survival times for hospital survivors were not available and was based on the findings from PARAMEDIC-2 where hospital mortality in a similar population was found to closely mirror 30 day mortality[18]. In all analyses a two-sided P value of 0.05 was used to indicate statistical significance. P values for secondary end points and subgroup analyses were not adjusted for multiplicity and should be considered hypothesis-generating.

All analyses were performed using SAS version 9.4 (SAS Institute Inc., Cary, NC) and Review Manager (RevMan) Version 5.4. (The Cochrane Collaboration, 2020)

RESULTS

Data sources

Individual level patient data were obtained from seven out of eight randomised controlled trials identified in our systematic review with a total of 429 trial participants included. Details of the included trials and of the trial from which data could not be obtained are shown in the Table S1 (ESM).
Patient characteristics

Of the 429 trial participants included in this analysis, 222 were assigned to conservative oxygen therapy and 207 were assigned to liberal oxygen therapy (Figure 1). Compared with patients assigned to liberal oxygen therapy, those assigned to conservative oxygen therapy were more likely to have an initial rhythm that was shockable, more likely to have medical cause of cardiac arrest, and less likely to have had a prior myocardial infarction (Table 1). In other respects, the study groups had similar baseline characteristics (Table 1 and Table S2, ESM).

Oxygen therapy

Four trials enrolled patients in the pre-hospital period (Table 2). Of these, two provided protocol-directed oxygen therapy for 60 minutes, one provided it until the patient was handed over to the emergency department staff, and one provided it for a total of 72 hours or until the patient was extubated. Three trials enrolled patients following ICU admission. The duration of protocol-directed oxygen therapy was generally longer in these trials than in the trials that commenced study treatment in the pre-hospital period with the largest providing protocol-directed oxygen therapy for up to 28 days.

Co-interventions

Data on co-interventions and neuroprognostic testing were not available for all participants because they were not collected in all trials (Table S3, ESM). However, for those participants where data were available, there were no differences between treatment groups in the use of amiodarone or adrenaline.
during resuscitation. Targeted temperature management was used in over 90% of patients in both groups. Data on neuroprognostic tests undertaken were only available for one study[19], but for this study, use of such testing was similar by treatment group.

Patient outcomes

The duration of follow-up varied by study ranging from follow-up to hospital discharge to follow-up to 365 days (Table S1, ESM). A total of 90 of 221 patients (40.7%) assigned to conservative oxygen therapy and 103 of 206 patients (50%) assigned to liberal oxygen therapy had died by this last point of follow-up; odds ratio (OR) (adjusted for study only); 0.67; 95% CI 0.45 to 0.99; P=0.045; OR (adjusted for study and pre-specified baseline variables), 0.58; 95% CI 0.35 to 0.96; P=0.04 (Table 3 and Figure 2). Findings were similar in a sensitivity analysis incorporating adjustment for observed baseline imbalances between treatment groups including whether the patient had previously had an acute myocardial infarction and whether the cardiac arrest was of presumed to have a medical cause (Table S4, ESM). Findings in the aggregate data meta-analysis were similar to those of the individual patient data meta-analysis (Figure 3).

Secondary outcomes

In-hospital, 30-day, 90-day, and 180-day mortality were consistently lower in patients assigned to conservative oxygen therapy (Table 3). Among patients from trials where neurological outcomes were formally assessed at six months, a total of 85 of 154 (55.2%) assigned to conservative oxygen therapy
and 66 of 145 (45.5%) assigned to liberal oxygen therapy had a favourable neurological outcome at six months; OR 1.53; 95% CI 0.96 to 2.46; P=0.08; adjusted OR 1.62; 95% CI 0.95 to 2.76; P=0.07. Findings in relation to all secondary outcome variables were similar in sensitivity analyses incorporating adjustment for observed baseline imbalances between treatment groups in whether the patient had previously had an acute myocardial infarction and whether the cardiac arrest was of presumed to have a medical cause (Table S4, ESM). Survival analyses using imputation for duration of survival among the EXACT pilot trial patients are shown in Figure S1 (ESM).

Subgroups
A total of 406 patients had an OHCA and 23 had an IHCA. All but 11 patients had a cardiac arrest of presumed medical cause. There were no statistically significant interactions between treatment group allocation and the various study outcomes for patients by location of arrest (Table S5, ESM). Because of small numbers, interaction analyses were not performed based on whether or not cardiac arrest was of a presumed primary medical cause. Findings limited to patients with a presumed primary medical cause of arrest, which were similar to the findings of the overall analyses, are shown in Table S6 (ESM).

DISCUSSION
In this individual patient data meta-analysis of randomised controlled trials comparing conservative with liberal oxygen therapy in patients with possible hypoxic ischaemic encephalopathy, conservative oxygen was associated with
significantly reduced mortality at the last follow-up. These findings were robust to adjustment for pre-specified baseline covariates and in other sensitivity analyses.

Our primary outcome variable findings are consistent with animal data[3] and some observational data[4-7, 9] and support the hypothesis that conservative oxygen therapy reduces mortality in cardiac arrest patients. The findings of our aggregate data meta-analysis and individual data meta-analysis are concordant but the latter analysis offers the considerable advantage of allowing adjustment for important patient-level baseline variables that are powerful predictors of outcome in cardiac arrest patients[20]. There was no evidence of heterogeneity in findings of trials included. Our study synthesises individual patient-level data from all trials identified by systematic review with the exception of ten patients admitted to ICU following a cardiac arrest in the Oxygen-ICU trial[17]. Because we used mortality at last known point of contact as our primary outcome variable, most trial participants were included in our primary analysis.

Despite the strengths of our analysis, based on the GRADE (Grading of Recommendations, Assessment, Development and Evaluations) approach[21], we consider that the certainty of evidence supporting conservative oxygen therapy following cardiac arrest is low or very low for a number of reasons. First, some data for secondary outcomes were not available for some patients and the between-group differences in favourable neurological outcomes, and most mortality outcomes were not statistically
significant. Secondly, oxygen therapy is, by necessity, an open label therapy and we cannot exclude the possibility that patients assigned to conservative oxygen therapy were treated differently from patients assigned to liberal oxygen therapy. Although mortality has a low risk of ascertainment bias, decisions related to withdrawal of life sustaining therapies could have been influenced by knowledge of treatment assignment and no trials protocolised decision-making in relation to withdrawal of life-sustaining therapies[22]. Thirdly, the 95% confidence intervals around effect size estimates are imprecise and even one additional death in the conservative oxygen therapy group in any trial would mean that the primary end point findings were not statistically significant. Fourthly, the included trials evaluated oxygen regimens in a mixture of pre-hospital and ICU settings. Moreover, oxygen regimens varied in duration from one hour to 28 days or more, and the amount of oxygen delivered in the regimens tested varied. Thus, we consider that the strength of our findings should be downgraded because of indirectness. Finally, further data are needed on the effect of different oxygen regimens on neurological outcomes, in particular. Such data were available for fewer than 70% of patients included in this analysis.

CONCLUSIONS
In this individual patient data meta-analysis of randomised controlled trials conservative oxygen therapy was associated with reduced mortality at last follow-up compared with liberal oxygen therapy. However, based on the risk of bias, imprecision of effect size estimates, and indirectness of evidence for any specific approach to oxygen therapy, we consider that the certainty of
available evidence supporting the use of conservative oxygen therapy in cardiac arrest patients is low or very low.

Authorship statement

I confirm that all listed authors have made substantial contributions to:
(1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data,
(2) drafting the article or revising it critically for important intellectual content,
(3) final approval of the version to be submitted.

CONFLICT OF INTEREST STATEMENT

Paul Young is the Chief Investigator for the Mega-ROX trial, which is comparing conservative and liberal oxygen therapy in ICU patients including post cardiac arrest patients. Stephen Bernard is the Chief Investigator for NHMRC funded EXACT trial, which is comparing conservative and liberal oxygen therapy in post cardiac arrest patients. Jerry Nolan is a co-investigator on the PROXY study which was funded by an NIHR Programme Development Grant (RP-DG-0612-10004) and is evaluating oxygen regimens in cardiac arrest patients. Daniel Martin has received lecture and consultancy fees from Siemens Healthineers and Edwards Lifesciences. Markus Skrifvars reports receiving speaker’s fees and travel grants from BARD Medical (Ireland).

ACKNOWLEDGEMENTS

This research was conducted during the tenure of a Health Research Council of New Zealand Clinical Practitioner Fellowship held by Paul Young. Janet Bray is funded by a Heart Foundation of Australia Fellowship.
REFERENCES

LEGENDS TO FIGURES

Figure 1. Participant flow diagram

Abbreviations: RCTs: randomised controlled trials.
Figure 2. Kaplan-Meier survival estimates of the probably of survival*

* The EXACT pilot trial was excluded from this analysis because duration of survival data were not recorded. The hazard ratio adjusted for study was 0.72 (95%CI, 0.52 to 0.97), P=0.03. The hazard ratio adjusted for age, whether or not the cardiac arrest was witnessed, whether or not there was bystander CPR, whether there was a shockable rhythm, the time until sustained return of circulation; whether the patient had previously had an acute myocardial infarction, and whether there was a cardiac arrest of presumed cardiac cause, 0.79 (95%CI, 0.56 to 1.10), P=0.16.

![Graph showing Kaplan-Meier survival estimates with number of subjects at risk](image)
Figure 3. Aggregate data meta-analysis findings for the effect of liberal oxygen vs conservative oxygen on mortality at last follow-up*

* The CLOSE-I trial was not included in the aggregate data meta-analysis because all four patients in the CLOSE-I trial who had a cardiac arrest prior to randomisation were allocated to liberal oxygen.

Table 1: Baseline characteristics*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Conservative oxygen (n=222)</th>
<th>Liberal oxygen (n=207)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age – yr</td>
<td>63.0±14.3</td>
<td>61.1±14.9</td>
</tr>
<tr>
<td>Male sex – no. (%)</td>
<td>178 (80.2%)</td>
<td>163 (78.7%)</td>
</tr>
<tr>
<td>Arrest location in-hospital – no. (%)</td>
<td>10 (4.5%)</td>
<td>13 (6.3%)</td>
</tr>
<tr>
<td>Emergency department</td>
<td>3 (1.4%)</td>
<td>6 (2.9%)</td>
</tr>
<tr>
<td>Hospital ward</td>
<td>5 (2.3%)</td>
<td>3 (1.4%)</td>
</tr>
<tr>
<td>ICU</td>
<td>1 (0.5%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Operating theatre</td>
<td>0 (0%)</td>
<td>1 (0.5%)</td>
</tr>
<tr>
<td>Other location in hospital</td>
<td>1 (0.5%)</td>
<td>3 (1.4%)</td>
</tr>
<tr>
<td>Arrest location Out-of-hospital</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home / residence</td>
<td>72 (32.4%)</td>
<td>67 (32.4%)</td>
</tr>
<tr>
<td>Assisted living / nursing home</td>
<td>1 (0.5%)</td>
<td>2 (1.0%)</td>
</tr>
<tr>
<td>Other location (not in hospital)</td>
<td>80 (36.0%)</td>
<td>70 (33.8%)</td>
</tr>
<tr>
<td>Arrest location data missing</td>
<td>59 (26.6%)</td>
<td>55 (26.6%)</td>
</tr>
<tr>
<td>Witness arrest – no. (%)</td>
<td>193 (86.9%)</td>
<td>172 (83.1%)</td>
</tr>
</tbody>
</table>
Table 2: Oxygen regimens tested in each study

<table>
<thead>
<tr>
<th>Study</th>
<th>Timing of study treatment</th>
<th>Conservative oxygen group</th>
<th>Liberal oxygen group</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOSE</td>
<td>Within 24 hours of initiation of invasive mechanical ventilation in ICU.</td>
<td>A target SpO$_2$ of 88-92% was applied until the patient was discharged from ICU unless an FiO$_2$ of >0.8 was required, in which case, SpO$_2$ targets were at the discretion of the treating clinician.</td>
<td>A target SpO$_2$ of ≥96% was applied until the patient was discharged from ICU.</td>
</tr>
<tr>
<td>COMACARE</td>
<td>Following ICU admission</td>
<td>A target PaO$_2$ from 75mmHg to 112.5mmHg for 36 h from the ICU admission or until the patient was extubated or ventilation was set to a spontaneous mode, whichever occurred first.</td>
<td>A target PaO$_2$ from 150mmHg to 187.5mmHg for 36 h from the ICU admission or until the patient was extubated or ventilation was set to a spontaneous mode, whichever occurred first.</td>
</tr>
<tr>
<td>EXACT PLOT</td>
<td>Prehospital after sustained ROSC, when an advanced airway was in place, and when initially (Sept 2015–March 2016) patients received 2L/min; however, after April 2016 initial administration of oxygen was at 4L/min with a reduction to 2L/min the SpO$_2$ was ≥90%</td>
<td>Oxygen was delivered at >10 L/min via a bag-valve reservoir until the patient was handed over to the ED staff.</td>
<td></td>
</tr>
</tbody>
</table>
the SpO\textsubscript{2} was ≥96%.

HOT OR NOT

Prehospital after sustained ROSC when an advanced airway was in place

A target SpO\textsubscript{2} of 90-94% was applied for 72 hours or until the patient was extubated, whichever was sooner.

In the pre-hospital period, the highest FIO\textsubscript{2} possible was used. In hospital, the treating clinician could determine the SpO\textsubscript{2} target but SpO\textsubscript{2}>95% was suggested. Protocol-directed oxygen therapy continued for 72 hours or until the patient was extubated, whichever was sooner.

ICU-ROX

Within two hours of invasive mechanical ventilation in the ICU

The upper limit monitored SpO\textsubscript{2} alarm was set to sound when the level was >96%, and the FIO\textsubscript{2} was decreased to 0.21 if the SpO\textsubscript{2} was ≥90%. An alternative SpO2 limit could be used at the discretion of the treatment. Patients received the assigned oxygen-therapy strategy until discharge from the ICU or 28 days after randomisation, whichever was earlier.

KUISMA

Prehospital immediately following ROSC

FIO\textsubscript{2} 0.3 for 60 minutes; increased in 0.1 increments if the SpO\textsubscript{2} was <95% for ≥5 minutes.

FIO\textsubscript{2} 1.0 for 60 minutes

PROXY

Prehospital immediately following ROSC

A target SpO\textsubscript{2} of 94-98% was applied for 60 minutes.

FIO\textsubscript{2} 1.0 for 60 minutes

Table 3: Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Conservative oxygen (n=222)</th>
<th>Liberal oxygen (n=207)</th>
<th>odds ratio (95% CI); P value</th>
<th>adjusted for study*</th>
<th>adjusted for all specified covariates†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcome – n/N(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality at last follow-up</td>
<td>90/221 (40.7%)</td>
<td>103/206 (50%)</td>
<td>0.67 (0.45-0.99); P=0.045</td>
<td>0.58 (0.35-0.96); P=0.04</td>
<td></td>
</tr>
<tr>
<td>Secondary outcomes – n/N(%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favourable neurological outcome at six months†</td>
<td>85/154 (55.2%)</td>
<td>66/145 (45.5%)</td>
<td>1.53 (0.96-2.46); P=0.08</td>
<td>1.62 (0.95-2.76); P=0.07</td>
<td></td>
</tr>
<tr>
<td>30-day mortality</td>
<td>81/194 (41.8%)</td>
<td>97/191 (50.8%)</td>
<td>0.63 (0.41-0.97); P=0.04</td>
<td>0.63 (0.38-1.05); P=0.08</td>
<td></td>
</tr>
<tr>
<td>90-day mortality</td>
<td>72/180 (40.0%)</td>
<td>89/180 (49.4%)</td>
<td>0.67 (0.44-1.03); P=0.08</td>
<td>0.65 (0.39-1.08); P=0.10</td>
<td></td>
</tr>
<tr>
<td>180-day mortality</td>
<td>65/165 (39.4%)</td>
<td>76/158 (48.1%)</td>
<td>0.69 (0.44-1.08); P=0.10</td>
<td>0.67 (0.40-1.12); P=0.13</td>
<td></td>
</tr>
<tr>
<td>In-hospital mortality</td>
<td>69/161 (42.9%)</td>
<td>78/148 (52.7%)</td>
<td>0.66 (0.42-1.04); P=0.08</td>
<td>0.54 (0.29-1.01); P=0.05</td>
<td></td>
</tr>
</tbody>
</table>

* Adjusted for study as a fixed effect.
† Adjusted for age, whether or not the cardiac arrest was witnessed, whether or not there was bystander CPR, whether there was a shockable rhythm, the time until sustained return of circulation.
‡ This analysis was limited to patients from trials where neurological outcomes were formally assessed at six months.
Abbreviations: CI: Confidence Interval