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Abstract 

APPLICATION OF AUTONOMOUS UNDERWATER 
VEHICLES TO THE STUDY OF DEEP-SEA BENTHIC 

ECOLOGY 

Nils Piechaud 

Rising anthropogenic pressure in the deep sea prompts concerns for its short and long 

term conservation, however, it remains mostly unexplored. Effective conservation 

strategies need to be based on a sound understanding of the target ecosystem, or 

ecosystems, which is not the case in the deep sea, owing largely to the lack of 

sufficient data.  Autonomous Underwater Vehicles (AUV) could help address several 

long-standing challenges in the study of deep-sea ecology, thanks to their capacity to 

efficiently sample this remote environment. This thesis aims to investigate how these 

vehicles can contribute to the study of deep-sea benthic ecology through applying AUV 

acquired data (presented in chapter 2) to address fundamental questions in deep-sea 

ecology (Chapters 3 and 4), as well as asking how the benefits of AUVs, their capacity 

to quickly gather data in the form of large numbers of seafloor images, can be fully 

realised (Chapter 5). The research conducted in this thesis suggests AUVs are able 

to quickly and efficiently obtain representative samples, allowing efficient and 

statistically robust quantification of the density and diversity of benthic epifauna. They 

can also successfully detect consistent structure in the fine scale distribution of a 

model benthic epifaunal species (Syringammina fragilissima). However, the AUV 

derived dataset, including high resolution data on environmental variables, failed to 

clearly establish the environmental parameters driving this distribution. This suggests 

that although AUVs are capable of gathering large high-resolution datasets, the 

number of data-points is not the only important criterion for a representative sample. 

Finally, the application of Computer Vision and Artificial Intelligence methods to the 

AUV data set demonstrated that useful results can be obtained for some taxa, and the 

fast development of this technology promises future progress.  
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Chapter 1: Literature review – Challenges and 

innovations for deep-sea benthic ecology 

 

1.1 The challenges of deep-sea ecology 

 

The deep sea is commonly defined as the part of the ocean deeper than 200 meters.  

It is the largest ecosystem on earth covering 65% of the planet’s surface (Danovaro et 

al., 2008, Ramirez-Llodra et al., 2011), up to 95% of the biosphere’s volume and could 

be home to between 0.5  to 10 million species (Higgs and Attrill, 2015).  

The study of the deep sea began in the XIXth century first by punctual observations of 

life at great depth which led to targeted expeditions topped by the voyage of the 

Challenger (1872–1876), when the existence of diverse life in the deep was irrefutably 

demonstrated. The following century saw continued exploration  of this environment 

and significant advances in the technology available to the research community to 

facilitate study (Ramirez-Llodra et al., 2011). With these technological advances came 

major new discoveries, including the discovery of both gigantic and cryptic species 

populating the abyss. Given the current rate of species and habitat discovery and 

description, the deep sea is a virtually infinite source of taxonomic novelty (Snelgrove, 

2016a, Costello and Chaudhary, 2017, Costello et al., 2013, Costello et al., 2010). 

Although the pace of deep-sea exploration is increasing (Gage and Tyler, 1991, Rex 

and Etter, 2010, Clark et al., 2016b), this ecosystem is vast. It is unlikely that 

knowledge of deep-sea ecology will equal that of shallow-water or terrestrial ecology 

any time soon. The relative “out of sight” state of the deep sea tends to maintain 
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general public interest to a mere distant fascination. However, this hasn’t kept 

commercial activities from expanding into the deep-sea environment (Danovaro et al., 

2017a, Van Dover et al., 2017, Van Dover et al., 2014, Van Dover, 2011).  Diminishing 

resources on land will only encourage this movement, subsequently a new chapter in 

the relationship between man and the greatest wilderness on earth is just beginning. 

Deep-sea scientific exploration is ultimately driven by technological development. This 

technological development has often gone hand-in-hand with commercial exploitation.  

Although barely explored (Webb et al., 2010, Glover et al., 2010), deep-sea life is 

facing increasing human pressure and is threatened by a number of anthropogenic 

activities such as bottom trawling (Clark et al., 2016a), mining (Collins et al., 2013, 

Vanreusel et al., 2016, Van Dover et al., 2017), plastic pollution (Woodall et al., 2014, 

Courtene-Jones et al., 2017), oil and Gas exploration (Cordes et al., 2016) and climate 

change (Mora et al., 2011, Levin and Le Bris, 2015, Balmaseda et al., 2013). These 

threats to the deep-sea are well identified but their exact effects on the ecosystems 

are still poorly documented (Van Dover et al., 2014). In this context, a viable and world-

wide conservation strategy is urgently required in the world’s oceans (Ramirez-Llodra 

et al., 2011, Barbier et al., 2014, Clark et al., 2016a, Danovaro et al., 2017a, Turner et 

al., 2017) in order to avoid loss of habitat and species extinctions such as those that 

have occurred on land (McCauley et al., 2015).  

While biologists and managers have now developed strategies for the conservation of 

specific land and coastal ecosystems (Borja et al., 2016, Pimm et al., 2014), no such 

strategies are available for the deep-sea ecosystem. Calls for better management of 

the deep sea, particularly Areas Beyond National Jurisdiction (ABNJ), are multiplying 

from both the scientific community and civil society (Van Dover et al., 2014, Ban et al., 

2013) with some progress already made. Several international initiatives such as 
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resolution 61/105 of the United Nations General Assembly (2003) or the OSPAR 

Convention (OSPAR., 2008b) encourage nations to identify and map the distribution 

of vulnerable and / or threatened marine habitats  in order to effectively organise their 

protection.  Furthermore, conservation specialists now tend to advocate for a more 

comprehensive approach to conservation and management, which includes societal 

preferences and costs (Ban et al., 2013) as well setting priorities after giving relative 

values to different ecosystems (Marchese, 2014). 

The foundations of conservation science that were laid by terrestrial biologists and 

then exported to the coastal waters and fisheries in the open ocean, are now being  

adapted to the deep sea (Probert, 2017). It relies on thorough understanding of 

ecosystem composition and dynamics to assess resistance and resilience, monitor 

health and predict evolution over time. Practical information provided to policy makers 

by ecologists comes as interpreted data derived from field observation like vulnerable 

species occurrence data (Clark et al., 2016b), habitat classifications (Howell et al., 

2010b) and representation of extent and distribution of species and communities 

(Ross and Howell, 2013), often using maps. Interpretation of raw data by ecologists 

mobilises the fundamental knowledge of the ecosystem, such that the observation can 

be placed within a wider context and interpreted correctly. In the deep sea, however, 

the lack of fundamental knowledge renders such endeavours difficult (Van Dover et 

al., 2014, Danovaro et al., 2014, Anderson et al., 2016, Howell et al., 2016a). 

Understanding the fundamental ecology of the deep sea is a major research challenge 

of the coming century and there is much work left to be done (Higgs and Attrill, 2015, 

Mora et al., 2011). Illustrations of this state of affairs can be seen in many aspects of 

deep-sea science. For example, current estimates suggest we have explored between 

0.05 - 5% of the deep sea (Danovaro et al., 2017b), which suggests there is much left 
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to discover. Additionally, there are currently more than 243,000 marine species 

described and estimation of the remaining number of undiscovered species vary, but 

is probably around 1.5 million (Costello and Chaudhary, 2017). Finally, lacking such 

fundamental knowledge may hamper conservation effort in particular as it is 

impossible to establish ecological baselines to which an ecosystem’s state can be 

compared for monitoring environmental health (Crowder and Norse, 2008, Grassle 

and Maciolek, 1992a, Borja et al., 2016).  

The fundamental questions that need to be answered include (but are not limited to): 

1) the number of species within a given sampling unit. 2) their spatial dynamic and 

distribution at fine scale and 3) the relationship with their environment (drivers of 

distribution. These three elements will be investigated in this thesis for the sessile 

epibenthic megafauna.  

While detailing the other size fractions and components of deep-sea biodiversity will 

be too much to present here, much of the fundamental knowledge used to formulate 

the theoretical basis of deep-sea biology are extrapolations of studies based on one 

functional or taxonomic group, be it sediment infauna, hard substrate epifauna, pelagic 

mobile megafauna, echinoderms or nematodes. Some of the references used in this 

thesis are studies focused on some of these other groups and although considered 

with caution they provide useful insight into ecological phenomenon applicable to 

benthic epifauna.  
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1.1.1 The number of species  

Although simple in principle, answering the question of how many species live in the 

deep sea, is a practical challenge (Higgs and Attrill, 2015). The number of species, the 

alpha diversity, or species richness is the number of species in a specific location but 

there are other expression of that variable. As diversity is usually measured to be 

compared between different sites, often over an environmental gradient, the difference 

in diversity is then referred to as Beta diversity. When multiple sites are aggregated 

into an ensemble, the resulting regional diversity is referred to as gamma diversity 

(Begon et al., 2006).  

Diversity is the product of the appearance (speciation, or the evolutionary process by 

which new species appear) and disappearance (extinction) of species over geological 

time.  Speciation takes place when organisms evolve to maximize their fitness to their 

environment or through genetic drift, when populations no longer exchange genes. 

Although the mechanisms of speciation are complex, they are commonly split into four 

main categories: allopatric, peripatric, parapatric and sympatric speciation (Begon et 

al., 2006). Allopatric speciation is the result of the geographic isolation or separation 

of two previously connected and interbreeding populations, of the same species. Over 

time, these separated populations drift away from each other genetically and become 

two different species. This can be exemplified by the closing of a straight between two 

oceanic basins, physically isolating populations of the same species living on either 

side, leading to their eventual divergence into different species. A specific case of 

allopatric speciation, in which one of the two populations is smaller than the other, is 

referred to as peripatric speciation. In this circumstance, if the smaller of the 

populations becomes isolated on an island, thus cut-off from the larger population on 

the continent, it can undergo speciation. Parapatric speciation, however, occurs when 
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two populations of the same species live in different environments whilst remaining in 

contact and maintaining a geneflow, albeit reduced. Rather than isolation leading to a 

gradual drift over time, this speciation mechanism operates through natural selection 

with two populations evolving to occupy different niches, leading to an eventual decline 

in interbreeding success. This is exemplified in the marine realm by populations 

occupying different depth bands, diverging into multiple species, while maintaining 

contact at their respective upper and lower depth ranges. The final mechanism, 

sympatric speciation, occurs when small populations becomes reproductively isolated 

from a main population, while remaining within the same geographic area. In this case, 

the necessary flow of genes to maintain homogeneity of the species is cut by means 

such as behaviour or dramatic mutation that affects reproduction.  

Environmental changes can also influence diversity by triggering range-shifts in the 

distribution of each species (Parmesan et al., 1999, Gaston and O'Neill, 2004). The 

effect of climate change illustrates this phenomenon in multiple instances, where 

species adapted to a certain climate, or a certain range in temperature, see their 

populations move to areas where these parameters suit their physiology (Sunday et 

al., 2012, Sweetman et al., 2017). This can be active, in the case of mobile species. 

For most species unable to migrate face local extinction in areas where they cannot 

maintain their reproductive fitness, while their population become sustainable in new 

areas (Pinsky et al., 2013).  

In practice, speciation mechanisms in the present environment are hard to distinguish 

without access to any historical records. Besides, it is never clear when one species 

becomes two. Furthermore, recent work indicates that speciation may occur without a 

complete cut of the gene flow between two populations (Bolnick and Fitzpatrick, 2007). 

In the marine environment, the exact mechanisms of speciation are likely different from 
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land, as genetic isolation is less likely to occur in this fluid environment (Palumbi, 1994, 

Ingram, 2011). The greater dispersal ability of marine taxa, enabling connectivity over 

large spatial scales (Hilário et al., 2015), suggests that evolution to fit different niches 

and subsequent reproductive isolation could therefore be more common (Puebla, 

2009). In the deep-sea, the patterns and mechanisms of speciation are, in general, 

inferred from comparisons with shallow marine or freshwater ecosystems, due to 

insufficient data (Miglietta et al., 2011). However, these have failed to explain some of 

the peculiarities of deep-sea biogeography, more research is therefore needed to 

describe these patterns more clearly. Unlike initially assumed, the deep-sea is not a 

uniform landscape with low diversity but is, on the contrary, host to a large number of 

species (Levin et al., 2001, Rex and Etter, 2010). Many theories have been put forward 

to explain this diversity (Rex and Etter, 2010, McClain and Schlacher, 2015). Some of 

these theories contradict each other and research on this subject is slow or even 

neglected. This is partially due to a lack of converted effort to aggregate data, as well 

as dedicated effort to evolve the conceptual framing of these theories (McClain and 

Schlacher, 2015). More knowledge of the exact extent of diversity, as well as its spatial 

variation in relation to environmental drivers, would greatly contribute to the refinement 

of its understanding. 

The vast volume of the deep Ocean implies that its diversity cannot be subject to a 

census where the ecosystem is systematically thoroughly sampled and every species 

encountered is recorded until no unknown remains. It is nonetheless certain that the 

deep sea is highly diverse (Rex and Etter, 2010).   
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Many attempts have been made to estimate the number of species in the deep sea. 

Studies yielded numbers from 0.5 to 10 million species, sparking debate on the 

methodology of calculation (Mora et al., 2011). Global estimations are difficult as it is 

uncertain how to extrapolate numbers of species from a very limited number of records 

(Higgs and Attrill, 2015). Early estimates assumed that the number of species 

encountered at a small but clearly defined location, of a given surface area or volume, 

could be multiplied by the surface area / volume of the deep ocean, giving the total 

number of species. This led to the belief that species richness was higher in the deep 

sea than in shallower habitats and potentially rivalled tropical forests (Grassle, 1989).  

This view is now questioned but nevertheless, when it became clear that the deep sea 

was at least of comparable diversity to the better known shallow coastal waters 

(McClain and Schlacher, 2015, Hessler and Sanders, 1967), theories attempting to 

explain that diversity were formulated. The first paradigms, postulated by Sanders 

(1968), explained diversity by the long-term stability of the deep sea where 

evolutionary processes had the time to adapt to an increasing number of species to a 

large number of very specialised niches. However, it was quickly acknowledged that 

the deep sea is not completely stable, regardless of the scale considered, and that 

high diversity was rather the result of local disturbances creating patches of different 

stages of post-disturbance succession, each one a specific niche (Grassle and 

Sanders, 1973). The reasons why diversity is high in the deep sea are still debated 

(reviewed in Rex and Etter (2010)), but regardless of the cause, the extent of deep-

sea diversity still eludes scientists. Regularly, studies point out how poorly sampled 

the deep sea remains, even in the 21st century (Costello et al., 2010, Gray, 2002). 

Whether it is regarding taxonomy (Wiklund et al., 2017), genetic diversity (Taylor and 

Roterman, 2017) sediment macrofauna (Snelgrove, 1998), meiofauna (Gambi and 
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Danovaro, 2016), benthic epifauna (Durden et al., 2015), or pelagic fauna  (Sherman 

and Smith, 2009). 

At broad (regional and global) scales, estimation of the number of deep-sea species 

must be extrapolated from a limited number of samples (Grassle and Maciolek, 

1992a). Thus, estimates of global diversity need to be based on a good knowledge of 

local diversity, which is estimated with representative samples in which the number of 

species is known with certainty. However, ensuring that sampling of one location is 

complete is a challenge in itself. Additionally, the relationship between surface area 

and species diversity is not linear, nor is it constant over space and time. There are a 

wide range of habitats and communities with local variations and differences that are 

not well defined or understood (Howell et al., 2010a) and the species richness of each 

of these habitats is also uncertain. Finally, deep-sea diversity is also composed of 

species with large spatial distributions but are locally rare (low density), and are 

sampled as singletons which, in turn, tends to exclude them from statistical analysis 

(Turner et al., 2017, Higgs and Attrill, 2015, Grassle and Maciolek, 1992a). Pooling of 

multiple datasets could circumvent this problem (McClain and Rex, 2015), but the lack 

of standardised sampling and analysis procedures makes data sharing difficult 

(Althaus et al., 2015). 

It is clear that the drivers of deep-sea diversity are thus complex, and its contemporary 

understanding has recently been questioned (McClain and Schlacher, 2015). 

Concerning benthic epifauna, it is also clear that classic sampling methods are either 

not sampling a sufficient area, and/or that there is not enough replication of sampling 

being undertaken. Thus, the main challenge regarding diversity of epibenthic fauna is 

to determine the appropriate sample size needed in order to provide representative 

assessment of the number of species present within one station. This is not achievable 
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with classic sampling. It needs better sampling tools and a more standardised 

sampling method. A thorough assessment of the sampling effort needed to encounter 

the whole diversity of a station could be translated into a sampling guide, which could 

then be reused in other surveys, making results comparable. Higher and more 

standardised sampling effort would yield more representative and thus reliable, results 

and draw a more accurate image of species diversity in the deep ocean, particularly 

concerning the representation of rare species. 

1.1.2 Fine-scale distribution 

The fine scale distribution of species and how it varies in space (the spatial turnover) 

is an observable consequence of ecological and biological drivers. Therefore, it is a 

key component in understanding ecosystem functioning (Pringle et al., 2010, Zeppilli 

et al., 2016, Bowden et al., 2016) and diversity (Grassle and Maciolek, 1992a, Rex 

and Etter, 2010).  

Diversity in the deep sea is, in part, a result of environmental pressures and their 

variation in space and time (or, possibly, lack thereof). At broad, or global, spatial 

scales, depth (Howell et al., 2002, Wei et al., 2010b, Carney et al., 2005) and 

longitudinal gradients best explain observed variations in the diversity of deep-sea 

fauna (Rex et al., 1993, Watling et al., 2013, Snelgrove, 2016b). However, these 

parameters, which are easily measured, are possibly proxies for more influential 

environmental drivers, most notably temperature (Yasuhara and Danovaro, 2016) or 

energy availability (Woolley et al., 2016, Watling et al., 2013). Other known drivers 

include oxygen availability, nutrients such as silica or nitrates availability, substrate 

types and interspecies interactions (Ramirez-Llodra and Billett, 2006, Gage, 2002). 

Habitat heterogeneity created by these environmental gradients has also been 
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recognised as a driver of large scale species diversity (Levin et al., 2001, Durden et 

al., 2015, McClain et al., 2010).  

At a finer scale however, 0.1m-10km or within basin, the relative influence of the 

various known drivers changes (Rex and Etter, 2010). Energy and food supply remain 

major drivers but topography, terrain complexity and substrate types also become 

more significant (Beazley et al., 2013, Rengstorf et al., 2014, Buhl‐Mortensen et al., 

2010, Tong et al., 2013). The heterogeneity in these parameters is considered 

responsible for the diversity of ecosystems observed in the deep ocean. Also at this 

scale, the influence of biological interactions (competition, parasitism or predation) 

become predominant (Ramirez-Llodra and Billett, 2006, Henry and Roberts, 2017), 

albeit to a debated extent (McClain and Schlacher, 2015). Deep-sea species are 

distributed in patches of various sizes as result of the interactions between these 

different parameters over space and time. The size of these patches is an important 

topic of research and long known challenge (Jumars and Eckman, 1983, Jumars, 

1976, Jumars, 1975b). Indeed, whether the patches are kilometres or meters wide will 

have a strong influence on the result of sampling by transects 100 meters apart as 

illustrated by Brattegard and Fosså (1991). Whether species are evenly spaced within 

such patches or whether they are aggregated within multiple smaller pockets can also 

greatly influence that same sampling result. 

The causes of this spatial turnover of species has puzzled scientists since the 1960’s 

and many studies have attempted to quantify and explain it (reviewed in Rex and Etter 

(2010)). Some have found that at a fine scale, deep-sea diversity can be explained by 

the patch-mosaic theory (Rex and Etter, 2010, Dayton and Hessler, 1972). According 

to this theory, species diversity should vary at a small scale because different patches 

are at alternate successional stages. However other studies in the deep sea have 
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found that species distributions rarely deviate from random (reviewed by Rex and Etter 

(2010)) which is contrary to the patch mosaic theory (McClain et al., 2011) but is 

consistent with other ecological research results. These have shown that patterns in 

distribution can emerge within supposedly constant environments, like arid 

landscapes (Tarnita et al., 2017, Pringle et al., 2010), that such patterns are strongly 

influenced by the scale at which observations are made and that random distribution 

is unusual in nature (Taylor et al., 1978).  

All these conflicting theories and evidence illustrate the complexity of this question. 

Studies of spatial turnover are usually focused on one community, one given scale 

and limited to one sampling gear, aggravating the biases and making formulation of a 

coherent theory for the turnover of benthic epifauna difficult. This paired with the 

difficulty to gather the necessary quantity of data required to investigate it, is probably 

responsible for the lack of progress in finding an answer (Jumars and Eckman, 1983, 

Morrisey et al., 1992, Gray, 2002). Regardless, the lack of understanding of how 

communities are structured is a cause of great uncertainty in deep-sea studies. More 

effort needs to be dedicated to solving the problem in order to properly describe 

species diversity and correctly extrapolate it over various scales, as well as design 

appropriate sampling strategies. 

1.1.3 Influence of the environment and drivers of species distribution 

While univariate measures of species richness are one aspect of deep-sea diversity, 

developing effective conservation strategies requires an understanding of the 

distribution of species and assemblages.  Ecological research has demonstrated that 

the environment largely determines what species/assemblage is found at a specific 

location (Guisan and Zimmermann, 2000). Theoretically, this translates into: knowing 

the environment equals knowing the species / assemblage associated with it. 
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Following this principle, it would also mean increased capacity to predict biological 

changes through time (Clark et al., 2016b). Furthermore, since some environmental 

parameters are easier to sample than actual biological information (Brown et al., 

2011), a better understanding of the relationship between environmental drivers and 

biological responses could in turn allow for faster and more efficient exploration and 

monitoring of marine environment (Brown et al., 2011, Leonardsson et al., 2016, 

Howell et al., 2014b, Bullimore et al., 2013).  

There are other practical implications to encourage better understanding of 

environmental influences on species distributions. Indeed, one of the most popular 

ways to summarise biological information and communicate such information to 

biodiversity managers is through mapping (Ferrier, 2002). While mapping can be 

achieved by visually surveying terrain and reporting species observations on a map, 

direct observations are difficult to conduct in the marine environment, particularly in 

the deep sea. To tackle these limitations, predictive modelling is widely used to 

estimate extent and distribution of species and assemblages (Villero et al., 2016, 

Vierod et al., 2014, Yesson et al., 2012, Davies, 2012, Ross et al., 2015, Piechaud et 

al., 2015, Howell et al., 2011) and to identify drivers of species distribution (Brown et 

al., 2014). These models rely heavily on environmental parameters like topographic or 

oceanographic variables, many of which can be remotely sampled and therefore are 

a more efficient way to produce maps (Brown et al., 2011, Merow et al., 2014, Elith 

and Leathwick, 2009, Elith et al., 2006). But the knowledge of how these parameters 

are driving distribution of species (both quantitatively and qualitatively) is still scarce 

(Brown et al., 2014), particularly at fine scale (Rengstorf et al., 2013), potentially 

leading to wrong assumptions on the nature of relationships between species 

presence and a particular environmental setting (Kostylev, 2012). The quality of a 
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model is judged by its capacity to make accurate predictions, validated by new 

observations which were not included in the model training (Franklin, 2010, Elith and 

Leathwick, 2009). This comparison requires new independently acquired data (Elith et 

al., 2006, Anderson et al., 2016).   

To effectively describe the environmental drivers of species distributions at fine scale, 

both environmental and occurrence data are needed, from the same time and location. 

This encompasses multiple challenges, both logistic (operating multiple sensors at the 

same time and collecting more data) and scientific (processing and integrating data 

sets of a different nature). More attention needs to be focused on the understanding 

of fine scale species distribution drivers and particularly epibenthic fauna, and how 

that knowledge can be applied to predictive modelling. This challenge involves 

collecting more data of better quality. 

 

1.1.4 Adapting sampling and analysis to meet the challenges  

One way to obtain more data to meet these challenges would be to increase the 

sampling effort with currently available means of investigation. However, this approach 

is not only logistically unrealistic, it has other limitations. One of the effects of the 

difficulty of sampling the deep sea is that the statistical rigor in sampling methodology 

used by land and coastal marine scientists is rarely met in deep sea studies.  

Benthic megafauna can be sampled by multiple means (trawls, towed cameras and 

various underwater vehicles (Clark et al., 2016b) but currently there is no consensus 

on the area of the seabed that must be covered in order to provide an adequate sample 

of the epibenthic megafaunal community, either at the scale of an individual station, 

study site, or at greater scales. The data collected by a research programme may 
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therefore not be representative of even the sampling station’s local conditions and 

communities. Furthermore, as not enough of the deep sea has been sampled, rare 

species can remain undetected, and results are rarely replicated (Zeppilli et al., 2016). 

For these reasons, data collected by these means is considered insufficient (Glover et 

al., 2010), biased (Higgs and Attrill, 2015) and limits scientists understanding of deep-

sea ecology (Rogers et al., 2015). Pooling data from multiple studies could offer a 

more comprehensive understanding, however this requires methodological 

standardisation both between and within nations (Althaus et al., 2015, McClain and 

Rex, 2015). Collectively these issues hamper the ability of ecologists to understand 

both the distribution and drivers of deep-sea biodiversity, and by consequence how to 

model it (Rengstorf et al., 2014). 

If we are to meet the challenge of designing effective conservation strategies for the 

deep sea, our capacity to study this environment needs to be up-scaled by several 

orders of magnitude.  The difficulties of reaching depths of >200 meters, by both 

physical instruments and underwater remote sensors from ships hundreds of 

kilometres offshore, raises the cost of a single research vessel to around £40,000 per 

day (Brandt et al., 2016). This high cost results in limited sampling effort, considering 

the vastness of the deep ocean (Glover et al., 2010, Levin et al., 2019). These 

difficulties along with the relatively fewer scientists studying deep sea ecology 

compared to shallower waters, means that there is more work for less people. 

Therefore, any increase in the amount of data collected and processed will have to be 

done through innovative ways rather than increased effort with existing methods. 
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1.2 Autonomous Underwater Vehicles and data collection 

 

In benthic ecology, an important part of the studies on epifauna is the recording of 

species presence (or absence) on the seabed and it can be achieved in many ways 

(Clark et al., 2016b). Of these, image-sampling is gaining much popularity among 

ecologists (Bicknell et al., 2016, Solan et al., 2003, Durden et al., 2016c) and is the 

primary tool to sample the deep-sea bed, traditionally via platforms attached to a ship. 

Seabed imaging is subsequently followed by interpretation, analysis or annotation, so 

that data can be used in statistical analysis, mapping or modelling (Gómez et al., 

2016). The acquisition process is complex in the deep sea as it usually involves 

lowering equipment to the sea-bed, sometimes kilometres deep, and maintaining a 

link to the mothership above to guide the imaging system, a daunting logistical, 

technological and financial challenge (Brandt et al., 2016, Ramirez-Llodra et al., 2010). 

The mobilisation of so much equipment and personnel makes the process slow and 

limited in its movements.   

The development of autonomous systems is now offering the possibility to gather data 

without supervision or direct guidance and thus making sampling faster and less costly 

(Dunbabin and Marques, 2012). This process is used both on land with Unmanned 

Autonomous Vehicles (UAV), where it is starting to revolutionize spatial ecology 

(Anderson and Gaston, 2013) and in the marine environment, in which sampling based 

on Autonomous Underwater vehicles (AUV) shows great promise (Wynn et al., 2014, 

Wynn et al., 2012, Huvenne et al., 2009, Lucieer and Forrest, 2016) after a long 

development.  
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1.2.1 Autonomous Underwater Vehicles  

The development and utilisation of AUVs stems from the logistical and technological 

challenge of controlling vehicles to perform complex tasks in the deep ocean. The use 

of submersible vehicles piloted by humans (HOV) exist, such as Alvin from Woods 

Hole Oceanographic Institution or Nautile from Institut Français de Recherche pour 

l'Exploitation de la Mer (Clark et al., 2016b, Jamieson et al., 2013), however they 

present a challenge in endurance, safety and ultimately costs, that warrant an 

alternative (Clark et al., 2016b). Pilots can also be left aboard the ship and control 

vehicles via a cable, as is the case with Remotely Operated Vehicles (ROV) (Clark et 

al., 2016b). This is the preferred option for most operations in deep-water, although 

they require the mobilisation of several highly trained technicians and pilots at a time, 

while the ship has to be fully dedicated to this activity (Ayma et al., 2016, Przeslawski 

et al., 2018, Jamieson et al., 2013). Overall, these vehicles can perform almost any 

sampling task but are very limited in their movement and coverage, whilst expensive 

to operate (Jamieson et al., 2013, Huvenne et al., 2018). Additionally, ROVs do not 

always provide adequate images for quantitative studies (Jamieson et al., 2013). The 

cable of these vehicles remains a necessity as sound-based communication, although 

possible, is highly restricted in terms of the quantity of information transfer. A wireless 

underwater remote-control system would be impractical over a long distance, as the 

vehicle cannot send video feeds and receive real-time instructions from pilots on the 

ship.   

The way around these constraints, was to export the decision-making (or alternatively, 

store instructions) and control systems to the vehicle, along with the power-source. 

Thus making the vehicle autonomous and able to carry out its mission and return to 

the ship or base for recovery upon completion, without human input (Williams et al., 
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2012a). There are several classes AUVs and the nomenclature is not completely 

formalised in terms of designs, however they can be split between “hovering” and 

“cruising”  (Przeslawski et al., 2018), which are different trade-offs between 

manoeuvrability and speed. The Hovering AUVs are designed for precision operation 

and are therefore highly manoeuvrable. They have several propellers and can move 

in any direction and dimension, even over rough terrain, but at reduced speed 

(Przeslawski et al., 2018). The cruising AUVs, are usually torpedo shaped, preferably 

yellow painted and fitted with a propeller at the aft end. Their speed, up to 2 meters 

per second, allows them to cover much more ground than the hovering class 

(Przeslawski et al., 2018). They are the most commonly deployed type of AUV for 

benthic ecological surveys in the deep-sea and will be the focus of this thesis. 

Autonomous vehicles make benthic image sampling extremely efficient compared to 

those vehicles operating from a ship. They can be programmed with their mission 

parameters and need no further input after launch. They can achieve large coverage 

in short periods of time, thanks to a greater speed and freedom of movement in water, 

than other subsurface vehicles (Perkins et al., 2016). Since they need no instruction 

during a mission, the ship is free to carry out other tasks, further optimising its time 

and running costs (Huvenne et al., 2009, Wynn et al., 2012, Brandt et al., 2016). Their 

size can range from a few centimetres to several meters, and as such they often 

require little deck space and can be operated by a small team of people. Given that 

no further attention is required during the mission, a 2 to 4 person team is all that is 

needed to continuously operate the AUV during a cruise, including overnight 

deployments. Furthermore, the AUVs can be deployed at a station, programmed to 

travel distances of possibly tens of kilometres, complete their mission there and return 

to a convenient rendez-vous point for the ship, thus sparing costly ship movements. 
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They can even survey areas that are not accessible by other means, such as below 

icecaps (Nicholls et al., 2006)      

AUVs used in benthic ecology navigate primarily by dead-reckoning (estimations 

based on initial position, speed and direction), since satellite based systems are 

restricted underwater (Paull et al., 2014). This navigation system is considered 

accurate, particularly with the most recent technologies, but may be subject to “drift” 

as it accumulates error throughout the mission, that can in some cases, result in a 

positioning error that cannot be quantified (Paull et al., 2014, Huvenne et al., 2018). 

Most AUVs designed to survey the sea-bed have an autonomy ranging from several 

hours up to a day. This makes their deployment compatible with a standard 24 hours 

mission that integrates in the general flow of a typical research cruise. Their autonomy 

depends on the parameter of their mission and can be modulated depending on its 

objectives; some AUVs designed for endurance can even have autonomies of several 

weeks or months (Hobson et al., 2012, Wynn et al., 2014, Furlong et al., 2012).  

The use of AUVs for benthic ecological surveys and image sampling was pioneered 

by the French submersible “Epaulard” in the 1980s (Riqaud et al., 2004, Sibuet et al., 

1989).  Some 15 years later, and with significant advances in robotic technology, AUVs 

have regained popularity (Wynn et al., 2014). They are now increasingly used in 

ecology, as the number of publications mentioning AUVs and ecology indicates 

(Figure 1-1). They have been applied to a variety of ecological sampling tasks such 

as animal tracking (White et al., 2016), plankton sampling (Reisenbichler et al., 2016) 

and, benthic faunal survey (Sibuet et al., 1989, Singh et al., 2004, Morris et al., 2014, 

Simon-Lledó et al., 2018).  
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Figure 1-1: Number of results for the search "AUV ecology" on Google Scholar,  as an indication of the popularity 

of the vehicles in the field of ecology since 2000.  

 

One of the particular benefits of these vehicles for application to ecological problems,  

is their ability to sample a wide range of biological and environmental data, as they 

can be equipped with various sets of sensors ranging from acoustic, chemical, and 

optical, depending on the needs of the survey (Lucieer and Forrest, 2016, Morris et 

al., 2014). Thus, they are commonly used for collecting acoustic data (Grasmueck et 

al., 2006, Peukert et al., 2018, Williams et al., 2012a, Wölfl et al., 2019) and are 

extremely useful for mapping as they provide a precise, enduring and stable platform 

for the instruments they carry (Marzinelli et al., 2015, Morris et al., 2016). They can 

also take direct chemical measurements with mass spectrometry (Thornton et al., 

2015), hydrographic and oceanographic data (Pennington et al., 2016), and even 

detect hydrothermal vents through their plumes (German et al., 2008) or measure 

poly-metallic nodules on the abyssal plain (Gazis et al., 2018). The very high resolution 

of the environmental data they provide can also be used to directly inform ecological 

surveys (Morris et al., 2016, Huvenne et al., 2016a, Pierdomenico et al., 2015).  
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The application of this technology (including both class of AUVs) to quantitatively study 

benthic communities in particular is broad, from tropical and cold water coral reefs 

(Williams et al., 2012a, Williams et al., 2016, Williams et al., 2012b, Robert et al., 2014, 

Perkins et al., 2016, Perkins et al., 2019, James et al., 2017), benthic fish communities 

(Milligan et al., 2016, Tolimieri et al., 2008), deep water kelp forests (Marzinelli et al., 

2015) or entire benthic communities (James et al., 2017, Simon-Lledó et al., 2018, 

Smale et al., 2012, Morris et al., 2014). They have also been instrumental in 

opportunistic discoveries like unknown cetaceans behaviours (Marsh et al., 2018). The 

adaptability of AUVs and their capacity to survey both environmental variables, as well 

as simultaneously collect images, can give a comprehensive view of benthic 

ecosystems in a single deployment. Besides, the stability of the vehicle also improves 

the quality of the images compared to other platforms (Foster et al., 2014, Jamieson 

et al., 2013). The main advantage of an AUV, however, lies in their capacity to quickly 

cover a large surface-area and collect tens, or even hundreds of thousands of images 

in one mission (Lucieer and Forrest, 2016); which ultimately leads to cost reductions 

and more data collected. These large datasets have also enabled complex survey 

designs to be implemented, granting better statistical robustness to the data (Perkins 

et al., 2016, Foster et al., 2017, Wölfl et al., 2019).  Finally, they have been recognised 

as very suitable to reproduce surveys in environmental monitoring of the seabed, at 

an affordable cost, which could be of great importance to facilitate this practice for 

conservation (Bryson et al., 2013, Sherman and Smith, 2009, De'Ath, 2007, Smale et 

al., 2012, Williams et al., 2012a, Bayley and Mogg, 2019, Perkins et al., 2016).  

1.2.2 Limitations of AUVs  

From the literature, the advantages of AUVs for benthic ecology are obvious. AUVs 

are not a recent technology and they have been used for a long time (Sibuet et al., 
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1989, Singh et al., 2004). Since their early developments, they have been improved 

with new payloads and better systems, increased power, autonomy, more accurate 

navigation, additional sensors or lowered costs (Gafurov and Klochkov, 2015, 

Huvenne et al., 2018). Yet, although their use in science has increased (Figure 1-1), 

AUVs studies remain limited and it is still not clear to the benthic ecologists, how to 

use them, what to expect from them or what exactly could be gained from further 

investing in them. 

Indeed, AUVs and particularly the cruising AUVs on which this thesis is focused, still 

suffer from a number of limitations that discourage some institutions from acquiring 

them or choosing to mobilize them over other vehicles, like ROVs and could explain 

why they are not more widely used in benthic ecology.  

To start with, AUVs are not as versatile as ROVs and cannot be adapted to any 

mission like the tethered vehicles (McPhail et al., 2010).  

Unlike (UAVs), AUVs are limited in their field of view by the physics of light movement 

in water. If images are the only way to identify organisms, this forces the vehicles to 

fly close to the seabed and they cannot photograph large surfaces at a time. 

Additionally, although AUVs, the cruising class in particular, can collect very high 

resolution multibeam data, including in the deepest waters, they cannot match the 

coverage of a ship-born multibeam due to their speed, power and autonomy limitations 

(Wölfl et al., 2019). Their poor manoeuvrability also makes them ill-suited to operations 

on spatially concentrated targets, such as vertical walls of canyons or hydrothermal 

vents, where fine movements and reactivity are needed (McPhail et al., 2010, Robert 

et al., 2017). This limits their usefulness to survey some of the most charismatic deep-

sea habitats like cold-water coral reefs. 
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The impossibility for AUVs to make a decision has a direct impact on their capacity to 

collect physical samples. It is often difficult for scientists using ROVs to quickly decide 

what animal should be taken during a dive, because the target has to be identified with 

certainty. The ROV pilots need be able to collect the sample without compromising the 

safety of the vehicle and causing damage to the surrounding of the target. Automating 

this process is a challenge that, to my knowledge, no one has realistic expectations to 

tackle in the near future, for benthic sampling. Physical samples are however 

necessary to identify animals to the species level as image samples are often unable 

to provide such taxonomic resolution (Buhl-Mortensen et al., 2015, Williams et al., 

2015, Bullimore et al., 2013). 

In a more practical consideration, the acquisition of an AUV, and the capacity (skills 

and facility) to operate it, is expensive and may simply be too great for small research 

units. AUVs are technologically advanced systems that need to be maintained and 

require advanced knowledge in engineering; knowledge and experience that is difficult 

for a biologist to acquire in addition to the rest of their expertise. This is dissuasive for 

research teams that have already invested in acquiring other sophisticated equipment 

and complementary skills (Przeslawski et al., 2018). AUVs also do not solve the data 

analysis bottleneck that exists with other gear, but might in fact, worsen it (Perkins et 

al., 2016, Schoening et al., 2017). The additional data collected by AUVs is not met 

with additional data processing capacity, which negates their main advantage for 

ecological studies. Without the full benefits offered by large size datasets, there is little 

value for research teams to shift their sampling strategies away from traditional 

methods, particularly from the much more versatile ROVs. When asking researchers 

about their perceptions of the advantages of AUVs  Przeslawski et al. (2018) reported 

that although they were aware of their advantages, researchers were concerned by 
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their comparatively reduced reliability (as missions are frequently failed), their 

unsuitability for high energy environments (high tendency to drift in strong currents), 

and the relatively small number of vehicles available to researchers. 

Several of the problems mentioned may be solved with better technology and to that 

end, research efforts exist (Gafurov and Klochkov, 2015, Huvenne et al., 2018, 

Quintana et al., 2018). Besides, some are already addressed by AUVs of specific 

designs, more adapted to tasks requiring better positioning, or agility  (Przeslawski et 

al., 2018). It is, nonetheless, clear that the use of these new tools doesn’t come without 

new challenges for ecologists and important work remains to be done on what exactly 

sets AUVs apart in the study of biological communities. Their efficiency at collecting 

large datasets has been widely demonstrated and acknowledged and yet they are still 

treated as an interesting novelty, as illustrated by the large number of papers citing 

the use of AUVs in their titles as one of the points of note of their study. Will AUVs be 

consigned to only act as support for the science undertaken with other vehicles or 

replace them as a cheaper alternative? Or do they truly have the capacity to reveal 

patterns that were invisible to traditional ways of surveying the seabed? Can biologists 

fully exploit their advantages despite their limitations?  

This issue is not only related to the AUVs themselves, but also to the processing of 

the data they collect; the two are inherently linked. This naturally leads to the challenge 

of developing more efficient image analysis methods. 

 

1.3 Image data analysis and Artificial Intelligence  
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Many of the challenges faced by deep-sea ecologists are linked to the lack of 

appropriate data in both nature and quantity. While the new generation of AUVs will 

compensate for the lack of manpower needed to explore half of the planet’s surface 

the challenge in their use is not just in collecting the raw data (Schoening et al., 2017, 

Camps-Valls et al., 2017). It lies also in the interpretation of that data and the capacity 

of humans to process it. 

In modern science, the advance of computing methods for data analysis, and 

subsequent freedom from what is possible by the human mind alone, has allowed for 

a significant leap in productivity in many areas of science (LeCun et al., 2015). 

However, the collection and processing (observation and translation) of ecological 

data is a complex task that it is difficult to hand over to a machine.  In the particular 

case of the benthic ecosystem studied here, the information needed is what animals 

or groups of animals can be seen on an image. This requires a human mind to interpret 

the images and transfer that information to semantic form (Gomes-Pereira et al., 

2016). In this context, the collection of more images, is only shifting the bottleneck 

along the processing pipeline. More images of the seabed (of sometimes very high 

resolution) still simply requires more manual analysis in order to serve ecological and 

conservation research. Thus, the only way to remove that bottleneck is to pass the 

image analysis step to any method faster than manual identification and counting of 

animals on images.  

1.3.1 Automated image analysis  

The development of image annotation software facilitating the treatment, management 

and analysis of the images and data produced and subsequently, the sharing of the 

results, has increased the speed and efficiency of the task in recent years.    But there 

is only so much humans can do, as analysing several thousand images can take 
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months, even to a trained specialist. The resultant data also suffers from many biases 

and inconsistencies over time (from start to end of the study to changes in focus 

related to time of the day) as listed in Durden et al. (2016a). Furthermore, manual 

analysis is poorly reproducible and studies have shown that even annotations 

produced by experienced personnel in parallel will present high variation in diversity 

and abundance (Durden et al., 2016a, Beijbom et al., 2015) and even suffers from 

psychological bias which, for example can lead to observers missing or failing to 

record large-sized targets (Eckstein et al., 2017). This limits the potential for combining 

interpretations from several researchers or teams and thus limits the size of datasets 

that can be studied in a single project to what a small number of people can annotate 

at the same time. 

For all these reasons, the human element within a data processing workflow is 

regularly identified as the weak link and is effectively limiting the output of scientific 

research. The natural answer to this problem, following the same reasoning behind 

the increasing use of Autonomous vehicles and remote sensing (Brown et al., 2011) 

for environmental sampling, is to automate this process and let computers perform the 

simple but repetitive and labour intensive tasks, freeing researchers to pursue more 

novel goals (Schoening et al., 2017). 

The need for faster processing of samples to tackle the increase in the amount of data 

collected is an old problem (MacLeod et al., 2010) and attempts to implement 

automated species identifications have been made since the early 1980s (Jeffries et 

al., 1984, Gaston and O'Neill, 2004). Interestingly, Computer Vision (CV, the process 

of image analysis by computers through application of artificial intelligence) applied to 

ecology remains a niche research field and has yet to become a common tool despite 

this long maturation. The trend fits within a wider move towards an increased use of 
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data and computer science in ecology (Hampton et al., 2013, Weinstein, 2018). The 

applications of CV are many, from recreational and societal applications 

(https://github.com/AdamMc331/Not-KotDog), agriculture (Lu and He, 2017) and 

environmental surveys and ecology (Diesing et al., 2016). Identifying various 

taxonomic groups on images (Gómez et al., 2016, Barré et al., 2017) or by sound 

(Qian et al., 2017) is one of the most promising applications. 

In the marine environment specifically, automated analysis of plankton samples has 

been pursued for a long time (Benfield et al., 2007, Culverhouse et al., 1996, Rolke 

and Lenz, 1984), extensively developed and implemented (Schmid et al., 2016). CV 

has also been employed to quantify environmental parameters like substrate 

complexity (Lacharité and Metaxas, 2017, Lacharité et al., 2015). Benthic ecologists 

have also attempted to automate species identification and counting from both fixed 

platforms (Aguzzi et al., 2009) and mobile vehicles (Beijbom et al., 2012, Edgington et 

al., 2006, Gobi, 2010, Marcos et al., 2005, Beijbom et al., 2015, Marburg and Bigham, 

2016, Schoening et al., 2012). These studies usually reach a relatively high level of 

accuracy, above 80%, but are in general focused on a small number of species or 

habitats like shallow water corals. In addition, CV algorithms designed by a team or 

institution, although reused by the same group (Lacharité and Metaxas, 2017, Beijbom 

et al., 2015), are rarely exported for wider use, even after publication. Besides, the 

maintenance of published tools often stops after several years (Lobet, 2017).Thus, 

despite successes, the skill and material needed to train an algorithm (also referred to 

as a classifier in some publications) and their lack of flexibility and adaptability, 

particularly without direct contact with developers, has kept them out of reach for most 

ecologists. However, this could be about to change.  

https://github.com/AdamMc331/Not-KotDog
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1.3.2 Computer Vision: Is it time? 

This new momentum towards increased automation is following a wider movement, 

mainly driven by the increased computing capacity of market hardware and the 

appearance of open access tools. Recently, freely available pre-trained algorithms 

have allowed non-specialists the ability to train their own classifiers much more easily 

than before. The time when automated benthic community classifiers become a 

common tool, seems to have finally come (Williams et al., 2016, Weinstein, 2018). 

In 2015, Google released a freely available software named TensorFlow (TF) that is 

able to build Neural Networks (NN). More importantly, it possessed many inner 

features such as a Python language Application Programming Interface (API) - whilst 

its main architecture is in C++, and a built-in function to manage memory allocations, 

which makes it relatively user friendly, yet fast compared to other frameworks. The 

release of the software has been enthusiastically welcomed by scientists across 

various research fields in which it could be applied and is promised to become a widely 

used tool (Rampasek and Goldenberg, 2016, Marburg and Bigham, 2016, Beijbom et 

al., 2012, Beijbom et al., 2015, Weinstein, 2018, Favret and Sieracki, 2016). 

In a very basic manner, NN and their declinations function like the brain, in the sense 

that it is composed of many individual units, each able to perform a specific and simple 

operation (Rampasek and Goldenberg, 2016, LeCun et al., 2015). The combination of 

these different units and the way information flows through the network, allows for a 

more complex calculation when they are allowed to interact together. For a specific 

input, a specific pattern of activation within the network is formed and a new input 

resulting in the same or similar pattern can be classified as similar to that first input. 

During the training phase, the network “builds” itself without human assistance other 

than presenting raw data and thus, requires no parameterisation, as it picks-up 
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automatically on important features for classification. This makes NN somewhat 

obscure (or “black-boxy”), but also fairly simple to implement. However, they require 

a tremendous amount of data, up to millions of images, and take a long time to build 

(Roig Marí, 2016).   

The algorithms implemented within TF are already trained to analyse images. This 

gives TF two advantages: 1) it requires minimal tuning by the end-user and thus, no 

particular knowledge in machine learning and 2) it requires much fewer training images 

to be able to classify new images, than if the whole network had to be retrained. This 

is particularly suitable for ecologists who generally do not have the facility or the skills 

to train NNs or do not necessarily have abundant material for a given species.  

In deep-sea biology, the use of AI and CV could open many fields of investigation, 

such as full integration with annotation software (Zurowietz et al., 2018), full visual 

coverage of areas or long continuous transects with images and better replications 

and  consistency of results across projects. Ultimately it should, free some time for 

researchers to focus on tasks other than bulk analysis work. In the longer term, the 

potential applications of this technology are extensive and could involve real time 

animal detection (Seymour et al., 2017), morphometric measurements in situ (Shafait 

et al., 2017) or hierarchical classification (Bewley et al., 2015). 

Therefore, with the increase in quantity of data and images gathered by AUVs, the 

output of annotation methods has to increase as well. Manual annotation lacks 

consistency and efficiency to match this challenge, but AI and CV appear to be an 

alternative and could in part help with this challenge. Despite many examples of 

successful application and many calls for the community to start using it routinely 

(Gaston and O'Neill, 2004, MacLeod et al., 2010), papers using AI to annotate benthic 
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images are still rare. However, the potential of AI is undeniable and its use is getting 

easier and cheaper.  It is now efficient enough, requires less specialist knowledge and 

experience than it used to and can realistically be applied to research projects. Yet, it 

needs to be tested on practical applications of a scale similar to most marine biological 

studies. Useful applications should be reproducible by any member of the community 

while ensuring results can be delivered with the same quality standards and in 

comparable time frames as manual methods.  

Still to be answered is whether AI can work on the scale typical of many deep-sea 

studies and answer practical benthic ecological questions. What results would it give? 

And what are its real pros and cons compared to manual analysis?  

 

1.4 Conclusion and aims of the thesis 

 

Technology development could provide new answers to the above-mentioned 

challenges of deep-sea ecology and help fill the gaps in our knowledge allowing for 

more efficient management and protection of the deep-sea. 

The potential of AUVs and AI combined is enormous. AUVs can collect the necessary 

quantity of data and CV based analysis methods can process that data. With 

automatically collected and analysed samples, thorough studies of epifaunal benthic 

diversity, species distribution and its environmental drivers at fine scales could be 

achieved.  

However, at the dawn of a new age when biologists have to master skills from multiple 

domains, new challenges are rising and AUVs and AI have limitations that have not 
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yet been addressed and their routine use in research is limited. To be more than a 

theoretical promise, AI and AUV based methodology has to be implemented in field 

studies with objectives of not only developing new tools but exploring the results and 

including them within the much wider frame of ecological research. The capacity of 

AUVs and AI to unlock new practical research opportunities has to be demonstrated 

with practical field studies. It is not certain when this technology will be mature and 

reliable enough to replace traditional methods - if they ever will - but their integration 

has to start and the community still has to further familiarize itself with the tools.   

This thesis will attempt to apply AUVs and AI technologies to case-studies of deep-

sea ecology and investigate how these method could contribute to the investigation of 

benthic biodiversity, fine scale species distribution and the environmental drivers of 

that distribution.  

• Chapter 2 describes the method used to extract information from the raw 

AUV data, particularly images, and how it is formatted for the following 

chapters.  

• Chapter 3 evaluates the impact of sample size on measures of diversity and 

how AUVs can influence the study of these parameters.  

• Chapter 4 uses a large dataset of abundance of benthic species to study 

its fine scale distribution and identify its drivers with species distribution 

modelling.  

• Chapter 5 implements automated identification of benthic organisms with 

Tensorflow and evaluates its feasibility in practical ecological studies. 
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• Chapter 6 summarises, synthetize and concludes this thesis. It discusses 

the findings of the preceding chapters focusing on the potential of AUVs and 

AI, and the future of these technologies in deep-sea benthic ecology.  

This work aims to provide guidance to other benthic ecologists considering using 

AUVs in their research and give helpful elements of advice to guide their strategic 

choices for future projects in order to help the community’s capacity to sample and 

understand this poorly known environment.  
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Chapter 2: Method - Collection and processing of AUV 

data 

 

2.1 Abstract 

This chapter details the origin of the samples used in this thesis. It describes the 

fieldwork during which the data was gathered, the vehicle by which it was collected 

and the way the images and environmental data were prepared, formatted and 

analysed to produce the data on which the following chapters are based. It is intended 

as a practical guide for researchers aiming to reproduce or improve the protocol. It 

thus contains practical details on the analysis of images and provides the R scripts 

used to process and format the data to facilitate a wider use of the method. It shows 

how complex AUV data can be and how much multidisciplinary experience is 

paramount to take advantages of the large amount of data collected by the AUV. 

2.2 Introduction  

AUVs have a capacity to bring multiple sensors to the seabed simultaneously, and 

comprehensively record multiple streams of data from a single location (Brandt et al., 

2016, MacPherson et al., 2014, Williams et al., 2016). As such, one AUV mission will 

usually yield a large quantity of data of various natures and diverse formats (Wynn et 

al., 2012, Morris et al., 2014) also depending on the type of AUV used (Huvenne et 

al., 2018, Monk et al., 2018). These can then be combined for an integrated analysis.   

All the data used in this thesis were obtained from a single cruise, JC136 (as part of 

the DeepLinks project), during which a number of AUV dives were conducted. There 

are three main components within the data, referred to as: 1) image data, 2) 
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geomorphological data (from Multibeam (MB) echo-sounder) and 3) oceanographic 

and hydrographic data (from CTD and ADCP). The most important component for 

ecological studies is undoubtedly the image data, on which most of the processing 

time was spent. The data is therefore organised around the images collected, which 

act as sampling points or basic sampling units.  Each image is associated with 

corresponding values of oceanographic, hydrographic and geomorphological data, as 

well as a detailed species composition (list of present organisms and their abundance), 

following image analysis.   

This chapter describes how the data used in this thesis were collected, processed, 

combined and formatted for use in the following chapters. The objective was to 

develop a protocol usable by ecologists, where ubiquity and reusability are the primary 

concerns. A further priority was to enable the comparison of AUV data, to that collected 

by other vehicles and research teams, as much as possible. The following chapter is 

aimed at designing the best way to combine different types of data into a functional 

workflow; from raw data post-fieldwork, to a comprehensive map summarising 

ecological information, then later to reapply this same workflow to other stations.  This 

provided an opportunity to assess the usability of the cruising AUV Autosub 6000 in a 

practical situation and to help identify the challenges of applying these vehicles to real-

life ecological studies in the deep sea. 
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2.3 Method  

 

2.3.1 Field work and data collection 

The DeepLinks Cruise (JC136) was the fieldwork component of a NERC funded 

standard grant, aimed at studying connectivity of bathyal benthic populations within 

the United Kingdom’s Exclusive Economic Zone (EEZ) 

(https://www.bodc.ac.uk/resources/inventories/cruise_inventory/report/16050/) and 

more specifically, the Rockall Trough. This large basin is located West of Scotland and 

Ireland, bordered in the North by the Wyville-Thomson Ridge at the end the Faroe 

Shetland channel, the Porcupine Abyssal Plain in the South, the Irish Margin on the 

East, and the Rockall Bank and the Rockall-Hatton plateau in the West. The study 

sites were spread across five seamounts (see Figure 2-1) within the Rockall Trough 

and an advanced protocol involving sampling across depth gradients, nested within 

seamounts, was carried out. 

Benthic sampling of selected species was undertaken using the Remotely Operated 

Vehicle (ROV) Isis. In addition, replicated visual benthic surveys, video/still images, 

were conducted to study community composition and species richness. The initial 

intention was for the visual survey work to be undertaken by the Autonomous 

Underwater Vehicle Autosub6000, referred to as Autosub hereafter. However, due to 

various complications, the Isis ROV was ultimately used for that task. Nevertheless, a 

number of missions were undertaken by Autosub and the resulting data is used in this 

thesis.  

https://www.bodc.ac.uk/resources/inventories/cruise_inventory/report/16050/
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Figure 2-1: Map showing all the stations visited by Autosub6000 during JC136 

 

This section will detail how the raw data, as handed over by the Autosub support team, 

was processed and formatted to be used in subsequent analysis.  

 

2.3.1.1 Autosub6000 

Autosub is a 6000 meter rated autonomous vehicle designed by the NOC 

Southampton and launched in 2007 (McPhail, 2009). It is a “cruising” AUV, designed 

to efficiently cover larger amount of ground  (Monk et al., 2018). It can travel more than 

100 km over a period of 24 hours at a speed of 1.7 m/s and It can take a large payload 

of various instruments on board (see Table 2-1 for list of equipment and Figure 2-2b 

for location of each instrument on the vehicle). The initial vehicle design was intended 
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for oceanographic and geomorphological sampling and the photographic mission 

capacity was added later. Thus, it is better adapted to move within the water column, 

away from obstacles, than near the seabed. Unlike for the AUVs of the “hovering” 

class, designed for manoeuvrability and precision sampling (Monk et al., 2018), the 

high speed at which it is travelling, necessitates that it stays clear of rough terrain 

where obstacles can block its path or where a collision could happen and cause 

damage. To avoid obstacles, Autosub has a sonar-based, forward scanning, object 

detection system. Should something be in its path, it avoids collision by rising in the 

water column and flying over the object. As its manoeuvrability at full speed is low, this 

needs to be initiated in advance, sometimes, hundreds of meters before the obstacle 

(Wynn et al., 2012). For this reason, the sites where Autosub was successfully 

deployed, on photographic missions during JC136, were those where the seabed was 

flat and devoid of obstacles, so that the AUV could remain close to the seabed.  
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Figure 2-2: The AUV Autosub6000 (from JC136 Cruise report (Howell et al., 2016b). a: Autosub before launch, on 
the gantry during JC136. b: rear-view of RV James Cook during launch of Autosub. c: Technical sketch of Autosub 

(Reproduced  from (Howell et al., 2016b)). 

b 

c 

a 
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The Autosub configuration used during JC136 is displayed in Table 2-1.  

Table 2-1: Technical specifications of instruments used by the AUV Autosub6000 during the JC136 cruise.  

Instrument Specifications 

ADCP 
RDI workhorse, 300kHz downwards, set to measure up to 30 
4m water bins 

Multi-beam Kongsberg EM2040  

Sub-bottom 
profiler 

EdgeTech 2200-M 120-425kHz side scan and 2-16kHz  
 

Cameras 
2 x Point Grey Grasshopper, 2 + Flash (1 x downwards, 1 x 
forward) 

 

CTD 
Seabird 911 with 2 x SBE3plus, 2 x SBE4C, 1 x SBE43, 
Seapoint turbidity sensor, EH sensor, Fluorimeter. 

 

On a typical deployment, the mission parameters are set as a number of waypoints (in 

3-dimensional coordinates: latitude, longitude and depth) and the vehicle can be 

instructed to switch off an instrument during the mission (McPhail, 2009). Autosub is 

then launched from the gantry (Figure 2-2a and 2-2b), at the rear of the ship. Its 

position is tracked by the crew until it dives. Once it is underwater, its position cannot 

be known from the surface. Autosub’s navigation is an Inertial Navigation System 

(IXSEA PHINS), or dead reckoning, and an on board ADCP to measure its speed and 

distance to the seabed (McPhail, 2009). This system tends to introduce error, or drift, 

in positioning which grows over time during the mission. This effect is quantified to 

around 1m per km travelled (Huvenne et al., 2009), but varies from one mission to 

another.  

On photographic mission deployments, in order to take images of the seabed, the AUV 

needs to fly between 3 and 3.5 meters of altitude and keep a constant speed. While it 

takes images, it is also recording CTD data, primarily temperature and salinity, and 

acoustic (Multibeam and sidescan) data  directed downward. On board the ship, the 

AUV is supported by 2 engineers and a technician, who process the data from the 
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different instruments and upload it on hard drives and servers, where it can be 

accessed by research scientists. Due to the size of photographic data, up 750 GB in 

one mission, images are provided on a 2TB hard-drive after each mission. The other 

types of data are provided in a standard template folder, where the data from each on-

board instrument is in text files or Microsoft Excel spreadsheets.  Most instruments 

give a reading every 1 or 2 seconds and most of the data can be formatted into a table 

of point data where each entry has a location, in latitude and longitude, and associated 

data measured by all sensors.  

 

2.3.1.2 Study site and sampling 

The megafauna within the Rockall trough is part of a unique biogeographical province 

named the Atlantic Deep-Sea Proving and stretching across the ocean to the 

American Margin and south to the Equator (Davies et al., 2006, Watling et al., 2013). 

The Wyville-Thomson ridge in the North also act a biogeographical barrier beyond 

which the fauna belongs to the Arctic province (Watling et al., 2013). At broad scale, 

Its distribution structured by depth and substrate types (Gage, 1986, Howell, 2010). It 

is dominated by echinoderms cnidarians, poriferas and Arthropods (Gage and Tyler, 

1991, Davies et al., 2006). A number of vulnerable Marine Ecosystems (VME) are 

commonly found in this area like cold water coral reefs, and coral gardens on hard 

substrates (Roberts et al., 2006, Howell et al., 2010b)  and aggregation of the 

Hexactinellid sponge Pheronema carpenteri (Howell et al., 2016a, Rice et al., 1990) 

and the xenophyophore Syringammina fragilissima (Bett, 2001b, Ross and Howell, 

2013) on soft sediments. The existence of these VMEs and the need to better 

understand their ecological function, connectivity patterns and better predict their 
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extent and distribution is a strong driver of research in this area (Chaniotis et al., 2020, 

Howell et al., 2010b). 

At the start of the JC136 cruise, the intention was to deploy the AUV for a seabed 

survey on at least three, ideally five, of the seamounts, at 1200 m. The 1200 meters 

depth band was chosen due to the technical limitations of Autosub, constraining 

photographic missions to areas of flat seabed which are common at this depth and in 

this region. However, the limited availability of Autosub in the first days of the cruise, 

technical failures later, as well as capricious underwater conditions, made comparison 

between sites impossible. Of the 4 attempted photographic missions, only one (M116, 

on station 26) was successful and yielded around 120,000 images along with 

geomorphologic and oceanographic data. Additional acoustic and oceanographic data 

from another mission on the same site (M115) was also used. Therefore, station 26 

became the sole focus of this thesis. Examples of images from successful and 

unsuccessful photographic missions are shown in Figure 2-3.  
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Figure 2-3: Example images illustrating the various visibility conditions encountered by Autosub during its 

photographic missions. 

 

2.3.2 Images processing and annotation 

2.3.2.1 Image and image metadata processing, georeferencing and sorting 

The M116 dive occurred near the North Eastern flank of Rockall Bank (Figure 2-4). 

During a previous mission, Autosub mapped the area and identified potentially 

challenging terrain in the southeast corner of the survey area, which was avoided in 

the subsequent mission. The mission plan was a tight mesh pattern, which provided 
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27 straight transects. This pattern was chosen to approximate full coverage and 

provide points and transects at various distances from each other. 11 were shortened 

to avoid the rugged terrain in the southwest and are circa 1.8 km long. The other 

transects are circa 3.5 km long.   

 

Figure 2-4: Route followed by Autosub while collecting the images during dive M116. 

 

During the dive, the images were collected with 2 Grasshopper 2 - GS2-GE-50S5C 

cameras (Figure 2-5); one vertical, downward facing and one forward facing, at an 

angle of 30° from horizontal. The frequency of capture was set to 1 image per second. 

Image resolution is 2448x2048 pixels. 
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Figure 2-5: Camera field of view on Autosub. Reproduced from Morris et al. (2014). 

 

Due to uneven lighting and the difficulties linked to the uneven size of the sampled 

surface, images from the forward facing camera were not considered in this study. Of 

the downward facing images, around 10,000 images taken during the descent and 

ascent phases, while the AUV was high above the seabed, were also discarded. A 

further 5000 were taken while the AUV was turning and repositioning; the slowing pace 

of the vehicle  during this phase tended to cause overlapping images and were thus 

excluded from the transects. They are usable but have to be precisely accounted for 

to avoid biases in quantification of the organisms present in them. The remaining 

55,000 images across the 27 transects constituted 1,600 images in the 9 short 

transects and 2,600 in the remaining 18. In these transects, image overlap could 

appear when the submarine reached a certain altitude, which was manually estimated 

between 3.5 and 3.6m.  

Images were provided by the Autosub team in “.raw” format and were then converted 

to JPEG format with the IrfanView software (Skiljan, 2012). Colours were 

autocorrected in the process with the default method implemented in the software. An 
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80% compression was applied to the images for subsequent manual analysis to 

reduce their file size (in bytes). Comparison with un-compressed images, showed 

negligible loss of quality. Prior to spatial analysis, each image was geolocated using 

AUV navigation data based on a common time stamp.  

The surface of each image in square meters (m2) was calculated with the method 

described in Morris et al. (2014). This work used the characteristics of the camera 

mounted on Autosub, namely, the vertical and horizontal acceptance angles (aw and 

ah in Figure 2-5), the focal length of the camera and the altitude of the vehicle to 

calculate the size of the rectangle below the AUV. This corresponds to the size of the 

image if it is perfectly horizontal or at a right angle from the seabed. However due to 

the pitch and roll of the vehicle that occurs, which is constantly recorded, this has to 

be corrected. This was performed in a custom Python (https://www.python.org) script, 

adapted from Morris et al. (2014) original Matlab (https://www.mathworks.com) code.   

 

2.3.2.2 Manual annotation 

Annotation, the process of extracting biological information from images or translating 

objects or events in an image to the semantic level (Gomes-Pereira et al., 2016), is 

the most important step of data analysis in this project. Images were annotated using 

the open access software Biigle 2.0 (Langenkämper et al., 2017), accessible on 

https://biigle.de/. Biigle 2.0 is a web browser based software that facilitates the 

visualisation, analysis and sharing of data from any computer, with a free account and 

log-in. Images were uploaded on an Amazon Web Service (https://aws.amazon.com) 

server and then remotely accessed via Biigle. Before uploading, JPEG image quality 

was set to 80% to reduce their file size to around 25% of the original after compression.  

https://www.python.org/
https://www.mathworks.com/
https://biigle.de/
https://aws.amazon.com/
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Figure 2-6: a: Biigle main projects and volumes management screen. b: Volume overlook screen showing each 
pictures miniature. 

 

Organisms present in images were identified as Operational Taxonomical Units 

(OTUs), following a published OTU catalogue for this region (Howell and Davies, 

2016). This catalogue was imported into Biigle 2.0 (Figure 2-6), appearing as a 

hierarchical ‘taxonomic’ tree, and subsequently modified to use up to date taxonomic 

Arborescence from World Register of Marine Species 

(http://www.marinespecies.org/); the original imported catalogue is available at 

https://deepseacru.org/2016/12/16/deep-sea-species-image-catalogue/). OTUs 

correspond to various taxonomic levels and are defined by what can be distinguished 

on pictures rather than actual taxonomic criteria. Thus, they do not necessarily 

correspond to a coherent taxa, as it is rarely possible to identify marine animals to the 

level of species. In general, OTUs for large animals from well-studied groups, have a 

higher resolution, down to genera and sometimes, even species. The anatomy of 

some groups also makes them easier to identify, like most chordates or the larger 

decapod crustaceans. Some groups that are smaller, less well studied or very diverse 

a b 

http://www.marinespecies.org/
https://deepseacru.org/2016/12/16/deep-sea-species-image-catalogue/
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taxonomically, while homogenous in appearance, are sometimes classified according 

to very pragmatic parameters like shape and colour. This is the case for encrusting 

sponges. Some phyla, like bryozoans, are not divided into sublevels.  

The images were annotated in a random order, to avoid observer bias also manifesting 

as spatial bias. The view on the image was zoomed to original resolution (see Figure 

2-7b), and the “lawnmower” tool was enabled to restrict the number of animals visible 

on screen at a time and make the searching and detecting more systematic. The tool 

sequentially moves the zoomed in window from section to section, methodically going 

over the whole image (Figure 2-7c). This makes the analysis time longer, but tends to 

increase detected richness and abundance of epifauna. 
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Figure 2-7: Illustration of Biigle’s annotation screen. a: Illustration of the phyla and higher level cnidarian tree 
branches. All underlined labels are parent lables with a various number of sublabels. Each label, including parents 
can be used in anotation in. b: extent of the section visible when zoomed in. c: window slide with lawnmower tool. 
The size of the zoomed in window depends on the dimensions of the monitor used for analysis. 

 

 

a 

b 

c 
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During the annotation process itself, illustrated in Figure 2-8, a point or a shape was 

superimposed over an object or animal. The shape used depends on the average size 

of the OTU. It is a dot for most small animals as it requires only one click and the size 

is not quantifiable on these OTUs regardless. It can also be an ellipse, a rectangle, a 

regular or irregular polygon, a line or a circle; the most commonly used shape in this 

study. This shape is then associated with an OTU label from the tree; this ensemble 

forms an annotation.  

 

Figure 2-8: image annotation panel in Biigle 2.0. the image is displayed in the centre and the label tree on the right 
hand side tab.  

 

2.3.2.3 Validation 

Every annotation was visually validated. This step made use of the “Largo” (Label 

Review Grid Overview) evaluation tool included in Biigle.  This allows each occurrence 

of a specific label, or OTU, to be cropped from the original image and displayed on the 

same screen. This enables a very quick visual check and if needed, the correction of 

errors, as illustrated in Figure 2-9. It can be done by the original annotator or another 

person with access to the volume. This step permitted the revision or removal of 
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identification mistakes and correction of some inconsistencies. Consequently, some 

OTUs were also split into 2 or more, whilst others were merged. After a new OTU was 

created, relevant annotations could also be attached to this new label via the largo 

tool.  

 

Figure 2-9: Illustration of the use of Largo too to find identification errors: All images of Munida sp. OTU339 - 
cropped around the animal are shown. Spotting identification errors (like the xenophyophore OTU261 on the right) 

is easier when all OTUs are displayed side by side. 

In total 1,718 images were annotated with this method all from the t2 transect. This 

represents less than 3% of the images collected by Autosub at station 26. It 

nonetheless forms a dataset of more than 63,000 annotations of more than 110 OTUs. 

It took around 5 months to annotate the transect and validate the annotations. More 

time was later spent on the annotations to correct and revise some miss-identification.  

The list of annotations per image was exported to R (R Development Core Team, 

2011) for processing and use in the following chapters. A custom R script was used to 
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create tables of information per OTU, information per image, species contingency and 

presence-absence matrix. The taxonomy imported from World Register of Marine 

Species (WORMS) (Costello et al., 2013) was also added to this table (also detailed 

in Appendix A2-1). The R code used to produce these tables has been made available 

(Appendix A2–2), so it can be used by other researchers to quickly export Biigle’s 

annotations.  

2.3.2.4 Semi-automated counting of OTU261 

Although manual annotation produced a large dataset, it represented a very small 

portion of the images available. Thus, a semi-automated annotation protocol was 

tested to evaluate the capacity of this method to speed up image annotation and 

produce additional data.   

The number of OTU261, the xenophyophore Syringammina fragilissima (Brady, 

1883), was measured with the Machine Learning Assisted Annotation (MAIA) 

expansion of Biigle 2.0. This tool-box implements an experimental procedure to 

automatically detect objects of interests in images (Zurowietz et al., 2018). The system 

is based on the Mask R-CNN convolutional neural network (He et al., 2017) and uses 

transfer learning to "teach" this openly available model to identify targets provided by 

the user. It needs a certain number of examples of this target species and can then 

“scan”, searching for similar patterns within unannotated images. The results come in 

the form of image patches that match the target and are referred to as annotation 

candidates. These must be manually checked and confirmed as the target or 

otherwise discarded if they are false positives. In addition, the exact location of these 

candidates can be modified during this manual verification phase to ensure the whole 

organism is included and not just the feature picked up by the algorithm.  
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MAIA was used to detect OTU261 in transects t3, t6 and t14. For each of these, which 

correspond to a volume in Biigle, some images were manually annotated to gather 

enough data to train the algorithm. In each volume, at least 200 examples of OTU261 

were used to train the CNN, using default parameters and the number of clusters set 

to 1 or 2. The candidate annotations were all visually checked and those 

corresponding to S. fragilissima were converted to annotations that could 

subsequently be used for statistical analysis. This process was repeated a second 

time, with at least 1,000 example annotations detected in the first round. These could 

then be used as training examples to increase the detection rate and accuracy of the 

algorithm. Different Biigle sessions of annotations (a process in Biigle that attaches a 

time stamp to an annotation so they can be filtered by round of analysis) were used to 

ensure each individual was counted only once in the final dataset. S. fragilissima 

abundance was counted in more than 4800 images with this protocol.  

What transpired from this experience is that this object detection system works well, 

even with only several hundreds of examples of the target species used in training. 

The algorithm missed an estimated 10 to 15% of the S. fragilissima present on the 

images. The time taken to annotate the data with this method is difficult to measure 

as it was performed by multiple users (Myself and Jamie Cowle from University of 

Plymouth) and was partially experimental thus requiring a training stage and extra time 

for validating the annotation as well as verifying between-users consistency. The time 

taken to semi-automatically count the number of individuals of S. fragilissima in a 

transect, remains in the order or several days (4 to 7 depending on the size of the 

transect), if careful checks are performed on the results. This is faster than manual 

counting, but not by the margin needed to analyse the whole set of images collected 



Chapter 2: 

53 
 

by the AUV in a reasonable time, especially if aiming to detect and identify all of the 

organisms present. 

 

2.3.3 Geomorphological and oceanographic data 

 

Other data components, collected by the AUV, were also explored for later use in the 

study of the environmental parameters driving the distribution of the benthic organisms 

seen in the images. 

2.3.3.1 Geomorphologic and multibeam data 

Autosub is fitted with a Kongsberg EM2040 multibeam sonar system offering up to 

400 beams. During dive M115 it was used at 200kHz to collect multibeam data, 

bathymetry and backscatter, which was then processed by members of British 

Geological Survey (Sam Faithful and Kirstin Crombie). The bathymetry was later re-

processed by a University of Plymouth masters student Joe Augier to produce a 

cleaner 2.5 meters resolution surface.  
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a b 

Figure 2-10: Acoustic data collected by Autosub during the JC163 cruise. a: Multibeam Bathymetry b: Backscatter  

 

As the AUV travelled at low altitude, gaps were left in the multibeam cover of the 

terrain between the transects. Some of these gaps were up to 30 meters wide and 

their presence would limit the surface onto which habitat mapping could be 

implemented. However, given the low variability of depth in the area, it was 

considered acceptable to interpolate depth values from the available multibeam to 

produce a continuous surface. This was done in ARCGIS 10.4 (ESRI, 2014). The 

values were interpolated using the Inverse Distance Weighting (IDW) tool to produce 

a surface raster at 2.5 m resolution shown in Figure 2-11. The resulting surface does 

contain artefacts, which could not be removed without extensive work and could 

influence later ecological results. No such interpolation was applied to the 

backscatter as it is more variable. The unpredictable nature makes spatial 

interpolation inappropriate and may introduce error. 
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Figure 2-11: Interpolated bathymetry of the survey area at station 26 collected during dive M115  

The multibeam data was later further processed to produce other topographic 

information layers used for species distribution modelling. 
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2.3.3.2 Oceanographic data 

The CTD on Autosub is a Sea Bird Electronics 9 unit, fitted with 2x SBE 3 temperature 

sensors, 2 SBE4 conductivity sensors and 2 Pumps. A Seapoint turbidity sensor, an 

SBE 46 oxygen probe and WET Labs ECO-AFL/FL fluorimeter were connected to the 

CTD. 

Variation of dissolved oxygen concentration, salinity, temperature and turbidity were 

explored by mapping their values along the track followed by the AUV during M116 

(examples are shown in Figure 2-12).  

 

a 
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Figure 2-12: Example of oceanographic data plotted in 2D and 3D. a: 2D plot of the turbidity (in FTU) variations 
along the route of the AUV. b: 3D plot of the temperature (in °C) variations along the route of the AUV. Latitude 
and longitude are in degrees and depth in meters.  

 

This exploratory approach of the data showed that variations of these oceanographic 

variables can be observed throughout the dive however it is unclear whether this is 

spatial or temporal variation. Thus any observed correlation with biological 

phenomena, such as the abundance of a given organism, was considered with great 

care in subsequent chapters using these layers.  

Variables used in the following chapters, particularly turbidity, were converted from 

points to a continuous raster at the same resolution as the multibeam bathymetry, with 

a natural neighbour interpolation.  

Owing to time constrains, no further exploration nor processing of the hydrographic 

data was undertaken.  

b 
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2.4 Remarks on processing AUV data  

This chapter details how the raw data was converted into a format, usable in spatial 

and statistical analysis. Moreover, it gives practical insights into the use of AUV of the 

cruising class data and how it involves work on various types of data, as well as careful 

management and curation of the images, tables and other files. The vehicle’s capacity 

to incorporate data from multiple sensors helps consider a bigger picture in benthic 

ecology and builds up a multi-disciplinary (biological, geomorphological, 

oceanographic) approach to ecology. However, this abundant and diverse data is not 

accessible without relevant skills (‘big data’ analysis, acoustic data processing, 

oceanographic data processing, general programming and Geographic Information 

System), computing power, and relevant software to process the raw data that comes 

from the vehicle.  

Overall, it is an important time investment, not just to acquire but to process the data 

and learn how to proceed with this task. Hence, some of the data, particularly 

hydrographic, was not used in subsequent thesis chapters due to the lack of time. 

Likewise, it took a long time to manually and semi-automatically annotate a very small 

fraction of the total number of images gathered at one station only. This highlights how 

much the use of autonomous vehicles increases the complexity of benthic ecological 

studies and how collecting more data does not easily translate into better 

understanding of deep-sea ecosystems.  

The image dataset detailed in this chapter is used in chapters 3, 4 and 5. The 

environmental data is used in chapter 4. The work done in this chapter is far from fully 

exploiting the vehicle’s capacity and it stresses the need for more efficient ways to 

annotate images which are investigated in chapter 5.  
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Chapter 3: The effect of sample size on deep benthic 

soft sediment biodiversity measure.   

 

3.1 Abstract 

Basic characteristics of deep-sea ecosystems are commonly investigated through 

simple metrics like diversity or density. Comparable measures of these metrics are 

important to build a comprehensive understanding of deep-sea ecosystems over 

multiple sampling sites and environmental gradients, or over repeated surveys in 

monitored areas so that it can inform the development of a coherent conservation 

strategy. Obtaining such comparable measures requires standardisation of the 

sampling protocol, to attribute observed differences to genuine ecological causes 

rather than biases caused by differences in sampling effort.  

Obtaining samples in the deep-sea is now becoming less difficult with the increasing 

availability of AUVs that are able to sample hundreds of thousands of images or tens 

of square-kilometres over a single dive. Consequently, investigating the exact sample 

size needed to observe the entire alpha diversity of a station can become a practical 

question.  

To this end, we used a large dataset collected by the AUV Autosub6000 to study the 

effect of sample size on the measures of density and diversity. The appropriate 

amount of sampling effort required to obtain a reliable measure of density was 150 m2. 

Depending on the index used diversity could be accurately measured with 25000 to 

75000 individuals ( 1200 m2 of seabed photographed and a less than 850 meters long 
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continuous transect by Autosub6000 to 3730 m2 of seabed or 2600 meters of transect) 

but could be estimated with replicated or pseudo-replicated samples of 40% that size 

while also quantifying the variability of these estimates. Finally, we discuss how AUVs, 

such as Autosub6000, can improve deep-sea benthic surveys.  

 

3.2 Introduction  

The deep ocean is the largest ecosystem on Earth but is, in general, poorly 

explored and understood With rising threats from anthropogenic activities, a better 

understanding of deep-sea ecology is needed to design efficient conversation 

strategies (Barbier et al., 2014, Danovaro et al., 2017a, Van Dover et al., 2014, 

McClain and Schlacher, 2015).   

International initiatives, like the United Nations General Assembly Resolution 61/105″ 

and the Oslo-Paris (OSPAR) Convention for the Protection of the Marine Environment 

of the North East Atlantic have encouraged the creation of Marine Protect Areas (MPA) 

to preserve deep-sea ecosystems and biodiversity. Some nation-states, like the United 

Kingdom, have also integrated the objective of preserving marine diversity into their 

policies (Defra, 2005, Kroeger and Johnston, 2016, Chaniotis et al., 2020). Efficient 

conservation strategies must be based on reliable and representative information on 

the ecosystems it aims to protect, which is currently lacking (Rogers, 2015, Folkersen 

et al., 2018). This information is needed to place the MPAs in the correct location 

(Halpern et al., 2010) and ensure they are connected (Hilário et al., 2015) in order to 

fulfil their role. Another effect of the poor knowledge of the ecology and dynamics of 

deep-sea ecosystems is the relative lack of understanding of how MPAs help the 

recovery of protected ecosystems. Carefully designed monitoring strategies are 
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needed to evaluate their efficiency (Bowden et al., 2016, Clark et al., 2016a, Huvenne 

et al., 2016b). A coherent and future-proof MPA monitoring strategy must rely on 

repeated and standardized surveys designed to detect changes and must therefore 

provide comparable measures of descriptive metrics such as diversity and density 

(Halpern, 2003, Foster et al., 2013, Woodall et al., 2018). This will enable scientists 

and biodiversity managers to ensure the variations in measures are not the result 

methodological biases but a genuine biological phenomenon (Kroeger and Johnston, 

2016). In other words, baselines need to be established so that deviation from it can 

be accurately detected and quantified (Rogers, 2015). 

Density and, more importantly, diversity are essential descriptors of the state of an 

ecosystem (Rogers, 2015, SCOR, 1994, Gotelli and Colwell, 2011)). Diversity or 

species richness is considered high in the deep-sea (Rex and Etter, 2010, Poore et 

al., 2015), but its exact extent remains unknown (Costello and Chaudhary, 2017). 

Much remains to be understood on how its different components are affected at 

various spatial scales, and how it interacts with its environment (Rex and Etter, 2010, 

McClain and Rex, 2015). Alpha diversity, the number of species present in a specific 

site, provides the most simple indicator of diversity. This basic quantity, once known, 

can also enable further comparison with other sites, across environmental gradients 

(beta diversity) and at larger or regional scales (Gamma diversity) and all comparisons 

depend on the quality of the initial alpha diversity measure. A better understanding of 

deep-sea diversity requires a global and coordinated approach but the lack of 

standardisation of scientific methods, makes comparison and aggregation of data 

towards a coherent strategy difficult (Levin et al., 2019, Woodall et al., 2018). Ensuring 

measures of density and diversity are representative and comparable are an important 

step to tackle this challenge.  
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Diversity measures have been shown to be strongly influenced by sample sizes 

(Sanders, 1968, Danovaro et al., 2017a, Jones et al., 2017, Noble-James et al., 2017). 

Methodological tools to determine appropriate sampling effort to correctly measure 

local diversity or, at least, accurately estimate it, have existed since Sanders (1968), 

in the form of species accumulation curves (Gotelli and Colwell, 2011). In practice, 

sample sizes are a trade-off between ecological necessity and logistical constraints. 

Samples that are too small can give erroneous measures of ecological parameters. 

On the other hand, Oversampling and post-hoc resampling or stratification can be a 

solution to ensure the right amount of data is available, but it can be a waste of 

precious resources (Noble-James et al., 2017). Given the low density of benthic 

megafauna and the high proportion of rare deep-sea species within this group (SCOR, 

1994), the commonly used sampling gears are unable deliver a sample of the size 

needed at a reasonable cost (Danovaro et al., 2016, Brandt et al., 2016), but 

technological innovation could provide new solutions to this challenge in the near-

future.  

With the increase in access to camera technologies, imagery is now proving a popular 

way to survey underwater ecosystems (Solan et al., 2003, Romero-Ramirez et al., 

2016, Bicknell et al., 2016, Brandt et al., 2016, Durden et al., 2016c). This sampling 

tool has many advantages over other methods, being less invasive and destructive 

than physical sampling, preserving the species- habitat relationship, and providing a 

permanent record of observations given the now virtually unlimited storage capacity 

available to researchers at low cost. (González-Rivero et al., 2016, Chimienti et al., 

2018). Cameras need to be mounted on a mobile platform so that they can cover the 

required seabed surface and be provided with power, light and other needed support 

for the system. Since imagery became popular, this platform is either a  frame attached 
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to the ship and lowered to the seabed or a remotely operated vehicle (ROV) (Clark et 

al., 2016b). Dropped or towed frames have the advantage of simplicity and are cost-

effective, while ROVs offer better operational control when on the seabed, as well as 

a wider range of sampling possibilities, including the collection of physical samples 

(Brandt et al., 2016). Both these methods are limited in their mobility by their 

compulsory link to the mothership; consequently, the amount of ground they can cover 

can realistically cover in reasonable time is also limited (Danovaro et al., 2016). Hence, 

although they have contributed to significant improvement of our knowledge of the 

deep-ocean, it is commonly accepted that the pace of the exploration they allow is not 

sufficient to thoroughly explore this environment.  

In contrast, Autonomous Underwater Vehicles (AUV) can operate independently from 

the ship without supervision, allowing the ship to carry out other operations 

simultaneously (Huvenne et al., 2009, Wynn et al., 2012). The absence of cables also 

allows AUVs to travel much faster than any gear requiring connection to the ship via 

cables. This dramatically increases the amount of ground that can be covered in a 

single mission (Wynn et al., 2014), particularly with the AUVs of the “cruising” class 

(Huvenne et al., 2018). Thanks to the latest development in battery life, these AUVs 

can stay underwater from a few hours to a few months, depending on their design and 

the sampling equipment deployed, and travel hundreds of kilometres, allowing them 

to gather a tremendous amount of data (Huvenne et al., 2018, Wynn et al., 2014, Wölfl 

et al., 2019).  

Due to this capacity to collect so much data, AUVs can offer the possibility to 

thoroughly test how sample size can affect density and diversity measures and 

suggest a minimum sample size that all samples of a benthic community taken in the 

same area should match, in order to be representative and thus comparable (Soetaert 
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and Heip, 1990). This can hopefully help form a database that can combine data from 

multiple cruises and studies, enabling a standardized study of the local ecology and 

its monitoring, in relation to the changes in the environment and implemented 

conservation measures.  

In this study, we evaluate the impact of sample size on density and various measures 

of diversity in a case-study of the soft sediment epibenthic megafauna at a 1200-

meter-deep station off Rockall Bank in the North-East Atlantic. We attempt to provide 

the necessary amount of data needed to observe and estimate the local density and 

alpha diversity, evaluate the variability of these measures and discuss the 

consequences for conservation. We also compare these ecological requirements to 

the capacity of the AUV used for this survey and discuss how it could impact the study 

and conservation of benthic ecosystems.   

 

3.3 Method  

3.3.1 Study site 

In May and June 2016, an area of the sea-floor of the Rockall Trough, located between 

Rockall Bank and George Bligh Bank, was surveyed using the ISIS ROV and the 

Autosub6000 AUV. This formed station 26 of the DeepLinks Cruise (JC136) on board 

the RRS James Cook, within the United Kingdom’s Continental Shelf Limit (see maps 

in chapter 2). The depth of the study area was 1205 m (+- 25 m) and the terrain was 

relatively smooth. The substrate was fine mud and appeared homogenous.  
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3.3.2 Data collection 

3.3.2.1 Image collection 

The AUV Autosub6000 was deployed on two missions over the station: M115 was 

aimed at mapping the area at high resolution with a multibeam echo-sounder and 

M116 was aimed at taking images of the seabed (details in chapter 2). Autosub 

conducted an 86.6 km long dive during N116, in which it took more than 80000 2448 

x 2048 pixels resolution images of the seabed with a downward facing Grasshopper2 

GS2-GE-50S5C camera (Point Grey Research). 60000 of these images were deemed 

usable for analysis. The AUV was flown at 1.1 ms-1 speed, at 3 m ± 0.2 m off bottom 

and took nearly overlapping images at a 1 second frequency which provided almost 

full coverage of the seabed. Images taken at higher than 3.6 m off bottom were 

removed to avoid the risk of overlap and annotating the same area twice.  

The approximate dimensions and surface area of each AUV image was calculated 

using the altitude, pitch and roll of the vehicle and the cameras characteristics, 

following the method described in (Morris et al., 2014) but since adapted to a Python 

(www.python.org) script. The surface of an image varies between 1 and 2.5 m2 and 

averages at 1.76 m2. Total time taken to complete the 1900 m long transect used in 

this study was 29 minutes.  

3.3.2.2 Image processing and annotation  

The .RAW images taken by the AUV were converted to .JPG format and an 80% 

compression applied to reduce image size without visible loss in quality with the 

IrfanView software (Skiljan, 2012). The colours were also adjusted in the same 

software using the default settings of the colour adjustment tool in the same program. 

http://www.python.org/
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In total, 1718 raw images of the seabed were manually annotated by a single observer 

with the Biigle 2.0 software (Langenkämper et al., 2017), using a regional catalogue 

of Operational Taxonomical Units (OTUs) developed by Howell and Davies (2016), 

modified with several new OTUs encountered in the present dataset. The order in 

which the images were annotated was random to limit observer biases becoming 

locally correlated. Within the Biigle 2.0 software, location (X and Y coordinates in pixels 

for point annotations, or X, Y and radius for individuals marked using a circle) and 

identity of individual OTUs annotated within each image were recorded and stored. 

Individual annotations for all OTUs in both datasets were visually inspected using the 

“Largo” evaluation tool in Biigle 2.0, to ensure consistency in identification and reduce 

error. Thus, each annotation was checked at least once by its original annotator.  

3.3.3 Data analysis  

Prior to community analysis, all members of the superclass Pisces (bony fish and 

sharks) were removed from the dataset as their high mobility could lead the same 

individual to be included on several images, introducing bias in their observed 

abundance. All unidentified individuals (for which no identification could be confirmed 

at phylum level or lower) were also removed.  

3.3.3.1 Quantification of sampling effort 

The sampling effort quantifies the investment by the scientists to obtain their sample 

and it can be expressed in 3 different ways or units, each with its advantages and 

drawbacks.   

The amount of effort is usually decided prior to data collection, at which point, the most 

practical way to express it is in length of transect or distance travelled by the vehicle 

in meters. This length was calculated as the cumulative lengths of all images within a 
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transect. This assumes that images are exactly contiguous, which is not the case in 

practice and can introduce error caused by the image size calculation (estimated at 5-

10%). It does not account for the width of the image.  

More meaningful to the effective amount of seabed sampled and more comparable to 

samples from different gear, is the surface photographed during the survey. This can, 

in theory, by predicted from the specific properties (focal length and opening angle) of 

the camera used, but is likely to vary due to uncontrollable factors such as water 

turbidity or terrain roughness at fine and medium scales. Consequently, the exact 

surface sampled is more likely to be accurately known only after the data has been 

collected and processed.  

Finally, it has been common practice in the deep-sea to express effort as number of 

individuals since the recommendations of Sanders (1968). This is a consequence of 

the relatively high variability of deep-sea benthic megafauna, which tends to relate to 

the quantity of surface sampled. This measure is only realistic in environment where 

OTUs can be counted as discrete individuals or colonies, as opposed to ecosystems 

where densities and overlapping continuous cover renders such distinction impossible 

and requires the use of cover measures to express abundances. At station 26, none 

of the OTU encountered needed to be quantified in cover. Furthermore, this measure 

allows for more meaningful standardisation across multiple gear types, when 

detectability of animals is inequivalently biased by the different camera systems.  

3.3.3.2 Estimate of density 

Density is the number of individuals per square meters (ind .m-2). The raw abundance 

of each taxa retained for analysis were divided by the surface of each image to get the 

density of megafauna within that same image.  
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3.3.3.3 Estimate of diversity 

Diversity was estimated with Hills number of orders 0 (the exact total number of OTU, 

species richness or Chao number), 1 (the number of typical OTUs or transformed 

Shannon number) and 2 (the number of dominant OTUs or inverse Simpson number) 

as described in Chao et al. (2014) and Chao and Chiu (2016). Rarefaction curves 

(Sanders, 1968) were extrapolated to a sampling effort (in number of individuals 

sampled) equal to double the number of individuals observed by the AUV. This was 

decided following recommendations by Colwell et al. (2012) who stated that richness 

estimates beyond 2 or 3 times the available sample size are unreliable. Asymptotic 

estimates were provided by the iNext package (Hsieh et al., 2016). 

3.3.3.4 Effect of sample size on estimate of density and diversity  

Random subsets of 1-20% (in steps of 1%), 30-90% (in steps of 10%) and 99%, of the 

total number of sampling units (here, images) available were created with 

replacement. The higher number or small size sampled was decided to increase 

resolution in the ascending phase of the species accumulation curve. This was 

repeated 100 times for each sample size. For practical reasons, the resampling was 

done with images as sampling units (subsample of size 10% is 171 images) but the 

effort of each subset was also quantified in terms of number of individuals, total surface 

and transect length.  

The density in each of these subsets was calculated as the cumulative sum of all the 

individuals present in this subset divided by the cumulative surface of all the images 

in the same subset.  

Minimum sampling effort required to observe the estimated asymptotic diversity, of 

order 0, 1 and 2, was determined with a GAM model of the relationship between effort 
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and observed diversity in the subsample. In some instances, this required 

extrapolation beyond the existing amount of effort in the available dataset. We also 

determined the sampling effort needed to observe 99 and 95% of the diversity in the 

total dataset.  

The average diversity estimate across the 100 replicates of each sample size was 

compared to the diversity of the whole dataset. This would indicate the smallest 

sample size which can reliably estimate the diversity of the full dataset. This was done 

for all 3 orders of diversity, as well as with and without inclusion of the singletons for 

diversity of order 0, to evaluate their impact on our interpretation of species richness.  

In order to evaluate the robustness of this method, we also investigated how the 

average estimate of diversity, within this sample size, was impacted by the number of 

replicates used to produce it. Average estimates of diversity were calculated for 

random groups ranging from 2 to 100 replicates (98 groups of increasing sizes). This 

was repeated 100 times for each replicate size group, resulting in 9800 average 

estimates of diversity.  This allowed visualisation of how estimates of diversity were 

spread around the mean and if a small number of replicates could give reliable 

estimate of diversity. 

All statistical analyses were performed in R (R Development Core Team, 2011), within 

the Rstudio (RStudio Team, 2015) environment, with extensive use of the “tidyverse” 

library for data manipulation and graphical outputs (Wickham, 2017). Rarefaction and 

sample completeness curves were all computed using the iNext package (Hsieh et al., 

2016). Multivariate analysis was performed using the Vegan package (Oksanen et al., 

2007) and the geoveg package (Goral and Schellenberg, 2017). 
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3.4 Results 

In total, the AUV encountered 61561 (61555 without the singletons) individuals and 

113 OTUs (107 without the singletons). The average diversity was 12 OTU per image 

(sd = 3.05). 

The local epibenthic megafauna was dominated by the xenophyophore Syringammina 

fragillissima (OTU261), a tube worm (OTU375), a small branching sponge (OTU603),  

squat-lobster, Munida sp. (OTU339), unidentified  chrysogorgiidae (OTU995),  

cerianthid anemone (OTU2) and halcampid (OTU23) anemone. 

3.4.1 Estimates of density 

On average, there were 35.8 individuals per image (sd = 17.027) at an average density 

of 20.6 individuals per m2 (sd = 9.69), or 2953 individuals per 100 m travelled.  

 

Figure 3-1: Effect of sample size on measure and variability of density at station 26. Red dots indicate the average 
density observed in subsamples of a given size. Black lines indicate the standard deviation of this measure. The 
red line is the smoothed curve of average density per subsample. 

The effect of sample size, in terms of surface cover (m2), on the density of megafauna 

at station 26 is shown in figure 3-1. This shows that although average density is the 
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same across sample sizes, this measure is extremely variable within the smaller 

samples. The standard deviation of density decreases slowly with increasing sample 

size, but remains above 0 until the subsets are larger than 90% of the total pool of 

sample. The standard deviation decreases below 1 with sample of sizes superior to 

150 m2, 3047 individuals and 103 m long continuous transect.  

3.4.2 Estimates of diversity 

The Chao estimate of total diversity, 117 OTUs, was close to the number of observed 

OTUs, 113 (values in Table 3-1) and within the error bracket. This indicates that most 

of the OTUs present at station 26 have been encountered. Excluding the singletons 

did reduce the estimated species richness down to 107, equal to the observed species 

richness when singletons are ignored, although below the upper limit of the confidence 

interval. In higher order diversity, both observed transformed Shannon and Inverse 

Simpson match the corresponding index estimate, demonstrating all the typical and 

dominant species were encountered. Removing the singletons had little to no effect 

on these indices.  

Table 3-1: Diversity metrics of the full dataset, with  and without the singletons. The table shows observed diversity 
(Observed, asymptotic estimates (Estimated) extrapolated at 2 times the available effort and upper and lower 95% 
confidence intervals for diversity of order 0, 1 and 2.  

Singletons 
Type of 

OTU 
Estimator Order Observed Estimated 

95% 
Lower 

95% 
Upper 

with 
All OTUs 

Species 
richness (Chao 

number) 

0 113 117 114 133 

without 0 107 107 107 110 

with Typical 
OTUs 

Transformed 
Shannon 

1 16.49 16.51 16.49 16.702 

without 1 16.48 16.49 16.48 16.694 

with Dominant 
OTUS 

Inverse 
Simpson 

2 8.15 8.15 8.147 8.26 

without 2 8.15 8.15 8.145 8.262 

 

The rarefaction curves on the full dataset (Figure 3-2) also showed that the asymptote 

is not reached with the observed (interpolated) sample, although it possessed a very 
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gradual and gently decreasing slope, that approached a plateau, with a sample smaller 

than the total 61561. Without the singletons, the curve of the species richness (Chao) 

reaches a plateau at 107 OTUs and the observed richness is stable.   

The curves of higher order indices (Shannon and Simpson), climbed steeply appearing 

to stabilize with a smaller sample size than species richness, as both seem to 

approach a plateau with less than 4000 individuals (Figure 3-2).  

 

Figure 3-2: Rarefaction curves (continuous line) of the full dataset with (All) and without the singletons (no singles). 
Curves also show the extrapolated (dashed line) data up to 123122 individuals (order 0), 6000 individuals (order 1 
& order 2). 95% bootstrapped confidence intervals are displayed as ribbons around each curve. 

 

3.4.3 Assessment of optimum sample size  

Observed and estimated diversity was shown to be affected by resampling the dataset.  

Table 3-2 shows the estimated amount of sampling effort needed for sub-samples to 

match the observed diversity (of all 3 orders) in the total dataset. 75772 individuals, 

3730 m2 or 2566 meter long continuous transect would be necessary to encounter all 

the OTUs present in the entire transect we annotated. 91.5 % of that effort would be 

enough to encounter 99% of the order 0 diversity (species richness) and 57% of that 
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effort would be enough to encounter 95% of order 0 diversity. The higher order 

diversity, of typical and dominant OTUs (the transformed Shannon and inverse 

Simpson indices), can be encountered with less than 33% of the sampling effort and 

only 5635 individuals, 1208 m2 and 831 meters long continuous transect are 

necessary to encounter 95% of the common OTUs. A slightly higher effort was needed 

to encounter 95% of the dominant OTU (Simpson index) which illustrates the error 

margin associated with these calculations.  

Table 3-2: Estimated amount of sampling effort (in number of individuals, surface and transect length) needed for 
a sub-sample to encounter 100, 99 and 95% of the diversity (of order 0, 1 and 2) in the total dataset. Values were 
rounded to the nearest 0 decimal place. Effort is expressed in number of individauls (nb. ind.), surface (Surface 
(m2) , and length of continous transect (Length (m)). 

 0rder Order 0 Order 0 Order 1 Order 2 

 Index 
Chao Chao 

transf. 
Shannon 

Inverse 
Simpson 

Effort unit % of total 
diversity 

All OTUs No Singletons All OTUs All OTUs 

nb. ind. 100% 75772 47897 24528 24159 

nb. ind. 99% 69330 41105 21873 23267 

nb. ind. 95% 43699 18354 5635 6849 

Surface (m2) 100% 3730 2358 1208 1189 

Surface (m2) 99% 3413 2024 1077 1146 

Surface (m2) 95% 2152 904 276 341 

Length (m) 100% 2566 1622 831 818 

Length (m) 99% 2348 1392 740 789 

Length (m) 95% 1480 622 190 235 

 

If the singletons are not considered, only 47897 individuals, 2385 m2 and 1622 meter 

long continuous transect would be needed to encounter the OTUs remaining in the 

total dataset; a reduced sampling effort of 36.5% compared to what is needed for all 

the OTUs. Note that the effort at the asymptote tends to change drastically with small 

variation in the maximum diversity target. For example, depending on how the target 

diversity is rounded, it could result in a 15% increase in needed sampling effort to 
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reach it. More importantly, should these indices be rounded to natural numbers to 

represent a number of OTUs rather than an index, the effort would be greatly changed.   

  

 

Figure 3-3: Effect of sample size on observed and estimated Chao numbers with (a) and without the singletons (b). 
Effort, or size of the subsample, is expressed in percentage of the total effort in the whole dataset. The dashed 
black line indicates the minimum effort or sample size at which the average estimate consistently matches that of 
the whole dataset.  The error bars indicates the standard deviation.  

 

a 

b 
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Figure 3-3 shows the relationship between the observed and estimated diversity of 

smaller subsets. In the whole dataset, no subset ever observed the same number of 

OTUs as its associated estimate. However, removing the singletons lead the observed 

Chao number to match the estimate, if the sample is large enough (80% of the total 

effort). In both cases, the average estimated diversity, over 100 subsets, reaches a 

plateau with samples smaller than the total dataset. The variability of observed and 

estimated diversity in individual subsets is higher at smaller sample sizes. This 

variability decreases with increasing sample size, particularly with singletons removed. 

Note that, since these subsamples are taken with replacement and the larger ones are 

far from independent from each other which probably impacts the observed variability.  
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Figure 3-4: Effect of sample size on Observed and Estimated transformed Shannon (a) and Inverse Simpson (b) 
indices. Frame size in b was adjusted to highlight the behaviour of the curve with samples of sizes below 20000 
individuals. The dashed black line indicates the minimum effort or sample size at which the average estimate 
consistently matches that of the whole dataset.  The error bars indicates the standard deviation. 

With the transformed Shannon and inverse Simpson indices (Figure 3-4), the minimum 

sample size that, on average, matched the observed diversity in the whole dataset 

was difficult to read due to the variability of the measures. Although very small samples 

can give the correct estimates, the average estimated diversity is not consistently 

equal or above the target diversity. For both inverse Shannon and inverse Simpson 

b 

a 



Chapter 3: 

78 
 

indices, the average estimates of sample of sizes larger than the minimum indicated 

in Table 3-2 are below that of the whole dataset. Nonetheless, these plots and table 

do show that a lower effort is needed to obtain the correct estimate of diversity of order 

1 and 2, however, the variability of these estimates is relatively lower than those for 

order 0 diversity.  

 

The smallest subsets size that provided an estimate of order 0 diversity that was equal 

or larger than the estimated species richness of the whole datasets, with and without 

the singletons, are indicated in Table 3-3. With all the OTUs, the smallest subsets that, 

on average, provided that same estimate of total richness (117 OTUs), had 855 

images, and represented 50% of the total effort, 30624 individuals, 1508 m2 or 1037 

meters of continuous transect by the AUV. Without the singletons, 493 images were, 

on average, enough to match the estimated and observed total richness in the dataset 

(107 OTU). This represents less than 30% of the total effort, 17670 individuals, 870 

m2 or 598 m of meters of continuous transect by the AUV. In both cases, the estimate 

of individual replicates at that minimum could be above or below the average by up to 

15 OTUs.   

Table 3-3: Minimum amount of effort in different units for the average estimate over 100 random subsamples to 
match the estimated diversity in the whole dataset (target richness).  

 

 

target 
richness  

nb. 
Individuals 

Surface 
(m2) 

Length 
(m) 

All order 0 117 30624 1508 1037 

No 
single. order 0 

107 17670 870 598 

All order 1 16.509 7897 390 268 

All order 2 8.148 4878 240 165 
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The variability of the estimates decreased with the number of pseudo-replicates used 

to produce the average estimate. Figure 3-5 shows how the number of replicated sub-

samples (randomly sub-sampled with replacement) impacts the standard deviation of 

the estimated diversity. 

 

 

Figure 3-5: Variability of order 0 diversity (Chao) estimates, averaged over increasing number of replicates. The 
horizontal black line indicates the estimate of the whole dataset with (a) and without (b) the singletons.  

 

Figure 3-5 demonstrates the strong relationship between the variability of the 

estimated diversity averaged over a number of small random replicates and the 

number of said replicates. With all the OTUs (Figure 3-5a), averaged estimates of 

diversity vary widely (+/- 3 OTUs or more) from that of the full dataset when less than 

b 

a 
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20 replicates were used.  For example, the averages of only three replicates could be 

more than 8 OTUs above or below the diversity of the whole dataset. Removing the 

singletons did not affect that variability (Figure 3-5b). The same pattern exists with 

measures of diversity of higher order (plots not shown here). 
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3.5 Discussion 

In this study, we investigated how sampling effort affects measures of density and 

diversity, in a soft sediment epibenthic community, in the Rockall trough. We also 

attempted to evaluate the amount of effort needed to fully sample the community.   

3.5.1 Impact of sample size on density measures 

This study showed that average density (20.6 ind. m-2) can be accurately measured 

(+/- 0.5 ind.m-2) within a 150 m2 sample. Although larger samples were shown to give 

less variable measures of density, this comes at the cost of an increase in effort 

needed. This illustrates how sampling units, the size of a single image (1.7 m2), are 

inappropriate to measure density in this environment, and must be pooled to achieve 

a sufficient sample size.. Within very large sample sizes, in which sub-samples are 

less different (as they are sampled with replacement), the level of variability does not 

decrease to 0. This is likely driven by the patchiness of species distributions, a well-

known characteristic of deep-sea ecosystems (Grassle and Maciolek, 1992b, Rex and 

Etter, 2010, McClain et al., 2011). A more detailed investigation of the heterogeneity 

in abundance of some of the megafaunal species at station 26, and their possible 

causes, is conducted in chapter 4. 

It is important to know if the observed difference in density, between two samples, is 

within the natural variability of the local megafauna density, or if it could be caused by 

another factor. In a hypothetical scenario, where a similar study is conducted in the 

same location 10 years after this one, which measured a difference in density of 1.3 

ind.m-2 (down to 19.3), this could mean there is a genuine decrease in density, if the 

sampling units are large enough. However, if these new results were based on 

measurements over 25 m2, this would be within the range of variability expected for a 
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sample of that size and, therefore, inconclusive. On the contrary, if the samples 

represented more than 200 m2, this observed difference could be a sign of a genuine 

decrease in species density.  

Density can be used to detect broad changes in communities (Ardron et al., 2019). 

The small sample size needed to accurately measure density and quantify its 

variability, makes it useful for rapid detection of changes in ecosystems but carries 

less information than diversity. 

3.5.2 Impact of sample size on diversity measures 

From our data, it seems possible to observe all OTUs present at station 26 in a sample 

of 75000 individuals, 3730 m2 of seabed or 2600 meters of continuous transect by the 

AUV, using the same settings as this survey. Less than 60% of that effort would be 

needed to encounter 95% of the total estimated number of OTUs. We also found that 

50 % of that effort, less than 31000 individuals, 1500 m2 and a continuous AUV 

transect slightly longer than a kilometre, could give a correct estimate, if replicated.  

This is not to say that this is a large enough sample to provide an exact estimate of 

total species richness, as the variability between estimates was as high as 15 (+/- ) 

OTUs.  We found that only a high number of replicates or pseudo-replicates (more 

than 20) was enough to ensure that the average richness was close to the true value. 

The use of true replicates would be preferable but pseudo-replicates can also provide 

useful insight while keeping sample at logistically realistic size. 

Quantifying the variability of diversity measures in the area is valuable information 

when comparing samples from different surveys. It is important to note here that 

quantifying variability would be better with independent sub-samples (Hurlbert, 1984, 

Noble-James et al., 2017).  Unfortunately, our dataset was too small to investigate that 
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effect in detail, we therefore had to use pseudo-replicates. Nonetheless, it shows that 

reporting raw diversity measures, without quantifying variability, may be misleading. 

Measures of diversity should therefore be replicated whenever possible (Lacharité and 

Brown, 2019).  

We also calculated that less than 25000 individuals, 1200 m2 and less than 850 meters 

long transect, would be needed to obtain the same transformed Shannon or inverse 

Simpson Indices. Less than 30% of the effort needed to estimate diversity of order 0 

is needed to measure diversity of order 1 and 2.  The variability of the higher order 

diversity indices is not null, but is relatively low compared to the species richness. Hill’s 

diversity numbers have previously been described as less dependent on sample size 

(Soetaert and Heip, 1990) and their response to changes in community composition 

vary (Nagendra, 2002). They are however, complementary to species richness as they 

give an indication of the evenness of the diversity (Soetaert and Heip, 1990, Jost, 

2006, Simon-Lledó et al., 2019). In the case of station 26, they show how a small 

number of OTUs dominate the community and that the majority of the OTUs present 

are rare; as commonly reported in the deep-sea (Poore et al., 2015, Carney, 1997).  

As these indices account for evenness, they could vary if the relative abundance of 

the main taxa changed, but not the species richness (Ardron et al., 2019). This 

information would be a useful application of these indices, particularly if the available 

sample is not large enough to enable measurement of species richness. It also 

illustrates how the use of several indices would favour a comprehensive understanding 

of this ecosystem.  

3.5.3 Advice on sampling effort 

The methodological advice detailed here aims to increase the rigor of future sampling 

methodologies according to the goals set by conservation managers in the UK (SCOR, 
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1994, Kroeger and Johnston, 2016, Noble-James et al., 2017) and globally (Woodall 

et al., 2018, Levin et al., 2019).  

To study the species richness near station 26, or in similar ecosystems, we therefore 

recommend to aim for a minimum effort between 30000 – 40000 individuals (1500 – 

2100 m2 or 1000 to 1400 meter long transects), to allow a safety margin.  In addition, 

replicating this sample at least three times (more if possible) or alternatively use 

random resampling with replacement, would quantify the variability. This would come 

to a total of 4500 to 6300 m2 and 3000 to 4200 meters of continuous transect.  This 

should give a reliable estimate of the total number of OTUs present in the station and 

these three replicates can be pooled together to produce a species accumulation 

curve. This will determine if the richness estimate from the replicates can indeed 

approximate that of a larger sample, within the error margin. A third of that effort would 

be sufficient to measure density or diversity of a higher order, but all components of 

diversity should be studied to obtain a representative assessment of an ecosystem 

(Davies et al., 2017).  

The AUV observed 95% of the total species richness with 44000 individuals, but would 

need nearly twice that amount of effort to encounter the remaining 5%. This single 

measure of diversity would not quantify the variability of this measure and another 

transect of the same length and surface is likely to encounter a different number of 

OTUs. Hence, there is a diminishing return in annotating a large amount of images, as 

a large part of the effort would be dedicated to the detection of a small number of rare 

OTUs.  The extra effort to observe all OTUs may not be an optimal use of ship, crew 

and vehicle time. Instead, 40% of that effort, approximately 30500 individuals, if 

repeated several times could, at least give a reasonable average estimate of the 
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diversity, as well as a measure of the variability;  the price being ignorance of the some 

of the rarest taxa. 

3.5.4 Consequences for use of AUVs in deep-sea ecology 

 

The recommendations we make here represent a consequent amount of sampling 

effort for a single station. It is nonetheless well within the sampling capacity of a 

cruising AUV such as Autosub6000. In fact, the entire dataset collected during dive 

M116 along with the data used in this study cover more than 93500 km2 and 80km of 

continuous transect (probably more than 2.5 million individuals). AUVs are seemingly 

the perfect tool to cover large amount of ground efficiently and sample images of flat 

seabed. It is particularly suited for studies where sampling unit size consistency, 

reproducibility (Borregaard and Hart, 2016), speed and sample size (Perkins et al., 

2019, Perkins et al., 2016) are more important than taxonomic resolution and the 

possibility to collect physical samples, like MPA monitoring or environmental impact 

assessments (Smale et al., 2012, Wynn et al., 2012, Wynn et al., 2014).  

However, the major advantages of AUVs at present only apply to well-known areas 

with limited risks of collision with large object on the sea-bed (Wölfl et al., 2019). Other 

disadvantages include the complete absence of physical sampling capability or the 

impossibility of further investigating objects of interest during the mission. 

Furthermore, given the lack of efficient satellite positioning over great depth, dead-

reckoning navigation used by most AUVs is subject to a certain amount of drift, which 

can be up to hundreds of meters. AUVs are likely to be increasingly used in the future 

for surveying and monitoring deep-sea benthos (Williams et al., 2016, Lucieer and 

Forrest, 2016, Huvenne et al., 2018) and more and more data will be collected by 
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these vehicles (Huvenne et al., 2018, Wynn et al., 2014, Milligan et al., 2016, Morris 

et al., 2014). 

The amount of data recommended here is currently largely impractical for a deep-sea 

survey due to the bottleneck that exists in in data analysis because images collected 

still have to be annotated manually (Schoening et al., 2017, Howell et al., 2019, Durden 

et al., 2016b).  Thus, an important change these vehicles can help bring about is a 

shift of the bottleneck limiting scientists capacity to sample the deep ocean further 

down the processing pipeline. This is the biggest challenge to the adoption of AUVs 

as a common sampling tool that currently prevents full use of the tens of hundreds of 

thousands of images taken by these vehicles (Brandt et al., 2016, Schoening et al., 

2017). Indeed, with a hundred or a thousand-fold increase in sampling effort, the data 

collection phase may not be limiting research in the near future provided it can be 

analysed. The cost of gathering data can average around 40000 € (36000 Pound 

sterling) per day (Brandt et al., 2016), analysis time often relies on a small number of 

individuals and costs a fraction of that. Thus, unlike the data gathering, the data 

analysis is a more adjustable variable that can be reconsidered a posteriori on a more 

informed base. This, for example, opens the possibility to continue annotating until 

targets of diversity are met.  This in turn makes harmonisation of effort more realistic 

as well as more adaptable to local conditions or other parameters known only once 

the collection phase is complete. Currently at prototype stage but more promising in 

the future, automated image analysis can also unlock the bottleneck of data analysis 

(Gaston and O'Neill, 2004, Beijbom et al., 2015, Weinstein, 2018). We strongly 

advocate in favour of further research on that topic (this will be investigated in chapter 

5). 
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3.6 Conclusion  

Strictly interpreted, these results indicate that a high amount of effort is needed to 

obtain a reliable and complete inventory of the taxonomical composition of the benthic 

megafauna at station 26. Measures of density and diversity of higher order (Shannon 

et and Simpson indices) need less effort to be reliably measured and these metrics 

could be considered a useful alternative if the objective of the study can be 

accomplished with these measures. If a complete list of OTUs is needed, 75000 

individuals need to be detected and identified which represents more than 20% more 

effort compared to what has been performed in this study but replicated samples of 

50% of that effort can also provide an accurate estimate while also quantifying the 

variability of diversity measures. 

In the same manner as the arrival of cameras and ROVs complemented existing 

physical sampling tools like trawls and dredges, AUVs will provide a different view-

point of deep epibenthic communities and offer a fresh perspective. AUVs are likely to 

take an increasingly important role in surveying the deep bathyal and abyssal plains 

due to their unmatched capacity to collect large amount of data, subsequently enabling 

robust quantitative studies while optimising the ship and crew time. As methodological 

rigour requirements for sampling the deep-sea increase (Woodall et al., 2018), these 

vehicles appear to offer appropriate tool to enable these changes. 
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Chapter 4: Fine scale distribution of benthic 

megafauna: a case study in Rockall basin 

 

4.1 Abstract  

The fine scale distribution of benthic species and its environmental drivers are an 

important element of deep-sea ecology, but their study requires a large amount of data 

that is difficult to acquire. Autonomous underwater vehicles may offer a solution but 

have yet to be tested in practice. In this study, we tested if the density of the 

Xenophyophore Syringammina fragilissima, measured by an AUV in 6500 images, 

from four neighbouring transects, could robustly describe the spatial structure of their 

distribution. We then attempted to extrapolate the pattern observed within the transect, 

to the rest of the survey area using species distribution modelling techniques. The aim 

being to determine if the large dataset available was sufficient to produce a reliable 

modelled map of the distribution of S. fragilissima, as well as describe the influence of 

environmental drivers on its distribution. We thoroughly tested the models with internal 

and external validation and detected structure in their distribution with densities 

varying from 0 to 26 ind.m-2, within the study area. The spatial autocorrelation pattern 

was consistent across all four transects (with minimum distances of 243 to 335 m). 

The models performed well according to internal validation (Rsquared 0.5 to 0.7). 

However, external validation with relatively independent test dataset suggested that 

models trained on smaller subsets were never able to accurately predict the density 

of S. fragilissima (no Rsquared above 0.32, most below 0.05), in other more closely 

located subsets. This prompts questions on the generalisability of the model trained 

on the entire dataset. This study suggests that AUVs are suited to study fine scale 
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distributions of species and their environmental drivers, but big datasets must still 

come from well-designed surveys.  

4.2 Introduction 

The deep sea, by convention, the portion of the oceans deeper than 200 metres covers 

most of the planet and provides many ecosystem services (Borja et al., 2016). It is 

poorly known (Danovaro et al., 2016, Van Dover et al., 2014) but it is also under 

increasing anthropogenic pressure (Halpern et al., 2007) and the international 

scientific community is racing to acquire relevant data to implement effective 

conservation strategies  (Poore et al., 2015, Folkersen et al., 2018, Danovaro et al., 

2017a, Levin et al., 2019). The evolution and resilience over time of this complex and 

vast ecosystem depends on many parameters. This includes abiotic environmental 

parameters such as topography, temperature, salinity etc… (Brown et al., 2011), as 

well as biotic parameters such as connectivity (Hilário et al., 2015), diversity (Costello 

et al., 2010), and species distribution at various temporal and spatial scales (Woodall 

et al., 2018, Brind’Amour et al., 2009, Glover et al., 2010). 

Species distribution patterns at fine scale (finer than a kilometre) are poorly 

documented in deep-sea benthic ecosystems. This field of study was pioneered in the 

1970s  (Jumars and Eckman, 1983, Jumars, 1976, Jumars, 1975a, Jumars, 1975b, 

McClain et al., 2011, Rex and Etter, 2010) but specialists still acknowledge the lack of 

conclusive progress in the area and advocate for more research on the topic (McClain 

et al., 2011, McClain and Rex, 2015). Random species distribution is rare in nature 

(Taylor et al., 1978) and tends to follow specific patterns (Fortin and Dale 2009; Dale 

and Fortin 2014). Understanding the ecological dynamics and functions of an 

ecosystem is important to the design of efficient and unbiased sampling that provides 
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appropriate information on which conservation strategies can be based (Brind’Amour 

et al., 2018, Brind’Amour et al., 2009, McClain and Rex, 2015, Rex and Etter, 2010, 

Robert et al., 2016, Lo Iacono et al., 2018).  

Species distribution studies at fine scale require large amounts of data to represent 

robustly their variability, but data on deep-sea species is difficult to acquire in quantity 

(Ramirez-Llodra et al., 2010, Yates et al., 2018). Deep-sea epibenthic megafauna is 

increasingly studied by using image-based survey (Solan et al., 2003, Brandt et al., 

2016). The low density of many deep-sea species necessitates that many images are 

analysed (or annotated) before sufficient individuals have been encountered and the 

abundance reliably measured (Perkins et al., 2016) or the full range of variability in 

abundance has been observed (Rex and Etter, 2010, McClain and Rex, 2015). Robust 

sampling designs also necessitate replication in the measures made (Chapman and 

Underwood, 2008), which multiplies the size of datasets by at least a factor of 3, hence 

raising the challenge of sampling by as much.  

Mapping is popular output type of ecological research used to communicate results to 

policy managers (Brown et al., 2011, Buhl-Mortensen et al., 2015). This approach 

allows researchers to summarise important information of various nature in an intuitive 

way. Ecologists have used species distribution modelling (SDM) to extrapolate 

available knowledge gathered from a limited number of samples to larger areas where 

data is missing (Elith and Graham, 2009, Guisan et al., 2013). This process is 

commonly conducted at large scale (Howell et al., 2011, Ross and Howell, 2013) but 

fewer instances exist at fine scale in the Marine realm. This is due to the rarity of 

biological and environmental data at appropriate resolution (Rengstorf et al., 2012, 

Rengstorf et al., 2014, Rowden et al., 2017) and the need for abundant data to improve 

model performances (Wisz et al., 2008). Validation of SDMs with independent data is 
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strongly advocated by the community of SDM users, as internal validation tends to 

give over-optimistic performance results (Anderson et al., 2016, Kenchington et al., 

2019, Robinson et al., 2017, Elith et al., 2006). However, it is rarely achieved owing to 

the difficulty of funding studies designed only to confirm previous discoveries. Thus, 

there is a need to both improve our knowledge of fine-scale species distributions and 

with that, our ability to predict it through gathering larger datasets over smaller spatial 

areas. There is also a need for a better understanding of model performances in order 

to assess their reliability for conservation. This requires careful testing and is easier to 

perform with large datasets.  

Autonomous Underwater Vehicles (AUV) now have the capacity to cover large areas 

in a short time, compared to other vehicles, and effectively provide more data while 

cutting the costs of sampling (Huvenne et al., 2018, Wölfl et al., 2019, Jones et al., 

2019, Morris et al., 2016, Morris et al., 2014, Wynn et al., 2014). With more large 

datasets, questions that were previously difficult to address with statistical robustness 

can now be investigated and there is hope that new insights on benthic species 

distribution can be gained using these tools (Brandt et al., 2016, Danovaro et al., 2014, 

McClain and Rex, 2015).  AUVs have the capacity to gather not only images, but other 

types of environmental data like hydrographic, oceanographic and topographic data 

from the exact same location (Wynn et al., 2014), thus, providing better access to the 

fine-scale environmental data sought by ecologists.  

In this study, we explore how a large dataset of both fine-scale species distribution 

and environmental data collected by an AUV at a single station can inform our 

understanding of the distribution of the numerically abundant xenophyophore 

Syringammina fragilissima (Brady, 1883) - referred to as S. fragilissima thereafter - in 

the bathyal part of Rockall basin.  
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At up to 20 cm in diameter, S. fragilissima is possibly the largest single-celled organism 

on the planet. It lives on areas of soft sediment, deep in the Atlantic Ocean, and can 

form highly dense aggregations (Bett, 2001b, Hughes and Gooday, 2004); sometimes 

dominating the benthos as the main habitat-building organism (Howell et al., 2010b). 

They are usually associated with areas of high surface productivity, which supply 

abundant organic carbon to the seabed (Tendal, 1972, Levin and Gooday, 1992b). At 

very broad scales, they are thought to live near geological structures such as banks 

and margins (Tendal, 1972, Levin and Gooday, 1992b) but can also be found near 

canyons (Gooday et al., 2011) and seamounts (Davies et al., 2015). At finer scales, 

they are found near caldera, sediment mounds and walls (Tendal, 1972, Levin and 

Gooday, 1992b). Their distribution is also known to vary over very short distances, in 

areas of complex topography and sedimentology, such as in the Darwin Mounds in 

the North Atlantic (Bett, 2001b).  

Little is known of their physiology, but they possibly grow by burst (Gooday et al., 

1993). Their agglomerated tests can form a 3-dimensional frame, which is known to 

house other meiobenthic taxa. Additionally, a higher diversity of endofauna has been 

in observed in the sediment directly surrounding them (Hughes and Gage, 2004, Levin 

and Gooday, 1992a, Levin, 1991). The fragility of their structure makes them 

particularly vulnerable to physical damage and unsuitable for trawl-based studies 

(Roberts et al., 2000). This has also justified their addition to the list of Vulnerable 

Marine Ecosystems (VME) indicator taxa, under the United Nations resolution 61/105, 

and states are encouraged to map their extent and distribution (Ospar, 2008) in order 

to suitably protect them. Predictive modelling of their distribution has been attempted 

globally and at broad scales (Ashford et al., 2014) and slightly more locally, at finer 
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scales (Ross and Howell, 2013, Piechaud et al., 2015), however they have not 

received the same level of attention as reef-forming scleractinians.  

S. fragilissima is a suitable model organism for studies of fine-scale distribution for 

several practical reasons including its ease of detection and identification on images 

and its density in the study area. Extending knowledge of their ecology and fine scale 

distribution will directly help inform conservation strategy.  We investigate the following 

questions:  

- Is there structure in the fine-scale distribution of S. fragilissima within the survey 

area?  

- Is the observed structure adequately explained by fine-scale environmental data 

collected in-situ? And thus, are we able to produce more accurate SDM models 

(and maps) at very fine scale?  

- What do AUVs, and specifically their ability to gather large high-resolution 

datasets, offer to future studies of fine scale pattern in deep-sea benthic 

ecosystems?  

 

4.3 Method 

4.3.1 Survey site and image collection 

All data were collected at station 26 of the DeepLinks Cruise (details in chapter 2 of 

this thesis) on the 29/05/2016, during mission M116 of the Natural Environment and 

Research Council’s (NERC) AUV Autosub6000. During this mission, the AUV spent 

22 hr in the water and approximately 18 hr near the seabed travelling a distance of 82 

km. It performed 28 transects ranging from 1.7 to 3.2 km in length, of which 4 were 

subsequently analysed (Figure 4-1). While proceeding with these transects, the 
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vehicle was programmed to maintain an altitude of 3 m above the seabed, at a speed 

of 1.1 m.s-1. Taking an image every second, it gave near full coverage of the seabed. 

Images taken when the vehicle was higher than 3.5 m were excluded from the analysis 

to avoid the risk of overlapping images. Images taken when the vehicle was lower than 

2 m were also removed because it risked biasing the detection rate of the smallest 

individuals that are less visible from a higher altitude above the seabed. The time spent 

by the AUV to take the images used in this study was less than 3 hours. Transects 

were parallel with each other except for t3, which started close (10 m) to t2 and 

terminated further away from t2 (90 m) but closer to t6. The distance between t2 and 

t6 is 180 m, the distance between t2 and t14 is 560 m. 

 

Figure 4-1: Map of the study area in the general context of the Rockall Trough (insert map, top-right corner) 
indicating the AUV transects annotated as well as the local topography. 
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Multibeam bathymetry and backscatter data at 2.5 m resolution was collected by 

Autosub6000 during dive M115 of the same cruise (Figure 4-1). 

4.3.2 Image processing and annotation 

Raw images were downloaded from the vehicle at the end of the dive and colour 

correction was applied within the IrfanView software (Skiljan, 2012). The images were 

annotated by two analysts (Nils Piechaud annotated t2, t3 and t6 and Jamie Cowle 

annotated t14) within the Biigle (Langenkämper et al., 2017) software using a 

combination of manual and automated image analysis. Transect t2 was entirely 

manually annotated. For transects t3, t6 and t14, a small portion of the images were 

manually annotated to locate at least 1000 individuals. These records were then used 

as training data in a MAIA (Zurowietz et al., 2018) object of interest detection session 

with default parameters and the number of clusters set to 1 or 2. The annotation 

candidates proposed by the algorithm were manually inspected (or refined) so that all 

individual identification was visually validated. Subsequently, all individual images 

were visually inspected again to check for individuals that the algorithm might have 

failed to detect, align the annotation location on the centre of the individual and remove 

possible duplicates. The two analysts worked together to ensure consistency of 

identification of S. fragilissima in the annotation candidates. The resulting dataset has 

an identification accuracy above 99% but the true detection rate has not been 

quantified.  
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Figure 4-2: Examples of Syringammina fragilissima from AUV images taken during the JC136 – Deeplinks cruise 

at station 26 

 

The surface area of each image was calculated following the method designed by 

Morris et al. (2014) and adapted to a Python (python.org) script. The abundance of S. 

fragilissima was then converted to density per square metre to compensate for the 

variation in altitude, pitch and roll of the vehicle and thus standardize the measure. 

4.3.3 Environmental variables 

We used some of the predictor variables collected by the AUV during the same mission 

(details in chapter 2). Autosub collected acoustic data includeing both backscatter 

and bathymetry. Bathymetry was not retained as it is correlated to all the other 

topographical variables.  Temperature, salinity and concentration of dissolved oxygen 

were also excluded as they are unlikely to be drivers of benthic communities given the 

magnitude of their variability within the study area.   

All layers were converted to raster layers at 2.5 m resolution. The bathymetry was 

converted to several topographic predictors, including slope and Bathymetric Position 

Index (BPI) (Wright et al., 2005). We used 4 different combinations of inner and outer 

radii to compute BPIs, 1 to 5 cells, 5 to 25, 10 to 50 and 50 to 250, in order to reflect 

the variation of topography at different scales. We also used the turbidity measured by 

the vehicle during the dive, expressed in Formazin Turbidity Units (FTU). This 

predictor was converted to a continuous layer at the same resolution as the other 



Chapter 4: 

97 
 

parameters with a natural neighbour interpolation. Variables and their subsequently 

used acronyms are listed in Table 4-1.  
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Table 4-1: Names and description of all the environmental predictors gathered by the AUV at station 26 and used 

in modelling 

Predictor Full name 

backscatter swath backscatter 

turbidity turbidity (FTU) 

fbpi1r5 Fine scale bathymetric position index - inner radius 1 , outer radius 5 

fbpi5r25 Fine scale bathymetric position index - inner radius 5, out radius 25 

bbpi10r50 Broad scale bathymetric position index - inner radius 10, outer radius 50 

bbpi50r250 Broad scale bathymetric position index - inner radius 50, out radius 250 

slope Slope 

 

4.3.4 Data analysis 

4.3.4.1 Detection and description of spatial structure 

To visualize the spatial distribution of S. fragilissima and its variation at station 26, its 

average density within grid-cells of 25 by 25 m was mapped after log transformation 

and overlaid with local topography.  

To test statistically for the presence of spatial structure within the distribution of S. 

fragilissima through quantification of the Spatial Auto Correlation (SAC), we computed 

Moran’s I coefficient on 100 distance classes within each transect. The Moran’s I index 

ranges from 0 when there is no correlation to 1 when the values are perfectly 
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correlated. In addition, we estimated the minimum distance for the Moran’s I coefficient 

to fall to 0 or become non-significant.    

 

4.3.4.2 Fine scale modelling and mapping of S. fragilissima distribution 

The relationships between the density of S. fragilissima and the individual predictor 

variables gathered by the AUV were investigated with univariate regression plots.  

We used a Multivariate Environmental Similarity Surface (MESS) map (Elith et al., 

2010) to remove the areas of station 26 where environmental predictors were outside 

the range of the training set.  

Prior to modelling, S. fragilissima density data were reduced (averaged) to one point 

per cell in the predictor layers.  

Different modelling methods can give different outputs (Piechaud et al., 2015). . 

Ensemble modelling, the combination of the output of several algorithms compensates 

the relative inconsistency of their individual predictions, mitigates overfitting, and is 

increasingly used in ecology (Robert et al., 2016, Rowden et al., 2017, Araújo and 

New, 2007, Berk, 2006). We used three popular modelling algorithms: radial kernel 

Support Vector Machines (SVMradial), Random Forest (rf) and extreme gradient 

boosting (xgbtree) to both determine the importance of environmental variables in 

determining species distribution and predict species distribution across the study area. 

These models were then aggregated via an Elastic-Net Regularized Generalized 

Linear Model (glmnet) implemented in the caretEnsemble package (Deane-Mayer and 

Knowles, 2016). We used the default training parameters supplied by the Caret 

package (Kuhn, 2008) for each of these methods but also enabled the cross-validation 
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based optimizing algorithm built in Caret. This optimal model selection was based on 

the R-squared metric. Each of these algorithms have built-in routines to rank the 

relative contribution of each variable to the predictions. These scores and their 

combinations were used as a measure of the importance of each predictor in the 

distribution of S. fragilissima within the related training set.  

To evaluate the models accuracy, we performed both internal and external validation. 

For internal validation, we used a 10-fold cross-validation with random subsets of the 

data used in training to calculate the residual mean squared Error (RMSE) and the R-

squared. In this procedure, data points from all transects were included in the training 

and testing sets. For external validation, we used two slightly different procedures. 

First we trained a model on 3 transects and tested it on the remaining one. Secondly, 

we trained a model on one transect and tested it on each of the other transects so that 

all combinations of training and testing transects were used. 

We tested for SAC in the residuals of the models to assess if the predictions were 

influenced by the spatial structure of the response variable. This was conducted with 

the same method used to test for SAC in the samples.  

We also tested for correlation between the performances of the models and the 

number of data points used in training.  

Finally the model trained on all the data was projected in the entire study area to 

produce a tentative map of the distribution of S. fragilissima at station 26. 

All data analysis was conducted in R (R Development Core Team, 2011) and R Studio 

(RStudio Team, 2015) and with the tidyverse package (Wickham, 2017). Maps were 

produced with ArcGIS (www.arcgis.com).  

http://www.arcgis.com/
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4.4 Results 

 

4.4.1 Detection and description of spatial structure 

The density of S. fragilissima at station 26 varies from 0 to 26.1 individuals per square 

metre (ind.m-2; Table 4-2). S. fragilissima was absent from some images in every 

transect. The highest densities were observed in t14. Variability in density was high 

with standard deviation higher than the mean in all transects except t6.   

Table 4-2: Specification of each transect surveyed by Autosub6000 at station 26 

Transect 

Number 

of 

images 

in 

transect 

Transect 

length 

(in m) 

Total 

Count 

in 

transect 

Mean 

density 

in 

transect 

(sd) 

Max. 

density 

Minimum 

autocorrelation 

distance (m) 

t2 1714 1988 5454 
1.787935 

(2.08) 
15.1 335 

t3 1151 1912 3308 
1.601815 

(1.76) 
12.7 302 

t6 1314 1844 3811 
1.61535 

(1.38) 
9.19 261 

t14 2353 3198 16676 
3.907881 

(4.00) 
26.1 243 

 

The map of S. fragilissima density (Figure 4-3) shows that their density can become 

much higher in some restricted areas. The highest densities seem to appear on local 
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peaks, for example in the southeast sections of transects t2, t3 and t6 or in local 

troughs, like in the east of t14. Wide but sloped openings like, for example the centre 

portion of t6, seem less popular. 

 

 

Figure 4-3: Map of the log transformed density of S. fragilissima at station 26. The values were averaged per cells 

of 25 x 25m for the readability of the map. The yellow areas indicates the highest densities.  

Moran’s I correlograms show that significant SAC occurs at close distance in each 

transect (Figure 4-4). This correlation decreases down to 0 or becomes insignificant 

over a distance ranging from 243 to 335 m (Table 4-2). The influence of SAC is 

consistent in scale within all 4 transects and does not exceed 335 m in any of them.  
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Figure 4-4: Moran’s I spatial correlograms of over 100 distance classes. Red dots are distance classes for which 
the Moran’s I was significant.  

 

4.4.2 Modelling and mapping of S. fragilissima density 

4.4.2.1 Variable importance 

The individual relationships between the environmental predictors and the density of 

S. fragilissima does not always offer consistent patterns across all transects (Figure 

4-5). For some variables, such as backscatter, a consistent relationship exists, while 



Chapter 4: 

104 
 

with others, like the BPI at the finest scales, the relationship is completely different for 

each of the transects.  

 

Figure 4-5: Regression plots of relationships between density of S. fragilissima (response) and the environmental 
predictors (value – different in each plot). The smoothed lines were calculated with gam models. Lines are coloured 

by transects.  

The variable importance plot (Figure 4-6) shows that turbidity, backscatter and the 

broadest scale BPI (bbpi50r250) were the main drivers on average but important 

differences exist between the different algorithms in the ensemble. The variable 

importance values in ensemble models trained on each individual transect varied 

extensively from one transect to another (Appendix A4-1 and A4-2). However, the 

BPIs at finest scales (fbpi1r5 and fbpi5r25) are never particularly important while 
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turbidity, backscatter and the broadest scale BPI (bbpi10r50) are always rather 

important.  

 

Figure 4-6: Relative variable importance plots of the ensemble model trained on all the data. Points are coloured 
by algorithms (rf: Random forest, svmRadial: Support Vector Machine, xgbTree: Extreme Gradient Boosting) and 
their average importance is displayed as red triangles. The higher the score the more important the variable is.  

We evaluated the SAC patterns within the residuals of the models (Appendix A4-3) for 

the model trained on all transects, all the models trained on 3 transects and the models 

trained on individual transects. Although in some instances, a significant correlation 

existed in the residuals of the models, the values were always very low and inferior to 

the SAC and the response variable by an order of magnitude. We thus concluded that 

the effect of SAC on the model’s error was negligible and that the structure observed 

at station 26 was driven by the environmental variables measured by the AUV. Figure 

4-7 illustrates how in the full dataset, the SAC in the residuals, although present, is 

negligible compared to the SAC in the actual response variable in the training set.  
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Figure 4-7: Moran's I correlograms on the residuals of the model trained on all the data available. Red dots indicate 
the distance classes at which there is significant correlation.  

 

4.4.2.2 Mess maps 

The mess map of the complete dataset (Figure 4-8) showed that most of the survey 

area is within the environmental data range (> 0) and only small fraction of the cells 

were discarded. Maps of all different combinations of testing and training sets are 

given in appendix A4-4 and A4-5. Some testing sets indeed fell outside the area of 

suitability of corresponding training sets (like t14 with t2 or t3 as training sets) while 

others did not (like t2 with t3 as training set).  
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Figure 4-8: MESS map of the full dataset thresholded to only display positive values (where values for predictor 
variables are within the range of those used in the training dataset). The grey area outlines the extent of the 
surveyed area seen in Figure 3-1. Most of the cells have positive values retained but a small fraction, particularly 

near the centre of t14 are removed. 

 

4.4.2.3 Internal Validation 

The internal validation of the full model indicated a good correlation between the 

predicted and observed values (R-squared = 0.69) but the RMSE (1.52) indicated an 

error of the same order of magnitude as the average density, potentially reflecting the 

noise in the data. The relatively high RMSE compared to the average density within 

the full dataset shows that the predictions are potentially far from the observed values 

in some instances. However, the model is considered valid as it would still identify the 

areas that are relatively more suitable than their surroundings (Table 4-3). For all 
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models internal validation measures often showed good or very good model 

performances. On individual transects, the R-squared was never inferior to 0.35 and  

was up to 0.76. Models trained with the t14 transect included in training tended to 

show better performances regardless of whether other transects were included or not.  

In the results of the internal validation, there is a strong positive correlation (0.52) 

between Rsquared and the number of datapoints in training indicating that the size of 

the dataset has a positive influence on model results.   

4.4.2.4 External validation  

Conversely, external validation showed very poor performances (Table 4-3). No single 

model was able to predict accurately the density of S. fragilissima in transects on which 

it had not been trained. No model achieved R-squared performances higher than 0.32, 

regardless of the training set. Error measured by both RMSE and R-squared were 

always higher in external validation than internal. In 9 cases out of 16, the R-squared 

in external validation was inferior to 0.05. The only cases where external validation 

reached an R-squared higher than 0.3 was when training was on t2 and testing was 

on t3 or vice-versa. Training on all transects except t3, and testing the model on that 

transect, had an R-squared of 0.29. Unintuitively, training on all transects except t2 

and testing on that transect gave an R-squared of 0.06. Interestingly, the models that 

produced the highest external validation were not necessarily the models that have 

the highest internal validation.  

Based on external validation, there was a weak but positive correlation (0.09) between 

Rsquared and the number of data-points in training. It is also worth noting that in some 

instances models trained on more than 2900 data-points performed just as poorly as 

models trained on 723 data points when predicting on some transects, like t6. Finally, 
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there was no apparent link between the performances and whether or not the majority 

of points in the testing set are in areas considered similar by the mess map (See 

Appendix 3-5 for individual training sets MESS maps).  

Table 4-3: Internal and external validation performances of models trained on individual transects and tested on 
another individual transect or trained on all transects but one which is used for testing. The number of datapoints 
in each training set (after reduction to one point per cell) is also indicated and was used to calculate the correlation 
between performances and size of training set given at the bottom of the table 

Training 
transects  

Number of 
datapoints 
in training 

Internal Testing 
transect 

External 

RMSE Rsquared RMSE Rsquared 

t3 723 1.08 0.57 t2 1.590956 0.32 

t6 768 0.97 0.36 t2 2.399424 0.00 

t14 1289 1.83 0.76 t2 3.516431 0.04 

t2 885 1.28 0.54 t3 1.437002 0.31 

t6 768 0.96 0.37 t3 2.035081 0.07 

t14 1289 1.84 0.76 t3 2.939172 0.15 

t2 885 1.27 0.56 t6 2.269925 0.10 

t3 723 1.06 0.53 t6 1.40432 0.01 

t14 1289 1.83 0.76 t6 3.067139 0.01 

t2 885 1.27 0.56 t14 4.220978 0.01 

t3 723 1.07 0.56 t14 4.150438 0.02 

t6 768 0.97 0.35 t14 4.070819 0.03 

t3, t6, t14 2780 1.49 0.74 t2 2.782134 0.06 

t2, t6, t14 2942 1.59 0.72 t3 1.601562 0.3 

t2, t3, t14 2897 1.63 0.71 t6 1.916194 0.04 

t2, t3, t6 2376 1.18 0.47 t14 4.215869 0.05 

Correlation between 
Rsqured and amount of 

training data 

 
0.52 

  
0.09 

 

Finally projection of the model trained on all data over the entire study area (Figure 4-

9) suggests that S. fragilissima is distributed in patches of high densities with two 

aggregations of large size near the North-eastern border of the study area.  
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Figure 4-9: Predicted map of S. fragilissima distribution by the ensemble model trained on the full dataset 

 

4.5 Discussion 

In this study, we attempted to determine if a large dataset of biological and 

environmental data, collected by an AUV in a single dive, could provide a useful insight 

into the fine-scale distribution of deep-sea species, using the listed VME indicator 

taxon Syringammina fragilissima as a model species. We tested if measured density 

of S. fragilissima in four transects within a relatively short distance from each other 

could robustly describe the spatial structure of their distribution. We then attempted to 

extrapolate the pattern observed within the transects to the rest of the survey area with 

species distribution modelling and determine if the large dataset available was 

sufficient to make a reliable map of the distribution of S. fragilissima, as well as study 

how much influence the environmental drivers have on its distribution at the study site. 
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The large amount of data available allowed us to thoroughly test the models with 

internal and external validation and evaluate how various subsets could explain the 

local distribution of S. fragilissima. 

  

4.5.1 Spatial structure of S. fragilissima aggregations  

We were able to detect a consistent structure in the spatial distribution of S. 

fragilissima  Indeed their density was far from homogenous and varied widely in all 

transects. For example, densities of up to 26 ind.m-2 were observed within a relatively 

short distance (less than 200 m) from areas where their density was close to 0. The 

SAC patterns indicated that S. fragilissima density at a given point is correlated to that 

of its surroundings within a 240 to 330 m radius and that correlation decreases with 

distance. This does not seem random as this SAC pattern is relatively consistent 

across the different transects but it disappears in the residuals of the models, which 

would indicate that it is mostly the result of variation in environmental predictors.  

Although the drivers of xenophyophore distributions are not known with certainty, they 

seem to vary with the scale like the rest of deep-sea megafauna (Rex and Etter, 2010, 

Rogers, 2015). At broad scales, Ashford et al. (2014) have identified depth, oxygen 

availability, nitrate concentration, amount of organic carbon, and temperature to be the 

most important parameters driving the distribution of xenophyophores. The available 

parameters in this list, depth and temperature, do not vary enough within the samples 

collected at station 26 to explain the local distribution of xenophyophores in our model.     

At fine scale, our observations are coherent with other observations and predictions 

of the distribution of S. fragilissima aggregations. At very fine scale, they have been 

observed on flat muddy terrain, such as near the Darwin Mounds (Huvenne et al., 
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2016a, Bett, 2001a), as well as steep slopes in Canyons (Gooday et al., 2011). At 

station 26, the shape of the terrain appears to be an important driver of their 

distribution, as observed in other areas where their close proximity with raised features 

has been reported at fine and broad scale (Huvenne et al., 2016a, Davies et al., 2015, 

Ross and Howell, 2013), although not systematically. It has long been hypothesized 

that the dense yet patchily distributed aggregations of xenophyophores observed in 

specific locations, like the Western Darwin Mounds, were associated with the scoured 

tails created by currents behind raised structures (Bett, 2001a). A counter example 

exists where this association was not observed and the xenophyophores were very 

widespread (Howell et al., 2014a). At station 26, high densities were found both on 

local peaks and troughs and it is possible the ecological niche of S. fragilissima is 

defined by exclusion from other areas by other more competitive species, which would 

explain this seemingly incoherent preference for both troughs and crests. 

Backscatter, broadest scale BPI and turbidity were the main drivers of S. fragilissima 

density in most training sets; however, the single most important driver is unclear. This 

relative inconsistency could be interpreted as a sign that these variables only partially 

correlate with the actual drivers of S. fragilissima distribution and the strength of that 

correlation may vary locally, resulting in this mixed pattern. More research is needed 

to confirm or inform this hypothesis, possibly by investigating in details the statistical 

links between the response variable and each individual predictor.  

The predominance of these drivers is also consistent with previously published results. 

Ross and Howell (2013) and Piechaud et al. (2015), who worked on Syringammina 

fragilissima in the North-East Atlantic (but at a broader scale than this study), also 

identified depth as the main driver of xenophyophore distribution but, like in our results, 

they also highlighted the importance of slope and fine scale BPI. Both these studies 
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predicted the presence of S. fragilissima in the vicinity of the location of station 26.  

The density of S. fragilissima has already been linked with visible variation in the 

backscatter on the Darwin Mounds (Huvenne et al., 2016a, Huvenne, 2011). We 

hypothesized that the higher turbidity could result from localised resuspension of 

organic matter by the currents or the accumulation of marine snow and, thus, acts as 

a proxy for the amount of nutrients available to S. fragilissima. This parameter and its 

effect on the local community is likely to vary over time (Davison et al., 2019) and we 

could not estimate this variability in this study as the AUV did not repeat measurement 

over time at the same locations. Besides, it may be subject to measurement errors, if, 

for example, the AUV flies too close or too far from the seabed. Nonetheless, several 

authors have given credit to the hypothesis that, at both fine and broad scales, S. 

fragilissima is associated with areas of high influx of organic matter, which was itself 

influenced by topography (Levin and Gooday, 1992b, Gooday et al., 2011). Although 

we did not quantify the amount of organic matter visible on the seabed in this study, 

Morris et al. (2016), who used AUV images to perform these measures, observed a 

high spatial heterogeneity in the distribution of organic matter and observed a large 

influence of topography on this driver. This could be the reason why different 

predictors appear as most important in different locations as they all individually or 

collectively correlate with or even influence the local concentration of organic matter. 

All these predictors might thus simply be imperfect proxies for the best feeding 

grounds.  

At station 26, S. fragilissima abundances above 25 ind.m-2 were observed, which are 

higher than the previously published values for this species in this area. Roberts et al. 

(2000) and Bett (2001a) reported average densities of 7 to 10 ind.m-2,  while we 

observed more than double that density although with a different imaging platform 
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which is a source of discrepancies (See chapter 3). The environmental setting of 

station 26 could be closer to optimum for S. fragilissima than previously studied 

locations, thus, presenting a clearer image of their ecological niche and helping to 

further understand their ecology.  

Overall, there are less data available for S. fragilissima than for other VME indicator 

taxa, and their exact preferred niche may be very specific to local conditions and driven 

by predictors that have yet to be clearly identified and could themselves vary between 

locations. We, however, have observed how heterogeneous the distribution of S. 

fragilissima can be within the Rockall Trough. The large size of our dataset and the 

number of replications enabled robust measures of the scale of that heterogeneity and 

enabled us to link it to fine-scale variation in topography and oceanographic predictors. 

This shows that AUVs can quickly provide valuable data to describe poorly known 

phenomena and demonstrates the efficiency of these vehicles. It highlights how large 

datasets can give useful insights to understand ecology and distribution of a VME and 

inform its conservation.    

4.5.2 Mapping and modelling: possible reasons for poor performances 

Accurate mapping of the extent and distribution of a VME, such as S. fragilissima 

aggregations, requires more than simply describing variation in their density within a 

small restricted area. Extrapolating knowledge from localised observations to 

unexplored areas is essential for their management (Ross and Howell, 2013) but our 

dataset failed to produce models that could make accurate predictions within even the 

study area itself when externally validated, despite being considered good models 

when internally validated.  
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The various SDM models we trained established that the available environmental 

variables explained an important part of the variation in S. fragilissima density with 

Rsquared values as high as 0.76. The models performed well according to standard 

internal validation procedures and these performances seemed to benefit from the 

large amount of data used in training. However, external validation with relatively 

independent test data showed that these models were never able to accurately predict 

the density of S. fragilissima, even in transects located very close and sometimes at 

shorter distance than the minimum SAC distance. In all cases, models trained on three 

transects failed to accurately predict the density of S. fragilissima in the fourth transect. 

We therefore cannot be confident that the predictions of the general model trained on 

all transects (shown in Figure 4-9) can be relied upon. This is important to report as 

models are increasing being used to inform policy decisions. There was however, a 

positive correlation (0.52) between the number of data points used in training and the 

R-squared of the models suggesting that models built with more data performed better.  

Most deep-sea SDM studies are built on much less data than used in the current study 

and validated with test datasets that are not independent from the training sets (Vierod 

et al., 2014). This is a result of the scarcity of data, and expense of collecting additional 

data. The few studies that have attempted to externally validate their data models with 

independently acquired data also reported poor performance of the models, contrary 

to what their internal validation indicated (Anderson et al., 2016, Rooper et al., 2016). 

The large difference between internal and external validation in this study supports 

these previous observations and suggests that, although models do benefit from a 

large amount of data in training, gathering thousands of data points from a restricted 

area is not sufficient to produce an accurate model. 
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We can only speculate on the reasons for the dramatic differences between internal 

and external validation. Models do need to be trained on data encompassing the whole 

range of environmental conditions in which the target species can live (Barbet‐Massin 

et al., 2010, Yates et al., 2018). It is likely that none of the transects, combinations of 

3 transects nor the whole dataset encompass the niche occupied by S. fragilissima. 

Considering the MESS maps for each model trained and tested, it is not clear if the 

relative novelty or absence of novelty of some testing datasets can be linked to the 

external validation performances. Indeed, model performances were systematically 

low regardless of the level of novelty. The models may thus not be able to effectively 

represent the relationship between S. fragilissima density and environmental driver. 

The instantaneous nature of the environmental data acquired by the AUV provides no 

understanding of temporal variation, and thus omits an important aspect of the 

environmental variability.   

As knowledge of S. fragilissima  ecology is still lacking, the true drivers of their 

distribution are unknown and it is likely that adding other variables, particularly those 

related to hydrography, would improve the model as Rengstorf et al. (2014) or Mohn 

et al. (2014) observed on other benthic habitat building species. A better 

understanding of their ecology in general would help in choosing appropriate 

predictors and modelling methods (Yates et al., 2018). Furthermore, the distribution of 

S. fragilissima may not be entirely environmentally driven and could be shaped by 

biotic interactions that can only be observed if the other organisms of the community 

were considered in the analysis after their presence or absence was recorded in the 

first place. 

There is a large diversity of methods available to predict species distributions (Elith 

and Graham, 2009). The methods we used here were relatively generic and could be 
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further tuned and optimised. However, the very stark contrast between internal and 

external validation is unlikely to be overcome with fine-tuning in the model-building 

framework and the currently available dataset. It is worth noting that Wenger and 

Olden (2012) observed how complex algorithms tended to produce good internal 

validation performances but were not as good as linear methods when tested on 

independent data. The ensemble model could possibly benefit from the inclusion of 

such methods. More generally, modelling algorithms selected for their quality for 

internal validation may not be the most appropriate for modelling species distribution 

in novel environments. Algorithms should be considered not only on the basis of their 

internal validation performances but on their external validations too.  Furthermore, 

there is growing evidence that complex models and algorithms should be used with 

care and with ecological justification and more attention should be paid to the potential 

overfitting of the model to local conditions and how it can decrease its transferability 

(Bell and Schlaepfer, 2016, Yates et al., 2018, Merow et al., 2014).  

Finally, a certain variability exists in the response variable itself even within the spatial 

autocorrelation distance. Artefacts also exist in the environmental predictors collected 

by the AUV, which could artificially introduce error in to the model and use of finer 

resolution multibeam data may produce layers more faithful to the local environment 

at station 26.   

4.5.3 Benefit of large datasets and use of AUVs 

This study used data obtained from a single dive of an AUV and the images analysed 

were gathered in less than 3 hours on the seabed. The size of the dataset available 

allowed a robust description and quantification of a phenomenon that would have been 

visible with a smaller dataset (e.g. patchy distribution) but without the certainty offered 

by the replication. Moreover, the size of the dataset seemed to improve the 
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performances of SDM in internal validation, while allowing a more objective measure 

of model performance using external validation. Had we had only one of the transects 

available, as would have been the case if we used a slower sampling gear, like an 

ROV, external validation would likely not have been conducted. 

The near-full coverage of the seabed within the transects has allowed us to precisely 

quantify SAC, which has rarely been achieved for deep-sea communities. The 

variability of deep-sea communities at fine scale has previously been observed and 

documented (Rex and Etter, 2010, McClain and Rex, 2015). Overall, ecologists 

currently agree that, although SAC is probably high at all spatial scales, its extent and 

influence on total deep-sea diversity and ecosystem functioning is not known (McClain 

et al., 2011, McClain and Schlacher, 2015). This is hampering conservation efforts 

that need precise information on species distribution and abundance (Danovaro et al., 

2016). This variability is inherently difficult to study, as are most biological phenomena 

in the deep sea (Brind’Amour et al., 2009), and spatially limited datasets are probably 

underestimating it (Morris et al., 2016). In this context, AUVs can efficiently collect 

enough data to robustly quantify spatial variability and will thus provide a valuable 

contribution to deep-sea science.  

However, the poor performance of our models in predicting the distribution of S. 

fragilissima in areas without data clearly demonstrate that size of the training set alone 

does not result in an accurate model. This confirms what other modellers and 

ecologists have warned the community against: the over-reliance on models built on 

spatially biased, restricted in size or in coverage, datasets may lead to wrong 

assumptions on spatial distribution, which could lead to misinformed conservation 

measures (Anderson et al., 2016, Yates et al., 2018). 
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In our dataset, focusing analysis effort on a reduced number of transects rather than 

spreading over the whole survey area allowed us to detect the spatial structure of S. 

fragilissima, but it may have hampered our ability to model its distribution. Deep-sea 

ecology sampling designs are usually a compromise between the suitability of the 

dataset for a given question while retaining some ubiquity in order to facilitate use in 

multiple studies (Foster et al., 2014). AUVs offer an advantage in that both good design 

and wide coverage can be achieved in terms of data collection. The challenge comes 

in the analysis of that data (Schoening et al., 2017). This will be the focus of chapter 

5 of this thesis. 

The lack of generalisability of conclusions drawn from a restricted sample is an issue 

in the deep sea, where large areas are studied with comparatively very small samples. 

AUVs will not help address this issue if they are used to gather more samples from the 

same limited number of stations. However, as they are quick, efficient and cost-

effective sampling tools, ecologists should not only aim at increasing the amount of 

data collected at each station but also cover a wider range of environmental gradients, 

as well as investigate larger spatial and temporal scales. In short, survey more 

stations. We therefore consider that there is benefit in acquiring large amounts of data 

but we also urge scientists to not be deceived by a false sense of statistical robustness 

it appears to offer. It is important to remember that spatially aggregated samples do 

not offer generalisable insights nor are they true replicates.   

4.5.4 Future work 

The increased availability of large datasets will open several interesting research 

opportunities on both short and longer terms. In the immediate future, annotating more 

data to sample a wider range of environmental conditions could contribute to a greater 

understanding of the environmental drivers of species distributions, and as a result, 
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better accuracy of externally validated models. But more efficient annotation methods 

are desirable to take advantage of the AUVs sampling capacity. These new samples 

can be small groups of images spread across the whole sample area rather than entire 

transects.  

At station 26, this would enable a more robust study of the interaction between the 

spatial distribution of S. fragilissima and other taxa and the local environmental 

variables. A more in detailed investigation of SAC patterns could also be implemented 

with other metrics, particularly indices of Local Indicators of Spatial Association (LISA) 

rather than whole transects (Anselin, 1995, Barrell and Grant, 2013), as it would 

enable a better visualisation of the variability of the SAC and help better understand 

the poor model performances.  

In the longer term, more consideration is required on the best sampling designs to be 

used for AUVs, whose greater freedom of movement offers much more flexibility and 

the possibility to optimise the sampling, increase coverage, avoid biases in the 

datasets and account for the now known distribution of the target species. Other AUV 

users have also stressed the need for these improvements (Foster et al., 2014, Foster 

et al., 2017, Foster et al., 2018, Woodall et al., 2018).  

Sampling designs should account for SAC in the spacing between the transects as 

well as their length so that some data points can be guaranteed independent 

(Brind’Amour et al., 2018, Brind’Amour et al., 2009). It is worth considering that 

transects are an appropriate way to use gears like trawls and ROVs that have reduced 

mobility and manoeuvrability but, as AUVs are less constrained in their movement, 

they can implement more sophisticated and better spatially optimised designs (Foster 

et al., 2014). 
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4.6 Conclusion 

Our results have shown that S. fragilissima is patchily distributed in patches around 

300 m across and, in some places can reach densities of up to 26 ind.m-2. The 

observed structure could be explained by environmental parameters, mostly turbidity, 

broad-scale BPI and backscatter. We found that that model performances were 

positively correlated with the number of data points used in training but the external 

validation poor performances (no higher Rsquared than 0.33) showed that the exact 

relationship between predictors and density of S. fragilissima was not constant across 

transects. We concluded that the model built on that dataset, although statistically valid 

judging by the high internal validation scores (up to 0.76) should not be generalised to 

other areas.   

This showed that dense sampling of small areas is no substitute for good survey 

design. This work demonstrated the potential of AUVs. These vehicles do offer 

significant advantages to the future study of deep-sea benthic ecosystems at fine scale 

and specifically SDM modelling through enabling more robust testing of relationships, 

and in providing larger datasets for modelling studies. 
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epifauna with computer vision 
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5.1 Abstract  

Benthic ecosystems are chronically undersampled, particularly in environments >50 

m depth. Yet a rising level of anthropogenic threats makes data collection ever more 

urgent. Currently, modern underwater sampling tools, particularly autonomous 

underwater vehicles (AUVs), are able to collect vast image datasets, but cannot 

bypass the bottleneck formed by manual image annotation. Computer vision (CV) 

offers a faster, more consistent, cost effective and sharable alternative to manual 

annotation. We used TensorFlow to evaluate the performance of the Inception V3 

model with different numbers of training images, as well as assessing how many 

different classes (taxa) it could distinguish. Classifiers (models) were trained with 

increasing amounts of data (20 to 1000 images of each taxa) and increasing numbers 

of taxa (7 to 52). Maximum performance (0.78 sensitivity, 0.75 precision) was achieved 

using the maximum number of training images but little was gained in performance 

beyond 200 training images. Performance was also highest with the least classes in 

training. None of the classifiers had average performances high enough to be a 

suitable alternative to manual annotation. However, some classifiers performed well 

for individual taxa (0.95 sensitivity, 0.94 precision). Our results suggest this technology 

is currently best applied to specific taxa that can be reliably identified and where 200 

training images offers a good compromise between performance and annotation effort. 

This demonstrates that CV could be routinely employed as a tool to study benthic 

ecology by non-specialists, which could lead to a major increase in data availability for 

conservation research and biodiversity management. 
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5.2 Introduction  

Marine ecosystems cover the majority of Earth’s surface but benthic ecologists and 

biodiversity mangers have long been confronted with a shortage of data (Borja et al., 

2016, Jongman, 2013) regarding its composition and functioning. With increasing 

anthropogenic pressure, management measures need to be implemented urgently 

(Danovaro et al., 2017a, Van Dover et al., 2014). These conservation measures must 

be based on a solid understanding of taxonomic diversity and ecological dynamics of 

habitats considered (Hernandez et al., 2006). In many cases, that knowledge is lacking 

and specialists agree that data collection must be increased to tackle the challenge 

(Borja et al., 2016, Costello et al., 2010). The amount of data currently available on 

benthic ecosystems is always limited by how many samples can be collected, stored, 

and processed at a time. Since the 19th century, various technological innovations 

have attempted to bypass this bottleneck.   

Benthic ecosystems are traditionally sampled by trawls, cores and other physical 

means. These physical samples are costly to collect and process, and logistically 

challenging to store (Clark et al., 2016b). While physical samples remain the mainstay 

of benthic surveys, use of underwater imaging technologies is increasingly popular 

among marine ecologists (Bicknell et al., 2016, Brandt et al., 2016, Romero-Ramirez 

et al., 2016, Solan et al., 2003). These technologies offer a less invasive, more cost 

effective method of survey, and storage space for image data is virtually unlimited 

(Mallet and Pelletier, 2014). Underwater imaging is now regularly utilised alongside 

other sampling tools to provide a comprehensive view of the marine environment.  

Modern underwater sampling vehicles, and particularly Autonomous Underwater 

Vehicles (AUV), have great potential in providing the step-change in the rate of data 
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gathering that is needed to support sustainable marine environmental management. 

They are capable of collecting large numbers of images of the sea bed in a single 

deployment (Lucieer and Forrest, 2016, Williams et al., 2016). For example, a 22 

hour AUV dive can deliver more than 150,000 images of the seafloor along with 

other types of environmental data (Wynn et al., 2012). Comparatively, trawls and 

Remotely Operated Vehicles (ROV) cover less ground per dive and the ship and its 

crew are unable to operate any other benthic equipment while they are deployed 

(Clark et al., 2016b, Brandt et al., 2016).  

To translate the information contained in images into semantic data that can then be 

used in statistical analysis, a step of manual analysis (or annotation) is conducted by 

trained scientists. Human observers, even highly-trained, do not achieve 100%  

correct classification rates and are highly inconsistent across time and across 

annotators (Culverhouse et al., 2003, Durden et al., 2016a, Beijbom et al., 2015, 

Culverhouse et al., 2014). Besides, manual image annotation results are subject to 

observer bias, meaning interpretations vary depending on the annotator’s experience 

and their mood changes across the analysis process (tiredness, boredom or stress, 

etc…) (Durden et al., 2016a, Culverhouse et al., 2003). The results (format, taxonomic 

resolution and nomenclature) of these analyses also tend to differ from one institution, 

project or individual annotator to another. This lack of standardisation makes merging 

and comparing datasets difficult (Althaus et al., 2015, McClain and Rex, 2015, 

Bullimore et al., 2013), and the data quality is not always consistent. More importantly, 

manual analysis is a time-consuming process, which forms the current bottleneck in 

image-based marine ecological sampling (Schoening et al., 2017, Beijbom et al., 2015, 

Edgington et al., 2006). The growing trend towards use of AUVs for seafloor biological 

surveys will only increase the scientific challenge.  
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Artificial intelligence (AI) and computer vision (CV) provide potential means by which 

to both accelerate and standardise the interpretation of image data (Beijbom et al., 

2012, Culverhouse et al., 2003, Favret and Sieracki, 2016, MacLeod et al., 2010). 

Although using AI for biological research has a long history (Rohlf and Sokal, 1967, 

Jeffries et al., 1984, Gaston and O'Neill, 2004), it has always been challenging to 

implement for non-specialists and requires skills and materials that most biologists do 

not have access to (Rampasek and Goldenberg, 2016, Gaston and O'Neill, 2004).  

CV has been successfully applied to benthic species identification by a growing 

number of studies (Beijbom et al., 2015, Marburg and Bigham, 2016, Manderson et 

al., 2017, Edgington et al., 2006, Schneider et al., 2018, Norouzzadeh et al., 2018, 

Marini et al., 2018b) but has yet to be made into an easy to use tool that any biologist 

in the field can implement as an alternative to manual image annotation and integrate 

with previous analysis. Multiple potential commercial applications, the availability of 

new tools as open software, as well as the improvement of hardware capacity are 

driving new developments in AI (e.g. neural networks and deep learning). This is likely 

to change how CV can be employed in the field of scientific research (Weinstein, 2018, 

Rampasek and Goldenberg, 2016). In parallel, new image analysis and data science 

software allow easier and more efficient integration of various tools into the research 

process, from data collection to final scientific or public outreach material (Gomes-

Pereira et al., 2016). These new technologies are potentially enabling full automation 

of the annotation process and could revolutionise ecological research (Weinstein, 

2018).  

While the principle of automated classification (automated assignation of pre-

established classes to objects on images) has been validated, few practical examples 

exist of AI-based methods used to identify benthic organisms from images acquired 
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by AUV. Consequently, implementing an automated species classifier is a potentially 

time-consuming investment for an uncertain return. Relying on proven manual 

methods remains the safe option for researchers. Practical guidance is needed to help 

ecologists decide whether adopting AI and CV is feasible and would fit their dataset 

and scientific objectives.  

To make that decision, benthic ecologists need to know:  

• What level of accuracy and uncertainty can be expected from CV annotation 

and does it match or approximate the accuracy of human annotators. 

• How much material is needed to train a classifier and is a limited amount 

obtained from a single study sufficient. 

• How to assess their own dataset to decide whether use of CV is appropriate. 

In this study, we investigate these issues by using an open access algorithm to build 

a Convolutional Neural Network (CNN) to identify benthic organisms in seafloor 

images, obtained from a single deployment of the UK’s Autosub6000 AUV. Technically 

speaking, we seek to train an automated classifier that is able to determine which taxa 

an animal on an image most likely belongs to, using a list of pre-defined taxa (or 

classes). Specifically, we ask, 1) what impact does the number of images, on which 

the classifier is trained, have on its performance? and 2) What impact does the number 

of classes, on which the classifier is trained, have on its performance? In addition, we 

provide a case study in the application of CV to an unbalanced ecological dataset.  

5.3 Method 

5.3.1 Study area and data collection: 

All the images used in this study were collected by the UK’s national AUV 

Autosub6000 in May 2016 as part of the NERC funded DeepLinks (JC136) research 
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cruise. The images were taken as part of an 1880 m long transect at station 26 of that 

cruise at 1200 meters depth on the north-east side of Rockall Bank, N.E. Atlantic. This 

region was selected for the study due to the flat topography and low likelihood of 

disturbance, making it ideal for AUV deployment. The AUV was equipped with a 

downward facing Grasshopper2 GS2-GE-50S5C camera from Point Grey Research. 

The AUV was flown at 1.1ms-1 speed, at 3m ±0.1 m off bottom and took images every 

second, resulting in near overlapping image coverage. The surface area of each image 

is between 1 and 2.5 m2, and the resolution is 2448 x 2048 pixels.   

In total, 1165 raw photos of the seabed were manually annotated by a single observer 

with the Biigle 2.0 software (Langenkämper et al., 2017) using a regional catalogue of 

Operational Taxonomical Units (OTU) developed by Howell and Davies (2016). Within 

the Biigle 2.0 software, location (X and Y coordinates in pixels within the photo for 

point annotations, or X, Y and radius for individuals marked using a circle) and identity 

of individual OTUs annotated within each image were recorded and stored.  

For each OTU, all individual annotations were visually inspected using the “Largo” 

evaluation tool in Biigle 2.0, to maximize consistency in identification and reduce error. 

Later, an assessment of 75% (around 28000) of the annotations in the final dataset 

used in the model found 41 identification errors. By that assessment, we concluded 

that the accuracy of identification was above 99%. 

5.3.2 Image data 

Manual image annotation resulted in a dataset consisting of 41208 individuals 

belonging to 148 OTUs. Each individual was then cropped from the raw image, 

together with its assigned OTU label, using a custom Python (www.Python.org) script. 

For each annotation, a square of 240 pixels or more, positioned manually on X and Y 
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coordinates of the centre of the animal, was fitted and cropped out. For organisms 

bigger than 40 pixels, the size of the square was manually set to encompass the whole 

individual. These cropped image slices and associated OTU labels (to become classes 

in the model training design) formed the input used in the CNN.  

5.3.3 Tensorflow and transfer learning 

Rather than train our own neural network, we used transfer learning (Pan and Yang, 

2010) to retrain the Inception V3 model (Szegedy et al., 2016), a CNN built in the freely 

available library Tensorflow (Abadi et al., 2016). 

CNNs are a particular architecture of neural networks, more specifically, deep neural 

networks, particularly suited to image analysis (Krizhevsky et al., 2012, LeCun et al., 

2015). A CNN has the capacity to detect and match patterns in images thereby 

“learning” what features are relevant to differentiate objects and, subsequently, 

classify them accordingly.  

Tensorflow (TF) is a C++ based library but has a Python Application Programming 

Interface (API) that makes it easier to train, tune and deploy neural networks. Transfer 

learning is a method allowing a CNN built on a large dataset to be repurposed into a 

classifier capable of distinguishing between classes it was not initially trained on. The 

strength of this method is that the dataset on which it is transferred does not need to 

be as large as it should be to train a CNN from the beginning.  Here, we were able to 

train a classifier with tens to hundreds of images per class (in our case, OTUs) instead 

of millions. 
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5.3.4 Classifier training and testing 

A random 75-25% split was applied to every OTU in order to separate images used 

for training the classifier and those used for testing. The training and test data sets for 

all OTUs were then combined into single ‘training’ and ‘test’ datasets.  

The OTUs the classifier was trained to identify are referred to as classes and only 

those OTUs for which there were a sufficient number of image slices (individual 

observations) available were selected for use in training. The minimum number of 

images needed for training was set to 20. This means that for an OTU to be included 

in the study at least 27 image slices were needed, 20 for training and 7 for testing. Out 

of the 148 OTUs observed, 52 were above that threshold. The remaining 96 OTUs 

represented 3.19% of the total number of individual annotations and were removed 

from the dataset. 

The classifier was trained on the training dataset and then predictions were made on 

the test dataset. For each cropped image slice in the test dataset, TF gave a score for 

each of the possible OTU classes for which it had been trained. The scores range from 

0 to 1 (the sum of scores for all classes being 1) and represent the model’s confidence 

that the slice belongs to the corresponding class. The final prediction was the OTU 

class that received the highest score. The prediction was then compared to the 

manually assigned OTU class. 

To measure the effect of the number of training images (or limit) on the accuracy and 

confidence of the predictions, the training data set was filtered so each OTU class was 

represented by 20, 50, 100, 200, 500, and 1000 images (Table 5-1) 

Table 5-1: Nomenclature of classifiers names and characteristics. The different classifiers names are a combination 
of group name and image numbers per Operational Taxonomical Units (OTU) in training. Groups are defined by 
the number of different OTUs (or classes) in the training set. In the different groups, the OTUs used are those for 
which the minimum number of images indicated are available. Within each group, treatments refer to the number 
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of images of each class in training. The same treatments (20, 50, 100, 200, 500 and 1000 images per OTU in 
training) were applied to each group but only the classifiers names in bold are balanced (equal number of images 
for every class). In unbalanced designs, the maximum number of available images is used and is therefore different 

for each OTU.    

 Groups 

A B C 

Number of classes 7 27 52 

Minimum number of 
images available for 
the OTU to be in the 

group 

1000 100 20 

Classifiers names in 
group (balanced 

classifiers in bold)  

A20, A50, A100, 
A200, A500, A1000 

B20, B50, B100, 
B200, B500, B1000 

C20, C50, C100, 
C200, C500, C1000 

 

A classifier was then trained on each of these six pools of images and tested using 

the test data set.  Only seven OTUs were observed frequently enough to be used with 

these six limits (Figure 5-1).  
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OTU603: Very small elongated sponge. Shape is constant. 

 

OTU375: Small tube worm. The gills can hide the tube 

 

OTU261: The xenophyophore Syringammina fragilissima 

 

OTU23: Small halcampid/edwardsiid anemone 
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OTU995: Unknown animal, possibly a Chrysogorgiidae 

 

OTU2: Cerianthid anemone of various size 

 

OTU339: The squat lobster Munida sarsi/tenuimana 

Figure 5-1 Example images and description of OTUs abundant enough to be in group A. Scale varies. OTUs are 
ordered by abundance in the original dataset.   

 

The combination of groups and limits is referred to as treatments and designation of 

each treatment follows the nomenclature in Table 5-1 (e.g. A1000 is group A, limit 

1000). Each treatment was repeated 10 times with different random splits between 

testing and training data for cross-validation.  

To measure the effect of the number of OTU classes used to train the CNN on its 

capacity to correctly classify the test dataset, we used three training datasets each 

with different numbers of classes (referred to as groups) (Table 5-1). The number of 
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classes is defined by the number of available images per OTU so classifiers can be 

trained on a set number of images for every class while retaining enough images for 

testing. Group A contained 7 classes for which more than 1000 images was available; 

group B contained 27 classes for which more than 100 images were available; and 

group C contained 52 classes for which more than 20 images were available. Within 

each group, classifiers were trained with all six pools of images (Table 5-1).  

Note that when the limit is above the available number of images, the classes with less 

images were trained with the maximum number available regardless of the limit. This 

results in class imbalance in the model training for some treatments in group C with 

more than 20 images and in B with more than 100 images (balanced treatments are 

listed in Table 5-1).  To assess the effect of the number of OTU classes used to train 

the CNN on its capacity to correctly classify the test dataset, only balanced designs 

were used. 

In total, 180 (3x6x10) classifiers were trained and tested. All the CNNs were trained in 

the Google Cloud ML (https://cloud.google.com/) remote computing facility.  

To be applied to a “real-life” ecological study, the classifiers have to maximize 

performances while minimizing the initial effort needed to build the training dataset. To 

assess appropriate use of CV on a ‘real-life’ dataset we considered all possible 

combinations of numbers of training image and numbers of OTU classes in an 

unbalanced design. Average performances and individual OTU performances were 

assessed.    

 



Chapter 5: 

137 
 

5.3.5 Analysis and performances evaluation 

Considering each class, the observation can be a presence (the OTU is present on 

the image) or an absence (the OTU is not on the image and another OTU is). The 

different possible outcomes or predictions of the classifier are detailed in Table 5-2. 

The respective number of each outcome type (the confusion matrix) was used to 

calculate performance metrics. 

Table 5-2: Possible outcomes of the classifiers. It indicates how the classifiers predictions compare to the manual 
annotation (the labels) and if it identifies the Operational Taxonomical Unit (OTU) present on an image correctly. 

 

The classification accuracy is the percentage of predictions that are correct (prediction 

matches observation) and is often used to evaluate performances in ML studies. This 

measure ignores the differences between classes, thus we used two model evaluation 

metrics which rely on a confusion matrix (Manel et al., 2001) explained in Table 5-2.    

  

Outcome Description 

True Positives Label is OTU and class predicted is OTU 

► Classifier correctly identified the OTU  

True Negatives Label is not OTU and class predicted is not OTU 

► Classifier correctly recognized the OTU is not in the image 

False Negatives Label is OTU but class predicted is not OTU 

► Classifier misidentified the OTU 

False Positives Label is not OTU but class predicted is OTU 

► Classifier misidentified another OTU 
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- Sensitivity, also referred to as true positives rate or recall. It varies between 0 

and 1. It quantifies the proportion of individuals of a given OTU in the testing 

set that are correctly identified. A value of 1 means that all individuals of a given 

OTU are identified as such.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

- Precision, or Positive Predictive Value. It varies between 0 and 1. It quantifies 

the proportion of true positives among the individual identified as a given OTU. 

A value of 1 means all the individuals identified as a given OTU class are indeed 

that OTU.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Average and standard deviation for all metrics were calculated for each class within 

each treatment and then averaged over other grouping factors. This gave an 

estimation of the overall performance of the classifiers. The performances of the 

classifiers for each individual class were also carefully analysed.  

Differences in metrics were statistically tested with a permutation-based analysis of 

variance in the “lmPerm” package in R (Wheeler and Torchiano, 2010). We report p-

values classified with five levels of significance: more than 0.05 or non-significant, less 

than 0.05, less than 0.01, less than 0.001 and less than 0.0001.  Relationships 

between number of images and performance were extrapolated with a neural network 

regression in the “nnet” package in R (Ripley et al., 2016) projected over 1000 to 10000 
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images. All data analyses were carried out in R (Team, 2014) using the “tidyverse” 

package (Wickham, 2017). 

 

5.4 Results  

The results are presented in three sections. First, questions related to the impact of 

the number of training images are addressed, then the effect of the number of classes 

in the training set is assessed, and finally the results relevant to choosing the best 

method in our case study are presented.  

5.4.1 Impact of the number of training images on performance  

Average performance, measured as both sensitivity and precision, increases with an 

increasing number of training images used (Figure 5-2). For sensitivity, there is an 

average increase from 0.64 to 0.78 when moving from 20 to 1000 images, 

respectively. This is mirrored by increases in precision from 0.63 to 0.75 when moving 

from 20 to 1000 images, respectively. Non-linear extrapolations of average sensitivity 

and precision show that performances reached with 1000 training images may be 

close to an asymptote and performances obtained with additional training material 

probably plateau below 0.78 for sensitivity and 0.75 for precision (Figure 5-2). This 

suggests that the model is unable to achieve perfect performance regardless of how 

many additional images are used in training.  
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Figure 5-2: Classifier performances (sensitivity and precision) per number of training images measured (20 – 1000) 
and extrapolated (1000 – 10000). Grey dots show averaged values across all OTUs for each classifier. 

 

The number of training images has a clear positive effect on performance. For almost 

all pairs of models compared (Figure A5-1), performance values are statistically 

significantly different (p <0.05) and very often, significance is very high (p-value 

<0.0001). There are a few exceptions, like between the A20 and A50 classifiers where 

the p-value >0.05 for sensitivity and between 0.01-0.05 for precision, or the B1000 

classifier, for which there is no significant difference in sensitivity between this 

classifier and the B500 and B200 classifiers. However, measured difference in 

performance between sequential models becomes vanishingly small at higher 

numbers of training images, such that the difference between A200 and A1000 

classifiers is 0.04 for sensitivity and 0.05 for precision. This suggests little to no 

improvement is gained in model performance by using more than 200 training images.  

 

There are strong between-OTU differences in classifier performance (Figure 5-3). All 

classifiers have high sensitivity for OTU261 and OTU339, even the A20 classifier (0.88 

and 0.77, respectively). For OTU2 and OTU23, classifiers have more variable and 

lower sensitivity regardless of the number of training images used.  
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Figure 5-3: a) Evolution of Sensitivity in Group A classifier trained with an increasing number of images. b) 
Differences in Precision in Group A classifier trained with an increasing number of images. The black line is ‘loess’ 
smoothed curve of the average of all the classes and greyed area is a t-based approximation of the standard error. 

 

The OTUs for which precision is highest are not necessarily those for which sensitivity 

is highest. The highest precision observed was for OTU261 but the second highest 

precision observed was for OTU603, which has a lower sensitivity. For some classes 

(OTU261 or OTU339), precision is lower with 50 training images compared to 20 

training images.  
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5.4.2 Impact of the number of classes on classifier performance 

Classifiers trained with 7 classes (group A) had significantly better sensitivity (Figure 

5-A1) and precision than equivalent classifiers trained on more classes but the same 

number of images (Figure 5-4). Variability in performance was also lower for classifiers 

trained with fewer classes. Average sensitivity decreased from 0.71 to 0.38, and 

average precision decreased from 0.69 to 0.32, when moving from 7 to 27 classes. 

This suggests a negative effect of the number of classes on performance; however, 

on average, there is only a minor drop in performance (0.018 in sensitivity and 0.035 

in precision) between classifiers trained on 27 and 52 classes. Interestingly, B100 and 

C100 both have sensitivity of 0.38 (no statistical difference) and C20 has higher (+ 

0.02) sensitivity than B20.  

OTUs that perform well in one group tend to perform well in other groups. OTU261 

and OTU339 are in the top 10 for each group although their performances are lower 

in groups B and C.  
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Figure 5-4: a) Differences in sensitivity in classifiers trained with different number of classes and images (7 for 
group A, 27 for group B and 52 for group C). b) Differences in precision in classifier trained with different number 
of classes and images.  Error bars are standard deviation of the 10 random splits. 

 

5.4.3 Application of CV to an unbalanced ecological dataset 

When considering all treatments in an unbalanced design (Figure 5-4), the average 

sensitivity per treatment ranges from 0.32 to 0.78. The highest sensitivity was 

achieved by the A1000 classifier (7 classes, with 1000 training images in each class) 

while the lowest was achieved by the B20 and C20 classifiers (27 and 52 classes, 

respectively, and 20 images in each class). A1000 also had the highest precision 

(0.75), with the lowest precision observed in the C20 classifier (0.20). Sensitivity of the 
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C1000 classifier (where class imbalance is highest) was lower than in the C100 and 

C200 classifiers but precision simply increases with the number of training images, 

although this could be an artefact driven by the improvement of precision on the most 

abundant classes.  

When considering individual OTUs, performance was unacceptably low for most, but 

not all as some had sensitivity and precision greater than 0.85. Based on average 

sensitivity across all treatments, the top 10 and the bottom 10 OTU classes were 

identified. The top 10 classes were large organisms with consistent or distinctive 

shape, colour and patterning. They were not necessarily the most abundant classes 

as six of them were only present in group C, for which there are less than 100 training 

images, and only two in A, for which there are at least 1000 training images. Of these 

OTUs, the two present in group A had better average precision than any other OTU 

class in the top 10. The OTU classes with the worst performances are generally those 

for which there are fewer training images (group C). They also tend to be smaller 

organisms, have colours similar to the background and have very variable shapes and 

sizes.  

In this dataset, CV could be applied to OTU261 and OTU339. These OTUs were both 

very abundant in the study area, justifying automated annotation, and they both had 
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very high performances, making their identification by the classifier reliable (Figure 5-

5). 

 

 

Figure 5-5: a) Differences in sensitivity for OTU261 in classifier trained with different number of classes and images 
(7 for group A, 27 for group B and 52 for group C).  Error bars are standard deviation calculated from the 10 random 
splits. b) Differences in precision for OTU261 in classifier trained with different number of classes and images.  

Error bars are standard deviation of the 10 random splits 

 

The performance of CV for OTU261 and OTU339 was maximised in the A1000 

classifier with only 7 classes and 1000 training images. The A200 classifier also 

achieved performances close to A1000, despite being trained on five times less 

images. For OTU261, even the A20 and A50 classifiers achieved sensitivity and 
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precision greater than 0.86, and differences between the A20, A50 and A100 

classifiers were not statistically significant (Figure 5-5). 

Sensitivity in the C1000 classifier was 0.92 and 0.89 for OTU261 and OTU339, 

respectively, which is significantly lower than the A1000 classifier (p-value <0.0001 for 

both – Figure A5-2 and A5-3) but only a marginal difference (0.03 each). For OTU261, 

the C200 classifier achieved lower sensitivity than the A200 but they had equal 

precision. For OTU339, precision is also the same in the A200 classifier and all 

classifiers in group C (Figure A5-4). Note that for both OTUs, precision of all treatments 

in group C were either not significantly or barely significantly different (p-value above 

0.01). Thus, classifiers in group C (with 52 classes) achieve performances almost as 

good as classifiers in group A when training on 200 or less images.   

Group B classifiers tended to show slightly lower sensitivity than group A classifiers 

and slightly lower precision than group C classifiers, although often not with significant 

differences. 

 

5.5 Discussion 

In this study, our purpose was to test the capacity of a transferred CNN classifier 

(partially trained on a different dataset) to identify benthic organisms and, by 

extension, to test if this methodology can be successfully applied in ecology by non-

specialists with a relatively small data set, open-source software and libraries, as well 

as a short investment in time after manual image annotation.  
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5.5.1.1 Overall performances  

Our classifiers achieved a maximum average performance of 78% (0.78) in sensitivity 

and 75% (0.75) in precision. In other studies, performances achieved through manual 

annotation range from 50 to 95% for benthic fauna (Durden et al., 2016a, Beijbom et 

al., 2015) and 84 to 94% accuracy for plankton (Culverhouse et al., 2003). There is no 

consensus on what an acceptable error rate in the ecological literature is but, to be 

competitive with experts, automated identification performances should be towards 

the higher end of those achieved manually. In this regard, Culverhouse et al. (2014) 

report an anecdotal value of 90% correct classification cited by experts. Previous 

studies on marine ecosystems sampled via images that have attempted to 

automatically classify multiple benthic megafaunal taxa with various methods 

sometimes achieve performances comparable to those of experts. Beijbom et al. 

(2012) found that different coral species in shallow reefs were correctly identified 97% 

of the time. Schoening et al. (2012) found an average sensitivity of 87% and precision 

of 67% when classifying deep benthic megafauna in the Arctic. Marburg and Bigham 

(2016) found 89% accuracy when classifying benthic mobile megafauna off the 

Oregon coast. When considering other faunal groups, CV can achieve even higher 

performances, for example, Siddiqui et al. (2018) automatically identified various fish 

species and were correct 96.7% of the time on average.  

Even at their best performances, our classifiers would misclassify more than one out 

of 5 observations if they were used to make novel predictions. This is not good enough 

to be considered a suitable replacement for manual annotation. To be the tool benthic 

ecologists need, average performances need to be increased by at least 10 or 15%.  
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5.5.1.2 Impact of the number of images in training on performances  

In our study, average performance measured as both sensitivity and precision 

increased with the number of images used in training. Performances obtained with 

1000 training images are significantly better than those obtained with fewer images, 

for example, those obtained with 200 images (five times less). This difference, 

however is marginal. Extrapolation of the data suggests that performances may never 

greatly exceed those obtained with 1000 training images regardless of how many 

images are used.  

It has been generally demonstrated that more data is preferable when modelling (Enric 

et al., 2013) and training classifiers (Lu and Weng, 2007, Maxwell et al., 2018). 

Unsurprisingly then, our results suggest that the number of training images has a clear 

positive effect on performance, particularly on sensitivity. Sun et al. (2017) tested their 

generalist object classifiers with 10, 30 and 100 million images and observed a clear 

increase in performance. Siddiqui et al. (2018) also found that increasing the size of a 

dataset by 25% (20000 to 25000 images) resulted in a 6.6% increase in performance 

of the same CNN. 

More data, however, is not a simple solution to low performance as the relationship 

between the amount of training data and performance is not linear. Sun et al. (2017) 

report a logarithmic relationship between the size of the training set and performance. 

These authors gained less than 20% increase in performance by adding 90 million 

images to their training set. This logarithmic relationship has also been reported by 

Favret and Sieracki (2016) in their fly species classifiers. These authors note a 

diminishing return of adding more training data and observed little gain when doubling 

their training size from 50 to 100 images. Cho et al. (2015), who classified computed 

tomography images of six human body parts, found the same logarithmic relationship 
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and, although it was 95.7% with 200 training images, their desired 99.5% accuracy 

target was only reached with 4092 images. Thus, there is an optimal size to every 

dataset beyond which more training data results in very little gain. This point can be 

determined by the goal of the study and what is considered acceptable performance. 

With our methodology, this point occurs at 200 images for the dataset we used, and 

represents a reasonable amount of manual work for ecologists aiming to build the 

dataset to train a CNN. 

5.5.1.3 Impact of the number of OTU classes in training on performances 

We observed that classifiers with a small (7) number of classes had better 

performances than those trained with 27 or 52 classes. The difference in performance 

between the latter two was marginal, although significant.  

The number of classes in machine learning studies is usually driven by the dataset 

and the research question rather than maximizing performance by limiting the number 

of classes. Thus, few studies have assessed the effect of that number on their 

performance. In the 24 CV-based animal identification studies cited by Favret and 

Sieracki (2016) and Weinstein (2018), no significant correlation exists between the 

number of classes used in each classifier and their respective performances. In their 

large dataset experiment, Sun et al. (2017) also found no difference when training with 

1000 or 18000 classes. But in contrast, Favret and Sieracki (2016) observed a 

counterintuitive increase in performance as more insect species were included into 

their training set. They hypothesised that, although a higher number of possible 

outcomes could increase confusion, the higher number of comparison points helped 

determine the important features of each category. Further tests are needed to 

disentangle the effect of the number of classes in training or the relative difference in 

morphology of these classes on performance. In general, practical applications of CV 
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in ecology would benefit from more information on this effect. A deeper investigation 

of the results of experiments like the one presented here could also shade some lights 

on this aspect of application of CV to real world data.  

5.5.1.4 Potential application of CV to a real ecological dataset  

To deploy classifiers such as these in a “real-life” ecological study, reasonable 

performances must be achieved while retaining time and cost effectiveness of building 

the training set.  

In our study, no classifier achieved average performance above 78% (0.78), which 

would mean one misidentification out of 5 predictions, at best. We also observed high 

interclass variability as some OTUs were consistently well identified while others were, 

on the contrary, always misclassified. Even if the measured average performances 

were considered acceptable, it would introduce completely false appreciation of the 

distribution of some OTUs and local diversity. For example, false detection of rare 

taxas could drastically misrepresent their prevalence which (shown in chapter 3) could 

have important consequences on perception of sampling completeness.   

This variability in both expert and machine classification performance between classes 

or taxa has been observed by other authors (Beijbom et al., 2015, Cho et al., 2015). 

Experts in Durden et al. (2016a) had various annotation successes for different taxa 

and Schoening et al. (2012) found that human observers and their semi-automated 

classifier had variable success at detecting and identifying different taxa but agreed 

on which one had the best performance. It is therefore sensible to consider the 

predictions of each OTU class separately and only rely on those for which the classifier 

achieves good performances.  
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Good performance obtained by our classifier with some specific OTU classes is 

encouraging and automated annotations could be an appropriate method to study 

these OTUs. The top 10 best and worst OTUs ranked by sensitivity shows that the 

classifiers are better at identifying large sized organisms exhibiting a low intra-class 

morphological variability. 

The majority of the top 10 OTUs were rare (e.g. less than 100 training images). If CV 

were applied to these rare taxa, there would be a proportionally higher impact of any 

misidentification or false positives (predictions of presence that are in fact another 

OTU) on the results. Yet, given their relatively low number of occurrences (tens to a 

few hundreds), a manual verification step (or semi-automated identification), as 

performed by Schoening et al. (2012) and suggested by Marburg and Bigham (2016), 

would be easy to perform for a reasonable time investment and to ensure the reliability 

of the predictions. For example, the Largo tool in Biigle, used in this study to validate 

the training set, makes a visual check of a large number of annotations much faster 

than going over the raw images again. It would be an efficient way to validate the 

CNN’s predictions and make results usable. On the other hand, OTU261 and OTU339, 

both among the top 10 OTU classes, were very abundant in the study area (above 

1200 individuals). In a larger dataset, manual validation of identifications of these 

OTUs would be impractical and, to some extent, cancel the gains in speed and 

objectivity of CV. Ideally, their identification should be fully automated if the classifier 

is to be deployed in these conditions.  

CNNs are considered as “black boxes” whose internal prediction and decision process 

are difficult to visualize and understand (Samek et al., 2017), yet, we can speculate 

on the reasons why some organisms are better identified than others. OTU261 is very 

constant in shape and colour and has a distinctive pattern on its outside: this 



Chapter 5: 

152 
 

homogeneity probably makes it easily identifiable. OTU339 can be in different pose or 

orientation within an image but has a number of distinguishing features, such as its 

reflective eyes, and its long, often spread-out, limbs. These features are not found in 

other OTUs, probably making confusions rarer.   

OTU2 and OTU23 are both anemones. OTU2 is a cerianthid (a tube anemone) of 

various size and orientation and OTU23 is a Halcampidae/Edwardsiidea like anemone 

of very small size. They are similar in shape and size, hence distinguishing them is 

difficult even for human annotators. This could explain the lower performances of the 

classifier on them. The fact that, during annotation, the smaller OTUs were localized 

with point coordinates and an arbitrary radius was used for slicing is a potential source 

of bias. The 240 pixels square used by default leaves a large surface of the image as 

background. This feature, common to several small OTUs, including the small 

anemones, could be a cause for higher rates of confusion in the predictions. With 

OTU261 and OTU339, high sensitivity (up to 0.95 and 0.92, respectively) and high 

precision (up to 0.95 and 0.82, respectively) were achieved by the classifiers, meaning 

they were usually correctly identified and false positives (another OTU wrongly 

identified as one of them) were relatively rare. These performances are equivalent to 

those of human experts working on a very similar ecosystem (Durden et al. 2016) 

without the inconsistency over time by individual observers reported by these authors. 

Moreover, based on the speed of manual annotation in this study, we estimate that 

building the training set, validating it, training the classifier and testing it could be 

achieved in a matter of days rather than months. Therefore, these classifiers can be 

applied to the remaining un-annotated images in our dataset and provide useful 

presence records of these specific OTUs. This would be a valuable contribution to this 

study of deep-sea ecosystems.  
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Classifier A1000 had the best performance of all classifiers and would detect almost 

all individuals of OTU261 and OTU339, but it needs a large training set, while the A200 

classifier has very similar performances but needs five time less training material and 

is therefore more cost-effective. These group A classifiers however, risk producing a 

high number of false positives if they encounter too many individuals of an OTU they 

have not been trained on. Thus, it is only applicable if diversity at the study site is low 

or it is predominantly represented by a small number of OTUs. These classifiers would 

not be suitable to survey very diverse ecosystems, like coral reefs.  

In the long term, classifiers able to identify as many OTUs as possible, even semi-

automatically, are undoubtedly more desirable, even if they perform slightly less well. 

In our study, the C classifiers had marginally lower performances than A classifiers, 

particularly if training with 200 images, but both sensitivity and precision were above 

0.9 for OTU261, which is still comparable to manual annotation. Thus, although this 

design is still valid for identifying specific OTUs, it has the advantage, as it is trained 

on 52 classes, to be able to automatically identify more OTUs. Even if some of these 

identifications need to be manually validated, it is more representative of real field 

studies where many OTUs could be encountered.  

Based on our observations on classifier performances, we recommend the following 

approach to the use of CV in small-scale benthic ecological studies: 1) Build a general 

classifier to identify OTUs that achieve good performance and quantify the error rate 

associated with each. This can be an unbalanced design with many OTUs, like group 

C in the current study. A large number of classes potentially allows more OTUs to be 

tested. The number of training images should preferably be above 200 plus a 20% or 
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more surplus so the classifier can be tested with independent data. 2) Only use the 

presence prediction of those OTUs that have good performances and regard any other 

predictions as unknown or an absence of those. 3) Consider all remaining OTUs as 

“unidentified” and leave for manual identification or for later, more efficient, automated 

classifiers. Alternatively, a one-vs.-all classifier could be trained and deployed for each 

of the target OTUs (Siddiqui et al., 2018) but this approach would become logistically 

challenging for a large number of target OTUs.  

Even if the presence records of some OTUs are not sufficient to understand the 

composition and dynamics of an ecosystem, it will still contribute to it and more 

importantly, it will take-on some of the annotation time, leaving experts free to perform 

other tasks while providing useful insights in ecology. In the specific case of this study, 

the automated identification of OTU261 and OTU339 would be useful for deep-sea 

ecologists, especially if it only requires a few days of work. Indeed, very little is known 

about the fine scale distribution of these OTUs. Syringammina fragillissima (OTU261) 

is considered habitat forming, enhances local metazoan abundance (Levin and 

Thomas, 1988, Levin et al., 1986, Gooday, 1984) and is a Vulnerable Marine 

Ecosystem under United Nations General Assembly Resolution 61/105 (Assembly, 

2003). The squat-lobsters Munida sarsi or M. tenuimana may play an important role in 

the benthic community as predators or scavengers (Hudson and Wigham, 2003) and 

are suited to examining ecological patterns (Rowden et al., 2010). Extracting the 

location of these two taxa from a vast dataset would be a valuable way to study or 

map their extent and distribution as other studies have done with other faunal groups 

at fine (Milligan et al., 2016) and broad scale (Rex and Etter, 2010, Wei et al., 2010a). 

Besides, this would complement the studies carried out by trawling, which can 

underestimate diversity of benthic crustaceans (Ayma et al., 2016, Cartes and Sarda, 
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1992) and destroy xenophyophores (Roberts et al., 2000). Furthermore, appropriate 

data is currently lacking to study rhythmic diel and seasonal movements or behavioural 

changes of megabenthos, including squat-lobsters (Aguzzi et al., 2013, Aguzzi and 

Company, 2010). By providing more data on abundance and distribution of Munida, 

this method could greatly help this field of research. Also, assuming that benthic 

decapods can easily be counted with CV, and abundance differences reliably 

measured, the stock assessment of Nephrops norvegicus, an important and carefully 

monitored commercial species (ICES, 2010, Sardà and Aguzzi, 2012) could be 

achieved at greater speed, cost-efficiency and more objectively than by trawl.  

This study only deals with the identification of animals and not with their detection 

within the images, which was performed manually in Biigle before cropping images 

around each individual. Detection is an essential step in automated image analysis 

and many solutions have been explored (Hollis et al., 2016, Sorensen et al., 2017, 

Cheng and Han, 2016). A step for object detection needs to be added to the protocol 

described here to completely automate the process. This study also did not deal with 

the behaviour of the classifiers when presented with novel OTUs. This situation is 

unavoidable in real-life ecological datasets, and although methods exist for novelty 

detection (Pimentel et al., 2014), this remains to be integrated into our methodology.  

5.6 Conclusion  

Our results demonstrate that CV based image annotation cannot entirely replace 

manual annotation of benthic images at present, but that usable results can be 

obtained for specific taxa with open-source software, very little tuning and optimisation 

of the model itself and a relatively small training dataset (200 images). These results 

can inform the distribution of these specific taxa in a more robust way than currently 
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possible. In general, monitoring the abundance of a single taxon for novel research or 

in routine stock assessment could greatly benefit from this method. It offers greater 

speed, cost-efficiency, objectivity and consistency than trawl surveys or manual image 

analysis. 

This does not immediately solve the many challenges of marine ecology but could 

initiate momentum and catalyse further development of CV based methods in this area 

as these tools are becoming more accessible to non-specialists. The development of 

fully automated image annotation, or pragmatic combinations of manual and 

automated annotation protocols (Matabos et al., 2017), is likely to continue across 

different platforms capable of gathering large image datasets (Marini et al., 2018b, 

Marini et al., 2018a). Indeed, there is still much room left for improving classifier 

performance with better image pre-processing prior to the training or better tuning of 

the model, and more research could lead to game-changing methodological 

development. In the age of big data and global open research, the participation of 

many different actors of research contributing data (Hussey et al., 2015, Hampton et 

al., 2013), computing power, and above all, taxonomic and informatics expertise 

(Weinstein, 2018) could be synthesised in the development of CV tools able to take 

on some of the workload of human researchers and increase the pace at which the 

oceans are explored and sampled and, ultimately, how they are preserved. 
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Chapter 6: General discussion and conclusion 

 

This thesis aimed to investigate how Autonomous Underwater Vehicles (AUVs) could 

contribute to addressing long-standing challenges in deep-sea benthic ecology.  Deep-

sea data is difficult to acquire and it takes a lot of effort and financial resources to 

gather evidence of any phenomena. So far, although much progress has been made 

in recent decades, the basic questions in deep-sea ecology remain unanswered. 

AUVs may have the potential to change this but there are few practical examples of 

their application and what sets them apart from other sampling gear is not yet clear to 

benthic ecologists.  

This work revealed a number of new elements on the ecology of the ecosystem 

studied. More importantly, it has provided a certain level of understanding of the 

capacities and limitations of the cruising-class AUV Autosub6000 in this specific 

context. Based on that experience, I attempt to provide guidance on what researchers 

should and should not expect from these technologies and how their current and future 

capacities can help deep-sea benthic ecology.  

 

6.1 On AUV contribution to addressing the challenges of deep-sea 

ecology 

 

In chapter 1, I listed some of the challenges that AUV data could help address. In the 

following chapters, I evaluated if the data collected by an AUV could indeed shed new 

light on species diversity, species distribution and the environmental drivers of that 



Chapter 6: 

159 
 

distribution. I also investigated how manual and automated image analysis methods 

were able to exploit the AUV data.  

Chapter 2 provided details on the origin of the data, on the vehicle used to obtain it 

and on the methods used to process and prepare the data for several case studies of 

deep-sea benthic ecology. Once the data was ready, I analysed it to assess what 

ecological knowledge it could bring.  

I found in chapters 3, 4 and 5 that AUVs could, at least partially, address the 

challenges faced by deep-sea benthic ecologists and have advantages that could, in 

the future, greatly contribute to the improvement of our knowledge of this ecosystem. 

The following section discuss the results of this thesis in more detail to describe the 

pros and cons of AUVs in the context of each individual challenge.  

6.1.1 Species richness 

The challenge of measuring the number of species present in a given location comes 

down to the amount of sampling effort accomplished in the field. In an ideal theoretical 

setting, the sampling can continue until no more new species are discovered and the 

sampling can thus be considered complete. Chapter 2 and 3 showed that Autosub 

had the capacity to gather the necessary data to evaluate the local species diversity 

of a station, in a relatively short time. It supplied enough images to identify the totality 

of the OTUs present at the station while quantifying the variability of the measures of 

density and diversity. The same protocol could be used again in the same station to 

detect a potential change in diversity or density. Other communities in different 

locations within the Rockall Trough and over environmental gradients (like depth or 

proximity to Rockall Bank) could also be compared to the one described here, if 

samples of recommended sizes are used. 
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Chapter 3 also identified the relative importance of rare species in the measures of 

species richness and showed that, in theory, the AUV had the potential to encounter 

them all offering the possibility to better study them. Many of the species and 

morphotypes found in deep-sea benthic ecosystems are rare or at low density but their 

importance in its conservation and ecology is increasingly acknowledged (Turner et 

al., 2017, Connolly et al., 2014, Chapman et al., 2018, Goineau and Gooday, 2019, 

Gray et al., 2005). The rarity of these taxa makes them vulnerable to environmental 

changes while their possible disappearance can easily go unnoticed as gathering 

information about them is hard (Costello and Chaudhary, 2017). More data is needed 

to determine their extent and distribution in order to include them in conservation 

strategies (Goineau and Gooday, 2019). If the data analysis requirements can be met, 

AUVs can facilitate the study of these rare species as part of the deep-sea diversity. 

The data analysed in Chapter 3 was not sufficient to truly replicate the measures of 

species richness. That has been gathered by Autosub and is available for further 

analysis, therefore, a truly replicated measure of diversity at station 26 could be 

obtained. Replication of sampling transects is highly desirable (Underwood, 1994, 

Morrisey et al., 1992, Halpern, 2003) in order to evaluate the variability of local diversity 

and density. Furthermore, replication should preferably be conducted with 

independent samples rather than random resampling with replacement as those do 

not give independent replicates (Hurlbert, 1984, Noble-James et al., 2017). Again, 

Autosub and AUVs of its class are capable of cost-effectively delivering the necessary 

amount of data, hence contributing to the improvement the quality of deep-sea 

ecological datasets.  
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6.1.2 Fine-scale species distribution 

The study of fine-scale distribution of epibenthic species is complex and poorly 

understood. It is challenging to study because it needs both precise spatial positioning 

of the samples, at least relative to each other, and large amounts of data to ensure 

statistical robustness of the conclusions. in Chapter 4, the analysis of 6500 samples 

(images) of the density of a single benthic species (chosen for its ecological and 

conservation importance) collected by the AUV was able to not only detect important 

variations in that density but also measure the scale at which it varied and, more 

importantly, replicate this measure four times.   

These results showed that AUVs are able to quickly collect a dataset large enough to 

detect and quantify spatial heterogeneity, where other gear would have been less 

conclusive. This could result in substantial progress towards a better understanding of 

how communities are distributed in the deep sea, as well as the way individual species 

are distributed within these communities. That knowledge can, in turn, benefit mapping 

studies (Perkins et al., 2019), facilitate monitoring (Foster et al., 2018) and eventually 

efficiently inform conservation (Danovaro et al., 2016).  

The study of one species is useful but not sufficient to understand the dynamic of an 

entire ecosystem even locally. Generalising the responses of one species to other 

species or entire communities is only appropriate if supported with relevant ecological 

knowledge, which does not yet exist. Ultimately, data on all species are needed (Eaton 

et al., 2018, Turner et al., 2017, Chapman et al., 2018). The target species, 

Syringammina fragilissima, in chapter 4 is known to enhance the local abundance 

and diversity of meiofauna (Levin, 1991), which gives value to its abundance as a 

proxy for local diversity. This chapter did not however inform on the distribution of other 

habitat building species present in the area, like the large sponges, nor on inter-
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species species interactions, which would be infinitely more valuable for conservation. 

This confirms how the advantages of the AUV are somewhat reduced by the 

impossibility to fully use the data it provides.   

 

6.1.3 Drivers of species distribution  

Knowledge of the drivers of species distribution are an essential element to know in 

order to understand and predict ecosystem dynamics. As shown in chapter 2, AUVs 

can measure and record many environmental parameters, hence, giving a very 

detailed picture of the habitat. This increases the chances of identifying the parameter 

or combination of parameters that correlates best with the distribution of a species. 

Autosub proved to be an efficient tool to swiftly perform these measures over large 

areas.  

In chapter 4, it appeared that the variation in density of S. fragilissima was locally 

correlated with the environmental predictors collected by the AUV. This is a very useful 

discovery, since the correlation allows the use of species distribution modelling to 

make predictions of S. fragilissima density where no direct measurements are 

possible. However, replication of this experiment and validation of the modelled 

relationships established in one area to another area nearby showed that these local 

apparent relationships did not hold across transects, despite their close proximity.  

In that sense, even this important effort of AUV data analysis was not sufficient to 

determine precisely what drives the distribution of S. fragilissima, but it nonetheless 

showed how a small, spatially concentrated dataset was inappropriate to study the 

drivers of S. fragilissima distribution and was, in fact, potentially misleading. This 

highlights another strength of the AUV as it provided a dataset that allowed a very 
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thorough testing of the analysis method, which proved fruitful by detecting the flaws in 

its results.  

Unlike chapter 3, the limitation of the dataset in chapter 4 was probably not the 

amount of data per se, but the way the data points were distributed and it is likely that, 

if the data were better spread-out across the survey area, the same amount of data 

would have resulted in better model results. The layout of samples used in this chapter 

was designed to detect species distribution patterns rather than represent local 

relationships between species abundance and environmental predictors, and even a 

large dataset may give a biased answer if used for a study it has not been designed 

for. The manual analysis bottleneck prevented the analysis of additional data as it did 

in chapter 3 but the entire survey could accommodate a different, sampling design 

covering larger environmental gradients if it had been entirely annotated (see the map 

in figure 2-4 in chapter 2). This, again demonstrates that Autosub had provided a 

dataset able to address a number of challenging question although data analysis 

bottleneck prevented its use. 

With their capacity to collect large amount of both images and environmental data, 

AUVs can bring more certainty to the results of studies on the drivers of species 

distribution provided the right amount of data are collected and, more importantly, 

analysed. Care must also be taken that the sampling design is appropriate to the 

question of the study (Brind’Amour et al., 2009, Foster et al., 2014) and the size of 

these dataset can be exploited by implementing better verification and validation of 

the ecological patterns they reveal.   
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6.1.4 Data analysis methods 

Both chapters 3 and 4 observed that the additional data collected by the AUV but not 

analysed, (not only the images but also the environmental parameters) would have 

improved the knowledge that can be gained from one deployment of the sampling gear 

over a period of 20 hours. However, the results of both these chapters were limited in 

their scope by the bottleneck formed by manual analysis. The image analysis detailed 

in chapter 2 is very time consuming, particularly, because a lot of time was invested 

in ensuring its quality. This illustrates why data analysis needs to be more efficient.  

Chapter 4 saw the use of a partially automated object detection algorithm MAIA 

(Zurowietz et al., 2018), which proved to be a significant yet insufficient gain of time 

and still required careful verification to ensure the data quality was comparable to fully 

manual annotations. This has confirmed the limitations of manual analysis and semi-

automated analysis.  

One of the latest developments in the field of computer vision was explored in chapter 

5. The results of this chapter indicated that CV could match manual annotation 

accuracy on a small number of abundant OTUs if trained with enough data. It 

confirmed that CNN trained (by transfer learning) in Tensorflow, could have direct 

practical applications in ecology, provided objects could be detected and cropped out 

of images prior to identification. This chapter presents no technical development but 

illustrates the availability of this complex technology to a small team using a relatively 

restricted dataset (by computer science standards). It is an important point to make: if 

AI can be operated at a scale relevant to individual projects, this flexibility makes it 

more accessible than it has been in the past.   
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Interestingly, the species targeted in chapter 4, due in part to its ease of detection and 

identification, is also accurately identified by the CNN, probably for the same reasons. 

This technology is capable of technical prowess as demonstrated by Krizhevsky et al. 

(2012), Beijbom et al. (2015), Marini et al. (2018a), Siddiqui et al. (2018), and 

Schneider et al. (2018). If these classifiers could be applied to AUV data by any team 

able to operate the vehicle and collect the data in the first place, benthic ecology would 

be durably changed. This would truly unlock the potential of AUVs and make their 

advantage in sampling efficiency truly worthwhile compared to other sampling 

methods.  

Chapter 5 also gave possible hints on why CV is not more commonly used despite 

repeated calls by ecologists and computer scientists (Gaston and O'Neill, 2004, 

MacLeod et al., 2010). A large part of the time taken to complete this study was spent 

on understanding the method and learning how to successfully apply it before the 

proper analysis of the results could start.  

The lack of adaptability and the initial difficulty in implementing CV, coupled with the 

absence of a guarantee of success within reasonable time-frames are probably 

responsible for its slow adoption by marine ecologists in routine benthic surveys and 

the mistrust ecologists tend to have in these technologies. Indeed, it requires skills 

that are not commonly part of the background of benthic ecologists (mostly 

programming in several languages, algebra and optimisation of computing power) and 

are currently expensive to hire. It is worth noting that implementation of automated 

analysis is rarely budgeted for in grant proposals although they are no more costlier 

than ROV pilots, hence a lack of application in practical case-studies. A change in the 

mind-set of the community has to take place so that more research is conducted on 

applying AI and CV to AUV data.  
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In a more practical consideration, image analysis in this thesis also illustrated how the 

interface between the raw data and user are the real enablers of complex analysis. 

The processing of a large number of annotations would have been harder without 

Biigle and its clear interface. For example, it was quick and easy to ensure the quality 

of the annotation with the various validation tools that Biigle implemented. It was also 

easy to crop images around individual annotations to form the AI’s training set. The 

accessibility of CV was greatly increased by Biigle and Chapter 5 was not only made 

possible because of the progress made in CV technologies but also because of the 

data management, manipulation and sharing capacity of this ergonomic and user-

friendly program.  

Overall, although automated analysis was not achieved in this thesis, possible ways 

towards it have been identified and there is hope for the future of benthic image 

analysis. A combination of methodological improvements, better accessibility of non-

specialists to advanced analysis tools, and additional experience in the use these tools 

by the scientific community can eventually build-up towards full automation of image 

analysis.  Meanwhile, the experience and needs of each individual researcher can 

feed directly into this process, leading to an improved output of data analysis as it 

combined ecological knowledge and technical efficiency to address very specific and 

practical problems.  

Also, regarding analysis methods other than image annotation, Chapter 4 also 

highlighted how the AUV data failed to produce a model of species distribution able to 

accurately make predictions in nearby areas despite good performances in internal 

validation. It showed how a large dataset could improve performances of models, more 

importantly could give a more objective assessment of their capacity to make 

predictions in data-poor areas. Use of AUVs could therefore lead to more research 



Chapter 6: 

167 
 

aimed at producing guidance for ecologists using SDM. Problems, such as algorithm 

choice, effect of spatial autocorrelation, effect of overfitting and model complexity, can 

be more thoroughly investigated with larger datasets and should contribute to a better 

utilization of these tools in the field.  

 

6.2 On the future of AUVs in deep-sea benthic ecology  

6.2.1 The future of AUVs 

In this thesis, the data obtained from one specific “cruising” AUV has been able to 

provide valuable insights in deep-sea ecology. In general, however, individual AUVs 

are not a providential tool whose wide adoption can solve every facet of this research 

field. They seem to multiply and diversify the disciplines required to process of all the 

data they collect (geophysics, hydrography, oceanography and now informatics), 

which have to be matched with equally qualified analysts and could be a strain on 

some research teams budgets. Furthermore, AUVs need careful data management 

procedures as the quantity of data can be confusing, difficult to keep track of and 

challenging to use correctly. AUVs are also perceived as expensive to acquire, 

complex to operate and not reliable enough on routine deployments (Przeslawski et 

al., 2018). They cannot collect physical samples on the seabed or perform in situ 

experiments. Finally, cruising AUVs like Autosub are still not suited to studies of 

topographically complex habitats which are hosts of some of its most charismatic 

communities like cold water coral reefs and coral gardens. Other hovering AUVs have 

increased mobility which enable these ecosystems (Singh et al., 2004, Armstrong, 

2016, Armstrong et al., 2019) but can cover less ground (Huvenne et al., 2018).  
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Technological development in the coming years will address some these 

disadvantages and quick progress can be made (Lucieer and Forrest, 2016). The new 

generation of commercial  AUVs are smaller and cheaper than previous models, and 

are thus more accessible and more expandable (Phillips et al., 2017). Their navigation 

will improve as they are paired with surface vessels enabling satellite positioning 

(Huvenne et al., 2018). Their endurance will extend as better batteries and more 

efficient power management is implemented (Roper et al., 2017). They may also be 

deployed in fleets of cooperating units (Phillips et al., 2017) and their behaviour will 

become more and more adaptable during their mission with the help of AI (Quintana 

et al., 2018). Better cameras will also compensate the reduced taxonomic resolution 

and soon, they will cover more ground, survey more types of habitat, produce even 

larger datasets and fully bring benthic ecology into the world of “big data”. 

As far as deep-sea benthic ecology with image samples is concerned, AUVs are, in a 

sense, ahead of their time. As seen in this thesis, their capacity is currently not fully 

exploitable because of the manual analysis bottleneck. Hence, the immediate answer 

to the challenges I listed may not be to collect more data - although this will be needed 

eventually – but to analyse more data and better. Therefore, the future of AUVs 

probably depends on the improvement and automation of analysis methods rather 

than the improvement of the AUVs themselves. 

This calls for more research in that field of AI applied to CV so that these innovations 

trickle into biological studies. In the future, if the costs of acquiring and operating AUVs 

decrease and their reliability improves to a point where it becomes easier to operate 

them than using divers, trawls, drop cameras and ROVs, then the higher demand for 

performance data analysis might push towards further development of AI-based data 

analysis methods. In the meantime, AI tools developed for other purposes can be 



Chapter 6: 

169 
 

adapted to the context of benthic ecology, thus enabling better use of the AUVs. This 

is uncertain however. AUVs and AI have co-existed for long enough but research on 

their combined potential remains rare and, for a long time, the community has only 

showed limited interest in it.  

6.2.2 The future of AI 

The future of AI is also full of opportunities. There are now a number of programs that 

integrate some degree of automation in detection and identification of objects and 

animals on underwater images: AVED (Cline et al., 2007), MAIA in Biigle (Zurowietz 

et al., 2018) or VIAME (Dawkins et al., 2017). Research on these tools has gained 

traction recently and their accessibility is improving fast (Weinstein, 2018). Ecological 

studies of the deep sea may soon routinely use these applications, regardless of the 

sampling gear, and solve the manual analysis bottleneck. Further use of CV in biology 

will not only improve sampling efficiency, but also improve consistency and 

comparability across time and research groups.  

As I experienced for this thesis, challenges remain for ecologists to either acquire the 

necessary skills to use tools as complex as AI and CV, or secure funding to hire those 

who can. Both these options are costly and will probably encourage collaborative 

investment for the development and maintenance of these tools. More research 

groups sharing their analysis software and methods will also positively impact the 

comparability of the data, although probably at the cost of flexibility. More data also 

calls for a change to data management practices towards better curation, sharing and 

storage strategies (Schoening et al., 2018). This will in turn facilitate greater 

standardisation of annotation practices, as advocated by a number of ecologists in 

recent years (Amon et al., 2016, McClain and Rex, 2015, Althaus et al., 2015, Howell 

et al., 2019). 
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Provided all their data can be analysed, coupled with possibilities of combining data 

from different sources, the sampling efficiency of AUVs could lead to important 

methodological changes in marine ecology when data cease to be a limiting factor. 

More complex and elaborate sampling designs will be implemented. They will be able 

to account for biases, like spatial autocorrelation, and have an appropriate level of 

replication and controls as advocated by Brind’Amour et al. (2009) and Foster et al. 

(2014). In the future field sampling could even take the shape of complete coverage 

of an area within which sub-samples are taken at subsequent analysis stages or in 

later studies with different objectives (Woodall et al., 2018).  

If, instead of a day, it takes 10 or 5 hours to representatively sample one station, then 

more stations can be sampled within the time frame of an oceanographic cruise and 

coverage at broad scale can also be increased, which will help all fields of benthic 

ecology. The increased freedom in sampling designs will also allow the nesting of 

samples and stations within environmental parameter gradients (particularly by depth 

bands) so the drivers of benthic species distribution can be better understood. 

In short, thanks to AUVs and CV, the pace of exploration of the deep sea could 

increase dramatically.  

 

6.2.3 A word of caution  

I found in several chapter of the thesis that collecting a lot of data from one place failed 

to comprehensively describe the local ecosystem and thus generalisations could not 

be made outside of the surveyed area, even though the number of data points alone 

was superior to many published SDM studies. This research undertaken here should 

be reproduced in other stations within the Rockall Basin in order to confirm or refute 
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the conclusions reached here regarding the ecology of the S. fragilissima as well as 

validate observations made on this specific dataset. As this is unlikely to happen in the 

near future, it is important to keep in mind how the heterogeneity of the deep sea is 

constantly re-evaluated (Ramirez-Llodra et al., 2010) and how generalising from a 

restricted area or unique taxa should be done very carefully (Keith et al., 2012). Large 

datasets collected by AUVs are useful but size alone is not a sign of representativity 

of biological phenomena and the value of these datasets should not be overestimated. 

This word of caution could be generalised to other new technologies, including AI and 

CV. Although these techniques will provide more information, it does not exempt the 

use of methodological rigor in data interpretation and a solid understanding of the 

underlying biological processes shaping the observed patterns.  

It seems more research is being done on developing better AUVs, to make them more 

reliable, more durable, to give them more power and autonomy, to improve navigation, 

manoeuvrability, and equip them with better sensors. However, in the meantime, all 

the data are still manually analysed and too little progress has been made in this area 

and it receives less attention. If this trend is not altered, an exponential increase in 

data availability will only result in more hard drives pilling up on researchers desks and 

drawers while they try to manually extract small amounts of information from it 

(Schoening et al., 2018, Schoening et al., 2017). 

More generally, automation will not make people redundant. The algorithms used in 

CV have fundamental needs for manually annotated data, they will need validation by 

specialists and they will not be able to deal with novelty for a while. Besides, the need 

for competent experts in manual annotation remains, as the AI only builds up on the 

quality of the data it is trained on. Taxonomic research and expert training should be 

a priority (Schoening et al., 2017, Howell et al., 2019). One can even be hopeful that 
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AI could relive researchers from repetitive tasks and give them the opportunity to focus 

on more stimulating questions like rare or novel phenomena.   

 

6.3 Limitations of this thesis and future work 

The practical limitations that are likely responsible for the lack of popularity of AUVs 

and AI, compared to manual methods that are more reliable, have also impacted this 

thesis. Implementing these new tools is difficult and relies on a copious amount of trial 

and error.  Due to these difficulties, the large pool of images collected by the AUV was 

not fully exploited here since I analysed 10% of the images at best for one species, 

and less than 3% if considering all OTUs. However, this was already more than could 

be obtained from an ROV and, in that sense, formed a large dataset. Nevertheless, 

this work does not represent the full potential of an AUV to study a single station.   

Related to the issue of the amount of data analysed is the limited use of environmental 

data. Many of the variables measured by the AUV (particularly the hydrographic data 

recorded by the ADCP) were not used in any of the case studies here. They could 

have improved the results as the strength and direction of the current is a well-known 

driver of species distribution in the deep-sea (Henry et al., 2013).   

Although combining AI and CV could revolutionize benthic ecology in the very near 

future, this thesis just falls short of it. Application of the automated analysis method 

developed here in another ecological case-study was planned but did not materialize 

due to time constraints. The evident challenge remains to develop the pipeline in which 

an object detection algorithm, a CNN identifying OTUs, and a thorough manual 

verification procedure could be implemented. The most promising practical research 

lead identified in this thesis, in my opinion, lies in the combination of existing algorithms 
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and image analysis software to build such a pipeline. This is a much larger task than 

was possible in a single PhD chapter, and could form the basis of a post-doctoral 

research proposal.  

Biologically speaking, the scope of this thesis is, regretfully, limited. It only presents 

the results obtained from one location. These results may or may not be representative 

of the broader area (the bathyal part of Rockall Basin). Whether the ecological insights 

gained at station 26 can be applied to other areas is an important modulator of the 

value of this work. This limitation in scope is partly due to the structure of the fieldwork 

whose priority was to maximise sample collection with the ROV. Several unsuccessful 

AUV deployments effectively limited the number stations from which usable images 

were gathered to a single one. Note that, although it limits the generalisability of the 

ecological finds of this thesis, the data from one station proved too large by, at least, 

an order of magnitude to manually analyse. Undoubtedly, splitting the effort into serval 

stations would have resulted in a dataset limited in other ways.  

Many more interesting aspects of the ecology of station 26 could have been 

investigated, even with the annotations used this thesis and much more with all the 

images Autosub6000 collected. Transect t2 that I annotated manually included more 

than 110 OTUs of which several were other VME indicator taxa, for example the 

sponge Pheronema carpenteri (Thomson, 1869), or the bamboo coral Acanella 

arbuscula (Johnson, 1862). Their study is needed for their conservation. How are they 

distributed? Are the drivers of that distribution the same as S. fragilissima? Beyond 

these species, the other organisms present and their interactions also need to be 

studied. Are there one or more communities within station 26? Are there a number of 

statistically and ecologically meaningful assemblages, as there are at a larger scale 

(Parry et al., 2015, Howell et al., 2010a)? Or, on the contrary, is there continuous 
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spatial turnover of assemblages and an infinite number of local communities 

depending on the scale considered?  

Finally, the availability of more large datasets on the distribution of benthic megafauna 

could be the occasion to make progress on the understanding of SAC in benthic 

communities and its effect in SDM. The exact effect of SAC on model performances 

is not very well understood and subject to much debate among specialists (Dormann, 

2007, Gaspard et al., 2019, Miller, 2012). Likewise, the methods to account for it are 

not agreed upon within the community and the most common answer is to resample 

the training dataset so that no samples are within the minimum spatial autocorrelation 

distance (Fortin and Dale, 2009). Clear guidance on the ways to ensure SAC is not 

biasing the results are needed in the future and more research can be carried out in 

the field with the aid of AUV data with appropriate designs.  
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6.4 Concluding remarks 

 

What this thesis achieves with several case studies is a proof of concept that AUVs 

can bring new insight to benthic ecology. It also showed that AI could produce useful 

results, even in a small-scale project. The potential of AUVs can only be realised if AI 

can bypass the manual analysis bottleneck and this research area must gather 

momentum. Although I feel that more questions than answers have come from these 

years of study, the way to address some of the challenges of deep-sea ecology is 

clearer.  

AUVs and AI can be tools to scale-up and widen the range of options available to 

benthic ecologists and help them make better use of their limited time and resources. 

Their integration into the existing research structure will take time, while their 

accessibility and reliability is still in development. But the trend towards more 

autonomy, automation and big data is general in society and goes beyond deep-sea 

benthic ecology, and even science. 

It is important for those researchers using these methods to retain basic knowledge of 

their inner workings, biases and limitations, to factor them into the interpretation of 

their data. Many challenges remain on the road, not least, for the community to 

acknowledge they could be a solution to the need for more and better data. I hope the 

thesis will contribute to the recognition of the potential of these technologies and that 

research on their applications are worth considering in future research to study the 

largest and most mysterious ecosystem on the planet. 
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Appendices 

7.1 Appendix A2: 

Appendix accompanying chapter 2.  

 

7.1.1 A2.1: Download data and species catalogue with Biigle API 

 

This document explains how to take the CSV report from Biigle, as well as the 
species catalogue, so that the two tables can be used in an ecological study. 

For this tutorial you will need R and R studio installed, as well as the packages 
“Tidyverse”, ” magrittr”, “plyr”, “fromJSON” and “worms”.  

If they need to be installed, run:  

install.packages(“Tidyverse”, “magrittr”, ”plyr”, “fromJSON”, ”worms” ) 

 

You also need a Biigle account and have access to the project you want to download 
data from, and be logged in within your favorite web browser. 

Download data from Biigle 

In the volume overview window, enter the “request report for this volume” tab, select 
“annotation report”. Request the annotation CSV variant in the drop down menu. You 
will be sent an email with a link to download them all in a zip archive. If you click the 
link, it should initiate download into your default DL folder (part of your browser 
parameters) and is usually in the windows “Download” folder.  

If necessary, like if you need the surface of the image as calculated by Biigle, 
download the full reports as well. It should be another zip file.  

Take both your zip files and put them in an appropriately named folder (the name of 
the project is a good choice). 

Use the species catalogue tree from Biigle  

The species catalogue can be downloaded from Biigle using the API. To do that, 
enter this line in the address bar of your web browser:  

https://biigle.de/api/v1/label-trees/[code number of the catalogue you want to 
download] - Example: https://biigle.de/api/v1/label-trees/25 

https://biigle.de/api/v1/label-trees/
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You will be brought to a page where you can download a JSON document of the 
species catalogue that the following script can turn into a table. 

This JSON document has to be named “tree” and placed in the same folder as your 
Biigle report. This folder will be your working directory and the output of this script 
will be imported there. Place the pathway to that folder on the 4th line of the script 
and run it.  

library(tidyverse) 

library(magrittr) 

library(fromJSON) 
 
# set environments 
wd <- "~/AUV PhD/Biigle Data" 
setwd(wd) 
jsonlite::fromJSON("tree.json") -> d # feel free to change the name 
 
 
d$labels %>% as_tibble() -> tree 
tree %<>% arrange(id) # arrange them in id order (sort of time of creation order?) 
 
#  cycle through all levels 
 
# add a level1 column. it is the first parent id 
tree %>% mutate(last_level = parent_id) -> tree.i 
i = 0 # start at 0 so it can be updated to 1 at first iteration 
 
repeat { 
  i = i + 1 
  print(head(tree.i)) 
   
  # take the labels that have no parent_id 
  tree.i %>%  filter(is.na(last_level))  -> tree_f_out 
   
   
  # remove the levels that have no parents 
  tree.i %>%  filter(!is.na(last_level)) -> tree_f 
   
  # stop if there is no level left to add 
  if (nrow(tree_f) < 1) { 
    break 
  } 
   
  # make it a list to get through levels 
  split(tree_f, tree_f$id) -> tree.l 
   
  # to each label, attach the paren ID of the parent ID 
  tree.l %>% map( 
    function(x) 
      mutate( 
        x, 
        new_level = tree %>% filter(id == x$last_level) %>% pull(parent_id), 
        # replace the last level ids by the name of the taxa 
        last_level = tree %>% filter(id == x$last_level) %>% pull(name) 
      ) 
  ) -> tree.l 
   
  # remake a table 
  tree.l %>%  map_df(bind_rows) -> tree_f 
   
  # attach with hte labels excluded before 
  # it will automatically assign an NA at the new level column for the labels out 
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  bind_rows(mutate(tree_f_out, last_level = as.character(last_level)), 
            tree_f) -> tree.i 
   
  # change the names 
  tree.i %<>% rename_at(vars("last_level"),  funs(paste0("level_", i))) 
  tree.i %<>% rename(last_level = new_level) 
   
  # next level 
}# next level 

# give it the same format as the one out of biigle 
tree.i -> tree_leveled 
 
tree_leveled %>% split(tree_leveled$id) -> tree.l 
 
 
tree.l %<>% map(function(x) 
  mutate( 
    x, 
    label_hierarchy =  x %>% select(contains("level")) %>% 
      select_if(!is.na(.)) %>% # remove nas 
      select(rev(names(.))) %>%  # get Biota as first level 
      paste(collapse = " > ")  # past into one vector 
  )) 
# reform table 
tree.l %>%  map_df(bind_rows) -> tree_leveled_h 
 
# label hiereachy without the final OTU name 
# number of hierarchy levels 
tree_leveled_h %<>% select(-contains("level")) %>% 
  mutate(n_taxonomy_levels = label_hierarchy %>% 
           str_split(pattern = " > ") %>% 
           map(function(x) 
             return(length(x))) %>% 
           unlist) 
# change top labels to 0 levels of taxonomy 
tree_leveled_h[is.na(tree_leveled_h$parent_id), "n_taxonomy_levels"] <- 
  0 
 
# make the taxonomy column a table 
taxonomies <-  tree_leveled_h %>% 
  pull(label_hierarchy) %>% 
  str_split(pattern = " > ") 
# add names to thins list 
names(taxonomies) <- tree_leveled_h %>% pull(name) 
# maximum number of levels 
taxonomies %>% map(length) %>% unlist() %>% max() -> max_levels 
 
taxonomies %<>% map(function(x) 
  c(x, rep("OTU", max_levels - length(x)))  %>% 
    t() %>%  as_tibble(.name_repair = "unique"))  %>% 
  map_df(bind_rows) 
# change the names in the table 
names(taxonomies) <- paste0("level", 1:max_levels) 
 
 
tree_leveled_h  %<>% bind_cols(taxonomies) 
 
 
# look for duplicates 
tree_leveled_h   %>% count(name) %>% filter(n > 1) 

# remove duplicated names 
tree_leveled_h  %<>% distinct(name, .keep_all = T) 
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# export to CSV 
 tree_leveled_h %>% write_csv("species catalogue Biigle.csv") 

Add the taxonomic levels with the “Worms” package 

 tree_leveled_h %>%  filter(!is.na(source_id))  -> worm_tree 
 
 
# make a worm table for these id_s 
worm_tree %>% split(worm_tree$id) %>%  
   map(function(x) worms::wormsbyid(x = as.numeric(pull(x,source_id))) ) %>% map_df(bind_ro
ws) -> worm_table 

# merge that table with our biigle catalogue 
worm_table %>% as_tibble(.name_repaiR = "universal" ) %>% 
   select( source_id = AphiaID , rank,phylum,class,order,family ) %>%  
   mutate(source_id = as.character(source_id)) %>%  
  left_join( worm_tree,., by="source_id")  -> worm_tree 
 
 
bind_rows(worm_tree  ,  tree_leveled_h %>%  filter(is.na(source_id))   ) -> worm_tree_level
ed 
 
 
 
# for each OTU, look up through the levels and the first one with a phylum gives its name 
 
 
worm_tree_leveled %>% split(worm_tree_leveled$id) -> l 
 
l$`3474` -> x 
 
   for(i in seq_along(l)){ 
      l[[i]] -> x 
      # get levels 1 to 3  
         x %>%  select(level1:level4) %>% unlist() %>% as.vector() -> phyls 
      # get the phylum list for  
         worm_tree_leveled %>% filter(name %in% phyls) %>% pull(phylum) %>% na.omit() %>% u
nique -> phyls 
      #    special treatment if it is foraminifera 
      if( str_detect(x$label_hierarchy, pattern =  "Rhizaria") ) { 
               x$phylum <- "Foraminifera" 
               print(paste("found some chromy in ", x$name)) 
         } else if (TRUE %in% is.na(x$phylum )){ # if there is no phylum with label, add th
e phylum form the above levels 
            x[,"phylum"] <- phyls 
             } 
          
        l[[i]] <- x     
   } 

# Number of OTU per phylum  

map_df(l,bind_rows) -> worm_tree_leveled  
 
worm_tree_leveled %>% count(phylum) 

# Which label are related to Chromista?  

worm_tree_leveled %>% filter( str_detect(label_hierarchy,pattern =  "Chrom")) 

# export the table  
worm_tree_leveled %>% write_csv("species catalogue WORMS Biigle.csv" ) 
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7.1.2 A2.2: R code used to process the Output of Biigle  

 

This document explains how to take the CSV report from Biigle and turn it into table 
that can directly be used in most ecological analysis. 

• It should create: 

– A table of OTU abundance per image (image counts) 

– A OTU x Samples contingency table (Bio) 

– A contingency table with info on individual images (BioMeta) 

– A table of info per OTU (OTU meta) 

– A plot of the abundance of individuals in each phylum 

– A plot of a multivariate analysis of the images. 

– A plot of the rarefaction curve 

– A table of the diversity estimates 

It has been written so that it should run if you only supply the name of your working 
directory (the name of the folder if which your data is and want to work from) and the 
name of the Biigle CSV report, which itself is the name of the volume. It needs the 
table of the OTU catalogue used on Biigle. Instructions on how to download this 
catalogue are attached to the same appendix of my thesis. This table needs to be in 
your working directory. 

This is a generic approach and you are encouraged to change, modify, customize 
and improve the code. 

Data preparation 

Load packages 

Make sure they are all installed and up to date 

library(tidyverse) 

## Warning: package 'dplyr' was built under R version 3.6.1 

library(magrittr) 
library(vegan) 
library(goeveg) 
library(iNEXT) 

Create a folder that will contain all the processed data 

Create objects for folder name so that R can export the results in the right place. You 
should have the data in your working directory (wd) 
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Your wd should contain: * A Biigle CSV report named after the Biigle volume it is 
from (it is the default name) * A species catalogue table formatted as instructed in 
A2-1. 

# set environments 
wd <- "~/AUV PhD/Biigle Data" # insert folder name of WD 
#enter the name of the project here 
project_name <- "341-nrb-1200m-t3-framegrabs-1min"# insert project - Biigle 
 
# set a directory where species catalogues are on your computer 
"species catalogue Biigle JAN2019" -> species_cat.name 
 
# Import the the Biigle species catalogue 
read_csv(paste0(wd, "/", species_cat.name,  ".csv"), 
         col_type = cols()) %>% 
  # remove some column in that table so they are not added twice 
  select(-contains("level"),-label_hierarchy,) -> Biigle_catalogue 
 
setwd(wd) 
 
# make a folder with the results 
res.dir <- paste0(wd, "/", project_name, "_res") 
# if it doesnt exists, create a folder for your project results 
if (dir.exists(res.dir) == FALSE) { 
  print("creating folder") 
  dir.create(res.dir) 
} 

Open the Biigle report 

Here, the script will also print the number of images, the number of OTU and the list 
of OTU present in the volume so users can verify these numbers match with their 
expectations.  

# open the Biigle project 
    readr::read_csv(paste0(wd, "/",project_name,".csv"),col_type = cols()) -> D 
 
# make an image key table 
    unique(select(D, image_id,filename)) -> d_imageNames 
    print(paste("number of images: ",nrow(d_imageNames))) 

    print(paste("number of OTUs: ", D %>% pull(label_name) %>% n_distinct() ) ) 

    print(paste("OTUs and annotations include: ", paste( 
    D %>% distinct(label_name) %>% pull, collapse = ", ") )) 

#  
# list of species/OTU ( labels names) 
    unique(D$label_name) -> OTUs 

OTU list per image 

Process each image and group the annotations per OTU 

# split the table per image 
      split(D,D$image_id) -> l_image 
       
# make two lists  
      l_image_meta <- list() 
      l_image_count <- list() 
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      for(I in seq(names(l_image))){ 
        # select an image 
        l_image[[I]] -> D_I 
 
        # make a table to become contingency 
        unique(select(D_I, 
                      label_name, 
                      user_id,  
                      image_id, 
                      filename, 
                      label_hierarchy)) -> image_meta.I 
        # collapse multiple shapes for a single OTU into 1 vector 
            D_I %>%  
              group_by(shape_name, label_name) %>% 
              count() %>% 
              group_by(label_name) %>% 
              mutate(label_shapes = paste(shape_name,collapse = ",")) %>% 
              ungroup() %>%  
              distinct(label_name,.keep_all= TRUE) %>% 
              select(label_name,label_shapes) %>%  
              full_join(image_meta.I,by="label_name")  -> image_meta.I 
         
        # concatenate each annotation by OTU and count them 
          D_I %>% count(label_name) -> d.I 
              mutate(d.I,annotation_label_id=unique(D_I$label_id))[,c(1,3,2)] -> d.I 
              names(d.I) <- c("label_name","annotation_label_id","count") 
        # make a count per OTU per image list 
          full_join(image_meta.I,d.I,by="label_name") -> l_image_count[[I]] 
 
      } #next image 
       
      # combine the results into table and reshuffle 
      map_df(l_image_count,bind_rows) -> image_meta 
      select(image_meta,image_id,user_id,filename,label_shapes,  
             annotation_label_id, label_name,label_hierarchy ,count)-> image_counts 
       
      # remove the non living labels 
      image_counts <- image_counts %>% 
        filter(label_name != "Natural structure") %>%  
        filter(label_name != "rock") %>%  
        filter(label_name != "Laser Point") %>%  
        filter(label_name != "Human artefacts") 
      # skip if there is no label 
      if(nrow(image_counts) < 1) { 
        print("no annotation here") 
        next} 
       
      # reorder names and rename surface 
      image_counts <- image_counts %>% 
        select(image_id, user_id, filename, 
               label_shapes,  
               annotation_label_id,label_name, count, 
                                               label_hierarchy) 

Export the results into a useful format 

      # export image count  
  readr::write_csv(image_counts, 
                   paste0(res.dir,"/",project_name , 
                          "_image_counts.csv"))   

Table of information for each OTU 
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# Table of metadata per OTU 
D %>% 
  distinct(label_name, label_hierarchy, label_id) -> OTU_meta 
# comput a few stats for that project 
image_counts %>% 
  group_by(label_name) %>% 
  summarise(Tot_abundance = sum(count)) %>% # total abundance of that OTU 
  right_join(OTU_meta, ., by = "label_name")  %>% 
  arrange(desc(Tot_abundance)) -> OTU_meta # rearrange the table by abundance 
# number of images wher OTU is present 
# cummulative sum from 
OTU_meta$cumulSum <- cumsum(OTU_meta$Tot_abundance) 
# 
OTU_meta <- 
  mutate(OTU_meta, percent_total = round(cumulSum / (sum( 
    OTU_meta$Tot_abundance 
  )), digits = 5) * 100) 

Add the taxonomic levels to that table 

# Label hierarchy without the final OTU name 
# Number of hierarchy levels 
OTU_meta %<>% 
  mutate(n_taxonomy_levels = label_hierarchy %>% 
           str_split(pattern = " > ") %>% 
           map(function(x) 
             return(length(x))) %>% 
           unlist) 
 
# make the taxonomy column a table 
taxonomies <- OTU_meta %>% 
  pull(label_hierarchy) %>% 
  str_split(pattern = " > ") %>% 
  map(function(x) 
    return(head(x, -1))) 
# add names to thins list 
names(taxonomies) <- OTU_meta %>% pull(label_name) 
# maximum number of levels 
taxonomies %>% 
  map(length) %>% 
  unlist() %>% 
  max() -> max_levels 
 
taxonomies %<>% map(function(x) 
  c(x, rep("OTU", max_levels - length(x))) %>% 
    t() %>% as_tibble(.name_repair = "unique")) %>% 
  map_df(bind_rows) 
# change the names in the table 
names(taxonomies) <- paste0("level", 1:max_levels) 
# add it to the OTU meta table 
OTU_meta <- OTU_meta %>% bind_cols(taxonomies) 
# export 
paste0(res.dir, "/", project_name, "_OTU_meta.csv") %>% 
  write_csv(OTU_meta, path = .) 

Add the taxonomy form Biigle 

If that table exist that is but, if not, skip that chunk 

OTU_meta %>% filter(level1 == "Biota") %>%  

left_join(Biigle_catalogue, by = c("label_name" = "name")) %>% 
  split(.$label_name) %>% 
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  # change parent_id the actual name of the taxa 
  map(function(x) 
    mutate(x, parent_name = 
             Biigle_catalogue %>% 
             filter(id == pull( 
               distinct(x, parent_id), 1 
             )) %>% 
             pull(name))) %>% map_df(bind_rows) %>% 
  arrange(desc(Tot_abundance)) -> OTU_meta 
 
# export it again. It should overwite the previous version 
paste0(res.dir, "/", project_name, "_OTU_meta.csv") %>% 
  write_csv(OTU_meta, path = .)     

Finally, export a table of the metadata associated to each image 

D %>% select( "image_id","filename","image_longitude","image_latitude") %>% distinct() -> M
ETA 

Basic ecological results exploration 

All non-living annotations have to be removed. 

Benthic ecologists have the habit of removing the most mobile taxa, as they may be 
a source of biases. That include fish and sharks. 

Unknown annotations should also be removed 

image_counts <- image_counts  %>% 
  # no minerals or Unknown 
  filter(!str_detect(label_hierarchy, "Natural structure")) %>% 
  # no lebenspurren either 
  filter(!str_detect(label_hierarchy, "Liebenspurren")) %>% 
  # no "NEW" OTU (can be many things) 
  filter(!str_detect(label_hierarchy, "NEW$")) %>% # here the '$' means finishes by 
  # no fish 
  filter(!str_detect(label_hierarchy, "Pisces"))  %>% 
  # no unknown stuff 
  filter(!str_detect(label_hierarchy, "Unknown")) 
 
 
# make it an image*species matrix 
image_counts %>% 
  select(filename , label_name, count) %>% 
  spread(key = label_name, value = count, fill = 0) -> Bio 
 
# now export the table 
paste0(res.dir, "/", project_name, "_Bio.csv") %>% 
  write_csv(Bio, path = .) 
 
# make a vector of OTUs - updated since you have removed many 
image_counts %>% distinct(label_name) %>% pull -> OTUs 
 
# add the name and other metadata avaialble to each image 
inner_join(Bio, META, by = "filename") -> BioMeta 
 
# now export the table 
paste0(res.dir, "/", project_name, "_BioMeta.csv") %>% 
  write_csv(BioMeta, path = .) 

Create a folder where the plots will be exported 
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# make a folder with the results 
plot.dir <- paste0(res.dir,"/","plots") 
# if it doesnt exists, create a folder for your projects results 
if(dir.exists(plot.dir) == FALSE) { 
  print("creating folder") 
  dir.create(plot.dir) 
  } 

Make plots of the diversity of phyla within the volume 

# number of phyla 
OTU_meta %>% 
  group_by(phylum) %>% 
  summarise( 
    phylum_abundance.raw = sum(Tot_abundance), 
    phylum_diversity.raw = n_distinct(label_name), 
    phylum_abundance.avg = mean(Tot_abundance) 
  ) %>% 
  arrange(desc(phylum_abundance.raw)) %>% 
  mutate(phylum_cumSum = cumsum(phylum_abundance.raw)) -> Phylum_meta 
 
 
# Draw a plot of abundance per phylum and colour each phylum bar per number of OTU in that 
phylum 
OTU_meta %>% 
  ggplot(aes(x = phylum, y = Tot_abundance, fill = label_name)) + 
  geom_col(show.legend = FALSE) + 
  theme( 
    panel.background = element_rect( 
      fill = "snow1", 
      colour = "NA", 
      size = 0.5, 
      linetype = "solid" 
    ), 
    axis.text.x = element_text(angle = 45, hjust = 1), 
    legend.position = "none" 
  ) + 
  ggtitle(label = "Abundance of each phylua and number of OTUs within phylum") 

# export plots 
ggsave(paste0(plot.dir, "/", "Phylums_", project_name , ".jpeg"), dpi = 500) 

Multivariate analysis 

Conduct a simple Principal coordinates analysis to see if there is any obvious pattern 
or structure in the volume. 

Bio %>% select(-filename) -> d 
 
# try a bray curtis capscale because it is fast 
capscale(d~1,distance = "bray") -> dbCCA 
limited <- ordiselect( d, dbCCA, fitlim = 0.05 ) 
 
jpeg(filename = paste0(plot.dir,"/"," Multivariate analysis ",project_name ,".jpeg")) 
plot( dbCCA, type = "n",  main= "PcoA plot - with abundance",sub = "main driving species on
ly") 
# add arrows of species effects 
arrows(x0 = 0,y0 = 0, 
       x1 = data.frame(scores(dbCCA)$species)[limited,"MDS1"] , 
       y1 = data.frame(scores(dbCCA)$species)[limited,"MDS2"], 
       length = 0.01, lty = 2, col= "coral") 
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# add sites points 
points(dbCCA,display = c("sites"), pch = 21, bg ="yellow",  col ="red4") 
 
# add species names  
points(dbCCA, display="species", 
       select = limited, pch=3, col="red4", cex=0.7) 
ordipointlabel(dbCCA, display="species", 
               select = limited, col="red4", cex=0.8, add = TRUE) 
# pimp it more 
points(0,0, pch = 21, col="red4",bg= 1, cex = 2) 
abline(h = 0, v= 0, lty = 3, col="grey") 
dev.off() 

## png  
##   2 

Plot the abundance of each OTU along the transect 

Make a plot for each OTU and export it in that folder 

Make a species accumulation plot by number of individuals 

# format Bio table  
tL <- Bio %>% select(-filename) %>% t 
 
# calculate rarefaction 
tL %>% rowSums() %>%  
  iNEXT( datatype = "abundance", 
         endpoint = ( sum(.)*3) , # extrapolate to 3 times the number of samples 
         q=c(0)) -> sac 
# plot the curve 
  ggiNEXT(sac, type = 1) + 
    theme_bw()+ 
    ggtitle("Rarefaction curve") + 
  labs(x = "Individuals", y = "Richness Estimator") + 
  # line of the maximum estimator 
  geom_hline(yintercept=sac$AsyEst[1,"Estimator"], linetype="dashed",  
                color = "red", size=0.8) + 
    geom_hline(yintercept=sac$AsyEst[1,"Observed"], linetype="solid",  
                color = "red", size=0.8)  

# export plot 
     ggsave(filename = paste0(plot.dir,"/"," Rarefaction curve in ",project_name ,".jpeg"),
dpi = 500)    

## Saving 5 x 4 in image 

Table of diversity indices  

tL %>% rowSums() %>%  
  ChaoRichness( datatype = "abundance") %>% 
  mutate(transect = row.names(.)) %>% as_tibble() %>%  
  mutate(  E = "Chao", order = "0")  -> ChaoRichnessEstimate 
tL %>% rowSums() %>%  
  ChaoShannon( datatype = "abundance") %>%  
  mutate(transect = row.names(.)) %>% as_tibble() %>%  
  mutate(Est_s.e. =  Est_s.e, E = "Shannon", order = "1") %>%  
  select(-Est_s.e) -> ShannonEstimate 
tL %>% rowSums() %>%  
  ChaoSimpson( datatype = "abundance") %>%  
  mutate(transect = row.names(.)) %>% as_tibble() %>%  
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  mutate(E = "Simpson", order = "2") -> SimpsonEstimate 
 
# combine them 
 
list(ChaoRichnessEstimate, ShannonEstimate, SimpsonEstimate) %>% map_df(bind_rows) -> EstD_
all 
 
# export the table  
          paste0(res.dir,"/",project_name,"_diversity.csv") %>%  
                    write_csv(EstD_all,path = . ) 
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7.2 Appendix A4: 

Appendix accompanying chapter 4  
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Figure A4-1:  Variable importance plots for models trained on t2 and t3 
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Figure A4-1: Variable importance plots for models trained on t2 and t3 
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Figure A4-2: Moran’s I correlograms on residuals of models trained on each individual transects. Red dots indicate 
the significant distant classes 
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Figure A4-3: MESS maps obtained with the data in each individual transects . The data points in the transect are 

plotted in green. The Scale indicated the similarity index of the MESS map. 
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Figure A4-4: MESS maps of training sets of 3 transects (plotted in green). The remaining transect used for testing 

is (plotted in red). The Scale indicated the similarity index of the MESS map. 
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7.3 Appendix A5: 

Appendix accompanying chapter 5 

 

 

Figure A5-1: Pair-wise permutation-based analysis of variance of differences in sensitivity (upper left triangle of the 
matrix) and precision (lower right triangle of the matrix) between each treatment. The numbers in central cells 
indicates sensitivity (left) and precision (right) of corresponding treatments on the axis.  Significance level indicate 
at which alpha threshold the two treatments are significantly different in percentages of maximal value (i.e. 1). No 

dif. indicates a p-value above 0.05.  

 

Figure A5-2: Pair-wise permutation-based analysis of variance of differences in sensitivity (upper left triangle of the 
matrix) and precision (lower right triangle of the matrix) between each treatment for OTU 261. The numbers in 
central cells indicates sensitivity (left) and precision (right) of corresponding treatments on the axis in percentages 
of maximal value (i.e. 1).  Significance level indicate at which alpha threshold the two treatments are significantly 
different. No dif. indicates a p-value above 0.05. 



Appendices 

196 
 

 

Figure A5-3: Pair-wise permutation-based analysis of variance of differences in sensitivity (upper left triangle of the 
matrix) and precision (lower right triangle of the matrix) between each treatment for OTU 339. The numbers in 
central cells indicates sensitivity (left) and precision (right) of corresponding treatments on the axis in percentages 
of maximal value (i.e. 1).  Significance level indicate at which alpha threshold the two treatments are significantly 
different. No dif. indicates a p-value above 0.05. 
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Figure A5-4 a) Differences in sensitivity for OTU 339 in classifiers trained with different number of classes and 
images (7 for group A, 27 for group B and 52 for group C).  Error bars are standard deviation calculated from the 
10 random splits. b) Differences in precision for OTU 339 in classifier trained with different number of classes and 

images.  Error bars are standard deviation of the 10 random splits. 
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List of Acronyms 

 

ADCP: Acoustic Doppler Current Profiler 

AI: Artificial Intelligence 

API: Application programming interface 

AUV: Autonomous Underwater Vehicle 

CNN: Convolutional Neural Network  

CTD: Conductivity, Temperature, and Depth 

CV: Computer Vision (not to be confused with cross validation) 

DL: Deep Learning 

GIS: Geographic Information System  

HOV: Human Occupied Vehicle 

MAIA: Machine learning Assisted Image Annotation 

MB: Multibeam 

MESS: Multivariate environmental similarity surface 

nMDS: non-metric Multi-Dimensional Scaling 

NN: Neural Network 

OTU: Operational Taxonomical Unit 
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POC: Particulate Organic Carbon 

RMSE: Root Mean Square Error 

ROV: Remotely operated Vehicle 

SAC: Spatial AutoCorrelation  

SDM: Species Distribution Model 

TF: Tensorflow 

UAV: Unmanned Aerial Vehicle 

USBL: Ultra-Short Baseline 

VME: Vulnerable Marine Ecosystem  

WoRMS: World Register of Marine Species 
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