Faculty of Science and Engineering

School of Biological and Marine Sciences

2020-10-16

Loss of heat acclimation capacity could leave subterranean specialists highly sensitive to climate change

Pallares, S

http://hdl.handle.net/10026.1/16552

10.1111/acv.12654 Animal Conservation Wiley

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

Animal Conservation

Loss of heat acclimation capacity could leave subterranean specialists highly sensitive to climate change

Journal:	Animal Conservation
Manuscript ID	ACV-07-20-OM-256.R1
Manuscript Type:	Original Manuscript
Date Submitted by the Author:	n/a
Complete List of Authors:	Pallarés, Susana; University of Plymouth, Marine Biology and Ecology Research Centre; Universidad de Castilla-La Mancha - Campus de Toledo, Instituto de Ciencias Ambientales (ICAM) Colado, Raquel; Universidad de Murcia, Ecología e Hidrología; Universidad de Castilla-La Mancha - Campus de Toledo, Instituto de Ciencias Ambientales (ICAM) Botella-Cruz, Maria; Universidad de Murcia, Ecología e Hidrología Montes, Aitor; Basque Society for Biology Conservation; Cuevas de Oñati-Arrikrutz Balart-García, Pau; Instituto de Biologia Evolutiva Bilton, David; University of Plymouth, Marine Biology and Ecology Research Centre; University of Johannesburg, Zoology Millán, Andrés; Universidad de Murcia, Ecología e Hidrología Ribera, Ignacio; Instituto de Biologia Evolutiva
Keywords:	critical thermal maximum, physiological plasticity, climate variability hypothesis, subterranean environment, cave beetles, climate change

SCHOLARONE[™] Manuscripts

Loss	of heat acclimation capacity could leave subterranean specialists highly sensitive to climate
char	nge
Sho	rt title: Acclimation capacity in subterranean specialists
Susa Dav:	ina Pallarés ^{1,2} , Raquel Colado ^{2,3} , María Botella-Cruz ³ , Aitor Montes ^{4,5} , Pau Balart-García ⁶ , id T. Bilton ^{1,7} , Andrés Millán ³ , Ignacio Ribera ^{6†} , David Sánchez-Fernández ^{2,3}
¹ Ma Univ	rine Biology and Ecology Research Centre, School of Biological and Marine Sciences, versity of Plymouth, Plymouth, UK
² Inst	tituto de Ciencias Ambientales, Universidad de Castilla-La Mancha, Toledo, Spain
³ Dep	partamento de Ecología e Hidrología, Universidad de Murcia, Murcia, Spain
⁴ Bas	que Society for Biology Conservation, Guipúzcoa, Spain
⁵ Cue	evas de Oñati-Arrikrutz, Guipúzcoa, Spain
⁶ Inst	titut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
⁷ Dep	partment of Zoology, University of Johannesburg, Johannesburg, South Africa
Cor	responding author:
Susa	una Pallarés (susana.pallares@plymouth.ac.uk)
Mar Univ Tel:	ine Biology and Ecology Research Centre, School of Biological and Marine Sciences, versity of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK +44 1752 584608

[†] Deceased April 15, 2020

1 Abstract

Physiological traits are key in determining the vulnerability of narrow range, highly specialised animals to climate change. It is generally predicted that species from more stable environments possess lower thermal tolerance breadths and thermal plasticity than those from more variable habitats - the so-called 'climatic variability hypothesis'. However, evolutionary trade-offs between thermal breadth and its plasticity are also seen in some taxa, and the evolution of thermal physiology remains poorly understood. Subterranean environments are excellent systems for exploring these issues, being characterized by stable climatic conditions, with environmental variability increasing predictably from deep to shallow habitats. Acclimation capacity will be fundamental in determining the sensitivity of subterranean species to climate change, since they have poor dispersal capacity and limited possibility to exploit thermally different microhabitats in the uniform cave environment. We assessed critical thermal maximum (CT_{max}) and short-term heat acclimation capacity in three related beetles (Leiodidae: Leptodirini) with differing degrees of specialisation to the subterranean environment (deep, shallow and facultatively subterranean, respectively) and therefore exposed to contrasting thermal variability in nature. Only the facultative subterranean species showed any acclimatory capacity, also having the highest CT_{max} across the taxa studied. However, this species might experience the highest thermal stress in its habitat under climate change. The studied subterranean specialists will be poorly able to cope physiologically with temperature increase, but in contrast exposed to lower magnitude and rate of warming. Our results fit the climatic variability hypothesis, suggesting that adaptation to cave conditions has selected against the retention of acclimation mechanisms. We show that the pathways that determine vulnerability of subterranean species to climate change depend on their degree of specialisation to deep subterranean environments. This information, combined with evaluation of exposure to climatic changes at their present locations, is fundamental in identifying species or populations at greatest risk.

1		
2 3	26	Keywords: critical thermal maximum physiological plasticity thermal tolerance climate
4	20	Reywords. entited thermal maximum, physiological plasticity, thermal tolerance, entitate
5 6	27	variability hypothesis, subterranean environment, conservation, cave beetles, climate change
7		
8 9		
10		
11 12		
12		
14 15		
15 16		
17		
18 19		
20		
21 22		
23		
24 25		
26		
27 28		
29		
30 31		
32		
33 34		
35		
36 37		
38		
39 40		
41		
42 43		
44		
45 46		
40 47		
48 40		
49 50		
51		
52 53		
54		
55 56		
57		
58 59		
60		
		2
		<u>_</u>

28 Introduction

It is broadly recognised that physiological data may contribute directly to conservation in the face of climate change and advance the field of conservation physiology (Wikelski & Cooke, 2006; Cooke & O'Connor, 2010; Cooke et al., 2013; Evans, 2015). Indeed, accurate assessments of species vulnerability to climate change require integrated measurements of its different determinants, including exposure (the magnitude and change of climatic change) and factors of organisms' sensitivity at the individual level, such as the physiological tolerance to environmental change (Williams et al., 2008; Foden et al., 2019). In this context, the acclimation capacity of organisms determines their ability to track changing environmental conditions and is of fundamental importance, especially for species that are unable to respond to climate change by other means (e.g. range shifts, behavioural adjustments or evolutionary adaption) (Stillman, 2003; Seebacher, White, & Franklin, 2015). Thermal acclimation occurs when individuals adjust their physiology to compensate for the effects of temperature variation, and may ultimately extend critical thermal limits for performance and survival (e.g. Da Silva, Riginos & Wilson, 2019).

Despite multiple hypotheses proposed to understand how thermal plasticity varies across taxa (see Rohr et al. (2018) for a recent review), empirical studies suggest that acclimation responses are highly context-dependent. According to the climatic variability hypothesis (CVH) (Stevens, 1989), species from more stable environments are predicted to have lower thermal tolerance (i.e. narrower tolerance breadths and less acclimation capacity) than those from more variable habitats (e.g. Feder, 1978; Tomanek, 2008; Magozzi & Calosi, 2015; Shah, Funk, & Ghalambor, 2017; Markle & Kozak, 2018), but such a pattern has not always been supported (Seebacher et al., 2015). Furthermore, evolutionary trade-offs may constrain the evolution of the different components of thermal tolerance, so that species that have evolved the greatest thermal limits

(particularly upper ones) may have done so at the expense of the plasticity of such limits and
therefore show limited acclimation capacity (e.g. Stillman, 2003).

Testing between such alternatives is challenging, given the multiple intrinsic and extrinsic factors that affect the range of temperature actually experienced by organisms. For the same reason, teasing apart the relative importance of the different drivers of vulnerability to climate change can be challenging. Climatically stable and isolated systems are excellent models to minimize confounding effects and focus on physiology in a climate change context. This is the case with subterranean habitats, where environmental conditions are more stable and homogeneous than at the surface, limiting the possibility of behavioral adjustments of their inhabitants through differential microhabitat use (Sánchez-Fernández et al., 2018). The dispersal potential is also extremely reduced for most subterranean specialists (Juan & Emerson, 2010; Rizzo et al., 2017). Moreover, low genetic variability (Juan et al., 2010), low reproductive rates and long life cycles (Voituron et al., 2010) may constrain rapid evolutionary change in such taxa (Sánchez-Fernández et al., 2016; Mammola et al., 2019b). Therefore, as with species in many other isolated ecosystems (e.g. mountain summits or islands), they rely strongly on physiological adjustments to cope with environmental changes, even though the magnitude and rate of such changes in subterranean habitats is moderate compared to the surface (Domínguez-Villar et al., 2015; Pipan et al., 2018). Deep subterranean habitats typically experience very stable climates (but see Tronteli, Borko, & Delić, 2019) and within caves, such stability decreases markedly from inner to outer sections (Cigna, 2002; Badino, 2010; Pipan et al., 2010), presenting an ideal setting in which to explore the relationship between thermal tolerance and climatic variability and test macrophysiological hypotheses (Gaston et al., 2009; Sánchez-Fernández et al., 2018; Mammola et al., 2019b).

The rarity of many subterranean taxa (Sánchez-Fernández *et al.*, 2018; Trontelj *et al.*, 2019) and
difficulties of access for sampling (Raschmanová *et al.*, 2018; Castaño-Sánchez, Hose, &

77	Reboleira, 2020; Mammola, et al., 2019a), have limited research on subterranean species to date.
78	In terms of thermal tolerance, most of the data on subterranean organisms come from studies
79	conducted on a handful of species and have generally shown they have a high thermal
80	sensitivity: upper lethal limits are usually not higher than 23°C (e.g. Issartel et al., 2005; Rizzo et
81	al., 2015; Pallarés et al., 2019) and studies based on molecular biomarkers indicate that thermal
82	stress onsets at lower temperatures (Mermillod-Blondin et al., 2013; Pallarés et al., 2020).
83	Several studies have also suggested that the degree of specialisation to the subterranean
84	environment is negatively correlated with thermal tolerance breadth (Lencioni, Bernabò &
85	Latella, 2010; Bernabò et al., 2011; Novak et al., 2014; Raschmanová et al., 2018; Mammola et
86	al., 2019c), broadly supporting the CVH. Whether physiological plasticity is reduced in the
87	process of specialisation to subterranean life and how it could affect species sensitivity to climate
88	change remains an open question, however, since most studies have ignored acclimation capacity
89	(but see Rizzo et al., 2015; Pallarés et al., 2019, 2020). In addition, such studies have often
90	involved disparate, unrelated species, sometimes from localities with very different climates,
91	making meaningful comparisons difficult. Efforts to increase our knowledge on the thermal
92	tolerance of subterranean fauna are needed, as they represent an important and typically endemic
93	component of the global animal biodiversity, but still largely neglected in conservation
94	programs.

In Leptodirini cave beetles (Coleoptera, Leiodidae), one of the most extreme modifications
associated with underground colonisation is a reduction in the number of larval instars in the life
cycle, likely as an adaptation to a resource-poor environment (Cieslak, Fresneda, & Ribera,
2014a, b). Species that can live in deep forest litter or the upper layers of fractured soil (MSS, *Milieu Souterrain Superficiel* (Juberthie, Delay, & Bouillon, 1980a,b, 1981; Mammola *et al.*,
2016)), i.e., not necessarily confined in caves, typically have the standard life cycle of
Coleoptera, with three larval instars (Minelli & Fusco, 2013). Deep or shallow subterranean

102	specialists (true troglobionts sensu Sket (2008)) may show a reduction to two or -in the most
103	extreme specialisation- one larval instar. Therefore, the number of larval instars in these species,
104	clearly associated with the degree of subterranean specialisation, can be used as an indirect proxy
105	for the degree of thermal stability species experienced in their evolutionary history. Here we
106	assess critical thermal maximum (CT_{max}) and short-term heat acclimation capacity in three
107	related Leptodirini taxa from areas with similar climatic histories but with life cycles of one, two
108	and three larval instars respectively, reflecting different degrees of specialisation to the
109	subterranean environment and hence exposed to contrasting thermal variability. We explore
110	whether support for the CVH in subterranean taxa (Latella, Bernabò & Lencioni, 2008; Lencioni
111	et al., 2010; Novak et al., 2014; Raschmanová et al., 2018; Mammola et al., 2019c) also holds
112	for thermal plasticity. Under the CVH, both CT_{max} and acclimation capacity are expected to
113	decrease with increasing subterranean specialisation. However, if trade-offs between thermal
114	limits and plasticity have shaped the evolution of thermal tolerance in these taxa, such a
115	relationship with subterranean specialisation might not be so evident for acclimation capacity
116	(i.e., species living in the more variable habitats could tolerate higher temperatures but show
117	little thermal plasticity). Extending these general hypotheses to the subterranean environment can
118	provide important insights into the evolution of thermal physiology associated with the process
119	of underground specialisation, as well as relevant information for the conservation of specialist
120	animal taxa with limited dispersal capabilities.

121 Material and methods

122 Study species and collection

The study species belong to monophyletic lineages of the beetle tribe Leptodirini; the Pyrenean
(*Speonomites crypticola* and *Bathysciola rugosa*) and Cantabrian clades (*Speonomidius crotchi*)
(Salgado, Blas, & Fresneda, 2008; Ribera *et al.*, 2010). Rearing experiments revealed that *S*.

crotchi has a life cycle of two larval instars (Jeannel, 1911; Glaçon, 1955), whilst S. crypticola and *B. rugosa* were inferred to have one and three larval instars, respectively, based on robust ancestral state reconstructions (Cieslak et al., 2014b). Two of the species are obligate cave inhabitants only found in deep subterranean habitats (S. crypticola) or in both deep and shallow subterranean environments (S. crotchi), whilst B. rugosa is a facultative subterranean species, most commonly found in deep forest litter, always in dark conditions (Salgado et al., 2008). Live adults were collected in different sites within the same geographical region (Northern Spain), with broadly similar mean annual surface temperatures (Table 1), which are known to closely approximate the constant temperatures recorded inside caves (Moore & Sullivan, 1964; Smithson, 1991; Badino, 2004, 2010). Therefore, all species live under similar average climatic conditions but occupy habitats with different daily and seasonal climatic variability. The two subterranean species can be assumed to be exposed to an annual variation of a few degrees ($\leq 4^{\circ}$ C) around mean annual surface temperatures, which is the typical thermal range in caves (Badino, 2010; Mammola & Isaia, 2016). The facultative subterranean species can be assumed to be exposed to a maximum annual variation between $8 - 24.4^{\circ}$ C (minimum temperature of the coldest month and maximum temperature of the warmest month at the surface in its locality, respectively, obtained from Worldclim v. 1.4 database (http://www.worldclim.org; see Table 1). Projected temperatures for 2070 under the Representative Concentration Pathway (RCP) 4.5 are also shown in Table 1.

Specimens of S. crypticola and S. crotchi were collected by hand in the caves indicated in Table 1, whilst specimens of *B. rugosa* were collected in forest litter near the entrances of Cave Orobe. The specimens were transported to the laboratory in a portable fridge with substratum from the cave and moss to retain humidity (ca. 90% RH). In the laboratory, they were maintained for two days prior to experiments in closed plastic containers (10 x 15 x 10 cm) with a plaster layer (1 cm), in controlled-temperature incubators (Radiber ERF-360, Radiber S.A, Barcelona, Spain) at

the approximate mean temperature of their habitats (S. crypticola 11°C; S. crotchi 9°C; B. rugosa 12°C), i.e. control temperatures hereafter. Maintenance of high humidity (> 90% RH) throughout the experiments was ensured by adding wetted tissue paper to experimental containers daily and placing trays with water inside the incubators. Temperature and humidity inside the containers were monitored with HOBO MX2301 dataloggers and remained quite constant, with very small variations (±0.5°C and ±10% RH). Food was provided *ad libitum* with freshly frozen *Drosophila* melanogaster.

Upper thermal limits and acclimation capacity

Specimens were acclimated at either a control temperature (see above) or at 20°C for 10 days (N = 10-13 individuals per treatment), with all other conditions (humidity, food etc.) as described before. These acclimation temperatures were chosen since all subterranean leiodids studied to date can survive relatively long-term exposure (>7 days) at 20°C, but this is also close to their upper lethal limits (Rizzo et al., 2015; Pallarés et al., 2019, 2020), and it is well established that insects typically undergo acclimation in response to stressful sublethal temperatures (e.g. Lachenicht et al., 2010; Nyamukondiwa & Terblanche, 2010; Terblanche et al., 2011; Sgrò, Terblanche, & Hoffmann, 2016). After acclimation, we estimated heat coma temperature (HCT) for each individual. This was defined as the temperature at paralysis prior to death, preceded by spasmodic movements of legs and antennae, and is a typical response used to assess critical thermal maximum (CT_{max}) in insects (see Vannier, 1994; Lutterschmidt & Hutchison, 1997; Chown & Nicolson, 2004). HCT was measured using a dynamic, ramping method (Lutterschmidt & Hutchison, 1997; Terblanche et al., 2007), with a heating rate of 1°C min⁻¹ and infrared thermography. CT_{max} measured with such a fast ramping rate tend to be overestimated (Terblanche et al., 2007) and cannot be used to directly extrapolate actual thermal limits, but this method provides a robust comparative estimate of the relative thermal tolerance amongst related species and is the most commonly used in thermal tolerance assays on ectotherms (Bennett et al.,

2018). Furthermore, infrared thermography has proven to be a highly sensitive technique to measure CT_{max} in insects (Botella-Cruz et al., 2016; Carbonell et al., 2016; Gallego et al., 2016; Gallego, Verdú, & Lobo, 2018). Specimens were dried on blotting paper and glued dorsally on a ceramic plate using nontoxic glue (ErichKrause) to prevent escape during the trial. The plate was then placed in a programmable BINDER MK53 incubator (BINDER GmbH, Tuttlingen, Germany) in which the temperature was increased 1°C min⁻¹, starting at the corresponding acclimation temperature. The incubator was coupled with an infrared thermographic camera (FLIR SC305) to record body temperature of the specimens, from which HCT were obtained. High quality images were also recorded with a video camera (Sony DCR-DVD110E, Sony Co., Tokyo, Japan) to determine the moment of paralysis (cessation of movement of legs and antennae) of each individual. Thermal images were analysed with the software ThermaCAM Researcher Professional 2.10 (FLIR Advanced Thermal Solutions; ATS; Croissy-Beaubourg, France).

Statistical analyses

We performed a two-way ANOVA with HCT as the response variable and species, acclimation temperature (a factor with two levels: control temperature (see above) or 20°C) and their interaction as predictors, to compare HCT and short-term acclimation capacity across species and assess whether these traits are related to the degree of subterranean specialisation. Pairwise comparisons were made with Bonferroni-adjusted post-hoc tests. Significance level was set at 0.05. Data conformed to a normal distribution so no transformation was required. Normality and homoscedasticity assumptions of model residuals were also validated by graphical inspection (Zuur et al., 2009). All statistical analyses were conducted in R v.3.6.1 (R Core Team, 2019) using default packages and phia (De Rosario-Martinez, 2015).

Results

Heat coma temperatures (HCTs) ranged from $34.6 - 38^{\circ}$ C across the studied species and acclimation treatments (Figure 1). HCTs differed significantly amongst species (ANOVA F_{2, 52} = 21.963, P < 0.001), being lower in the one-larval instar, deep subterranean species (*S. crypticola*) than in the other two, less specialised taxa investigated (all Bonferroni corrected Ps < 0.001, Table 2). There was also a significant effect of acclimation temperature on HCT (ANOVA F_{1, 52} = 18.357, P < 0.001), but species differed significantly in their response to acclimation (ANOVA species x temperature interaction F_{2, 52} = 3.564, P = 0.035).

The deep subterranean specialist, S. crypticola, had a significantly lower HCT than the twoinstar, shallow subterranean S. crotchi when acclimated at control temperatures, and lower than either of the other two species following acclimation at 20°C (all Bonferroni corrected Ps < 0.001, Table 2; Fig.1). Only the species with the least specialisation to subterranean environments, B. rugosa (three larval instars), showed acclimation capacity. In this species, HCT significantly increased after exposure at 20°C (Bonferroni corrected P < 0.001, Table 2; Fig. 1), with a difference of 1.2°C between the mean HCT of the control and 20°C treatment. The more specialised subterranean taxa lacked acclimation ability because no differences were found in HCT between acclimation treatments (Bonferroni corrected Ps > 0.05, Table 2; Fig. 1).

216 Discussion

Among the three studied subterranean species, the most specialised to the subterranean environment and hence living under the more stable climatic conditions, *S. crypticola*, showed the lowest HCT values. Such finding in relation to the upper thermal limit fits the general predictions of the CVH, as seen in other subterranean groups for both lower (Latella *et al.*, 2008; Lencioni *et al.*, 2010; Novak *et al.*, 2014) and upper thermal limits (Raschmanová *et al.*, 2018; Mammola *et al.*, 2019c). The main novelty of our study is that the CVH is tested by comparing not only thermal limits, but also thermal plasticity, something largely ignored for subterranean

taxa to date. Again, in agreement with the CVH, the more specialised subterranean taxa (S. crypticola and S. crotchi, both obligate subterranean) lacked acclimation ability at the acclimation temperatures and heating rates tested here; whilst *B. rugosa*, the facultative subterranean species exposed to more fluctuating daily and seasonal temperatures, significantly increased HCT after acclimation at the higher temperature. As well as a positive acclimation response, B. rugosa showed the highest HCT values across the three species after acclimation at 20°C. Therefore, there is not apparent evolutionary trade-off between CT_{max} and its short-term plasticity in these species, as reported in a clade of aquatic beetles (Calosi, Bilton & Spicer, 2008), but in contrast to patterns seen in other taxa such as intertidal porcellanid crabs (Stillman, 2003). As suggested by Calosi et al. (2008), the mechanisms and constraints underlying thermal limits and acclimation capacity appear to be taxon and context specific. A lack of thermal acclimation capacity has also been reported for other subterranean groups, such as groundwater crustaceans (Di Lorenzo & Galassi, 2017), and previous work on Leptodirini suggests that the physiological mechanisms to cope with heat stress are rather inefficient in specialised subterranean species compared with their less specialised relatives. For example, Bernabò et al. (2011) showed that the intensity of the heat shock response was negatively correlated with the degree of adaptation to the cave environment. Pallarés et al. (2020) found that an obligate subterranean species of the clade studied here failed to acclimate when exposed to a fixed stressful temperature. Such inability to acclimate was coupled with oxidative stress and shifts in the activity of key enzymes at sublethal temperatures. The physiological mechanisms underlying thermal acclimation capacity in ectotherms are energetically costly processes (Krebs & Loeschcke, 1994; Monaghan, Metcalfe, & Torres, 2009; Tomanek, 2010) that could have been selected against during the evolution of specialisation to deep subterranean habitats. In these environments, with limited resources and highly stable

- climatic conditions, both temporally and spatially (Badino, 2010; Howarth & Moldovan, 2018),

2
3
4
5
6
7
, o
0
9
10
11
12
13
14
15
16
17
18
19
20
20 21
∠ ו רב
22
23
24
25
26
27
28
29
30
31
32
32
27
24 25
35
36
37
38
39
40
41
42
43
44
45
46
40 17
-17 /12
40 40
49 50
50
51
52
53
54
55
56
57
58
50

traits that do not affect fitness could be loss or reduced either by neutral evolution or indirect 249 natural selection favouring energetic economy (Culver & White, 2005, Ribera et al., 2018). 250 Extreme modifications of thermal physiology have been found in organisms inhabiting other 251 highly stable habitats, such as the absence of a heat shock response in Antarctic notothenioid fish 252 (Somero, 2005). The greatest modifications of thermal physiology in subterranean taxa, resulting 253 in lower thermal limits and poor acclimation capacity, may be expected in those lineages that 254 255 colonised subterranean habitats longer ago during their evolutionary history. This is the case of Western Mediterranean Leptodirini, which were apparently already adapted to subterranean life 256 257 by the Early-Mid Oligocene, some 34-28 MYA (Ribera et al., 2010; Cieslak, et al., 2014b). Accordingly, other specialised deep subterranean species of these beetles are also likely to lack 258 acclimation capacity and have similar CT_{max} than the one-larval instar species studied here (S. 259 *crypticola*). In contrast, deep subterranean species in lineages that colonised subterranean 260 habitats more recently may retain greater heat tolerance and acclimation capacity from their less 261 specialised or surface-dwelling ancestors, as previously suggested (Pallarés et al., 2019). Further 262 experimental data on thermal limits and acclimation for several lineages that have independently 263 colonised the subterranean environment would be invaluable in testing this evolutionary 264 hypothesis. Unfortunately, the difficulties in accessing subterranean habitats, of collecting 265 sufficient number of specimens for experimental studies and maintaining and rearing 266 subterranean organisms in the laboratory (Raschmanová et al., 2018; Castaño-Sánchez et al., 267 2019; Mammola et al., 2019a) impose serious limitations when conducting comparative studies 268 on cave-dwelling species. Therefore, despite its relatively modest taxonomic coverage, our study 269 represents an important milestone in understanding physiological evolution of subterranean 270 invertebrates. 271

Overall vulnerability to climate change in subterranean species will depend mainly on theirthermal sensitivity and the magnitude and rate of climate change in their habitats, as range shifts

through dispersal will be largely limited. Both aspects (sensitivity and exposure to climate change) will in turn be determined by the degree of subterranean specialisation, but in opposite directions. Here we show that subterranean species have higher thermal sensitivity than surface ones, something that has been generally assumed but rarely tested. The HCT of the three species studied are markedly lower than the average value of CT_{max} (45.5 ± 1.0°C, N = 40) recorded experimentally in a range of arthropods at the same heating rate (Bennett et al., 2018). We also show that thermal sensitivity increases with subterranean specialisation. In deep subterranean Leptodirini, experiments under relatively long-term exposure, which may better represent natural conditions, have shown that heat injury at the biochemical level occurs at 20°C (Pallarés et al., 2020) and survival is not possible above 23°C (Rizzo et al., 2015). Such upper lethal limits seem to be highly conservative across deep subterranean specialist species of this clade, irrespective of the current and historical temperature of their habitats (Rizzo et al., 2015). Likewise, the lack of acclimation observed here in S. crypticola and S. crotchi appears to be mirrored in related species with similar specificity to subterranean habitats (as discussed above). In contrast, changes in the underground climate will be delayed compared to those experienced at the surface (Fejér & Moldovan, 2013; Domínguez-Villar et al., 2015) and will occur primarily in the cave sections closest to the surface and in superficial subterranean habitats (Culver & Pipan, 2014), such as small cavities in the uppermost karst layers, deep soil and litter strata, surface cracks and fissures (Badino, 2004; Mammola, Goodacre, & Isaia, 2018). In a proximate climate change scenario, the projected annual mean surface temperature apparently will not reach physiologically stressful levels for the two obligate subterranean species studied here (Table 1). However, this cannot be generalized, as some coastal or southern populations of specialist cave invertebrates in the Mediterranean Basin are currently living at temperatures close to their lethal limits (e.g. Sánchez-Fernández et al., 2016; Pallarés et al., 2019) and the same could occur in the tropics (Zeh et al., 2012). As the possibilities for behavioural thermoregulation through

microhabitat selection are extremely reduced in the deep subterranean environment, and considering the limited capacity to physiologically adjust to rising temperature observed here, these habitats may become physiological and evolutionary traps for some of their obligate inhabitants (Mammola et al., 2019b). Compared to species confined to caves, those occupying forest litter or the MSS, like B. rugosa, may cope better with warming, because they are able to increase thermal limits via acclimation and exploit a wider range of microhabitats. In this case, the magnitude and rate of warming could be the key determinant of their vulnerability to climate change, as these species are more exposed to the thermal fluctuations of the surface, where maximum temperatures could reach physiologically stressful values in a proximate future (e.g. 28.5°C in the localities where *B. rugosa* was collected). In summary, our results stress the need to account for physiological constraints such as thermal sensitivity and acclimation capacity if we are to accurately forecast the impacts of global change on specialised invertebrates with low dispersal ability. This information, combined with evaluation of exposure to climatic changes in occupied locations, can greatly assist in identifying species or populations at higher risk. We show that in the case of the subterranean environment, the relative importance of factors determining overall vulnerability may differ depending on the degree of habitat specialisation. As many authors have already urged (e.g. Sánchez-Fernández et al., 2018; Mammola et al., 2019a,b; Castaño-Sánchez et al., 2020), it is necessary to increase research, monitoring and conservation efforts on this unknown, fragile and valuable component of global biodiversity.

319 Acknowledgments

This work was supported by the *Agencia Estatal de Investigación* (Spain), the Spanish Ministry
of Economy and Competitiveness and the European Regional Development Fund (project
CGL2016-76995-P). S.P is funded by a postdoctoral grant from *Fundación Séneca - Agencia de*

2	
3	272
4	525
5	
6	324
7	
, o	225
0	525
9	
10	326
11	
12	
13	327
14	
15	
16	328
17	520
17	
18	220
19	529
20	
21	330
22	
23	
24	331
25	001
25	
20	332
27	
28	222
29	555
30	
31	334
32	
33	
34	335
25	
35	226
36	330
37	
38	227
39	337
40	
41	338
42	000
12	
	339
44	
45	
46	340
47	
48	2/1
49	541
50	
51	242
57	342
52	
22	343
54	
55	.
56	344
57	
58	345
59	5+5
60	
00	

Ciencia y Tecnología de la Región de Murcia (Spain). D. S-F and M. B-C are funded by a 323 postdoctoral and predoctoral grant from the University of Murcia (Spain), respectively. R.C and 324 P. B-G are funded by predoctoral grants of the Spanish Ministry of Science, Innovation and 325 Universities. 326 327 References

Badino, G. (2010). Underground meteorology. What's the weather underground? Acta Carsol. 329 330 **39**, 427-448.

Badino, G. (2004). Cave temperatures and global climatic change. Int. J. Speleol. 33, 103-114.

Bennett, J.M., Calosi, P., Clusella-Trullas, S., Martínez, B., Sunday, J., Algar, A., Araújo, M.B., 331 Hawkins, B.A., Keith, S., Kühn, I., Rahbek, C., Rodríguez, L., Singer, A., Villalobos, F., 332 Angel Olalla-Tárraga, M. & Morales-Castilla, I. (2018). GlobTherm, a global database on 333 334 thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022.

335 Bernabò, P., Latella, L., Jousson, O., & Lencioni, V. (2011). Cold stenothermal cave-dwelling beetles do have an HSP70 heat shock response. J. Therm. Biol. 36, 206–208. 336

Botella-Cruz, M., Carbonell, J. A., Pallarés, S., Millán, A., & Velasco, J. (2016). Plasticity of 337 thermal limits in the aquatic saline beetle *Enochrus politus* (Küster 1849) (Coleoptera: 338 Hydrophilidae) under changing environmental conditions. *Limnetica* **35**, 131–142. 339

340 Calosi, P., Bilton, D. T., & Spicer, J. I. (2008). Thermal tolerance, acclimatory capacity and vulnerability to global climate change. Biol. Lett. 4, 99–102. 341

Carbonell, J. A., Millán, A., Green, A. J., Céspedes, V., Coccia, C., & Velasco, J. (2016). What 342 traits underpin the successful establishment and spread of the invasive water bug 343 Trichocorixa verticalis verticalis? Hydrobiologia 768, 273–286. (doi:10.1007/s10750-015-344

345

13

2556-y)

Page 17 of 29

1 2

- 3 4	
5 6 7	
, 8 9	
10 11 12	
13 14	
15 16 17	
18 19	
20 21 22	
23 24 25	
26 27	
28 29 30	
31 32	
33 34 35	
36 37	
38 39 40	
41 42	
43 44 45	
46 47	
48 49 50	
51 52	
53 54 55	
56 57	
58 59 60	

Castaño-Sánchez, A., Hose, G. C., & Reboleira, A. S. P. S. (2020). Ecotoxicological effects of 346 anthropogenic stressors in subterranean organisms: A review. Chemosphere 244, 125422. 347 Chown, S. L., & Nicolson, S. W. (2004). Insect Physiological Ecology: Mechanisms and 348 Patterns. Oxford: Oxford University Press. 349 Cieslak, A., Fresneda, J., & Ribera, I. (2014a). Developmental constraints in cave beetles. Biol. 350 Lett. 10, 20140712. 351 Cieslak, A., Fresneda, J., & Ribera, I. (2014b). Life-history specialization was not an 352 evolutionary dead-end in Pyrenean cave beetles. Proc. R. Soc. B 281, 20132978. 353 Cigna, A. A. (2002). Modern trend(s) in cave monitoring. Acta Carsol. 31, 35-54. 354 Cooke, S. J., & O'Connor, C. M. (2010). Making conservation physiology relevant to policy 355 makers and conservation practitioners. Cons. Lett. 3, 159-166. 356 Cooke, S. J., Sack, L., Franklin, C. E., Farrell, A. P., Beardall, J., Wikelski, M., & Chown, S. L. 357 (2013). What is conservation physiology? Perspectives on an increasingly integrated and 358 essential science. Conserv. Physiol. 1, cot001. 359 Covington, M.D., & Perne, M. (2015). Consider a cylindrical cave: A physicist's view of cave 360 and karst science. Acta Carsol. 44, 363-380. 361 Culver, D.C. & Pipan, T. (2014). Shallow Subterranean Habitats. Ecology, Evolution, and 362 Conservation. Oxford: Oxford University Press. 363 Culver, D.C., & White, W.B. (2005). Encyclopedia of caves. Amsterdam: Elsevier. 364 Da Silva, C.R.B., Riginos, C., & Wilson, R.S. (2019). An intertidal fish shows thermal 365 acclimation despite living in a rapidly fluctuating environment. J. Comp. Physiol. B 189, 366 385-398. 367 De Rosario-Martinez, H. (2015). phia: Post-Hoc Interaction Analysis. R package version 0.2-1. 368

2 3 4 5	369	https://CRAN.R-project.org/package=phia
6 7	370	Di Lorenzo, T., & Galassi, D.M.P. (2017). Effect of temperature rising on the stygobitic
8 9	371	crustacean species Diacyclops belgicus: Does global warming affect groundwater
10 11 12	372	populations? <i>Water</i> 9 , 951.
13 14 15	373	Domínguez-Villar, D., Lojen, S., Krklec, K., Baker, A., & Fairchild, I. J. (2015). Is global
15 16 17	374	warming affecting cave temperatures? Experimental and model data from a paradigmatic
18 19	375	case study. <i>Clim. Dyn.</i> 45 , 569–581.
20 21 22	376	Evans, T. G., Diamond, S. E., & Kelly, M. W. (2015). Mechanistic species distribution modelling
23 24	377	as a link between physiology and conservation. Conserv. Physiol. 3, cov056.
25 26 27	378	Feder, M. E. (1978). Environmental variability and thermal acclimation in neotropical and
28 29 30 31 32 33 34 35 36 37	379	temperate zone salamanders. <i>Physiol. Zool.</i> 51 , 7–16.
	380	Fejér, A., & Moldovan, O. (2013). Population size and dispersal patterns for a Drimeotus
	381	(Coleoptera, Leiodidae, Leptodirini) cave population. Subt. Biol. 11, 31-44.
	382	(doi:10.3897/subtbiol.11.4974)
38 39	383	Foden, W.B., Young, B.E., Akçakaya, H.R., Garcia, R.A., Hoffmann, A. A., Stein, B.A., et al.
40 41 42	384	(2019) .Climate change vulnerability assessment of species. Wiley Interdiscip. Rev. Clim.
42 43 44	385	<i>Change</i> 10 , e551.
45 46 47	386	Gallego, B., Verdú, J. R., & Lobo, J. M. (2018). Comparative thermoregulation between different
47 48 49 50 51 52 53 54 55 56 57	387	species of dung beetles (Coleoptera: Geotrupinae). J. Therm. Biol. 74, 84-91.
	388	Gallego, B., Verdú, J. R., Carrascal, L. M., & Lobo, J. M. (2016). A protocol for analysing
	389	thermal stress in insects using infrared thermography. J. Therm. Biol. 56, 113–121.
	390	Gaston, K. J., Chown, S. L., Calosi, P., Bernardo, J., Bilton, D. T., Clarke, A., Clusella-Trullas,
58 59 60	391	S., Ghalambor, C. K., Konarzewski, M., Peck, L. S., Porter, W. P., Pörtner, H. O., Rezende,

1 2		
2 3 4	392	E. L., Schulte, P. M., Spicer, J. I., Stillman, J. H., Terblanche, J. S., & van Kleunen, M.
5 6 7	393	(2009). Macrophysiology: A Conceptual Reunification. Amer. Nat. 174, 595-612.
, 8 9	394	Glaçon, S. (1955). Remarques sur la morphologie et la biologie de quelques larves de
10 11 12	395	Bathysciinae cavernicoles. CR Acad. Sci. Paris 240, 679-681.
13 14	396	Howarth, F. G., & Moldovan, O. T. (2018). Where Cave Animals Live. In Cave Ecology: 23-37.
15 16 17	397	Moldovan, O.T., Kovác, L., & Halse, S. (Eds.) Cham: Springer.
18 19	398	Issartel, J., Hervant, F., Voituron, Y., Renault, D., & Vernon, P. (2005). Behavioural, ventilatory
20 21 22	399	and respiratory responses of epigean and hypogean crustaceans to different temperatures.
23 24	400	Comp. Biochem. Phys. A 141, 1-7.
25 26 27	401	Jeannel, R. (1911). Rèvision des Bathysciinae. Arch. Zool. Exp. Gen. Paris Ser 5. 7, 1-641.
28 29 20	402	Juan, C., & Emerson, B.C. (2010). Evolution underground: shedding light on the diversification
30 31 32	403	of subterranean insects. J. Biol. 9, 17.
33 34 35	404	Juan, C., Guzik, M.T., Jaume, D. & Cooper, S.J.B. (2010). Evolution in caves: Darwin's 'wrecks
36 37	405	of ancient life' in the molecular era. Mol. Ecol. 19, 3865–3880.
38 39 40	406	Juberthie, C., Delay, B., & Bouillon, M. (1980a). Extension du milieu souterrain superficiel en
41 42	407	zone non-calcaire: description d'un nouveau milieu et de son peuplement par les coleopteres
43 44 45	408	troglobies. In Evolution des coleopteres souterrains et endoges. Mem. Biospeol. 7, 19–52.
46 47	409	Juberthie, C., Delay, B., & Bouillon, M. (1980b). Sur l'existence d'un milieu souterrain
48 49 50	410	superficiel en zone non calcaire. CR Acad. Sci. Paris 290, 49-52.
51 52	411	Juberthie, C., Delay, B., & Bouillon, M. (1981). Sur l'existence du milieu souterrain superficiel
53 54 55	412	en zone calcaire. In Les entrees d'energie dans le karst et communications libres. Mem.
56 57	413	<i>Biospeol.</i> 8 , 77–93.
58 59 60	414	Krebs, R. A., & Loeschcke, V. (1994). Costs and benefits of activation of the heat-shock response

2 3 4	
5 6 7	4
, 8 9	4
10 11	4
12 13 14	4
15 16	4
17 18 19	4
20 21	4
22 23 24	4
25 26	4
27 28 20	4
30 31	4
32 33	
34 35 36	
37 38	
39 40	
41 42 43	
44 45	4
46 47 48	4
40 49 50	4
51 52	4
53 54 55	4
56 57	4
58 59 60	4
00	

415 in Drosophila melanogaster. Funct. Ecol. 8, 730–737.

- Lachenicht, M. W., Clusella-Trullas, S., Boardman, L., Le Roux, C., & Terblanche, J. S. (2010).
 Effects of acclimation temperature on thermal tolerance, locomotion performance and
 respiratory metabolism in *Acheta domesticus* L. (Orthoptera: Gryllidae). *J. Insect Physiol.*56, 822–830.
- 420 Latella, L., Bernabò, P., & Lencioni, V. (2008). Distribution pattern and thermal tolerance in two
 421 cave-dwelling Leptodirinae (Coleoptera, Cholevidae). *Subterr. Biol.* 6, 81–86.
- 422 Lencioni, V., Bernabò, P., & Latella, L. (2010). Cold resistance in two species of cave-dwelling
 423 beetles (Coleoptera: Cholevidae). *J. Therm. Biol.* 35, 354-359.
- 424 Lutterschmidt, W. I., & Hutchison, V. H. (1997). The critical thermal maximum: data to support
 425 the onset of spasms as the definitive end point. *Can. J. Zool.* 75, 1553–1560.
- 426 Magozzi, S., & Calosi, P. (2015). Integrating metabolic performance, thermal tolerance, and
 427 plasticity enables for more accurate predictions on species vulnerability to acute and chronic
 428 effects of global warming. *Glob. Chang. Biol.* 21, 181–194.
- 429 Mammola, S., & Isaia, M. (2016). The ecological niche of a specialized subterranean spider.
 430 *Invertebr. Biol.* 135, 20–30.
- 431 Mammola, S., Cardoso, P., Culver, D. C., Deharveng, L., Ferreira, R. L., Fišer, C., Galassi, D. M.
- 432 P., Griebler, C., Halse, S., Humphreys, W. F., Isaia, M., Malard, F., Martinez, A., Moldovan,
- ⁸ 433 O. T., Niemiller, M. L., Pavlek, M., Ana Sofia P, Souza-Silva, M., Teeling, E. C., Judson
- 434 Wynne, J., & Zagmajster, M. (2019a). Scientists' Warning on the Conservation of 52 53 435 Subterranean Ecosystems. *BioScience* **69**, 641–650
- 436 Mammola, S., Giachino, P. M., Piano, E., Jones, A., Barberis, M., Badino, G., & Isaia, M. (2016).
 - Ecology and sampling techniques of an understudied subterranean habitat: the Milieu
- 438 Souterrain Superficiel (MSS). *Naturwissenschaften* **103**, 88.

1 2		
2 3 4	439	Mammola, S., Goodacre, S. L., & Isaia, M. (2018). Climate change may drive cave spiders to
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	440	extinction. <i>Ecography</i> 41 , 233–243.
	441	Mammola, S., Piano, E., Cardoso, P., Vernon, P., Domínguez-Villar, D., Culver, D. C., Pipan, T.,
	442	& Isaia, M. (2019b). Climate change going deep: The effects of global climatic alterations
	443	on cave ecosystems. Anthr. Rev. 6, 98–116.
	444	Mammola, S., Piano, E., Malard, F., Vernon, P., & Isaia, M. (2019c). Extending Janzen's
	445	hypothesis to temperate regions: A test using subterranean ecosystems. Funct. Ecol. 33,
20 21	446	1638–1650.
22 23 24	447	Markle, T. M., & Kozak, K. H. (2018). Low acclimation capacity of narrow-ranging thermal
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	448	specialists exposes susceptibility to global climate change. <i>Ecol. Evol.</i> 8 , 4644–4656.
	449	Mermillod-Blondin, F., Lefour, C., Lalouette, L., Renault, D., Malard, F., Simon, L., & Douady,
	450	C. J. (2013). Thermal tolerance breadths among groundwater crustaceans living in a
	451	thermally constant environment. J. Exp. Biol. 216, 1683-1694.
	452	Minelli, A., & Fusco, G. (2013). Arthropod post-embryonic development. In Arthropod Biology
	453	and Evolution: 91–122. Minelli, A., Boxshall, G., & Fusco, G. (Eds.) Berlin: Springer.
	454	Monaghan, P., Metcalfe, N. B., & Torres, R. (2009). Oxidative stress as a mediator of life history
	455	trade-offs: mechanisms, measurements and interpretation. Ecol. Lett. 12, 75-92.
	456	Moore, G. W., & Sullivan, G. N. (1964). Out of phase seasonal temperature fluctuations in
	457	Cathedral Cave, Kentucky. Geol. Soc. Am. 76, 313
	458	Novak, T., Šajna, N., Antolinc, E., Lipovšek, S., Devetak, D., & Janžekovič, F. (2014). Cold
	459	tolerance in terrestrial invertebrates inhabiting subterranean habitats. Int. J. Speleol. 43, 3.
	460	Nyamukondiwa, C., & Terblanche, J. S. (2010). Within-generation variation of critical thermal
57 58 59 60	461	limits in adult Mediterranean and Natal fruit flies Ceratitis capitata and Ceratitis rosa:

ACV: For review purposes only - please do not distribute

2							
2 3 4	462	thermal history affects short-term responses to temperature. <i>Physiol. Entomol.</i> 35 , 25					
5 6 7	463	Pallarés, S., Colado, R., Pérez-Fernández, T., Wesener, T., Ribera, I., & Sánchez-Fernández, D.					
8 9	464	(2019). Heat tolerance and acclimation capacity in subterranean arthropods living under					
10 11 12 13 14	465	common and stable thermal conditions. Ecol. Evol. 9, 13731–13739.					
	466	Pallarés, S., Sanchez-Hernandez, J.C., Colado, R., Balart-García, P., Comas, J. & Sánchez-					
15 16	467	Fernández, D. (2020). Beyond survival experiments: using biomarkers of oxidative stress					
17 18 19	468	and neurotoxicity to assess vulnerability of subterranean fauna to climate change. Conse					
20 21	469	Physiol. 8, coaa067.					
22 23 24	470	Pipan, T., López, H., Oromí, P., Polak, S., & Culver, D. C. (2010). Temperature variation and					
25 26	471	presence of troglobionts in terrestrial shallow subterranean habitats. J. Nat. Hist. 45, 257-					
27 28 29	472	273.					
29 30 31 32 33 34 35 36	473	Pipan, T., Petrič, M., Šebela, S. & Culver, D.C. (2018). Analyzing climate change and surface-					
	474	subsurface interactions using the Postojna Planina Cave System (Slovenia) as a model					
	475	system. Reg. Environ. Change 19, 379–389.					
37 38 39	476	Pipan, T., Petrič, M., Šebela, S., & Culver, D.C. (2018). Analyzing climate change and surface-					
40 41	477	subsurface interactions using the Postojna Planina Cave System (Slovenia) as a model					
42 43 44	478	system. Reg. Environ. Change 19, 379–389.					
45 46	479	R Core Team 2019. R: A language and environment for statistical computing. R Foundation for					
47 48 49	480	Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.					
49 50 51 52 53 54 55 56	481	Raschmanová, N., Šustr, V., Kováč, Ľ., Parimuchová, A., & Devetter, M. (2018). Testing the					
	482	climatic variability hypothesis in edaphic and subterranean Collembola (Hexapoda). J.					
	483	<i>Therm. Biol.</i> 78 , 391–400.					
57 58 59	484	Ribera, I., Cieslak, A., Faille, A., & Fresneda, J. (2018). Historical and ecological factors					
60	485	determining cave diversity. In Cave Ecology: 229-252. Moldovan, O.T., Kovác, L., & Halse,					

1

2 3	486
4 5	
6 7	487
8 9	488
10 11 12	489
13 14	490
15 16 17	491
17 18 19	492
20 21 22	493
23 24	494
25 26	495
27 28 29	496
30 31	497
32 33 34	498
35 36	499
37 38 39	500
40 41 42	501
42 43 44	502
45 46	503
47 48	504
49 50 51	505
52 53	506
54 55 56	507
57 58	508
59 60	500

S. (Eds.) Cham: Springer.

Evol. Biol. 15, 10.

Ribera, I., Fresneda, J., Bucur, R., Izquierdo, A., Vogler, A. P., Salgado, J. M., & Cieslak, A.
(2010). Ancient origin of a Western Mediterranean radiation of subterranean beetles. *BMC Evol. Biol.* 10, 29.

490 Rizzo, V., Sánchez-Fernández, D., Alonso, R., Pastor, J., & Ribera, I. (2017). Substratum 491 karstificability, dispersal and genetic structure in a strictly subterranean beetle. *J.*492 *Biogeogr.* 44, 2527-2538.

- 493 Rizzo, V., Sánchez-Fernández, D., Fresneda, J., Cieslak, A., & Ribera, I. (2015). Lack of
 494 evolutionary adjustment to ambient temperature in highly specialized cave beetles. *BMC*
- ⁸ 496 Rohr, J. R., Civitello, D. J., Cohen, J. M., Roznik, E. A., Sinervo, B., & Dell, A. I. (2018). The
 ⁰ 497 complex drivers of thermal acclimation and breadth in ectotherms. *Ecol. Lett.* 21, 1425–
 ² 498 1439.
- 499 Salgado, J. M., Blas, M., & Fresneda, J. (2008). Fauna Ibérica, Vol. 31, Coleoptera, Cholevidae.
 7
 8 500 Madrid: MNCN, CSIC.
- 501 Sánchez-Fernández, D., Rizzo, V., Bourdeau, C., Cieslak, A., Comas, J., Faille, A., Fresneda, J.,

Lleopart, E., Millán, A., Montes, A., Pallarés, S., & Ribera, I. (2018). The deep subterranean
environment as a potential model system in ecological, biogeographical and evolutionary
research. *Subt. Biol.* 25, 1.

- 505 Sánchez-Fernández, D., Rizzo, V., Cieslak, A., Faille, A., Fresneda, J., & Ribera, I. (2016).
- Thermal niche estimators and the capability of poor dispersal species to cope with climate change. *Sci. Rep.* **6**, 23381.
 - 508 Šebela, S., Turk, J., & Pipan, T. (2015). Cave micro-climate and tourism: Towards 200 years
 - 509 (1819–2015) at Postojnska jama (Slovenia). *Cave & Karst Science* **42**, 78–85.

3 4	510	Seebacher, F., White, C. R., & Franklin, C. E. (2015). Physiological plasticity increases resilience					
5 6 7	511	of ectothermic animals to climate change. Nat. Clim. Change 5, 61-66.					
, 8 9	512	Sgrò, C. M., Terblanche, J. S., & Hoffmann, A. A. (2016). What can plasticity contribute to					
10 11 12	513	insect responses to climate change? Annu. Rev. Entomol. 61, 433-451.					
13 14	514	Shah, A. A., Funk, W. C., & Ghalambor, C. K. (2017). Thermal acclimation ability varies in					
15 16 17	515	temperate and tropical aquatic insects from different elevations. Integr. Comp. Biol. 57,					
18 19	516	977–987.					
20 21 22	517	Sket, B. (2008). Can we agree on an ecological classification of subterranean animals? J. Nat.					
23 24	518	Hist. 42, 1549–1563.					
25 26 27	519	Smithson, P. A. (1991). Inter-relationships between cave and outside air temperatures. <i>Theor</i> .					
28 29	520	Appl. Climatol. 44, 65–73.					
31 32	521	Somero, G. N. (2005). Linking biogeography to physiology: Evolutionary and acclimatory					
33 34 35	522	adjustments of thermal limits. Front. Zool. 2, 1.					
36 37	523	Stevens, G. C. (1989). The latitudinal gradient in geographical range: how so many species					
38 39 40	524	coexist in the tropics. Amer. Naturalist 133, 240–256.					
41 42	525	Stillman, J. H. (2003). Acclimation capacity underlies susceptibility to climate change. Science					
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 57	526	301 , 65.					
	527	Terblanche, J. S., Deere, J. A., Clusella-Trullas, S., Janion, C., & Chown, S. L. (2007). Critical					
	528	thermal limits depend on methodological context. Proc. Biol. Sci. 274, 2935–2942.					
	529	Terblanche, J. S., Hoffmann, A. A., Mitchell, K. A., Rako, L., le Roux, P. C., & Chown, S. L.					
	530	(2011). Ecologically relevant measures of tolerance to potentially lethal temperatures. J.					
	531	<i>Exp. Biol.</i> 214 , 3713–3725.					
59 60	532	Tomanek, L. (2008). The importance of physiological limits in determining biogeographical					

2		
3 4	533	range shifts due to global climate change: the heat-shock response. Physiol. Biochem. Zool.
5 6 7	534	81 , 709–717.
8 9	535	Tomanek, L. (2010). Variation in the heat shock response and its implication for predicting the
10 11	536	effect of global climate change on species' biogeographical distribution ranges and
12 13 14	537	metabolic costs. J. Exp. Biol. 213, 971–979.
15 16 17	538	Trontelj, P., Borko, Š., & Delić, T. (2019). Testing the uniqueness of deep terrestrial life. Sci.
17 18 19	539	<i>Rep.</i> 9 , 15188.
20 21 22	540	Vannier, G. (1994). The thermobiological limits of some freezing intolerant insects: the
23 24	541	supercooling and thermostupor points. Acta Oecol. 15, 31-42.
25 26 27	542	Voituron, Y., De Fraipont, M., Issartel, J., Guillaume, O. & Clobert, J. (2010). Extreme lifespan
28 29	543	of the human fish (Proteus anguinus): A challenge for ageing mechanisms. Biol. Lett. 7,
30 31	544	105–107.
32 33 34	545	Wikelski, M., & Cooke, S.J. (2006). Conservation physiology. Trends Ecol. Evol. 21, 38-46.
35 36 37	546	Williams, S.E., Shoo, L.P., Isaac, J.L., Hoffmann, A.A., & Langham, G. (2008). Towards an
38 39	547	integrated framework for assessing the vulnerability of species to climate change. PLoS Biol.
40 41 42	548	6 , e325.
43 44	549	Zeh, J.A., Bonilla, M.M., Su, E.J., Padua, M.V., Anderson, R.V., Kaur, D., Yang, D. & Zeh,
45 46 47	550	D.W. (2012). Degrees of disruption: projected temperature increase has catastrophic
48 49	551	consequences for reproduction in a tropical ectotherm. Glob. Chang. Biol. 18, 1833-1842.
50 51 52	552	Zuur, A., Ieno, E., Walker, N., Saveliev, A., & Smith, G. (2009). Mixed effects models and
53 54 55 56 57 58 59 60	553	extensions in ecology with R. New York: Springer

Page 26 of 29

Tables

Table 1. Information on collection sites and their current and projected temperature.

Species	No instars	Locality	Province	Mean annual Temperature (°C) ^a		Province Mean annual Temperature (°C) ^a Annual Temperature range (°		rature range (°C) ^{a,b}
				Current	2070	Current	2070	
Speonomites crypticola	1	Cave Forat Negre	Lleida	10.4	11.8	-2 - 23.1	-0.8 - 28.0	
Speonomidius crotchi	2	Cave Arrikrutz	Guipuzcoa	11.1	14.9	3.4 - 24.6	5.2 - 28.4	
Bathysciola rugosa	3	Cave Orobe	Navarra	12	13.6	8-24.4	26.8 - 28.5	

^aSource: Worldclim v. 1.4 database (<u>https://www.worldclim.org/</u>), 30 second spatial resolution.

Future projected temperatures in 2070 were obtained for the Representative Concentration

Pathway 4.5 and by averaging 17 different Global Circulation Models.

^bMinimum temperature of the coldest month – Maximum temperature of the warmest month

Table 2. Results of post-hoc tests	with Bonferroni-adjusted P-values) to compare heat coma
------------------------------------	-----------------------------------	------------------------

temperature i) among species, ii) between acclimation treatments (C: control vs 20°C) within

each species and iii) among species within each acclimation treatment.

	Value	df	Sum of Sq	F	Р
B. rugosa - S. crotchi	-0.088	1	0.073	0.220	1
B. rugosa - S. crypticola	1.047	1	8.698	26.125	< 0.001
S. crotchi - S. crypticola	1.135	1	13.206	39.668	< 0.001
Residuals		52	17.312		
<i>B. rugosa</i> (C - 20)	-1.336	1	6.643	19.953	< 0.001
<i>S. crotchi</i> (C - 20)	-0.446	1	1.294	3.886	0.162
S. crypticola (C - 20)	-0.360	1	0.548	1.646	0.615
Residuals		52	17.312		
C (B. rugosa - S. crotchi)	-0.532	1	1.400	4.206	0.272
C (B. rugosa - S. crypticola)	0.560	1	1.327	3.985	0.307
C (S. crotchi - S. crypticola)	1.091	1	6.335	19.030	< 0.001
20 (B. rugosa - S. crotchi)	0.356	1	0.577	1.732	1
20 (B. rugosa - S. crypticola)	1.534	1	8.784	26.385	< 0.001
20 (S. crotchi - S. crypticola)	1.178	1	6.871	20.638	< 0.001
Residuals		52	17.312		

df: degrees of fre eedom, Sum of Sq: sum of squares

$$\overline{S. cr}$$

$$S. cr$$

$$S. cr$$

$$C - 2$$

$$C - 2$$

$$C - 2$$

$$a (C$$

$$\overline{Sa - S}$$

$$bis - S$$

$$bis$$

Figure legends

Figure 1. Mean \pm s.e.m heat coma temperatures measured after acclimation at a control temperature (*S. crypticola* 11°C; *S. crotchi* 9°C; *B. rugosa* 12°C) or 20°C. Significant differences between acclimation treatments within each species (P<0.05 in post-hoc tests) are indicated with asterisks.

Perez Cool

Figures

