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Abstract – Cold-formed steel members are usually used as purlins in buildings to support roof 

cladding and thus they can be treated as the restrained beams fully or partially in its lateral and 

torsional directions. However, when these beams are subjected to wind suction loading, their free 

flange is in compression, which may cause web-flange distortional buckling (WFDB). This paper 

presents an analytical study on the WFDB of zed-section purlins when subjected to uplift 

bending. A simplified model is proposed to describe the WFDB of partially restrained purlins, 

from which the formula for calculating the critical stress of the WFDB is derived. The present 

model is validated by the results obtained from the finite strip analysis.  

 

Keywords: Mathematical modelling; Solid mechanics; Steel structures; Beams & girders; 

Buildings, structures & design. 

 

 

 

1. Introduction 

 

It is well known that beams made from cold-formed steel (CFS) can buckle in the form of local 

buckling (LB), distortional buckling (DB), or lateral-torsional buckling (LTB) (Hancock, 1978; 

Li, 2011; Selvaraj and Madhavan, 2019; Yerudkar and Vesmawala, 2018) because of their open-

section and thin-thickness nature. In general, the design load of short-span CFS beams is 

controlled by the LB and DB; whereas that of long-span CFS beams is controlled mainly by the 

LTB. In literature, there are numerous studies reported on various buckling behaviors of CFS 

members (Cheng et al., 2015; Kwon et al., 2009; Mahi et al., 2019; Natesan and Madhavan, 

2020; Wu et al., 2019), investigated by using experimental, numerical and/or analytical methods.  

  

When the CFS beams are used in buildings, they are usually utilized as the secondary beams to 

support roof cladding. The typical sections used for such purpose are the channel-, sigma- and 

zed-sections, in which their upper flange is connected to cladding by self-tapping screw fasteners 

but their lower flange remains free. Under the action of gravity loading, the LTB behavior of the 

CFS beams can be improved significantly by their supported cladding, since the cladding gives 

some lateral and rotational restraints to the compressed flange (Gao and Moen, 2012; 2013a; 

2013b). However, when the loading is in uplift direction, for instance, generated by a wind 

http://www.icevirtuallibrary.com/toc/jstbu/0/0
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suction, the free flange of the beams is in compression. In this case the LTB of the beams could 

still occur but their buckling mode is quite different from the conventional LTB mode of 

unrestrained beams (Li, 2004; Ye et al., 2002). Fig.1 displays the buckling curve and 

corresponding buckling modes of an upper flange-restrained zed-purlin under pure bending 

obtained from finite strip analysis. Owing to the restraints applied on the upper flange given by 

the cladding, the LTB mode of the purlin is now characterized by the translation and rotation of 

the element consisting of compressed flange and lip plus part of web close to the compressed 

flange and lip. This buckling occurs partly due to the flexibility of cladding in rotational 

direction and partly due to the deformability of the web, which allows the translation and rotation 

of the compressed element. To distinguish it from the conventional LTB, this buckling is named 

as web-flange distortional buckling (WFDB) (Hancock, 2003; Roger and Schuster, 1997). The 

WFDB of CFS beams has been investigated by several researchers, who tried to use the DB 

model to analyze the WFDB problem but was not success (Roger and Schuster, 1997). A few of 

analytical models were proposed (EN1993-1-3, 2006; Sokol, 1996; Svensson, 1985) to 

investigate the WFDB of CFS beams, in which the WFDB was modeled as the buckling of an 

axially compressed column on an elastic foundation. However, the reliability of these models 

was not fully demonstrated. Gao and Moen (2012) presented the mechanics-based expressions 

for predicting the rotational restraint provided by through-fastened metal panels to Z- and C-

section purlins. The analytical equations include the effect of local panel deformation at a screw, 

and girt or purlin flange bending at a through-fastened connection. Later, they (Gao and Moen, 

2013a) further investigated the flexural capacity of metal building wall systems with rigid board 

foam insulation sandwiched between C- and Z-section purlins. Vacuum box tests were 

conducted to simulate wind suction on the wall system and distinct failure modes were observed. 

Yuan et al. (2014) proposed a full section analytical model to investigate the WFDB of partially 

restrained CFS beams under uplift loading. The model is somewhat complicated and requires to 

solve a 3x3 eigenvalue matrix equation in order to obtain the critical stress. Recently, Luan and 

Li (2019) investigated the wind uplift capacity of single span Z-purlins supporting standing seam 

roof systems. Usefi et al. (2020) presented a nonlinear finite element analysis model on cold-

formed steel wall panels to examine the failure modes of the hybrid wall panels. Raebel et al. 

(2020) carried out the experimental investigation into acceptable design methods for cold-formed 

metal deck by comparing the results of both the direct strength method and effective width 

method to experimental results for several metal deck profiles and gages.  

 

In this paper we present an analytical model to describe the WFDB of partially restrained purlins 

when subjected to uplift loading. The formula for calculating the critical stress of the WFDB is 

derived. The present model is validated by using the results obtained from the finite strip 

analysis. The comparison of the predicted critical stresses with those obtained using finite strip 

analysis for various different size sections demonstrates the appropriateness and reliability of the 

proposed model. 

 

 

2. Web-flange distortional buckling model 

 

Consider a lipped zed-section purlin, which is to support a roof cladding used in the through 

fastened roof system where the flexibility of diaphragm is negligible (see Fig.2a). For the 

convenience, the cross-section dimensions of the purlin discussed herein do not consider the 
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bend radius and they are simply defined by its web depth h, flange width b, lip length c, and 

thickness t. It is believed that the difference induced by ignoring the bend radius would be 

negligible. When the purlin-sheeting through-fastened roof system is subjected to an uplift load, 

the load on the cladding is transferred to the purlin through the self-drilling screws and/or the 

contact between the cladding and upper flange. For a simply supported purlin under the action of 

the uplift loading, its upper flange is in tension and lower flange is in compression; the latter 

could induce a WFDB of a system involving the compressed flange, lip and part of the web, as 

shown in Fig.2b, in which the two rotational springs represent the rotational restraints provided 

by the cladding and web, respectively. Let x be the longitudinal axis, y and z be the cross-

sectional axes parallel to the flange and web lines, respectively, as shown in Fig.2c. For the 

convenience of presentation, the origin of the coordinates is chosen at the centroid point of the 

unequal channel-section beam (see Fig.2c). When the WFDB occurs, the lateral and rotational 

displacements at point A are assumed to be v(x) and (x), as shown in Fig.2b. According to 

kinematic relations, the horizontal displacement, vertical displacement, and angle of twist of the 

unequal channel-section beam at the centroid point (point o) and shear centre (point s) can be 

expressed as follows, 

)()( Do zdvxv           (1) 

Do yxw )(           (2) 

 )(xo           (3) 

)()( Dss zzdvxv          (4) 

)()( sDs yyxw           (5) 

 )(xs           (6) 

where vo, wo, and o are the horizontal displacement, vertical displacement, and angle of twist of 

the unequal channel-section beam at the centroid point, vs, ws, and s are the horizontal 

displacement, vertical displacement, and angle of twist of the unequal channel-section beam at 

the shear centre, d is the length of the part of web (see Fig.2b) included in the buckling element, 

(yD, zD) and (ys, zs) are the coordinates of point D and point s in the yoz coordinate system (see 

Fig.2c). 

 

The analysis of the axially compressed buckling of the unequal channel-section beam with 

elastic translational and rotational restraints defined by ky and k applied at point A (see Fig.2c) 

can be done by using traditional energy method. The strain energy of the unequal channel-

section beam due to the buckling displacements expressed by Eqs.(1)-(6) can be calculated as 

follows, 
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 (7) 

where E is the Young’s modulus, Iy, Iz and Iyz are the second moments and product moment of 

the cross-section area of the unequal channel section, G is the shear modulus, J is the torsion 

constant, and Iw is the warping constant.  

 

The strain energy of the two elastic springs generated by the buckling displacements can be 

calculated as follows, 
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where ky and k are the equivalent stiffnesses of the translational and rotational springs applied at 

point A. 

 

The work done by the pre-buckling axial stresses in the unequal channel-section beam can be 

calculated using the following formula (Alwis and Wang, 1996; Li, 2009; Li and Chen, 2008), 
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where No is the axial compression force, which is the integration of the compression stress of the 

lower part of the cross-section as shown in Fig.2c, AIIr zyc /)(   is the polar radius of 

gyration of the unequal channel-section with respect to the centroid point, and A=(b+c+d)t is the 

cross-sectional area of the unequal channel section. 

 

Assume that when the WFDB occurs the lateral and rotational displacements of the unequal 

channel-section at point A can be approximately expressed as follows, 

l

xk
Ax k


 sin)(           (10)  

l

xk
Bxv k


sin)(           (11)  

where Ak and Bk are the constants to be determined, l is the length of the beam, k is the half-wave 

number in the buckling mode, and l/k represents the actual half wavelength of the buckling 

mode. It is obvious that the displacements given in Eqs. (10) and (11) satisfy the simply 

supported end boundary conditions of the beam, i.e. v(0) = v(l) = 0 and (0) = (l)= 0. 

Substituting Eqs.(10) and (11) into (1)-(6) and then into (7)-(9), it yields, 
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The stationary condition of the total potential when buckling occurs requires that 2Π=2(Ub+Us-

W)=0. The critical load thus can be obtained by solving for the smallest eigenvalue of the 

following determinant: 
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The smallest eigenvalue of Eq.(15) can be expressed as follows,  

𝑁𝑜 =
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For a given half wavelength =l/k, one can calculate the critical load No from Eq.(16). After the 

critical load No is obtained, the following critical stress in the compressed flange can be obtained, 

htdctdbc
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/)()( 22 
            (17) 

where cr is the critical stress in the compressed flange when the beam has a WFDB. Eq.(17) 

gives the critical stress of WFDB of purlins used in through-fastened systems with rigid 

diaphragm where the effect of rotational flexibility of sheathing connection on the pre-buckling 

stress distribution is ignored. 

 

 

3. Determination of sectional properties 

 

The evaluation of the total potential of the unequal channel-section beam requires the sectional 

properties of the unequal channel. This section provides the derivation of the formulas used to 

calculate the sectional properties required. Note that, the coordinates of points D and B in the 

present yoz coordinate system (see Fig.3a) can be expressed as follows, 
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where b, c, and d are the dimensions of the unequal channel section (see Fig.3a), (yD, zD) and (yB, 

zB) are the coordinates of points D and B in the yoz coordinate system, respectively. The second 

moments of area about the two axes and the product moment of area thus can be calculated as 

follows, 
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where Iy and Iz are the second moments of area about y- and z-axis, respectively, Iyz is the 

product moment of area, and t is the thickness. Let Y and Z be the two principal coordinate axes 

(see Fig.3b). The angle between y and Y axes or between z and Z axes can be calculated as 

follows, 

yz

yz

II

I




2
2tan           (25) 

 

The second moments of area about the two principal axes thus can be calculated as follows, 
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where IYY and IZZ are the second moments of area about Y- and Z-axis, respectively. The 

coordinates of points B and D in the principal coordinate system can be expressed as, 
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where (YB, ZB) and (YD, ZD) are the coordinates of points B and D in the YoZ coordinate system, 

respectively. When the section is subjected to a load PY parallel to Y-axis, the twisting moment 

of PY about point D should be equal to the twist moment created by the shear flow in the element 

away from Point D. The latter can be calculated as follows (see Fig.3c),  
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Let (Ys, Zs) be the coordinates of shear centre s in the YoZ coordinate system.  Thus, 
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Similarly, when the section is subjected to a load PZ parallel to Z-axis, the twisting moment of PZ 

about point D should be equal to the twist moment created by the shear flow in the element away 

from point D. The latter can be calculated as follows (see Fig.3d), 
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The coordinates of the shear centre s in the yoz coordinate system thus can be obtained by 

follows, 

 sincos sss ZYy          (36) 

 cossin sss ZYz          (37) 

where (ys, zs) are the coordinates of the shear centre in the yoz coordinate system. The warping 

function of the unequal channel section can be expressed as follows, 
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The average value of the warping function can be obtained by follows, 
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The warping constant thus can be calculated as follows, 
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The torsion constant can be expressed as follows, 

𝐽 =
(𝑑+𝑐+𝑏)𝑡3

3
          (43) 

 

Eqs.(22), (23), (24), (42) and (43) can be used to calculate the second moments, product 

moment, warping constant and torsion constant of the cross-section area of the unequal channel 

section. 

 

 

4. Numerical examples 

 

Before the critical stress of WFDB can be calculated by using the present model described above 

for a partially rotationally restrained purlin, we have to know the spring constants ky and k, and 

the length d of the partial web involved in the WFDB model (see Fig.2c). Note that both ky and 

k are dependent not only on the rotational spring stiffness of the cladding ksh but also on the 

deformability of the web. In theory, if the shape and dimensions of the cladding and purlin are 

known, then k and ky can be calculated. In the following numerical examples, three different 

values are employed for ksh, representing three different types of cladding, namely weak (ksh=10-

5D/h), medium (ksh=0.25D/h) and strong (ksh=D/h) cladding. The values for ky and k are taken as 

ky=ksh/(h-d)2 and k=[D/(h-d)-ksh]b/h, where D=Et3/[12(1-2)] is the flexural rigidity of the web 

plate. The value of d is taken as d=h/5, which was determined through the trial-error analysis of 

the critical stresses obtained from the present model and those predicted using the finite strip 

analysis program (CUFSM Version 2.6) developed originally by Schafer (1997) and Schafer et 

al. (2010) for 59 zed-section purlins of different sizes manufactured by Albion Sections in the 

UK. Note that in Eurocode (EN1993-1-3, 2006) d=h/5 was also recommended for calculating the 

critical stress of WFDB. However, the model used in Eurocode involves only the translational 
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spring that is applied at the compressed flange. To demonstrate the present model, the critical 

stresses of WFDB for three different size purlins (see Table 1) obtained from the present model 

are compared with those predicted using the finite strip method and are shown in Figs.4-6 for the 

three types of cladding, respectively. In the finite strip method the full section shown in Fig.2a is 

modelled and the rotational spring representing the cladding restraint is applied at the junction 

between the web and upper flange. It is evident from the comparison shown in Figs.4-6 that the 

calculated critical stress from the present model is in very good agreement with that predicted by 

using the finite strip method. The difference between them is observed only at the beginning of 

the curves where the critical stress is very high and the corresponding half wavelength is very 

short.   

 

The critical stresses shown in Fig.4 are for the purlins with a weak restraint from the cladding. It 

can be seen from the figure that the critical stress of WFDB for all of the three size sections 

decreases continuously with the increase of purlin length, which is very similar to the critical 

stress of LTB of the beam. In fact, when the cladding has a weak rotational restraint to the purlin, 

the WFDB mode of the purlin becomes very close to the torsional buckling mode of the beam. 

This indicates that the present model can also be used to predict the critical stress of LTB of the 

beam although the model itself consists of only one lip, one flange and part of the web. Also, as 

it is to be expected, the critical stress is higher in the larger section for the same purlin length or 

the same half wavelength. A parametric study on k shows that, when ksh is small the critical 

stress of WFDB seems insensitive to k provided that kis about or greater than Db/[h(h-d)]. This 

further demonstrates that when ksh is small the WFDB mode tends to the LTB mode. 

 

Fig.5 shows the critical stresses of WFDB of the three purlins restrained by a medium cladding. 

It can be observed from the figure that the critical stress initially decreases with the increased 

purlin length until it reaches to the minimum point. After that minimum point the critical stress 

recovers slightly. It is interesting to note that, the smaller the section, the higher the minimum 

critical stress. The half wavelength at the minimum critical stress point is found to be shorter in 

the smaller size purlin. This indicates that the cladding has more influence on the buckling of 

smaller section purlin. Note that the half wavelength at the minimum critical stress point is about 

4.2 m, 5.5 m, and 7.5 m for the small, medium and large size sections, respectively. Given the 

fact that the largest span length of purlins is about 7 m for small sections, 9 m for medium 

sections, and 12 m for large sections, the half wavelengths shown in Fig.5 could also be treated 

as the beam length. 

 

Fig.6 shows the critical stresses of WFDB of the three size section purlins restrained by a strong 

cladding. It can be seen from the figure that all of the three critical stress curves exhibit a 

parabolic shape with a clearly defined minimum point. The minimum critical stress is found 

much higher in the small size section than in the large size section; whereas its corresponding 

half wavelength is found to be shorter in the small size section than in the large size section. The 

half wavelengths at the three minimum critical stress points shown in Fig.6 are about 3 m, 4.5 m 

and 5.5 m, which are all smaller than those shown in Fig.5. The short half wavelength means that 

the purlin could buckle in a mode with multiple waves. For instance, a 7 m long medium size 

section purlin is likely to buckle in the mode of two waves (each has 3.5 m half wavelength) with 

the critical stress of about 0.5y rather than in the mode of a single wave (7.0 m half wavelength) 

with the critical stress of about 0.62y. 
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5. Conclusions 

 

In this paper, an analytical model has been developed for describing the WFDB of partially 

rotationally restrained zed-purlins, used in the fastened sheathing systems with rigid diaphragm. 

The formula for calculating the critical stress of WFDB has been derived based on the present 

model. The model has been validated using the finite strip analysis method for a wide range of 

purlin sizes. From the results obtained the following conclusions can be drawn: 

 

 The WFDB of partially rotationally restrained zed-purlins can be modelled by using a 

system consisting of the compressed flange, lip and part of web. The length of the partial 

web involved in the WFDB model can be taken as one-fifth of the web depth.  

 The effect of cladding rotational restraint and the distortional flexibility of the section 

itself on the WFDB of purlins can be modelled using a translational spring and a 

rotational spring applied at the cutting point of the web.  

 The translational spring stiffness can be expressed in terms of the cladding rotational 

spring stiffness; while the rotational spring stiffness is found to be dependent not only on 

the web flexural stiffness but also the cladding rotational spring stiffness. 

 For weak restraint cladding, the critical stress of WFDB is found to decrease 

continuously with the increase of beam length, which is similar to that of LTB of the 

beams.  

 For medium and strong restraint cladding, the critical stress of WFDB is found to initially 

decrease with the increased half wavelength until it reaches to a minimum point. After 

that point the critical stress starts to increase with increased half wavelength. The critical 

stress and corresponding half wavelength at the minimum point are heavily dependent on 

the rotational spring stiffness of the cladding. 
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Figure 1. Critical moment and corresponding buckling modes of an upper flange-restrained zed-

purlin under pure bending (web depth h=250 mm, flange width b=70 mm, lip length c=20 mm, 

thickness t=2.5 mm, yield strength y=390 MPa).  

 

 

 

 
(a)                                               (b)    (c) 

 

Figure 2. Web-flange distortional buckling analysis model. (a) Zed-purlin sheeting system. (b) 

Buckling of compressed web-flange-lip system. (c) Buckling element consisting of compressed 

flange, lip and part of web (o is the centroid point  

and s is shear centre of the unequal channel-section ABCD).  
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Figure 3. (a) Section dimensions. (b) Principal axes. (c) Shear centre due to a load parallel to Y-

axis. (d) Shear centre due to a load parallel to Z-axis. 

 

 

 
 

Figure 4. Variation of critical stress of web-flange distortional buckling with half-wavelength for 

weak sheeting with ksh=10-5D/h (E=210 GPa, =0.3, y=390 MPa). 
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Figure 5. Variation of critical stress of web-flange distortional buckling with half-wavelength for 

medium sheeting with ksh=0.25D/h (E=210 GPa, =0.3, y=390 MPa). 

 

 

 
 

Figure 6. Variation of critical stress of web-flange distortional buckling with half-wavelength for 

strong sheeting with ksh=D/h (E=210 GPa, =0.3, y=390 MPa). 
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Table 1. Dimensions of sections used in numerical examples (unit: mm) 

Section Section depth h Flange width b Lip length c Thickness t 

No.1 150 50 15 1.5 

No.2 225 60 20 2.0 

No.3 300 70 30 2.5 

 

 

 

 


