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Abstract 

The Glial cell-line derived neurotrophic factor (GDNF) and its canonical receptor Ret can signal 

both in tandem and separately to exert many vital functions in the midbrain dopamine 

system. It is known that Ret has effects on maintenance, physiology, protection and 

regeneration in the midbrain dopamine system, with the physiological functions of GDNF still 

somewhat unclear. Notwithstanding, Ret ligands such as GDNF are considered as a promising 

candidates for neuroprotection and/or regeneration in Parkinson disease (PD), although data 

from clinical trials is so far inconclusive. In this review, we discuss the current knowledge of 

GDNF/Ret signaling in the dopamine system in vivo as well as crosstalk with pathology-

associated proteins and their signaling in mammals. 
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Introduction 

 

Dopamine is a neurotransmitter produced by dopamine (DA) neurons in the midbrain. 

Dopamine is involved in a diverse range of functions throughout both the brain and body, 

including motor control, motivation, reward and emotional regulation (Bjorklund and 

Dunnett, 2007, Leknes and Tracey, 2008).  

The DA system comprises of DA neuron cell bodies grouped in ventral midbrain in the retro-

rubral field (RRF), ventral tegmental area (VTA) and substantia nigra (SN) (Fig. 1A,B). Axons 

from these areas project into the mesostriatal and mesocorticolimbic pathways (Bjorklund 

and Dunnett, 2007). As the name suggests, the mesostriatal pathway connects the SN and a 

portion of the VTA with the dorsal striatum (Fig. 1B,C). This pathway is particularly important 

in voluntary movement control. The mesocorticolimbic pathway is involved in emotional, 

cognitive and reward-based behaviors. It projects from the dorsal SN, VTA and RRF to the 

ventral striatum (putamen and caudate nucleus), cortex, hippocampus, habenula, septum, 

olfactory tubercle and nucleus accumbens (NAc). As the DA midbrain system is responsible 

for such a diverse range of functions, alterations can result in a number of neurological 

diseases. For example, degeneration of DA neurons in the SN results in a dopamine deficiency 

in the dorsal striatum, causing the motor pathology characteristic in Parkinson Disease (PD) 

(Fig. 1D) (Goedert et al., 2013, Obeso et al., 2001). As DA neurons are highly heterogeneous, 

a complex network of signaling pathways and events are involved in the development, 

maintenance and physiological functioning of the midbrain DA system. In recent years, 

neurotrophic factors, a multifarious group of polypeptides, have emerged as major players in 

the development and maintenance of the DA system (Lerner et al., 2015) (Airaksinen and 

Saarma, 2002). The neurotrophic factor Glial Cell Line-Derived Neurotrophic Factor (GDNF) is 
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the founding member of a group of GDNF Family Ligands (GFLs), also consisting of artemin, 

neurturin and persephin (Airaksinen and Saarma, 2002). GFLs generally signal by undergoing 

high affinity binding to a glycosylphosphatidylinositol (GPI)-linked GFR⍺ members (1 to 4). 

GDNF, for example, binds to GFR⍺1, the only GFR⍺ member expressed highly in DA neurons 

(Burazin and Gundlach, 1999, Yu et al., 1998, Sarabi et al., 2001). GFR⍺2 mRNA but not GFR⍺2 

protein was so far detected in non-DA cells in the mouse SN and striatum, unlike GFR⍺3 

mRNA, which was only found in the brain of mouse embryos (Golden et al., 1999, Yu et al., 

1998, Trupp et al., 1998, Runeberg-Roos et al., 2016). These GFL-GFR complexes may 

subsequently activate either their canonical receptor, the receptor tyrosine kinase rearranged 

during transfection (Ret), or alternative receptors including neuronal cell adhesion molecule 

(NCAM), integrins, N-cadherin and syndecan-3 (Kramer and Liss, 2015) (Fig. 1D). There is not 

a one ligand one receptor relationship between GDNF and Ret, as both have alternative 

signaling partners also in the midbrain DA system (Kramer and Liss, 2015). In this review, we 

provide an update on the role of GDNF and Ret signaling in the midbrain DA system in vivo 

(Fig. 1E). 

 

A) GDNF, GFR⍺1 and Ret expression in the midbrain dopamine system during development, 

adulthood, aging and PD  

Since it was first isolated, GDNF has been considered to be a candidate target-derived 

neurotrophic factor involved in the development of SN dopamine neurons (Lin et al., 1993). 

Despite its name, GDNF is not expressed in the murine nervous system in glia cells but in 

neurons, especially in parvalbumin-positive (PV+) interneurons and cholinergic and 

somatostatin-positive interneurons in the striatum, as confirmed with mice carrying a lacZ 

gene in the GDNF locus (Gonzalez-Reyes et al., 2012, Pascual et al., 2008, Hidalgo-Figueroa et 
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al., 2012). This corroborates three studies in rats which found GDNF protein only in patches 

in the postnatal striatum (Lopez-Martin et al., 1999) and GDNF mRNA only in neuronal cells 

of the adult striatum (Oo et al., 2005) such as 50-75% of choline acetyl-transferase (ChAT) 

positive interneurons and a minority of medium spiny GABAergic interneurons (Bizon et al., 

1999). GDNF mRNA can be detected in the striatum and midbrain of rats and mice during 

embryonic development (Nosrat et al., 1997, Golden et al., 1999). High amounts of GDNF 

mRNA are found in the striatum of mice and rats during the early postnatal period (Stromberg 

et al., 1993, Schaar et al., 1993, Blum and Weickert, 1995, Choi-Lundberg and Bohn, 1995), 

which decreases during adulthood (Hidalgo-Figueroa et al., 2012, Nosrat et al., 1996, Trupp 

et al., 1997, Golden et al., 1999, Pochon et al., 1997). GDNF is expressed in human and rodent 

brains as a pre-pro-protein with two different splice isoforms: a full-length transcript (pre-α-

pro-GDNF) and a shorter transcript (pre-β-pro-GDNF)  that lacks 78 bp in the region encoding 

26 amino acids of the pro-domain (Lin et al., 1993, Trupp et al., 1995, Lonka-Nevalaita et al., 

2010). In humans, an additional 4 isoforms and 2 antisense RNAs have been described (Schaar 

et al., 1994) (Airavaara et al., 2011). The pre-region is cleaved off in the endoplasmic reticulum 

and the pro-domain mainly in secretory vesicles leading to the same secreted mature GDNF 

protein (Penttinen et al., 2018). The pre-α-pro-GDNF isoforms seems to be the most abundant 

isoform in the DA system (striatum and substania nigra)(Airavaara et al., 2011). In adult 

human brains there are very low amounts of GDNF mRNA under normal conditions but 

increased amounts have been reported during diseases such as PD, not only in neurons but 

also astrocytes, microglia and macrophages (Springer et al., 1994, Hunot et al., 1996, 

Nakagawa and Schwartz, 2004, Backman et al., 2006, Duarte Azevedo et al., 2020). Despite 

these advances in understanding as to which cells produce GDNF in the rodent striatum, the 
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nature of GDNF-producing striatal neurons in humans remains elusive and the actual role of 

PV+ cells on nigrostriatal protection is yet to be determined.  

GFR⍺1 and Ret mRNA and protein have been found to be expressed in rodent midbrain DA 

neurons from early embryonic development through to adulthood (Marcos and Pachnis, 

1996, Treanor et al., 1996, Nosrat et al., 1997, Trupp et al., 1997, Golden et al., 1999, 

Airaksinen and Saarma, 2002). While Ret seems to be exclusively expressed in the midbrain 

DA system of rodents by DA neurons, GFR⍺1 may additionally be expressed by cells in the 

striatum (Kramer et al., 2007, Cho et al., 2004). Although the expression of GFR⍺1 and Ret 

spliced isoforms have not been studied in detail for the midbrain DA system, there appears 

to be more GFR⍺1a than GFR⍺1b and more Ret9 than Ret 43 and Ret51 mRNA expressed in 

the mouse brain (Yoong et al., 2005). In a rat PD model generated by 6-hydroxydopamine (6-

OHDA), a transient increase has been reported for GFR⍺1 and Ret mRNA levels in the SN 

followed by a decrease (Marco et al., 2002). In an mouse PD model generated by 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine, Ret protein levels were found to be reduced in the 

striatum (Hirata and Kiuchi, 2007). In these studies, the reduced GFR⍺1 and Ret expression 

correlates with a loss of tyrosine hydroxylase (TH) positive DA neurons in the midbrain and 

their innervation of the striatum (Hirata and Kiuchi, 2007, Blesa and Przedborski, 2014).  

Most reports suggest no alteration in GFR⍺1 and Ret expression in aging rodents and monkeys 

(Kramer et al., 2007, Dass et al., 2006, Walker et al., 1998). Surprisingly, one publication 

claimed that in aging rats, a downregulation of the mRNA encoding the transcription factor 

Nurr1 in the SN, which is also needed for Ret expression but no Ret mRNA level changes in 

the SN and even a significant Ret mRNA increase in the striatum (Parkinson et al., 2015). In 

healthy human brains and Ret mRNA and protein levels in the midbrain and putamen seem 

to not be significantly altered with age (Backman et al., 2006, Alladi et al., 2010). However, 
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open discussion still remains as to how far Ret protein levels may be reduced in PD patients, 

if at all (Decressac et al., 2012, Hoffer and Harvey, 2011, Su et al., 2017, Chu et al., 2020). 

Comparing Ret protein expression in remaining substantia nigra DA neurons of PD patients 

with PD patients treated with a neurturin expressing virus and age-matched controls did not 

reveal an obvious difference (Chu et al., 2020).  

 

B) GDNF, GFR⍺1 and Ret function in the midbrain DA during development, adulthood and 

aging 

To determine the physiological function of GDNF, GFR⍺1 and Ret in the midbrain DA system, 

several rodent models were treated with GDNF and different knockout and transgenic mice 

were generated and analyzed.  

Burke et al. defined 2 postnatal cell death peaks in SN DA of rodents at postnatal day 2 and 

14 and suggested by injecting GDNF and GDNF neutralizing antibodies that GDNF is limiting 

and protective during the first cell death period (Burke, 2004, Oo et al., 2003). Interestingly, 

mice transgenically expressing a monomeric form of GDNF in the forebrain exhibited double 

the amount of DA in the VTA but normal numbers of SN DA neurons at adulthood (Kholodilov 

et al., 2004). In these mice, the SN DA neuron number was only doubled after the first 

postnatal cell death period but was not maintained during adulthood (Kholodilov et al., 2004). 

Heterozygous hypermorphic GDNF mice encoding one copy of a more stable GDNF mRNA due 

to a modified 3’ untranslated region (UTR) (Kumar et al., 2015) express the double amount of 

GDNF mRNA and protein in the striatum and GDNF mRNA was largely retained in PV+ 

expressing inhibitory neurons, as reported previously for wildtype mice (Gonzalez-Reyes et 

al., 2012, Pascual et al., 2008, Hidalgo-Figueroa et al., 2012). From postnatal day 7.5 through 

to adulthood, these mice were reported to have 15% more SN DA neurons and DA innervation 
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of the striatum as well as increased total DA levels, DA release and reuptake (Kumar et al., 

2015). The heterozygous hypermorphic GDNF mice were also shown to have an increased 

response to amphetamine, are more sensitive to striatal 6-OHDA injection, but less 

susceptible to unilateral lactacystin injection proximally superior to the SN (Kumar et al., 

2015). In a follow up study, amphetamine-induced conditional place preference was found 

not to be altered in the GDNF hypermorphic mice (Kopra et al., 2018). However, heterozygous 

hypermorphic mice seemed to perform better in motor function tests but did not exhibit 

psychiatric disease related phenotypes (Matlik et al., 2018). 

GDNF knockout mice die shortly post-partum due to renal agenesis but with a normal DA 

system (Sanchez et al., 1996, Pichel et al., 1996, Moore et al., 1996). A group employing a 

heterozygous GDNF mouse model reported a 42% reduction in GDNF levels accompanied by 

a 20% loss of SN DA neurons in 12 month old mice but with no further neuron loss in 20 month 

old mice (Boger et al., 2006). Twelve-month-old GDNF heterozygous mice also exhibited a 

Parkinson–like spontaneous locomotion change in a three-dimensional rodent motion 

analysis (Karakostas et al., 2014). These heterozygous, GDNF-deficient mice were also more 

sensitive to methamphetamine (Boger et al., 2007). However, another group reported no 

alterations in response to amphetamine but a mild impairment of performance in the spatial 

Morris water maze (Gerlai et al., 2001). An enhanced reward value of sucrose was also 

described for heterozygous GDNF deficient mice (Griffin et al., 2006). While no changes in the 

response to cocaine was observed in heterozygous GDNF knockout mice, these mice seem to 

have more immediate early gene c-Fos positive neurons in the dorsal striatum and nucleus 

accumbens (Airavaara et al., 2004). More recently, the heterozygous GDNF deficient mice 

were also suggested to have an impaired latent inhibition to chronic stress and less active (c-

Fos positive) neurons in the nucleus accumbens under stress (Buhusi et al., 2017).The first 
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conditional GDNF knockout mouse in the adult DA system was made using a tamoxifen Esr1‐

Cre system (Hayashi and McMahon, 2002) (0.2 mg tamoxifen per day and per gram body 

weight intraperitoneally for four consecutive days). Surprisingly, the authors claimed an 

absolute requirement of GDNF for adult catecholaminergic neuron survival (Pascual et al., 

2008). In these mice they observed a 60% reduction of GDNF mRNA and GDNF protein in the 

striatum, leading to 60-70% degeneration of SN and VTA DA neurons 7 months after GDNF 

gene recombination (Pascual et al., 2008). These mice were reported to also have an almost 

100% loss of noradrenergic neurons in the locus coeruleus, a brain region which has also been 

shown to exhibit neurodegeneration in PD (Pascual et al., 2008). However, another group has 

used the same Esr1‐Cre mice (6–10 mg of tamoxifen was injected per mouse), as well as 

Nestin-Cre mice and an adeno-associated virus type 5 encoding Cre to recombine their floxed 

GDNF allele. They observed that in all 3 mouse models, GDNF was not required for 

catecholaminergic neuron survival in vivo (Kopra et al., 2015). Despite a stronger GDNF 

protein reduction, no loss of midbrain DA neurons in the SN and VTA or noradrenaline 

neurons of the locus coeruleus was observed in these 3 mouse models (Kopra et al., 2015). 

This very well controlled study strongly supports the idea of a dispensable function of GDNF 

for catecholaminergic neuron development and maintenance in the mouse (Kopra et al., 

2015). Unfortunately, the comment by Pascual and Lopez-Barneo (Pascual and Lopez-Barneo, 

2015) published in the same Nature Neuroscience issue as the Kopra et al. paper (Kopra et 

al., 2015), did not clarify why their results were so different. In a second approach the Lopez-

Barneo laboratory tried without success to delete GDNF with a parvalbumin promoter-driven 

Cre line (Hippenmeyer et al., 2005) and partially successful with a ubiquitin C promoter-driven 

Cre recombinase-mutated esterogen receptor fusion protein (UBC-Cre-ERT2) (Ruzankina et 

al., 2007) treated again with a high amount of tamoxifen (0.18 mg tamoxifen per day and per 
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gram body weight intraperitoneally for five consecutive days) (Enterria-Morales et al., 2020). 

The authors reported that their tamoxifen treatment of the UBC-Cre-ERT2/GDNF conditional 

mice resulted in a mouse death rate of 11-28% (11% for heterozygous floxed GDNF mice, 

14.3% in heterozygous whole body GDNF knockout mice and 28% in mice carrying the UBC-

Cre-ERT2 construct in combination with homozygous whole body GDNF knockout), 60% loss 

of GDNF mRNA and protein in the striatum and a mild and moderate loss of a subpopulation 

of DA neurons of the SN and noradrenergic neurons in the locus coeruleus, respectively 

(Enterria-Morales et al., 2020). Papers on increased tamoxifen toxicity in cells lacking 

GDNF/Ret signaling (Plaza-Menacho et al., 2010) and in combination with CreER (Schmidt-

Supprian and Rajewsky, 2007, Takebayashi et al., 2008) increase the possibility of a technical 

or methodological artefact in the two papers from the Lopez-Barneo laboratory (Pascual et 

al., 2008, Enterria-Morales et al., 2020). Further research is needed to resolve this issue. In a 

follow up study by Kopra et al., conditional GDNF deficient mice were shown to have a 

reduced amphetamine induced locomotor response and increased dopamine transporter 

protein levels (Kopra et al., 2017). Taken together, GDNF may not be essential for 

development and maintenance of the midbrain DA system but could still be important for the 

normal physiology of these neurons and a possible therapeutic agent for PD patients. 

Similar to GDNF knockout mice, GFRα1 knockout mice also die shortly after birth due to renal 

agenesis but with a normal DA system (Cacalano et al., 1998, Enomoto et al., 1998) (Tomac 

et al., 2000). It was reported that 18-month-old heterozygous GDNF mice have 30% fewer SN 

DA neurons and 24% fewer VTA DA neurons. Dopamine levels in the striatum and motor 

activity were lower and the stimulatory effects of the DA agonist were enhanced (Zaman et 

al., 2008). Twenty-six month old GFRα1 heterozygous mice exhibit reduced MPTP induced 

locomotion and greater expression of inflammatory markers (CD45 immunostaining and 
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phosphorylated p38 MAPK) in the SN (Boger et al., 2008). Although a floxed allele of GFRα1 

was generated a midbrain DA neuron knockout mouse was not produced or analyzed (Uesaka 

et al., 2007). More recently, it was reported in rats that GFRα1 expressing DA neurons in the 

SN seem to decrease with age and that physical exercise can increase GFRα1 expression as 

well as SN DA neuron activity (Arnold and Salvatore, 2016). So far, the precise function of the 

high affinity GDNF receptor GFRα1 in the postnatal midbrain DA system in vivo has not been 

resolved and more research is needed to do so. 

Finally, Ret knockout mice also die shortly after birth without kidneys as GDNF and GFRα1 

knockout mice do. In addition, no alterations in the DA system have been reported in these 

mice (Schuchardt et al., 1994, Marcos and Pachnis, 1996, Kramer et al., 2006). Adult 

heterozygous Ret knockout mice were only analyzed together with the conditional Ret 

deficient mice and did not reveal any phenotype in the midbrain DA system (Kramer et al., 

2007).  

Interestingly, mice homozygous for a constitutively active form of Ret with the Met918Thr 

mutation leading in humans to the dominantly inherited multiple endocrine neoplasia type 

2B (MEN2B) exhibit 26% more DA neurons specifically in the SN combined with more DA 

innervation and more DA in the striatum, and more spontaneous and cocaine induced 

locomotor activity (Smith-Hicks et al., 2000, Mijatovic et al., 2007). In MEN2B mice, SN DA 

neurons may also be less sensitive to MPTP and 6-OHDA toxicity (Mijatovic et al., 2011) and 

demonstrate a greatly enhanced amphetamine-induced conditional place preference (Kopra 

et al., 2018). This suggests that Ret appears not only essential for maintenance of midbrain 

DA neurons but also that Ret signaling may be limiting during development.   

Two laboratories independently deleted Ret specifically in DA neurons of mouse embryos 

using a dopamine transporter promoter driven Cre line (Zhuang et al., 2005) and consistently 
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found no histological alterations in the adult midbrain DA system (Jain et al., 2006, Kramer et 

al., 2007). Only at the age of one year did Ret deficiency cause a significant loss of 25% of 

midbrain DA neurons, specifically in the SN and not of the DA neurons in the nearby VTA 

(Kramer et al., 2007). This DA cell loss in the SN was progressive over time and reached 38% 

in two-year-old mice (Kramer et al., 2007). This DA cell degeneration in the SN was 

accompanied by a loss of DA innervation in the striatum, gliosis in the striatum and 

inflammation in the SN (Kramer et al., 2007). Deleting Ret in mice with a different dopamine 

transporter driven Cre line (Parlato et al., 2006, Turiault et al., 2007) lead to 15 to 21% DA cell 

loss in the SN in one and two year old mice, respectively (Meka et al., 2015). The DA cell loss 

in the SN but not in the VTA was also confirmed using a Nestin-Cre line to delete Ret in the 

nervous system (Kramer et al., 2007), which did not reveal an essential function for deleting 

GDNF in the DA system (Kopra et al., 2015). These data have clearly revealed an important 

function of Ret in maintaining some SN DA neurons in mice, although GDNF seems to not be 

the essential Ret ligand. 

The signaling cascades downstream of GDNF/Ret have been mainly investigated in cell culture 

and were summarized in recent reviews (Airaksinen and Saarma, 2002, Kramer and Liss, 

2015). Little is known about the specific pathways used in DA neurons in vivo (Figure 1E). Also, 

the exact pro-survival mechanism of GDNF is not known, activation of Ret can initiate several 

signaling cascades, of which the mitogen activated protein (MAP) kinase and 

phosphoinositositide-3-kinase (PI3K) pathways have been suggested to play a role in the 

survival promoting actions (Penttinen et al., 2018, Airaksinen and Saarma, 2002). 

Phosphorylated tyrosine residues in the cytosolic domain of Ret are binding sites for several 

adaptor proteins. Binding of SH2 domain containing transforming protein 1 (SHC) to Ret can 

for example stimulate the recruitment of GTPase-activating proteins 1 and 2 (Gab1/2) and 
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subsequent activation of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), AKT and the 

nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NF-κB) signaling cascade 

stimulating mitochondrial activity and cell survival (Meka et al., 2015). The association of the 

adaptor protein fibroblast growth factor receptor substrate 2 (FRS2) to Ret can lead to the 

binding of growth factor receptor-bound protein 2 (GRB2) and son of sevenless (SOS) 

stimulating the Rat sarcoma family of small membrane-associated GTPase (RAS)/MAPK 

pathway also important for cell survival (Aron et al., 2010). But Ret has also been suggested 

to activate sarcoma protein membrane-associated tyrosine kinase (SRC) and phospholipase y 

(PLCγ) (Kramer and Liss, 2015). Further details about the involved signaling pathways are 

given in chapter D) where we discuss the crosstalk of GDNF/Ret with PD-associated genes. 

 

This raises several important questions:  

 Why do only some aging DA neurons of the SN rely on Ret receptor signaling for 

survival and not other SN DA neurons or VTA DA neurons?  

 How is Ret activated in the midbrain DA system if GDNF is not the essential ligand? Is 

GFRα1 essential for the development and maintenance of the midbrain DA system 

and is it required for Ret activation?  

 Does an adult deletion of Ret in midbrain DA neurons lead to a similar or different 

phenotype to the one reported embryonic for Ret deletion?  

 At which stage(s) during development do MEN2B mice show an increase in SN DA 

neurons?  

 Which downstream signaling pathways do GDNF/Ret use in vivo to exert their 

different functions?  
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More research is needed to address and satisfactorily answer these questions. 

 

C) Protective and regenerative functions of GDNF/Ret in the midbrain DA system of 

pharmacological and genetic PD models 

GDNF has been shown to be protective and regenerative in the midbrain DA system of rodents 

and monkeys against many pharmaceutical challenges such as MPTP (Tomac et al., 1995, Gash 

et al., 2005, Su et al., 2009) and 6-OHDA (Bilang-Bleuel et al., 1997, Choi-Lundberg et al., 1997, 

Bjorklund et al., 1997, Kirik et al., 2001, Yang et al., 2009, Lindgren et al., 2012). Both GDNF 

isoforms (pre-α-pro-GDNF and (pre-β-pro-GDNF) have been shown to be neuroprotective 

against 6-OHDA in rats (Penttinen et al., 2018). DA neurons in Ret deficient mice are not more 

sensitive to MPTP toxicity but show an impairment regarding the regeneration of DA axons in 

the striatum, which can be triggered by endogenous GDNF (Kowsky et al., 2007). In addition, 

in MPTP treated Ret deficient mice striatal overexpression of GDNF did not lead to 

neuroprotective and regenerative effects of GDNF usually observed in the midbrain DA 

system of wildtype mice (Drinkut et al., 2016, Drinkut et al., 2018). Ret signaling is therefore 

absolutely required for GDNF to exert its neuroprotective and regenerative effects to 

ameliorate neurodegeneration in the DA system. Ret activation should therefore be 

considered the primary target of GDNF therapy to treat PD. GDNF is unable to cross the blood-

brain barrier and seems to work best in the midbrain DA system if provided to the striatum 

via GDNF expressing viruses, or cells or small tube injections (Aron and Klein, 2011). 

In some genetic mouse models of PD, GDNF has also been shown to protect DA neurons and 

their striatal innervation such as in the MitoPark mouse, where mitochondrial function is 

disrupted in DA neurons by selective deletion of the mitochondrial transcription factor Tfam 

(Chen et al., 2018). 
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GDNF/Ret signaling has therefore shown to be a promising candidate for PD treatment when 

tested in PD animal models. A number of human trials have been undertaken to utilize the 

beneficial effect of GDNF/Ret for the midbrain DA system of PD patients, with so far still an 

overall inconclusive outcome (Barker et al., 2020). It became obvious that the therapy can 

only be successful in PD patients with sufficient midbrain DA neurons remaining which are 

the only cells in the midbrain expressing the GDNF receptor Ret (Kramer and Liss, 2015). A 

second important issue is that we still do not understand the full extent as to how GDNF/Ret 

signaling leads do neuroprotection and regeneration.  

The crosstalk of GDNF/Ret signaling with the protein network encoded by genes found to be 

mutated in familial forms of PD or gene variants being risk factors for PD appears to be 

important in this context (Kramer and Liss, 2015, Blauwendraat et al., 2020). 

 

D) GDNF/Ret signalling crosstalk with PD-associated genes 

The products of PD-related genes are specifically implicated in distinct mechanisms including 

proteostasis, mitochondrial functionality, the autophagy-lysosome system and calcium 

homeostasis reviewed in (Michel et al., 2016). Therefore, they contribute to maintenance of 

DA cell viability. Neuroprotective and regenerative mechanisms converge with the pathways 

PD-related genes serve a function in, so that also the crosstalk between GDNF/Ret signaling 

with the protein network altered in PD is a very fruitful area to study. 

The first crosstalk of GDNF/Ret described with a PD linked gene was with DJ-1 (Parkinsonism 

associated deglycase) encoded by the PARK7 gene (Aron et al., 2010). DJ-1 is cleaved in a 

redox-dependent manner, inactivated by oxidation and functions as a chaperone, protease, 

and as a transcriptional and mitochondrial regulator to protect midbrain DA neurons against 

oxidative stress-induced apoptosis (Chen et al., 2010, Ariga et al., 2013). DJ-1 deficient mice 
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exhibit only 7% fewer DA neurons in the VTA and a normal numbers of SN DA neurons but 

are more sensitive to MPTP (Kim et al., 2005, Pham et al., 2010). Interestingly, aging mice 

lacking DJ-1 and Ret display an accelerated loss of G-protein-regulated inward-rectifier 

potassium channel 2 (Girk2) positive SN DA neurons innervating the striatum, but no change 

in the number of axons, compared to mice deficient of Ret only (Aron et al., 2010). In 

combination with fly data, it seems likely that DJ-1 and Ret also converge in mammals by 

activating the Ras/MAPK pathway to support midbrain DA neurons (Aron et al., 2010). Data 

from SH-SY5Y cells with some DA cell features suggest that DJ-1 is important to down-regulate 

the hypoxia-inducible factor-1α which negatively effects Ret protein levels (Foti et al., 2010). 

This suggests that DJ-1 and Ret crosstalk on two levels, they share the Ras/MAPK signaling 

pathway to maintain midbrain DA neurons and DJ-1 increases Ret protein levels which might 

also be important for DA neuron maintenance. 

A GDNF/Ret crosstalk with the PTEN-induced kinase (PINK1) encoded by the PARK6 gene has 

been found in flies and in SH-SY5Y cells and may also occur in mammals (Klein et al., 2014). 

PINK1 is a Ser/Thr kinase that accumulates on the outer mitochondrial membrane after 

sufficient loss of membrane potential, which allows for the recruitment and phosphorylation 

of parkin and ubiquitin (Pickrell and Youle, 2015). PINK1, together with parkin, initiates the 

degradation of damaged mitochondria by autophagy (mitophagy) but is also involved in 

controlling mitochondrial fission and motility (Pickrell and Youle, 2015). It has been shown 

that GDNF/Ret signaling can rescue PINK1 knockdown induced cell morphology and 

bioenergetics defects by improving electron transport chain complex I activity (Klein et al., 

2014). This suggests an important link as to how GDNF/Ret signaling and PINK1 can act in 

tandem to positively influence mitochondrial integrity. PINK1 deficient mice do not show DA 

cell or innervation loss and only a mild impairment of DA release and synaptic plasticity in the 
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striatum and an increased sensitivity to MPTP, which can be rescued by parkin and DJ-1 

overexpression (Haque et al., 2012, Kitada et al., 2007) (Gispert et al., 2009). It could be 

revealing to investigate in detail the crosstalk of PINK1 and Ret in PINK1 and Ret double 

deficient mice.  

GDNF/Ret seems to also crosstalk with the protein parkin (Meka et al., 2015). Parkin is an E3 

ubiquitin protein ligase encoded by the PARK2 gene and seems to mono- or polyubiquitinate 

proteins on the outer membrane of mitochondria upon cellular insults and mediates the 

clearance of damaged mitochondria via mitophagy (Seirafi et al., 2015, Pickrell and Youle, 

2015). Disappointingly, all parkin deficient mice do not show a clear DA cell loss phenotype 

but link PINK1 deficient mice reduced dopamine release and synaptic plasticity (Itier et al., 

2003, Kitada et al., 2009, Perez and Palmiter, 2005). In contrast to PINK1 deficient mice, Parkin 

deficient mice seem not to be more sensitive to MPTP and 6-OHDA (Perez et al., 2005). Mice 

deficient for parkin and Ret exhibit an accelerated DA neuron and axonal loss compared with 

parkin-deficient mice, which showed none, and Ret-deficient mice, which showed moderate 

degeneration (Meka et al., 2015). Consistent with a tight parkin and Ret crosstalk, parkin 

overexpression protected the midbrain DA system from degeneration in aged Ret deficient 

mice (Meka et al., 2015). Ret and parkin signaling was shown to be important for 

mitochondrial integrity by activating the pro-survival NF-κB pathway which was mediated by 

Ret through the phosphoinositie-3-kinase pathway (Kramer, 2015a, Kramer, 2015b, Meka et 

al., 2015). These data are encouraging that GDNF/Ret signalling might be able to target the 

frequently critically impaired mitochondrial function in sporadic and familial forms of PD. 

Different crosstalk pathways have been postulated for GDNF/Ret signaling and α-synuclein. 

Multiple copies of the gene SNCA (PARK1 und 4) encoding α-synuclein or mutations such as 

A30P or A53T have been found to lead to PD (Goedert et al., 2013). In two rat models 

https://en.wikipedia.org/wiki/Mitochondria
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overexpressing α-synuclein intranigrally via a lentiviral vector encoding a human A30P mutant 

from of α-synuclein (Lo Bianco et al., 2004) or via a recombinant AAV-encoding human wild 

type α-synuclein  (Decressac et al., 2011), GDNF exerted no positive effect on either DA 

neuron survival or motor function. It was hypothesized by the authors that α-synuclein caused 

repression of nuclear receptor related 1 (Nurr1), an upstream transcription factor of Ret, thus 

reducing Ret translation and limiting downstream signaling (Decressac et al., 2012)(Figure 1.). 

In PD patients showing frequently α-synuclein accumulation in Lewy bodies and Lewy neurites 

would also have downregulation of Nurr1 and Ret protein levels this could explain why GDNF 

has not been shown to be beneficial in clinical trials on PD patients (Barker et al., 2020). As 

mentioned previously, without the presence of Ret on midbrain DA neurons GDNF cannot 

elucidate its beneficial function (Drinkut et al., 2016). Decressac et al. presented data from 

SN sections of PD patient stained with anti-Ret antibodies and suggested a strong 

downregulation of Ret protein levels in PD midbrain DA neurons (Decressac et al., 2012). 

However other independent studies conducted on patients with Lewy bodies rodent did not 

find a reduction of Ret mRNA or protein levels (Walker et al., 1998, Backman et al., 2006, Su 

et al., 2017). Su et al. also used transgenic mice overexpressing either wild-type or doubly 

mutated A30P and A53T α-synuclein under regulation of the TH promoter, as well as AAV-

mediated α-synuclein transgenic rats and did not find alterations in Nurr1 and Ret mRNA and 

protein levels (Su et al., 2017). As suggested by Hoffer and Harvey (Hoffer and Harvey, 2011), 

it is possible that the α-synuclein concentration in the rat substantia nigra produced by the 

viral vectors was much greater than the levels observed in PD patients, making this rodent 

model not translatable to human pathology. This emphasizes the need for physiological and 

pathophysiological relevant α-synuclein animal models which recapitulate the PD pathology 

reliably. Since Ret seems to still bedetectable in remaining midbrain DA neurons in PD 
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patients, there must be other factors to explain the non-significant improvements of GDNF in 

clinical trials on PD patients. More research is needed to clarify the precise crosstalk of α-

synuclein and GDNF/Ret signaling. 

 

Concluding Remarks 

GDNF/Ret signaling appears to be an influential modulator of development and maintenance 

in midbrain DA neurons under both physiological and pathophysiological conditions including 

PD and Dementia with Lewy bodies (DLB). GDNF/Ret signaling has been shown to crosstalk 

with proteins encoded by familial PD-related genes. Although great progress has been made 

over recent decades to elucidate at least some mechanisms of GDNF/Ret signaling and their 

crosstalk with DJ-1, parkin and alpha-synuclein, work is still required to determine the 

crosstalk to other PD-related proteins such as LRRK2 and to study the detailed molecular 

mechanisms of the different crosstalks. As outlined above, GDNF and Ret can signal both 

together and independently of one another. Further investigation is encouraged for both of 

these signaling mechanisms, as differentiation as to which signaling mechanism is 

responsible for which process will be useful when developing and applying therapeutics 

against PD using Ret and/or GDNF signaling.    

The main task in this field is to reproduce findings where GDNF family members have shown 

to be beneficial in in vivo animal models, to show the same in human patients with diseases 

including PD and DLB.  GDNF/Ret signaling remains a promising avenue for research, 

particularly in the context of neurodegenerative diseases affective the midbrain DA system, 

including PD and DLB. In tandem with early diagnosis, GDNF stimulation to induce 

neuroprotection in dopamine neurons may hold promise as a potential preventative therapy. 
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For PD, signaling of Ret appears to be essential for midbrain DA neuron protection, 

maintenance and regeneration and GDNF may be only one of several Ret ligands in the 

midbrain DA system. Endogenous or artificial Ret activators could be exciting tools to be 

explored further in this context.  

 

 

 

Figure legend 

Figure 1. GDNF-Ret signaling in the midbrain dopamine system. A. A sagittal cross section of 

a human head with the brain visible. The cell bodies of the midbrain dopamine neurons are 

placed in the substantia nigra (SN) and the ventral tegmental area (VTA) B. The dopamine 

system within the brain. Red indicates dopamine neurons with cell bodies originating from 
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the ventral tegmental area (VTA). These neurons are affected in addiction and predominantly 

innervate the ventral striatum (telencephalic region shaded in gray), amygdala, cortex, and 

olfactory tubercle compacta. Purple indicates dopamine neurons with cell bodies originating 

in the substantia nigra (SN). These SN dopaminegric neurons preferentially die in Parkinson 

disease. Their axons predominantly innervate the dorsal striatum. C. A network of 

dopamine neurons of the SN innervating the striatum and cortex with feedback loops back 

onto dopamine neurons. D. A simplified dopamine synapse. It is visible that dopamine 

receptors are expressed both pre- and post-synaptically outside the synaptic cleft, with Ret 

and the dopamine transporters only expressed presynaptically. E. A summary of GDNF/Ret 

intracellular signaling cascades. Some proteins shown are encoded for by genes which are 

mutated in familial forms of Parkinson disease. For example, DJ-1 (PARK7) has involvement in 

GDNF/Ret signaling via the Ras/MAPK pathway to stimulate expression of Ret. α-synuclein 

(PARK1 and 4) has been proposed to have an inhibitory effect on the Ret transcription factor 

Nurr1, therefore reducing Ret expression. PINK1 (PARK6) in tandem with GDNF/Ret signaling, 

controls mitochondrial complex I regulation and morphology. PARKIN (PARK2) and GDNF/Ret 

also influence mitochondria by both stimulation of complex I activity and preserving 

mitochondrial integrity through the NF-κB pathway. 
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