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ABSTRACT 
 
 

UNDERSTANDING THE ROLE OF DMOB4 IN POSTEMBRYONIC NEURAL STEM 

CELL MITOTIC REACTIVATION 

 
Eleanor Gonzaga 

 
 

Brain homeostasis supports cognition and neural plasticity, the brains’ ability to adapt 

to its environment throughout life. These processes rely on replenishment from stem 

cells in the brain, termed Neural Stem Cells (NSCs). In the adult brain, most NSCs 

exist in a quiescent state and must activate to generate new neural progeny. 

Understanding how NSCs balance quiescence and activation is crucial for the 

development of brain repair therapies. Drosophila NSCs, termed neuroblasts (NBs), 

are a model to study reactivation from quiescence. The Hippo and Insulin pathways 

were reported to promote NB quiescence and reactivation, respectively. However, the 

underlying mechanisms are not fully understood. This thesis describes my 

investigation of Monopolar spindle-one-binder 4 (Mob4), a member of the highly 

conserved Striatin-Interacting Phosphatase and Kinases (STRIPAK) complex, 

identified by our laboratory in a transcriptome analysis comparing quiescent and 

reactivating NBs. I show that Mob4 is upregulated in reactivating NBs, and its loss 

prevents NB reactivation. Mob4 overexpression accelerates reactivation, which can be 

mimicked by human MOB4 expression, suggesting a conserved function. I provide 

evidence that Mob4 acts primarily cell-autonomously in pNBs and demonstrate that 

inactivation or activation of Hippo and Insulin signalling, respectively, in mob4 pNBs 

can restore reactivation. Finally, I show that Mob4 cooperates with another STRIPAK 

member, Cka, to promote pNB reactivation, whereas PP2A phosphatase with its 

regulatory subunit Widerborst maintains NB quiescence. My results, together with 

data from our group, lead to a model whereby Mob4 and other STRIPAK members 

assist the coordination of Insulin and Hippo pathways to promote NB reactivation. 

Given the evolutionary conservation of the molecules investigated, my findings may 

also be relevant to mammalian NSCs and other stem cells. 
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CHAPTER 1  

INTRODUCTION 

 
1.1. Neural stem cells, the progenitors of the central nervous system 
Stem cells are multipotent, self-renewing cells capable of making differentiated 

progeny, providing a homeostatic function to the tissue in which they reside (Li and 

Clevers, 2010; Cheung and Rando, 2013). Neural Stem Cells (NSCs) are the 

progenitor cells of the central nervous system (CNS), defined by their ability to self-

renew and generate further committed progeny, such as neurons and glia (astrocytes 

and oligodendrocytes). It is the NSCs which are responsible for generating the 

enormous cell number and diversity of neural tissue which animals rely on for CNS 

functions including learn- ing, memory formation and plasticity (Blau et al.,  2001; 

Sahay et al.,  2011; Spalding et al.,  2013; Eichenbaum, 2004). Thus, it is imperative 

that the correct type and number of these cells are generated at the correct time points 

(Cheung and Rando, 2013). Understanding the mechanisms controlling NSCs which 

are affected by various physiological and environmental factors could be the leading 

avenue for the development of new therapies against a variety of brain disorders.  

 

The process by which NSCs generate new neural cells is called neurogenesis (Alt- 

man,1962). NSCs exist during embryonic development and adulthood. Embryonic 

NSCs are multipotent and generate multiple subtypes of neural cells. The earliest 

NSCs are called neuroepithelial progenitors (NEPs) and, in vertebrates, these reside 

in the neural tube, which arises from the neuroectoderm during embryogenesis. NEPs 

give rise to NSCs in a spatially and temporally controlled manner (Temple, 2001;  

Alvarez-Buylla et al.,  2009). NEPs initially undergo symmetric division to expand the 

NSC pool, but later switch to asymmetric divisions to self-renew and give rise to a 

post-mitotic neuron or an intermediate progenitor cell (IPC) (Temple, 2001; Mori et al.,  

2005; Kriegstein and Alvarez-Buylla, 2009; Anthony et al.,  2004). During this time, the 

embryonic NSCs acquire astrocyte-like properties and are termed radial glial cells 

(RGCs), based on their radial processes and morphological resemblance to astrocytes 

(Mori et al.,  2005). IPCs, located in the subventricular zone (SVZ), eventually generate a 

pair of post-mitotic neurons via symmetrical division (Noctor et al.,  2004). The 
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neurons generated migrate vast distances in the developing cortex using RGCs as 

contacts or scaffolds (Kriegstein and Alvarez-Buylla, 2009). RGCs and IPCs become a 

significant source of neural cells; RGCs expand the cortex tangentially, and IPCs fill the 

cortical layers radially to create the functional CNS. The CNS generated during 

embryogenesis was thought to be complete and therefore last an adult mammalians’ 

lifetime, incapable of generating new neural tissue for regeneration or repair (Ramón y 

Cajal, 1909). However, this was overturned by a growing body of evidence showing 

multipotent NSCs within distinct niches of the adult mammalian CNS (Reynolds and 

Weiss, 1992; Richards et al.,  1992; Gage and Fisher, 1995; Eriksson et al.,  1998; 

Gould et al.,  1999a; Gould et al.,  1999b; Fuentealba et al., 2012; Fuentealba et al., 

2015).  

 
1.2. Adult NSCs and neurogenesis in mammals 
 
Adult neurogenesis is the formation, maturation and integration of new neurons into 

the existing circuitry. It was previously believed that the mammalian brain lacked adult 

neurogenesis and was, therefore, incapable of regeneration or repair (Ramón y Cajal, 

1909). However, in the 1960s, Joseph Altman discovered the first evidence of adult 

neurogenesis - the source of adult-born olfactory neurons, in adult rat and guinea pig 

brains using 3H-thymidine autoradiography (Altman, 1962; Altman, 1963; Altman, 

1969). In the 1990s, adult neurogenesis was demonstrated in-vitro using mammalian 

NSCs (Reynolds and Weiss, 1992) and in the adult rat brain (Gage and Fisher, 1995). 

The excitement was propagated by evidence of adult neurogenesis obtained in the 

human brain using bromodeoxyuridine (BrdU) and specific neuronal markers such as 

NeuN (Eriksson et al.,  1998). One year later, Elizabeth Gould showed that 

neurogenesis contributes to the adult macaque neocortex (Gould et al.,  1999). Due to 

the growing body of evidence, neurogenesis in humans is now generally 

acknowledged  (Abdissa, 2020). 

 

Unlike embryonic NSCs, which are the highly proliferative, adult NSCs (aNSCs) have 

been shown in mammalian models to be mostly quiescent and restricted to only a few 

neurogenic regions. Most notably are the subgranular zone (SGZ) of the hippocampal 

dentate gyrus (DG), and the subventricular zone (SVZ) lining the lateral ventricles 

(Figure 1.A). Both regions contain an environment or ‘niche’ which provides a tightly 
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controlled microenvironment to regulate the residing aNSCs. Two non-canonical sites 

of adult neurogenesis have also been reported in the striatum and the hypothalamus 

(Figure 1.A). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1. Mammalian neurogenic regions and NSC lineages. A. A schematic representation of a 

mouse brain with the neurogenic regions outlined. Neurogenesis in the subgranular zone (SGZ) of the 

hippocampus produces mature granule neurons for the dentate gyrus (DG). Neurogenesis in the 

subventricular zone (SVZ) produces neuroblasts which migrate through the rostral migratory stream 

(RMS) to the olfactory bulb (OB). The SGZ and the SVZ are known as classical neurogenesis regions. 

Two non-canonical sites of neurogenesis are the hypothalamus and the Striatum. B. The SGZ NSC 

lineages and C. the SVZ NSC lineages and common markers used to distinguish them. Molecular layer 

(ML); Granule cell layer (GCL); Radial glial cell (RGL); Glial fibrillary acidic protein (GFAP); Achaete-

scute homolog 1 (ASCL1); Sex determining region y-box 2 (Sox-2); Neuronal Differentiation (NeuroD); 

Doublecortin (DCX); Prospero homeobox 1 (Prox1); Intermediate progenitor cell (IPC); Cerebral spinal 

fluid (CSF); Ependymal Zone (EZ); blood vessels (BV). 

 
 

1.2.1. aNSCs in the hippocampus 
In mammalian adult brain models such as in mice and rats, aNSCs in the SGZ of the 

hippocampus generate mature granule cells of the DG (Figure 1.1. A), an area critical 

for learning and memory (Song et al.,  2012a). The DG of the hippocampus has three 

distinct layers; the molecular layer, the granule layer and the SGZ (Figure 1.1. B). 
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Three types of aNSCs exist in the dentate gyrus: self-renewing ‘Type 1 NSCs’; ‘Type 

2’ amplification cells; and migratory ‘Type 3 cells/neuroblasts’ which give rise to 

granule cells/neurons. In the DG, aNSCs follow a characterised, multistep lineage 

development and are identifiable by a subset of temporally expressed markers 

(summarised in Figure 1.1. B). ‘Type 1’/Radial glia-like (RGL) NSCs resemble RGCs 

of the embryonic brain and reside at the border of the granulate layer. These cells 

usually exist in a quiescent (G0) state and rarely divide, favouring asymmetric division 

if they are activated (Kemperman, 2011). They extend an elongated radial process 

through the granule cell layer (GCL) to the molecular layer (ML) and have a cilium in 

contact with blood vessels and cerebrospinal fluid (Kemperman, 2004). Two 

populations of Type 1 NSCs exist in the hippocampus. Both populations express Sex 

determining region y-box 2 (Sox-2), but one is a quiescent RGL population expressing 

Nestin and Glial fibrillary acidic protein (GFAP); and another population, of non-radial 

glia-like cells, are more proliferative (active) and lack radial-glia-like markers (Suh et 

al.,  2007). RGL NSCs give rise to two ‘Type 2’ intermediate progenitor cell (IPC) 

subgroups: Type 2a/non-radial- precursors (NRPs) express Achaete-scute homolog 1 

(ASCL1); Type 2b/intermediate progenitor cells (IPCs) do not express ASCL1 and are 

further committed. After a limited round of division, Type 2b IPCs exit the cell cycle 

and terminally differentiate into astrocytes and neurons (Ming and Song, 2011; 

Bonaguidi et al., 2011). Both Type 2 populations are relatively active, have limited 

divisions, demonstrate short processes and differentially express migration and 

neuronal markers (Kempermann et al.,  2004; Encinas et al.,  2011). Type 3 

cells/neuroblasts tangentially migrate through the SGZ, lack previous lineage markers 

(Nestin, Sox2, GFAP) and express Neuronal Differentiation 1 (NeuroD) and Prospero 

Homeobox 1 (Prox1) to give rise to immature granule cells/neurons. The immature 

granule cells/neurons migrate radially into the GCL, mature and differentiate into 

dentate granular cells/neurons. After 7-8 weeks, they integrate into the hippocampal 

circuitry (Göritz and Frisén, 2012; Jessberger and Kempermann, 2003) and contribute 

to hippocampus-associated learning/memory (Kempermann et al.,  2015). It has been 

estimated that the young rat hippocampus produces approximately 9000 new cells 

every day (Cameron and McKay, 2001), with ~30% of these cells (~800) thought to 

survive past four weeks and develop dendritic and axonal structures required for 

proper functioning (Snyder and Cameron et al.,  2009; Sailor et al., 2017; Sun and 

Song et al.,  2013). Defects in hippocampal neurogenesis are linked to brain-related 
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disorders, for example, depression, impaired spatial learning and memory, pattern 

separation and mood regulation (Clelland et al., 2009; Hill et al.,  2015; Lee et al., 

2013; Anacker, 2014; Anacker and Hen, 2017; Apple et al.,  2017; Oppenheim, 

2019). 

 
1.2.2. aNSCs in the subventricular zone 
The subventricular zone (SVZ) is located next to the lateral ventricles and is the largest 

germinal region in the adult brain (Obernier and Alvarez-Buylla, 2019; Lim and 

Alvarez-Buylla, 1999; Doetsch et al.,  1999). The SVZ is a thin layer of proliferating 

cells located along the ependymal cell layer/zone (EZ), which separates the 

ventricular space (VS) from the SVZ (Figure 1.1. C); at the edge of the striatum 

(Figure 1.1. C). SVZ aNSCs arise from striatal radial glia and function to continually 

give rise to oligodendrocytes, astrocytes and olfactory bulb (OB, in rodents) or striatal 

interneurons (in humans) (Lim and Alvarez-Buylla, 2016; Obernier and Alvarez-

Buylla, 2019; Ming and Song, 2016). Overall, the SVZ contains four cell types: Type 

B/RGL cells (NSCs); Type C/transient amplifying cells (TACs); Type A 

cells/neuroblasts, and multiciliated ependymal cells, which produce and circulate 

cerebral spinal fluid (CSF), essential for the niche (Figure 1.1. C). 

 
Type B/RGL NSCs have a radial/astrocyte-like morphology, extend an apical process 

with a primary cilium through the EZ and into the VS, and a basal process which 

terminates on the blood vessels (BVs) (Mirzadeh et al.,  2008). Type B/RGL NSCs of 

the SVZ express stem cells markers such as GFAP, Nestin and Sox2 (Liu et al.,  

2006; Zhang and Jiao, 2015). Type B/RGL NSCs are not described as quiescent but 

do divide slowly to produce highly proliferative type C/TACs (Doetsch et al.,  1999; 

Zhang and Jiao, 2015), also known as the progenitors of the SVZ. The Type C/TACs 

lack GFAP expression but do express Nestin, Sox2 and ASCL1 (Kempermann, 2011; 

Zhang and Jiao, 2015). After multiple rounds of divisions, TACs become Double cortin 

positive (DCX+) type A cells/neuroblasts. These neuroblasts form a chain and 

migrate radially along the rostral migratory stream (RMS) to the olfactory bulb (OB), 

and differentiate into dopamine and GABA-producing interneurons that integrate into 

the OB circuitry (Ming and Song, 2011; Zhu et al.,  2018). The OB receives an 

estimated 30,000 new neuroblasts every day (Lois and Alvarez, 1994), with ~40% of 

these cells (12,000) surviving past four weeks and effectively integrating into the 
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circuitry (Mouret et al.,  2008). SVZ neurogenesis is linked to olfactory function and 

learning (Lledo et al.,  2006; Bragado et al., 2019), and decreased SVZ neurogenesis 

causes impaired odour discrimination (Valley et al.,  2009; Sahay et al.,  2011). SVZ 

proliferation and differentiation are altered in response to stroke/ ischemia, whereby 

SVS aNSCs and neuroblasts are redirected to the injury site and can directly or 

indirectly generate the appropriate neural cells towards attempt repair (Arvidsson et 

al.,  2002; Zhang et al.,  2004; Zhang et al.,  2008b; Faiz et al.,  2015). Reduced SVZ 

neurogenesis is linked to neurodegenerative diseases in rodents (Curtis et al.,  

2007b; Rodríguez and Verkhratsky, 2011; Winner and Winkler, 2015; Scopa et al.,  

2019; Sung et al., 2020).  

 
1.2.3. Non-canonical adult NSC niches: striatum and hypothalamus 
The striatum is located in the subcortical basal ganglia of the forebrain and is a 

significant input area for the basal ganglia and critical to the reward system (Figure 
1.1. A). Local astrocytes in the mouse striatum can produce new neurons in response 

to stroke (Magnusson et al.,  2014). Striatal adult neurogenesis has been observed in 

adult humans (Bergmann et al.,  2012; Ernst et al.,  2014; Wang, C.  et al., 2014; Wang et 

al.,  2011), where it continually gives rise to interneurons (Ernst et al.,  2014); and 

neuroblasts in the SVZ are observed to migrate to the striatum in humans (Ernst et 

al.,  2014). The striatum is associated with motor function, cognitive flexibility, cognitive 

function and, more recently, schizophrenia pathology (Simpson et al.,  2010; Ernst 

and Frisén, 2015). Impaired striatal neurogenesis is observed in patients with 

Parkinson's disease (Ernst et al.,  2014); the striatal cell death found is thought to 

induce SVZ growth to aid migration via the caudate nucleus (Curtis et al.,  2007a). 

However, as decreased neuronal production has been observed in Parkinson's 

disease patients, it suggests that the increased neuronal migration is insufficient to 

replenish the lost neurons (Ernst et al.,  2014). Also, the striatum is associated with 

Huntington's disease, whereby striatal adult-born neurons are selectively depleted 

(Ernst et al.,  2014). Although there are currently fewer studies on striatal 

neurogenesis compared to other neurogenic regions, there is growing evidence for its 

importance. 

 
Most recently, adult neurogenesis has also been observed in the hypothalamus, a 
small area and the organisms’ homeostatic regulator (Figure 1.1. A). It was first shown 
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that cells from the hypothalamic VZ could generate neurospheres in-vitro (Weiss et 

al.,  1996). Later it was reported that the tanycytes (hypothalamic RGCs) function as 
neural precursors (Robins et al.,  2013; Xu et al.,  2005; Haan et al.,  2013; Lee et al.,  

2012). Tanycytes resemble embryonic neural progenitors and are exposed to CSF 

(Bolborea and Dale, 2013; Rodríguez et al.,  2005). They extend one or two apical cilia 
into the VZ and a long basal process into the parenchyma or pial surface, depending 

on location. Much like the NSCs in the SVZ and SGZ, tanycytes are reportedly 
influenced by diet and also regulate weight gain (Niwa et al.,  2016; Lee et al., 2014; 

Whalley, 2012); hypothalamic adult neurogenesis helps regulate body weight and 

energy balance by replacing degenerated neurons (Pierce and Xu, 2010; McNay et 

al.,  2012). Overall levels of hypothalamic adult-born neurons are low compared to the 

other neurogenic niches (Lee and Blackshaw, 2014), which adds difficulty in exploring 

the functional significance of hypothalamus neurogenesis. 

 
It is becoming clear that adult neurogenesis in areas of the mammalian brain, 

canonical and non-canonical, offer advantages; and its deregulation is associated 

with cognitive disadvantages. How exactly adult neurogenesis is achieved, the 

pathways and regulators involved, and therapeutic advantages are significant 

questions in stem cell biology. 

 
1.3. Quiescence and activation of aNSCs 
Mammalian aNSCs interconvert between actively proliferating and temporary 

quiescent states. The transition is regulated by a variety of extrinsic and intrinsic cues, 

which we are only beginning to understand (Basak et al., 2012; Basak et al., 2014;  

Basak et al.,  2018; Costa et al.,  2011; Giachino et al.,  2014; Ziebell et al.,  2018; 

Velthoven and Rando, 2019; Morales and Mira, 2019; Mohammad et al., 2019). 

Below, I describe some of the key literature contributing to our current knowledge of 

aNSC quiescence and activation. 

 
1.3.1 aNSCs are actively maintained in cellular quiescence but can reactivate in 
response to appropriate signals 
Quiescence is a highly conserved, reversible cell cycle arrested state. Most of our 

knowledge on cell quiescence comes from Saccharomyces cerevisiae, Schizo- 

saccharomyces pombe, and Escherichia coli (Werner-Washburne et al.,  1993; Lillie 
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and Pringle, 1980). Stem cell quiescence is conserved in mammals across various 

tissues such as skin, gut and brain and all share commonalities: decreased 

transcription of cell-cycle progression genes increased expression of genes involved 

in suppressing apoptosis, differentiation and senescence, a decreased cell size, 

stress resistance, condensed chromosomes and elevated autophagy (Cho et al., 

2019; Velthoven and Rando, 2019). The quiescent state was first observed in-vitro in 

1951 and later observed in unicellular and multicellular organisms (Dubrovsky, 2003; 

Velthoven and Rando, 2019; Howard and Pelc, 1986). In mammals, during G1, 

before committing to mitosis, somatic cells may withdraw from replication and enter 

quiescence (Pardee, 1974). Quiescent aNSCs (qaNSCs) only rarely divide, making 

them challenging to label using lineage-tracing methods labelling dividing cells only. 

Quiescence allows increased longevity, tolerance to metabolic stress, and ultimately 

acts to preserve the stem cell pool, maintaining tissue homeostasis. Previously, 

quiescent NSCs were thought to exhibit little activity; however, it is now regarded as 

an actively ‘restrained’ state. These ‘poised’ quiescent somatic cells are ready for 

activation in response to appropriate stimuli to regenerate tissue. Cell-extrinsic stimuli 

such as nutrition, exercise, stress, and cell-intrinsic epigenetic, transcriptional and 

post-transcriptional mechanisms regulate quiescence (Cheung and Rando, 2013). 

 
The heterogeneity and dynamics of aNSCs populations have made qaNSCs 
challenging to study. Quiescence was previously assumed based on low RNA levels, 

poor label-retaining ability and lack of proliferation markers such as Proliferating cell 

nuclear antigen (PCNA), Ki67 and phospho-histone H3 (PH3). The last decade has 

provided technology to study qaNSCs such as in-vivo imaging, clonal lineage tracing, 

fluorescence-activated cell sorting (FACS), whereby subpopulations of aNSCs can be 

purified and subjected to a microarray, and single-cell RNA sequencing (Ming and 

Song, 2014; Bonaguidi et al.,  2011; Shin et al.,  2015; Marcy, G. and Raineteau, 

2019). The advancement has allowed a single-cell transcriptomic analysis of qaNSCs 

and activated aNSCs cells at population and cell level. Multiple studies show that 

aNSCs (RGLs) are actively maintained in quiescence (Codega et al.,  2014; Llorens-

Bobadilla et al.,  2015; Dulken et al.,  2017; Velthoven and Rando, 2019). Mammalian 

qaNSCs can be identified by specific markers such as GFAP, Sox2, and Nestin. They 

appear smaller in size with a more radial morphology and favour glycolytic and lipid 

metabolism compared to active NSCs (Alvarez-Buylla et al.,  2001; Llorens-Bobadilla 
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et al.,  2015; Shin et al.,  2015; Renault et al.,  2009). Interestingly, most aNSCs exist 

primarily in a quiescent state (Codega et al.,  2014; Llorens-Bobadilla et al.,  2015).  

 

aNSC quiescence is described to enhance stress resistance, defends against 
deleterious gene mutations and exhaustion to secure the NSC pool (Urbán and 

Guillemot, 2014); it is therefore tightly regulated by extracellular and intracellular 

signals. The neurogenic niche communicates the needs of the organism to the 

qaNSCs, including via the vasculature and CSF, which are in contact with the NSC 

basal and apical processes, respectively. Extracellular receptor activation can lead to 

the activation of intrinsic factors such as signal transduction pathways, transcription 

pathways, metabolism and epigenetic modifications. These extrinsic/intrinsic 

mechanisms crosstalk and feedback on each other to modulate aNSC cellular activity 

within the neurogenic niche (Otsuki and Brand, 2017; Faigle and Song, 2013; Ming 

and Song, 2015; Tian et al.,  2018; Chaker et al.,  2016; Cavallucci et al.,  2016). Many 

studies describe the effects of molecules and signalling pathway that enhance 

neurogenesis and NSC proliferation in general., Below, I provide examples of 

molecules and pathways implicated in aNSC quiescence, specifically. 

 
Notch signalling regulates tissue homeostasis and cell-fate determination throughout 

development. Direct cell-cell contact is required as the transmembrane Notch receptor 

is activated by binding to its neighbouring cell via Delta or Jagged ligands (Ables et 

al.,  2011). Notch regulates aNSCs by stimulating cell-cycle exit and decreasing the 

neural progenitor pool (Hitoshi et al.,  2002; Imayoshi et al.,  2010; Ehm et al.,  2010). 

Notch signalling has also been shown to maintain aNSCs in quiescence by repressing 

genes associated with the cell cycle and inhibiting differentiation (Ottone et al.,  2014; 

Engler et al.,  2018) and via the Delta-like 1 (Dll1) ligand as a homeostatic feedback 

mechanism (Kawaguchi et al.,  2013). Recently, a downstream target of the Notch 

pathway, Id4, was shown to maintain quiescence of hippocampal NSCs (Zhang et al.,  

2019). Cell-cell contact is required for signalling pathways such as Notch, and cell 

adhesion molecules that help position NSCs, such as vascular cell adhesion molecule- 

1 (VCAM1) and the laminin receptor α6β1-integrin; support NSC quiescence (Kokovay 

et al.,  2012; Shen et al.,  2008). 

 
Bone morphogenetic protein (BMPs) growth factors/BMP signalling has been shown 
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to regulate mammalian neurogenesis (Wang, R. et al., 2014; Lim et al.,  2000; 

Bonaguidi et al.,  2008; Mira et al.,  2010; Ming and Song, 2015; Mira et al.,  2016; 
Joppé et al.,  2015; Morell et al.,  2015). BMP restricts proliferation; BMP inactivation 

was shown to promote aNSC proliferation but later caused decreased proliferation and 

production of new neurons (Mira et al.,  2016). However, this study partially contradicts 
other studies (Bonaguidi et al.,  2008; Gobeske et al.,  2009; Bond et al.,  2012) which 

did not find any subsequent loss in NSC proliferation or new neuron production. 
Bonaguidi et al. showed that overexpressing the BMP antagonist, Noggin, gave rise 

to increased numbers of proliferative GFAP+ NSCs in-vitro, and in the mouse SGZ 

(Bonaguidi et al., 2008). Interestingly, Noggin is secreted by ependymal cells and aids 
NSC activation (Lim et al.,  2000). Also, the anti-proliferative effects of BMP signalling 

are dominant over the pro-proliferative signalling molecule, EGF, in-vitro and in-vivo 

(Joppé et al.,  2015). Further studies are therefore needed to elucidate the function of 
BMP signalling on aNSCs. 

 
Several transcription factors promote aNSC quiescence, for example, the Nuclear 

factor one (NFI) family member NFIX is expressed during aNSC quiescence, and 

activation, but is upregulated in quiescent aNSCs compared to activated aNSCs; 

NFIX directly activates quiescence-promoting genes, and loss of NFIX leads to a loss of 

aNSC quiescence (Martynoga et al.,  2013).  

 

The Repressor Element 1-Silencing Transcription factor (REST) regulates unique 

aspects of neural development embryonically and postembryonically (Ballas et al.,  

2005; Mukherjee et al.,  2016; Gao et al.,  2011; Gao et al., 2012). REST has been 

shown to bind and control the expression of different gene targets in a developmental 

and cell-context dependent fashion (Ballas et al.,  2005; Mukherjee et al.,  2016; Gao 

et al.,  2011). REST is highly expressed in embryonic pluripotent stem cells (ES 

cells), and its expression decreases via post-translational degradation as these cells 

develop into NSCs. REST is completely transcriptionally repressed in mature neurons 

(Ballas et al.,  2005). In the transition from pluripotent ES to NSCs, the expression of 

REST is thought to be just enough to maintain neuronal gene chromatin inactive, 

whereas as progenitors neural cells differentiate into neurons, REST together with its 

co-repressors dissociate from their DNA target binding sites, allowing activation of 

neuronal genes (Ballas et al.,  2005). Postembryonically, REST is required to 
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maintain aNSC quiescence, and to prevent neurogenesis over time (Mukherjee et al.,  

2016; Gao et al.,  2011). Mukherjee et al. found that conditional deletion of REST in 

adult mouse hippocampal quiescent aNSCs results in their premature mitotic 

activation. Furthermore, its deletion from adult neural progenitors (transient amplifying 

cells, TAPs) led to increased TAP proliferation as well as increased numbers of 

resulting immature and mature neurons. The authors concluded that REST deletion 

from TAPs activated the neuronal differentiation program (Mukherjee et al.,  2016). 

The same laboratory team used genome-wide chromatin immunoprecipitation 

sequencing (ChIP-seq) and RNA-sequencing profiling to identify REST binding sites 

and targets, and found, not surprisingly, that many were neuronal genes (Mukherjee 

et al.,  2016). 

 

Furthermore, the transcription factor Forkhead Box O3 (FoxO) promotes aNSC 

quiescence; loss of FoxO leads to an initial rise in aNSC proliferation but an overall 

depletion of the stem cell pool (Paik et al.,  2009; Renault et al.,  2009; Santo and 

Paik, 2018). FoxO is inhibited by AKT, the downstream component of the conserved 

Insulin signalling/Insulin-like growth factor (IGF) pathway (Tzivion et al., 2011). Also, 

within this pathway, upstream of AKT is the phosphatase and tensin homolog (Pten) 

which is also required for NSC quiescence (Bonaguidi et al.,  2011). The tumour 

suppressor, Pten, maintains NSC quiescence by suppressing self-renewal and 

regulating the G0-G1 transition cell cycle entry; Pten depletion causes NSC activation 

from quiescence and depletion of the NSC pool (Bonaguidi et al.,  2011). In addition 

to Pten, other cell cycle regulators include the cyclin-dependant kinase inhibitors p27 

and p57 which are expressed in non-dividing aNSCs and inhibit the cell cycle from 

maintaining the NSC pool; depletion of which leads to loss of NSC quiescence and 

increased neurogenesis (Andreu et al.,  2015; Furutachi et al.,  2013). 

 
Some neurotransmitters are also known to promote aNSC quiescence. Gamma-

aminobutyric acid (GABA) and its precursor glutamate create a negative feedback 

mechanism (Liu et al.,  2005) and promote quiescence by preventing aNSC-cycle 

progression (Fernando et al.,  2011); decreasing GABA signalling causes aNSCs to 

exit quiescence (Song et al.,  2012b). Pineda and colleagues found that using a 

GABA antagonist caused activation of quiescent NSCs (Pineda et al.,  2013). 

Vascular-derived growth factors also maintain NSC quiescence. The endothelial-
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derived neurotrophin- 3 (NT-3) mediates quiescence; NT-3 mutant mice showed 

higher aNSCs proliferation and increased number of neural cells (Delgado et al.,  

2014). Recently, Zhou et al. showed that Milk fat globule-epidermal growth factor 

(Mfge8), otherwise known as lactadherin, promotes quiescence via mTOR signalling 

and its deletion causes NSC depletion and decreases neurogenesis (Zhou et al.,  

2018). 

 

Lastly, the secreted glycoprotein Protein S (Pros1) maintains quiescence by 

mediating Notch expression and activity; loss of Pros1 in aNSCs leads to increased 

proliferation (Zelentsova-Levytskyi et al.,  2017). Interestingly, in Pros1 knockout 

mice, the increase in aNSC proliferation leads to an enriched aNSC pool and does 

not lead to aNSC pool depletion up to one year of age (Zelentsova-Levytskyi et al.,  

2016).  

 
The mechanisms governing aNSC quiescence are still being elucidated. Figure 1.2 
summarises some of the known involved factors and molecular mechanisms 

mentioned above. Variable states (or levels) of quiescence have also been identified, 

suggesting there is a ‘gradient’ of quiescence from ‘dormant’ to ‘primed’ (Llorens-

Bobadilla et al.,  2015). This has also been observed in other adult stem cell systems 

(Rodgers et al.,  2014; Malam et al.,  2014; Zismanov et al.,  2016). aNSCs may also 

differ in their ability to return to quiescence after initially activating (Urbán et al.,  2016). 

In this study, a ‘resting’ population and a ‘dormant’ population of qNSCs was 

described (Urbán et al.,  2016). The majority of the stem cells are ‘dormant’ and 

thought to have never divided, whereas the resting population are fewer in number 

and have previously activated but returned to quiescence; the latter pool is essential 

for adult neurogenesis (Urbán et al.,  2016). 

 

There is increasing evidence of heterogenic populations of quiescent aNSCs. Contrary 

to the long-held belief that quiescent stem cells are arrested in the G0 phase of the cell 

cycle, emerging evidence suggests NSCs can be arrested in G2 and that the latter are 

more readily reactivated than NSCs in G0 (Otsuki and Brand, 2018). Deregulation of 

quiescence or activation from quiescence can lead to impaired homeostasis. How 

precisely the NSCs are maintained in quiescence, as well as how they can be 
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activated are essential questions in stem cell biology with implications for therapeutic 

strategies, which remain to be fully elucidated. 

 
1.3.2. Mitotic activation of quiescent aNSCs 
aNSCs exit from quiescence and entry into an active proliferative state requires tight 

coordination between the extracellular signals from the neurogenic niche and intrinsic 

factors. For example, one of the vascular endothelial growth factor (VEGF) receptors 

are expressed by aNSCs; VEGF receptor activation causes activation from 

quiescence (Han et al.,  2015). Significant evidence shows a variety of external 

stimuli can modulate mammalian adult neurogenesis, and specifically the activation of 

aNSCs. For example, aNSCs were shown to become activated upon brain injury 

(Wang et al.,  2016; Chang et al.,  2016; Llorens-Bobadilla et al.,  2015), ischemia 

(Nakatomi et al.,  2002; Nemirovich-Danchenko and Khodanovich et al.,  2019), and 

medial temporal lobe epileptic seizures (Parent et al.,  1997). Although a great deal of 

literature exists surrounding the regulation of mammalian NSC proliferation and other 

stages of neurogenesis (Recently reviewed by Obernier and Alvarez-Buylla, 2019; 

Morales and Mira, 2019; Petrik and Encinas, 2019), there is less understanding about 

the process of NSC activation from quiescence specifically. The few factors that have 

been identified to regulate this process are described below. 

 
One of the identified aNSC activators is the basic helix-loop-helix (bHLH) transcription 

factor, Achaete-scute-like 1 (ASCL1), also known as Mash1. ASCL1 is a mammalian 

proneural gene (Guillemot and Hassan, 2017; Guillemot, 2007) which has been 

associated with NSC activation in multiple studies (Llorens-Bobadilla et al.,  2015; 

Dulken et al.,  2017; Basak et al.,  2018). ASCL1 is required throughout mouse 

embryogenesis to promote neuronal fate and progenitor proliferation (Castro et al.,  

2011; Bertrand et al.,  2002), and has been observed in the developing human 

neocortex suggesting a conserved function (Hansen et al.,  2010). Postembryonically, 

ASCL1 is famously required for NSC activation from quiescence and neurogenesis 

but is also expressed in quiescent NSCs, although at low levels (Anderson et al.,  

2014). ASCL1 loss blocks quiescent NSC activation, the production of new neurons 

and causes a depletion of the stem cell pool (Anderson et al.,  2014). ASCL1 can also 

promote NSC cell-cycling by activating pro-proliferative genes such as Cyclin D1 

(Castro et al.,  2011; Urbán et al.,  2016). 
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ASCL1 is regulated by Notch signalling; Notch inactivation causes ASCL1 

upregulation (Anderson et al.,  2014). Hairy and enhancer of split 1 (Hes1), a 

transcriptional repressor and downstream target of the Notch pathway, inhibits 

ASCL1 in embryonic NSCs (Shimojo et al.,  2008; Imayoshi et al.,  2013) and adult 

mammalian NSCs (Sueda et al.,  2019). Sueda and colleagues showed that Hes1 

expression oscillates in both quiescent and activated NSCs; however, more so during 

quiescence to subsequently periodically suppress ASCL1 expression (Sueda et al.,  

2019). Hes1 levels were higher in quiescent NSCs compared to active NSCs. High 

Hes1 expression maintained adult NSC quiescence and oscillating ASCL1 expression 

controlled NSC activation, whereas continued ASCL1 expression controlled 

differentiation (Sueda et al.,  2019). Inactivating Hes1 lead to more ASCL1 expression 

and subsequent NSC activation from quiescence but also decreased overall 

neurogenesis (Sueda et al.,  2019). 

 

ASCL1 is also controlled via post-translational modification by the ubiquitin ligase 

Huwe1 that stimulates ASCL1 degradation, causing more NSC activation from 

quiescence (Urbán et al.,  2016). Inactivating Huwe1 increases ASCL1 stability and 

causes the overproliferation of NSCs, which are unable to return to quiescence 

(Urbán et al.,  2016). In embryonic NSCs, both AKT (Oishi et al.,  2009) and cyclin-

dependant kinases (Ali et al.,  2014) promote or inhibit ASCL1 function, respectively. 

Given the role of Insulin signalling in promoting adult neurogenesis, it would be 

interesting to investigate its activity upon ASCL1 and NSCs activation. 

 
Another intrinsic regulator of NSC activation is the Orphan-Nuclear receptor (TLX), 

also known as Nr2e1 and Tailless, belongs to a family of intracellular transcription 

factors involved in embryonic patterning (Monaghan et al.,  1995). TLX is part of a 

superfamily of nuclear hormone receptors which recruit corepressors to cause 

transcriptional repression of target genes (Niu et al.,  2011; Wang and Xiong,  2016; 

Wang et al.,  2013). Although TLX is expressed during embryonic development, after 

initially declining, TLX expression later increases to peak within the adult mouse brain 

(Monaghan et al.,  1995). Postembryonically, TLX is expressed highly in the stem 

cells of neurogenic niches and maintains adult NSCs self-renewal capacity and its 

overexpression or deletion results in enhanced neurogenesis or reduced NSC 



29  

proliferation, respectively (Murai et al.,  2014; Shi et al.,  2004; Li et al.,  2012; 

Sobhan et al.,  2017; Zhang et al.,  2008a). TLX represses transcription of some of its 

target genes, for example, Pten and p21 (Niu et al.,  2011; Sun et al.,  2007), 

alternatively, it activates proneural gene transcription of ASCL1 (Elmi et al.,  2010). 

TLX has been shown to regulate the Wnt signalling pathway (Qu et al.,  2010) and be 

regulated by MicroRNA’s such as microRNA-9 (Zhao et al.,  2009; Sun et al.,  2011). 

MicroRNA’s are highly conserved short strands of non-coding RNA, which interfere 

with mRNAs via complementary base pairing that can lead to mRNA destabilisation 

(Fabian et al.,  2010). TLX was previously shown to be upregulated in activated 

NSCs, and NSCs in tlx mutant mice have cell-cycle entry and proliferation defects 

(Obernier et al.,  2011). Most recently, TLX was shown to negatively regulate 

transcription of the Notch effector, Hes1, in the mouse brain (Luque-Molina et al.,  

2019). Elevated Hes1 levels and Notch signalling in tlx mutants lead to disrupted 

quiescence and the downregulation of ASCL1/Mash1 (Luque-Molina et al.,  2019). 
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Figure 1.2: Summary of factors known to regulate mammalian adult NSCs transit between 
quiescence and activation states. Notch signalling maintains quiescence by repressing genes 

associated with the cell cycle and inhibiting differentiation (Sueda et al.,  2019; Ottone et al.,  2014; 

Engler et al.,  2018; Kawaguchi et al.,  2013; Zhang et al.,  2019). Vascular cell adhesion molecule-1 

(VCAM1) and the laminin receptor α6β1-integrin help position aNSCs and support quiescence 

(Kokovay et al.,  2012; Shen et al.,  2008). Bone morphogenetic protein (BMP) is thought to support 

quiescence, as Noggin, a BMP inhibitor secreted by ependymal cells, aids NSC activation (Lim et al.,  

2000; Martynoga et al.,  2013). Nuclear factor one (NFI) family member (NFIX) stimulates quiescence-

promoting genes (Martynoga et al.,  2013). The transcription factor repressor element 1-silencing 

transcription (REST) inhibits proneural genes to support quiescence (Ballas et al.,  2005; Mukherjee et 

al.,  2016; Gao et al.,  2011). The Forkhead Box O3 (FoxO); however, the mechanisms are not fully 

understood transcription factors (Paik et al.,  2009; Renault et al.,  2009; Santo and Paik, 2018). The 

phosphatase and tensin homolog (Pten) promotes quiescence by inhibiting self-renewal and the G0-

G1 transition (Bonaguidi et al.,  2011). The neurotransmitter Gamma-aminobutyric acid (GABA) prevent 

NSC cell-cycle progression (Song et al.,  2012; Pineda et al.,  2013). Cell-cycle regulators such as the 

cyclin-dependant kinase inhibitors p27 and p57 (Andreu et al.,  2015; Furutachi et al.,  2013) and 

growth factors received from the niche such as the endothelial-derived neurotrophin- 3 (NT-3) 

(Delgado et al.,  2014), and the Milk fat globule-epidermal growth factor (Mfge8) (Zhou et al.,  2018) 

and promote NSC quiescence. Molecules regulating the activation of quiescent adult NSCs is far less 

known, the Vascular endothelial growth factor (VEGF) receptors (VEGF3) expressed on NSCs cause 

activation upon receptor activation (Han et al.,  2016). The basic helix-loop-helix (bHLH) transcription 

factor, Achaete-scute-like 1 (ASCL1) promotes activation from quiescence by promoting pro cell-cycle 

and proliferation genes and is regulated by Notch signalling and post-translationally by the ubiquitin 

ligase Huwe1 (Anderson et al.,  2014; Castro et al.,  2011; Urbán et al.,  2016; Llorens-Bobadilla et al.,  

2015; Dulken et al.,  2017; Basak et al.,  2018). The Orphan-Nuclear receptor (TLX) promotes activation 

of quiescent NSCs by promoting ASCL1, NSC self-renewal, and repressing quiescence-promoting 

genes such as pTen and p21 (Luque-Molina et al.,  2019; Obernier et al.,  2011; Yu et al.,  1994; 

Monaghan et al.,  1995; Wang et al.,  2006; Zhang et al.,  2006; Sun et al.,  2007; Yokoyama et al.,  

2008). 
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1.4. Drosophila melanogaster, a model organism in neurobiology 
The fruit fly Drosophila melanogaster is a model organism that has been extensively 

used in neurobiology studies, including postembryonic neurogenesis (Ramon-

Cañellas et al.,  2019; Doe, 2017; Harding and White, 2017; Sullivan, 2019). The 

benefits of Drosophila as a model include a short life cycle of approximately 11 days 

at 25°C, cost-effectiveness compared to other models such as mice, highly fecund 

and, most importantly, Drosophila shares over 70% disease gene sequences with 

humans (Reiter et al.,  2001). 
 

Moreover, there is a vast genetic toolkit available for easier gene manipulation, and, 

significantly for my work, one can study NSCs at a single-cell resolution in vivo 

(Schnorrenberg et al.,  2016; Jeibmann and Paulus, 2009; Pandey and Nichols, 2011). 

One of the key gene manipulation techniques used with Drosophila is the UAS-GAL4 

system, a genetic tool allowing targeted gene expression (Brand and Perrimon 1993; 

Elliott and Brand, 2008). Since its establishment, the UAS/GAL4 system has been 

widely used, modified and expanded to allow for more specific temporal and spatial 

control of targeted gene expression. For example, it can be used for a variety of loss 

and gain of function assays, employed simultaneously with other independent 

expression systems such as LexA/LexAop allowing additional manipulation, and 

depending on the system’s reporters, it can inform on a variety of parameters 

including visualisation of cells and their organelles, cell activity status and behaviour 

(Caygill and Brand, 2016). 

 

In its simplest form, the UAS/GAL4 system is based on a driver and a responder fly 

line. A transgenic fly line will contain a desired promoter gene region fused to the yeast 

transcriptional activator GAL4 - the ‘driver line’. The latter must be crossed with a 

transgenic fly line containing a gene region of interest fused to an Upstream Activation 

Sequence (UAS), to which the GAL4 protein specifically binds, and is known as the 

‘responder line’. GAL4 only activates transcription when bound to its UAS promoter 

sequence. For example, an NSC-GAL4 ‘driver line’ will only drive the expression of 

transgenes under the control of an Upstream Activation Sequence (UAS) promoter, 

such as UAS-Green Fluorescent Protein (GFP). Thus, when the transgenic driver and 

responder flies are crossed, their progeny will express the gene sequence of interest 



(GFP) in the tissue pattern directed by the desired promoter (NSCs). In my studies, 

I took advantage of Drosophila as a model and extensively used the UAS/GAL4 

system in the assays performed. 

1.1.1. Drosophila embryonic NBs generate the functional larval CNS 
NSCs in Drosophila are termed neuroblasts (NBs), the progenitors to the CNS 

neurons and glia. Drosophila NBs divide asymmetrically to self-renew and generate 

further committed progeny. Like mammalian neurogenesis, Drosophila 

neurogenesis is controlled by intrinsic programs and extrinsic stimuli (Doe, 2017; 

Harding and White, 2017). Yet, the Drosophila CNS offers a simpler model system 

to investigate conserved mechanisms. Neurogenesis in Drosophila occurs 

embryonically producing the larval CNS and ~ 10% of the adult fly CNS, and 

postembryonically producing the majority of the adult fly CNS (Prokop and Technau, 

1991; Truman and Bate, 1988; Doe, 2017; Harding and White, 2017). The two 

neurogenic waves are separated by a period of cellular quiescence (Figure 1.3.A) 

(White and Kankel, 1978; Truman and Bate, 1988; Maurange et al.,  2008). 

 
Depending on their location, NBs are referred to as being thoracic, abdominal, 

central brain (CB) and optic lobe (OL). During embryogenesis, Drosophila NBs 

delaminate from the neuroectodermal cells (Bossing et al., 1996; Egger et al.,  

2007). OL NBs are generated only postembryonically (Doe, 2017; Harding and White, 

2017). Delamination and NB identity are specified by Notch-mediated lateral 

inhibition, members of the Sox family (SoxN and Dicheate) and the Snail family 

(wornio, escargot and snail) and subsequent expression of proneural genes (Ashraf, 

2001; Harding and White, 2017). Neural diversity is achieved by spatial patterning 

and temporal patterning (Miyares and Lee, 2019; Doe, 2017; Harding and White, 

2017). Spatial determination along the anterior-posterior axis is established by Hox 

genes: abdominal-A and ultrabithorax are differentially expressed between NBs to 

generate diverse neurons or glia (Prokop and Technau, 1994). The temporal 

transcription factors Hunchback (Hb), Kruppel (Kr), Pou domain 2 (Pdm), Castor 

(Cas), and Grainyhead (Grh) are sequentially expressed in NBs and their progeny 

to give rise to distinct cell types (Kambadur et al.,  1998; Doe, 2017; Harding and 

White, 2017). 
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The CNS is generated by around 1200 NBs found in the embryo (Bossing et al.,  1996; 
Schmidt et al.,  1997; Urbach et al.,  2003; Wheeler et al.,  2009; Birkholz et al.,  

2015). To expand the embryonic CNS, each newly born embryonic NB begin limited 

rounds of asymmetric divisions, self-renewing and generating a smaller terminally 

differentiating ganglion mother cell (GMC). The NBs shrink with each division. Type 0 

NBs do not produce a GMC (see below section 1.4.2.) and are an exception 

(Karcavich and Doe, 2005; Ulvklo et al., 2012; Baumgardt et al.,  2014). The GMCs 

produce neurons required by the larval CNS. Each NB generates a stereotyped family 

of neural progeny to the CNS (Bossing et al.,  1996). The post-mitotic neurons 

generated display a three-layered structure whereby Hb is detected in the deepest 

layer and Cas in the superficial layer, reminiscent of the developing mammalian cortex 

(Grieg et al.,  2013). Grh is the last factor expressed and persists into larval NBs, 

stimulating cell cycle progression and cell survival (Cenci and Gould, 2005). The NBs 

were reported to exit the cell cycle at around stage 16 of embryogenesis (Figure 
1.3.B) either by programmed cell death (Maurange and Gould, 2005; Ulvklo et al.,  

2012) or by entering cellular quiescence (Truman and Bate, 1988; Chell and Brand, 

2010; Sousa-Nunes et al.,  2011). Recently, two types of NB quiescence, G2 and G0, 

were reported (Otsuki and Brand, 2018). Furthermore, at embryonic stage 17, 

thoracic NBs display both G2 and G0 quiescence, whereas abdominal NBs enter G0 

quiescence or apoptose (Harding and White, 2019). 
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Figure 1.3. Drosophila neurogenesis and proliferation patterns of NBs. A. Drosophila 

neurogenesis occurs embryonically to generate the larval CNS, and postembryonically throughout the 

larval stages. Embryonic neuroblast (NB) size decreases at each division throughout embryonic 

neurogenesis, and a temporal transcriptional program determines if embryonic NBs enter apoptosis 

(Figure 1.3. A, ‘A’) or enter quiescence (Figure 1.3. A, ‘Q’); except for the mushroom body NBs (B, 

orange). A nutritional stimulus stimulates quiescent NBs to enlarge and re-enter the cell cycle to 

proliferate and generate the adult fly CNS. B. Drosophila larval brain depicting the postembryonic NBs 

(pNB) populations and their locations. C. The proliferation patterns of postembryonic NBs (pNBs) and 

their lineages. Most pNBs follow the Type I pattern of division, present in the brain lobes (BL), ventral 

nerve cord (VNC) and Optic lobes (OL). A small population follow the Type II pattern of division and are 

only located in the central brain region. Type 0 is utilised by NBs in the outer proliferative centre of the 

OL. Hunchback (Hb), Kruppel (Kr), Pou domain 2 (Pdm), Castor (Cas), Grainyhead (Grh); Quiescent 

(Q); Apoptosis (A); Reactivated (R); Ganglion Mother Cell (GMC); Intermediate Neural Progenitor 

(INP). Schemes of larval brain depicted by arrows: A, anterior; P, posterior; D, dorsal; V, ventral., 

(Adapted from Hakes and Brand, 2019; Doe, 2017; Harding and White, 2017). 
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1.4.2. Proliferation patterns and lineages of Drosophila NBs 
Three types of Drosophila NBs are identifiable based on their mode of division: Type 

0, Type I and Type II (Figure 1.3.C). Type I NBs are prominent within the embryo, 

however, unlike embryonic NBs, type I postembryonic NBs (pNBs) maintain their 

original size after divisions. Embryonic NBs have been shown to switch from Type I 

divisions to Type 0 divisions (Doe, 2008; Baumgardt et al., 2009; Baumgardt et al.,  

2014; Karcavich and Doe, 2005; Monedero Cobeta et al.,  2017. Type 0 NB division 

produces a smaller terminally differentiating cell to generate a single neuron. Type 0 

divisions occur during embryogenesis and postembryonically in the optic lobes 

(Baumgardt et al., 2014; Bertet et al., 2014; Mora et al., 2018). Interestingly, the optic 

lobe NBs switch from Type 0 to Type I divisions which, like VNC pNBs, is under the 

control of a distinct temporal transcriptional program (Bertet et al., 2014). 

 

The two main types of Drosophila pNBs are type I and type II. Both types I and II pNBs 

divide asymmetrically and unequally segregate cell fate determinants but differ in their 

lineage pattern development (Homem and Knoblich, 2012; Doe, 2017; Harding and 

White, 2017). Type I is the most common mode of division; Type I NBs generate a 

terminally differentiating GMC, giving rise to a pair of sibling neural cells (neurons or 

glia). Type I pNBs are the most abundant, found throughout the larval brain lobes 

(mammalian hemispheres equivalent) and VNC (mammalian spinal cord; Figure 
1.3.B, C). A subset of NBs located in the BLs called the mushroom body NBs (mbNBs) 

also follow the Type I division pattern (Figure 1.3.B, C). Type I pNBs are frequently 

distinguished by the self-renewal markers Deadpan (Dpn) and Asense (Ase), as well 

as Inscuteable (Insc). Their GMCs express nuclear Prospero (Pros), a pro-neural 

homeobox protein, which inhibits cell cycle genes (Choksi et al., 2006; Homem and 

Knoblich, 2012; Doe, 2017; Harding and White, 2017). The GMC progeny, a pair of 

neurons or glia, can be distinguished by the neuronal marker Elav or the glia marker 

Reverse polarity (Repo), respectively. 

 

Type II pNBs generate an intermediate neural progenitor (INP) which, upon 

maturation, undergoes limited rounds of division to self-renew and generate a GMC, 

giving rise to a pair of sibling neural cells (Homem and Knoblich 2012; Harding and 

White, 2017). There are less Type II pNBs, around ~8 per BL compared to ~90 for 
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Type I pNBs. Type II NBs are restricted to the central brain (CB; Figure 1.3.B, C) and 

generate higher numbers of neural progeny due to the amplifying INPs. Type II pNBs 

in the CB originate from the embryo whereby they specifically acquire expression of 

the transcription factor, Pointed P1 (Pnt), mediated by EGF signalling (Walsh and 

Doe, 2017; Álvarez and Diaz-Benjumea, 2018). Pnt is absent in Type I pNBs and is 

therefore used to distinguish the Type II pNBs and their lineages. In addition, unlike 

the Type I pNBs, Type II pNBs do not express Ase but do express the transcription 

factor/ self-renewal marker Dpn. Newborn immature INPs are smaller and do not 

express the transcription factors Ase, Dpn or Pros until they have ‘matured’ after 4-6 

hours; at which point the mature INP will re-express those markers in that sequence 

(Bayraktar et al.,  2010). In addition, mature INPs express the transcription factor, 

Earmuff, which the Type I and II pNBs do not (Weng et al., 2010). The mature INPs 

divide asymmetrically to generate a terminally differentiating GMC. INPs have less 

proliferative potential than pNBs but serve as an amplification step, like mammalian 

TACs (Bello et al., 2008; Boone & Doe, 2008; Bowman et al., 2008). 

 
1.4.3. Asymmetric division in Drosophila NBs 
Asymmetric division produces two cells with distinct fates (recently reviewed by Loyer 

and Januschke, 2020). Asymmetric division in Drosophila NBs is controlled by cell-

intrinsic cues and requires subcellular localisation and segregation of specific cell fate 

determinants. Precise spindle orientation along the apical-basal axis is required to 

separate the apical cortex, retained by the NB, from the basal cortex, transmitted to 

the progeny. The process is mediated by the apical Par, Insc, atypical protein kinase 

C (aPKC) complexes (Sousa-Nunes and Somers, 2013; Yu et al., 2006). The apical-

basal polarity is inherited during embryogenesis from the neuroectoderm; the apical 

Par complex (Par3/Bazooka, Par6 and aPKC) is retained by the NB (Petronczki and 

Knoblich, 2001; Wodarz et al., 2005; Wodarz et al., 2000; Wodarz et al., 1999; Bello 

et al., 2006; Betschinger et al., 2006; Ikeshima- Kataoka et al., 1997; Knoblich et al., 

1995; Lee et al., 2006; Rhyu et al., 1994). The Par complex recruits the adaptor 

protein Insc, which subsequently recruits the Partner of inscuteable (Pins), Mushroom 

body defect (Mud), and the Drosophila Gαi to form a Pins/Mud/ Gαi complex. The 

apical complexes undergo a phosphorylation cascade to direct cell fate determinants 

Brain tumour (Brat), Numb and Pros to the basal cortex of the dividing NB via the 

scaffolding proteins Miranda and Partner of Numb (Pon). These cell fate determinants 
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segregate into the progeny (GMC), inhibit self-renewal and promote differentiation 

(Doe et al., 1991; Rhyu et al., 1994; Hirata et al., 1995; Knoblich et al., 1995; Bello et al., 

2006; Betschinger et al., 2006; Lee et al., 2006; Doe, 2017; Harding and White, 2017). 

Miranda sequesters and prevents Pros activity in the NB, however within the GMC 

Miranda is degraded, and Pros can enter the nucleus to stimulate differentiation 

(Ikeshima-Kataoka et al.,  1997; Hirata et al.,  1995). Interestingly, cell cycle gene 

repression has been observed by Prox1, the mammalian ortholog of Pros (Foskolou 

et al., 2013; Dyer, 2003). Incorrect spindle orientation and failure in proper unequal 

segregation of cell fate determinants can lead to excess progeny with stem-cell 

characteristics and even tumour formation (Choksi et al.,  2006; Shen et al.,  1997; 

Bello et al.,  2006; Betschinger et al.,  2006; Kraut et al.,  1996; Wodarz et al.,  1999; 

Doe et al.,  1991; Wodarz et al.,  2000). Also, loss of Insc function leads to Type I 

progeny with INP-like characteristics (An et al.,  2017). 

 
1.4.4. Drosophila NBs enter quiescence at the end of embryogenesis 
At the end of embryogenesis, after the embryonic lineages are generated, NBs switch 

from Type I to Type 0 divisions and many Drosophila NBs enter cellular quiescence 

(Tsuji et al.,  2008; Lai and Doe, 2014; Baumgardt et al.,  2014; Karlsson et al.,  2010; 

Monedero Cobeta et al.,  2017). These quiescent NBs are poised to mitotically 

reactivate postembryonically ~24 hours during the first instar larval stage to produce 

the neurons and glia required by the adult fly CNS. The only exceptions are the four 

mbNBs and one lateral NB which do not enter quiescence and will continually 

proliferate throughout development (Ito and Hotta, 1992). 

 
As previously mentioned, quiescence is historically described as a G0 arrested state. 

However, recently Drosophila NB quiescence was shown to contain a mix of G2 and 

G0 quiescent pNBs (Otsuki and Brand, 2018) using cell cycle markers and the 

Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) system, which is a set 

of fluorescent probes enabling visualisation of the cell cycle (Sakaue-Sawano et al.,  

2008). Here, the authors demonstrate ~75% of pNBs express Dpn, cyclin A, cyclin B 

and are arrested in G2. The remaining ~25% of pNBs express Dpn only and are 

arrested in G0 (Otsuki and Brand, 2018). Furthermore, the pNBs in G2 are mitotically 

reactivated faster than their G0 counterparts. The pseudokinase, tribbles, known to 

inhibit cell cycle progression by degrading Cdc25/String, regulates G2 quiescence by 
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inhibiting the AKT pathway (Otsuki and Brand, 2018). Tribbles expression in NBs 

begins at embryonic stage 15 and continues to mark quiescence until nutritional cues 

stimulate NB reactivation; it is not expressed in the mbNBs that do not undergo 

quiescence (Otsuki and Brand, 2018). It is the first gene identified that distinguishes 

quiescent pNBs in Drosophila (Otsuki and Brand, 2018). Tribbles expression 

continues under starved conditions, and expressing constitutively active AKT, but not 

Pi3K, in tribble mutants could fully rescue the defects observed in tribble mutant pNBs 

(Otsuki and Brand, 2018). In addition, they showed that tribble activity is normally 

inhibited by AKT upon the nutritionally-dependant secretion of Drosophila Insulin-like 

peptides (dilps) from the niche glia (Otsuki and Brand, 2018). 

 
NB entry into quiescence is determined by numerous factors, including the Hox genes 

Antennapedia (Antp) and Abdominal-A (Abd-A). At the end of embryogenesis, Antp 

and Abd-A determine NB cell cycle exit and whether the NB will enter quiescence or 

apoptosis (Bello et al.,  2003; Tsuji et al.,  2008; Arya et al.,  2015; Khandelwal et al.,  

2017; Otsuki and Brand, 2018; Harding and White, 2019). Interestingly, the Polycomb 

Repressor Complex 2 (PRC2 complex) is known to suppress Hox gene expression, 

counteracting their known anti-proliferating action and regulation of programmed cell 

death in the early Drosophila larval brain (Curt et al.,  2019; Yaghmaeian Salmani et 

al.,  2018; Bahrampour et al., 2019). PRC2 mutants display anterior expansion of Hox 

gene expression, resulting in reduced NB proliferation in the brain (Curt et al.,  2019; 

Yaghmaeian Salmani et al.,  2018). It would be interesting to examine if PRC2 may 

also be involved in Hox gene regulation of NB entry into quiescence. 

 

The temporal transcription factor cascade (Figure 1.3.A) determines NB fate; 

although the majority of NBs enter programmed cell death, and a smaller subset of 

Cas+ NBs enter quiescence (Tsuji et al.,  2008; Miyares and Lee, 2019; Doe, 2017; 

Harding and White, 2018). It was recently found that a small subset of NBs belonging 

to the G2-quiescence category are terminated through an unknown mechanism 

(Harding and White, 2018). 

 

Downstream of the temporal transcription cascade, Nab and Squeeze (also 

transcription factors) were found to be required for entry into quiescence (Tsuji et 

al.,  2008). The homeodomain transcription factor Pros, usually associated with 
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neuronal differentiation was found to regulate NB quiescence and act as a ‘binary 

switch’ between NB and differentiated progeny (Choksi et al.,  2006; Lai and Doe, 
2014). Lai and Doe showed that different Pros levels determine various NB fates (Lai 

and Doe, 2014). A transient pulse of low-level Pros in the NB nucleus induces 

quiescence, but how this is achieved or the regulation by upstream temporal 
transcription factors is unknown (Lai and Doe, 2014). 

 
1.4.5. Maintenance of Drosophila NB quiescence 
NB quiescence must be properly maintained to ensure the appropriate NB lineages 

are only generated at the correct developmental time. Maintenance of quiescence is 

regulated by a variety of factors, including intrinsic and extrinsic. Glia cells surrounding 

the pNBs secrete a glycoprotein, anachronism (Ana), to promote quiescence in pNBs 

and prevent premature cell-cycle re-entry (Ebens et al.,  1993). The Drosophila 

Perlecan, Terribly reduced optic lobes (Trol), promotes cell-cycle progression by 

either inhibiting ana activity or functioning downstream of ana (Datta 1995; Voigt et al., 

2002). Fragile X protein (FMRP), which codes for the inherited mental retardation 

Fragile X syndrome, is reported to function first in pNBs and then in glia to maintain 

pNB quiescence and is regulated by Insulin signalling (Callan et al.,  2010; Callan et 

al.,  2012; Callan et al., 2011; Monyak et al.,  2016). 

 
Maintenance of pNB quiescence is further regulated by Hippo signalling (Ding et al.,  

2016; Poon et al.,  2016). Hippo signalling is a growth inhibition pathway and highly 

conserved in Drosophila and vertebrates (Harvey and Tapon, 2007; Halder and 

Johnson, 2011; Lee et al.,  2018). Active canonical Hippo signalling activates a 

phosphorylation cascade whereby the Hippo kinase activates the Warts kinase, which 

phosphorylates Yorkie (Yap/Taz in mammals) via a 14-3-3 binding site; sequestering 

the transcriptional co-activator Yorkie in the cytoplasm causes its deactivation (Oh and 

Irvine, 2008). Inactive Hippo signalling allows Yorkie translocation to the nucleus 

where it activates the transcriptional program, promoting growth and proliferation 

(Saucedo and Edgar, 2007). Ding et al.,  found that the Hippo pathway maintains pNB 

quiescence; the core kinases, Hippo and Warts, are phosphorylated (activated) in 

quiescent pNBs (Ding et al.,  2016). Also, quiescent pNBs and non-quiescent pNBs 

(the MBNBs) 
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can be identified by cytoplasmic-Yorkie (inactive), and nuclear-Yorkie (active), 

respectively. Loss of Hippo/Warts or upstream regulators caused premature pNB 

enlargement and mitotic reactivation from quiescence (Ding et al., 2016). This process 

is mediated by the upstream glial transmembrane proteins, Echinoid and Crumbs, 

which lead to inhibition of Yorkie activity but are downregulated by nutrition to enable 

mitotic reactivation (Ding et al., 2016; Poon et al., 2016). Premature loss of Crumbs or 

Echinoid in NBs or glia resulted in earlier reactivation shown by NB enlargement at 4h 

ALH (Ding et al., 2016). The Hippo pathway was also shown to regulate larval brain 

size and cell cycle speeds (Poon et al., 2016). Here, altering Hippo pathway 

components caused increased NB size, precocious NB proliferation, faster cell cycle 

speeds, and clone size; leading to larval brain overgrowth (Poon et al., 2016). 

In vertebrates, deactivation of YAP stimulates proliferation of stem cells (Tremblay 

and Camargo, 2012) and the Hippo pathway is implicated in stem cells within the liver 

(Zhou et al.,  2009); the skin (Schlegelmilch et al.,  2011; Zhang et al.,  2011); and the 

intestines (Barry et al.,  2013; Zhou et al.,  2011; Staley et al.,  2010). 

 
1.4.6. Drosophila NBs mitotically reactivate to generate the adult fly CNS 
The exit from NB quiescence, termed reactivation, requires the coordination of multiple 

signalling pathways, in which the pNB niche glia cells has been shown to be crucial. 

Anti-proliferative Hox genes regulating patterning and quiescence must be inactivated 

(Prokop et al.,  1998; Tsuji et al.,  2008; Harding and White, 2019; Curt et al.,  2019); 

which is controlled by brain transcription factors and the PRC2 complex (Curt et al.,  

2019; Monedero Cobeta et al.,  2017; Yaghmaeian Salmani et al.,  2018). Reactivation 

of pNBs occurs in a ‘wave’ along the anterior to posterior (AP) axis (Doe, 1992; 

Skeath and Carroll, 1992; Skeath, 1992, Skeath, 1999; Tsuji et al.,  2008; Kemelman 

et al.,  2012; Rosenberg et al., 2009), beginning in the BL NBs first, and propagating 

through the VNC; the abdominal NBs are the last to reactivate. Anterior propagation, 

governed by Hox genes, is a requirement for proper CNS development and appears 

to be conserved in mammals (Monedero Cobeta et al., 2017; Philippidou and Dasen, 

2013; Yaghmaeian Salmani et al.,  2018; Metzis et al.,  2018). 

 
Upon reactivation, pNBs grossly enlarge, enter S-phase and begin proliferating to 
generate the adult CNS. This provides a unique opportunity to study pNB mitotic 

reactivation using a simpler model. Reactivated pNBs can be initially distinguished 
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from their quiescent counterparts by their larger size; an increase from ~4-5 µm 

(quiescent) up to ~10-15 µm (Chell and Brand, 2010). Most pNBs reactivate within 24 

hours of larval hatching and reactivation is initiated by a nutritional stimulus following 

larval feeding (Figure 1.4). Larval feeding increases the amount of circulating amino 

acids which is sensed by the fat body (FB, the Drosophila liver equivalent, Figure 
1.4). This hepatic/adipose-like tissue was found to release a FB-derived signal (FDS) 

which enables pNB reactivation (Britton and Edgar 1998). Larval CNSs cultured alone 

or co-cultured with a gut or CNS from fed larvae failed to reactivate the NBs. Only 

when quiescent larval CNSs were co-cultured with a FB, were the NBs able to 

reactivate (Britton and Edgar, 1998). Further work revealed that the FB senses 

nutrition via the cationic amino-acid transporter Slimfast (slif) (Colombani, Raisin et al., 

2003; Géminard et al., 2009), which activates the Target of Rapamycin (TOR) 

signalling pathway (Sousa-Nunes et al., 2011). Upon TOR activation, the FDS is 

released and sensed by glia cells surrounding the NBs. The glia cells release Insulin-

like peptides (ILPs, totalling 7) to which the single NB Insulin-like Receptor (InR) 

responds, activating the phosphatidylinositol 3-kinase (PI3K) and TOR pathway within 

the NB. As a consequence, NBs characteristically enlarge and re-enter the cell cycle 

(Truman and Bate 1988; Chell and Brand 2010; Sousa-Nunes et al., 2011). 

Of the 7 ILPs, ILP6 was found to be the most influenced by nutrition and a potent 

activator of NBs’ reactivation (Sousa-Nunes et al., 2011). Global inactivation of Tor, 

inhibition of slif within the FB, or FB specific activation of TOR inhibitors Tuberous 

sclerosis complex 1 and 2 (Tcs1/2) reduced the number of NBs exiting quiescence. 

Furthermore, inhibition of PI3K signalling also inhibits neuroblast reactivation. 

Conversely, overexpression of the TOR pathway activator Ras homologue enriched 

in brain (RHEB) and of PI3K pathway activators specifically in the NBs caused 

premature pNB reactivation (Chell and Brand, 2010; Sousa-Nunes et al., 2011). 

 
More recently, the highly conserved heat shock protein 83 (Hsp83/ Hsp90 in 

mammals) and its co-chaperon Cdc37 were found to function upstream of the 

InR/PI3K/AKT cascade to promote pNB reactivation; Hsp83 was shown to directly bind 

to the InR (Huang and Wang, 2018) (Figure 1.4). Insulin signalling and insulin-like 

growth factors (IGF) are highly conserved between invertebrates and mammals, 

regulating metabolism and growth. In mammals, dietary restriction or a high-fat diet 

causes increased or decreased levels of Sirtuin 1 (SIRT1), respectively (Cohen et al.,  
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2004; Chen et al.,  2008; Spéder and Brand, 2011). SIRT1 correlates to the nutritional 

status of the animal and modulates systemic IGF-1 (Cohen et al.,  2004; Cohen et al.,  

2009; Cohen et al.,  2010). Like Drosophila glia cells, mammalian astrocytes have 

also been shown to release local insulin/IGF-1 (Garcia-Estrada et al.,  1992; Shetty et 

al.,  2005), however, unlike in Drosophila, a direct link between these glia and NSC 

reactivation has not yet been shown. 

 

As described in section 1.3.2, nutritional dependant neurogenesis has also been 

observed in rodents (Lee et al.,  2000; Poulose et al.,  2017; Shohayeb et al.,  2018; 

Norman et al.,  2008; Stranahan et al.,  2008; Alvarez et al.,  2009), and associated to 

cognitive decline in human patients (Spinelli et al.,  2019; Kodl and Seaquist 2008). In 

the Drosophila larval CNS, Spéder and Brand (2014) discovered a cell-autonomous 

role of the gap junction proteins within the glia forming the Blood-Brain Barrier (BBB, 

Figure 1.4). They found that the nutrient dependant ILP secretions essential for pNB 

reactivation are coordinated by gap junction proteins (Innexin 1/2) across the BBB 

and conditions that reduce/block Ca2+ oscillations impair pNB reactivation (Spéder 

and Brand 2014). Similar mechanisms are also seen in vertebrates, whereby the 

pancreatic beta cells release insulin in response to Ca2+ (MacDonald and Rorsman 

2006). 

 

The glia niche performs additional functions for pNB reactivation. Cortex glia has been 

shown to progressively remodel their membranes around each NB and its lineage in 

response to local and systemic signals (Spéder and Brand, 2018). The cortex glia 

undergoes three developmental steps: membrane expansion, encasing, and 

extension, creating cortex glia ‘chambers’ around pNBs (Spéder and Brand, 2018). A 

nutritional signal first induces expansion of the glia membranes via Pi3K/Akt, and the 

reactivating NBs signal for the remodelling process; the new glia niche structure is 

critical for the new neurons to survive and inhibiting pNB reactivation disrupts 

chamber formation. In addition, knocking down BBB glia gap junctions, or Insulin 

signalling in the cortex glia or pNBs, or the spindle matrix complex component, east, 

in pNBs, all impairs the chamber formation (Spéder and Brand, 2018). Similarly, 

mammalian astrocytes, and the local neurogenic niche, support neurogenesis 

(Gengatharan et al.,  2016; Goldman and Chen, 2011; Tavazoie et al.,  2008; Ottone 

et al.,  2014). 
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The Drosophila Perlecan homolog, Terribly reduced optic lobes (Trol), functions non- 

cell-autonomously to promote pNB reactivation, by antagonising Ana activity in niche 

glia (Ebens et al.,  1993; Datta, 1995; Voigt et al.,  2002). Trol also performs structural 

and function roles in FGF-2 signalling and Hedgehog signalling to stimulate pNB 

reactivation at the G1-S-phase transition (Park et al.,  2003). Thought to function 

similar to the mammalian Perlecan, Trol is proposed to function in the Drosophila 

extracellular matrix, modulating extrinsic signalling factors such as Ana, to stimulate 

pNB reactivation (Voigt et al.,  2002) (Figure 1.4). Furthermore, Trol-dependant action 

is enhanced by a transacting signal produced by even-skipped (Eve); a regulator of 

embryonic neurogenesis (Park et al.,  2001; Akam, 1987). 

 

Also downstream of nutritional signals and InR/PI3K/AKT signalling, the spindle 

matrix protein complex, comprised of Chromator (Chro), Megator, Skeletor and 

Enhanced adult sensory threshold (East), stimulate pNB reactivation (Figure 1.4). 

Chro is critical for Insulin signalling detection by pNBs and maintaining pNB 

proliferation (Li et al.,  2017). Grainyhead (Grh) prevents pNB nuclear Pros to 

maintain proliferation in the VNC (Maurange et al.,  2008). Interestingly, Chro was 

also found to repress pros expression and stimulate grh expression, which further 

represses pros, to promote pNB reactivation (Li et al.,  2017). Chro and East have 

been found to modulate gene expression via chromatin modification (Rhee et al.,  

2014). In pNBs, the spindle matrix complex prevents re-entry into cellular quiescence 

by targeting Grh and pros (Li et al.,  2017). 

 

An additional level of cell-autonomous regulation exists via taranis (tara), the 

mammalian SERTAD orthologue. Tara promotes the E2F1 pathway in pNBs to 

promote pNB reactivation; tara is expressed in mitotically active type I pNBs and 

absent in quiescent pNBs (Manansala et al.,  2013). More recently, a conserved 

ubiquitin ligase complex was shown to be essential for pNB reactivation (Ly et al.,  

2019). Knocking down the complex components with mutations or by RNAi in pNBs 

impaired reactivation (Ly et al.,  2019). Here, the conserved ubiquitin ligase family, 

Cullin4-RING (CRL4) complex consisting of the adaptor damaged DNA-binding 

protein 1 (DDB1), the scaffold Cullin4 (Cul4), and the catalytic RING of Cullin (ROC), 

together with its substrate receptor Mahjong (Mahj; CRL4Mahj) form a protein complex 

with Warts, causing warts ubiquitination and inhibition in S2 cells (Ly et al.,  2019). 
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Simultaneously expressing Warts-RNAi could suppress the reactivation defects 

observed upon Mahj-RNAi in pNBs (Ly et al.,  2019). Interestingly, rat Cul4B loss in 

neural progenitors leads to G2/M phase cell cycle arrest, and mutations of the human 

Cul4B gene is often associated with mental impairments (Tarpey et al.,  2007; Zou et 

al.,  2007; Liu et al.,  2012). 
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Figure 1.4. A simplified summary of main regulators of Drosophila pNB reactivation. Drosophila 

pNB reactivation is stimulated by larval feeding. Circulating amino acids are sensed by the Slimfast 

amino acid transporter (Slif) (Colombani et al., 2003; Géminard et al.,  2009), on the fat body (FB). This 

activates Target of Rapamycin (TOR) in the FB (Sousa-Nunes et al.,  2011), stimulating the release of 

a fat body derived signal (FDS) (Britton and Edgar, 1998), which is sensed by the glia surrounding the 

NBs. The glia release Insulin-like peptides (ILPs). This release also requires coordinated Ca2+ 

oscillations across the gap junctions of the Blood-Brain Barrier (BBB) glia (Spéder and Brand 2014). 

Local ILP secretion is sensed by the NBs’ InR, activating PI3K and TOR pathway within the NB (Chell 

and Brand 2010; Sousa-Nunes; Yee et al., 2011). In contrast, the Hippo pathway functions to maintain 

NBs in quiescence, and therefore must be switched off for reactivation to occur (Ding et al.,  2016; Poon 

et al.,  2016). Phosphorylation and activation or Hippo and Warts leads to the inactivation of Yorkie, 

which is sequestered in the cytoplasm and degraded. Upstream regulators are the transmembrane 

proteins, Echinoid and Crumbs which stimulate the pathway until a nutritional stimulus inhibits their 

action. Inactivation of the Hippo pathway allows Yorkie to translocate to the nucleus and activate 

growth targets. Spindle matrix proteins Chromator (chro), Megator and Enhanced adult sensory 

threshold (East) (Li et al.,  2017; Song et al.,  2017), FMRP, Tribbles, and Ana (Ebens et al.,  1993; Datta, 

1995; Voigt et al.,  2002) inhibit pNB reactivation whereas Heat shock protein 83 (Hsp83) (Huang and 

Wang, 2018), Taranis (Manansala et al.,  2013) and Trol (Ebens et al.,  1993; Datta, 1995; Voigt et al.,  

2002) promote pNB reactivation. 

 

1.4.7. Drosophila Mob4, a potential new player in NB reactivation 
To enhance our knowledge of postembryonic neurogenesis and the process of pNB 

reactivation, a single-cell transcriptome microarray screen was performed in our 

laboratory comparing Drosophila quiescent versus reactivating pNBs (Gill-Renado et 

al.,  2019). The single cells were obtained directly from live transgenic Drosophila 

larval brains, in which pNBs were visualised by membrane-tagged Green Fluorescent 

Protein (GFP) driven by the grainy-head (grh) Gal4 driver (Ding et al.,  2016; Chell 

and Brand, 2010). pNBs were removed from the second and third thoracic segments of 

the VNCs to minimize potential differences from spatial positioning and avoiding 

retrieving a mix of type I and II NSCs, as the latter are not present in VNCs. The pNBs 

were identified by their size as quiescent pNBs are much smaller, measuring 4-5 µm 

(maximum cell diameter), than reactivating (enlarging) pNBs (Chell and Brand, 2010; 

Ding et al.,  2016). The pNBs were harvested at 17h after larval hatching (ALH) as, at 

this particular age, both quiescent and reactivating pNBs can be distinguished and 

simultaneously harvested. Only reactivating (enlarged) pNBs not in division and without 

any progeny were harvested. cDNA was obtained from each cell using an established 

single-cell transcriptome protocol (Liu and Bossing, 2016; Bossing et al.,  2012). 
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Expression of the NB markers dpn and ase was confirmed via real-time quantitative 

PCR (RT-qPCRs) in both quiescent and reactivating cell samples harvested, with 

levels being higher in the later, as expected. Single pNB samples were compared in 

pairs (quiescent versus reactivating; n=3 pairs) on whole-genome microarrays 

(FlyChip, Cambridge). The screen analysis revealed 145 transcripts up-regulated and 

51 transcripts down-regulated (p<0.05) in reactivating compared to quiescent NBs. 

90% of identified targets have human orthologues, and most (66%) show high 

orthology conservation levels. The data was independently validated for a subset of 

candidates, and differential expression for all targets tested (18 in total) was 

confirmed (Gil-Ranedo et al.,  2019). 

 
Among the candidates identified as potential novel regulators of postembryonic pNB 

reactivation were genes encoding for several members of the highly conserved Striatin 

Interacting Phosphatase and Kinases complex (STRIPAK) protein complex (Shi et al.,  

2016; Ribeiro et al.,  2010; Zheng et al.,  2017): MOB kinase activator 4, also known as 

Monopolar spindle-one binder (Mob4), the only Drosophila Striatin Connector of 

kinase to AP-1(Cka) and Microtubule Star (Mts), which is the catalytic subunit of 

Protein Phosphatase 2A (PP2A). mob4 and cka were found upregulated, whereas 

mts was downregulated. Interestingly the STRIPAK complex, through its PP2A 

phosphatase, has been shown to be is an inhibitor of the Hippo pathway (Goudreault 

et al., 2009; Ribeiro et al., 2010), a known regulator of pNB quiescence (Ding et al.,  

2016; Poon et al.,  2016). Yet, no member of STRIPAK had been reported to be 

involved in the process of pNB reactivation. 

 
The above mentioned data and literature, the availability of cellular and genetic tools 

(e.g. transgenic Drosophila lines and antibodies) and preliminary observations in our 

laboratory (Dr C. Barros) suggesting that the STRIPAK member Mob4 may be 

involved in pNB reactivation, formed the basis for my PhD project focused primarily 

on investigating this candidate gene and its mode of action. 

 
In addition, to be a STRIPAK member, Mob4 belongs to the Mob family of non-

catalytic, kinase interacting proteins highly conserved from yeast to humans (Luca 

and Winey 1998; Lai et al., 2005; Mrkobrada et al., 2006; Wei et al., 2007). The two 

founding members of the Mob protein family, first identified in Saccharomyces 
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cerevisiae (Mob1 and Mob2), are involved in regulation and activation of Nuclear 

dbf2-related (NDR) kinases, which are cell cycle regulators (Komarnitsky et al., 1998; 

Luca and Winey 1998; Lee et al.,  2001; Mah et al., 2001; Wei et al., 2007; Lai et al.,  

2005; Mrkobrada et al., 2006). Mob4, however, is the most divergent member of its 

family (Schulte et al.,  2010). On the other hand, RNA interference knocking down 

Mob4 in Drosophila embryonic cells (Schneider 2 cells, S2) showed a role in mitotic 

spindle assembly, specifically in fibre spindle focusing, and phenotypes similar to 

centrosomal protein mutants were reported (Trammell et al.,  2008). Furthermore, in-

vivo analysis of Drosophila mob4 null mutants showed abnormal synaptic 

development with a supernumerary bouton phenotype, disrupted axonal transport, 

disorganised microtubules and larval lethality (Schulte et al.,  2010). Interestingly, the 

lethality observed was rescued by ubiquitous expression of the human orthologue of 

Mob4, MOB4 (also called Phocein), which is over 80% identical at the amino acid 

level, highlighting also functional evolutionary conservation among the molecules 

(Schulte et al.,  2010) (see also Discussion). 

 
 

1.5. Hypothesis and objectives of proposed PhD study 
The hypothesis underlying my PhD project is that the candidate gene mob4, identified 

in a transcriptome screen performed in our laboratory as upregulated in reactivating 

compared to quiescent Drosophila postembryonic NSCs, is required for NSC mitotic 

reactivation. The overall aim is to characterize the expression and function of Mob4 

towards identifying its potential mechanism of action regulating NSC mitotic 

reactivation. 

 
The specific objectives of my PhD project are: 
1. Characterise Mob4 expression in quiescent and reactivated postembryonic NBs 

 
 

2. Perform functional analysis of Mob4 in Drosophila pNBs during mitotic reactivation. 
 
 

3. Identify a potential mechanism of Mob4 action on pNB reactivation. 
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CHAPTER 2  

RESULTS 

 
2.1 Mob4 is upregulated in reactivated versus quiescent pNBs 
mob4 transcript was found upregulated in reactivating versus quiescent pNBs in a 

single-cell transcriptome analysis performed in our laboratory, and the result was 

confirmed by RT-qPCR (see Introduction). Thus, my first step was to analyse Mob4 

protein expression in the larval CNS, specifically in pNBs upon reactivation. The UAS- 

GAL4 system (Brand and Perrimon, 1993; Duffy, 2002) was used to visualise the larval 

pNBs. Membrane-bound GFP (CD8-GFP) was expressed using grainyhead-GAL4 

(grh-Gal4), specifically highlighting ~one-third of all pNBs in the larval CNS (Chell and 

Brand, 2010). elav-Gal80 was simultaneously employed to repress any potential mild 

GFP expression in neurons driven by the grh promotor (Bray et al.,  1989), which are 

of similar size to quiescent pNBs. Larval brains (grh-Gal4, UCD8-GFP; elav-Gal80) 
were dissected and immunostained first for Mob4 (red) and Green Fluorescent Protein 

(GFP, green) at 22h ALH. Consistent with previous observations of mob4 mRNA and 

protein localisation in the Drosophila CNS (Schulte et al.,  2010), Mob4 was observed 

ubiquitously in the brain lobes (BLs, Figure 2.1. A-A’) and the ventral nerve cords 

(VNCs, Figure 2.1. B-B’), including within the cytoplasm of pNBs (white arrowheads) 

and their lineages (Figure 2.1. A-B’). Larval brains of the same genotype were 

immunostained with Mob4 (red, also shown separately in grey), GFP (green), and the 

NB marker Deadpan (Dpn, blue) to assess Mob4 protein levels in reactivated versus 

quiescent pNBs, at 18h ALH. Mob4 protein levels in reactivated versus quiescent 

pNBs were compared by measuring the Mob4 antibody signal intensity (average pixel 

intensity per cell area; see Methods). pNBs were determined to be quiescent (Figure 
2.10. E) or reactivating (Figure 2.10. F) by their size, i.e. quiescent cells: 4-5 µm 

(maximum diameter), reactivating cells: enlarged (approximately 7 µm) (Chell and 

Brand, 2010; Ding et al.,  2016; Truman and Bate, 1988). The results show that Mob4 

protein expression is significantly higher (p<0.01) in reactivating pNBs (Figure 2.10. 
E, F) compared to quiescent pNBs (Figure 2.10.G), in line with the microarray and 

RT- qPCR observations of our group. 

 

Glia cells are vital transducers of the Insulin signal to reactivate pNBs (Chell and 



50  

Brand, 2010; Sousa-Nunes et al.,  2011). Since Mob4 is present ubiquitously in the 

brain, 24h ALH wild-type (WT) larvae were also immunostained for Mob4 (red, also 

shown in grey), Dpn (green) and Reversed polarity (Repo, a nuclear pan-glia marker, 

blue) antibodies to investigate expression in Glia. Mob4 seems to localise to the 

cytoplasm of glia (yellow arrowheads (Figure 2.1. C-D’) as inferred by absence from 

the nucleus, but its expression appears weaker compared to neighbouring pNBs 

(white arrows, Figure 2.1.D’). 
In conclusion, the above assays show that Mob4 is abundant throughout the larval 

CNS and significantly upregulated in reactivating versus quiescent pNBs. 
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Figure 2.1. Mob4 protein is upregulated upon pNB mitotic reactivation: (A, A’) grh-Gal4, UCD8- 

GFP; elav-Gal80 larval brain lobe (BL) and (B-B’) Ventral Nerve Cord (VNC) at 22 hours after larval 

hatching (ALH) immunostained for Mob4 and Green Fluorescent Protein (GFP). Mob4 channel also 

shown in monochrome. (C-D’) Wild-type (WT) VNCs were immunostained for Mob4, Deadpan (Dpn, 

NB marker) and Repo (glia nuclear marker) at 24h ALH. Mob4 channel also shown in monochrome. 

Mob4 is expressed ubiquitously throughout the BLs and VNCs and is found mainly in the cells’ 

cytoplasm, including in pNBs (white arrows and dashed lines) and their progeny (dashed lines only) 

and glia (yellow arrowheads). (E-F) To quantify Mob4 expression levels in quiescent and reactivating 

pNBs, we used the same Drosophila line shown in A and immunostained brains with Mob4, GFP and 

Dpn antibodies at 18h ALH. Mob4 channel also shown in monochrome. Mob4 signal intensity in small 

quiescent pNBs (E) is significantly less than in enlarged reactivating pNBs (F). (G) Mob4 protein 

quantification in reactivating pNBs (50 cells, 8 brains) normalized to quiescent pNBs (50 cells, 8 brains). 

Values are normalised average intensities +/- s.e.m. Wilcoxon rank-sum test ** p<0.01. All images are 

single focal planes, anterior up. Scale bar: 10  µm. 

 

2.2 pNBs in mob4 mutants fail to mitotically reactivate 
Confident that Mob4 is upregulated in pNBs upon their reactivation, pNBs in mob4 null 

mutants were next investigated. Previously in another lab, mob4EY∆L3 null mutants 

(herein mob4 mutants) were generated via a P transposable element excision screen 

(Schulte et al.,  2010). The P-element localised 33 base pairs upstream of the mob4 

start codon. In the mob4EY∆L3 line, the excision resulted in a 357 base pair deletion 

including the sequence encoding the initiator methionine. Western blots on larval brain 

lysates made from these mutants show no Mob4 protein, which would be expected at 

~25kDa weight (Schulte et al.,  2010). Homozygous mob4∆L3  null mutants are larval 

lethal, but ~10% of larvae can survive to the third instar larval stage (Schulte et al.,  

2010). To evaluate pNB reactivation in mob4∆L3 mutants, pNBs’ cell size (maximum 

diameter) and mitotic index were quantified and compared to Wild-type (WT) controls, 

using Dpn, phospho-HistoneH3 (Ph3) labelling mitosis and Discs-large marking cell 

membrane antibodies. At 1h ALH, there are no significant differences in pNB size or 

divisions (Figure 2.11). The proliferating NBs detected and scored correspond to the 

four mushroom body NBs (mbNBs, white asterisk) and one ventrolateral NB, which do 

not enter quiescence (Figure 2.11. A, B; Ito, K. & Hotta, 1992). These NBs remain 

proliferative from embryonic throughout larval stages development and are included in 

the proliferation scores. Overall at 1h ALH, the pNBs in mob4∆L3 mutants are 

quiescent similar to those in WT controls. 
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Figure 2.2. pNBs are quiescent in both mob4 mutants and controls immediately after larval 
hatching: (A, D) Wild-type (WT, control) and (B, E) mob4EYΔL3 (herein mob4 ΔL3) mutant larval brain 

lobes (BLs) and ventral nerve cords (VNCs) at 1h after larval hatching (ALH), immunostained for 
Deadpan (Dpn), Discs large (Dlg) and Phospho-Histone-H3 (Ph3). (A-F) All pNBs in mutants and 

controls (arrowheads) are quiescent (small size and not mitotic), except mushroom body pNBs (white 

asterisks). (C) Quantification of pNB diameters in BLs and VNCs shows that pNBs in mob4ΔL3 mutants 

are not statistically different compared to controls at 1h ALH (Control BL: median 4.5 µm, average 5.19 

µm n=359/10 BLs, 5 brains; mutant BL: median 4.5 µm, average 5 µm n= 441/10 BLs, 7 brains; Control 

VNC: median 3.6 µm, average 3.64 µm n=321/7 VNCs; mutant VNC: median 3.7 µm, average 3.73 µm 

n=171/5 VNCs). (F) Quantification of pNB divisions in BLs and VNCs in mob4ΔL3 mutants also shows no 
statistical differences compared to controls at 1h ALH (Control BL: median 2, average 1.75 Dpn/Ph3+ 

cells n=24/24 BLs, 12 brains; mutant BL: median 2, average 1.65 Dpn/Ph3+ cells n= 20/20 BLs, 12 brains). 

There are no pNB divisions in the VNCs at this age. In this figure and throughout this thesis, the box 
and whisker plots show the data outliers (symbols above/below the boxplot); the minimum value 

(excluding outliers, lower whisker); the lower 25% quartile (box start); the average (dashed line); the 
median (solid line); upper 25% quartile (box end); the maximum value (excluding outliers, upper 

whisker). p=Wilcoxon rank-sum test. n.s non-significant p>0.05. All images are single focal planes, 
anterior up. Scale bar: 10  µm. 

 

By 4h ALH, mob4ΔL3 mutant pNB diameters in BLs and VNCs are smaller compared 
to WT controls (Figure 2.3. C). There were no differences in pNB divisions, and the 

proliferating cells observed correspond to the mbNBs, and ventrolateral NB described 

earlier (Figure 2.3. F). 
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Figure 2.3. pNBs in mob4 mutants do not begin to enlarge in contrast to control pNBs: (A, D) 
Wild-type (WT, control) and (B, E) mob4ΔL3 mutant larval brain lobes (BLs) and ventral nerve cords 

(VNCs) at 4h after larval hatching (ALH), immunostained for Deadpan (Dpn), Discs large (Dlg) and 

Phospho-Histone-H3 (Ph3). (C) Quantification of pNB diameters in BLs and VNCs shows that pNBs 

in mob4ΔL3 mutants are statistically smaller compared to controls at 4h ALH (Control BL: median 5.3 µm, 

average 5.5 µm n=1121/14 BLs, 7 brains; mob4ΔL3 mutant BL: median 4.4 µm, average 4.8 µm n= 552/10 

BLs, 5 brains; Control VNC: median 4.4 µm, average 4.4 µm n=700/6 VNCs; mob4ΔL3 mutant VNC: median 

3.8 µm, average 3.8 µm n=331/5 VNCs). (F) Quantification of pNB divisions in BLs and VNCs in mob4ΔL3 

mutants show no statistical difference compared to controls at 4h ALH (Control: median 1, average 1.3 

Dpn/Ph3+ cells n=24 12 brains; mutant: median 0 , average 0.7 Dpn/Ph3+ cells n= 24 12 brains). The only 

pNBs dividing at this stage are mushroom body pNBs (mbNBs, white asterisks). There are no pNB 

divisions in the VNCs at this age. p=Wilcoxon rank-sum test. *** p<0.001. n.s p>0.05. Arrowheads 

indicate pNBs. All images are single focal planes, anterior up. Scale bar: 10 µm. 

 

At 24h ALH, the end of the first instar larval stage, the majority of pNBs have exited 
quiescence (Truman and Bate, 1988; Chell and Brand, 2010). As expected, the pNBs 

in the WT controls incorporate 5-ethynyl-2'-deoxyuridine (EdU) indicating entry into S-

phase (DNA synthesis) of the cell cycle (Figure 2.4. A, D). However, pNBs in 

mob4∆L3 mutants do not incorporate EdU, except the mbNBs (Figure 2.4. B, E). The 

mob4∆L3 mutant BLs and VNCs are also dramatically smaller compared to the WT 
controls (Figure 2.5. A, D versus Figure 2.5. B, E). 
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Figure 2.4. mob4 pNBs do not enter S-phase: (A, D) Wild-type (WT, control) and (B, E) mob4ΔL3 

mutant larval brain lobes (BLs) and ventral nerve cords (VNCs) at 24h after larval hatching (ALH), 

labelled with 5-ethynyl-2'-deoxyuridine (EdU). (C) Normalised EdU voxel quantification in either BLs 

or VNCs shows that pNBs in mob4ΔL3 mutants do not incorporate EdU in contrast to controls, indicating 

no entry into S-phase of the cell cycle, with the exception of mushroom body NBs (Control BL: average 

1±0.2 n=8/8 brains; mob4ΔL3 mutant BL: average 0.03±0.01 n= 8/8 brains; Control VNC: average 1±0.15 

n=7/7 brains; mob4ΔL3 mutant BL: average 0 n= 8/8 brains). Normalised average scores +/- s.e.m. are 

shown. p=Wilcoxon rank-sum test. *** p<0.001. White dashed lines mark BLs and VNCs. All images 

are Z-stack projections. Anterior up. Scale bar: 10 µm. 

 
In addition to failing to enter S-phase, pNB size (white arrows) and mitotic index 

(yellow arrows) are dramatically smaller in the mob4∆L3 mutants compared to WT 

controls at 24h ALH (Figure 2.5.C, F). At 48h ALH, pNBs in the mob4∆L3 mutants are 
still unable to re-enter division (Figure 2.5.G-I). Interestingly, a tiny increase in the 

average size of pNBs in mob4∆L3 mutants is observed at 4h ALH (Figure 2.3.C), and 
24h ALH (Figure 2.5.C) compared to 1h ALH (Figure 2.3C), suggesting that the 

mutant pNBs attempt to enlarge but are unable to succeed (see Discussion). 
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Figure 2.5. mob4 mutant pNBs fail to mitotically reactivate: (A, D, G, J) Wild-type (WT, control) and 

(B, E, H, K) mob4ΔL3 mutant larval brain lobes (BLs) and ventral nerve cords (VNCs) immunostained 

for Deadpan (Dpn), Discs large (Dlg) and Phospho-Histone-H3 (Ph3) at 24h ALH (A, B, D, E) and 

48h ALH (G, H, J, K). (C) Quantification of pNB diameters in BLs and VNCs shows that pNBs in mob4ΔL3 

mutants are smaller compared to controls at 24h After Larval Hatching (ALH) (Control BL: median 9.7 

µm, average 9.5 µm n=799/10 BLs, 7 brains; mob4ΔL3 mutant BL: median 6.2 µm, average 6.5 µm n= 

395/18 BLs, 9 brains; Control VNC: median 8.3 µm, average 8.3 µm n=584/5 VNCs; mob4ΔL3 mutant 

VNC: median 4.7 µm, average 4.9 µm n=88/8 VNCs). (F) Quantification of pNB divisions in BLs and 

VNCs in mob4ΔL3 mutants shows no dividing pNBs compared to controls at 24h ALH, except mbNBs 

(Control BLs: median 25.5, average 26.8 Dpn/Ph3+ cells n=24 12 brains; mob4ΔL3 mutant BLs: median 

2, average 1.7 Dpn/Ph3+ cells n= 24 12 brains; Control VNCs: median 19, average 26.3 Dpn/Ph3+ 

cells n=12/12 VNCs; mob4ΔL3 mutant VNCs: median 0, average 0 Dpn/Ph3+ cells n=12/12 VNCs). 

(G-I) At 48h ALH, pNBs in mob4 mutants remain not reactivated with no pNB divisions seen in BLs 

(except mbNBs ) or VNCs, in contrast to the controls (I; Control BLs: median 19, average 21.2 

Dpn/Ph3+ cells n=11/11 brains; mob4ΔL3 mutant BLs: median 1, average 1 Dpn/Ph3+ cells n= 11/11 

brains; Control VNCs: median 30, average 31.3 Dpn/Ph3+ cells n=11/11 VNCs; mob4ΔL3 mutant 

VNCs: median 0, average 0 Dpn/Ph3+ cells n=11/11 VNCs). p=Wilcoxon rank-sum test. *** p<0.001. 

White arrowheads indicate pNBs; yellow arrowheads indicate Ph3+ pNBs. White asterisks label Ph3+ 

mbNBs. All images are single focal planes, anterior up. Scale bar: 10 µm. 

 

Upon reactivation, type I pNBs divide asymmetrically to self-renew and generate 
GMCs which express the cell fate determinant prospero (pros) in their nuclei 

(reviewed in Jan and Jan, 1998). WT and mob4∆L3 mutant CNSs were immunostained 
for Grainyhead (Grh, labelling NBs and GMCs, red), Pros (green) and Ph3 (blue) at 
24h ALH. As expected, in WT, most of the pNBs in VNCs (type I) are reactivated and 

have generated GMCs (yellow arrows, Figure 2.6. A); contrasting with mob4∆L3 

mutant pNBs (white arrows, Figure 2.6. B). Together, the above results demonstrate 

that pNBs in mob4∆L3 mutants fail to mitotically reactivate and generate progeny. 
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Figure 2.6. mob4 pNBs fail to generate neural progeny: (A) Wild-type (WT, control) and (B) 
mob4ΔL3 mutant ventral nerve cords (VNCs) at 24h after larval hatching (ALH), labelled with Grainyhead 
(Grh), Prospero (Pros) and Phospho-Histone-H3 (Ph3) antibodies. (A) WT pNBs (Grh+, no nuclear 

Pros) have mitotically reactivated to generate Ganglion Mother Cells (GMCs, Grh/nuclear Pros+). (B) 

mob4 mutant pNBs remain small, do not divide (no Ph3 signal) and no GMCs can be observed. White 

arrowheads indicate pNBs. Yellow arrowhead labels a GMC. All images are single focal planes, anterior 

up. Scale bar: 10 µm. 

 

 

2.3 Mob4 functions cell-autonomously in pNB reactivation 
Since Mob4 expression in the CNS is not restricted to pNBs, an investigation was 

carried out to discern if Mob4 acts in a cell-autonomous way in pNBs. The mob4∆L3 

mutant strain was recombined with an inscuteable-Gal4 (insc-Gal4) line (see Materials 
and methods). This fly line allowed for any UAS constructs to be expressed in pNBs 

in a mob4∆L3 mutant background. To validate the efficacy of this fly line, Mob4 antibody 

(red) was applied to 18h ALH mob4∆L3 mutants with ectopic Mob4 expression in the 

pNBs (mob4∆L3, insc-Gal4; UAS-mob4; herein mob4∆L3, NB>mob4; Figure 2.7. C, F), 
control brains (insc-Gal4 herein CNTRL, Figure 2.7. A, D) and mob4 mutants 

recombined with insc-GAL4 (mob4∆L3, insc-Gal4) (Figure 2.7. B, E). The brains were 
also immunostained for Dpn (green) and Dlg (blue). As anticipated, Mob4 protein is 

ubiquitous in control (CNTRL) brains including pNBs (white arrows, Figure 2.7. A, D) 

and is absent in the mob4∆L3, insc-Gal4 mutant brains (white arrows, Figure 2.7. B, 
E). However, upon mob4 ectopic expression in mob4∆L3 mutant pNBs, Mob4 protein 
(red) can be readily seen in pNBs and their progeny (white arrows, Figure 2.7. C, F). 
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Figure 2.7. Validation of Drosophila line allowing targeted Mob4 ectopic expression in mob4 
mutant pNBs: Brain lobes (A-C) and ventral nerve cords (D-F) immunostained for Mob4, Deadpan 
(Dpn) and Discs large (Dlg) at 18h ALH. (A, D) Mob4 is expressed throughout the larval brain lobes 

and ventral nerve cords of Insc-Gal4 brains (control, CNTRL) and is absent in mob4ΔL3 mutants 

recombined with Insc-Gal4 (mob4 ΔL3, insc-Gal4) (B, E). However, Mob4 protein is expressed in the 

pNBs and their progeny of these mutants when mob4 is ectopically driven by insc-Gal4. White 

arrowheads indicate pNBs. All images are single focal planes, anterior up. Scale bar: 10 µm. 

 

Once validated, the mob4∆L3, NB>mob4 flies were used for Mob4 rescue experiments 
(Figure 2.8.). First, it was determined if reintroducing Mob4 in pNBs of mob4 mutants 

would rescue the observed pNB reactivation defects. Three fly strains were used for 

this experiment: insc-Gal4 controls (CNTRLS, Figure 2.8. A, D); mob4ΔL3,insc-Gal4 

mutants (Figure 2.8. B, E) and mob4ΔL3,insc-Gal4; UAS-mob4 (mob4ΔL3,NB>mob4 

Rescue, Figure 2.8. C, F). The brains were immunostained for Dpn (red), Dlg (green) 

and Ph3 (blue) to quantify pNB size and mitotic index. Predictably, at 18h ALH, many 
CNTRL pNBs are enlarged (white arrows, Figure 2.8. A, D) and proliferate (yellow 

arrows, Figure 2.8. A, D) and the mob4ΔL3 mutant pNBs remain quiescent (white 
arrows, Figure 2.8. B, E). Remarkably, ectopic expression of Mob4 in pNBs of 
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mob4ΔL3 mutants can rescue pNB enlargement and re-entry into mitosis (yellow 

arrows, Figure G, H) to control values. The mob4∆L3 mutant larval brains were small, 
whereas the pNB>mob4 rescue larval brains were more akin to the controls. These 
results demonstrate that re-introduction of Mob4 in pNBs is sufficient to rescue pNB 

reactivation defects in mob4 mutant brains. 
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Figure 2.8. Ectopic expression of Mob4 in pNBs of mob4 mutants rescues mitotic reactivation. 
(A, D) Insc-Gal4 (Control, CNTRL), (B, E) mob4ΔL3, insc-Gal4 (mob4 mt) and (C, F) dmob4ΔL3, insc- 

Gal4; UAS-mob4 (mob4ΔL3, NB>mob4 Rescue) brain lobes (BLs) and ventral nerve cords (VNCs) 

immunostained for Deadpan (Dpn), Discs large (Dlg) and Phospho-Histone-H3 (Ph3), at 18h ALH. 

pNBs of mob4ΔL3 mutants have impaired enlargement and cannot re-enter division compared to 
controls. However, these defects can be rescued by ectopically expressing Mob4 in pNBs using the NB 

Gal4 driver inscuteable-Gal4 (insc-Gal4). (G) Quantification of pNB sizes (BL pNB size – Control: 

median 7.8 µm, average 7.7 µm n=219/3 BLs, 3 brains; mob4 mutant: median 4.9 µm, average 5 µm n= 

520/7 BLs, 7 brains; mob4ΔL3, NB>mob4 Rescue: median 7.8 µm, average 7.8 µm n= 669/10 BLs, 5 brains. 

VNC pNB size – Control: median 6.9 µm, average 6.9 µm n=256/3 VNCs; mob4 mutant: median 3.6 µm, 

average 3.6 µm n=377/4 VNCs; mob4ΔL3, NB>mob4 Rescue: median 6.4 µm, average 6.6 µm n=649/7 

VNCs). (H) Quantification of pNB divisions (BL pNB divisions – Control: median 7.5, average 9.4 

Dpn/Ph3+ cells n=12/12 brains; mob4 mutant: median 1, average 1.2 Dpn/Ph3+ cells n= 10/10 brains; 

mob4ΔL3,NB>mob4 Rescue: median 8.5, average 10.4 Dpn/Ph3+ cells n= 10/10 brains. VNC pNB 

divisions Control: median 7, average 7.2 Dpn/Ph3+ cells n=6/6 VNCs; mob4 mutant: median 0, average 

0 Dpn/Ph3+ cells n=10/10 VNCs; mob4ΔL3, NB>mob4 Rescue: median 4, average 8.1 Dpn/Ph3+ cells 

n=10/10 VNCs). p=Wilcoxon rank-sum test. n.s. p>0.05, * p<0.05, *** p<0.001. White arrowheads 
indicate pNBs; yellow arrowheads indicate Ph3+ pNBs. All images are single focal planes, anterior up. 

Scale bar: 10 µm. 

 

Second, since the glial niche performs vital roles in pNB quiescence and reactivation 

(Chell and Brand, 2010; Sousa-Nunes et al.,  2011; Ding et al.,  2016), the next step 

was to perform rescue experiments by expressing Mob4 in the glia of mob4∆L3 mutant 

brains. The mob4∆L3 mutant allele was combined with repo-Gal4 to allow ectopic Mob4 

expression in CNS glia in a mob4∆L3 mutant background (mob4∆L3 mt, Glia>mob4 

rescue). At 18h ALH, the overall brain size of the mob4 mutants expressing Mob4 in 

glia is comparable to the mob4∆L3 mutants; both are much smaller than the controls 

Figure A-H). The pNBs in mob4∆L3 mutant brains (white arrows, Figure 2.9. D, E) and 

in the mob4∆L3 mutants expressing Mob4 in glia (white arrows, Figure 2.9. G, H) are 
markedly smaller compared to the controls (white arrows, Figure 2.9. A, B). Quantifi- 

cations confirmed that forcing Mob4 expression in the glia of mob4∆L3 mutants cannot 
rescue pNB size (Figure 2.9. C, F) or mitotic activity defects (Figure 2.9. I, L) to the 

control values. However, a minimal yet significant increase is observed in both size 
and divisions when comparing brain lobe or VNC pNB sizes, as well as brain lobe pNB 

divisions, in the mob4∆L3 mt, Glia>mob4 expressing brains with mob4∆L3 mutants 
(Figure 2.9. C, F, I, L). Overexpressing mob4 in glia in a WT background using repo-

Gal4; UAS-mob4 (Glia>mob4) caused a tiny but significant VNC pNB size increase 
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compared to the controls, at 18h ALH (Figure 2.9. F; see Discussion). However, 

analysis of the size of brain lobe pNBs (Figure 2.9. C), or pNB divisions in either brain 
lobes or VNCs show no significant differences (Figure 2.9. I, L) compared to controls. 
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Figure 2.9. Mob4 ectopic expression in glia is unable to rescue pNB reactivation in mob4 
mutants and its overexpression in control brains causes a minor premature enlargement only 
in VNC pNBs : (A, B) repo-Gal4 (control, CNTRL), (D, E) mob4ΔL3 mutant (mob4ΔL3 mt), (G, H) mob4ΔL3; 

repo-Gal4; UAS-mob4 (mob4ΔL3 mt, Glia>mob4 Rescue), (J, K) repo-Gal4; UAS-mob4 (Glia > mob4). 

Larval brain lobes (BLs) and ventral nerve cords (VNCs) are immunostained for Deadpan (Dpn), Discs 
large (Dlg) and Phospho-Histone-H3 (Ph3), at 18 h After Larval Hatching (ALH). (C, F) Quantification 

of pNB diameters in BLs (C) and VNCs (F) shows that driving mob4 in glia of mob4ΔL3 mutants does not 

rescue the pNB enlargement defects to control values. However, there is a small increase in pNB size 

when compared to mob4 mutant values. Also, mob4 overexpression in glia in control background does 

not affect the size of pNBs in BLs but leads to a small increase in VNC pNBs. (C) pNB size 

quantifications in BLs (Control: median 7.8 µm, average 7.9 µm n188/3 BLs, 2 brains; mob4ΔL3mt: median 

5.1 µm, average 5.2 µm n=307 /5 BLs, 4 brains; mob4ΔL3 mt, Glia> mob4 Rescue: median 5.4 µm, 

average 5.5 µm n= 310/4 BLs, 3 brains; Glia> mob4: median 7.6 µm, average 7.7 µm n= 278/4 BLs, 2 

brains). (F) pNB size quantifications in VNCs (Control: median 6.3 µm, average 6.4 µm n=278/3 VNCs; 

mob4ΔL3 mt: median 3.9 µm, average 4 µm n=206/4 VNCs; mob4ΔL3 mt, Glia> mob4 Rescue: median 2.8 

µm, average 4.3 µm n=253/5 VNCs; Glia> mob4: median 6.5 µm, average 6.7 µm n=233/3 VNCs). (I, L) 
Quantification of pNB divisions (Dpn/Ph3+ cells) in BLs (I) and VNCs (L) shows that ectopic expression 

of mob4 in glia of mob4 mutants cannot rescue the mitotic defects to control values. However, there is 

a small increase in dividing pNBs in the BLs when compared to mob4 mutant values. mob4 

overexpression in glia in control background does not affect pNB divisions compared to controls. (I) BL 

pNB division quantifications (Control: median 12, average 12.3 Dpn/Ph3+ cells n=28 28 BLs, 14 brains; 

mob4ΔL3 mt: median 1, average 1.2 Dpn/Ph3+ cells n=34 17 brains; mob4ΔL3 mt, Glia> mob4: median 3, 

average 3.7 Dpn/Ph3+ cells n=57 26 brains; Glia> mob4: median 11, average 11.8 Dpn/Ph3+ cells n=66 

66 BLs, 33 brains). (L) VNC pNB division quantifications (Control: median 7, average 8.4 Dpn/Ph3+ 

cells n=14/14 VNCs; mob4ΔL3 mt: median 0, average 0.4 Dpn/Ph3+ cells n=17/17 VNCs; mob4ΔL3 mt, 

Glia> mob4: median 0, average 0.4 Dpn/Ph3+ cells n=29/29 VNCs; Glia> mob4: median 8, average 8.8 

Dpn/Ph3+ cells n=33/33 VNCs). p=Wilcoxon rank-sum test. n.s (non-significant) p>0.05 * p<0.05, 

***p<0.001. White arrowheads indicate pNBs; yellow arrowheads indicate Ph3+ pNBs. The white 

asterisk indicates mbNBs. All images are single focal planes, anterior up. Scale bar: 10 µm. 

 

Finally, RNA interference was used to knockdown mob4 expression, specifically in 

pNBs using insc-Gal4 (Figure 2.10.). Membrane-tagged GFP was simultaneously 

expressed (UAS-CD8-GFP, UCD8-GFP). Larval brains with mob4 knock-down in the 

pNBs (UAS-dicer; insc-Gal4, UCD8-GFP; UAS-mob4-RNAi) were dissected and 

immunostained for Dpn (red), GFP (green) and Ph3 (blue), and compared to the 

controls (UAS-dicer; insc-Gal4,UCD8-GFP, CNTRL), at 18h ALH. mob4-RNAi 

specifically in pNBs RNAi (NB>mob4-RNAi, Figure 2.10. B, E) leads to a small but 

significant reduction in pNB enlargement (Figure 2.10. C) compared to the controls 
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(Figure 2.10. A, D). NB>mob4-RNAi pNBs also showed significantly reduced mitotic 

reactivation compared to the controls (yellow arrows, Figure 2.10. F). Together, the 

above results indicate that Mob4 acts primarily cell-autonomously in pNBs promoting 

reactivation.  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 2.10. Mob4 inhibition via RNAi delays pNBs mitotic reactivation: (A, D) UAS-dicer; insc- 

Gal4, UCD8-GFP (control, CNTRL) and (B, E) UAS-dicer; insc-Gal4, UCD8-GFP; UAS-mob4-RNAi 
(NB>mob4-RNAi) brain lobes (BLs) and ventral nerve cords (VNCs) immunostained for Deadpan 
(Dpn), green fluorescent protein (GFP) and Phospho-Histone-H3 (Ph3), at 18h After Larval 
Hatching (ALH). (C) Quantification of pNB diameters in BLs and VNCs shows that pNBs with mob4- 

RNAi are smaller compared to controls (Control BL: median 6.8 µm, average 7 µm n=684/9 BLs, 9 

brains; mob4-RNAi BL: median 6.3 µm, average 6.6 µm n= 614/8 BLs, 8 brains; Control VNC: median 

5.8 µm, average 6 µm n=441/5 VNCs; mob4-RNAi VNC: median 5 µm, average 5.1 µm n=686/5 VNCs). 

(F) pNB divisions in BLs and VNCs in pNBs with mob4-RNAi are also statistically less compared to 

controls (Control BL: median 11.5, average 11.4 Dpn/Ph3+ cells n=46 23 brains; mob4-RNAi BL: 

median 8.5, average 7.9 Dpn/Ph3+ cells n= 28 14 brains; Control VNC: median 3, average 4.3 Dpn/Ph3+ 

cells n=23/23 VNCs; mob4-RNAi VNC: median 1, average 1.8 Dpn/Ph3+ cells n=14/14 VNCs). 
p=Wilcoxon rank-sum test. *** p<0.001. Yellow arrowheads indicate Ph3+ pNBs. All images are single 

focal planes, anterior up. Scale bar: 10 µm. 
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2.4 Mob4 or human MOB4 (Phocein) overexpression leads to premature pNB 
reactivation 
To strengthen the results indicating that Mob4 is required for pNB reactivation, the 

next step was to analyse the potential effects of Mob4 overexpression in pNBs. Mob4 

was overexpressed using insc-Gal4 during a period of when pNB are still mitotically 

quiescent (6h ALH) and when pNB reactivation is ongoing (18h ALH). Larval brains 

with Mob4 overexpressing pNBs (insc-Gal4, UCD8-GFP; UAS-mob4, NB>mob4) were 

dissected and immunostained for Dpn (red), GFP (green) and Ph3 (blue), and 

compared to controls (insc-Gal4, UCD8-GFP, CNTRL) (Figure 2.11). At 6h ALH, pNBs 

are of small size and only the mbNBs/vNB are mitotically active (white asterisk, Figure 
2.11. A, B). In contrast, pNBs in NB>mob4 larval brains (white arrows, Figure 2.11. 
B, E) showed a significant increase in pNB size (Figure 2.11. C) compared to the 

controls (white arrows, Figure 2.11. A, D). However, there were no significant 

differences in pNB divisions between the two groups at this time point (Figure 2.11. 
F). At 18h ALH, overexpression of Mob4 (NB>mob4; Figure 2.11. H, K) did not cause 

a further increase in pNB diameters (Figure 2.11. I) compared to the controls 

(Figure 2.11. G, J), yet more pNBs in division were detected compared to the controls 

(yellow arrows, Figure 2.11. L). These experiments demonstrate that Mob4 

overexpression leads to premature pNB reactivation. 
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Figure 2.11. pNBs overexpressing Mob4 show premature enlargement and entry into division: 

(A, D, G, J) insc-Gal4, UCD8-GFP (control; CNTRL) and (B, E, H, K) mob4 overexpression specifically 

in pNBs (insc-Gal4, UCD8-GFP; UAS-mob4) larval brain lobes (BLs) and ventral nerve cords (VNCs) 

immunostained for Deadpan (Dpn), green fluorescent protein (GFP) and Phospho-Histone-H3 
(Ph3) and at 6h and 18h after larval hatching (ALH). (C) Quantification of pNB diameters in BLs and 

VNCs shows that pNBs with Mob4 overexpression (NB>mob4) enlarge prematurely compared to 

controls at 6h ALH (Control BL: median 4.6 µm, average 4.9 µm n=664/10 BLs, 5 brains; NB>mob4 BL: 

median 5.3 µm, average 5.6 µm n= 478/10 BLs, 5 brains; Control VNC: median 4.1 µm, average 4.1 µm 

n=613/6 VNCs; NB>mob4 VNC: median 4.6 µm, average 4.7 µm n=657/6 VNCs). (F) pNB divisions in BLs 

show no statistical difference between mob4 overexpression compared to controls at 6h ALH (Control 

BL: median 1, average 1.2 Dpn/Ph3+ cells n=24 12 brains; NB>mob4 BL: median 1.5, average 1.8 

Dpn/Ph3+ cells n= 22 11 brains). pNB division corresponds to only mbNBs. No Dpn/Ph3+ cells were 

observed in the VNCs of either group at this age. (I) At 18h ALH, pNB diameters in BLs and VNCs show 

no statistical differences (Control BL: median 7.1 µm, average 7.3 µm n=1052/14 BLs, 7 brains; NB>mob4 

BL: median 7.2 µm, average 7.3 µm n= 1004/14 BLs, 9 brains; Control VNC: median 5.9 µm, average 6.1 

µm n=657/6 VNCs; NB>mob4 VNC: median 6 µm, average 6.1 µm n=630/6 VNCs). (L) At 18h ALH 

overexpression of mob4 in pNBs shows increased numbers of dividing pNBs compared to controls in 

both BLs and VNCs (Control BL: median 10, average 10.6 Dpn/Ph3+ cells n=24 12 brains; NB>mob4 

BL: median 12, averaged 12.9 Dpn/Ph3+ cells n=20 10 brains; Control VNC: median 4, average 4.9 

Dpn/Ph3+ cells n=10 10 brains; NB>mob4 VNC: median 10, average 10.7 Dpn/Ph3+ cells n=15 15 

brains). p=Wilcoxon rank-sum test. *** p<0.001, p>0.05 ns (non-significant). White arrowheads indicate 

pNBs; yellow arrowheads indicate Ph3+ pNBs. Mushroom body pNBs (white asterisks). All images are 

single focal planes, anterior up. Scale bar: 10 µm. 

 

Mob4 shares 80% amino acid homology with its human ortholog, MOB4 (also known 

as Phocein), and can rescue the lethality of mob4 mutants (Schulte et al.,  2010). To 

assess whether Mob4 action in pNB reactivation may be evolutionary conserved, 

phocein was overexpressed in pNBs at 6h ALH and 18h ALH (Figure 2.12.). Larval 

brains with phocein overexpressing pNBs (insc-Gal4, UCD8-GFP; UAS-phocein, NB> 

phocein) were dissected and immunostained for Dpn (red), GFP (green) and Ph3 

(blue), and compared to the controls (insc-Gal4, UCD8-GFP, CNTRL) (Figure 2.12). 

At 6h ALH the pNBs are small with only the mbNBs/vNB enlarged and mitotically active 

(white asterisk, Figure 2.12. A, B). pNBs in NB>phocein larval brains (white arrows, 

Figure 2.12. B, E) showed a significant increase in pNB size and a small increase in 

divisions (Figure 2.12. C, F) compared to the controls (Figure 2.12. A, D). At 18 h 

ALH, pNBs in NB>phocein brains (yellow arrows, Figure 2.12. H, K) also displayed 

significant increases in pNB diameters and divisions (yellow arrows, Figure 2.12. L) 
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compared to the controls (yellow arrows, Figure 2.12. G, J). The results indicate that 

Phocein overexpression causes precocious pNB reactivation, similar to mob4 

overexpression, which suggests a conserved function. 
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Figure 2.12. Overexpressing the human ortholog of mob4, phocein, results in premature pNB 
reactivation: (A, D, G, J) Insc-Gal4,UCD8-GFP (controls; CNTRL) and (B, E, H, K) Human MOB4 

(Phocein) overexpression specifically in pNBs (Insc-Gal4,UCD8-GFP; UAS-phocein, NB>phocein) 

larval brain lobes (BLs) and ventral nerve cords (VNCs) immunostained for Deadpan (Dpn), green 
fluorescent protein (GFP) and Phospho-Histone-H3 (Ph3) at 6h and 18h after larval hatching (ALH). 

(C, F) Quantification of pNB diameters in BLs and VNCs shows that pNBs with phocein overexpression 

enlarge and start dividing prematurely compared to controls at 6h ALH. (C) pNB diameters 

quantifications at 6h ALH (Control BL: median 4.7 µm, average 5.1 µm n466/32 BLs, 16 brains; 

NB>phocein BL: median 5.7 µm, average 6.2 µm n= 508/6 BLs, 3 brains; Control VNC: median 3.9 µm, 

average 4 µm n=682/5 VNCs; NB>phocein VNC: median 5 µm, average 5 µm n=654/5 VNCs). (F) pNB 

divisions at 6h ALH (Control BL: median 1, average 1.5 Dpn/Ph3+ cells n=32 16 brains; NB>phocein BL: 

median 2, average 2.5 Dpn/Ph3+ cells n= 28 14 brains; Control VNC: median 0, average 3.2 Dpn/Ph3+ 

cells n=32 12 VNCs; phocein VNC: median 2, average 2.5 Dpn/Ph3+ cells n= 28 14 VNCs). (I, L) At 18h 

ALH pNBs with phocein overexpression also enlarge and mitotically reactivate prematurely compared 

to controls. (I) pNB diameters quantifications (Control BL: median 7.4 µm, average 7.6 µm n521/7 BLs, 

5 brains; NB>phocein BL: median 8.5 µm, average 8.6 µm n= 533/7 BLs, 5 brains; Control VNC: median 

6.8 µm, average 6.8 µm n=697/6 VNCs; NB>phocein VNC: median 7.3 µm, average 7.4 µm n=710/6 

VNC). (L) pNB divisions quantifications (Control BL: median 8.5, average 9.1 Dpn/Ph3+ cells n=26/13 

brains; NB>phocein BL: median 13, average 12.9 Dpn/Ph3+ cells n= 40/20 brains; Control VNC: median 

9.5, average 9 Dpn/Ph3+ cells n=13/13 brains; NB>phocein VNC: median 15.5, average 15.2 Dpn/Ph3+ 

cells n= 20/ 20 brains). p=Wilcoxon rank-sum test. **p<0.01 ***p<0.001. White arrowheads indicate 

pNBs; yellow arrowheads indicate Ph3+ pNBs. Mushroom body pNBs (white asterisks). All images are 

single focal planes, anterior up. Scale bar: 10 µm. 

 
 

Given that mob4 overexpression in pNBs leads to premature reactivation, the next 

step was to determine if it also leads to overproliferation of pNBs later in development. 

Using the same fly strains for the mob4 overexpression experiments, larval brains with 

mob4 overexpressing pNBs (insc-Gal4, UCD8-GFP; UAS-mob4, NB>mob4) were 

dissected and immunostained for Dpn (red), GFP (green) and Ph3 (blue), and 

compared to the controls (insc-Gal4, UCD8-GFP, CNTRL) (Figure 2.13) at 48h and 

94h ALH. pNBs in NB>mob4 VNCs only (white arrows, Figure 2.13. B, E) showed a 

significant increase in pNB divisions (Figure 2.13. C) compared to the controls (white 

arrows, Figure 2.13. A, D) at 48h ALH, a time when pNB reactivation still occurs but 

is about to cease (White and Kankel, 1978; Truman and Bate, 1988; Maurange et al.,  

2008). However, there were no significant differences in pNB divisions in NB>mob4 

brain lobes or VNCs (white arrows, Figure 2.13. H, K) compared to the controls (white 
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arrows, Figure 2.13. G, J) at 94h ALH (Figure 2.13. I). Therefore, mob4 

overexpression in the pNBs leads to early reactivation but does not cause 

overproliferation. 
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Figure 2.13. Mob4 overexpression in pNBs does not cause overproliferation: (A, D, G, J) Insc- 

Gal4,UCD8-GFP (control; CNTRL) and (B, E, H, K) Mob4 overexpression specifically in pNBs (Insc- 
Gal4,UCD8-GFP; UAS-mob4, NB>mob4) larval brain lobes (BLs) and ventral nerve cords (VNCs) 

immunostained for Deadpan (Dpn), green fluorescent protein (GFP) and Phospho-Histone-H3 
(Ph3) at 48 and 94h ALH. (C) At 48h ALH, pNB divisions in VNCs are higher in pNBs with mob4 over- 

expression (NB> mob4) compared to controls however there was not a difference in divisions in the 

BLs (Control BL: median 23.5, average 25.5 Dpn/Ph3+ cells n=10 9 brains; NB> mob4 BL: median 27.5, 

average 27.4 Dpn/Ph3+ cells n= 10 10 brains; Control VNC: median 31.5, average 33.4 Dpn/Ph3+ cells 

n=8 8 brains; NB> mob4 VNC: median 49.5, average 52.1 Dpn/Ph3+ cells n= 10 10 brains). (I) At 94h 
ALH pNB divisions in the BLs and VNCs are not statistically different from controls (Control BL: median 

23.5, average 25.5 Dpn/Ph3+ cells n=10 10 brains; NB> mob4 BL: median 27.5, average 27.4 Dpn/Ph3+ 

cells n= 10 10 brains; Control VNC: median 37, average 37.4 Dpn/Ph3+ cells n=10 10 brains; NB> mob4 

VNC: median 47, average 48.3 Dpn/Ph3+ cells n= 10 10 brains). p=Wilcoxon rank-sum test. p>0.05 n.s 

(non-significant), * p<0.05, ***p<0.001. White arrowheads indicate pNBs. All images are single focal 

planes, anterior up. Scale bars: 25 µm. 

 
2.5. Activation of the Insulin-like receptor (InR)/PI3K/Akt signalling cascade in 
pNBs of mob4 mutants partially rescues reactivation defects 
In the absence of nutrition, specifically circulating amino acids, CNS glia do not receive 

a yet to be defined systemic signal from the larval fat body, and consequently, do not 

release insulin-like peptides that activate the InR/TOR signalling cascade in pNBs 

promoting their reactivation. pNB reactivation can be restored by activation of the 

InR/TOR cascade within pNBs (Chell and Brand, 2010; Sousa-Nunes et al.,  2011). 

As mob4 overexpression in pNBs was able to cause early reactivation, it was first 

determined if it could also induce pNB reactivation in the absence of the nutritional 

cue. mob4 was overexpressed in pNBs under nutrition-restrictive conditions (sucrose- 

only diet) (Figure 2.14). Nutritionally deprived larval brains with Mob4 overexpressing 

pNBs (insc-Gal4, UCD8-GFP; UAS-mob4, NB>mob4 N.R.) (Figure 2.14. B, E) or 

controls (insc-Gal4,UCD8-GFP, CNTRL N.R.) (Figure 2.14. A, D) were dissected and 

immunostained for Dpn (red), GFP (green) and Ph3 (blue) at 18h ALH. In the control 

larvae, pNBs fail to reactivate (Figure 2.14. A, B) and pNBs in NB>mob4 N.R larval 

brains (white arrows, Figure 2.14. B, E) showed a minor significant increase in pNB 

size in the VNC only (Figure 2.14. C) at 18h ALH. Nevertheless, there were no 

significant differences in pNB divisions in either brain lobes or VNCs (Figure 2.14. F). 

Overall, mob4 overexpression in the pNBs is not sufficient to induce pNB mitotic 

reactivation upon loss of the extrinsic nutrition cue. 
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Figure 2.14. Overexpression of mob4 is not sufficient to induce pNB reactivation under nutrition- 
restriction conditions: (A, D) Insc-Gal4, UCD8-GFP (control; CNTRL) and (B, E) mob4 

overexpression specifically in pNBs (Insc-Gal4, UCD8-GFP; UAS-mob4) upon nutrition restrictive 

conditions (sucrose-only diet). Larval brain lobes (BLs) and ventral nerve cords (VNCs) are 

immunostained for Deadpan (Dpn), green fluorescent protein (GFP) and Phospho-Histone-H3 (Ph3) 
at 18 hours After Larval Hatching (ALH). Quantification of pNB diameters in BLs shows that mob4 

overexpression (pNB>mob4) is not sufficient to overcome reactivation defects observed under nutrition 

restriction, with exception of a minor increase in pNB sizes in VNCs. (C) pNB diameters quantification 

(Control BL: median 4.9 µm, average 5.3 µm n398/6 BLs, 5 brains; pNB>mob4 BL: median 4.7 µm, 

average 5.2 µm n= 376/5 BLs, 5 brains; Control VNC: median 4.2 µm, average 4.2 µm n=325/5 VNCs; 

pNB>mob4 VNC: median 4.2 µm, average 4.3 µm n=440/5 VNCs). Under nutrition restriction, pNBs with 

mob4 overexpression also did not significantly alter the number of dividing pNBS. (F) pNB divisions 

(Control BL: median 2, average 1.7 Dpn/Ph3+ cells n=58 29 brains; pNB>mob4 BL: median 1, average 

1.5 Dpn/Ph3+ cells n= 66 33 brains). No Dpn/Ph3+ cells were detected in the VNCs at this age. 

p=Wilcoxon rank-sum test. *p<0.05, p>0.05 ns (non significant). White arrowheads indicate pNBs. 

Mushroom body pNBs (white asterisks) remain mitotically active. All images are single focal planes, 

anterior up. Scale bar: 10 µm. 

 

Since active InR/PI3K/Akt signalling is essential for pNB reactivation, and pNBs in 

mob4ΔL3 mutants are unable to reactivate, it was investigated if activation of this 

cascade was impaired in mob4 mutant brains. Using 24h ALH brain lysates from 
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control wild-type and mutants, I have analysed the levels of activated 

(phosphorylated) Akt, an essential component of the InR/PI3K/Akt cascade via 

western blot. Reduced levels of pAkt compared to total AKT were observed in 

mob4ΔL3 mutant brains compared to controls (Figure 2.15. A, B). This initial 

observation was then replicated in our laboratory by Dr Barros, confirming that 

mob4ΔL3 mutant brains have impaired insulin signalling as shown by reduced levels of 
p-Akt (Gil-Ranedo et al.,  2019). Next, I tested whether activating the InR/PI3K/Akt 

cascade in pNBs of mob4 mutants could rescue reactivation defects. Stimulation of 

TOR signalling by RHEB overexpression activates the InR/PI3K/Akt cascade 

promoting NSC exit from quiescence (Sousa-Nunes et al.,  2011). mob4∆L3 mutant 

larval brains with rheb overexpression in the pNBs (mob4∆L3, insc-Gal4; UAS-rheb, 

mob4∆L3, NB>rheb), mob4∆L3 mutants (mob4∆L3) and the insc- Gal4 controls (CNTRL) 

were dissected and immunostained for Dpn (red), Dlg (green) and Ph3 (blue) at 18h 

ALH (Figure 2.15. C-H). As observed before, the mob4∆L3 pNBs (white arrow) are 

unable to reactivate (Figure 2.15. D, G). mob4∆L3, NB>rheb pNBs show significantly 

increased pNB enlargement (Figure 2.15. E, H, I) and pNB divisions (Figure 2.15. J) 

compared to the mutants. However, the pNB>rheb rescue did not reach levels 

observed in controls (white arrows, Figure 2.15. C, F), and although VNC pNB size 

increased, the number of divisions detected was not significantly different (Figure 
2.15. I-J). Nevertheless, together these experiments reveal that activation of the 

InR/PI3K/Akt cascade can partially restore reactivation upon loss of Mob4 (see 

Discussion), and suggested that Mob4 may act in pNBs upstream or at the same level 

of Rheb. 
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Figure 2.15. Expression of the InR/PI3K/Akt signalling cascade activator Rheb in pNBs of mob4 
mutants can rescue reactivation defects: (A, B) Western-blot test on mob4ΔL3 mutant brain lysate 
shows a decrease in phosphorylated-AKT (p-AKT) indicating reduced insulin signalling, compared to 

WT control larval brain lysate. Levels of total AKT remain very similar. β-Actin served as a loading 

control. Lysates are from 24 ALH brains (B) Quantification of protein signals (n=1 independent assay 
using 67 WT brains and 90 mob4 mutants). (C-H) pNBs in mob4 mutants fail to enlarge and divide; 

however, this defect can be rescued by overexpressing ras homolog enriched in brain (rheb) in pNBs 

(mob4ΔL3, NB>rheb). (C, F) Insc-gal4 (control; CNTRL), (D, G) mob4ΔL3, insc-Gal4 mutants, (E, H,) 
mob4ΔL3, insc-gal4; UAS-rheb (mob4ΔL3, NB>rheb) immunostained for Deadpan (Dpn), Discs large 
(Dlg) and Phospho-Histone-H3 (Ph3) at 18 hours After Larval Hatching (ALH). (I) Quantification of the 

diameters in the BLs and VNCs shows that pNBs in mob4ΔL3 mutants overexpressing rheb were 

significantly larger compared to the mob4ΔL3 mutants, however still smaller compared to controls 

(Control BL: median 7.4 µm, average 7.5 µm n334/5 BLs, 4 brains; mob4ΔL3 mutants BL: median 5.2 µm, 

average 5.4 µm n357/9 BLs, 9 brains; mob4ΔL3, NB> rheb BL: median 6.4 µm, average 6.5 µm n= 466/5 

BLs, 5 brains; Control VNC: median 6.4 µm, average 6.5 µm n181/3 BLs, 3 brains; mob4ΔL3 mutants 

VNC: median 3.9 µm, average 4.1 µm n251/4 BLs, 4 brains; mob4ΔL3, NB> rheb VNC: median 5.2 µm, 

average 5.2  µm n= 454/5 BLs, 5 brains). (J) The mitotic index of the pNBs in mob4ΔL3 mutants 

expressing rheb was significantly higher in the BLs compared to that in mob4ΔL3 mutants, but the 

results were not statistically different in the VNCs. Dividing pNBs in mob4ΔL3 mutants expressing rheb 

were less compared to the controls (Control BL: median 11, average 10.9 Dpn/Ph3+ cells n=7 7 brains; 

mob4ΔL3 mutants BL: median 1, average 0.8 Dpn/Ph3+ cells n=32 16 brains; mob4ΔL3, NB> rheb BL: 

median 6, average 5.9 Dpn/Ph3+ cells n=28 14 brains; Control VNC: median 11, average 10 Dpn/Ph3+ 

cells n=5 5 brains; mob4ΔL3 mutants VNC: median 0, average 0 Dpn/Ph3+ cells n=16 16 brains; mob4ΔL3, 

NB> rheb VNC: median 0, average 1.1 Dpn/Ph3+ cells n=14 14 brains). p=Wilcoxon rank-sum test. 

p>0.05 ns (non- significant), ***p<0.001. White arrowheads indicate pNBs. All images are single focal 
planes, anterior up. Scale bar: 10 µm. 
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2.6. Deactivating the Hippo pathway in pNBs of mob4 mutants can rescue 
reactivation defects 
The Hippo signalling is another highly conserved pathway and has recently been 

shown to maintain pNB quiescence (Ding et al.,  2016; Poon et al.,  2016). As 

detailed in the Introduction, the canonical Hippo pathway prevents pNB cell growth via 

a phosphorylation cascade of the core components Hippo (Hpo), Warts (Wts), and 

the transcriptional co-activator Yorkie (Yki). In quiescent pNBs, the Hippo pathway is 

active, and Yki is phosphorylated and inactivated in the cytoplasm. However, when the 

Hippo pathway is deactivated, Yki translocates to the nucleus to activate cell growth. 

Interestingly, Mob4 has been shown to interact physically and genetically with Hpo: in 

the Drosophila wing, Mob4 knockdown can rescue the overgrowth phenotype caused 

by Hpo knockdown (Ribeiro et al.,  2010). Also, the STRIPAK complex containing 

Protein Phosphatase 2 A (PP2A), to which Mob4 belongs to, has been shown to 

inhibit the Hippo pathway in both Drosophila and mammals (Liu et al.,  2016; 

Goudreault et al.,  2009; Couzens et al.,  2013; Shi et al.,  2016; Ribeiro et al.,  2010; 

Straßburger et al.,  2012; Tumaneng et al.,  2012). Since pNBs upon loss of Mob4 are 

unable to reactivate, it was postulated that Hippo signalling might remain switched-

on in pNBs of mob4 mutant brains. Indeed, this was confirmed in our laboratory by 

Drs Barros and Gil-Ranedo. I have examined if deactivating Hippo signalling in pNBs 

of mob4 mutant brains could rescue mitotic reactivation. Hpo and Wts were knocked 

down via RNAi in pNBs of mob4∆L3 mutants (Figure 2.16.). The RNAi strains used 

had been previously shown to induce pNB premature reactivation in control pNBs (Ding 

et al.,  2016). Larval brains of Insc-Gal4 (controls; CNTRL, Figure 2.16. A-B), 

mob4ΔL3, insc-gal4 mutants (mob ΔL3 mt, Figure 2.16. D-E), mob4ΔL3,insc-gal4; UAS-

hippo-RNAi (mob4ΔL3,NB>hpo-RNAi, Figure 2.16. G-H) and mob4ΔL3,insc-gal4; UAS-

warts-RNAi (mob4ΔL3, NB>wts-RNAi, Figure 2.16. J-K) were immunostained for Dpn 

(red), Dlg (green) and Ph3 (blue) at 18h ALH. Quantifications showed a significant 

increase of pNB enlargement (white arrows, Figure 2.16.) and pNB divisions (yellow 

arrows, Figure 2.16) in mob4ΔL3, NB>hpo-RNAi and mob4ΔL3, NB>wts-RNAi pNBs 

compared to those in mob4 mutants, although not to the control values (Figure 2.16. 
C, F). Therefore, deactivating the Hippo pathway within mob4 mutant pNBs can 

rescue the pNB enlargement and division defects observed (see Discussion). 
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Figure 2.16. Deactivating the Hippo pathway in pNBs of mob4 mutants can rescue reactivation 
defects: (A, B) Insc-Gal4 (controls; CNTRL), (D, E) mob4ΔL3, insc-gal4 mutants (mob4 ΔL3 mt), (G, H) 
mob4ΔL3,insc-gal4; UAS-hippo-RNAi (mob4ΔL3, NB>hpo-RNAi), (J, K) mob4ΔL3,insc-gal4; UAS-warts- 

RNAi (mob4ΔL3, NB>wts-RNAi) larval brain lobes (BLs) and ventral nerve cords (VNCs) immunostained 
for Deadpan (Dpn), Discs large (Dlg) and Phospho-Histone-H3 (Ph3), at 18h After Larval Hatching 

(ALH). (C, F) Quantification of pNB diameters in BLs and VNCs shows that deactivating the Hippo 
pathway within mob4 mutant pNBs can rescue pNB enlargement defects observed, yet not to control 

levels. (C) BL pNB diameters quantifications (Control BL: median 7.6 µm, average 7.6 µm n289/3 BLs, 3 

brains; mob4ΔL3 BL: median 5 µm, average 5.1 µm n= 380/9 BLs, 9 brains; mob4ΔL3, NB>hpo-RNAi BL: 

median 6.2 µm, average 6.5 µm n531/ 8 BLs, 5 brains; mob4ΔL3, NB>wts-RNAi BL: median 6 µm, 

average 6.2 µm n466/8 BLs, 5 brains). (F) VNC pNB diameters quantifications (Control VNC: median 

6.2 µm, average 6.3  µm n=4/4 VNCs; mob4ΔL3 VNC: median 3.8 µm, average 4 µm n=5/5 VNCs; 

mob4ΔL3, NB>hpo-RNAi VNC: median 4.9 µm, average 5 µm n=5/5 VNCs; mob4ΔL3, NB>wts-RNAi VNC: 

median 5.4 µm, average 5.4 µm n=5/5 VNCs). (I, L) Quantification of pNB mitosis in BLs and VNCs 
shows that deactivating the Hippo pathway in mob4 mutant pNBs leads to an increased in pNB 

divisions, except for VNC pNBs upon knock-down of hippo. However, in all cases, the rescue is partial, 
not reaching levels seen in controls (I) BL pNB division quantifications (Control BL: median 11, average 

10.6 Dpn/Ph3+ cells n=11 8 brains; mob4ΔL3 BL: median 1, average 1.4 Dpn/Ph3+ cells n=34 17 brains; 

mob4ΔL3,NB>hpo-RNAi BL: median 2, average 2.5 Dpn/Ph3+ cells n=60 30 brains; mob4ΔL3, NB>wts- 

RNAi BL: median 4.5, average 4.8 Dpn/Ph3+ cells n=20 10 brains). (L) VNC pNB division quantifications 

(Control VNC: median 10, average 10 Dpn/Ph3+ cells n=5 5 VNCs; mob4ΔL3 VNC: median 0, average 0 

Dpn/Ph3+ cells n=16 16 VNCs; mob4ΔL3, NB>hpo-RNAi VNC: median 0, average 0 Dpn/Ph3+ cells n=30 

30 VNCs; mob4ΔL3,NB>wts-RNAi VNC: median 0, average 1 Dpn/Ph3+ cell n=10 10 VNCs). p=Wilcoxon 
rank-sum test. n.s. (non-significant) p>0.05, * p<0.05, ***p<0.001. White arrowheads indicate pNBs; 

yellow arrowheads indicate Ph3+ pNBs. All images are single focal planes, anterior up. Scale bar: 10 
µm. 
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2.7. Mob4 and another STRIPAK component, Cka, cooperate to promote pNB 
reactivation 
Connector of Kinase to AP-1 (Cka) is another candidate gene which was found to be 

upregulated in reactivating versus quiescent pNBs on the transcriptome analysis 

performed in the laboratory. Data acquired previously by the group revealed that, like 

Mob4, Cka promotes pNB reactivation (Gil-Ranedo et al.,  2019). As mentioned in the 

Introduction, Mob4 and Cka physically interact with each other and are core 

components of a STRIPAK protein complex that inhibits Hippo signalling (Ribeiro et 

al.,  2010). Thus, the next aim addressed whether Mob and Cka may cooperate to 

promote pNB reactivation. Larval brains simultaneously overexpressing Mob4 and 

Cka within pNBs (Insc-Gal4, UCD8-GFP; UAS-cka, UAS-mob4, NB>cka+mob4) and 

controls (Insc-Gal4, UCD8-GFP; CNTRL) were immunostained for Dpn (red), GFP 

(green) and Ph3 (blue) at 6h ALH and 18h ALH (Figure 2.17). At 6h ALH, control 

pNBs are not mitotically active except the mbNBs/vNB (white asterisk, Figure 2.17. 
A-B). NB>cka+mob4 pNBs (white arrows, Figure 2.17. B, E) were significantly larger 

(Figure 2.17. C) compared to the controls (white arrows, Figure 2.17. A, D). 

However, there were no significant differences in pNB divisions (Figure 2.17. F) at this 

stage. At 18h ALH, NB>cka+mob4 pNBs (Figure 2.17. H, K) were also significantly 

larger (Figure 2.17. I) and had more divisions (yellow arrows, Figure 2.17. L) 

compared to the controls (yellow arrows, Figure 2.17. G, J). The increase in pNB 

size and divisions is stronger when both Cka and Mob4 are overexpressed compared 

to the results observed upon overexpression of each alone (Figure 2.11 Gil-Ranedo 

et al.,  2019). These experiments suggest that Mob4 and Cka may cooperate to 

promote pNB reactivation. 
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Figure 2.17. Simultaneously overexpressing Cka and Mob4 in pNBs causes stronger premature 
pNB reactivation than that previously seen with single Mob4 overexpression: (A, D, G, J) Insc- 

Gal4, UCD8-GFP (controls; CNTRL) and Insc-Gal4, UCD8-GFP; UAS-cka, UAS-mob4 

(NB>cka+mob4) larval brain lobes (BLs) and ventral nerve cords (VNCs) immunostained for Deadpan 
(Dpn), green fluorescent protein (GFP) and Phospho-Histone-H3 (Ph3) at 6h and 18h ALH. (C, F, 
I, L) Quantification of pNB diameters in BLs and VNCs shows that simultaneous cka and mob4 overex- 

pression specifically in pNBs causes earlier enlargement 6h and 18h ALH, and increased entry into 

mitosis at 18h ALH. (C) 6h ALH pNB diameters quantifications (Control BL: median 3.6 µm, average 

3.9 µm n306/3 BLs, 3 brains; NB>cka+mob4 BL: median 4.3 µm, average 4.8 µm n= 374/3 BLs, 3 brains; 

Control VNC: median 3.4 µm, average 3.4 µm n=393/3 VNCs; NB>cka+mob4 VNC: median 4.0 µm, 

average 4.1 µm n=387/3 VNCs). (F) 6h ALH pNB divisions (Control BL: median 1, average 1.1 Dpn/Ph3+ 

cells n=24 12 brains; NB>cka+mob4 BL: median 1, average 1.3 Dpn/Ph3+ cells n= 32 16 brains; Control 

VNC: median 0, average 0 Dpn/Ph3+ cells n=12 12 VNCs; NB>cka+mob4 VNC: median 2, average 2.5 

Dpn/Ph3+ cells n= 16 16 VNCs). (I) 18h ALH pNB diameters quantifications (Control BL: median 6.9 µm, 

average 7.0 µm n=339/4 BLs, 3 brains; NB>cka+mob4 BL: median 8.1 µm, average 8.1 µm n= 400/4 BLs, 

4 brains; Control VNC: median 6.1 µm, average 6.2 µm n=323/3 VNCs; NB>cka+mob4 VNC: median 6.8 

µm, average 6.9 µm n=391/4 VNCs). (L) 18h ALH pNB divisions (Control BL: median 11, average 10.2 

Dpn/Ph3+ cells n=28 14 brains; NB>cka+mob4 BL: median 17.5, average 16.9 Dpn/Ph3+ cells n= 28 14 

brains; Control VNC: median 8.5, average 8.6 Dpn/Ph3+ cells n=14 14 VNCs; NB>cka+mob4 VNC: 

median 13.0, average 14.4 Dpn/Ph3+ cells n= 14 14 VNCs). p=Wilcoxon rank-sum test. n.s (non-

significant) p>0.05, ***p<0.001. Overall, effects with double cka/mob4 overexpresion are stronger than 

those obtained by overexpressing just mob4 (compare to Fig. 2.11). White arrowheads indicate pNBs; 

yellow arrowheads indicate Ph3+ pNBs. All images are single focal planes, anterior up. Scale bar: 10 

µm. 

 
 

2.8. PP2A inhibition promotes pNB reactivation 
Together with Mob4 and Cka, the serine/threonine phosphatase PP2A forms part of a 

STRIPAK complex known to inhibit Hippo signalling (Couzens et al.,  2013; Ribeiro et 

al.,  2010). In Drosophila, the unique PP2A catalytic subunit is called Microtubule Star 

(Mts). STRIPAK components act as regulatory subunits of Mts, directing it to Hippo 
kinase, which leads to its de-phosphorylation and Hippo signalling inhibition. Since 

Mts was also detected in the transcriptome analysis comparing reactivating with 

quiescence pNBs performed in our group (Gil-Ranedo et al.,  2019), I next analysed 

pNB reactivation in mts trans-heterozygote mutants (mts299/mtsXE-2258; Wang et al.,  

2009). The reason for using trans-heterozygotes was that mts null mutants (mtsXE-

2258) die embryonically but survive until pupae stages if combined with a copy of a 
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hypomorphic allele (mts299; Wang et al.,  2009). WT control (CNTRL) and 

mts299/mtsXE-2258 mutant larval brains were dissected and immunostained for Dpn 

(red), Dlg (green) and Ph3 (blue) at 18h ALH. mts299/mtsXE-2258 pNBs (white arrows, 
Figure 2.18. B, E) were significantly larger (Figure 2.18. C) than the controls (white 
arrows, Figure 2.18. A, D) at 18h ALH. However, there were no significant differences 

in the number of pNB divisions in the BLs (Figure 2.18. A-B) or the VNCs (yellow 
arrows, Figure 2.18. D-E). 

 
 

 
Figure 2.18. mts mutants display premature pNB enlargement: (A, D) Wild-type (control; CNTRL) 

and (B, E) mts mutant (mts299/XE2258 ) larval brain lobes (BLs) and ventral nerve cords (VNCs) 

immunostained for Deadpan (Dpn), Discs large (Dlg) and Phospho-Histone-H3 (Ph3) at 18h After 

Larval Hatching (ALH). Quantification of pNB diameters and divisions (Dpn/Ph3+) in BLs and VNCs 

shows that pNBs in mutants enlarge earlier, but no difference is seen in division numbers compared to 

controls. (C) pNB diameters quantification (Control BL: median 7.1 µm, average 7.2 µm n362/3 BLs, 3 

brains mts299/XE2258 mt BL : median 7.9 µm, average 8.1 µm n= 235/4 BLs, 4 brains; Control VNC: median 

6 µm, average 6.1 µm n=203/2 VNCs; mts299/xe2258 mt VNC: median 7.3 µm, average 7.3 µm n=189/2 

VNCs). (F) pNB division quantification (Control BL: median 12, average 12.4 Dpn/Ph3+ cells n=26 13 

brains; mts299/XE2258 mt BL: median 14, average 14.2 Dpn/Ph3+ cells n= 36 18 brains; Control VNC: 

median 5, average 6.4 Dpn/Ph3+ cells n=13 13 VNCs; mts299/xe2258 mt VNC: median 2.5, average 4.8 

Dpn/Ph3+ cells n= 18 18 VNCs). Wilcoxon rank-sum test. n.s (non-significant) p>0.05, ***p<0.001. White 

arrowheads indicate pNBs. All images are single focal planes, anterior up. Scale bar: 10 µm. 
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Next, to explore PP2A/Mts function specifically in pNBs, a Dominant-Negative Mts 

Drosophila UAS line (UAS-mts-DN) was used (Hannus et al.,  2002) together with the 

Inscuteable-Gal4 driver. The expression of Mts-DN results in a truncated Mts form 

lacking its phosphatase domain, which binds to the endogenous Mts protein and 

impairs its function (Hannus et al.,  2002). Larval brains expressing mts dominant-

negative (mts-DN) form specifically in pNBs (Insc-Gal4, UCD8-GFP; UAS-mts-DN; 

NB>mts-DN) and controls (Insc-Gal4, UCD8-GFP; CNTRL) were dissected and 

immunostained for Dpn (red), GFP (green) and Ph3 (blue) at 18h ALH (Figure 2.19. 
A, C, D, F). A significant increase in pNB size and divisions was observed compared 

to the controls (Figure 2.19. G, H). The results strengthen those obtained using the 

trans-heterozygote mts mutants and together indicate that knocking-down PP2A/Mts 

leads to premature exit from quiescence. The findings were surprising as they 

contrast with the effect of inhibiting Mob4 (Figures 2.2-2.6, 2.10) or Cka in pNBs (Gill-

Renedo et al.,  2019), and suggested that PP2A/Mts contributes to maintaining pNBs 

in quiescence independently from a separate potential role in pNBs as part of 

STRIPAK (see Discussion). 

 
PP2A is a pleiotropic phosphatase; in addition to a role within STRIPAK, multiple 

functions have been assigned to it. This variety is provided mainly by the association 

of the catalytic subunit Mts to possible variable regulatory subunits, which direct 

PP2A/Mts to different targets (Andreazza et al.,  2015; Vereshchagina et al.,  2008; 

Rodgers et al.,  2011; Padmanabhan et al.,  2009). To date, the Drosophila PP2A 

regulatory subunits better studied are Well rounded (Wrd), Twins and Widerborst 

(Wdb; Shi, 2009). Of significance, PP2A-Wdb has been shown to negatively regulate 

insulin signalling by dephosphorylation of Akt in both Drosophila and mammals 

(Fischer et al.,  2015; Fischer et al.,  2016). However, it had not been implicated in 

pNB quiescence/ reactivation processes. Thus, I next functionally tested Wdb using a 

Drosophila UAS strain expressing a truncated form of Wdb acting as Dominant 

Negative (wdb-DN; Hannus et al.,  2002). Knocking down Wdb (Figure 2.19. B, E) in 

pNBs leads to a significant increase in the pNB size (Figure 2.19. G) compared to the 

controls (Figure 2.18. A, D), at 18h ALH. In the BLs, Wdb knockdown in pNBs also 

lead to significantly more pNB divisions compared to the controls (Figure 2.19. A, B, 
H). Overall, knocking down PP2A subunits Mts or Wdb causes earlier pNB 

reactivation, suggesting that PP2A/Mts with its regulatory subunit Wbd acts to maintain 
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pNB quiescence (see Discussion). 
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Figure 2.19. Inhibition of the PP2A subunits Microtubule Star (Mts) or Widerborst (Wdb) cause 
premature pNB reactivation: Larval brain lobes (BLs) and ventral nerve cords (VNCs) of (A, D) Insc- 

Gal4, UCD8-GFP (control, CNTRL), (B, E) expressing a Wdb Dominant Negative form specifically in 

pNBs (Insc-Gal4, UCD8-GFP; UAS-wdb-DN; NB>wdb-DN) or (C, F) expressing an Mts Dominant 

Negative form specifically in pNBs (Insc-Gal4, UCD8-GFP; UAS-mts-DN; NB>mts-DN), immunostained 

for Deadpan (Dpn), green fluorescent protein (GFP) and Phospho-Histone-H3 (Ph3) at 18h After 

Larval Hatching (ALH). (G) Quantification of pNB diameters in BLs and VNCs shows that knocking 

down Wdb or Wdb in pNBs causes earlier pNB enlargement compared to controls. pNB enlargement 

quantifications (Control BL: median 6.8 µm, average 7.1 µm n541/8 BLs, 5 brains; NB>wdb-DN BL: 

median 8.3 µm, average 8.3 µm n= 313/5 BLs, 3 brains; NB>mts-DN BL: median 7.7 µm, average 7.9 

µm n= 263/5 BLs, 3 brains; Control VNC: median 6.0 µm, average 6.1 µm n=362/4 VNCs; NB>wdb-DN 

VNC: median 6.5 µm, average 6.6 µm n=318/3 VNCs; NB>mts-DN VNC: median 6.8 µm, average 7 µm 

n=258/3 VNCs). (H) Quantification of pNB divisions shows that knocking down Wdb in pNBs leads to 

increased pNB divisions in BLs but not a statistically significant difference in VNCs, while knockdown of 

Mts causes an increase in pNBs of both BLs and VNCs compared to controls. pNB divisions (Control 

BL: median 11, average 10.8 Dpn/Ph3+ cells n=42 21 brains; NB>wdb-DN BL: median 13.5, average 

13.4 Dpn/Ph3+ cells n= 22 11 brains; NB>mts-DN BL: median 15, average 15.3 Dpn/Ph3+ cells n=20 10 

brains; Control VNC: median 8, average 8 Dpn/Ph3+ cells n=21 21 VNCs; NB>wdb-DN VNC: median 9, 

average 8.1 Dpn/Ph3+ cells n= 11 11 VNC; NB>mts-DN VNC: median 13.5, average 14.7 Dpn/Ph3+ 

cells n= 10 10 VNCs). p=Wilcoxon rank-sum test. p>0.05 ns (non-significant), *p<0.05, ***p<0.001. 

Yellow arrowheads indicate dividing pNBs. All images are single focal planes, anterior up. Scale bar: 

10 µm. 
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CHAPTER 3  

DISCUSSION 

 
3.1 Understanding NSC quiescence and activated states: the significance of the 
research area and the foundation of this study 
NSCs must actively maintain a balance between quiescent and reactivated states; it 

is crucial for NSC longevity, proper brain homeostasis and functioning (Cheung and 

Rando, 2013; Chaker et al.,  2016; Cavallucci et al,. 2016; Tian et al.,  2018). As 

described in chapter 1, the transition between NSC quiescence and NSC reactivation 

requires a myriad of extrinsic and intrinsic signals, including systemic nutritional and 

metabolic signals, growth factors, neurotransmitters, epigenetic modifications and 

transcription factors. How the NSCs orchestrate a barrage of external and internal 

signals and appropriately decide which fate to choose is a continuing area of research, 

essential for NSC-based therapies. Studying NSCs has been difficult due to their 

relatively low number within an intricate environmental niche. However, our 

understand- ing of NSCs and their complex heterogeneity was enabled with the 

development of flow cytometry, cell sorting and transcriptomic techniques 

(Beckervordersandforth et al.,  2010; Beckervordersandforth et al., 2017; Codega et 

al.,  2014; Mich et al.,  2014; Llorens-Bobadilla et al.,  2015; Dulken et al.,  2017). 

 

Transcriptomic profiling of mammalian quiescent NSCs versus activated NSCs is 

starting to decipher the functional properties and regulatory mechanisms governing 

these different states (Martynoga et al.,  2013; Llorens-Bobadilla et al.,  2015). As 

described in the Introduction, research exposed various individual molecules and 

signalling pathways, for example, BMP and InR/PI3K/Akt signalling to be crucial for 

NSC maintenance (Mathieu et al.,  2008; Ziegler et al.,  2015). Contrary to the 

previous idea that NSC quiescence is a passive process, current research indicates 

that both quiescence and proliferation states, as well as the transition, requires active 

and specific genomic and proteomic programs (Figure 3.1). Understanding how 

NSCs integrate, interpret and appropriately respond to the variety of information 

received is critical to the development of safe, and effective NSC-based regenerative 

therapy for brain disorders (Llorens-Bobadilla et al.,  2015; Chaker et al.,  2016; Lee et 

al.,  2018; Xiao et al.,  2018; Fouad, 2019; Chou et al.,  2015; Tang, Y et al.,  2017; 
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Portnow et al.,  2017; Baker et al.,  2019;  Willis et al.,  2020). 
 

 

 
Figure 3.1. Integration of intrinsic and extrinsic signals influence NSC transit between 
quiescence and proliferation stages. A simplified overview of influential factors governing NSC 

behaviour (see Introduction for more details). NSCs orchestrate a barrage of signals to transition 

between quiescent and proliferative states. Quiescent and activated behaviours require individual 

intrinsic genomic and proteomic programs and are regulated by a variety of extrinsic factors including 

systemic and local niche-derived signals (Cheung and Rando, 2013; Chaker et al.,  2016; Cavallucci et 

al,. 2016; Tian et al.,  2018). 

 

To contribute to this area of research, our laboratory performed a small-scale 

transcriptome analysis comparing individual quiescent pNBs and reactivating pNBs 

harvested from live Drosophila larval brains (Gil-Ranedo et al.,  2019). Analysis of the 

data revealed 145 genes upregulated and 51 genes downregulated in reactivating 

versus quiescent pNBs, and the differential expression of a large set was validated. 

Most identified targets are enriched in the larval CNS (Chintapalli et al.,  2007), 63% 

and 66% have highly conserved mouse and human orthologs, respectively, and some 

of these had been found in previous NSC quiescence and activated microarray or 

RNA sequencing data profiles (Martynoga et al.,  2013; Llorens-Bobadilla et al.,  

2015). Thus, the transcriptome data promised the identification of novel and 

conserved molecular signals potentially involved in NSC quiescence and/or 

reactivation.  
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Most relevant to my studies was the identification of transcripts encoding for members 

of the highly conserved STRIPAK complex - mob4, cka and the catalytic subunit of 
PP2A, mts. mts transcript was found downregulated, and mob4 and cka transcripts 

were found upregulated in reactivating pNBs versus quiescent pNBs; together forming 

the foundation of my studies. Using the in-vivo model Drosophila, I characterised Mob4 
expression in pNBs, performed mob4 functional analysis during pNB reactivation, and 

identified a potential mechanism of mob4 function on pNB reactivation. I also began 
and made a significant contribution to studies in our group with cka and mts, also found 

in the screen, as well as with the regulatory subunit of PP2A, wdb. My results, together 

with additional data acquired in the laboratory (discussed below) led to a proposed 
model whereby Mob4, Cka and PP2A/Mts orchestrate the InR/PI3K/Akt and Hippo 

pathways promoting pNB reactivation. In summary, PP2A/Mts with its regulatory 

subunit Wdb inhibits the InR/PI3K/Akt signalling pathway via Akt inactivation during 
NSC quiescence, yet rising levels of Mob4 and Cka recruit PP2A/Mts into a STRIPAK 

complex to inhibit Hippo, inactivating the Hippo pathway and promoting NSC 
reactivation (Gil-Ranedo et al.,  2019). 

 
3.2. Mob4 acts primarily cell-autonomously in pNBs to promote reactivation 
mob4 transcript was found upregulated in reactivating versus quiescent pNBs, the 

result validated by quantitative real-time PCR (Gil-Ranedo et al.,  2019). I confirmed 

these results at the protein level. Mob4 protein expression is present throughout the 

CNS, including the glia, which are known regulators of pNB reactivation. Mob4 protein 

in the glia appeared weaker in comparison to surrounding pNBs, although expression 

in glia was not quantified (see Figure 2.1). Upon analysis of the mob4 mutants, I 

observed that the pNBs in the BLs and the VNC are of equivalent size compared to 

the WT controls at 0-1h ALH (Figure 2.2). However, by 4h ALH, I observed that the 

WT pNBs are beginning to enlarge, whereas the mob4 mutant pNBs remain small 

and quiescent. By 24h ALH many of the WT pNBs in the BLs and the VNC are 

reactivated; fully enlarged and mitotically active. Interestingly, at 24h ALH, I observed 

that the mob4 mutant pNBs in the BLs and the VNC increase slightly in size by 1um, 

however overall they remain small and mitotically quiescent. It is possible that mob4 

mutant pNBs can still initiate some response to start pNB cell growth, but the loss of 

Mob4 prevents progression of this process. In conclusion, pNB reactivation was 

abolished in mob4 mutants, indicating a requirement of Mob4 for the transition from 
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quiescence to reactivated states. Upon pNB-specific knockdown of mob4 using RNAi 

(Schulte et al.,  2010) at 18h ALH, I observed a small but significant delay in pNB cell 

size growth and a striking reduction in mitosis; however, the overall effect was weaker 

compared to the mob4 mutants. The weaker effect is likely due to the efficacy of the 

RNAi, which causes only partial inhibition, whereas mob4 mutants are devoid of all 

mob4 (Schulte et al.,  2010). My results indicated that Mob4 might act cell-

autonomously on pNB reactivation. 

 
Upon Mob4 reintroduction specifically into mob4 mutant pNBs, I observed that the 

pNB size and divisions in the BLs and the VNC were rescued to control levels at 18h 

ALH, whereas the mob4 mutant pNBs retained their characteristic quiescent 

appearance (Figure 2.8). This result is supportive of the mentioned above findings, 

suggest- ing a cell-autonomous role of Mob4 in pNBs. 

 

Due to the prominent role of glia relaying Insulin-like signalling to pNBs towards pNB 

reactivation, Mob4 was also reintroduced into glia of mob4 mutants. I observed that 

the pNB size in the BLs and the VNC showed a minor (0.4um) increase compared to 

the mob4 mutant pNBs but far from reaching control values. I also observed a 

significant increase in pNB divisions in the BLs, but not in VNCs; however, the increase 

was again minor and far from levels in controls (Figure 2.9). Furthermore, upon glia-

specific mob4 overexpression in a WT background, I observed no pNB size 

differences in the BLs, or differences in the number of dividing pNBs within the BLs or 

the VNCs, compared to the controls, at 18h ALH. Yet, I observed a very small yet 

significant increase (0.4um), in VNC pNB diameters compared to the controls (Figure 
2.9). A relatively low number of mob4 mt, glia>mob4 and glia>mob4 VNCs was 

sampled (n=2 and n=2, respectively) and therefore with increased VNCs scored the 

minor effects may no longer be significant, albeit many pNBs were scored per 

sample. It is also possible that the small effects observed may be due to inhibition on 

the Hippo pathway within niche glia cells, which in turn reflects on pNB reactivation, 

although not as strong as analogous direct effects in pNBs (Ding et al.,  2016; 

discussed later in section 3.5). Overall, reintroducing Mob4 into glia of mob4 mutants 

cannot rescue pNB reactivation (enlargement or division) to control levels, in contrast 

to the results upon Mob4 reintroduction in pNBs. Furthermore, glia-specific 

overexpression of mob4 in a WT background produced no effect except for a minor 
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VNC pNB size increase, in contrast to overexpression of Mob4 in pNBs that leads to 

accelerated reactivation (see next section). The findings suggest that mob4 functions 

primarily in pNBs promoting reactivation, in agreement with the mob4 mutant and 

mob4-RNAi data. 

 

3.3. Mob4 functions in pNBs during the stage of reactivation 
I observed a loss of pNB reactivation in mob4 mutants. I also observed that 

overexpression of Mob4 in pNBs leads to premature pNB enlargement in the BLs and 

VNCs, but no significant differences in the number of dividing pNBs, at 6h ALH (Figure 
2.11). At 18h ALH, no further pNB enlargement was seen, but an increased number 

of pNBs dividing in the BL and VNC was observed. These results suggest that Mob4 

accelerates pNB reactivation, and I next investigated if its overexpression would 

cause pNB overproliferation at later ages. 

 
Upon mob4 overexpression in pNBs at 48h ALH, I observed a small yet significant 

increase in the number of dividing pNBs in the VNC only (Figure 2.13). Despite many 

pNBs being reactivated by 24h ALH, pNB reactivation occurs up to approximately 48h 

ALH (Ito and Hotta, 1992; Truman and Bate, 1988; Chell and Brand, 2010; Sousa- 

Nunes, et al.,  2011). The effect observed is likely to be a consequence of accelerated 

pNB reactivation still at 48h ALH. As mentioned in the Introduction, anterior pNB 

reactivation begins before the posterior pNBs, and therefore the effect of Mob4 

overexpression may still occur in the VNCs at this point. At late larval stages (94h 

ALH), no differences in dividing pNBs in the BLs or VNCs were observed (Figure 
2.13). 

My Mob4 overexpression data indicates that Mob4 promotes pNB reactivation from 

early stages throughout the entire reactivation period up to 48h ALH, but seems not 

involved in controlling the total number divisions pNBs go through during larval stages. 

Therefore, Mob4 appears to function only within the time-period of pNBs reactivation. 

 
As described in the introduction, during nutrition restriction, the Insulin signalling 

pathway is inhibited, and pNB reactivation does not occur. However, these defects 

can be bypassed by reintroducing components or targets of the InR/PI3K/Akt pathway 

in pNBs and/or in glia (Chell and Brand, 2010; Sousa-Nunes et al.,  2011). Owing to 
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the reliable data showing that Mob4 promotes the pNB reactivation, I assessed if 

overexpression of Mob4 in pNBs would be strong enough to bypass the lack of 

external nutritional stimuli and Insulin-signalling. Upon Mob4 overexpression in pNBs 

in larvae reared on a sucrose only diet, I observed a small but significant increase in 

pNB enlargement but no re-entry into mitosis in VNCs, and no increase in either size 

or divisions of pNB divisions in BLs (Figure 2.14). I concluded that Mob4 function in 

pNBs is not sufficient to bypass the lack of extrinsic nutrition signals required for 

reactivation. 

 

3.4. Mob4 function in pNB reactivation may be evolutionary conserved 
Drosophila Mob4 scores highly in terms of evolutionary orthology conservation to its 

human match (MOB4, also known as Phocein), using the Drosophila RNAi Screening 

Center Integrative Ortholog Prediction Tool (DIOPT; http://www.flyrnai.org/diopt). The 

DIOPT score is the number of individual ortholog prediction algorithms used by this 

resource that predict a specified ortholog pair. A DIOPT score of 3 is considered 

adequate, and Mob4 scores 13 out of 15. Mob4 and human MOB4/Phocein proteins 

are 78% identical, demonstrating high conservation (Table 1.). Interestingly, in 

addition to the Mob1/phocein family domain characterising the MOB family of 

proteins, a Pleckstrin Homology-like (PH-like) domain exists in both Drosophila and 

human proteins with 73% conservation. While the function of the PH-like domain in 

Mob4/Phocein is unknown, other proteins containing similar domains have been 

shown to bind phosphatidylinositol lipids and implicated in a variety of processed 

ranging from cell signalling transduction to cytoskeleton rearrangements (Lemmon et 

al.,  2002; Scheffzek and Welti, 2012; Lemmon et al.,  2000). 

 
Excitingly, upon overexpression of human-MOB4/Phocein in Drosophila pNBs (Figure 
2.12), I observed significant increases in pNB enlargement and mitotic activity, similar 

to the Drosophila Mob4 overexpression effect (Figure 2.11). In addition to highly 

conserved amino acid sequences, these results suggest that Mob4/Phocein may also 

have a conserved function in NSC reactivation, although expression and functional 

experiments in human cells, tissue and mammalian models would be needed to 

validate this. 

http://www.flyrnai.org/diopt)
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Species ID aa 
length 

aa 
% 

similarity 

aa 
% 

iden- 
tity 

aa 
% 
gap 

DIOPT 
score 

Known 
domains 
(% con- 
served) 

Drosophila 

Melano-

gaster 

Mob4 227     PH-like 

(73%) 

Mob1 

Phocein 

(84%) 
Homo 

sapiens 

MOB4/ 

Pho- 

cein 

225 86% 78% 3% 13 

   
 

 
Table 1. Mob4 and its human orthologue MOB4/Phocein are highly conserved. A table 

summarising Drosophila Mob4 and human MOB4/Phocein amino acid (a.a) length, % alignment, % 

similarity, % identity, % gaps, DIOPT score, and known protein domains (http://www.flyrnai.org/diopt). 

The green highlights represent conserved domain regions extracted from RefSeq protein records (Hu et 

al.,  2011). The red box highlights the PH-like domain. The red brackets encompass the sequence that 

corresponds to the MOB family of proteins. 

 
3.5. Mechanism of Mob4 action in pNBs 
3.5.1 Mob4 and the Hippo and InR/PI3K/Akt signalling pathways 
The data discussed thus far indicates that Mob4 is required primarily cell-

autonomously for pNB reactivation; however, the mechanistic action of Mob4 

remained elusive and therefore I, and other members of our laboratory, performed a 

variety of assays to dissect it (see Results and Appendix). Mob4 is part of the highly 

conserved MOB family of globular scaffold proteins comprising four subgroups 

(MOB1-4). As mentioned in the Introduction section, MOB1 and 2 have been 

implicated in the regulation of kinases that contribute to cell cycle control (Gundogdu 

http://www.flyrnai.org/diopt)
http://www.flyrnai.org/diopt)
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and Hergovich, 2019). 

 

MOB4 is the most divergent member of the family (BLAST; Trammell et al.,  2008; He 

et al.,  2005) but in Drosophila S2 cells, it has been shown to contribute to mitotic 

spindle fibre focusing, independent of centrosome function (Trammell et al., 2008). 

My data suggest that Mob4 action in pNB reactivation is independent of that reported 

in spindle fibre focusing as analysis of the mob4 mutants shows impairment of pNB 

cell enlargement before mitotic spindle assembly, and in addition, proliferation of 

mbNBs, which never enter quiescence, was readily observed (Figure 2.2-2.5). The 

next step was to investigate the relation of Mob4 with InR/PI3K/Akt and Hippo 

pathways in pNBs, which are critical to activate them or maintain quiescence in pNBs, 

respectively (Sousa-Nunes et al.,  2011; Chell and Brand, 2010; Ding et al.,  2016; 

Poon et al.,  2016). 

 

As detailed in the Introduction, Insulin signalling is also known to regulate NSC 

activation in mammals (Chaker et al.,  2016; Bracko et al.,  2012; Arsenijevic, et al.,  

2001; Renault et al.,  2009; Kippin et al.,  2005; Brandhorst et al.,  2015). In Drosophila, 

Insulin signalling is relayed to the pNBs via niche glia. Glia secrete Insulin-like 

peptides (dILPs) that bind the Insulin-like receptor (InR) in pNBs activating the 

InR/PI3K/Akt cascade leading to pNB cell size growth and re-entry into division. 

Secretion of dILPs by glia depends on co-ordinated Ca2+ oscillations. Glia also 
enwrap the developing pNBs and their lineages to ensure their survival (see 

Introduction; Spéder and Brand, 2014; Spéder and Brand, 2018). It is not known if a 

similar mechanism occurs between mammalian glia and NSCs. However, astrocytes 

are known to support neurogenesis and display a protective role to NSCs 

(Gengatharan et al.,  2016; Sloan and Barres, 2014). It is possible that mammalian 

Insulin signalling is also relayed to adult NSCs via niche glia as in Drosophila, yet 

further studies are required to demonstrate it. 

 

On the other hand, although Hippo signalling has not yet been shown to act in 

mammalian NSC quiescence, it has been associated with maintaining quiescence in 

liver progenitors (Wang et al.,  2017; Zhou et al.,  2009). Inactivating Hippo signalling 

in the mouse liver quiescent progenitor cells by knocking down the mammalian Hippo 
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kinase (Mst1/2), caused loss of Yap (mammalian Yki) phosphorylation leading to cell 

cycle activation and hepatocellular carcinoma. This overgrowth could be rescinded by 

activating Mst1/2 (Zhou et al.,  2009). In mammalian epidermal stem cells, the Hippo 

signalling effector Yap1 was shown to regulate proliferation and tissue expansion and 

negatively regulated by upstream α-Catenin (Schlegelmilch et al.,  2011). α-Catenin 

modulates Yap1 activity and interaction with 14-3-3 and PP2A (Schlegelmilch et al., 

2011). Furthermore, YAP was shown to maintain basal epidermal progenitors and 

morphogenesis (Zhang et al.,  2011). Finally, in the intestine, YAP is required for 

homeostasis, and YAP inhibition or activation can cause a myriad of phenotypes 

(Zhou et al.,  2011; Barry et al.,  2013). For example, transgenic Yap expression 

causes loss of intestinal crypts and inhibits regeneration by repressing Wnt signals, 

whereas Yap inhibition caused microadenomas (Barry et al.,  2013). 

 
I have shown that the pNB reactivation defects in mob4 mutants could be rescued by 

activating InR/PI3K/Akt signalling in pNBs via overexpressing Rheb (Figure 2.15), or 

by inhibiting the Hippo pathway via targeted RNAi expression against the core kinases 

Hippo and Warts (Figure 2.16). The data suggest that InR/PI3K/Akt signalling is 

inhibited and Hippo signalling is active in mob4 mutant pNBs, consistent with my data 

showing that mob4 mutant pNBs fail to exit quiescence (Figure 2.2-2.6). Although 

deactivating the Hippo pathway (Figure 2.16) or activating InR/PI3K/Akt signalling 

(Figure 2.15) improved the enlargement and mitotic activity of the mob4 mutant pNBs, 

the rescues were only partial, as the levels did not reach the control levels. Note that 

the same manipulations in a WT background produce premature pNB reactivation 

(Chell and Brand, 2010; Sousa-Nunes et al.,  2011; Ding et al.,  2016). My results could 

reflect inadequate activation or inactivation of InR/PI3K/Akt signalling or the Hippo 

pathway signals, and that regulation of both pathways is necessary for effective pNB 

reactivation. 

 

The idea that the InR/PI3K/Akt signalling is inhibited in mob4 mutants was supported 

by a western blot assay I performed on mob4 mutant CNS lysates, which showed 

lower p-Akt expression levels in the mob4 mutant brains compared to the WT controls, 

yet total Akt levels remain unchanged (Figure 2.15). These results were repeated and 

confirmed in our laboratory (Dr C. Barros) with additional brain lysate samples I 

prepared (Gil-Ranedo et al.,  2019). The downstream target of InR/PI3K/Akt 
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signalling, Akt, is recruited by PIP3 through its pleckstrin homology (PH) PH-domain, 

and AKT becomes activated by phosphorylation. Akt phosphorylation/activation can 

be examined using a (PH) domain-GFP fusion protein (PH-GFP) which binds to PIP3; 

shown as strong membrane-bound PH-GFP in reactivated pNBs (Britton, et al.,  

2002; Chell and Brand, 2010). Using this tool, Drs Barros and Gil-Ranedo in our team 

showed that mob4 mutant pNBs show weak and diffused PH-GFP signal (Gil-Ranedo 

et al.,  2019), confirming InR/PI3K/Akt signalling inhibition upon Mob4 loss.  

 

bantam (ban) microRNA expression is known to be regulated by Hippo signalling (Nolo 

et al.,  2006; Thompson and Cohen, 2006). Active ban microRNA promotes pNB 

enlargement and divisions (Ding et al.,  2016). During pNB quiescence, activated 

Hippo pathway signalling inhibits ban transcription (Ding et al.,  2016). ban 

activity/Hippo pathway signalling can be monitored using a GFP-sensor system, 

wherein loss of GFP signal equals ban activity (Brennecke et al.,  2003). No GFP is 

detected in control re- activated pNBs indicating ban activity (Ding et al.,  2016). 

However, using this tool in a mob4 mutant background, Drs Barros and Gil-Ranedo 

observed that pNBs express GFP signal, which indicates a lack of ban activity and 

confirms activated Hippo signalling (Gil-Ranedo et al.,  2019). 

 

In conclusion, together with the results obtained by other team members, the data I 

generated suggested that Mob4 affects both Hippo and InR/PI3K/Akt pathways, with 

the former remaining active and the latter inhibited in pNBs upon mob4 loss. How can 

Mob4 directly or indirectly regulate these pathways is what was next investigated. One 

clue available was that Mob4 genetically and physically interacts with Hippo and is a 

known member of the STRIPAK complex, known to inhibit Hippo signalling (Shi et al.,  

2016; Zheng et al.,  2017; Couzens et al.,  2013; Ribeiro et al.,  2010), which I discuss 

below. 

 
3.5.2. Mob4 and another STRIPAK/PP2A complex member, Cka, combine 
actions to promote pNBs reactivation 
Mob4 is a core member of the STRIPAK protein complex. A large amount of data 

arose from a seminal combined proteomic and genomic study investigating Drosophila 

STRIPAK/PP2A and its inhibitory action on the Hippo pathway (Ribeiro et al.,  2010). 
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STRIPAK is made up of multiple components, including various kinases and the 

pleiotropic PP2A phosphatase. It is striking that STRIPAK members can form 

mutually exclusive complexes, and are therefore able to direct the kinases or PP2A to 

different targets (Virshup and Shenolikar, 2009; Ribeiro et al.,  2010; Shi et al.,  2016). 

STRIPAK complexes are highly conserved from fungi, to fly, to mammals, including 

humans (Castets et al.,  2000) and their pleiotropic potential allows them to regulate a 

variety of pathways and processes. 

 

The main components of the STRIPAK complexes identified in Drosophila and 

humans can be found in Table 2. The main components of human STRIPAK are the 

striatin (STRN) proteins, comprising STRN1, STRN3 (also known as S/G2 nuclear 

autoantigen; SG2NA) or STRN4 (also known as Zinedin); the pleiotropic PP2A 

enzyme with α/β variants; a member of Ste20-related germinal center kinases (GCK) 

family (Stk24/25, Mst4), and adaptor molecules including cerebral cavernous 

malformations 3 (CCM3), Sarcolemmal membrane-associated protein (SLMAP), 

STRN-interacting protein 1/2 (Strip1/2, also named FAM40A/B), suppressor of IKBKE 

1 (SIKE1) also known as fibroblast growth factor oncogene partner 2 (FGFR1OP2), 

and MOB4 (Virshup and Shenolikar, 2009; Ribeiro et al.,  2010; Glatter et al.,  2009; 

Goudreault et al.,  2009; Castets et al.,  2000; Chen et al.,  2002; Couzens et al.,  2013; 

Hauri et al.,  2013; Sakuma and Chihara, 2017; Shi et al.,  2016). The STRIPAK 

complex is implicated in human diseases such as cancer (Shi et al.,  2016; Hwang 

and Pallas, 2014) and is known to associate with mammalian Hippo (Mst1/2) in the 

Hippo pathway, which is also implicated in human diseases (Polesello et al.,  2006; 

Ribeiro et al.,  2010; Zheng et al.,  2017; Huang et al.,  2013). 
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Table 2. The core subunits of STRIPAK complex in Drosophila and Humans. Table modified from 

(Ribeiro et al.,  2010; Pracheil et al.,  2012; Goudreault et al.,  2009; Frost et al.,  2012; Bloemendal et al.,  

2012, and Hwang and Pallas, 2014). 

 

In Drosophila STRIPAK (Table 2), the components comprise PP2A (PP2A-29B 

structural subunit and Microtubule star, Mts, the Drosophila ortholog of the catalytic 

subunit of PP2A); Cka (the sole Drosophila STRN); Mob4 (Drosophila ortholog of 

MOB4/Phocein); CG10158 (the Drosophila ortholog of FGFR1OP2); CG11526 

(Drosophila ortholog of FAM40A); CG5073/Strip (Drosophila ortholog of CCM3); 

CG17494 (Drosophila ortholog of SLMAP); and Hpo, Misshapen (Msn) and Germinal 

centre kinases (GCKIII in Drosophila, MST4 and STK24/25 in mammals). Using the 

previously described DIOPT tool, evolutionary conservation between Drosophila and 

human STRIPAK subunits is evident (Figure 3.2. B, and E). The conserved PP2A 

phosphatase is a trimeric enzyme composed of a catalytic, a structural and regulatory 

subunit, the latter responsible for directing it to specific targets (Figure 3.2A, C). 

STRIPAK members act as regulatory subunits of PP2A. Yet, PP2A has also a variety 

of other functions independent of STRIPAK, relying on multiple different proteins 

functioning as regulatory subunits to directing it to specific targets (Janssens and 

Goris, 2001; Wang et al.,  2009; Zheng et al.,  2015). 
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Figure 3.2. Drosophila and Human core STRIPAK/PP2A complex components inhibit Hippo 
signalling. The Drosophila PP2A subunits (A) have human counterparts (C). Drosophila STRIPAK 

subunits (B) also have human counterparts (D). The DIOPT tool was used to obtain conservation 

scores to human orthologues (E) (http://www.flyrnai.org/diopt; Hu et al.,  2011). 

 

In Drosophila and in mammals, including in human cells, a STRIPAK complex has 

been shown to deactivate the Hippo pathway, via recruitment of PP2A, which 

dephosphorylates Hpo kinase (human MST1/2) (Zheng et al.,  2017; Huang et al.,  

2013; Polesello et al.,  2006; Ribeiro et al.,  2010; Bae et al.,  2017). In Drosophila cells, 

Cka binds to Hpo and Cka overexpression could block Hpo activity, and Cka 

overexpression was also shown to increase Yki activity (Ribeiro et al,. 2010). The 

Cka-Hpo interaction is reduced when Mts is knocked down by RNAi; therefore, Cka-

Hpo interactions depend upon a stable PP2A complex (Ribeiro et al.,  2010). 

Ribeiro et al demonstrated a genetic relationship between Hpo and Cka (Ribeiro et al.,  

2010). Hpo overexpression in the eye leads to a reduction in size and a rough-like 

phenotype (Wu et al.,  2003; Pantalacci et al.,  2003; Harvey et al.,  2003; Udan et al.,  

2003); and this phenotype is enhanced after removing one copy of Cka (Ribeiro, et 

al.,  2010). Hpo knockdown by RNAi causes an overgrowth phenotype in the 

developing wing, however simultaneously knocking down Cka or FGOP2 by RNAi 

suppresses the overgrowth phenotype (Ribeiro et al,. 2010). Co-depletion of Hpo and 

Mob4 by RNAi could also suppress this phenotype (Ribeiro et al,. 2010). Interestingly, 

Toll receptor signalling activates Hippo signalling by causing Cka degradation (Liu et 

al.,  2016). 

http://www.flyrnai.org/diopt%3B
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Drosophila PP2A/Mts encodes the catalytic subunit for PP2A and functions as a 

tumour suppressor by inhibiting self-renewal capacity in pNBs (Wang et al.,  2009). In 

cells, Mts negatively regulates Hpo; Mts inhibition caused increased Hpo and Yki 

phosphorylation (Ribeiro et al.,  2010). Our lab also recently showed that Mts inhibits 

the Hippo pathway in pNBs (Gil-Ranedo et al.,  2019). An upstream component of the 

Hippo pathway, Salvador (sav) was shown to bind to PP2A and inhibit its activity, 

which leads to increased Hippo signalling (Bae et al.,  2017). In cells, PP2A/STRIPAK 

inhibits Hippo signalling (Tang et al.,  2019). PP2A and STRNS (mammalian Cka) form 

a complex which recruits other STRIPAK members to secure MST1/2 (mammalian 

Hpo) with the STRIPAK complex, destabilising the complex diminished the ability of 

STRIPAK to regulate Hippo signalling (Tang et al,. 2019). This complex is mediated 

by SLMAP (Tang et al,. 2019) which has previously been reported to link STRIPAK to 

MST1/2 in cells and to Hpo in flies (Couzens et al.,  2013; Hauri et al.,  2013; Bae et al.,  

2017; Zheng et al.,  2017; Goudreault et al.,  2009). Moreover, SIKE1 (mammalian 

FGOP2) and Strip are required to recruit SLMAP to STRN (Tang et al,. 2019). Strip 

can bind to PP2A, and Strip and SLMAP also directly bind to MST1/2 which collectively 

aids Hippo pathway regulations (Tang et al.,  2019). 

 

Within STRIPAK, CCM3 can direct GCK localisation and also function as bridges, 

connecting STRNS to GCKs (Shi et al.,  2016). Human GCK kinases, together with 
STRIPAK, can phosphorylate MOB1/Lats (Drosophila Wts), together with Salvador 

(Drosophila Sav; Yu and Guan, 2013; Pantalacci et al.,  2003; Wu et al.,  2003; Tapon et 

al.,  2002; Udan et al.,  2003). This effect is in contrast to a recent study showing 

Sav1 inhibiting the STRIPAK/PP2A complex to promote Hippo signalling (Bae et al.,  

2017). Therefore, a great deal of crosstalk exists between STRIPAK components and 

Hippo pathway activity to control growth. 

 

Despite a large amount of data on the Hippo pathway and its inhibition by 

STRIPAK/PP2A complex, STRIPAK had not yet been implicated in NSC quiescence 

or reactivation. However, three of the core members were identified on the pNB 

quiescent vs reactivating transcriptome analysis performed in our laboratory: Cka, 

Mob4 and Mts, the catalytic subunit of PP2A (Gil-Ranedo et al.,  2019). Both mob4 
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and cka were found upregulated in reactivating versus quiescent pNBs (Figure 3.2). I 

confirmed the Mob4 differential protein expression (Figure 2.1) and Cka expression 

was also confirmed by our group. I found that overexpressing Mob4 and Cka together 

in pNBs leads to increased pNB reactivation (Figure 2.17), generating a stronger 

increase in pNB cell enlargement as well as the number of pNB divisions than the 

Mob4 overexpression (Figure 2.12), or Cka overexpression, alone. The latter, 

performed by Dr Gil-Ranedo, resulted in similar results as Mob4 single 

overexpression. Also, Dr Gil- Ranedo found that depletion of cka by RNAi impairs pNB 

reactivation similarly to Mob4 inhibition (Gil-Ranedo et al.,  2019). Interestingly, in 

mammalian cells, STRN4 knockdown suppressed cancer cell division, migration and 

invasion (Wong et al.,  2014). Together, the data indicated that Mob4 and Cka might 

work together in pNB reactivation, possibly as part of STRIPAK and suggesting a new 

function for the complex. 

 

Dr Gil-Ranedo continued investigating the STRIPAK members using Drosophila S2 

cells in culture to perform co-immunoprecipitation assays and found that depletion of 

Mob4 and/or of Cka by RNAi impairs the binding of Mts, the catalytic subunit of PP2A, 

to Hippo, and a consequent increase in Hippo kinase phosphorylation as previously 

reported (Ribeiro et al.,  2010; Couzens et al.,  2013). Mts/Hippo binding was almost 

abolished by simultaneous mob4 and cka RNAi knockdown, suggestive of 

cooperative action between Mob4 and Cka in bringing Mts and Hippo together to 

inactivate Hippo (Gil-Ranedo et al.,  2019). Finally, to demonstrate an inhibitory 

function of PP2A/Mts on the Hippo pathway in pNBs, Drs Barros and Gil-Ranedo 

combined mts-DN and ban-GFP sensor Drosophila lines to visualise ban activity as a 

read-out of Hippo signalling in pNBs. Early pNBs (6h ALH) expressing mts-DN were 

observed to have significantly less ban-activity as seen by more GFP signal than 

controls, indicating that PP2A/Mts can inhibit Hippo pathway signalling in pNBs. 

 

Together, the findings indicate that Mob4 functions together with Cka, forming with 

PP2A a STRIPAK complex to target Hippo, leading to Hippo pathway inhibition. These 

results are also consistent with the observations that the Hippo pathway remains 
active in mob4 mutant pNBs (Gil-Ranedo et al.,  2019), rendering them quiescent. 
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3.5.3 PP2A with its regulatory subunit Wdb promotes pNB quiescence 
If PP2A would only work in pNBs within STRIPAK to inhibit Hippo signalling, prolonged 

pNB quiescence could be assumed by knocking it down. Interestingly, the expression 

of the PP2A catalytic subunit, Mts, was found down-regulated at the mRNA level in 

reactivating versus quiescent pNBs in the transcriptome analysis performed in our 

team, the opposite to Cka and Mob4 (Gil-Ranedo et al.,  2019). I obtained various 

mutants strains for mts; however, it was not possible to examine pNB reactivation in 

mtsXE-2258 null mutants, due to embryonic lethality (Snaith et al.,  1996). Yet, by 

combining mtsXE-2258 null mutants with mts299 hypomorphic mutants, I was able to 

examine mts299/mtsXE-2258 transheterozygotes which survive to pupal stages (Wang et 

al.,  2009). In contrast to prolonged pNB quiescence as anticipated, I observed 

increased pNB enlargement in mts299/mtsXE-2258 transheterozygotes compared to 
controls, at 18h ALH (Figure 2.18). Next, I used a dominant-negative mts mutant 

(mts-DN, Figure 2.19) which lacks the N-terminal region of the phosphatase domain 

(Hannus et al.,  2002) to analyse the effect of Mts inhibition specifically in pNBs. I 

observed increased pNB enlargement and mitosis compared to controls at 18h ALH 

(Figure 2.19). In our group, similar assays were performed to analyse pNBs at 6h 

ALH, and premature pNB reactivation observed (Gil-Ranedo et al.,  2019). These 

results support the mts299/mtsXE-2258 transheterozygotes mutant data, and interestingly 

produced a more substantial effect, demonstrating a significant role of PP2A/Mts in 

pNBs to maintain quiescence. 

 
The mts mutant results were initially quite surprising. However, PP2A is notoriously 

pleiotropic and, in addition to its function within STRIPAK, it is known to use mutually 

exclusive regulatory B subunits (Figure 3.2) to target a variety of different signalling 

pathways (Ribeiro et al.,  2010; Shi et al.,  2016; Janssens and Goris, 2001; Wang et 

al.,  2009; Zheng, Y. et al.,  2015). In Drosophila, known regulatory B subunits of PP2A 

(Figure 3.2) are Widerborst (wdb), B56/Well rounded (Wrd) and Twins (Tws). In 

dividing Drosophila NBs, PP2A/Tws regulates proper aPKC localisation and NB 

homeostasis (Chabu and Doe, 2009; Ogawa et al., 2009). Also, PP2A was shown to 

bind and phosphorylate/deactivate Bazooka (Baz) to regulate Apical-Basal polarity 

(Krahn et al.,  2009). Here, immunoprecipitates containing Baz, PP2A, and the 

catalytic subunit of PP2A/Mts were identified (Krahn et al.,  2009). The study found that 
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the Mts/PP2A/Baz complexes contained the regulatory B subunits of PP2A, Tws and 

B56, whereas no interaction with Wdb was found (Krahn et al.,  2009). Also, Tws was 

the sole regulatory B subunit shown to assist the PP2A/Mts dephosphorylation of Baz 

(Krahn et al.,  2009). Wdb is known to inhibit Notch signalling (Bose et al.,  2014) and 

can physically and genetically interact with the cell-cycle regulator, Cyclin G (CycG), 

in-vitro and in-vivo (Johnson and Walker, 1999; McCright et al.,  1996; Stanyon et al.,  

2004; Fischer et al.,  2015; Nagel et al.,  2016); even rescuing the growth defects 

observed in cycG mutants (Nagel et al.,  2016). Very interesting and in relation to my 

findings, is the fact that both Wdb and its C.elegans orthologue, PPTR-1, were shown 

to inhibit InR/Pi3K/AKT signalling pathway by directing PP2A to Akt (Padmanabhan et 

al.,  2009; Vereshchagina et al.,  2008). Furthermore, wdb overexpression caused 

decreased organ size (eye and wing), reduced AKT phosphorylation/activation and 

increased longevity (Funakoshi et al.,  2011). In vertebrates including in human cells, 

inhibition of Akt by PP2A using Wdb orthologues has also been observed (Rodgers, 

et al.,  2011; Funakoshi et al.,  2011; Nagel et al.,  2016). I therefore performed a 

functional analysis of Wdb in pNBs to analyse its possible role on 

quiescence/reactivation. Using a truncated wdb mutant (Hannus et al.,  2002) that 

acts as a dominant-negative (wdb-DN) and expressing it in pNBs, I observed 

increased pNB enlargement in the BLs and VNCs compared to controls, at 18h ALH 

(Figure 2.19), consistent with the effects of mts-DN expression (Figure 2.19). Further 

work completed by other members of the laboratory showed that wdb-DN expressing 

pNBs enlarged prematurely at 6h ALH, again similar to the results upon mts-DN 

expression (Gil-Ranedo et al.,  2019). Moreover, using a p-AKT specific antibody, 

mts-DN pNBs displayed early p-AKT signal compared to the controls at 6h ALH, 

demonstrating premature InR/PI3K/Akt signalling activity upon PP2A/Mts depletion 

(Gil-Ranedo et al.,  2019). Finally, Dr Gil-Ranedo also demonstrated that depletion of 

Cka and/or Mob4 in S2 cells did not affect Mts-Akt association nor the levels of 

phosphorylated/activated AKT (Gil-Ranedo et al.,  2019). 
 

Overall my data and the work completed by other laboratory members suggest that 

PP2A/Mts functions with Wdb to inhibit the InR/PI3K/Akt signalling in pNBs, and this 

role seems independent of that of PP2A/Mts within STRIPAK and its components Cka 

and Mob4. 
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3.5.4. Proposed mechanistic action of Mob4, Cka and PP2A in pNB quiescence 
to reactivation transition 
As discussed above, my results (Figure 2.19) together with data obtained from other 

team members in our laboratory show that PP2A using the Wdb regulatory subunit 

maintains pNB quiescence by inhibiting the InR/PI3K/Akt signalling cascade via 

inactivation/ dephosphorylation of Akt (Figure 3.3). These findings are consistent with 

previous reports of PP2A/Wdb inhibiting Akt by in other cells and tissues (Johnson 

and Walker, 1999; McCright et al.,  1996; Stanyon et al.,  2004; Fischer et al.,  2015; 

Nagel et al.,  2016; Padmanabhan et al.,  2009; Vereshchagina et al.,  2008; Brownlee, et 

al.,  2011; Funakoshi et al.,  2011). Interestingly, PP2A has also been implicated in 

cellular quiescence in different contexts (Naetar et al.,  2014; Kolupaeva et al.,  2008; 

Kolupaeva et al.,  2013; Sun and Buttitta, 2015; Kurimchak et al.,  2013; Kurimchak 

and Grana, 2013). 

 
The Drosophila eye becomes quiescent ~24h after pupal formation (Buttitta et al.,  

2007). By testing different PP2A B subunits, Sun and Buttitta demonstrated that 

PP2A/wdb restricts CyclinE/Cdk2 to promote quiescence (Sun and Buttitta, 2015). 

Knocking down PP2A/mts or of PP2A/wdb by RNAi in the eye caused an increased 

S-phase (EdU) positive cells and cell cycle gene expression (Sun and Buttitta, 2015). 

They determined that loss of PP2A/wdb in the Drosophila eye and wing, allowed cells 

to bypass entry into quiescence, which leads to extra divisions (Sun and Buttitta, 

2015). In human glioblastoma immortalised cells in culture, PP2A and its regulatory 

B56γ subunit is required for inducing stable quiescence via Ras signalling (Naetar et 

al.,  2015). Inhibition of PP2A using okadaic acid during G2 interferes with quiescence 

and establishing the next G1 (Naetar et al.,  2014). The decision to enter quiescence 

was thought to occur in G1; however in this study, they showed that Ras inhibition by 

PP2A/ B56γ occurred during G2 only, and this pathway helps determine the cell-cycle 

length and quality of the next cell-cycle (Naetar et al.,  2014). 

 
The results from my expression and functional analysis of the evolutionarily conserved 

STRIPAK core component Mob4, demonstrate that it promotes pNB reactivation, 

primarily in a cell-autonomous fashion. The data also suggest that Mob4 cooperates 

with Cka, another core STRIPAK complex member. It is known that the Hippo 
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pathway maintains pNB quiescence (Ding et al.,  2016; Poon et al.,  2016), whereas 

InR/PI3K/Akt signalling activation is necessary for pNB reactivation (Chell and Brand, 

2010; Sousa-Nunes et al.,  2011). Upon loss of Mob4, pNBs are unable to reactivate, 

with Hippo pathway remaining activated and InR/PI3K/Akt signalling inhibited (Gil- 

Ranedo et al.,  2019). I have further shown that overexpressing the InR/PI3K/Akt 

signalling activator Rheb, or inhibiting the Hippo pathway core kinases Hpo or Wts 

specifically in mob4 mutant pNBs, can rescue reactivation, suggesting that Mob4 is 

required to regulate Hippo and InR/PI3K/Akt signalling pathways in pNBs. Cka and 

Mob4 were known to assist PP2A-inhibition of Hippo (Ribeiro et al.,  2010), and our 

team demonstrated that inhibition of Cka and/or Mob4 indeed prevents PP2A/Mts 

physical association to Hippo kinase, leading to Hippo signalling activation. In 

accordance, PP2A/Mts inhibition in pNBs also leads to increased Hippo signalling, but 

the effect is not sufficient to overcome the premature activation of InR/Pi3K/AKT 

signalling that also occurs, resulting in early reactivation despite Hippo activity (Gil-

Ranedo et al.,  2019). 

 
Collectively, the data supports the idea that as Mob4 and Cka levels increase in pNBs, 

a STRIPAK/PP2A complex assembles and acts as a ‘molecular switch’ to redirect 

PP2A/Mts to inhibit Hippo signalling and allow activation of InR/PI3K/Akt signalling in 

pNBs, promoting reactivation (Figure 3.3). 
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Figure 3.3. The STRIPAK members Mob4, Cka and PP2A contribute to pNB transition from 
quiescence to reactivation. In quiescent pNBs, the levels of Mob4 and Cka are low, and PP2A/Mts 

phosphatase is directed to Akt by the regulatory subunit, Wdb. PP2A/Mts-Wdb dephosphorylates 

(deactivates) Akt, inhibiting InR/Pi3K/Akt signalling, which is required for pNB reactivation (Chell and 

Brand, 2010; Sousa-Nunes et al.,  2011). The Hippo pathway, which maintains quiescence (Ding et al.,  

2016; Poon et al.,  2016) remains active. During pNB reactivation, the levels of Mob4 and Cka surge, 

assembling a Mob4/Cka/PP2A STRIPAK complex that redirects Mts to dephosphorylate Hpo, 

inactivating the Hippo pathway. InR/PI3K/Akt signalling activates, promoting pNB reactivation. 

 

Interestingly, a similar STRIPAK/PP2A-dependent mechanism regulates the 

Drosophila circadian oscillator (Andreazza et al.,  2015). The CLOCK (CLK) and 

CYCLE (CYC) bHL transcription factors temporally activate circadian rhythm genes 

such as period, timeless and pdp1, which in-turn repress or activate CLK and CYC 
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(Hardin, 2011; Ozkaya and Rosato, 2012; Sathyanarayanan et al., 2004). CLK is 

highly phosphorylated and inactive in the morning, but hypophosphorylated and active 

in the evening. These temporally controlled oscillating loops of repression and 

activation, creating hyper-or-hypo-phosphorylated CLK, are vital for Drosophila 

circadian regulation. Andreazza et al.,  show that PP2A comprising the regulatory 

(Wdb) and catalytic (Mts) subunits (PP2A-Mts/Wdb) act to stabilise CLK, without 

affecting its phosphorylation. However, a complex made of PP2A/Mts and the 

STRIPAK components Cka and Strip (Strip/Cka/PP2A-Mts) cause CLK 

dephosphorylation during daytime (Andreazza et al.,  2015). 

 
3.6. Conclusion 
We are slowly demystifying the brain, NSCs, and how adult NSCs maintain adult brain 

homeostasis (Morales, 2019; Obernier, 2019; Tian et al.,  2018; Chaker et al.,  2016; 

Cheung and Rando, 2013). Improved techniques, such as brain cell sorting, 

identification, and transcriptome and proteome characterisation, have significantly 

advanced research efforts (Codega et al.,  2014; Beckervordersandforth et al.,  2010; 

Daynac et al.,  2015; Mich et al.,  2014; Llorens-Bobadilla et al.,  2015; Shin et al.,  

2015; Dulken et al.,  2017; Morizur et al.,  2018; Berg et al.,  2019). 

 
My studies towards a PhD degree aimed to examine candidate genes that arose from 

a small-scale single-cell transcriptome analysis comparing quiescent and reactivating 

Drosophila NSCs (Gil-Ranedo et al.,  2019). Mob4 was a gene identified together with 

other STRIPAKS members Cka and PP2A. I have investigated Mob4 expression in 

NSCs, performed functional analysis of Mob4, as well as of Cka and PP2A, and 

contributed to the identification of a mechanism of Mob4 action together with Cka and 

PP2A in NSC quiescence to reactivation transition; accomplishing all proposed 

objectives of this work. 

 
My work described in this dissertation, together with work from other members of our 

team, indicated in the above Discussion sections, led us to the propose a model of 

action: In pNBs, PP2A/Wdb functions to inhibit InR/PI3K/Akt signalling promoting 

quiescence. As Mob4 and Cka levels increase, a STRIPAK/PP2A complex forms and 

acts as a ‘molecular switch’ to redirect PP2A to inhibit Hippo signalling, allowing 

InR/PI3K/Akt signalling activation and promoting pNB reactivation. Thus, Mob4, Cka 
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and PP2A orchestrate in pNBs Hippo and InR/PI3K/Akt signals, two major pathways 

controlling quiescence and reactivation, respectively. The studies were recently 

included in a paper published in Cell Reports in which I am a shared first author (see 

appendix for full publication). 

 

It is fascinating how PP2A subunits and the STRIPAK complex members collaborate 

so efficiently to achieve a plethora of functions, across vast cell types, regulating many 

signalling systems and cellular processes. It is remarkable that PP2A is known to 

target over 300 substrates and modulate most major signalling cascades such as the 

Hippo pathway, InR/PI3K/Akt, mTOR, c-Jun N-terminal kinases (JNK), mitogen-

activated protein kinase (MAPK), extracellular signal-regulated kinases (ERK), Notch, 

Wnt and implicated in a variety of human diseases (Remmerie and Janssens, 2019; 

Eichhorn et al.,  2009; Wlodarchak and Xing, 2016; Grech et al.,  2016; Ruvolo et al.,  

2016; Kiely et al.,  2015; Westermarck et al.,  2008; Sangodkar et al.,  2016; 

Schuhmacher et al.,  2019; Clark and Ohlmeyer, 2019). 

 

I have contributed to identifying one mechanism whereby STRIPAK members and 

PP2A integrate different signalling pathways that are highly conserved from fly to 

human. This mechanism adds to current knowledge of NSC behaviour and regulation, 

and may also contribute to the development of future NSC-based therapies against 

brain-related diseases such as neurodegeneration, autism and even brain tumours. My 

findings likely have relevance in other stem cells, which also rely on smooth 

transitions between quiescent and activation states. It will be interesting to examine 

the expression and function of the highly conserved Mob4, and other STRIPAK 

members, in mammalian NSCs. 
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CHAPTER 4.  
MATERIALS AND METHODS 

 
 

4.1. MATERIALS 
4.1.1. Antibodies and cell proliferation assay kit 
The following tables 3 and 4 list the primary and secondary antibodies used for 

immunostainings and western blotting of Drosophila larval brains described in the 

Results chapter. Antibody name and species made in, source and dilutions used are 

indicated. Table 5 describes the commercial kit used for EdU incorporation assays 

shown in section 2.2. of Results. 
Primary Antibodies Source Dilution 

Rabbit anti-GFP Gift from U. Mayor 

(U. Mayor and A.H. Brand, unpublished) 

1:1000 

Chicken anti-GFP Millipore AB_310288 1:500 

Guinea pig anti-Dpn Gift from J. Knoblich (Levy and Larsen, 

2013) AB_2314299 

1:2000 

Rat anti-Dpn Abcam AB_195173 1:100 

Guinea pig anti-Mob4 Gift from T. Littleton (Schulte, et al.,  2010) 1:1000 

Mouse anti-Dlg DSHB AB_528203 1:50 

Rabbit anti-pH3 Abcam AB_304763 1:1000 

Rabbit anti-pAKTS505 CST AB_331414 1:400 

Rabbit anti-Akt CST AB_329827 1:400 

Rabbit anti-b-Actin CST AB_330288 1:50 

Rat anti-Grainyhead Gift from Prof. Steven Thor laboratory 

(Sweden) 

1:1000 

Mouse anti-Prospero DSHB AB_528440 1:50 

Mouse anti-Repo DSHB AB_528448 1:50 

Table 3. Primary antibodies used for Immunohistochemistry or western 
blotting. 



112  

Secondary Antibodies Source Dilution 
Goat Anti-Rat 633 Thermo Fisher A-21094 1:200 

Goat Anti-Chicken 488 Thermo Fisher A-11039 1:200 

Goat Anti-Guinea pig 568 Thermo Fisher A-11075 1:200 

Goat Anti-Rabbit 633 Thermo Fisher A-35562 1:200 

Goat Anti-Mouse 488 Thermo Fisher A-10667 1:200 

Goat Anti-Rat 568 Thermo Fisher A-11077 1:200 

Goat Anti Rabbit IgG–Horse radish 
peroxidase (HRP) 

Cell signalling Technologies 
#7074 

1:1000 

Table 4. Secondary antibodies used for Immunohistochemistry or western 
blotting. 

 
 

Resource Source Identifier 
Click-iT EdU Alexa Fluor 594 
Imaging Kit 

Invitrogen Cat# C10339 

Table 5. Cell proliferation kit. 
 
 

4.1.2. Drosophila strains 
The table below lists the Drosophila strains used in this study, including those enabling 

the generation of lines via genetic recombination or combination mentioned in the 

Results chapter. For each line, the genotype, source and identification number 

(identifier) are indicated. 
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Strains Source Identifier 

D. melanogaster: mob4 mu- 

tant: 
y[1] w[*]; Mob4[EYDel- 

taL3]/CyO 

Bloomington Drosophila Stock Cen- 

ter (Schulte, et al.,  2010) 

BDSC: 36331; 

FlyBase: 
FBst0036331 

D. melanogaster: UAS line 

expressing mob4 RNAi: 

P{UAS- 
Mob4.RNAi.JS1}attP2 

Bloomington Drosophila Stock Centre 
(Schulte, et al.,  2010) 

BDSC:36488; 

FlyBase: 

FBst0036488 

D. melanogaster: UAS line 

expressing mob4: 
y[1] v[1]; P{y[+t7.7] 

v[+t1.8]=UAS-Mob4.S}attP2 

Bloomington Drosophila Stock Cen- 

ter (Schulte, et al.,  2010) 

BDSC: 36329; 

FlyBase: 

FBst0036329 

D. melanogaster: UAS line 

expressing hMOB4: 

y[1] v[1]; P{y[+t7.7] 

v[+t1.8]=UAS-pho- 
cein.1}attP2 

Bloomington Drosophila Stock Cen- 

ter 
(Schulte, et al.,  2010) 

BDSC: 36330; 

FlyBase: 

FBst0036330 

D. melanogaster: UAS line 

expressing wdb-DN: 
w[*]; P{w[+mC]=UAS- 

wdb.95-524.HA}6 

Bloomington Drosophila Stock Centre 
(Hannus, et al.,  2002) 

BDSC: 55053; 

FlyBase: 

FBst0055053 

D. melanogaster: UAS line 

expressing wts RNAi: 
y[1] sc[*] v[1]; P{y[+t7.7] 

v[+t1.8]=TRiP.GL01331}attP 2 

Bloomington Drosophila Stock Cen- 
ter (Ding, et al.,  2016) 

BDSC: 41899; 

FlyBase: 

FBst0041899 

D. melanogaster: UAS line 

expressing hpo RNAi: 
y[1] v[1]; P{y[+t7.7] 

v[+t1.8]=TRiP.HMS00006}att 

P2 

Bloomington Drosophila Stock Cen- 

ter 
(Ding, et al.,  2016) 

BDSC: 33614; 

FlyBase: 

FBst0033614 
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D. melanogaster: Wild type: 

Oregon-R 

Gift from M. Akam (Bossing and 

Technau, 1994) 

FlyBase: 

FBsn0000276 

D. melanogaster: UAS line 
expressing rheb: 

w[*]; P{w[+mC]=UAS- 

Rheb.Pa}3 

Gift from R. Sousa-Nunes (Sousa- 
Nunes, et al.,  2011) 

BDSC: 9689; 

FlyBase: 

FBst0009689 

D. melanogaster: Gal4 line 

under the control of grh: Grh- 
Gal4 

Gift from A.H. Brand (Chell and 

Brand, 2010) 

N/A 

D. melanogaster: UAS line 

expressing mts-DN-HA: UAS- 

mts.dn181-HA 

Gift from S. Eaton (Hannus, et al.,  

2002) 

N/A 

D. melanogaster: mtsXE225839 

mutant: mtsXE2258/CyO, 
P{sevRas1.V12}F1 
and mts299 mutant. 

Gifts from H. Wang (Wang, et al.,  

2009) 

BDSC: 5684; 

FlyBase: 

FBst0005684 

N/A for mts299 

D. melanogaster: Gal4 line 

under the control of insc: w[*]; 

P{w[+mW.hs]=GawB}insc[Mz 

1407] 

Bloomington Drosophila Stock Cen- 
ter 

BDSC: 8751; 

FlyBase: 

FBst0008751 

D. melanogaster: Gal4 line 

under the control of repo: 

w[1118]; 

P{w[+m*]=GAL4}repo/TM6, 

tb 

Gift from A. Hidalgo N/A 

D. melanogaster: UAS line 

expressing CD8-GFP: 
y[1] w[*]; P{w[+mC]=UAS- 

mCD8::GFP.L}LL5, P{UAS- 

mCD8::GFP.L}2 

(Lee and Luo, 1999) BDSC: 5137; 

FlyBase: 

FBst0005137 

D. melanogaster: UAS line 
expressing dicer2: 

UAS-dicer2 

(Ding, et al.,  2016) N/A 
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D. melanogaster: UAS line 

expressing cka-eGFP: 
w[*];P{w[+mC]=UASp- 

Cka.EGFP.C}2 

Bloomington Drosophila Stock Cen- 

ter 

BDSC: 53756; 

FlyBase: 
FBst0053756 

D. melanogaster: Double Bal- 

ancer line 
w[*]; l(2)*[*]/CyO; D[1]/TM6B, 

Tb[+] 

Bloomington Drosophila Stock Cen- 

ter 

BDSC: 7197; Fly- 

Base: 
FBst0007197 

D. melanogaster: Double Bal- 
ancer line 

y[1] w[*]; Eps-15[e75]/CyO, 

P{w[+mC]=GAL4-twi.G}2.2, 

P{w[+mC]=UAS-2xE- 

GFP}AH2.2 

Bloomington Drosophila Stock Cen- 
ter 

BDSC: 24900; 
FBst0024900 

Table 6. Drosophila strains. 
 
 

4.2.METHODS 
4.2.1. Drosophila husbandry 
Fly stocks were maintained in vials for long-term storage at 18°C and at 25°C for 

ongoing experiments, with the exception of RNAi assays that were performed at 

29°C. The fly stocks were kept in standard Drosophila fly food. Egg collections and 

larvae rearing were performed on agar juice plates supplemented with yeast paste. 

Egg lays were collected in either 30  minutes or 1h time-windows. 

 
Protocol to prepare Drosophila food: 750 ml boiling water, 100 g sugar, 50 g yeast, 

80 g organic flour, 2 g Ammonium sulphate, (NH4)S04, 5 g tartaric acid, 1.5 g 

Potassium phosphate monobasic, KH2P04, 22 g agar soaked into 300 ml grape juice 

(in two batches of 150 ml), 10 ml propionic acid, 1 g Nipagin, Vials, Cotton plugs. 

Dissolve the sugar completely in the boiling water. Add the 50 g of yeast and dissolve 

completely. Mix the 80 g of organic flour into 200-300 ml of water until a smooth paste 

is formed and then add it to the boiling water to dissolve. Add 2 g of ammonium 

sulphate, 5 g tartaric acid and 1.5 g potassium phosphate monobasic to the water and 

boil for 10 minutes. Slowly add one of the agar/grape juice batches (11 g:150 ml) to 
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the boiling water. Take the other agar/grape juice batch and microwave it until boiling 

and slowly add it to the mixture and boil for a further 10 minutes. Let the mixture cool 

down until it reaches ~70°C. Add 1 g of Nipagin using a scalpel to the mixture. On top 

of the Nipagin pour 10 ml of propionic acid and allow to mix well. Add approximately 1 

inch high of food per vial or bottle. 

 
Protocol to prepare Drosophila egg-lay collection plates: 
1 l water, 21 g agar, 200 ml grape juice, plates, 2  l beaker. 

Pour 1l of water into a 2 l beaker and microwave until boiling (14 minutes). Set the 

heater to 270°C and the stirrer to 420 rpm. Place the 2 l beaker onto the heater and 

wait until the water is boiling. Mix half the 21 g of agar and 100 ml of grape juice in a 

flask and stir. Add the agar solution to the boiling water. Add the rest of the agar in 

another 100 ml of grape juice and pour into the mixture. Stir and boil the juice mixture 

in the 2 l beaker for no longer than 2 minutes. Pour juice mixture into small petri dish 

plates used for egg-lay collections. 

For nutritional deprivation experiments, freshly hatched larvae were transferred to agar 

plates prepared with amino-acid free media (5% sucrose, 1% agar in phosphate 

buffered saline, PBS). 

 
Prepare 10x PBS (phosphate buffered saline): dissolve 80 g of NaCl, 2 g of KCl, 26.8 

g pf Na2HPO4-7H2O, 2.4 g KH2PO4 in 800 ml of ddH2O, adjust the pH to 7.4 with HCl 

and bring the total volume to 1 litre. 

Prepare 1 x PBS: 1:10 dilution of 10xPBS in ddH2O 
 
 

4.2.2. Drosophila strains and genetic crosses 
Fly stocks were maintained in vials long-term at 18°C and at 25°C for ongoing 

experiments, with the exception of RNAi assays performed at 29°C. The fly stocks were 

kept in standard Drosophila fly food in vials or bottles. Fly strains needed for 

experiments were grown in multiple bottles at 25°C to yield maximum female virgin 

collections. Female virgins were collected every 3 hours (maximum) and stored with 

the appropriate males at 18°C. The resulting fly cross would be transferred to an egg-

lay chamber at 25°C. Egg collections and larvae rearing were performed on agar juice 

plates supplemented with yeast paste. Embryos were transferred to fresh plates and 

stored at the appropriate temperature. Embryos with GFP balancers were 
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selected for, or against, the next day using a fluorescent microscope; the desired 

embryos transferred to a fresh plate supplemented with yeast. 

 
Drosophila strains used in this study are listed in Table 6. Drosophila stocks obtained 

from the Bloomington Drosophila Stock Center were: mob4EY∆L3 (36331) (Schulte, et 

al.,  2010) rebalanced over CyO, P(GAL4-twi.G)2.2; UAS-mob4RNAi (36488) (Schulte, 
et al.,  2010); UAS-mob4 (36329) (Schulte, et al.,  2010); UAS-hMOB4 (Phocein) 
(36330) (Schulte, et al.,  2010); UAS-cka-eGFP (53756); UAS-wdb-DN (UAS-wdb.95-

524.HA; 55053) (Hannus, et al.,  2002); UAS-wtsRNAi (41899) (Ding, et al.,  2016) and 

UAS-hpoRNAi (33614) (Ding, et al.,  2016). Other stocks used were: Wild-type Oregon- 

R (kind gift from M. Akain); UAS-rheb (Blomington 9689) (Sousa-Nunes, et al.,  2011) 
(kind gift from R. Sousa-Nunes); grh-Gal4 (Chell and Brand, 2010) (kind gift from A.H. 

Brand); UAS-mts-DN (UAS-mts.dn181-HA) (Hannus, et al.,  2002) (kind gift from S. 

Eaton); mts299 and mtsXE2258 (Wang, et al.,  2009) (kind gifts from H. Wang). NSC-

specific RNAi and overexpression assays were performed using insc-Gal4 (w1118; 

p{GAWB}inscMZ1407). Glial-specific expression assays used repo-Gal4 (w1118; 

p{GAWB}repo/TM6b, iab-lacZ). The grh-Gal4 driver had been recombined with UAS- 

CD8-GFP (chromosome II) in the laboratory (Gil-Renado et al.,  2019). For rescue 

experiments, insc-Gal4 and repo-Gal4 drivers were recombined or combined with the 

mob4EY∆L3 mutant strain. For other assays, the insc-Gal4 driver was recombined with 
UAS-CD8-GFP or a strain already combining it with UAS-dicer2 and UAS-CD8-GFP 

was used (Ding, et al.,  2016). Genetic combinations or recombinations, balancing 
and/or re-balancing of Drosophila stocks on the II and or III chromosome, followed 

standard genetic cross procedures (Greenspan, 2004). 

 
4.2.3. Immunohistochemistry and EdU incorporation 
Prepare 1xPBST: 1x PBS with 1% Triton X 

Prepare fixative solution: 4% formaldehyde in PBS with added EGTA (0.5 M) and 

MgCL2 (1 M). For 1 ml: 894 µl PBS 1 x + 100 µl formaldehyde + 1 µl EGTA (0.5 M) + 

5 µl MGCl2 (1 M). Vortex. 

Prepare blocking solution: 10% goat serum in PBS-1% Triton. For 1 ml: 900 µl of 1x 

PBS-1% Triton + 100 µl 100% Goat serum. Vortex and store at 4C. All chemicals 

were purchased from SIGMA. 
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Prior to dissections, larvae were transferred to a silicon dissecting dish in 1xPBS and 

(if necessary) larvae were checked under the fluorescent microscope. Using a light 

microscope, larval CNSs were extracted using fine forceps and scissors and fixed for 

20  minutes in fixative solution, followed by washes in PBS (2 x 10 min, 3 rinses 

between washes) and 1 hour block in 1 x PBST (PBS, 1% Triton X-100) with 10% 

fetal bovine serum, at room temperature on a shaker. Primary antibodies (Table 3) 
were incubated in 1 x PBST overnight or for 2 nights at 4ºC. CNSs were washed in 

1xPBST (2 x 5 min, 3 rinses between washes) before incubating with secondary 

antibodies (Table 4) for 2 hours at room temperature. Secondary antibodies were 

washed off with 1 x PBST (2 x 10 min, 3 rinses between washes) and successively 

embedded in 50% (>30 mins) and 70% glycerol (>3 hours) before carefully mounting 

on slides in a 1:1 mix of 70% glycerol and Vectashield (Vector Laboratories) and 

covered by a coverslip. 

EdU incorporation assays were performed as previously described (Sousa-Nunes, et 

al.,  2011). Briefly, CNSs were dissected in PBS and incubated in 10  µm EdU/PBS for 

1h at room temperature. CNSs were fixed for 15 minutes in 4% formaldehyde/PBS 

and incorporated EdU detected using Click-iT EdU Imaging kit following manufacturer 

instructions (Invitrogen). 

 
4.2.4. Image acquisition and processing 
Images were obtained on a Leica SP8 confocal laser-scanning microscope using LAS 

X software. Quantifications were made using z-stacks of 1.5 µm step size, comprising 

whole-brain lobes, VNCs or CNSs. Representative images shown are single optical 

sections, with the exception of EdU incorporations (Fig 2.4), which are z-projection 

stacks encompassing whole CNSs. Images were processed in Fiji v2.0 or Adobe 

Photoshop CS6 and assembled in Adobe Illustrator CS6. NSC sizes (maximum 

diameters) (Chell and Brand, 2010), pH3 scorings, and Mob4 signal intensities (pixel 

intensity/ NSC maximum area) and EdU voxel quantification were performed using 

Fiji v2.0. 

 
4.2.5. Western blotting 
Whole larval brain were harvested and lysed in lysis buffer (1% Triton) supplemented 

with protease inhibitor (Complete, EDTA-free; Sigma) and phosphatase inhibitors 

(cocktails B+C; Santa Cruz Biotechnology). CNS extracts were spun at 14000 rpm for 
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30  minutes at 4ºC and proteins quantified (BCA protein assay, Pierce). Detection of 

proteins was performed using standard sodium dodecyl sulfate (SDS) polyacrylamide 

gel electrophoresis (SDS-PAGE) and western blotting using ECL or ECL Plus 

chemiluminescent substrate (Pierce) with the following specifications. CNS lysates 

were run on a 10% polyacrylamide gel at 120 V and transferred onto a nitrocellulose 

membrane, before blocking with 5% BSA (p-AKT), 3% BSA (β-Actin and AKT), in 

0.1% TBS- Tween and incubated with the primary antibody overnight at 4°C under 

rotation. 

 
4.2.6. Data quantification and statistical analysis 
Statistics were performed using SigmaPlot Version 12.5 (Systat software): Shapiro- 

Wilk and equal variance tests used to evaluate normality; Student´s t-test applied 

when data fitted a normal distribution; Wilcoxon rank-sum test used for non-parametric 

data; p<0.05 considered significant. Data from Drosophila in vivo assays were 

obtained from a minimum of two biological replica sets; sample numbers are indicated 

in figure legends. Histograms show mean ± standard error of the mean. Box plots 

represent 25th and 75th percentiles, and black line indicates median, dashed line 

specifies mean, whiskers indicate 10th and 90th percentiles. 
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SUMMARY

Adult stem cells reactivate from quiescence to main-
tain tissue homeostasis and in response to injury.
How the underlying regulatory signals are integrated
is largely unknown. Drosophila neural stem cells
(NSCs) also leave quiescence to generate adult
neurons and glia, a process that is dependent on
Hippo signaling inhibition and activation of the
insulin-like receptor (InR)/PI3K/Akt cascade. We
performed a transcriptome analysis of individual
quiescent and reactivating NSCs harvested directly
from Drosophila brains and identified the conserved
STRIPAK complex members mob4, cka, and PP2A
(microtubule star, mts). We show that PP2A/Mts
phosphatase, with its regulatory subunit Widerborst,
maintains NSC quiescence, preventing premature
activation of InR/PI3K/Akt signaling. Conversely, an
increase inMob4 andCka levels promotes NSC reac-
tivation. Mob4 and Cka are essential to recruit PP2A/
Mts into a complex with Hippo kinase, resulting in
Hippo pathway inhibition. We propose that Mob4/
Cka/Mts functions as an intrinsic molecular switch
coordinating Hippo and InR/PI3K/Akt pathways and
enabling NSC reactivation.

INTRODUCTION

Brain homeostasis and damage repair depend on the generation

of new neurons and glia by neural stem cells (NSCs). In adult

brains, most NSCs are found to be quiescent but can enter pro-

liferation if prompted by extrinsic and intrinsic stimuli. The bal-

ance between quiescence and reactivation is critical for the

maintenance of an NSC reservoir (Cavallucci et al., 2016; Chaker

et al., 2016).Mechanistic insight underlyingNSCquiescence and

reactivation remains limited—in particular, how regulatory sig-

nals are integrated.
Cel
This is an open access article under the CC BY-N
In the model organism Drosophila, embryonic NSCs give rise

to the larval functional CNS. Similar to mammals, NSCs become

quiescent at the end of embryogenesis and reactivate postem-

bryonically to generate neurons and glia of the adult brain (Tru-

man and Bate, 1988). Quiescence entry is regulated by Hox

proteins, temporal transcription factors, and levels of the home-

odomain transcription factor Prospero (Otsuki and Brand, 2019;

Lai and Doe, 2014; Tsuji et al., 2008). NSCs are kept quiescent by

the canonical Hippo pathway, whereby its core kinases Hippo

and Warts prevent the transcriptional co-activator Yorkie from

entering the nucleus and triggering growth (Ding et al., 2016;

Poon et al., 2016). This signaling can be modulated by niche

glia cells via the upstream regulators Crumbs and Echinoid,

expressed in both glia and NSCs (Ding et al., 2016). NSC reacti-

vation involves cell size increase, from 4 to 5 mm during

quiescence, followed by entry into division (Ding et al., 2016;

Chell and Brand, 2010; Prokop and Technau, 1991; Truman

and Bate, 1988). NSCs continue to enlarge, reaching up to

10–15 mm when proliferating (Prokop and Technau, 1991; Tru-

man and Bate, 1988). Nutrition stimulates reactivation (Britton

and Edgar, 1998): dietary amino acids in the young larvae induce

a systemic signal that triggers blood-brain barrier glia to secrete

Drosophila insulin-like peptides (dILPs), a process that depends

on gap junction proteins and synchronized calcium pulses

(Spéder and Brand, 2014). dILPs activate the insulin-like recep-

tor (InR)/phosphoinositide 3-kinase (PI3K)/Akt cascade in neigh-

boring NSCs, promoting quiescence exit (Sousa-Nunes et al.,

2011; Chell and Brand, 2010). The conserved heat shock protein

38/90 chaperone associates with InR to promote reactivation,

and Spindle matrix proteins, including Chromator, function

downstream of InR/PI3K/Akt signaling in this process (Huang

and Wang, 2018; Li et al., 2017).

We performed a small-scale transcriptome analysis using

single quiescent and reactivating NSC samples obtained

directly from live Drosophila brains. Members of the evolu-

tionary conserved striating-interacting phosphatase and kinase

(STRIPAK) complex (Shi et al., 2016; Ribeiro et al., 2010) were

identified and validated: monopolar spindle-one-binder family

member 4 (Mob4); connector of kinase to AP-1 (Cka), which is
l Reports 27, 2921–2933, June 4, 2019 ª 2019 The Author(s). 2921
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the sole Drosophila Striatin protein; and the catalytic subunit of

protein phosphatase 2A (PP2A; Drosophila Microtubule Star

[Mts]). STRIPAK contains multiple components, some of which

are mutually exclusive, and STRIPAK members are part of a va-

riety of regulatory proteins that can direct the pleiotropic PP2A to

specific targets (Shi et al., 2016; Ribeiro et al., 2010; Virshup,

2000). In Drosophila and mammals, a STRIPAK-PP2A complex

containingMob4 and Ckawas reported to inhibit Hippo signaling

(Zheng et al., 2017; Couzens et al., 2013; Ribeiro et al., 2010).We

show that PP2A/Mts, with its regulatory subunit Widerborst

(Wdb), contributes to NSC quiescence via the inactivation of

Akt, an essential component of the InR/PI3K/Akt signaling

cascade. Conversely, NSC reactivation requires Mob4 and

Cka, which are necessary within STRIPAK for Mts association

to Hippo and subsequent Hippo pathway inhibition. These find-

ings suggest a mechanism coordinating Hippo and InR/PI3K/Akt

signaling in NSCs, enabling the transition from quiescence to

proliferation.

RESULTS

Transcriptome Analysis of Reactivating NSCs:
Identification of Mob4, Cka, and PP2A/Mts
To identify the mechanisms regulating NSC reactivation, we per-

formed a small-scale analysis comparing single-cell transcrip-

tomes of quiescent and reactivating NSCs fromDrosophila larval

brains. By combining grh-Gal4 with UAS-CD8-GFP transgenic

lines, cell membranes of approximately one-third of all NSCs

(Chell and Brand, 2010) were specifically labeled in vivo. NSCs

were individually harvested from 17 h after larval hatching (ALH)

brains, when both quiescent (small; diameter 4–5 mm) (Ding

et al., 2016; Chell and Brand, 2010) and reactivating (enlarged)

cells can be easily distinguished. Of the enlarged NSCs, only

non-dividing cells without any progeny were harvested. Cells

were removed from the second and third thoracic segments of

the ventral nerve cords (VNCs), minimizing potential differences

from spatial positioning and avoiding retrieving a mix of type I

and II NSCs, as the latter are absent from VNCs. Using our sin-

gle-cell transcriptome protocol (Liu and Bossing, 2016; Bossing

et al., 2012), cDNA from each NSCwas readily obtained. Quanti-

tative real-time PCRs confirmed that quiescent and reactivating

cells expressed the NSC markers deadpan (dpn) and asense

(ase), with higher levels in the latter. Single NSC transcriptomes

were compared in pairs (three reactivating versus quiescent

NSCpairs) onwhole-genomeDrosophilamicroarrays (Figure 1A).

We used a limma moderated paired t test (Ritchie et al., 2015) to

shortlist potential candidates, since the limited sample size did

not support false discovery rate (FDR) correction. We identified

196 genes with consistent fold expression changes across all 3

replicates (p < 0.05), of which 145 are upregulated and 51 are

downregulated (Figure 1B; Table S1; see Method Details). For

quality control, we performed quantitative real-time PCR using

independent single NSC samples on a subset of candidates

classed mainly into nervous system development and neurogen-

esis Gene Ontology categories. Up- or downregulated expres-

sion for all 18 candidates tested in reactivating versus quiescent

NSCs was confirmed, including echinoid (ed) and ras homolog

enriched in brain (rheb), which are known tomaintain NSC quies-
2922 Cell Reports 27, 2921–2933, June 4, 2019
cence and promote reactivation, respectively (Ding et al., 2016;

Sousa-Nunes et al., 2011) (Figures 1B and 1C).

Using FlyAtlas data (Chintapalli et al., 2007), we noted that

our dataset (p < 0.05) is mostly enriched in genes expressed

in the larval CNS, whereas among adult tissues, the highest

enrichment is seen for genes expressed in ovaries, supporting

reported gene sets associated with both NSC and germline

stem cell maintenance and growth (Yan et al., 2014) (Fig-

ure S1A; Table S2). Most genes have highly conserved mouse

(63%) and human orthologs (66%), and only 10% have no

mammalian counterpart (Figure S1B; Table S1). When

comparing the 175 mouse orthologs identified (single best

matches) with transcripts found by previous studies as differen-

tially expressed in quiescent versus activated mouse embry-

onic (Martynoga et al., 2013) or adult NSCs (Llorens-Bobadilla

et al., 2015; Codega et al., 2014) and other stem cell types (Fu-

kada et al., 2007; Venezia et al., 2004), we observed that the

overlap is always highest (17–21 targets, 10%–12%) with any

of the studies examining NSC transcriptomes (Figure S1C;

Table S3). These results suggest that our small-scale single-

cell transcriptome analysis generated high-quality data

exposing conserved genes that are potentially involved in

NSC reactivation. The analysis reveals transcripts encoding

for some of the core STRIPAK complex members: mob4 and

cka upregulated in reactivating versus quiescent NSCs,

whereas mts, encoding the catalytic subunit of PP2A, downre-

gulated (Figures 1C and 1D; Table S1). STRIPAK is involved in a

variety of cellular functions (Shi et al., 2016), but it has no

known role in NSC reactivation. To functionally test the compo-

nents identified, we focused initially on Mob4.

Loss of Mob4 Prevents NSC Reactivation
Mob4 is highly expressed in themammalian andDrosophilaCNS

(Schulte et al., 2010; Baillat et al., 2001). After validating the dif-

ferential expression of mob4 detected in NSCs (Figure 1C), we

examined its protein levels. Immunostaining of NSCs highlighted

with membrane-tagged GFP and Deadpan (Dpn) together with

Mob4 antibodies in 17 h ALH brains, revealed higherMob4 levels

in reactivating (enlarged) versus quiescent (small) NSCs (Figures

2A–2C). To investigate the potential function of Mob4 in NSC re-

activation, we first examined mob4 null mutants (mob4EYDL3,

hereafter mob4DL3), of which 10% survive to third-instar stages

(Schulte et al., 2010). NSC (Dpn+) membranes labeled with

anti-Discs large (Dlg) and mitosis with anti-phospho-histone H3

(pH3) antibodies enabled the scoring of size (maximum diame-

ters) and proliferation. In newly hatched larvae (1 h ALH), no

differences are detected between NSCs of mob4 mutants and

controls in either brain lobes or VNCs (Figures 2D, 2G, 2J,

S2A, S2D, and S2G). All NSCs are quiescent, with the exception

of four mushroom body NSCs (MbNSCs) per brain lobe that

continuously proliferate from embryonic stages (Ito and Hotta,

1992). However, as early as 4 h ALH, while NSCs in controls start

to enlarge, those inmob4mutants remain small. No NSCmitosis

re-entry is detected in either group (Figures 2E, 2H, 2J, S2B,

S2E, and S2G). At the end of the first-instar larval stage (24 h

ALH), when many NSCs in controls are enlarged and dividing,

the reduction in both NSC size and proliferation in mutants is

striking, with the only mitotic NSCs corresponding to MbNSCs



Figure 1. Single-Cell Transcriptome Analysis of Reactivating NSCs

(A) Workflow: individual quiescent (Q) and reactivating (R) NSCs expressing CD8-GFP driven by grh-Gal4 were harvested from 17 h ALH CNSs, their mRNA

reverse transcribed, and resulting cDNA amplified. Quantitative real-time PCRs confirmed higher ase and dpn expression in reactivating versus quiescent NSCs

(normalized fold change [log2FC]; n = 3 NSC reactivating/quiescent pairs; error bars: SEMs; Student’s t test, **p < 0.01). NSC transcriptomes were compared on

whole-genome microarrays (reactivating versus quiescent; three pairs) and a subset of identified targets validated by quantitative real-time PCRs. ALH, after

larval hatching; BL, brain lobe; VNC, ventral nerve cord. Scale bars: 10 mm.

(B) Distribution of identified transcripts according to average fold change expression (x axis; log2FC) and p value (y axis; limma moderated t test; �log10 p value;

p < 0.05). See also Table S1 and Figure S1.

(C) Normalized expression levels in reactivating versus quiescent NSCs obtained by quantitative real-time PCR for a subset of targets (log2FC; n = 3 NSC

reactivating/quiescent pairs; error bars: SEMs; Student’s t test; ***p < 0.001). The results validate the data from the microarray analysis. Most of the targets

selected are classified under ‘‘nervous system development’’ and ‘‘neurogenesis’’ GO terms.

(D) STRING-based interaction network of a Drosophila PP2A-STRIPAK complex reported to inhibit Hippo signaling (Zheng et al., 2017; Liu et al., 2016; Ribeiro

et al., 2010), highlighting (pink) the components identified in our transcriptome analysis and functionally characterized in this study.
(Figures 2F, 2I, 2J, S2C, S2F, and S2G). 5-Ethynyl-20-deoxyuri-
dine (EdU) incorporation assays monitoring entry into S phase

confirmed that NSCs in mob4 CNSs are not able to re-enter

the cell cycle (Figures S2H–S2J). NSC reactivation defects in

mob4 mutants were similarly observed in brain lobes and

VNCs. We focused subsequent studies on brain lobes.

Since niche glial cells are involved in NSC reactivation (Sousa-

Nunes et al., 2011; Chell and Brand, 2010) and Mob4 is ubiqui-

tous in the larval CNS (Schulte et al., 2010), we next tested

whether Mob4 action is cell autonomous. We ectopically ex-

pressedmob4 specifically in NSCs or in glia ofmob4mutants us-

ing insc-Gal4 and repo-Gal4 drivers, respectively. NSCs were

analyzed at 18 h ALH, when mitotic reactivation is ongoing.

Re-introduction of Mob4 in NSCs of mob4 mutants rescued

both NSC size growth and division to the levels observed in con-

trols (Figures 2K–2M and 2P). We observed a small increase in

NSC size and division when Mob4 was expressed from glia,

but levels are markedly lower than in controls (Figures 2M–2P).

Finally, we inhibited Mob4 specifically in NSCs by expressing

mob4-RNAi (Schulte et al., 2010) using insc-Gal4, resulting in a

significant, albeit small, reduction in NSC size and a decrease
in NSC division at 18 h ALH (Figures S2K–S2M). We conclude

that Mob4 functions primarily cell autonomously to promote

NSC reactivation.

Overexpression of Mob4 or Its Human Ortholog
Accelerates NSC Reactivation
Mob4 is highly conserved (78% identical at the amino acid level)

to its human ortholog MOB4 (hMOB4, also known as Phocein),

and ubiquitous expression of hMOB4 fully rescues the lethality

of mob4 null larvae (Schulte et al., 2010). To determine whether

increasing Mob4 or hMOB4 levels can promote NSC reactiva-

tion, we overexpressed these specifically in NSCs using insc-

Gal4. Simultaneous expression of membrane-tagged GFP

allowed for NSC size examination, and divisions were labeled

with pH3 antibodies. At 6 h ALH, NSCs in controls have yet to

re-enter mitosis. At this stage, Mob4 or hMOB4 overexpression

results in a premature NSC size increase. No re-entry into divi-

sion was seen upon Mob4 overexpression, but hMOB4 induced

a minor but significant increase (Figures 3A–3C and 3G). At 18 h

ALH, no difference in NSC size was detected upon Mob4 over-

expression, but more NSCs were found in mitosis compared to
Cell Reports 27, 2921–2933, June 4, 2019 2923



Figure 2. Loss of Mob4 Prevents NSC Mitotic Reactivation

(A–C) Mob4 is upregulated in reactivating versus quiescent NSCs. Examples of quiescent (small, A) and reactivating (enlarged, B) NSCs in 17 h ALH CNSs

(VNC thoracic region) labeled with grh-Gal4 driving CD8-GFP (GFP, green), Mob4 (red), and Dpn (blue). Mob4 channel also shown in monochrome. Dashed lines:

cell bodies. (C) Mob4 protein quantification in reactivating normalized to quiescent NSCs (reactivating NSCs: n = 50, 8 BLs, 8 brains; quiescent NSCs: n = 50,

8 BLs, 8 brains; error bars: SEMs).

(D–J) NSC enlargement and division are impaired inmob4DL3mutants.Wild-type (WT; D, 1 h ALH; E, 4 h ALH; F, 24 h ALH) andmob4DL3 brain lobes (G, 1 h ALH; H,

4 h ALH; I, 24 h ALH). NSCs (Dpn, red), cell membranes (Dlg, green), and divisions (pH3, blue). Yellow arrowheads: quiescent NSCs; white arrowheads: re-

activated NSCs. Mushroom body NSCs (MbNSCs; dashed circles) are large and do not enter quiescence. At 1 and 4 h ALH, there are no NSC divisions, except in

MbNSCs.

(J) Quantification of NSC diameters (1 h ALH:WT n = 359NSCs, 10 BLs, 5 brains;mob4DL3 n = 415 NSCs, 10 BLs, 7 brains; 4 h ALH:WT n = 1,121 NSCs, 14 BLs, 7

brains;mob4DL3 n = 552NSCs, 10BLs, 5 brains; 24 h ALH:WT n = 799NSCs, 10BLs, 7 brains;mob4DL3 n = 395NSCs, 18BLs, 9 brains) and proliferation (1 h ALH:

WT n = 24 BLs, 12 brains;mob4DL3 n = 20 BLs, 12 brains; 4 h ALH: WT n = 24 BLs, 12 brains;mob4DL3 n = 24 BLs, 12 brains; 24 h ALH: WT n = 24 BLs, 12 brains;

mob4DL3 n = 24 BLs, 12 brains).

(legend continued on next page)
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Figure 3. Overexpression of Mob4 or hMOB4 Increases NSC Growth and Division

(A–G) NSC-specificmob4 or humanMOB4 (hMOB4) overexpression leads to premature NSC enlargement andmitosis entry. Brain lobes of control (A and D, insc-

gal4 > CD8-GFP) andmob4 (B and E, insc-gal4 > CD8-GFP, mob4) or hMOB4 (C and F, insc-gal4 > CD8-GFP, hMOB4) overexpressing brains at 6 and 18 h ALH.

NSCs in green (GFP) and red (Dpn), and divisions in blue (pH3). Dashed circles: MbNSCs; yellow arrowheads: quiescent NSC examples; white arrowheads:

prematurely enlarging (B and C) and dividing NSC examples (D–F). Anterior up. Scale bars: 10 mm.

(G) Quantification of NSC diameters (6 h ALH: insc-gal4 > CD8-GFP n = 1,467 NSCs, 20 BLs, 15 brains; insc-gal4 > CD8-GFP, mob4 n = 639 NSCs, 10 BLs,

5 brains; insc-gal4 > CD8-GFP, hMOB4 n = 508 NSCs, 7 BLs, 5 brains; 18 h ALH: insc-gal4 > CD8-GFP n = 1,399 NSCs, 18 BLs, 15 brains; insc-gal4 > CD8-GFP,

mob4 n = 1,004 NSCs, 13 BLs, 9 brains; insc-gal4 >CD8-GFP, hMOB4 n = 533NSCs, 7 BLs, 5 brains) and proliferation (6 h ALH: insc-gal4 >CD8-GFP n = 56 BLs,

28 brains; insc-gal4 > CD8-GFP, mob4 n = 22 BLs, 11 brains; insc-gal4 > CD8-GFP, hMOB4 n = 28 BLs, 14 brains; 18 h ALH: insc-gal4 > CD8-GFP n = 32 BLs,

16 brains; insc-gal4 > CD8-GFP, mob4 n = 30 BLs, 15 brains; insc-gal4 > CD8-GFP, hMOB4 n = 20 BLs, 10 brains).

Wilcoxon rank-sum tests; ***p < 0.001; p > 0.05: ns.

See also Figure S3.
controls. hMOB4 ectopic expression increased NSC size and

induced a similar increase in the number of dividing NSCs as

seen upon Mob4 overexpression (Figures 3D–3G). We next

tested whether Mob4 overexpression leads to NSC overprolifer-

ation. Scoring of NSC divisions in late larval brain lobes (94 h

ALH) revealed no differences from controls, indicating that

Mob4 overexpression effects are restricted to the NSC reactiva-

tion process (Figures S3A–S3C). Finally, since NSC reactivation

depends on nutritional stimulus (Britton and Edgar, 1998), we

inquired as to whether Mob4 overexpression in NSCs could

induce reactivation under diet-restriction conditions. In larvae

reared in the absence of dietary amino acids, NSCs overex-

pressing Mob4 remained quiescent (Figures S3D–S3F). We

conclude that increased Mob4 levels accelerate NSC reactiva-

tion, and this function may be evolutionary conserved. Yet,

Mob4 is not sufficient to bypass the extrinsic nutrition stimulus

required for NSC reactivation.
(K–P) Mob4 expression in NSCs, but not in glia, rescues NSC reactivation in mo

expressing Mob4 in NSCs (L,mob4DL3, insc-gal4 > mob4),mob4DL3 (M),mob4DL3

gal4) at 18 h ALH.

(P) Quantification of NSC diameters (insc-gal4 n = 219 NSCs, 3 BLs, 3 brains;mob

7 brains;mob4DL3, repo-gal4 >mob4 n = 310NSCs, 6 BLs, 6 brains; repo-gal4 n =

insc-gal4 >mob4 n = 20 BLs, 10 brains;mob4DL3 n = 10 BLs, 10 brains;mob4DL3,

ALH.

Wilcoxon rank-sum tests; **p < 0.01, ***p < 0.001; p > 0.05: non-significant (ns).

See also Figure S2.
Mob4 Regulates InR/PI3K/Akt and Hippo Signaling
Activity in NSCs
The Hippo pathway maintains NSCs in quiescence (Ding et al.,

2016; Poon et al., 2016), whereas activation of InR/PI3K/Akt

signaling cascade triggers reactivation (Sousa-Nunes et al.,

2011; Chell and Brand, 2010). To assess how Mob4 function re-

lates to both pathways, we first examined their activity in the

absence of Mob4. Upon activation, insulin receptors recruit

PI3K to the cell membrane to convert phosphoinositol(4,5)P2

(PIP2) into phosphoinositol(3,4,5)P3 (PIP3), which in turn recruits

the Akt protein kinase through its pleckstrin homology (PH)

domain, becoming activated by phosphorylation. This process

can be monitored using a PH domain-GFP fusion protein (PH-

GFP) binding PIP3 (Britton et al., 2002). We confirmed strong

membrane-bound accumulation of PH-GFP in reactivated

NSCs (Figures 4A and 4A’) (Chell and Brand, 2010). In contrast,

NSCs inmob4mutants showweak and diffused PH-GFP signals
b4DL3 mutants to control levels. Brain lobes of control (K, insc-gal4), mob4DL3

expressing Mob4 in glia (N,mob4DL3, repo-gal4 > mob4), and control (O, repo-

4DL3, insc-gal4 >mob4 n = 669, 10 BLs, 5 brains;mob4DL3 n = 520 NSCs, 7 BLs,

339, 5 BLs, 5 brains) and proliferation (insc-gal4 n = 12 BLs, 12 brains;mob4DL3,

repo-gal4 >mob4 n = 57 BLs, 29 brains; repo-gal4 n = 28 BLs, 14 brains) at 18 h

BLs, brain lobes. Anterior up. Scale bars: 10 mm.
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Figure 4. InR/PI3K/Akt Pathway Activation or Hippo Signaling Inhibition Rescues NSC Reactivation in mob4 Mutants

(A–C) InR/PI3K/Akt signaling is strongly reduced inmob4NSCs. Expression of pleckstrin homology (PH) domain-GFP fusion (GFP, green) does not accumulate at

NSC membranes ofmob4mutants as in controls. Brain lobes of control (A) andmob4DL3 mutants (B) at 24 h ALH. NSCs in red (Dpn) and divisions in blue (pH3).

GFP channel also shown in monochrome (A’ and B’). Inset displays higher magnification (B’). Yellow arrowheads: quiescent NSC examples; white arrowheads:

reactivated NSC examples.

(C) Phospho-Akt (pAktS505) is reduced inmob4mutant brains, while total Akt levels are comparable to those in controls (24 h ALH brain extracts; b-actin: loading

control). Quantification of protein signals (bottom; error bars: SEMs; n = 3 independent assays; Student’s t tests; *p < 0.05; p > 0.05: ns.

(D–E’) Hippo signaling remains active in mob4 NSCs. In contrast to controls, NSCs in mob4 mutants show no ban activity, except in MbNSCs (dashed circles).

ban-activity sensor, in which decreased GFP signal (green) reflects increased ban activity, in brain lobes of control (D and D’) andmob4DL3 mutants (E and E’) at

24 h ALH. NSCs in red (Dpn) and divisions in blue (pH3). GFP channel also shown in monochrome (D’ and E’). Inset showing higher magnification (E’).

(F–K) NSC-specific expression of rheb activating InR/PI3K/Akt signaling and ofwarts (wts)-RNAi or hippo (hpo)-RNAi inactivating Hippo signaling can rescue NSC

reactivation in mob4 mutants. Brain lobes of control (F, insc-gal4), mob4DL3 (G), mob4DL3 expressing Rheb in NSCs (H, mob4DL3, insc-gal4 > rheb), mob4DL3

expressingwts-RNAi in NSCs (I,mob4DL3, insc-gal4 > wtsRNAi), andmob4DL3 expressing hpo-RNAi in NSCs (J,mob4DL3, insc-gal4 > hpoRNAi) at 18 h ALH. NSCs

in red (Dpn), cell membranes in green (Dlg), and divisions in blue (pH3). Anterior up. Scale bars: 10 mm and 17 mm in insets.

(K) Quantification of NSC diameters (insc-gal4 n = 286 NSCs, 4 BLs, 3 brains;mob4DL3 n = 524 NSCs, 7 BLs, 7 brains;mob4DL3, insc-gal4 > rheb n = 466 NSCs, 6

BLs, 5 brains;mob4DL3, insc-gal4 > wtsRNAi n = 543 NSCs, 8 BLs, 5 brains;mob4DL3, insc-gal4 > hpoRNAi n = 531 NSCs, 8 BLs, 5 brains) and divisions (insc-gal4

n = 12 BLs, 12 brains; mob4DL3 n = 10 BLs, 10 brains; mob4DL3, insc-gal4 > rheb n = 28 BLs, 14 brains; mob4DL3; insc-gal4 > wtsRNAi n = 20 BLs, 10 brains;

mob4DL3, insc-gal4 > hpoRNAi n = 60 BLs, 30 brains).

Wilcoxon rank-sum tests; *p < 0.05, **p < 0.01, ***p < 0.001.
(Figures 4B and 4B’). We also observed reduced phosphorylated

Akt levels in mob4 whole CNS lysates compared to controls,

whereas total Akt levels were equivalent (Figure 4C). To examine

Hippo signaling, we tested the activity of bantam (ban) microRNA

that promotes NSC size growth and division (Ding et al., 2016). In

quiescent NSCs, active Hippo signaling prevents ban transcrip-
2926 Cell Reports 27, 2921–2933, June 4, 2019
tion (Ding et al., 2016). We used a ban GFP-sensor system, in

which GFP signal reduction reflects an increase in ban activity

(Brennecke et al., 2003). No GFP is observed in control reacti-

vated NSCs demonstrating ban activity (Ding et al., 2016) (Fig-

ures 4D and 4D’). However, the GFP signal is detected in the

NSCs of mob4 mutants, indicating the absence of ban activity



and Hippo pathway activation (Figures 4E and 4E’). We next

tested whether activating InR/PI3K/Akt cascade or inhibiting

Hippo pathways in the NSCs of mob4 mutants could rescue re-

activation defects. Stimulation of target of rapamycin (TOR)

signaling by Rheb overexpression activates the InR/PI3K/Akt

cascade, promoting premature NSC exit from quiescence (Li

et al., 2017; Sousa-Nunes et al., 2011). Overexpressing Rheb

in the NSCs ofmob4mutants led to NSC size increase and divi-

sion re-entry (Figures 4F–4H, and 4K). To inhibit Hippo signaling,

we used RNAi against warts (wts) or hippo, which induce earlier

NSC reactivation (Ding et al., 2016). In mob4 brains, expression

ofwts-RNAi or hippo-RNAi in NSCs induced cell size growth and

mitosis re-entry (Figures 4F, 4G, and 4I–4K). We conclude that

the InR/PI3K/Akt signaling cascade is inhibited, while the Hippo

pathway stays active in NSCs upon the loss of Mob4, consistent

with NSCs in mob4 mutants being unable to exit quiescence.

Activation of InR/PI3K/Akt or inhibition of Hippo pathways can

restore reactivation. However, the rescues are partial, with the

NSC size and proliferation increase observed in mob4 mutant

brains not reaching control levels (Figures 4F–4K). The results

contrast with the effect of expressing rheb, hippo-RNAi, or

wts-RNAi in a control background, where NSC growth and

division surpass control levels (Li et al., 2017; Ding et al., 2016;

Sousa-Nunes et al., 2011) and may also reflect insufficient

activation or inactivation of the respective signals and/or regula-

tion of both pathways that are essential for effective NSC

reactivation.

Mob4 and Cka Cooperate to Reactivate NSCs and
Assemble a PP2A-Hippo Complex
Our analysis of single NSC transcriptomes also identified the

STRIPAK scaffold protein Cka, which is expressed throughout

the CNS (Shi et al., 2016; Chen et al., 2002). Similar to Mob4,

we found cka transcript and protein upregulated in reactivating

versus quiescent NSCs (Figures 1C and S4A–S4C). To examine

its function, we overexpressed Cka specifically in NSCs and

observed premature NSC enlargement at 6 h ALH (Figures 5A,

5B, and 5G), as well as increased NSC size and divisions at

18 h ALH (Figures 5D, 5E, and 5G). Conversely, the expression

of cka-RNAi resulted in a small but significant reduction in NSC

size and decreased NSC mitosis at 18 h ALH (Figures S4D–

S4F). Next, we simultaneously overexpressed Mob4 and Cka

in NSCs and observed stronger effects compared to those

upon single Mob4 or Cka overexpression (Figures 5A–5G; see

also Figures 3B, 3E, and 3G).

STRIPAK negatively regulates Hippo signaling via the dephos-

phorylation of Hippo kinase by PP2A phosphatase (Couzens

et al., 2013; Ribeiro et al., 2010). We examined whether the

STRIPAK componentsMob4 andCka are essential for mediating

the association of PP2A to Hippo. Co-immunoprecipitations

(coIPs) were conducted on S2R+ cell lysates expressing FLAG-

tagged Hippo or control FLAG-NTAN, plus Myc-tagged Mts. In

addition, we performed RNAi targeting mob4 and/or cka, which

effectively depletes the respective proteins (Figure S5A), using

RNAi as a control against DsRed targeting red fluorescent pro-

tein. FLAG-Hippo co-immunoprecipitates Myc-Mts, as reported

(Ribeiro et al., 2010), and no association is found with FLAG-

NTAN. However, depletion of Mob4, Cka, or both impairs
Hippo/Mts binding, with the latter nearly abolishing association

(Figures 5H and 5I). We verified that the inhibition of Mob4 and

Cka results in increased Hippo activation, as reported (Zheng

et al., 2017; Ribeiro et al., 2010), and that chemical inhibition of

PP2A with okadaic acid targeting PP2A, and to a lesser extent

PP1 (Takai et al., 1992), leads to Hippo hyperphosphorylation

as a positive control (Figure S5B). We conclude that Mob4 and

Cka cooperate to promote NSC reactivation and are both

required for the association of PP2A to Hippo, leading to its inac-

tivation, which is consistent with the Hippo pathway remaining

active in NSCs upon mob4 loss (Figures 4D–4E’).

PP2A Inactivates Akt Independently of STRIPAK Cka
and Mob4 Members and Maintains Quiescent NSCs
If PP2A/Mts would only function in NSCs to inactivate Hippo

signaling via STRIPAK, then a prolonged NSC quiescence could

be anticipated uponMts inhibition. However, PP2A is also awell-

established negative regulator of the insulin receptor signaling

cascade, including by the dephosphorylation of Akt (Padmanab-

han et al., 2009; Vereshchagina et al., 2008; Janssens and Goris,

2001). Using S2R+ cells, we observed that Mts inhibition with

okadaic acid increases Akt phosphorylation, regardless of

RNAi-mediated depletion of cka andmob4 (Figure S6A). In addi-

tion, in S2R+ cells expressing hemagglutinin (HA)-tagged Mts

andMyc-tagged Akt,Mts co-immunoprecipitates with Akt. How-

ever, unlike for Mts/Hippo interaction, the depletion of cka and

mob4 does not disturb Mts/Akt association, nor does it disturb

the levels of phosphorylated Akt with or without insulin stimula-

tion (Figures S6A–S6C). Next, we examined whether impaired

Mts function affects NSC reactivation. Since mts null mutants

(mtsXE-2258) are embryonic lethal (Snaith et al., 1996), we

analyzed transheterozygotes harboring an mts hypomorphic

allele surviving to pupal stages (mts299) (Wang et al., 2009) and

mtsXE-2258. Reactivating NSCs in mts299/mtsXE-2258 mutants

shows a mild increased cell size as compared to controls (Fig-

ures 6A–6C). To knock down mts specifically in NSCs, we ex-

pressed a dominant-negative mts mutant (mts-DN) lacking the

N-terminal region of the phosphatase domain (Hannus et al.,

2002). Premature NSC size increase and entry into division

were observed (Figures 6D, 6E, 6G, 6H, and 6J), strengthening

the results using mts transheterozygotes. We then examined

whether the regulatory PP2A subunit Wdb, shown to modulate

Akt downstream of InR/PI3K/Akt signaling in both vertebrates

and invertebrates (Rodgers et al., 2011; Padmanabhan et al.,

2009; Vereshchagina et al., 2008), may also function in NSCs.

Similar to mts-DN, expression of a truncated wdb mutant form

acting as a dominant negative (wdb-DN) (Hannus et al., 2002)

leads to increased NSC size growth at 6 h ALH and a higher num-

ber of mitotic NSCs at 18 h ALH (Figures 6D, 6F, 6G, 6I, and 6J).

Next, we ascertained whether PP2A/Mts inhibition affects pAkt

levels. A premature increase in pAkt is seen in NSCs expressing

mts-DN, which indicates abnormal InR/PI3K/Akt activation (Fig-

ures 6K–6L’). In this condition, a moderate but significant reduc-

tion of ban activity (indicated by ban-GFP sensor signal increase)

is also observed (Figures 6M–6O). The results suggest that the

inhibition of Mts can promote Hippo signaling activity in NSCs,

but the effect is insufficient, possibly due to the availability

of endogenous Mob4/Cka levels at this stage, or otherwise
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Figure 5. Cka and Mob4 Cooperate to Pro-

mote NSC Reactivation and Are Required

for PP2A/Hippo Interaction

(A–G) NSC-specific cka or cka and mob4 double

overexpression leads to premature enlargement

and increased mitotic NSCs. Double over-

expression results in stronger effects (see also

Figure 3). Brain lobes of control (A and D, insc-

gal4 > CD8-GFP), cka (B and E, insc-gal4 > CD8-

GFP, cka), and double cka and mob4 (C and F,

insc-gal4 > CD8-GFP, cka, mob4) overexpressing

brains at 6 and 18 h ALH. NSCs in green (GFP) and

red (Dpn), and divisions in blue (pH3). Dashed

circles: MbNSCs; yellow arrowheads: quiescent

NSCs; white arrowheads: prematurely enlarging

(B and C) and dividing NSCs (D–F). Anterior up.

Scale bars: 10 mm.

(G) Quantification of NSCdiameters (6 h ALH: insc-

gal4 > CD8-GFP n = 1,106 NSCs, 15 BLs, 10

brains; insc-gal4 >CD8-GFP,mob4 n = 639NSCs,

10 BLs, 5 brains; insc-gal4 > CD8-GFP, cka

n = 332 NSCs, 5 BLs, 5 brains; insc-gal4 > CD8-

GFP, cka, mob4 n = 284 NSCs, 8 BLs, 8 brains;

18 h ALH: insc-gal4 > CD8-GFP n = 1,717 NSCs,

19 BLs, 14 brains; insc-gal4 > CD8-GFP, mob4

n = 1,004NSCs, 13BLs, 9 brains; insc-gal4 >CD8-

GFP, cka n = 554 NSCs, 8 BLs, 4 brains; insc-

gal4 > CD8-GFP, cka, mob4 n = 400 NSCs, 6 BLs,

4 brains) and divisions (6 h ALH: insc-gal4 >

CD8-GFP n = 56 BLs, 28 brains; insc-gal4 > CD8-

GFP, mob4 n = 22 BLs, 11 brains; insc-gal4 >

CD8-GFP, cka n = 18 BLs, 9 brains; insc-gal4 >

CD8-GFP, cka, mob4 n = 20 BLs, 10 brains; 18 h

ALH: insc-gal4>CD8-GFP n = 70 BLs, 38 brains;

insc-gal4 > CD8-GFP, mob4 n = 30 BLs, 15

brains; insc-gal4 > CD8-GFP, cka n = 18 BLs, 9

brains; insc-gal4 > CD8-GFP, cka, mob4 n = 20

BLs, 10 brains). Wilcoxon rank-sum tests,

***p < 0.001; p > 0.05: ns. See also Figure S4.

(H and I) Depletion of Mob4 and/or Cka inhibits

PP2A/Mts association to Hippo.

(H) CoIP assays using S2R+ cells expressing Myc-Mts and FLAG-Hippo or control FLAG-NTAN, in addition to RNAi against mob4 and/or cka or control DsRed

(see also Figure S5). Lysates and FLAG-purified immunoprecipitates analyzed by western blot with indicated antibodies.

(I) Quantification of relative binding of Myc-Mts to FLAG-Hippo shown as a mean of the ratio between Myc-Mts and FLAG-Hippo signal intensities relative to

control (DsRed RNAi) levels (n = 3 independent assays; error bars: SEMs; Student’s t tests; *p < 0.05 and **p < 0.01).
dominated by InR/PI3K/AKT activation, with the final outcome

being premature NSC reactivation. Our data indicate that

PP2A/Mts may play a dual role in early postembryonic NSCs:

first with Wdb to target Akt contributing to quiescence mainte-

nance and second with STRIPAK components Mob4 and Cka

targeting Hippo signaling to promote reactivation (Figure 6P).

DISCUSSION

Neural replenishment depends on the ability of NSCs to tightly

control the balance between quiescence and proliferation (Tian

et al., 2018; Chaker et al., 2016; Cheung and Rando, 2013).

Recent advances in profiling quiescent and activated NSCs are

increasing our understanding of these cell states. Most ap-

proaches have relied on brain tissue dissociation, cell sorting,

and culturing procedures (Llorens-Bobadilla et al., 2015; Codega

et al., 2014; Martynoga et al., 2013). Here, we reveal a transcript

profile of single quiescent versus reactivating NSC samples
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obtained directly from live brains. The analysis of identified indi-

vidual cells taken directly from living tissues at desired time

points allows us to precisely examine the transcriptional control

at the crossroads of crucial cell fates. Due likely to the reduced

sample number and single-cell cDNA amplification variability

(Tung et al., 2017; Macaulay and Voet, 2014) (Pearson’s r corre-

lations obtained: quiescent NSCs 0.75 < r < 0.81, mean: 0.77; re-

activating NSCs 0.58 < r < 0.67, mean: 0.61), our analysis did not

support FDR correction. However, the identified genes meeting

significance (limma moderated t test, p < 0.05) show consistent

expression changes across replicates, and the regulation of all of

the targets testedwas independently validated. The high conser-

vation with mammalian genes and partial overlap with orthologs

reported to be differentially expressed in mouse quiescent

versus activated NSCs suggest that our dataset is also a valu-

able resource for mammalian NSC research.

Adult NSCs must orchestrate extrinsic signals according to

the organism’s status with intrinsic factors to transit between



Figure 6. Inactivation of PP2A Phosphatase

Results in Premature NSC Reactivation

(A–C) PP2A/mts hypomorphic mutants show pre-

mature NSC size growth. Brain lobes of WT (A)

and mts299/mtsXE2258 mutants (B) at 18 h ALH.

NSCs in red (Dpn), cell membranes in green (Dlg),

and divisions in blue (pH3). Arrowheads: NSC

examples.

(C) Quantification of NSC diameters (WT n = 362

NSCs, 5 BLs, 3 brains; mts299/mtsXE2258 n = 324

NSCs, 6 BLs, 5 brains) and divisions (WT n = 25

BLs, 13 brains; mts299/mtsXE2258 n = 36 BLs, 27

brains). Wilcoxon rank-sum tests; ***p < 0.001;

p > 0.05: ns.

(D–J) NSC-specific expression of dominant-nega-

tive (DN) forms of PP2A catalytic subunit Mts or

regulatory subunit Wdb results in premature

NSC size growth and an increased number of

mitotically reactivated NSCs. Brain lobes of con-

trol (D and G, insc-gal4 > CD8-GFP), mts-DN

(E and H, insc-gal4 > CD8-GFP, mts-DN), and

wdb-DN (F and I, insc-gal4 > CD8-GFP, wdb-DN)

expressing brains at 6 and 18 h ALH. NSC in green

(GFP) and red (Dpn), and divisions in blue (pH3).

Dashed circles: MbNSCs; yellow arrowheads:

quiescent NSC examples; white arrowheads:

prematurely enlarging (E and F) and mitotically

reactivated NSCs (G–I).

(J) Quantification of NSC diameters (6 h ALH: insc-

gal4 > CD8-GFP n = 219 NSCs, 5 BLs, 5 brains;

insc-gal4 > wdb-DN n = 208 NSCs, 5 BLs, 5

brains; insc-gal4 > mts-DN n = 203 NSCs, 5 BLs, 5

brains; 18 h ALH: insc-gal4 > CD8-GFP n = 541

NSCs, 8 BLs, 5 brains; insc-gal4 > CD8-GFP, wdb-

DN n = 373 NSCs, 5 BLs, 5 brains; insc-gal4 >

CD8-GFP, mts-DN n = 323 NSCs, 5 BLs, 5 brains)

and divisions (6 h ALH: insc-gal4 > CD8-GFP

n = 16 BLs, 8 brains; insc-gal4 > CD8-GFP, wdb-

DN n = 20 BLs, 10 brains; insc-gal4 > CD8-GFP,

mts-DN n = 14 BLs, 7 brains; 18 h ALH: insc-gal4 >

CD8-GFP n = 42 BLs, 21 brains; insc-gal4 > CD8-

GFP, wdb-DN n = 22 BLs, 12 brains; insc-gal4 >

CD8-GFP, mts-DN n = 20 BLs, 10 brains). Wil-

coxon rank-sum tests; **p < 0.01, ***p < 0.001;

p > 0.05: ns.

(K–O) NSC-specific expression of mts-DN results in

the increased expression of phosphorylated Akt, as

well as a decrease in ban activity. (K–L’) Brain lobes

of control (K and K’, insc-gal4 > CD8-GFP) and

mts-DN (L and L’, insc-gal4 > CD8-GFP, mts-DN)

expressing brains at 6 h ALH. NSCs in green

(GFP) and red (Dpn), and pAktS505 (blue). pAktS505

also shown in monochrome; insets showing higher

magnifications (K’ and L’).

(M–O) ban-activity sensor, in which a decrease in

GFP signal (green) reflects an increase in ban ac-

tivity, in brain lobes of control (M and M’) and

mts-DN expressing brains (N and N’) at 6 h ALH.

NSCs in red (Dpn) and Mts-DN (HA-tag, blue). GFP

channel also shown in monochrome; insets showing

higher magnification (M’ and N’).

(O) GFP signal (ban-activity sensor) quantification

in NSCs expressing mts-DN normalized to control

NSCs (n = 84 mts-DN NSCs, 19 BLs, 14 brains;

n = 46 control NSCs, 8 BLs, 5 brains; error bars:

SEMs; Wilcoxon rank-sum test; **p < 0.01). Ante-

rior up. Scale bars: 10 mm and 17 mm in insets.

(legend continued on next page)
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quiescence and proliferation. As in mammals, Drosophila

NSCs are dependent on niche signals relaying external stimuli

for both quiescence and reactivation (Tian et al., 2018; Chaker

et al., 2016). In response to a nutritional cue, niche glia cells

activate InR/PI3K/Akt signaling in NSCs to promote reactiva-

tion (Sousa-Nunes et al., 2011; Chell and Brand, 2010). Niche

glia cells also contribute to quiescence by maintaining

Hippo signaling activation in NSCs (Ding et al., 2016). In mam-

mals, the insulin and insulin-like growth factor pathway also

plays a major role in adult NSC reactivation (Renault et al.,

2009; Kippin et al., 2005; Arsenijevic et al., 2001), and

while regulation of the Hippo pathway has not yet been impli-

cated in this process, Hippo signaling maintains liver progen-

itors in quiescence and is indispensable for skin and intestinal

regeneration (Wang et al., 2017; Zhou et al., 2009). Here, we

show that Mob4, Cka, and PP2A phosphatase, identified in

our transcriptome analysis, regulate NSC quiescence to reac-

tivation states, and we propose that they function as an

intrinsic integration mechanism of InR/PI3K/Akt and Hippo

signals.

We detected the catalytic subunit of PP2A, Mts, downregu-

lated at the transcript level in reactivating versus quiescent

NSCs.Mtsmaintains NSCs in quiescence, preventing premature

phosphorylation of Akt, a key component of the InR/PI3K/Akt

signaling cascade. PP2A substrate specificity depends on the

choice from a variety of regulatory subunits (Shi et al., 2016). In

Drosophila, the regulatory subunit Wdb was shown to physically

interact and negatively regulate Akt in ovaries (Vereshchagina

et al., 2008), and has also been implicated in the inhibition of in-

sulin signaling, controlling organism growth and metabolic regu-

lation (Fischer et al., 2015). Wdb orthologs in Caenorhabditis el-

egans (PPTR1) and mammals (B56b) also dephosphorylate Akt

to modulate InR/PI3K/Akt, indicating a conserved role (Rodgers

et al., 2011; Padmanabhan et al., 2009).We demonstrate that the

inhibition of Mts or of Wdb leads to similar premature NSC reac-

tivation effects, suggesting that Wdb/Mts function together to

maintain quiescence. PP2A has been linked to cellular quies-

cence in different contexts. In the developing Drosophila eye

and wing, PP2A/Wdb contributes to a quiescent state upon ter-

minal cell differentiation (Sun and Buttitta, 2015); in cycling hu-

man cells, PP2A is also required for stable quiescence, a func-

tion that is dependent on the B56g subunit (Naetar et al.,

2014). Thus, PP2A may also have an evolutionary conserved

function in maintaining quiescence in NSCs, modulating the

InR/PI3K/Akt signaling cascade. PP2A is a pleiotropic phospha-

tase. In proliferating Drosophila NSCs, it contributes to apical-

basal polarity and prevents excess self-renewal at later larval

stages. Here, Wdb was shown to play no role and instead Twins,

a B55 subunit ortholog, regulated PP2A/Mts action (Chabu and

Doe, 2009; Krahn et al., 2009; Ogawa et al., 2009; Wang et al.,

2009).

In contrast toMts, we found that Mob4 and Cka upregulated in

reactivating versus quiescent NSCs. Both are scaffold proteins
(P) A model of action of STRIPAKMob4/Cka/PP2A members: in quiescent NSCs,

ensuring that InR/PI3K/Akt signaling is maintained switched off. Hippo signaling

promoting NSC size growth and entry into division; both are required to direct Mts

(Sousa-Nunes et al., 2011; Chell and Brand, 2010).
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of STRIPAK, a large molecular complex that is highly conserved

from fungi to humans containing PP2A (Shi et al., 2016). We

demonstrate that the loss of Mob4 or Cka impairs NSC reactiva-

tion, while their overexpression can accelerate it. Furthermore,

ectopic expression of human Mob4 also induced premature

NSC size growth and mitosis entry, suggesting a conserved

function. In cultured S2 cells, Mob4 was shown to focus spindle

fibers duringmitosis (Trammell et al., 2008). OurMob4 analysis in

NSCs exposed a function in cell size growth before mitosis and

additionally showed that MbNSCs, which do not enter quies-

cence, continue dividing in the absence of Mob4, indicating

that the role of Mob4 in NSC reactivation is independent of

that reported in spindle fibers.

STRIPAK/PP2A associates with Hippo in Drosophila and

mammalian cells, and restricts Drosophila Hippo kinase activity

via dephosphorylation (Liu et al., 2016; Couzens et al., 2013; Ri-

beiro et al., 2010). Previous reports revealed cross-talk inhibition

between Hippo and InR/PI3K/Akt pathways in both mammalian

and Drosophila tissues (Straßburger et al., 2012; Tumaneng

et al., 2012). We demonstrate that Mob4 and Cka are both

required for the physical association of Mts to Hippo and its sub-

sequent inhibition, as reported (Ribeiro et al., 2010). We also

show that upon loss ofMob4, theHippo pathway consistently re-

mains switched on in NSCs, and InR/PI3K/Akt signaling is in-

hibited. Finally, we determined that the inhibition of Mts can

enhance Hippo signaling in NSCs but that the effect is overcome

by premature activation of InR/PI3K/Akt, resulting in earlier NSC

reactivation, despite Hippo activity. Our data suggest that as the

levels of STRIPAK members Mob4 and Cka increase in NSCs, a

complex with Hippo kinase assembles recruiting PP2A/Mts pro-

tein to inactivate Hippo signaling. This may function as an

intrinsic molecular switch to turn off Hippo signaling and allow

the InR/PI3K/Akt cascade to turn on (Figure 6P). Given their large

and versatile composition, it is not surprising that STRIPAK com-

plexes are assigned to an increasing number of functions and

linked to clinical conditions, including autism and cancer (Shi

et al., 2016). It will be important to determine whether and how

STRIPAK proteins contribute to regulating the reactivation of

other stem cells.
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Guinea pig anti-Dpn Gift from J. Knoblich (Levy and

Larsen, 2013)
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Guinea pig anti-Mob4 Gift from T. Littleton (Schulte

et al., 2010)
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Wei, 2002)
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Guinea pig anti-Hippo Gift from G. Halder (Hamaratoglu

et al., 2006)

N/A

Chemicals, Peptides, and Recombinant Proteins

Okadaic Acid CST Cat# 5934

Critical Commercial Assays

Click-iT EdU Alexa Fluor 594 Imaging Kit Invitrogen Cat# C10339

Co-Immunoprecipitation Kit Pierce Cat# 26149

Deposited Data

Transcriptome data This paper GEO: GSE128646

Experimental Models: Cell Lines

D. melanogaster: Cell line S2R+ Gift from B. Houdsen FlyBase: FBtc0000150

Experimental Models: Organisms/Strains

D. melanogaster: mob4 mutant: y[1] w[*];

Mob4[EYDeltaL3]/CyO

Bloomington Drosophila Stock

Center (Schulte et al., 2010)

BDSC: 36331; FlyBase: FBst0036331

D. melanogaster: UAS line expressing mob4

RNAi: P{UAS-Mob4.RNAi.JS1}attP2

Bloomington Drosophila Stock

Center (Schulte et al., 2010)

BDSC:36488; FlyBase: FBst0036488

D. melanogaster: UAS line expressing mob4:

y[1] v[1]; P{y[+t7.7] v[+t1.8] = UAS-Mob4.S}attP2

Bloomington Drosophila Stock

Center (Schulte et al., 2010)

BDSC: 36329; FlyBase: FBst0036329

D. melanogaster: UAS line expressing hMOB4:

y[1] v[1]; P{y[+t7.7] v[+t1.8] = UAS-phocein.1}attP2

Bloomington Drosophila Stock

Center (Schulte et al., 2010)

BDSC: 36330; FlyBase: FBst0036330

D. melanogaster: UAS line expressing cka-eGFP:

w[*]; P{w[+mC] = UASp-Cka.EGFP.C}2

Bloomington Drosophila Stock

Center

BDSC: 53756; FlyBase: FBst0053756

D. melanogaster: UAS line expressing wdb-DN:

w[*]; P{w[+mC] = UAS-wdb.95-524.HA}6

Bloomington Drosophila Stock

Center (Hannus et al., 2002)

BDSC: 55053; FlyBase: FBst0055053

D. melanogaster: UAS line expressing wts RNAi:

y[1] sc[*] v[1]; P{y[+t7.7] v[+t1.8] = TRiP.

GL01331}attP2

Bloomington Drosophila Stock

Center (Ding et al., 2016)

BDSC: 41899; FlyBase: FBst0041899

(Continued on next page)
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D. melanogaster: UAS line expressing hpo RNAi:

y[1] v[1]; P{y[+t7.7] v[+t1.8] = TRiP.HMS00006}attP2

Bloomington Drosophila Stock

Center (Ding et al., 2016)

BDSC: 33614; FlyBase: FBst0033614

D. melanogaster: UAS line expressing cka RNAi:

y[1] v[1]; P{y[+t7.7] v[+t1.8] = TRiP.HM05138}attP2

Bloomington Drosophila Stock

Center

BDSC: 28927; FlyBase: FBst0028927

D. melanogaster: Wild type: Oregon-R Gift from M. Akam (Bossing

and Technau, 1994)

FlyBase: FBsn0000276

D. melanogaster: UAS line expressing rheb:

w[*]; P{w[+mC] = UAS-Rheb.Pa}3

Gift from R. Sousa-Nunes

(Sousa-Nunes et al., 2011)

BDSC: 9689; FlyBase: FBst0009689

D. melanogaster: Gal4 line under the control of

grh: Grh-Gal4

Gift from A.H. Brand (Chell and

Brand, 2010)

N/A

D. melanogaster: UAS line expressing mts-DN-HA:

UAS-mts.dn181-HA

Gift from S. Eaton (Hannus

et al., 2002)

N/A

D. melanogaster: line expressing pleckstrin

homology domain-GFP fusion protein:

PH-GFP (tGPH)

Gift from B. Edgar (Britton

and Edgar, 1998)

N/A

D. melanogaster: bantam GFP-sensor line,

ban-sensor (db20)

Gift from S.M. Cohen

(Brennecke et al., 2003)

N/A

D. melanogaster: mtsXE225839 mutant:

mtsXE2258/CyO, P{sevRas1.V12}F1 and

mts299 mutant

Gifts from H. Wang (Wang

et al., 2009)

BDSC: 5684; FlyBase:FBst0005684

N/A for mts299

D. melanogaster: Gal4 line under the control

of insc: w[*]; P{w[+mW.hs] = GawB}insc[Mz1407]

Bloomington Drosophila

Stock Center

BDSC: 8751; FlyBase:FBst0008751

D. melanogaster: Gal4 line under the control

of repo: w[1118]; P{w[+m*] = GAL4}repo/TM6, tb

Gift from A. Hidalgo N/A

D. melanogaster: UAS line expressing CD8-GFP:

y[1] w[*]; P{w[+mC] = UAS-mCD8::GFP.L}LL5,

P{UAS-mCD8::GFP.L}2

Lee and Luo, 1999 BDSC: 5137; FlyBase:FBst0005137

D. melanogaster: UAS line expressing dicer2:

UAS-dicer2

Ding et al., 2016 N/A

Oligonucleotides

Primer: Anchored polyT AAGCAGTGGTATCAAC

GCAGAGTACT(26)VN

Bossing et al., 2012 N/A

Primer: SM AAGCAGTGGTATCAACGCAGAG

TACGCrGrGrG

Bossing et al., 2012 N/A

Primer: Nested AAGCAGTGGTATCAACGCAGAGT Bossing et al., 2012 N/A

Primers used for RT-qPCR See Table S4 N/A

dsRNA targeting sequence mob4: Forward: TAATAC

GACTCACTATAGGGagatgtggaagtacgagcacctg

Schulte et al., 2010 N/A

dsRNA targeting sequence mob4: Reverse: TAATACG

ACTCACTATAGGGagatgcgagaagatgcgatacac

Schulte et al., 2010 N/A

dsRNA targeting sequence cka: Forward: TAATACG

ACTCACTATAGGGatacgggtccagttctgtgc

This paper N/A

dsRNA targeting sequence cka: Reverse: TAATACG

ACTCACTATAGGGtgttgtaggccaccacgata

This paper N/A

dsRNA targeting sequence DsRed: Forward: TAATAC

GACTCACTATAGGGgccgatgaacttcaccttgt

This paper N/A

dsRNA targeting sequence DsRed: Reverse: TAATAC

GACTCACTATAGGGcgaggacgtcatcaaggagt

This paper N/A

Recombinant DNA

Plasmid: 12XCSL DsRedExpressDL Hansson et al., 2006 Addgene plasmid #47683

Plasmid: Flag-NTAN Gift from P. Ribeiro (Ribeiro

et al., 2010)

N/A

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCES SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Claudia

Barros (claudia.barros@plymouth.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila strains and husbandry
Drosophila stocks obtained from the Bloomington Drosophila Stock Center are:mob4EYDL3 (36331) (Schulte et al., 2010) rebalanced

over CyO, P(GAL4-twi.G)2.2; UAS-mob4RNAi (36488) (Schulte et al., 2010); UAS-mob4 (36329) (Schulte et al., 2010); UAS-hMOB4

(36330) (Schulte et al., 2010); UAS-cka-eGFP (53756); UAS-wdb-DN (UAS-wdb.95-524.HA; 55053) (Hannus et al., 2002); UAS-

wtsRNAi (41899) (Ding et al., 2016); UAS-hpoRNAi (33614) (Ding et al., 2016) and UAS-ckaRNAi (28927). Other stocks used are: Wild-

type Oregon-R (kind gift from M. Akain); UAS-rheb (Blomington 9689) (Sousa-Nunes et al., 2011) (kind gift from R. Sousa-Nunes);

grh-Gal4 (Chell and Brand, 2010) (kind gift from A.H. Brand); UAS-mts-DN (UAS-mts.dn181-HA) (Hannus et al., 2002) (kind gift

from S. Eaton); PH-GFP (tGPH) (Britton and Edgar, 1998) (kind gift from B. Edgar); ban-sensor (db20) (Brennecke et al., 2003)

(kind gift from S.M. Cohen),mts299 andmtsXE2258 (Wang et al., 2009) (kind gifts from H. Wang). NSC-specific RNAi and overexpres-

sion assays were performed using insc-Gal4 (w1118; p{GAWB}inscMZ1407) and glial-specific expression assays used repo-Gal4

(w1118; p{GAWB}repo/TM6b, iab-lacZ). grh-Gal4 driver was recombined with UAS-CD8-GFP. For rescue experiments, insc-Gal4

and repo-Gal4 drivers were recombined or combined with the mob4EYDL3 mutant strain. For other assays, the insc-Gal4 driver

was recombined withUAS-CD8-GFP and/or combinedwithUAS-dicer2 (Ding et al., 2016). Fly lines were kept in standardDrosophila

fly food. Egg collections and larvae rearing were performed on agar juice plates (21 g agar, 200ml of grape juice per l of water) sup-

plemented with yeast paste. Egg lays were collected in either 30min or 1h time-windows. For nutritional deprivation experiments,

freshly hatched larvae were transferred to agar plates prepared with amino-acid free media (5% sucrose, 1% agar in phosphate

buffered saline, PBS).

S2R+ cell culture, transfection and drug treatment
S2R+ cells (kind gift from B. Houdsen) were maintained in 25- or 75-cm2 T-flasks at 25�C in Schneider0s Medium (GIBCO) with 10%

heat-inactivated FBS (One Shot, GIBCO) and antibiotics. For transient transfections, 1.6x106 cells/well were seeded in 6-well plates.

Effectene transfection reagent (Quiagen) was used to transfect 1 mg and/or 2 mg of each appropriate plasmid and/or dsRNA, respec-

tively, following manufacturer guidelines. Cells were incubated 72 hours before harvest. Plasmids used are Flag-NTAN, Flag-Hippo,

Myc-Mts, HA-Mts (kind gifts from P. S. Ribeiro) and Myc-AKT (kind gift from W. Hongyan). For okadaic acid experiments, cells were

transfected as above, incubated 70 hours and treated with 50 nM okadaic acid (CST) or 0.005%DMSO (vehicle; Corning) for 2 hours

prior harvest.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Plasmid: Flag-Hippo Gift from P. Ribeiro (Ribeiro

et al., 2010)

N/A

Plasmid: Myc-Mts Gift from P. Ribeiro (Ribeiro

et al., 2010)

N/A

Plasmid: HA-Mts Gift from P. Ribeiro (Ribeiro

et al., 2010)

N/A

Plasmid: Myc-Akt Gift from W. Hongyan

(Li et al., 2014)

N/A

Software and Algorithms

R/Bioconductor Limma Ritchie et al., 2015 https://bioconductor.org/packages/release/

bioc/html/limma.html

STRING v10.5 Szklarczyk et al., 2015 https://string-db.org/cgi/input.pl?sessionId=

QMsQ2cmXKFYZ&input_page_show_

search=on

FlyAtlas Chintapalli et al., 2007 http://flyatlas.org/atlas.cgi

DIOPT – DRSC Integrative Ortholog Prediction Tool Hu et al., 2011 https://www.flyrnai.org/cgi-bin/DRSC_

orthologs.pl
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METHOD DETAILS

NSC transcriptome analysis
Single NSC harvest, mRNA isolation, cDNA generation and microarray hybridization were performed essentially as previously

described (Bossing et al., 2012). Single quiescent (small; 4-5mm) and reactivating (enlarged) NSCs were individually removed from

freshly dissected 17 ALH CNS expressing membrane-tagged GFP specifically in NSCs (grh-Gal4, UAS-CD8-GFP). Samples with

any trace of non-fluorescent material were rejected. Each single cell was expelled in its own Eppendorf tube containing annealing

mix: 0.3 mL anchored polyT primer (50-AAGCAGTGGTATCAACGCAGAGTACT(26)VN-3
0, 10pM), 0.3 mL SM primer (50-AAGCAGTGG

TATCAACGCAGAGTACGCrGrGrG-30, 10pM), 0.4 mL RNase inhibitor (Superase, Ambion) and 2 mL Lysis Mix (10% Nonidet P-40,

0.1M DTT in DEPC-treated ultrapure water), and processed in less than 20 min. Each sample was spun (14000rpm, 1min, 4�C),
primers annealed (3min, 70�C) and snap-frozen in dry ice/ isopropanol. 1.5 mL of mix 1 (1 mL Invitrogen first strand buffer, 0.5 mL

10mM dNTPs) and 0.5 mL of mix 2 (3 mL Invitrogen Superscript II reverse transcriptase, 0.5 mL Ambion Superase RNase inhibitor)

were added per sample. Samples were thawed during centrifugation (14000rpm, 1 min, 4�C) and reverse transcribed (37�C,
90min), followed by enzyme thermal inactivation (65�C, 10 min). RNA was digested in 2 mL digestion mix (0.7 mL Roche RNase

H buffer, 0.5 mL Roche RNase H, 0.8 mL ultrapure water) for 20min at 37�C, followed by enzyme thermal inactivation (65�C,
15 min). For cDNA PCR amplification, 2 mL of nested primer (50-AAGCAGTGGTATCAACGCAGAGT-30), 2 mL dNTPs (10mM), 5 mL

Roche buffer, 0.5 mL Roche Long Expand polymerase and 34.5 mL of ultrapure water were added. PCR program: one cycle (95�C
3min, 50�C 5min, 68�C 15min) followed by 25 cycles (95�C 20 s, 60�C 1min, 68�C 7min). 3 pairs of NSC quiescent/ reactivating sam-

ples showing clear banding patterns on agarose gels were sent for microarray analysis (FlyChip, University of Cambridge). 1 mg of

each sample were Klenow-labeled using BioPrime DNA Labeling System (Invitrogen) in the presence of Cy3- or Cy5-dCTP

(GE Healthcare) for 2 hours 37�C. Unincorporated dye and nucleotides were removed using AutoSeq G-50 columns (GE Healthcare),

following manufacturer instructions. Cy3- and Cy5-labeled pairs of samples were combined with salmon sperm DNA as blocking

agent and co-hybridized (16 hours, 51�C) in a HybStation hybridization station (Digilab Genomic Solutions) on long oligonucleotides

FL003 microarrays (International Drosophila Array Consortium; Gene Expression Omnibus accession number GPL14121). Post-hy-

bridization washes were performed according to Full Moon Biosystems protocols. Detailed protocols for labeling, hybridization and

washing can be requested from the Cambridge Systems Biology Centre UK (https://www.sysbiol.cam/ac.uk/CSBC). Arrays were

scanned at 5 mm resolution (GenePix scanner, Axon Instruments) using optimized PMT gain settings for each channel.

RT-qPCR validation of selected genes was done using SYBRGreen on a StepOnePlus thermal cycler (Applied Biosystems) and

primers indicated in Table S4. ribosomal protein 49 (rp49) was used as internal calibrator for all reactions. Single NSC cDNA samples

used were obtained as described above. Candidates validated were also selected based on their Gene Ontology (GO) Nervous sys-

tem development and Neurogenesis classification (STRING v10.5) (Szklarczyk et al., 2015).

Tissue-specific expression of identified targets was performed using FlyAtlas (Chintapalli et al., 2007). Gene orthology analysis

used DIOPT (DRSC Integrative Ortholog Prediction Tool) (Hu et al., 2011). Protein-protein interaction network of Drosophila

PP2A-STRIPAK components was performed using STRING (v10.5) (Szklarczyk et al., 2015) with experimental-based data only as

source, and as previously described (Zheng et al., 2017; Liu et al., 2016; Ribeiro et al., 2010).

Immunohistochemistry and EdU incorporation
Immunohistochemistry assays were performed as previously described (Chell and Brand, 2010), with minor modifications. Briefly,

larval CNSs were dissected in PBS and fixed for 20 min in 4% formaldehyde/PBS with 5 mM MgCl2 and 0.5 mM EGTA or

10 mM MgCl2 and 1 mM EGTA (3rd instar larvae), followed by washes in PBS (2 3 10 min, 3 rinses between washes) and block for

1h in PBST (PBS, 1% Triton X-100) with 10% fetal bovine serum (FBS). Primary antibodies were incubated in PBST overnight or

for 2 nights at 4�C. CNSs were washed in PBST and secondary antibodies incubated 2h at room temperature, followed by PBST

washes and sequentially embedding in 50% and 70% glycerol before mounting in a 1:1 mix of 70% glycerol and Vectashield (Vector

Laboratories). Antibodies used are: rabbit anti-GFP (1:1000, kind gift from U. Mayor), chicken anti-GFP (1:500, Millipore), guinea pig

anti-Dpn (1:2000, kind gift from J. Knoblich), guinea pig anti-Mob4 (1:1000, kind gift from T. Littleton), mouse anti-Dlg (1:50, DSHB),

rabbit anti-pH3 (1:1000, Abcam), rabbit anti-Cka (1:1000, kind gift fromW. Du), rabbit anti-pAKTS505 (1:50, CST) and rat anti-HA clone

3F10 (1:1000, Roche). EdU incorporation assays were performed as previously described (Sousa-Nunes et al., 2011). Briefly, CNSs

were dissected in PBS and incubated in 10 mMEdU/PBS for 1h at room temperature. CNSswere fixed for 15min in 4% formaldehyde/

PBS and incorporated EdU detected using Click-iT EdU Imaging kit following manufacturer instructions (Invitrogen).

Image acquisition and processing
Images were obtained on a Leica SP8 confocal laser-scanning microscope using LAS X software. Quantifications were made using z

stacks of 1.5 mm step size, comprising whole brain lobes, VNCs or CNSs. Representative images shown are single optical sections,

with the exception of Figure 1A, which is a z-projection stack (3 steps, 0.5 mm each), and EdU incorporations, which are z-projection

stacks encompassing whole CNSs. Images were processed in Fiji v2.0 or Adobe Photoshop CS6 and assembled in Adobe Illustrator

CS6. NSC sizes (maximum diameters) (Chell and Brand, 2010), pH3 scorings, Mob4 and Cka signal intensities (pixel intensity/ NSC

maximum area), ban-GFP signal intensity (pixel intensity/ NSCmaximum area outlined by Dpn staining) and EdU voxel quantification

were performed using Fiji v2.0 or Adobe Photoshop CS6.
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dsRNA synthesis
For cka, mob4 and DsRed dsRNA, DNA templates of target genes were PCR amplified from larval genomic DNA or 12XCSL-

DsRedExpressDL plasmid (Addgene) to include the T7 promoter sequence on both ends. Primers used are: dsRNAmob4_Fwd:

50-TAATACGACTCACTATAGGGagatgtggaagtacgagcacctg-30(Schulte et al., 2010), dsRNAmob4_Rev: 50-TAATACGACTCACTA

TAGGGagatgcgagaagatgcgatacac-30(Schulte et al., 2010), dsRNAcka_Fwd: 50-TAATACGACTCACTATAGGGatacgggtccagttct

gtgc-30, dsRNAcka_Rev: 50-TAATACGACTCACTATAGGGtgttgtaggccaccacgata-30, dsRNADsRed_Fwd: 50-TAATACGACTCACTA

TAGGGgccgatgaacttcaccttgt-30, dsRNADsRed_Rev:
50-TAATACGACTCACTATAGGGcgaggacgtcatcaaggagt-30. The size of DNA bands was confirmed, purified using QIAquick Gel

Extraction Kit (QIAGEN) and used as template for dsRNA synthesis. In vitro transcriptions were performed using MEGAscript T7

kit (Invitrogen), incubated for 6 hours at 37�C and treated with TURBO DNase (Invitrogen) for 15 min at 37�C. RNA was precipitated

using LiCl precipitation solution (Invitrogen) and re-hydrated in ultrapure water. dsRNA was annealed by incubation at 65�C 30 min

and cooled down to room temperature.

Co-immunoprecipitations and western blotting
S2R+ cells were harvested and lysed in lysis buffer (25mM Tris, 0.15M NaCl, 1mM EDTA, 1% NP-40, 5% glycerol; pH 7.4) supple-

mented with protease inhibitor (Complete, EDTA-free; Sigma) and phosphatase inhibitors (cocktails B+C; Santa Cruz Biotech-

nology). Cell extracts were spun at 14000 rpm for 30 min at 4�C and proteins quantified (BCA protein assay, Pierce). Using the Pierce

Co-immunoprecipitation kit (Pierce), 20 mg of anti-Flag M2 (Sigma), anti-HA (3F10; Roche), or rat IgG (Sigma) were immobilized in

50 mL of AminoLink Plus Coupling resin slurry following manufacturer instructions. Protein lysates were incubated in the resin on a

rotator at 4�C overnight, washed 4 times with PBS and eluted following manufacturer instructions. Detection of proteins was per-

formed using standard SDS-PAGE and western blotting using ECL or ECL Plus chemiluminescent substrate (Pierce). Antibodies

used are: rabbit anti-Akt (1:500, CST), rabbit anti-pAktS505 (1:500, CST), rabbit anti-b-Actin (1:1000, CST), mouse anti-Flag clone

M2 (1:3000, Sigma), mouse anti-Myc clone 9E10 (1:500, Santa Cruz Biotechnology), rabbit anti-Cka (1:5000, kind gift from W.

Du), guinea pig anti-Mob4 (1:5000, kind gift from T. Littleton), rabbit anti-pMST1T183/pMST2T180 (1:500, CST), guinea pig anti-Hippo

(1:5000, kind gift from G. Halder) and rat anti-HA clone 3F10 (1:3000, Roche).

QUANTIFICATION AND STATISTICAL ANALYSIS

Transcriptome data: all genes with raw signal intensity values below 150 were removed from the analysis, generating a matrix con-

taining 2455 genes. Quantile normalization (Bolstad et al., 2003) across all samples was performed using R/Bioconductor limma

package (Ritchie et al., 2015). Remaining genes were analyzed with limma, by fitting a linear model. Adjusting p-values with False

Discovery Rate (FDR) did not reach statistical significance. Instead, a limma moderated paired t test was employed. Targets with

expression fold changeswith associated p < 0.05 valueswere used for subsequent analysis, including expression validation. Expres-

sion of selected candidate genes assayed by RT-qPCR was quantified using the Livak method (Livak and Schmittgen, 2001).

Other statistics were performed using SigmaPlot Version 12.5 (Systat software): Shapiro-Wilk and equal variance tests used to

evaluate normality; Student0s t test applied when data fitted a normal distribution; Wilcoxon rank-sum test used for non-parametric

data; p < 0.05 considered significant. Data from Drosophila in vivo assays were obtained from a minimum of two biological replica

sets; sample numbers are indicated in figure legends. Cell culture/ biochemistry results derive from a minimum of three independent

assays. Histograms show mean ± standard error of the mean. Boxplots represent 25th and 75th percentiles, black line indicates

median, red line specifies mean, whiskers indicate 10th and 90th percentiles.

DATA AND SOFTWARE AVAILABILITY

Processed transcriptome data is shown in Table S1. Raw transcriptome data has been deposited in the Gene Expression Onmibus

(GEO) public database under ID code GSE128646.
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Supplemental Figures and Figure Text 
 

 
Figure S1, related to Figure 1. Tissue expression enrichment and orthology 
conservation of identified targets in transcriptome analysis. (A) Heatmap 

depicting identified larval and adult tissue-specific gene sets enriched by a minimum 

of 2-fold to expression in whole fly. gl: gland. Sperm: spermatheca; acc: accessory; 

TAG: thoracicoabdominal ganglion. See also Table S2. (B) Number of human and 

mouse orthologues (single best matches) of identified genes grouped by orthology 

score (DIOPT) (Hu, et al., 2011). See also Table S1. (C) Number of identified genes 

with mouse orthologues (single best matches) reported upregulated in quiescent or 

proliferating mouse embryonic or adult NSCs, skeletal muscle satellite stem cells 

(MuSCs) and hematopoietic stem cells (HSC). DIOPT score groups indicated. See 

also Table S3. The data used for the above assays comprise targets identified in our 

transcriptome analysis as up- or downregulated in reactivating (R) versus quiescent 

(Q) NSCs (limma moderated t-test, p<0.05). 

 

 

 

 

 

 

 



 
Figure S2, related to Figure 2. NSC reactivation defects upon Mob4 loss or 
inhibition. (A-G) NSC enlargement and division is impaired in mob4 mutant ventral 

nerve cords (VNCs). VNCs of WT (A, 1h ALH; B, 4h ALH; C, 24h ALH) and mob4∆L3 

(D, 1h ALH; E, 4h ALH; F, 24h ALH). NSCs in red (Dpn), cell membranes in green 

(Dlg), divisions in blue (pH3). Yellow and white arrowheads indicate quiescent and 

reactivated NSC examples, respectively. Scale bar: 10µm. Anterior up. (G) 

Quantification of NSC diameters (1h ALH: WT n=316 NSCs, 7 VNCs; mob4∆L3 

n=171 NSCs, 5 VNCs. 4h ALH: WT n=700 NSCs, 6 VNCs; mob4∆L3 n=331 NSCs, 5 

VNCs. 24h ALH: WT n=584 NSCs, 5 VNCs; mob4∆L3 n=88 NSCs, 8 VNCs) and 

proliferation (1h ALH: WT n=12 VNCs; mob4∆L3 n=12 VNCs. 4h ALH: WT n=12 

VNCs; mob4∆L3 n=12 VNCs. 24h ALH: WT n=12 VNCs; mob4∆L3 n=12 VNCs). (H-J) 

NSCs in mob4 mutant larval brains do not enter S-phase, except the MbNSCs. WT 

(H) and mob4∆L3 (I) CNSs at 24hph Edu-labelled (red). (J) Quantification of Edu+ 



voxels from CNSs, normalized to controls (WT n=7 CNSs, mob4∆L3 n=8 CNSs; error 

bars: s.e.m). Scale bar: 50µm. (K-M) NSC-specific expression of mob4-RNAi results 

in a small reduction in cell size and decreased number of NSCs in division. Brain 

lobes (BLs) of control (K, insc-gal4>CD8-GFP) and mob4-RNAi expressing brains (L, 

insc-gal4> CD8-GFP, mob4RNAi) at 18h ALH. NSCs in green (CD8-GFP, GFP) and 

red (Dpn), divisions in blue (pH3). Arrowheads: NSC examples. Anterior up. Scale 

bar: 10µm. (M) Quantification of NSC diameters (insc-gal4>CD8-GFP, n=684 NSCs, 

9 BLs, 9 brains; insc-gal4> CD8-GFP, mob4RNAi n=614 NSCs, 8 BLs, 8 brains) and 

divisions (insc-gal4>CD8-GFP, n=46 BLs, 23 brains; insc-gal4> CD8-GFP, mob4RNAi 

n=28 BLs, 14 brains). Wilcoxon rank sum tests, ***p<0.001, p>0.05: non-significant 

(ns). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Figure S3, related to Figure 3. Mob4 overexpression does not lead to NSC 
overproliferation nor induces NSC reactivation under nutrition restriction. 
NSC-specific mob4 overexpression does not affect NSC proliferation in late larval 

brains (A-C) nor promotes reactivation of NSCs in larvae deprived of amino acids 

(sucrose-only diet; D-F). Brain lobes (BLs) of control (A, D, insc-gal4>CD8-GFP) and 

mob4 overexpressing brains (B, E, insc-gal4>CD8-GFP, mob4) at 94h (A, B) and 

18h ALH (D, E). NSCs in green (GFP) and red (Dpn), divisions in blue (pH3). 

Dashed line: central brain region. White arrowheads: dividing NSC examples. Yellow 

arrowheads: quiescent NSC examples. Dashed circles: MbNSCs. Scale bar: 10µm. 

Anterior up. (C) Quantification of NSC divisions (94h ALH: insc-gal4>CD8-GFP n=10 

BLs, 10 brains; insc-gal4>CD8-GFP, mob4 n=10 BLs, 10 brains). (F) Quantification 

of NSC diameters (18h ALH: insc-gal4>CD8-GFP n=200 NSCs, 6 BLs, 5 brains; 

insc-gal4>CD8-GFP, mob4 n=376 NSCs, 5 BLs, 5 brains) and divisions (18h ALH: 

insc-gal4>CD8-GFP n=22 BLs, 16 brains; insc-gal4>CD8-GFP, mob4 n=30 BLs, 16 

brains). Wilcoxon rank sum tests, p>0.05: non-significant (ns). 

 
 
 
 
 
 
 



 
Figure S4, related to Figure 5. Cka inhibition delays NSC growth and division. 
(A-C) Cka is upregulated in reactivating (R) compared with quiescent (Q) NSCs. 

Examples of quiescent (small; A) and reactivating (enlarged, B) NSCs in 17h ALH 

brains (VNC thoracic region) labelled with grh-Gal4 driving CD8-GFP (GFP, green), 

Cka (red) and Dpn (blue). Cka channel also shown in monochrome. Dashed lines: 

cell bodies. (C) Cka protein quantification in reactivating normalised to quiescent 

NSCs (n= 20 reactivating NSCs and n=20 quiescent NSCs, 20 BLs, 10 brains; error 

bars: s.e.m.; Wilcoxon rank sum test, *p<0.05). (D-F) NSC-specific expression of 

cka-RNAi results in reduced cell size and decreased number of NSCs in division. 

Brain lobes (BLs) of control (D, insc-gal4>CD8-GFP) and cka-RNAi expressing 

brains (E, insc-gal4> CD8-GFP, ckaRNAi) at 18h ALH. NSCs in green (CD8-GFP, 

GFP) and red (Dpn), divisions in blue (pH3). Arrowheads: NSC examples. Anterior 

up. Scale bar: 10µm. (F) Quantification of NSC diameters (insc-gal4>CD8-GFP, 

n=584 NSCs, 8 BLs, 4 brains; insc-gal4> CD8-GFP, ckaRNAi n=658 NSCs, 8 BLs, 4 

brains) and divisions (insc-gal4>CD8-GFP, n=17 BLs, 9 brains; insc-gal4> CD8-

GFP, ckaRNAi n=20 BLs, 10 brains). Wilcoxon rank sum tests, ***p<0.001. 
 
 
 
 
 
 
 
 



 
Figure S5, related to Figure 5. Inhibition of Mob4 and Cka increase Hippo 
phosphorylation. (A) Efficiency of mob4 and cka RNAi-mediated depletions used in 

Drosophila S2R+ assays. dsRNAs targeting mob4 or cka, but not DsRed control, 

lead to depletion of Mob4 and Cka proteins. Lysates analysed with indicated 

antibodies. b-Actin: loading control. Quantification of Mob4 and Cka signal intensities 

normalised to control (DsRed RNAi) levels (lower panel; n=3 independent assays; 

error bars: s.e.m; Student’s t-tests, ***p<0.001). (B) Mob4/ Cka depletion leads to 

increased levels of activated (phosphorylated) Hippo (pHippo) in S2R+ cells, 

consistent with published studies (Zheng, et al., 2017; Liu, et al., 2016; Ribeiro, et 

al., 2010). Drosophila S2R+ cells treated with dsRNAs targeting mob4 and cka or 

control DsRed, as well as in the presence of vehicle (0.0005% DMSO) or Okadaic 

acid (OA) as a positive control for hippo phosphorylation. Lysates analysed by 

western-blot with indicated antibodies. b-Actin: loading control. Note the total Hippo 

band mobility shift due to hyperphosphorylation in OA-treated samples. 

Quantification of pHippo levels shown as mean of the ratio between pHippo and total 

Hippo signal intensities relative to control (DsRed RNAi) levels (lower panel; n=3 

independent assays; error bars: s.e.m; Student’s t-tests, p*<0.05, p>0.05: non-

significant, ns).  
 
 
 
 
 



 
Figure S6, related to Figure 5. Inhibition of Mob4 and Cka does not affect Akt 
phosphorylation nor the association of PP2A/Mts to Akt. (A, B) Depletion of 

mob4 and cka has no effect in the levels of activated (phosphorylated) Akt (pAktS505) 

in S2R+ cells (A) with or without stimulation with Insulin (B). (A) Drosophila S2R+ 

cells treated with dsRNAs targeting mob4 and cka or control DsRed, as well as in the 

presence of Okadaic acid (OA) as a positive control for Akt phosphorylation or 

vehicle (V). Lysates analysed with indicated antibodies. b-Actin: loading control. 

Quantification of pAkt levels shown as mean of the ratio between pAkt and total Akt 

signal intensities relative to control (DsRed RNAi) levels (lower panel; n=3 

independent assays). (B) RNAi-mediated depletion of mob4 and cka, or control 

DsRed, in S2R+ cells treated with Insulin or vehicle. Lysates analysed by western-

blot with indicated antibodies. b-Actin: loading control. Quantification of pAkt levels 

shown as mean of pAkt/ Akt signal intensity ratios relative to control (DsRed RNAi) 

levels (right panel; n=3 independent assays). (C) Co-IP assays using S2R+ cells 



expressing Myc-Akt and HA-Mts, in addition to RNAi against mob4 and cka or 

control DsRed. Lysates and HA-purified immunoprecipitates analysed by western-

blot with indicated antibodies. Negative control co-IP performed using rat IgG instead 

of rat anti-HA antibody. Quantification of relative binding of Myc-Akt to HA-Mts 

shown as mean of the ratio between Myc-Akt and HA-Mts signal intensities relative 

to control (DsRed RNAi) levels (lower panel; n=3 independent assays). Error bars: 

s.e.m. Wilcoxon rank-sum tests, p>0.05: non-significant (ns).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental Table 
 

Gene (Symbol) Forward Primer (5’®3’) Reverse Primer (5’®3’) Source 
ase CACCTACCAACTGCTGACG GCTGCTGCTGCTAATGTTG This paper 
dpn CGCTATGTAAGCCAAATGGATGG CTATTGGCACACTGGTTAAGATGG (Berger, et al., 

2012) 
rheb TGAGGTGGTGAAGATCATATACGAA GCCAGCTTCTTGCCTTCCT (Zitserman, et al., 

2012) 
cka GGAGACGGAAGGCGTCAT TCTCGTCGTCGGACATC This paper 
CG10903 GAGTCTCGGTTGATTTTGGACA TCTCCCAGAATGACATCCCCA This paper 
asf1 GGGCGACACATCTTTGTCTTC GCAGGTAAGCAGAACAATGGTAA This paper 
Gbeta13F TGGTGGCTATCTATCGTGCTG GCCCAAAAACGAGGTTACCTG This paper 
phax ATGATGGAACTGCACGCAAAT CAGGTGGTAAGGGGACTGG This paper 
NiPp1 ATGGCTAACAGCTACGACATACC TGTTGCGACCAAATAGATAGCAT This paper 
mob4 TGGGCACGATCAGATTCTCC CATCTTCTCGCACGCCTACT This paper 
crc GAAAACTGGGAGGATACGTGG GAGAGGTCTGAATGCCTTTGTC This paper 
bet3 ATGTCACGACAAGCCTCTCG GAGTGCTCCGTAGGTGAGT This paper 
ed GATGAGCTCCTGTTCTCCGG GTTGGAATCGCAATGGTCGG This paper 
pdp1 AATCCCCATTACCAGCGCAA GGCATTCCCATTCGATCCCT This paper 
how AACTTTGTCGGTCGCATTTT CGTCCTCCTTCTTCTTGTCG This paper 
p120ctn AACATGGACCTTTCATTGACGC ATATCCTGCTGCCGAAAATTGA This paper 
Rip11 TGGAGTCCGACGCACTGTA CAATGGTGACGAAGCAGTTGT This paper 
l(2)35Df CATCGAAAGAAGCTACATCCTCC GTGGGTTCGTCATCTGCATTAT This paper 
nito ACAAGAAGTTTGGCGATTTTAGC CTTCAGGCGTTCGGAAGCAA This paper 
mts TCCAGTTCCATAAGAGCCGC CACGATCGCAATGTGGTCAC This paper 
rp49 (calibrator) GCTAAGCTGTCGCACAAATG GTTCGATCCGTAACCGATGT (Kohyama-

Koganeya, et al., 
2008) 

	
Table S4, related to STAR Methods. Primers used for real-time quantitative 
PCR assays.  
 
	


