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Abstract: Diatoms are so important in ocean food-webs that any human induced changes in their
abundance could have major effects on the ecology of our seas. The large chain-forming diatom
Biddulphia biddulphiana greatly increases in abundance as pCO2 increases along natural seawater CO2

gradients in the north Pacific Ocean. In areas with reference levels of pCO2, it was hard to find, but as
seawater carbon dioxide levels rose, it replaced seaweeds and became the main habitat-forming
species on the seabed. This diatom algal turf supported a marine invertebrate community that
was much less diverse and completely differed from the benthic communities found at present-day
levels of pCO2. Seawater CO2 enrichment stimulated the growth and photosynthetic efficiency of
benthic diatoms, but reduced the abundance of calcified grazers such as gastropods and sea urchins.
These observations suggest that ocean acidification will shift photic zone community composition
so that coastal food-web structure and ecosystem function are homogenised, simplified, and more
strongly affected by seasonal algal blooms.

Keywords: ocean acidification; benthic diatoms; ecological shift; CO2 fertilisation; turf algae;
habitat-forming; algal blooms; marine food-webs

1. Introduction

Diatoms are dominant marine primary producers, accounting for ~40% of ocean primary
production [1]. Ocean acidification, the alteration of carbonate chemistry due to increased anthropogenic
carbon dioxide, has negative impacts on many marine calcifying organisms [2], but the possible effects
of this rapid change in surface ocean chemistry is still intriguing world experts. There is a growing
consensus on how ocean acidification will affect marine phytoplankton [3,4]. Research into the response
of diatoms to ocean acidification has mostly focussed on their growth, productivity, and community
composition by using mesocosms or flask culture experiments [5], with predominantly positive
effects observed. Projections of the effects of ocean acidification on diatoms suggest that increased
availability of CO2 as a substrate for photosynthesis will benefit these algae where sufficient nutrients
are available [6], and that these algae may indirectly benefit through reduced grazing pressure [7].
Changes in the ecological balance of life in our world ocean due to ocean acidification is a key focus of
current research as it underpins the ‘blue economy’ [8].

Diatoms are strong competitors for ocean resources when sufficient light and nutrients are present;
they often dominate early stages of phytoplankton community succession in coastal ecosystems [9].
Under present-day conditions, large diatoms are often restricted by diffusion gradients as they have
lower surface-to-volume ratios than smaller species [10]. In incubation experiments, large centric
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diatom species benefit from CO2 enrichment and outcompete smaller diatoms [11,12]. A shift to larger
diatoms may increase the trophic transfer of energy to marine animals by shortening food chains [13],
and promote production in higher trophic levels. Carbon dioxide-driven shifts towards larger diatoms
has been observed in ocean acidification experiments using natural communities [7,11,12,14–17],
suggesting that larger diatoms may become favoured in the future [5].

Experiments using natural communities of marine organisms are useful when projecting the
impacts of ocean acidification as these help assess cascading effects through trophic levels that can
only be assessed when interactions and competition among species are considered [18]. Studies
investigating the effects of ocean acidification on natural diatom communities have mostly focussed on
plankton (review: [5]), typically performed using closed containers [19]. In recent years, alternative
approaches have increasingly been used including in situ and long-term mesocosm experiments
(e.g., [16,20]) and the use of natural gradients in pCO2. Volcanic seeps can reveal the long-term
ecological responses of communities to acidification, while still retaining natural pH variability and
intact ecological interactions. Observations along gradients of carbonate chemistry have revealed both
winners and losers in acidified conditions [21–23]. For diatoms, CO2 seep research on planktonic species
is lacking, since pelagic communities are advected with currents. However, studies at CO2 seeps have
found increases in the photosynthetic standing crop of both epilithic biofilms and microphytobenthic
assemblages [24,25].

Here, we assess the effect of ocean acidification on diatoms and food-webs. In the context of
ecosystem services on which our society relies, it is important to understand how ocean acidification
will affect the marine ecosystem structure and function. In the present study, the diatom Biddulphia
biddulphiana (J.E. Smith) Boyer became more abundant as CO2 levels increased with increasing proximity
to a volcanic seep, and at higher levels of dissolved carbon dioxide it was the main habitat-forming
species. We investigated how ocean acidification influenced the abundance, photophysiology,
and habitat-provisioning of this large diatom.

2. Materials and Methods

2.1. Study Site, Carbonate Chemistry, and Nutrients

We assessed the response of the diatom Biddulphia biddulphiana along a natural gradient of pCO2

at a volcanic seep off Shikine Island, Japan (34◦19′9′′ N, 139◦12′18′′ E), which we surveyed seasonally
through scuba diving from 2015–2018 [22,26]. Shallow sublittoral rocky substrata were spatially
dominated by a mix of canopy-forming macroalgae and zooxanthellate scleractinian corals at our
reference site and all around this island, except where pCO2 was higher due to seeps. In these high
pCO2 areas, there were algal mats previously described as ‘turf algae’ [22]. We used five sites along
the pCO2 gradient: ‘Reference’ (mean pCO2: 410 ± 73), which was outside the influence of the CO2

seep; ‘RCP 2.6′ (mean pCO2: 493 ± 158); ‘RCP 4.5′ (mean pCO2: 765 ± 159); ‘RCP 6.0′ (mean pCO2:
971 ± 258); and ‘>RCP 8.5′ (mean pCO2: 1803 ± 1287, Table 1). The sites were termed ‘RCP 2.6′,
‘RCP 4.5′, and ‘RCP 6.0′ in reference to their equivalent Intergovernmental Panel on Climate Change
Representative Concentration Pathway (RCP) scenarios [27]. Our >RCP 8.5 site was used to assess the
abundance and physiology of diatoms to ocean acidification beyond predicted levels due to human
CO2 emissions. The areas used in this study had the same temperature, dissolved oxygen, total
alkalinity, and depth [22,28].
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Table 1. Carbonate chemistry of the reference, RCP 2.6, RCP 4.5, RCP 6.0, and >RCP 8.5 sites at Shikine
Island, Japan.

Station pHT
Temp
(◦C)

Salinity
(psu)

AT
(µmol kg−1)

pCO2
(µatm)

DIC
(µmol kg−1)

HCO3−

(µmol kg−1)
CO32−

(µmol kg−1)
Ωcalcite Ωaragonite

Reference
8.041 23.086 34.129 2281.9 409.965 2007.341 1798.117 196.978 4.76 3.115
0.067 0.603 0.741 6.80 73.383 38.944 61.612 24.859 0.596 0.392

RCP 2.6
7.983 21.437 35.056 2282.93 493.011 2044.255 1855.972 173.103 4.144 2.703
0.119 1.273 0.125 6.57 158.004 53 81.439 32.771 0.781 0.501

RCP 4.5
7.809 22.701 34.455 2283.32 765.545 2122.447 1973.165 126.296 3.043 1.99
0.075 0.919 0.132 18.53 158.892 27.476 38.887 15.755 0.378 0.244

RCP 6.0
7.719 22.896 34.91 2271.84 970.706 2144.537 2008.7 106.928 2.568 1.681
0.095 0.937 0.211 3.03 257.68 33.169 43.845 17.716 0.423 0.274

>RCP 8.5
7.529 22.072 34.723 2277.62 1803.047 2218.975 2088.23 75.92 1.823 1.19
0.234 1.212 0.742 20.50 1287.448 82.982 82.43 33.368 0.799 0.519

pHT, temperature, salinity (n = 336), and total alkalinity (AT, n = 4) are measured values. Seawater pCO2, dissolved
inorganic carbon (DIC), bicarbonate (HCO3

−), carbonate (CO3
2−), saturation states for calcite (Ωcalcite), and

aragonite (Ωaragonite) are values calculated using the carbonate chemistry system analysis program CO2SYS [29].
Values are presented as mean ± S.D. RCP refers to the representative concentration pathway.

Temperature, salinity, and pHT were measured using multisensors (WQ-22C, TOA-DKK, Japan)
deployed simultaneously at each site for one week in June 2019 (n = 336, with measurements taken
every 30 min). Each meter was calibrated to pH total scale with a seawater standard and certified
reference material (oceanic carbon dioxide quality control; obtained from the Andrew G. Dickson
laboratory (Scripps Institution of Oceanography). Total alkalinity samples were collected at each site
(n = 4), immediately filtered at 0.45 µm using disposable cellulose acetate filters (Dismic, Advantech,
Japan), and stored at room temperature in the dark until measurement. Total alkalinity was measured
using an auto-titrator (916 Ti-Touch, Metrohm, Switzerland). Carbonate chemistry was calculated
using the carbonate chemistry system analysis program CO2SYS [29] by using the measured values of
pHT, temperature, salinity, and total alkalinity. Disassociation constants from [30], as adjusted by [31],
KSO4 [32], and total borate concentrations from [33] were used.

For nutrients, three water samples were collected from each site (using 125 mL Nalgene
polycarbonate bottles; Thermo Scientific, USA), and nutrients were analysed using a continuous
segmented flow nutrients analyser (QuAAtro39 AutoAnalyzer, Seal Analytical) following standard
protocols [34]. Redfield ratios were calculated as the ratio (in moles) of the carbon (C), silicate (Si),
and nitrogen (N) to that of the phosphate (P). Carbon values were based on dissolved inorganic
carbon measurements.

2.2. Field Survey

Percentage cover of B. biddulphiana was assessed using haphazardly distributed photoquadrats
(50 × 50 cm, n = 20–25 per site) on 17 April 2019 at a 5–7 m depth. In order to estimate the mean
percentage cover, each photoquadrat was analysed using ImageJ [35] by overlaying 64 points on a grid,
and recording the presence or absence of B. biddulphiana at each point.

Between 2017–2019, any observations of fish feeding on or interacting with the diatom mat were
noted and when possible, the fish species feeding behaviour was qualitatively recorded by video (TG-5,
Olympus, Japan).

2.3. Photophysiology and Production

A layer of B. biddulphiana (collected from their respective sites by hand in May 2019 from a depth
of 5–7 m) was attached to 25 mm GFF filters (Whatmann, Pittsburgh, PA, USA) by briefly using a
vacuum pump and filter holder in order to achieve a relatively homogenous and flat surface of diatoms.
Three diatom-covered filters were prepared for each site and held in filtered seawater for 30 min for
dark acclimation. The maximal quantum yield of electron transport yield (Fv/Fm), maximum light
utilisation efficiency (α), and maximum absolute electron transport rate (ETRmax) were measured for
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each diatom-covered filter using a Junior-PAM (Walz, Germany). The settings used for the PAM were
measuring intensity (6), gain (1), saturation intensity (10), and signal width (0.8).

Diatom net oxygen production and respiration were measured in sealed 45 mL glass containers
using four fibre-optic oxygen sensors (Firesting Pyroscience, Aachen, Germany) under light and dark
conditions, respectively. Measurements were carried out over a 10 min period with O2 measurements
being carried out continuously, with a 30 min period in between light and dark measurements.
The assumption was made that respiration rate in the light was at a similar rate to the rate in the
dark. Diatoms were placed in filtered seawater (0.45 µm cellulose acetate filter), which was set to the
appropriate pH/CO2 via the bubbling of CO2. Measurements were always carried out with one blank
container to account for microbial respiration. Diatom biomass was standardised using Chlorophyll
a, which was extracted with DMF (N,N’-dimethylformamide). After storage for one day in the dark
at −20 ◦C, extinction coefficients were measured at three wavelengths (663.8, 646.8, and 750 nm),
according to [36]. Analysis of the net oxygen production and respiration was performed using the
‘RespR’ package in R [37].

2.4. Associated Fauna

Associated fauna was collected using a scuba diver operated airlift to dislodge and lift samples
into a 400 µm mesh net for later analysis. Collections were carried out at four plots (25 cm diameter
circular quadrat) in the reference and RCP 6.0 sites during May 2016. The aim of sampling the
associated fauna was to assess whether the diatom mat in the elevated pCO2 conditions supported a
similar faunal community relative to a representative equivalent in the reference pCO2 (turf algae).
Subsequently, random stratified sampling was used with turf algae being sampled in the reference
pCO2 site, and diatoms in the elevated pCO2 site. Samples were fixed in 70% ethanol prior to sorting
and identification. Samples were examined under a dissecting microscope, and organisms were
separated from the turf/diatom. Fauna were identified to the highest taxonomic resolution possible,
and abundance counted.

2.5. Statistical Analysis

All statistical analysis was performed in R (v 3.6.0) [38]. For abundance, the data did not conform
to normality (QQ) or homogeneity of variance (Bartlett), and so a non-parametric (Kruskal–Wallis) test
was used for assessing differences. For measurements of photophysiology, productivity, and faunal
species richness, all data conformed to both normality (QQ) and homogeneity of variance (Bartlett).
For PERMANOVA, the data conformed to the test for multivariate homogeneity of group dispersion,
assessed used ‘betadisper’ [39].

3. Results and Discussion

The marine centric diatom Biddulphia biddulphiana (Figure 1A) is widespread, with records off North
and South America, Western Europe, Australasia [40], and now Japan. It is often planktonic [41], but
can use extracellular polymeric substances [42] to attach to benthic substrata. We found that in high CO2

conditions it consistently forms mats that are up to several centimetres thick (Figure 1B,C). Monitoring
along a natural carbon dioxide gradient off Shikine Island over the past five years (2015–2019) has
shown that in areas with high CO2, B. biddulphiana mats begin to appear in March–April, reaching their
peak in June at depths of 6–8 m below Chart Datum (Figure 2C), and that each year, these mats last
until the end of the summer (~late August–September) before being removed by strong wave action
during typhoons. A similar bloom of B. biddulphiana was reported in tropical coral reefs in Mexico
(within the Gulf of California), which formed turf-like mats that covered nearby corals [43].
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shaded and separated to highlight as it does not represent an end-of-the-century projection. Error 
bars are standard errors. 
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abundance greatly increased with increasing pCO2 (ANOVA: F4,114 = 113.5, p < 0.001; Figure 1D). Meta-
barcoding of biofilms from a previous study revealed that B. biddulphiana were present in reference 
conditions, but not at high enough abundances for colonies to be visible with the naked eye [44] 
(May–June 2017, 6–8 m depth). In areas enriched with pCO2, B. biddulphiana formed turf-like algal 
mats (1–10 cm in length, averaging approximately 5 cm in height), which dominated the seabed 
community (Figure 1). By reaching such a large biomass, and completely covering the seabed, the 
diatom mat provided a habitat for associated benthos and replaced the canopy forming macroalgae 
and scleractinian corals that dominated the reference CO2 areas [22]. This suggests that the diatoms 
benefit from additional dissolved inorganic carbon in the water column and that this allows them to 
become the main habitat-forming species. Similar boosts in the abundance of diatoms due to elevated 
CO2 have been shown previously [7,24,25], although this is the first study to show such a large 
biomass, with previous studies focussing on the microphytobenthos or phytoplankton. 

Diatoms use silicic acid to form their silica frustules. The formation of this silica frustule is a 
requirement for diatom growth, leading to a strong requirement on silicic acid for growth. In 
addition, this biogenic silica plays a key role in proton-buffering, benefitting the diatom by facilitating 
the enzymatic conversion of bicarbonate into CO2 [45]. Based on the Redfield–Brzezinski ratio of 106 
(C):15 (Si):16 (N):1 (P) [46], which highlight the typical macronutrient requirements for diatoms, the 
growth of the diatoms in our site will have been mostly limited by N, and then by P, with Si levels 
non-limiting across all sites (Table 2 and Figure S1). Since the Redfield–Brzezinski ratio represents a 
canonical ratio of macronutrient uptake, it is probable that B. biddulphiana will have species-specific 
requirements (depending on its Ks, or the half-saturation constant), which could differ from the 

Figure 1. (A) Chain-forming B. biddulphiana diatoms, (B,C) these diatoms formed a turf-life mat at our
RCP 6.0 sites. (D) Percentage cover of B. biddulphiana. NOTE: (i) The ‘X’ in panel (D) highlights that the
survey was carried out, but zero percentage cover was observed. (ii) The >RCP 8.5 column is shaded
and separated to highlight as it does not represent an end-of-the-century projection. Error bars are
standard errors.

Benthic diatom mats were never seen by divers during hundreds of surveys at a depth of 0–10 m
from 2015–2019 in reference pCO2 conditions. Every year in this five-year monitoring period their
abundance greatly increased with increasing pCO2 (ANOVA: F4,114 = 113.5, p < 0.001; Figure 1D).
Meta-barcoding of biofilms from a previous study revealed that B. biddulphiana were present in reference
conditions, but not at high enough abundances for colonies to be visible with the naked eye [44]
(May–June 2017, 6–8 m depth). In areas enriched with pCO2, B. biddulphiana formed turf-like algal
mats (1–10 cm in length, averaging approximately 5 cm in height), which dominated the seabed
community (Figure 1). By reaching such a large biomass, and completely covering the seabed, the
diatom mat provided a habitat for associated benthos and replaced the canopy forming macroalgae
and scleractinian corals that dominated the reference CO2 areas [22]. This suggests that the diatoms
benefit from additional dissolved inorganic carbon in the water column and that this allows them to
become the main habitat-forming species. Similar boosts in the abundance of diatoms due to elevated
CO2 have been shown previously [7,24,25], although this is the first study to show such a large biomass,
with previous studies focussing on the microphytobenthos or phytoplankton.
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(i) Panel (A) scale starts from 0.6; and (ii) the >RCP 8.5 column is shaded and separated to highlight 
as it does not represent an end-of-the-century projection. Error bars are standard error. 
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and zooxanthellate scleractinian corals, providing high levels of biodiversity and structural 
complexity [22]. This shifted to a diatom dominated algal turf community and so we wanted to assess 
how much associated biodiversity there was in the diatom-based benthic habitat when compared to 
the reference conditions. The expectation, based on other studies, was that by benefitting the weed-
like growth of just one algal species, this would reduce biodiversity and decrease ecosystem function, 
secondary productivity, and stability [59–61]. The mobile invertebrate communities that were 
supported by the diatom mat significantly differed from the communities found in seaweed habitats 
at reference levels of pCO2 (PERMANOVA: F1,7 = 6.59, p < 0.05; Figures 3A and S2). They had lower 
species richness, although this was not statistically significant at our level of sample replication (F1,6 
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Figure 2. Photophysiology (A–C), and oxygen production and respiration (D–F) of the diatom B.
biddulphiana under RCP 2.6, RCP 4.5, RCP 6.0, and >RCP 8.5 conditions. (A) Maximum quantum yield,
Fv/Fm; (B) maximum light utilisation efficiency, α; and (C) maximum absolute electron transport rate,
ETRmax. (D) Gross oxygen production; (E) net oxygen production; and (F) respiration rate. NOTE: (i)
Panel (A) scale starts from 0.6; and (ii) the >RCP 8.5 column is shaded and separated to highlight as it
does not represent an end-of-the-century projection. Error bars are standard error.

Diatoms use silicic acid to form their silica frustules. The formation of this silica frustule is a
requirement for diatom growth, leading to a strong requirement on silicic acid for growth. In addition,
this biogenic silica plays a key role in proton-buffering, benefitting the diatom by facilitating the
enzymatic conversion of bicarbonate into CO2 [45]. Based on the Redfield–Brzezinski ratio of 106 (C):15
(Si):16 (N):1 (P) [46], which highlight the typical macronutrient requirements for diatoms, the growth
of the diatoms in our site will have been mostly limited by N, and then by P, with Si levels non-limiting
across all sites (Table 2 and Figure S1). Since the Redfield–Brzezinski ratio represents a canonical ratio
of macronutrient uptake, it is probable that B. biddulphiana will have species-specific requirements
(depending on its Ks, or the half-saturation constant), which could differ from the Redfield–Brzezinski
ratio. Studies have not previously established the nutrient uptake kinetic constants for B. biddulphiana,
highlighting the need for further research. Both nitrate and silicate are considered to be required in
broadly equimolar amounts for many diatom species [47], and previous studies have found that the
nitrate uptake kinetic constants (Ks) for Biddulphia aurita [48] are 2.12 ± 0.33 SE µM (strain STX-88 at
25 ◦C) and 3.19 ± 0.52 SE µM (strain B1 at 25 ◦C), and that for Biddulphia sinensis [49] is 0.74 ± 0.47 SE µM.
Constants for B. biddulphiana in a similar range would therefore also suggest that nitrate concentrations
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at our reference sites (2.58 µM NO3
–
± 0.22 SD, n = 3) and elevated pCO2 sites (2.78 µM NO3

–
± 0.04

SD, n = 3) remain limited across all sites. As well as influencing growth and cell maintenance, it is
thought that above a threshold of 2 µM, SiO4 diatoms can become dominant within phytoplankton
communities [50]. Silicate concentrations were replete at our reference sites (4.62 µM SiO4 ± 0.61 SD,
n = 3) and elevated pCO2 sites (7.79 µM SiO4 ± 0.08 SD, n = 3) in the RCP 6.0 conditions), so a lack of
silicate likely does not explain the lack of benthic diatom blooms at the reference site and surrounding
area. Clearly, diatom community responses will not only be dictated by direct physiological responses
to CO2 and macronutrients [5]; they will be indirectly affected by acidification-driven impacts on
grazers. Given the high grazing pressure within our reference pCO2 site [22,51], predominantly
associated with both herbivorous fish and sea urchins, it is possible that B. biddulphiana is being
excluded. Our results strongly indicate that CO2 enrichment stimulates diatom blooms and when
combined with reductions in grazing pressure, allows them to become competitively dominant.

Table 2. Nutrient ratios (C:Si:N:P) of the reference pCO2, RCP 2.6, RCP 4.5, RCP 6.0, and >RCP 8.5
conditions as well as the established Redfield–Brzezinski ratio for comparison.

Site C Si N P

Reference 9050 21 13 1
RCP 2.6 10,564 39 15 1
RCP 4.5 10,157 37 14 1
RCP 6.0 11,049 40 15 1
>RCP 8.5 11,469 128 12 1

Redfield–Brzezinski 106 15 16 1

C: carbon, Si: Silicate, N: Nitrogen, P: Phosphorus.

Marine diatoms are dominant marine primary producers [1] and have adapted to modern-day
levels of CO2 by operating a carbon concentrating mechanism (CCM), which allows them to elevate
the concentration of CO2 at the site of fixation by RubisCO [6]. When levels of seawater CO2 increase,
this can stimulate diatom growth through increased photosynthesis and lower energy use though
downregulation of their CCMs [52,53]. In our study, enriched CO2 resulted in significant increases
in photosynthetic efficiency, in terms of the maximum quantum yield (Fv/Fm: F3,8 = 4.17, p < 0.05;
Figure 2A), maximum light utilisation efficiency (α: F3,8 = 4.18, p < 0.05; Figure 2B) as well as maximum
absolute electron transport rate (ETRmax: F3,8 = 7.34, p < 0.05; Figure 2C). Similar increases in
the photosynthetic capacity of diatoms due to elevated CO2 have been previously reported [54–56].
When measuring oxygen production, the gross oxygen production did not show any significant
differences between the different sites (F3,8 = 0.65, p = 0.62; Figure 2D). Net oxygen production tended
to increase with rising CO2 (non-significantly, F3,8 = 1.08, p = 0.41; Figure 2E), and this appeared to be
driven by a tendency for the respiration rate to decrease under elevated levels of pCO2 (non-significantly,
F3,8 = 2.28, p = 0.16; Figure 2F). Decreases in respiratory metabolism may synergise with the increased
rate of C uptake due to increased photosynthesis, promote increased growth rates, and explain the
greatly boosted abundance in our site with increasing pCO2 levels. Although species-specific responses
are likely for diatoms, some generalisations have been suggested, for example, diatoms with lower
CCM efficiencies are more likely to show a pronounced response [57], and larger centric diatoms
are more likely to profit relative to smaller species [11,12]. This body of work aligns with our novel
observations of the effects of ocean acidification on B. biddulphiana.

Ocean acidification is expected to simplify communities as stress-intolerant species are lost, and
opportunistic species attain competitive dominance [22,58,59]. From a previous study at the site, in
reference conditions, a rocky reef habitat had a mixture of both canopy-forming fleshy macroalgae and
zooxanthellate scleractinian corals, providing high levels of biodiversity and structural complexity [22].
This shifted to a diatom dominated algal turf community and so we wanted to assess how much
associated biodiversity there was in the diatom-based benthic habitat when compared to the reference
conditions. The expectation, based on other studies, was that by benefitting the weed-like growth of
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just one algal species, this would reduce biodiversity and decrease ecosystem function, secondary
productivity, and stability [59–61]. The mobile invertebrate communities that were supported by the
diatom mat significantly differed from the communities found in seaweed habitats at reference levels
of pCO2 (PERMANOVA: F1,7 = 6.59, p < 0.05; Figure 3A and Figure S2). They had lower species
richness, although this was not statistically significant at our level of sample replication (F1,6 = 2.47,
p = 0.17; Figure 3B). Several taxa were absent in the elevated pCO2 diatom mat (Figure S2), notably
the calcified Decapoda and Mysida (Crustacea), Echinea (Echinodermata), and Lucinoida (Bivalvia).
Tanaids, which are less calcified, became the most abundant taxon comprising on average ~50% of
individuals in elevated pCO2 and only ~10% in the reference pCO2 turf algae (Figure S2), suggesting
competitive release (i.e., a decrease in their predation rates and/or increased availability of suitable
habitat) [58,62].
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Figure 3. (A) nMDS mobile invertebrates in the reference pCO2 turf-algae (dashed line, open circle) and
elevated pCO2 RCP 6.0 diatom mat (solid line, closed circle). (B) Species richness of the reference pCO2

turf-algae (open) and elevated pCO2 RCP 6.0 diatom mat (grey). Error bars are the standard error.

Diatoms form the basis of many food-webs, meaning that changes in their growth and/or
abundance will have important ramifications for the trophic transfer of energy. In our study sites, the
dominant grazers, in both the reference and elevated pCO2 conditions, were herbivorous fish (personal
observations). Despite herbivorous fishes being present, they did not graze down the boosted biomass
of the turf-like diatoms (also see [61]). Only two fish species were seen consuming B. biddulphiana,
based on ~120 h of in situ SCUBA diving observations, and these only ingested the diatom mat when
consuming the invertebrate prey contained within. These were the benthophagous filter-feeding
Cheilodactylus zonatus (Cuvier, 1830), which uses gill-rakers to capture small invertebrate prey ([63];
and see Figure 4 and Video S1) and the piscivorous and macroinvertivorous Pseudocaranx dentex (Bloch
and Schneider, 1801), which used ram filtering and suction-feeding on B. biddulphiana to consume its
prey ([64]; and see Video S2).

Carbon dioxide seeps are open systems that allow recruitment from outside, so while these
systems are useful in showing which marine organisms are resilient today, it does not show the
potential role that genetic adaptation will have over the coming years [22,60,65]. Regardless, the
results of this study can provide important insights into how marine ecosystems could be altered in
the near future. Increasing CO2 levels were accompanied by a shift from diverse benthic communities
of corals and macroalgae to a diatom turf community. Similar general patterns are seen at CO2 seeps in
tropical, sub-tropical, and temperate coastal systems with algal dominance, habitat degradation, and
loss of biodiversity in acidified areas [66]. Diatom and turf algal blooms have been observed at other
CO2 seeps, for example, at the temperate White Island CO2 seep in New Zealand where turf algae
outcompete kelp [61]. Communities composed of simplified, opportunistic species have less ecological
stability [67] since they can typically be succeeded by other competitively dominant species [68]. For a
simple early successional community to maintain dominance suggests competitive exclusion and/or
feedback loops that lock the system into a simplified state [68]. Overall, such shifts are likely to mean
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that the coastal food-web structure and ecosystem function will become homogenised, simplified, and
more strongly affected by seasonal algal blooms.
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Figure 4. (A) The benthophagous filter-feeding Cheilodactylus zonatus (Cuvier, 1830) that uses gill-raking
to capture small invertebrate prey from the diatom mat. (B) The yellow arrow indicates the remaining
diatom being pushed through the gills (see Video S1 for a video of this feeding approach).

In conclusion, the seabed habitat analysed here showed significant changes resulting from
CO2 enrichment. Elevated levels of CO2 stimulated the growth and photophysiology of a large
chain-forming species of diatom, enabling it to become the dominant benthic habitat-forming species.
This thick turf-like algal bloom was capable of supporting an abundant mobile faunal community,
although the supported community differed from a typical seaweed community found in the reference
pCO2 conditions. Such ecological shifts will have important impacts on food web structure and
ecosystem functioning.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-2818/11/12/0242/s1.
Figure S1: Nutrient concentrations (A–D) of the reference pCO2, RCP 2.6, RCP 4.5, RCP 6.0, and >RCP 8.5
conditions. (A) Nitrite (NO2), (B) Nitrate (NO3

−), (C) Phosphate (PO4), and (D) Silicate (SiO4). NOTE: The >RCP
8.5 column is shaded and separated to highlight as it does not represent an end-of-the-century projection. Error
bars are the standard error; Figure S2: Abundance (individuals per m2) of the mobile invertebrate fauna found in
the reference pCO2 macroalgal turf (white filled) and elevated pCO2 RCP 6.0 diatom mat (grey filled). Mobile
invertebrate fauna are divided at the taxonomic order level, with broader taxonomic phylum groupings indicated.
NOTE: Abundance is displayed using log scale. Error bars are the standard error. Video S1: Feeding behaviour of
the benthophagous filter-feeding Cheilodactylus zonatus, which uses gill-raking to capture small invertebrate prey
from the diatom mat; Video S2: Feeding behaviour of the piscivorous and macroinvertivorous Pseudocaranx dentex,
which employs ram filtering and suction-feeding on B. biddulphiana to consume its prey.
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