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Abstract

THIS thesis describes the Lattice Boltzmann Method (LBM) and its application to

single and multiphase flows. The LBM algorithm using Single Relaxation Time

(SRT) and Multi Relaxation Time (MRT) models are studied. In particular, a new MRT

multiphase model is developed, based upon the SRT multiphase model of Banari et al.

(2014). A unified LBM approach is used with separate formulations for the phase field,

the pressureless Naiver-Stokes (NS) equations and the correction of the pressureless

velocity field by solving a Poisson equation.

To validate the current model, computations for various Reynolds numbers (Re)

were performed to simulate 2D lid driven cavity flow. Results show excellent com-

parison with those in the literature. The multiphase model was verified with two fluid

Poiseuille flow, static and rising bubbles. The method was also used to simulate 2D sin-

gle and multiple mode Rayleigh-Taylor instability (RTI). A good comparison between

the present numerical results and those in the literature at large Re with high density

ratio and various values of surface tension coefficient in single mode and multiple mode

RTI are made, respectively.

The multiphase LB model has been extended using MRT collision operator to study

various breaking dam problems with both dry and wet bed, expanding the range of the

possible density ratios and Re which was impossible with SRT. The simulations show

agreement with those in the literature. Moreover, grid convergence was studied using

both acoustic and diffusive scaling for standing wave simulations with high density ra-

tios. The use of MRT was found to improve the stability for high density ratio. Results

with density ratio up to 1000 at large Re = 1000 were obtained using MRT model.
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Chapter 1

Literature review

1.1 Introduction

Numerical modelling of multiphase flows such as free surface flows and multi-

component fluid flows due to continuous change in the location of the boundary. Fur-

ther challenges are related to flows with high Reynolds numbers (Re) or large den-

sity ratios (Tryggvason et al. 2001). Many numerical approaches have been improved

to solve Navier–Stokes (NS) equations for multiphase fluid flows (Scardovelli & Za-

leski 1999). The most commonly used are Level Set Methods (LSM), Volume of Fluid

(VOF) method, Mass-Tracking Method, the Smoothed Particle Hydrodynamics (SPH)

method and the Lattice Boltzmann Method (LBM) (Osher & Sethian 1988, Hirt &

Nichols 1981, Rüde & Thürey 2004, Rothman & Keller 1988). LBM has become more

widespread because of high efficiency computations with free surface flow and its abil-

ity to solve complex fluid dynamics problems. An addition, this method is relatively

straightforward for coding and parallelisation (Yu et al. 2014). A brief explanation of

the common free surface method is presented that can be coupled with LBM approaches

in section 1.2.

There are various prevalent LBM approaches for multiphase fluid flows. The Roth-

man–Keller (RK) multiphase lattice gas model is the oldest one that presented the color-

gradient model (Rothman & Keller 1988). The Shan–Chen (SC) model describes the
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1.1. INTRODUCTION

separation of phases produced by the incorporation of an enticing force for the parti-

cles (Shan & Chen 1993). Swift et al. (1995, 1996) introduced the free energy (FE)

based model a phase separation for one component and two phases in non ideal fluids.

The tracking interface model was described by He et al. (1999). Moreover, some LBM

multiphase approaches have been combined with computational fluid dynamics (CFD)

methods, for instance Xu (2005) introduced the Finite Difference LBM (FDLBM) for

binary fluid which were based on discretization of the Boltzmann equation for veloc-

ity distribution according to (Sterling & Chen 1996, Succi 2001). A phase-field based

model coupled with the LBM and the Finite Volume Method (FVM) to simulate the

motion of droplets by control electrowetting as pointed out by Huang et al. (2012).

The Front Tracking Finite Difference Method (FTFDM) was proposed by Sankara-

narayanan et al. (2003) to study different cases of rising bubble simulation. Lallemand

et al. (2007) proposed coupling LBM with a front tracking (FT) method to model the

movement of the interface with surface tension for static bubble and capillary waves

simulations. A brief review for each of these models is given and then explained the

approach that is used in section 1.3.

In order to update the interface, the multiphase flow is simulated by using a gov-

erning Navier-Stokes equation with either an advection-diffusion equation which deals

with diffusive interface models or advection equation is used with sharp or diffusive

interface models (Banari 2014). The interface is determined by capturing an Eulerian

method (e.g. LBM) or surface tracking, a Lagrangian method (e.g. SPH) (Ginzburg

& Steiner 2003, Contreras et al. 2013). The capturing methods produce a sharp or

diffusive interface representation while the interface tracking methods assume a sharp

interface. In order to use the appropriate options, the following points must be taken

into account when simulating free surface and multiphase problems by dealing with:

(1) a capturing or tracking method for representation of interface; (2) a diffusive or

sharp interface method; (3) an advection-diffusion or advection equation for updating
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the interface between fluids (Banari 2014).

In the sharp interface, the interface region between two fluids was considered as

infinitely thin and is given with properties such as surface tension (Anderson & Mc-

Fadden 1996). The diffuse interface model uses a technique of modelling interface

forces as a continuum force. Many authors preferred to use a diffuse rather than a sharp

interface model because the former one can be simply propagated through fixed grids

while the sharp interface models need adaptive and fitting grids (Jacqmin 1999).

1.2 LBM with a Free Surface

Several LB approaches have been developed for free surface flows. The simulations

must distinguish between the region that contains liquid and the region that contains

gas. The interface between two fluids (liquid and gas) in the simulation must be found

as part of the computation. In a free surface flow, the gas phase has a negligible effect

on the liquid phase, so it can be removed from the computations. There are several

major approaches to represent the interface of the free surface which can be coupled

with LB techniques.

1.2.1 Level Set (LS) Methods

An implicit function φ(x, y, t) is used to describe the surface representation. The

LS methods represent the movement of the implicit surface, which is a contour in the

fluid region (Ω) as introduced by Osher & Sethian (1988). The main idea for LSM

was a numerical approach for a Hamilton-Jacobi equation to solve the time dependent

equations which describe a moving of φ(x, y, t) (Osher & Fedkiw 2006). The surface

can be evaluated by choosing the set of points in which φ(x, t) = c. The value of these

set is a level set of φ(x, t). Usually, the zero level set (φ(x, t) = 0) is used to describe

the points that are located on the interface region Γ. If the value of φ(x, t) > 0, it
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means that x is located outside the interface region Γ, otherwise x is located inside the

interface region Γ (Johansson 2010).

The distinctive feature this approach is represented by computing the curvature (k)

of the interface from the divergence (∇.) of the unit normal vector (n) which is related

to the gradients (∇) of φ. The curvature is used to control the smoothness of the inter-

face. This makes the computation of geometric quantities such as normal (n), gradient

(∇) and curvature (k) easy and fast. For these reasons, signed distance functions are

best represented by using the Eulerian representation (Johansson 2010). The devel-

opment of φ(x) is achieved by the solving of an advection equation. As a result, the

development of free surface flows can be simulated. The LSM requires a reinitializa-

tion step at every time step because of the level set function φ(x) does not recover the

evolution equation at all time steps. However, the loss of mass is one weakness of LSM

which impacts upon the accuracy of the interface development (Rüde & Thürey 2004).

To overcome this weakness, the Particle Level Set Method (PLSM) was presented

by Enright et al. (2002) to track water surface for fluid flow simulation. The particle

corrects in LSM by adding two sets of massless particles, plus and minus particles,

which are located close to the interface at φ(x) = 0 (Yu et al. 2014). This correction

step is proposed to recover the evolution equation. Consequently, the mass loss can be

reduced for the most part. (Yu et al. 2014) suggested a coupled LB and PLSM (LB-

PLSM) which is a correction for LSM. They adopted the LB based single-phase free

surface (LB-SP) which was presented by Körner et al. (2005) and Thürey et al. (2005)

to simulate breaking dam flow. According to Rüde & Thürey (2004), the LS is advected

after applying the streaming and collision steps of LBM. The velocity values can be ex-

trapolated by fast marching pass during each time step because the LBM computes only

the velocity of the fluid. The fast marching is used to initialize the level set.
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1.2.2 Volume of Fluid (VOF) Method

This method was presented by Hirt & Nichols (1981) and was developed from ear-

lier marker and cell (MAC) methods. The first code was based on the volume fraction

of fluid εf that was introduced for NASA by Torrey et al. (1985). Janssen & Krafczyk

(2011) presented the implementation of a VOF based algorithm by adding an advection

equation for the VOF fill level. The VOF method is used to track the interface region by

introducing εf for a unit cell to represent the fill level of a control volume Ωcell. A fill

level of εf = 0.0 refers to an empty cell (the gas region), while a fill level of εf = 1.0

refers to the fill inside the liquid region. Gas cells can be separated from liquid cells by

a closed interface layer.

In a weakly compressible LB approach, the VOF fill level ε is not conserved so that

the finite volume method (FVM) is used to discretize the continuity equation and con-

servation of mass to derive the advection algorithm. According to Janssen & Krafczyk

(2011) the flux term φi(x, t) between neighbouring cells can be found from LBM by

use of the particle distribution function fi(x, t). There are several coupling methods to

overcome the difficulties when the interface is represented by using the VOF method.

Janssen et al. (2010) suggested a new hybrid Fully Non linear Potential Flow (FNPF)

and LB (FNPF-LB) approach to model wave breaking. Also, VOF method imple-

mented with LBM to express the flux term in the free surface (Janssen & Krafczyk

2011).

Janssen et al. (2013) presented an extension of a hybrid LBM-VOF model of free sur-

face problems with a MRT collision operator. The free surface was represented by a

VOF method and the extended hybrid algorithm was applied to several problems, such

as breaking dam, free filling jet and breaking wave during shoaling problems. Janssen

& Krafczyk (2010) proposed a VOF method based on LBM to calculate the free surface

motion for breaking dam and breaking wave.
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1.2.3 Mass Tracking Method

The mass tracking method links directly into the LBM (Rüde & Thürey 2004). This

method can be considered as a surface capturing method and includes three steps: cal-

culation of the interface movement, the boundary condition at the interface region and

the reinitialization of the cell types (Thürey et al. 2005). The crucial point is to guar-

antee conservation of mass, since mass transferred to the liquid or mass coming from

the liquid always passes through the interface cells in which the total mass is balanced

(Körner et al. 2005).

The interface movement in this method is tracked by computing the mass for each

cell from the distribution function fi(x, t). Similar to the VOF method, the movement

of the interface is found from computation of the flux between cells. A new set of

fi(x, t) is presented to evaluate the current cell density, and is computed from the frac-

tion of the fluid value εf whether the interface cell can be filled (εf > 1.0) or emptied

(εf < 0.0) (Thürey & Rüde 2009). The one advantage of the mass tracking method of

free LB is the conservation of mass when tracking the interface, but there are difficulties

in obtaining smooth curvature of the simulations for a breaking dam (Rüde & Thürey

2004). By contrast, they found the capability of the LSM to resolve thin fluid layers.

Also, the surface normals and curvature are easy to compute with LSM. Although, the

interface of LSM and VOF method are needed to reconstruct and re-initialize at each

step, this can be complicate to perform (Zheng et al. 2006). The disadvantage of the

mass tracking method is often incapability to preform interface break-up or collision

(Scardovelli & Zaleski 1999).

1.3 LBM with multiphase methods

It is worth mentioning that the multiphase approach was classified approximately

to four main LB techniques as shown below.
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1.3.1 Color-gradient model

The original Rothman and Keller (RK) model for two-component lattice gas has

been presented by Rothman & Keller (1988). This model consists two distribution

functions that represent the two-components by red and blue colour fluid. The colli-

sion step of the RK model has been improved by adding the perturbation operator and

recoloring step that is proposed by (Gunstensen et al. 1991). Thereby, it contains three

steps to represent the two component flow which are collision, recoloring and stream-

ing steps. The recoloring step is used to reduce the mixing at the interface (Huang

et al. 2013). (Grunau et al. 1993) developed the RK model for the hexagonal lattice

in two dimensions (D2Q7) by adding further two variables to the equilibrium distribu-

tion function in order to model the flow with various density ratios. He reported that

the simulations become unstable with density ratios more than 10. Also, the recolor-

ing step was included in the two-component model that was proposed by Latva-Kokko

& Rothman (2005), A further collision term has been added in this model. The RK

model for D2Q9 in LBM has been improved by Reis & Phillips (2007). The two-fluid

collision step is corrected and the interfacial tension term satisfy the NS equations in

Reis & Phillips (2007) model and the density ratio reaches 18.5 with coalescence of

bubbles flow. In this model, a free parameter is used to dominate surface tension (Reis

& Phillips 2007).

The RK model has been used to simulate high density ratio flows to test Laplace’s

law of static bubble and rising bubbles (Grunau et al. 1993, Liu et al. 2012). Tölke

(2002) found that simulations of bubble flows were stable only for density ratio up to

30, and computed stable simulations of channel flow for density ratio 1 and viscosity

ratio up to 100. Leclaire et al. (2012) proposed more improvement in the recolouring

step presented by the Latva-Kokko and Rothman model and coupled with the Reis and

Phillips model. In the adopted model, the obstruction of the movement called as lattice
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pinning was reduced at the interface. He studied simulations of Poiseuille flow with

high viscosity ratio up to 10000 and density ratio of the droplet flow is 85 (Leclaire

et al. 2012). Huang et al. (2013) claimed the incapability of the RK model, generally,

to deal with high density difference of two phase flows and he used BGK approximation

scheme. In last years ago, Ba et al. (2016) investigated the density ratios and Reynolds

numbers (Re) of a RK type model with a MRT collision operator. They used the den-

sity ratio of 1000 for the droplet flow and further implementation was applied to test

density ratio for droplet spreading radius with density ratio of 100 and Re = 500 and

for the Rayleigh-Taylor Instability density ratio reaches 3 with Re = 256, 2048. One

of the disadvantages of RK models was represented by incapability to extend these

model for including the thermodynamic phase movements which leads to not satisfy

the Galilean invariant quality and unphysical features of the interface for the fluid flows

(Shan & Chen 1993).

1.3.2 Shan–Chen (SC) model

This model is the most common multiphase model, firstly proposed by Shan and

Chen in 1993 (Shan & Chen 1993). Many researchers used method based on SC model

for its simplicity and rely to non-ideal gas equations of state (EOS). This includes two

types of SC model, for single component multiphase that is based on an attractive the

force between the molecules for lattice points. The phase separated according to the

properties of the non-ideal gas for a one chemical element (Sukop 2006).

In general, the difficulties of the classical SC model are represented by the inca-

pability to deal with high density ratios. It was pointed out that the pseudopotential

gradient conveniently can be computed for the intermolecular force in SC model to pre-

vent instabilities of the simulations (Márkus & Házi 2008). Yu et al. (2010) improved

the SC model which included the same computation of interaction force for the pseu-

dopotential by adopting new MRT-LBM with high density ratio up to 1000. He studied
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buoyant rise of a gas bubble in liquid with a low viscosity Re = 1000 and high-surface

tension in 3D. Sofonea et al. (2004) imposed a flux limiter approach to minimize spu-

rious currents and developed the stability of the simulations for high Re. Raiskinmäki

et al. (2000) studied the spreading droplet on a rough surface in 3D. Sankaranarayanan

et al. (2002) simulated the rise bubble for different sizes with the action of buoyancy.

The second type of the SC model is known as the multi component multiphase be-

cause it contain more than one chemical component that incorporates interaction forces

to create a separation between phases. The fluids of this kind of SC models are of

major economic and environmental significance because, for example, petroleum is

commonly observed to be a mixed with water and because of the existence petroleum

with water often appears as reason of ground water impurity (Sofonea et al. 2004). For

example, the index for the first component indicates by 0 and the second by 1 in the

system. The equilibrium distribution function is calculated in the loop from the com-

bined macroscopic velocity. The SC multi component model was improved according

to Shan & Doolen (1995) (SD) model by introducing the new equilibrium velocity to

minimize statistical noise that included in Lattice Gas Automata (LGA) due to the in-

sufficiency of the Galilean invariance and calculation of the velocity from the pressure

term. Dong et al. (2010) investigated the numerical simulation for the phenomenon of

viscous fingering in two phase fluids that moves in a channel according to gravity, using

viscosity ratio from 1 to 5.

The traditional SC model was extended according to Benzi et al. (2006) by in-

troducing an analytic derivation of contact angles simulation in the expression of the

energy of surface tension between any pair of the liquid, solid, and gas phases. The

wall contact angle was implemented suggested by Huang et al. (2007) using SD model

for multi component based on SC model. Huang et al. (2015) studied the applications

of two chemical component in the porous media flow in 3D. It was claimed that this

model generally has limits with high density ratios and kinematic viscosity ratio.
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1.3.3 The Free Energy (FE) based model

Swift et al. (1995, 1996) proposed a free energy (FE) based LB model to define a

thermodynamically appropriate representation for the D2Q7 model. The key concept

of this model is constituted by introducing an appropriate equilibrium distribution func-

tion f eq constructed on FE system which is derived from the van der Waals equation to

include the thermodynamic pressure tensor Pαβ . It consists of two types of multiphase

models which are single and multi component.

In the single component multiphase model for the non ideal gas, Swift et al. (1996)

suggested an appropriate equilibrium distribution function with gradient of density that

is structured to satisfy the zero, first and second moments constraints. The first term of

the second order moments of f eq is formed by the pressure tensor Pαβ that is obtained

from the FE density (Swift et al. 1996). By applying a Chapman–Enskog expansion,

the FE system and the constraints of the moments of f eq with the velocity of the fluid

satisfies the hydrodynamic equations. Guo & Shu (2013) pointed out to the meaning of

the gradient of the density when it equal to zero (δαρ = 0) that the hydrodynamic equa-

tions leads to the Navier-Stokes equations. The drawback of this models is represented

by unsatisfying the Galilean invariance with high density gradient (Swift et al. 1996).

Holdych et al. (1998) developed this model to D2Q9 by extending hydrodynamic

terms for density gradient in order to adjust Galilean invariance with second order mo-

ment. The second order moment of f eq is one of features of the FE base on LB model

by comparing with the SC model that incudes first order that leads to the first order

velocity moment with using the interaction force. Also, the computation of the surface

tension in the FE is simply calculated than the SC model. Hence, the FE model is con-

sidered as a successful technique (Guo & Shu 2013).

In the two component multiphase model according to Swift et al. (1996), the first

particle distribution functions was used to recover thermodynamic pressure tensor Pαβ

10
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in the NS equations and the second particle distribution functions used to satisfy the

Cahn-Hilliard equation (CH) for capturing the interface in a D2Q7 non-ideal fluid flow

model. This model is similar to the single component one, but it required to impose

two equilibrium distribution functions that enforced the constrains of the moments ex-

cept with binary density and velocity (Guo & Shu 2013). These models also demand to

enforce the new constraints for the particle distribution functions that define the phases

for fluid system. The CH equation described by Swift et al. (1996) for the FE approach

consisting of the phase separation will be explained in the next section. The thermody-

namic pressure tensor Pαβ and the chemical potential difference ∆µ were produced in

this FE models for binary phase fluid systems.

Takada et al. (2000) improved the models based on Swift et al. (1996) to study the

rising two bubble simulation in the 3D duct for a two fluid model and investigated the

buoyancy under gravity. The simulation of the rising single bubble compared well with

the VOF method in 2D. Fakhari & Rahimian (2010) improved numerically the simple

model of the FE which satisfied a Galilean invariance from Zheng et al. (2006) is only

effective with density matched for two fluid flows.

Inamuro et al. (2004) developed the FE model by combining it with the projection

technique to guarantee the continuity equation for the interface with high density ratio.

In this model two particle distribution functions (fi and gi) are used, the first one repre-

sented the phases by using the order parameters according to the phase field model and

the second one computed the velocity by absences density. The density in the advec-

tion of the equilibrium distribution functions geqi which leads to eliminate the pressure

gradient for the binary fluid flow. Then they defined the velocity distribution function

(hi) to correct the pressureless velocity from solving the Poisson equation. The value

of the order parameters was cut off to determine the density across the interface for the

multiphase fluid flow. The implementations were applied in 3D with density ratios 50

for each capillary wave, two droplet collision and coalescence of rising binary bubbles
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simulations. In addition, 24 bubbles were simulated with density ratio 1000 with same

radius in a square duct (Inamuro et al. 2004). There are various sides of this approach

by comparing with the original LBM on account of the neglecting the density that leads

to add the viscosity terms to the geqi and stress tensor of viscosity in the collision step

(Inamuro et al. 2004, Banari et al. 2014).

Recently, Banari et al. (2014) modified this model by using three equilibrium distri-

bution functions (f eqi , g
eq
i and heqi ) with SRT for order parameters, pressureless veloc-

ity and solving Poisson equation to correct the velocity. This technique is distinguished

from the model of (Inamuro et al. 2004) by defining slightly different equilibrium dis-

tribution functions. The interpolation values for order parameters were used to define

the density at the interface. The applications for different density ratios was simulated

reached to 1000 with Poiseuille flow and rising bubble, 100 for static bubble, 3 for

single Rayleigh-Taylor Instability and the breaking wave was nicely simulated in 2D.

Furthermore, he performed the implementations in 3D for droplet impact on a wet sur-

face with density ratio 1000 and Re = 2000, and rising bubble with density ratio 1000

and breaking wave with density ratio 855 by coupling with the Large Eddy Simulation

(LES) model with LBM. However, obtaining the pressure by Poisson equation from the

work of Inamuro et al. increases computational costs (Lee & Lin 2005).

Fakhari & Rahimian (2010) modified the FE model for capturing interface using

phase field MRT based LB approach. The investigation was applied for different den-

sity ratios 1000, 100, 5 , 5 and 5 which corresponding to the simulations of the Laplace

law for stationary bubbles, Capillary wave, rising bubble , splashing of the droplet on a

wet surface and falling droplet under gravity, respectively. The Reynolds numbers reach

to 1000 with droplet splashing. One of the disadvantage of this model occurs from the

computation used to correct the pressure by solving the Poisson equation (Fakhari &

Rahimian 2010).
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1.3.4 He Chen Zhang (HCZ) model

He et al. (1999) suggested new LB multiphase fluid flows approach for simulating

single component by modelling and tracking the interface due to coupling of molec-

ular interactions. The HCZ model introduced two distribution functions, the first one

for tracking the velocity and the pressure and second one for the density in the incom-

pressible flow. The interface is tracked by using the index function for the binary fluid

flows. The NS equations are recovered from the distribution functions of pressure and

the distribution functions for computing the density satisfy the CH equation for track-

ing the interface. Single mode Rayleigh–Taylor Instability (RTI) was simulated with

the range of various density ratio reached to 19 at the high Re was 2048 and the density

ratio multi mode RTI results was 3 at Re = 4096, so the limitation of this method is

represented by incapability with high density ratio (He et al. 1999).

Lee & Lin (2005) introduced an equivalent technique to that presented by He et al.

(1999) for computing the pressure and momentum using discretization the Boltzmann

equation of multiphase fluid flows. The intermolecular forces for non-ideal gas was sep-

arated to hydrodynamic pressure, thermodynamic pressure, and surface tension force to

develop the stability of simulations with high density ratios (Lee & Lin 2005). Banari

et al. (2014) avoided instabilities due to thermodynamic pressure by adding a stress to

the potential term. It was applied various forms for the discretization of derivatives

such as first and second order with central, biased or mixed difference approximation

in order to obtain smooth variation of the pressure at the interface. This model was

validated by comparing the computations result of 1D advection equation with the an-

alytic solution, testing a Laplace law for the stationary droplet and studying the droplet

oscillation in D3Q19 lattice model with density ratios 1000 (Lee & Lin 2005). They

simulated droplet splashing phenomenon on a thin liquid with various Re in 3D and

the largest Re reach to 500. (Banari et al. 2014) used the same concepts of the latter
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approach with dividing of the intermolecular forces.

Usually, most of researchers pointed out different sources of the problems and inca-

pability for simulating the high density ratios with multiphase LBM techniques. Proper

discretization of density and pressure gradients is required (Inamuro et al. 2004, Guo

& Shu 2013). Some of researchers justify to choose the appropriate equation of state to

perform the large density ratios of the multiphase flows (He & Doolen 2002, Fakhari &

Rahimian 2010). Moreover, d’Humieres (2002) proposed the MRT in the collision step

to improve the stability of the computations when used the low viscosity. The MRT

leads to simulate the multiphase flows with the high Reynolds numbers (Re) (Yu et al.

2010, Fakhari & Lee 2013).

Chen et al. (2019) proposed virtual lattices layer to realize the no-slip boundary

condition for multiphase flow and improved the interface capturing model using the

Cahn-Hilliard equation to cope with the problem of the high density ratio between var-

ious phases. They studied bubble growth and departure from two orifices is simulated.

Furthermore, the various forces effects tested on the deformation and interaction be-

tween growing of bubbles from orifices of the same or various sizes (Chen et al. 2019).

(Liang et al. 2019) introduced the model of axisymmetric multiphase LB flows

depend on the Allen-Cahn equation by phase-field theory. They used two distribu-

tion functions for solving fluid interface and hydrodynamic properties. Moreover, they

improved the numerical stability by applying MRT model. The simulations of static

droplet with density ratio up to 1000 is studied. In addition, the simulations of oscilla-

tion of a viscous droplet, breakup of a liquid thread, and bubble rising in a continuous

phase implemented with density ratio up to 100 with axisymmetric Allen-Cahn equa-

tion and hydrodynamic equations.
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1.4 Objective of the study

The main purpose of this thesis is to develop the multiphase Lattice boltzmann

(LB) approach for high density and viscosity ratios with large Reynolds number (Re).

In particular, a new Multi Relaxation Time (MRT) is used to develop multiphase LB

model, based upon the Single Relaxation Time (SRT) multiphase model of Banari et al.

(2014). A unified LBM approach is used with separate formulations for the phase field,

the pressureless Naiver-Stokes (NS) equations and the correction of the pressureless

velocity field by solving a Poisson equation. To validate the current model, simulations

of two dimensional lid driven cavity flow were performed with differentRe. The results

of the present study are compared with the numerical results from Ghia et al. (1982) in

both SRT and MRT models in single phase LB.

Subsequently, the multiphase model in SRT collision operator was verified to study

the L2-norm errors with different density and viscosity ratios for two-fluid Poiseuille

flow are compared results in current study with the analytic solutions at different lattice

grids. the n static and rising bubbles. Moreover, simulations of static bubble flow

with different surface tension coefficient values and various radius are compared with

theoretical (Laplace law). The gravitational acceleration force for single rising bubble

was studied and compared with Sun & Tao (2010).

In addition, this work is used to test the validation of multiphase LBM with largeRe

at high density ratio. This method was studied with SRT to simulate two dimensional

single and multiple mode Rayleigh-Taylor Instability (RTI). Numerical simulations are

compared with those in the literature for large Re and high density ratio in single mode

RTI and various values of surface tension coefficient in multiple mode RTI.

The principal contribution of this thesis is the development of multiphase model of

Banari et al. (2014) using MRT. This extended the range of values of density ratios and

Reynolds numbers (Re) for which successful computations could be completed.
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So this work included the extension of the multiphase method using new MRT

collision operator to study various breaking dam problems for both dry and wet bed

expanding the range of the possible density ratios and Reynolds number which was

impossible with SRT.

Finally, the contribution of standing wave simulations with density ratio up to 1000

at large Re was studied using both acoustic and diffusive scaling with various grid

resolutions.

1.5 Outline of the study

This thesis describes the LBM and its application for single and multi phase flows.

It is organized as follow:

In chapter 2, the derivation of Lattice boltzmann Method (LBM) and the relation

to the Navier-Stokes equations according to (Guo & Shu 2013) are introduced. The

description of the boundary conditions are presented in this chapter. The algorithm of

LBM with Single Relaxation Time (SRT) and Multi Relaxation Time (MRT) are illus-

trated.

The Lattice Boltzmann (LB) computations for various Reynolds numbers (Re) with

different resolutions to simulate 2D lid driven cavity flow with on grid and half way

bounce back boundary conditions are performed. The minimum stream function value

and the total kinetic energy per unit volume are used for the convergence to the steady

state with SRT and MRT. Subsequently, the numerical results for the velocity profiles

and streamlines are compared with the numerical results from Ghia et al. (1982) in

chapter 3.

In chapter 4, a review of multiphase flows with high density and viscosity ratios for

LBM in SRT collision operator is introduced. A similar model to Banari et al. (2014)

is used so that the motion of the interface between fluids is modelled by solving the

Cahn-Hilliard (CH) equation with LBM. A unified LBM approach with separate for-
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mulations for the phase field, the pressureless Navier-Stokes (NS) equations and the

correction of the pressureless velocity field by solving a Poisson equation are used.

The Chapman-Enskog expansion for multiphase LB approach to recovery the pressure-

less Navier-Stokes equations, the Cahn-Hilliard equation and solving pressure Poisson

equation are introduced.

In chapter 5, the multiphase flows with different density and viscosity ratios at var-

ious Reynolds number Re are implemented to simulate two fluid Poiseuille flow. The

L2-norm errors for the simulations in current study are compared with the analytic

solutions for different lattice grids. Subsequently, comparison between the theoretical

(Laplace law) and current computations for the static bubble flow is made with different

surface tension coefficient values and various radius with density ratio 100. In addition,

the terminal shapes for three cases of rising bubble with density ratio 100 are formed

and comparisons are made with Sun & Tao (2010) results.

In chapter 6, the multiphase LB technique with Single Relaxation Time (SRT) is

used to simulate 2D single and multiple mode Rayleigh-Taylor Instability (RTI). The

results are compared with those of He et al. (1999) for single mode RTI at various

Reynolds number Re with small density ratios. The investigations at high density and

viscosity ratios are performed then the results are compared with Ren et al. (2016)

and Fakhari et al. (2017) results for the evolution of interface in a multiple mode RTI

at different values of surface tension coefficient, Re and various resolutions. Subse-

quently, the simulations for ρ́1
ρ́2

= 100 and 1000 with high Re = 5000 are obtained in

this study. Moreover, the evolution of interface in a multiple mode RTI with different

values of surface tension coefficient (σ12) is examined. The convergence with σ12 and

grid resolution for the positions of bubble and spike are investigated. The result of He

et al. (1999) for the average density profiles across the depth in multiple mode RTI with

various σ12 at dimensionless time is compared with the result in this work.

In chapter 7, the multiphase of LBM is developed using Multi relaxation Time
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(MRT) to simulate breaking dam problems with different of cases. The result of the

simulation for both leading edge position and water column height results are com-

pared with Martin et al. (1952). Moreover, the simulation of second case of the dam

break problems with Colagrossi & Landrini (2003) is investigated. Furthermore, the

investigation of breaking dam problems of this work with wet bed is presented and a

comparison with Badarch et al. (2016) is made. The MRT mode is implemented with

breaking dam problems especially for density ratio up to 1000 and high Re numbers

which was impossible with SRT model.

In chapter 8, the multiphase flows for LBM with different density ratio are devel-

oped to study two scaling cases with standing wave simulations firstly, with different

density ratios, based on Hodges et al. (1996), Zhao et al. (2013), and secondly, for small

density ratio and both high and low viscosity standing waves, Buick & Greated (1998).

The results with high density ratio up to 1000 at large Re = 1000 was obtained using

the MRT model in this study. Finally, the summary of the project and the future work

are introduced in chapter 9.

1.6 Summary

In this chapter, various LB approach of free surface and multiphase fluid flows have

been introduced. Because of the highly accurate simulations of LBM with free surface

flow and its capability to deal with complex fluid dynamics such as the multiphase

flow problems, its use has become more prevalent. The most common free surface

techniques that are coupled with LBM are methods such as LSM, VOF and the mass

tracking method and their applications is mentioned. Furthermore, the development of

several significant multiphase LB approaches which are represented by color-gradient

model, SC model, FE based model and HCZ model are given. In meantime, on their

stable implementation for different application with respect to the values of density

ratio, viscosity ratio and Re for each model are focused.
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Chapter 2

Lattice Boltzmann Method (LBM)

2.1 Introduction

The Lattice Boltzmann Method (LBM) is a relatively new scheme in computational

fluid dynamics (CFD). It has evolved into an alternative numerical technique for simu-

lating fluid flow and modelling physical problems. The fundamental conception of the

LBM is based upon the kinetic theory that describes molecular dynamics. In the in-

compressible limit of the LBM recovers the Navier-Stokes (NS) equations. It can make

computations more efficient for fluid flows that contain complex boundaries and inter-

facial flow phenomena. Consequentially, explicitly of LBM that tend to easy coding

and parallelisation (Chen & Doolen 1998). In additional, the most important advan-

tages of the LBM represented by using equation of state to obtain the pressure which

is inhibit expensive computations by solving Poisson equation to get pressure. Finally,

the LBM is useful approach for modeling single phase and multiphase fluid flows (Shan

& Chen 1993, Swift et al. 1995, Chen & Doolen 1998, Rothman et al. 1998, He et al.

1999, Guo & Shu 2013).

This chapter is organized as follows. Section 2.2 give the discretization of Boltz-

mann equation which is satisfy the Navier-Stokes equations. Section 2.3 describes the

boundary conditions is used. Sections 2.4 - 2.5 illustrate the algorithm of LBM with

Single Relaxation Time (SRT) and Multiple Relaxation Time (MRT). Finally, summary
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of this chapter is given in Section 2.6.

2.2 Discretized Boltzmann equation

Macroscopic variables such as pressure (p) and velocity (u) in the CFD method are

usually found from solving the Navier-Stokes equations (Mei et al. 1999). There are

several techniques from which the Lattice Boltzmann equation (LBE) can be acquired.

Historically, LBE originated from Lattice Gas Automata (LGA) (Frisch et al. 1986).

On the other hand, it can be shown that using a special discretization of the continuous

Boltzmann equation, LBE can also be obtained (He & Luo 1997b, Guo & Shu 2013).

For simplicity and to preserve generality, the Boltzmann equation with the Bhatna-

gar–Gross–Krook (BGK) approximation (or Single Relaxation Time) is used (He &

Luo 1997b). The Boltzmann BGK equation can be written as an ordinary differential

equation:

Dtf +
1

τc
f =

1

τc
f (0), (2.2.1)

whereDt = ∂t+c.∇ is the time derivative along the characteristic line c, f = f(x, c, t)

is the single particle probability distribution function, τc is the relaxation time and f (0)

is the Boltzmann-Maxwellian distribution function in dimension (D) of the space,

f (0) =
ρ

( 2πRT )D/2
exp

[
−(c− u)2

2RT

]
, (2.2.2)

where R is the ideal gas constant, and ρ,u and T are the macroscopic density, velocity,

and temperature, respectively. The macroscopic variables ρ,u and T are the moments
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of the distribution function f with respect to the velocity c:

ρ =

∫
f dc =

∫
f (0) dc, (2.2.3)

ρ u =

∫
c f dc =

∫
c f (0) dc, (2.2.4)

ρ ε =
1

2

∫
(c− u)2 f dc =

1

2

∫
(c− u)2 f (0) dc, (2.2.5)

where ε = DoRT/2 = DoNAKBT/2, and Do, NA, and KB are the number of

degrees of a particle, Avogadro’s number, and the Boltzmann constant, respectively. An

assumption of Chapman-Enskog (Harris 2004) is applied in eqs.(2.2.3, 2.2.4 and 2.2.5).

The terms of the integral that are included a ′ refers to the post collision distributions

operator and vice-versa with pre-collision. From eq.(2.2.1)

d

dt
f +

1

τc
f =

1

τc
f (0),

e(t/τc)
d

dt
f +

1

τc
e(t/τc)f =

1

τc
e(t/τc)f (0),

d

dt
(e(t/τc) f) =

1

τc
e(t
′
/τc)f (0)(x, c, t′)dt′ ,

d

dt
(e(t/τc) f) =

d

dt

1

τc

∫ t

0

e(t
′
/τc)f (0)(x, c, t′)dt′ . (2.2.6)

by integrating both side of eq.(2.2.6) from t to t+ ∆t, yields

[ e(t/τc) f ]t+∆t
t =

1

τc

∫ t+∆t

t

e(t
′
/τc)f (0)(x, c, t′)dt′ ,
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e(t+∆t)/τcf(x+ c∆t, c, t+ ∆t)− e(t/τc) f(x, c, t) =
1

τc

∫ t+∆t

t

e(t
′
/τc)f (0)(x, c, t′)dt′ ,

Thus

f(x+ c ∆t, c, t+ ∆t) =
1

τc
e−(∆t/τc)

∫ ∆t

0

e(t
′
/τc)f (0)(x+ ct, c, t+ t

′
) dt

′

+ e−(∆t/τc) f(x, c, t) . (2.2.7)

By assuming the f (0) is smooth enough on the interval (0,∆t) which is made the linear

approximation:

f (0)(x+ ct, c, t+ t
′
) =

[
1− (t+ t

′
)− t

∆t

]
f (0)(x, c, t)

+

[
(t+ t

′
)− t

∆t

]
f (0)(x+ c∆t, c, t+ ∆t),

so

f (0)(x+ ct, c, t+ t
′
)=

[
1− t

′

∆t

]
f (0)(x, c, t)+

t
′

∆t
f (0)(x+ c∆t, c, t+ ∆t) . (2.2.8)

Now substitute eq.(2.2.8) in to the first term of the right hand side of eq.(2.2.7) and

finding the integration as

1

τc
e−(∆t/τc)

∫ ∆t

0

e(t
′
/τc)f (0)(x+ct, c, t+ t

′
)dt

′
=

1

τc
e−(∆t/τc)

∫ ∆t

0

e(t
′
/τc){f (0)(x, c, t)

− t
′

∆t
f (0)(x, c, t) +

t
′

∆t
f (0)(x+ c∆t, c, t+ ∆t) }dt′ .
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The right hand side of the above equation has three terms these evaluated as follows:

First term:

∫ ∆t

0

e(t
′
/τc) f (0)(x, c, t)dt′ = τc (e(∆t/τc) − 1) f (0)(x, c, t) .

Second term:

∫ ∆t

0

−e(t
′
/τc)

t
′

∆t
f (0)(x, c, t)dt′=−τc e(∆t/τc) f (0)(x, c, t)+

τ 2
c

∆t
e(∆t/τc) f (0)(x, c, t)

− τ 2
c

∆t
f (0)(x, c, t) .

Third term:

∫ ∆t

0

e(t
′
/τc)

t
′

∆t
f (0)(x+ c∆t, c, t+ ∆t)dt

′
=τc e

(∆t/τc)f (0)(x+ c∆t, c, t+ ∆t)

− τ 2
c

∆t
e(∆t/τc) f (0)(x+ c∆t, c, t+ ∆t) +

τ 2
c

∆t
f (0)(x+ c∆t, c, t+ ∆t).

Now from these three terms the eq.(2.2.7) was obtained

f(x+c∆t, c, t+ ∆t)− f(x, c, t) = (e−(∆t/τc) − 1)
[
f(x, c, t)− f (0)(x, c, t)

]
+(1 +

τc
∆t

(e−(∆t/τc) − 1))
[
f (0)(x+ c∆t, c, t+ ∆t)− f (0)(x, c, t)

]
. (2.2.9)

Applying Taylor Series to expand e−(∆t/τc) on the eq.(2.2.9) and removing terms of

second order O((∆t)2) as

f(x+ c∆t, c, t+ ∆t)− f(x, c, t) = −1

τ

[
f(x, c, t)− f (0)(x, c, t)

]
, (2.2.10)

where τ = τc
∆t

is the dimensionless relaxation time (in the unit of ∆t). Therefore,

eq.(2.2.10) is accurate to the first order in ∆t and is the evolution equation of the dis-
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tribution function f with discrete time. Now to calculate the hydrodynamic moment

(ρ, ρu and ρε) in eqs.(2.2.3, 2.2.4 and 2.2.5), the appropriate discretization in momen-

tum space c needs to be achieved. Then the integration in the momentum space (with

weight function f (0)) can be approximated by quadrature up to any required degree of

accuracy,

∫
Ψ(c)f (0)(x, c, t) dc =

∑
i

Wi Ψ(ci) f (0)(x, ci, t), (2.2.11)

where Ψ(c) is a polynomial in c, Wi is weight coefficient of the quadrature, and ci is

the discrete velocity set. Then the hydrodynamic moments of eqs.(2.2.3), (2.2.4) and

(2.2.5) are computed by

ρ =
∑
i

fi =
∑
i

f
(0)
i , (2.2.12)

ρ u =
∑
i

ci fi =
∑
i

ci f
(0)
i , (2.2.13)

ρ ε =
1

2

∑
i

(ci − u)2 fi =
1

2

∑
i

(ci − u)2 f
(0)
i , (2.2.14)

where

fi ≡ fi(x, t) ≡
∑
i

Wi f(x, ci, t), (2.2.15)

f
(0)
i ≡ f

(0)
i (x, t) ≡

∑
i

Wi f
(0)(x, ci, t). (2.2.16)
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The equilibrium distribution function f (0) can be expanded by using second order Tay-

lor expansion:

f (0) =
ρ

( 2πRT )D/2
exp

[
−c2

2 RT

]
exp

[
(c.u)

RT
− u2

2RT

]

=
ρ

( 2πRT )D/2
exp

[
−c2

2 RT

] [
1 +

(c.u)

RT
+

(c.u)2

2 (RT )2
− u2

2RT

]
+O(u3),

where u =|u|. Finally

f (eq) =
ρ

( 2πRT )D/2
exp

[
−c2

2 RT

] [
1 +

(c.u)

RT
+

(c.u)2

2 (RT )2
− u2

2RT

]
. (2.2.17)

To recover the Navier-Stokes equations for low Mach number
|u|√
R T

� 1, the follow-

ing moment integral must be found exactly:

∫
ck f (eq)

i dc , 0 ≤ k ≤ 3. (2.2.18)

This integral can be obtained by Gaussian-type quadrature (He & Luo 1997b, Shan &

He 1998):

I =

∫
exp

[
−c2

2 RT

]
Ψ(c) dc =

∑
i

Wi exp

[
−c2

2 RT

]
Ψ(ci). (2.2.19)

To derive the velocity, here nine-bit (nine direction of the distribution function) in LBE

model is used. According to the polynomial function Ψ(c), the system of Cartesian

coordinate can be written as

Ψm,n(c) = cmx cny , (2.2.20)
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where cx and cy are the x and y components of c. From the integral of eq.(2.2.19):

I = (
√

2R T )m+n+2 Im In, (2.2.21)

where

Im =

∫ +∞

−∞
exp(−C2) Cm dC, C =

c√
2R T

, (2.2.22)

and mth order moment of weight function exp(−C2) on the real axis. To find Im to

derive the 9-bit LBE model the third order Hermite formula (Shan et al. 2006) is used:

Im =
3∑
i=1

ωi C
m
i . (2.2.23)

The three values of (Ci) and the corresponding weights (ωi) of the quadrature are

C1 = −
√

3

2
, C2 = 0, C3 =

√
3

2
,

ω1 =

√
π

6
, ω2 =

√
2 π

3
, ω3 =

√
π

6
. (2.2.24)

Then, eq.(2.2.21) becomes (He & Luo 1997a)

I = 2R T

[
ω2

2 Ψ(0) +
4∑
i=1

ω1 ω2Ψ(ci) +
8∑
i=5

ω2
1 Ψ(ci)

]
, (2.2.25)

where ci is zero velocity vector for i = 0. Then by discretizing the momentum space

with nine-discrete velocities ci, i = 0, 1, · · · , 8. The nine-bit LBE model is discretized

into a square lattice space with lattice constant ∆x
∆t

=
√

3 R T = c orR T = c2
s = c

3
,

where cs is the speed of sound of the model. From eqs.(2.2.19) and (2.2.25):

Wi = 2 πR T exp

(
c2
i

2R T

)
ωi, (2.2.26)
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where

ωi =



4
9
, for i = 0, the rest vector,

1
9
, for i = 1, 2, 3, 4, the short vectors,

1
36
, for i = 5, 6, 7, 8, the long vectors .

(2.2.27)

These weights are essential to compute the equilibrium distribution function of the

nine-bit LBE model.

f eqi = ρ ωi f
eq
i (x, ci, t)

= ρ ωi

[
1 +

3 (ci.u)

c2
+

9 (ci.u)2

2c4
− 3 u2

2c2

]
, (2.2.28)

where the D2Q9 model has nine lattice velocities in two dimensions, represented by

ci(x, y) in the x and y directions as shown in next subsection and defined as follows

ci =


(0, 0), for i = 0,

c(cos((i− 1)π
4
), sin((i− 1)π

4
)), for i = 1, 2, 3, 4,

c
√

2(cos((i− 1)π
4
), sin((i− 1)π

4
)), for i = 5, 6, 7, 8.

(2.2.29)

Then by Gaussian-type quadrature (He & Luo 1997b, Li-shi 2000), the moments can be

found in the discretized momentum space. Form the eq.(2.2.10), the Lattice Boltzmann

BGK equation is obtained

fi(x+ ci∆t, t+ ∆t)− fi(x, t) = −1

τ

[
fi(x, t)− f (eq)

i (x, t)
]
. (2.2.30)
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2.2.1 Lattice Arrangements

The domain of the simulation in the LB technique must be divided into a lattice

arrangement. Each point on the lattice has discretized distribution function in specific

directions. The lattice arrangement is represented by DnQm, where n is the number

of the physical dimension of the problem and m is the number of the direction on the

distribution function. Figure(2.1) illustrates different lattice models as D1Q2, D1Q3

and D2Q9 (Guo & Shu 2013).
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Figure 2.1: Lattice arrangements for 1-D and 2-D.

For simplicity, the D2Q9 (two-dimension and nine-velocity) lattice structure which

is most practical and is explained in this study. it is successful to simulate two dimen-

sional fluid flow problems.

2.2.2 Streaming and Collision steps

The LBM consists of two steps: collision and streaming. The left hand side of the

LBGK eq. (2.2.30) represents streaming step so that after one time step particles move

in direction ci to the nearby of lattice node at x + ci∆t, for example the distribution

functions (df) f1, f2, f3, f4, f5, f6, f7 and f8 at (i, j) are moved to f1(i+1, j), f2(i, j+1),

f3(i−1, j), f4(i, j−1), f5(i+1, j+1), f6(i−1, j+1), f7(i−1, j−1) and f8(i+1, j−1)

respectively, but the df at the rest velocity (c0) stays at the same node as shown in Figure
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(2.2). On the other hand, the right hand side of eq. (2.2.30) of LBE represents the

collision operator which is updating these particles distribution functions (pdf).
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Figure 2.2: The streaming step of LBM

2.2.3 From Lattice Boltzmann Equation to the Navier-Stokes Equations

This section shows that by a multi-scale Chapman-Enskog expansion derivation of

the macroscopic Navier-Stokes equations from using the LBGK equation (2.2.30) for

the D2Q9 model (Guo & Shu 2013, Viggen 2009). Expanding the distribution function

fi(x, t) about the function f 0
i (x, t) as follows

fi = f 0
i + εf 1

i + ε2f 2
i + ... . (2.2.31)

For the multi-scale expansion the two time scale and one spatial scale are introduced as

∂t = ε∂to + ε2∂t1, (2.2.32)

∂α = ε∂αo, (2.2.33)
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where ε is the Knudsen number, which is the ratio between the mean free path and the

microscopic length scale, and ∂t and ∂α are derivatives with respect to time and space,

respectively. ∂to represents the time scale for the fast advection, while ∂t1 is the slow

diffusive scale. By starting with the second order Taylor series expanding the lattice

BGK (LBGK) equation (2.2.30), to get

(∂t + ciα∂α) fi +
∆t

2
(∂2
t + 2∂t ciα∂α + ciαciα∂α∂α) fi +O(∂3fi)

= − 1

τ ∆t

[
fi(x, t)− f (eq)

i (x, t)
]
, (2.2.34)

where the first and second terms of eq.(2.2.34) represent the first and second order of

expansion, respectively. Inserting eqs.(2.2.31), (2.2.32) and (2.2.33) into eq.(2.2.34),

yields

(ε∂to+ε
2∂t1+εciα∂αo)(f

(0)
i −εf

(1)
i ) +

∆t

2
(ε2∂2

t +2(ε∂to + ε2∂t1)εciα∂αo

+ ε2 ciαciα∂αo∂αo) (f
(0)
i − εf

(1)
i ) = − 1

τ ∆t
((f

(0)
i + εf

(1)
i + ε2f

(2)
i )− f (eq)

i ).

Equating the coefficients of each order ε, at zero order ε0 is obtained:

f
(0)
i = f

(eq)
i , (2.2.35)

at first order ε1:

(∂to + ciα∂αo) f
(0)
i = − 1

τ ∆t
f

(1)
i , (2.2.36)

and at second order ε2:

∂t1f
(0)
i +(∂to+ciα∂αo)f

(1)
i +

∆t

2
(∂2
to+2∂tociα∂αo+ciαciα∂αo∂αo)f

(0)
i =

−f (2)
i

τ∆t
. (2.2.37)
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Eq. (2.2.37) can be written as follows

∂t1 f
(0)
i + (∂to + ciα∂αo) f

(1)
i +

∆t

2
(∂to + ciα∂αo)

2 f
(0)
i = − 1

τ ∆t
f

(2)
i . (2.2.38)

Substituting eq.(2.2.36) into eq.(2.2.38), reads

∂t1 f
(0)
i + (∂to + ciα∂αo) f

(1)
i −

∆t

2 τ ∆t
(∂to + ciα∂αo) f

(1)
i = − 1

τ ∆t
f

(2)
i . (2.2.39)

Rewriting eq. (2.2.39) as follows

∂t1 f
(0)
i +

[
1− 1

2 τ

]
(∂to + ciα∂αo) f

(1)
i = − 1

τ ∆t
f

(2)
i . (2.2.40)

The zeroth and first moments of the distribution function and the zeroth and first mo-

ments of the equilibrium distribution function are defined as follow

ρ =
∑
i

fi =
∑
i

f
(eq)
i , ρu =

∑
i

cifi =
∑
i

cif
(eq)
i . (2.2.41)

From eq. (2.2.35) and eq. (2.2.41):

∑
i

f
(n)
i = 0 and

∑
i

cif
(n)
i = 0 for n > 0. (2.2.42)

Now, by taking the zero order moment of eq. (2.2.36):

∑
i

∂to f
(0)
i +

∑
i

ciα∂αo f
(0)
i =

∑
i

− 1

τ ∆t
f

(1)
i ,

so

∂to
∑
i

f
(0)
i + ∂αo

∑
i

ciα f
(0)
i = − 1

τ ∆t

∑
i

f
(1)
i ,
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and

∂to ρ+ ∂αo (ρuα) = 0. (2.2.43)

The second order moment of eq. (2.2.36) yields

∑
i

∂tociα f
(0)
i +

∑
i

ciαciβ∂αo f
(0)
i =

∑
i

− 1

τ ∆t
ciαf

(1)
i ,

so

∂to
∑
i

ciα f
(0)
i + ∂αo

∑
i

ciαciβ f
(0)
i = − 1

τ ∆t

∑
i

ciαf
(1)
i ,

and finally,

∂to (ρuα) + ∂αo π
(0)
αβ = 0. (2.2.44)

Eqs. (2.2.43) and (2.2.44) are mass and momentum conservation equations at order ε.

The properties of the generalized lattice tensor (Guo & Shu 2013) for D2Q9 are used:

∑
i

wiciα =
∑
i

wiciαciβciγ =
∑
i

wiciαciβciγciδciθ = 0,

∑
i

wiciαciβ =c2
sδαβ ,

∑
i

wiciαciβciγciδciθ=c4
s(δαβδγδ+δαγδβδ+δαδδβγ). (2.2.45)

Now, by multiplying equation (2.2.35) by ciαciβ and taking summation over i to give

the zero-order momentum flux tensor π(0)
αβ :
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π
(0)
αβ =

∑
i

ciαciβ f
(0)
i

=
∑
i

ciαciβ f
(eq)
i

=
∑
i

ciαciβ ρ

[
1 +

ci.u
c2
s

+
(ci.u)2

2 c4
s

− u2

2 c2
s

]
=
∑
i

ciαciβ wi ρ+
ρ

c2
s

∑
i

ciαciβciγ wi uγ +
ρ

2 c4
s

∑
i

ciαciβciγciδ wi uγ uδ

− ρ

2 c2
s

∑
i

ciαciβ wi uγ uγ

= ρ c2
s δαβ +

ρ

2
[δαβ δγδ uγ uδ + δαγ δβδ uγ uδ + δαδ δβγ uγ uδ]−

ρ

2
δαβuγ uγ

= ρ c2
s δαβ + ρ uα uβ.

Thus

π
(0)
αβ = p δαβ + ρ uα uβ, (2.2.46)

where π(0)
αβ known as second moment of equilibrium function or zero-order momentum

flux tensor, with p = ρ c2
s where cs is speed of sound cs = c/

√
3 and c = ∆x/∆t . The

zero and first order moments of eq. (2.2.40) yield the following order moment:

∑
i

∂t1 f
(0)
i +

∑
i

[
1− 1

2 τ

]
(∂to + ciα∂αo) f

(1)
i =

∑
i

− 1

τ ∆t
f

(2)
i ,

∂t1
∑
i

f
(0)
i +

[
1− 1

2 τ

]
(∂to + ciα∂αo)

∑
i

f
(1)
i = − 1

τ ∆t

∑
i

f
(2)
i ,
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thus

∂t1 ρ = 0, (2.2.47)

and the first order moment:

∑
i

ciα∂t1 f
(0)
i +

∑
i

ciα

[
1− 1

2 τ

]
(∂to + ciβ∂αo) f

(1)
i = −

∑
i

ciα
1

τ ∆t
f

(2)
i ,

∂t1
∑
i

ciα f
(0)
i +

[
1− 1

2 τ

]
(∂to

∑
i

ciα f
(1)
i + ∂αo

∑
i

ciαciβ f
(1)
i ) = 0,

and

∂t1(ρuα) +

[
1− 1

2 τ

]
∂αo π

(1)
αβ = 0, (2.2.48)

where π(1)
αβ =

∑
i ciαciβ f

(1)
i . Eqs. (2.2.47) and (2.2.48) are the conservation equations

at order of ε2. In order to find π(1)
αβ , the eq. (2.2.36) multiply by ciαciβ and take the

summation over i:

− 1

τ ∆t

∑
i

ciαciβ f
(1)
i = ∂to

∑
i

ciαciβ f
(0)
i + ∂γo

∑
i

ciαciβciγ f
(0)
i ,

= ∂toπ
(0)
αβ + ∂γoPαβγ. (2.2.49)

Also, to evaluate Pαβγ =
∑

i ciαciβciγ f
(0)
i , the eq. (2.2.36) multiply by ciαciβciγ and

take the summation over i:
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Pαβγ =
∑
i

ciαciβciγ f
(0)
i

=
∑
i

ciαciβciγ ρ

[
1 +

ci.u
c2
s

+
(ci.u)2

2 c4
s

− u2

2 c2
s

]
=
∑
i

ciαciβciγwiρ+
ρ

c2
s

∑
i

ciαciβciγciδ wi uδ+
ρ

2 c4
s

∑
i

ciαciβciγciδciθ wi uδ uθ

− ρ

2 c2
s

∑
i

ciαciβciγ wi uδ uδ

= ρ c2
s [δαβ δγδ uδ + δαγ δβδ uδ + δαδ δβγ uδ] ,

then

Pαβγ = ρ c2
s [ uαδβγ + uβδαγ + uγδαβ ] . (2.2.50)

Substituting eqs. (2.2.46) and (2.2.50) into eq. (2.2.49), yields

− 1

τ∆t

∑
i

ciαciβ f
(1)
i = ∂to(p δαβ + ρ uα uβ) + ∂γo

[
c2
sρ(uαδβγ + uβδαγ + uγδαβ)

]
= ∂to(c

2
s ρ) δαβ + ∂to(ρuαuβ) + ∂βo(c

2
s ρ uα) + ∂αo(c

2
s ρ uβ)

+ ∂γo(c
2
s ρ uγ)δαβ

= c2
s [∂to ρ+ ∂γo(ρ uγ)] δαβ + ρuα∂to uβ + uβ ∂to (ρuα)

+ c2
s ρ∂βouα + uα ∂βoc

2
s ρ + c2

s ρ∂αouβ + uβ ∂αo c
2
s ρ ,

thus

− 1

τ∆t

∑
i

ciαciβ f
(1)
i =c2

s [∂toρ+ ∂γo(ρ uγ)] δαβ + uβ [∂to(ρuα) + ∂αop]

+ uα [ρ∂to uβ + ∂βop] + c2
sρ [∂αouβ + ∂βouα] . (2.2.51)
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In order to evaluate the time derivatives ∂toρ , ∂to(ρuα) and ρ∂to (uβ), by rewriting the

eqs. (2.2.43) and (2.2.44) on the first order of ε read

∂to ρ+ ∂γo (ρuγ) = 0, (2.2.52)

∂to (ρuα) + ∂γo π
(0)
αγ = 0, (2.2.53)

from eqs. (2.2.52) and (2.2.53):

∂to ρ = −∂γo (ρuγ) , (2.2.54)

and

∂to (ρuα) = −∂γo π(0)
αγ = −∂γo (p δαγ + ρ uα uγ),

∂to (ρuα) = −∂αo p− ∂γo(ρuα uγ) , (2.2.55)

∂to (ρuα) = −∂αo p− ρuγ ∂γo uα − uα ∂γo(ρuγ). (2.2.56)

The ∂to (ρuα) can be written as

∂to (ρuα) = ρ∂touα + uα ∂toρ, (2.2.57)

Substituting eqs. (2.2.54) and (2.2.56) on the second term and the left hand side of

equations (2.2.57), read

−∂αo p− ρuγ ∂γo uα − uα ∂γo(ρuγ) = ρ∂touα + uα (−∂γo (ρuγ)),

36



2.2. DISCRETIZED BOLTZMANN EQUATION

and

ρ∂touα = −∂αo p− ρuγ ∂γo uα. (2.2.58)

By using the same technique, yields

ρ∂touβ = −∂βo p− ρuγ ∂γo uβ. (2.2.59)

Now, by substituting eqs. (2.2.54), (2.2.55) and (2.2.59) into eq. (2.2.51), yield

− 1

τ∆t

∑
i

ciαciβf
(1)
i =c2

s [−∂γo(ρ uγ)+∂γo(ρ uγ)]δαβ+uβ [−∂αo p− ∂γo(ρuα uγ)+∂αop]

+ uα [−∂βo p− ρuγ ∂γo uβ + ∂βop] + c2
sρ [∂αouβ + ∂βouα]

= c2
sρ [∂αouβ + ∂βouα]− ∂γo(ρuα uβ uγ),

and

− 1

τ ∆t

∑
i

ciαciβ f
(1)
i = c2

sρ [∂αouβ + ∂βouα]−O(Ma)3, (2.2.60)

where Ma = |u|
cs

is Mach number. After neglecting the term O(Ma)3 the eq. (2.2.60)

become as follow

π
(1)
αβ = − τ∆t p c2

s [∂αouβ + ∂βouα] , (2.2.61)
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combining the mass and momentum conservation equations on ε and ε2 scales, the

continuity equation is obtained from eq.(2.2.32) as

∂t ρ = ε∂to ρ+ ε2∂t1 ρ,

= ε∂to ρ = −ε∂αo(ρuα) = −∂α(ρuα),

so

∂t ρ+ ∂α(ρuα) = 0, (2.2.62)

and

∂t (ρuα) = ε∂to (ρuα) + ε2∂t1 (ρuα),

= −ε∂αo π(0)
αβ − ε

2

[
1− 1

2 τ

]
∂αo π

(1)
αβ .

By using eqs. (2.2.46), (2.2.61) and (2.2.33), yield

∂t (ρuα) + ∂β p+ ∂α(ρ uα uβ) = ∂α c
2
s

[
1− 1

2 τ

]
τ∆t ρ(∂αuβ + ∂αu

T
β ),

so

∂t (ρuα) + ∂α(ρ uα uβ) = −∂β p+ ∂α νρ
[
(∂αuβ + ∂αu

T
β )
]
. (2.2.63)

By the tensor notation:

∂t ρ+∇.(ρu) = 0, (2.2.64)

∂t (ρu) +∇.(ρ u u) = −∇ p+∇.
[
νρ(∇uβ +∇uTβ )

]
, (2.2.65)
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where ν is kinematic viscosity given by

ν = c2
s

[
τ − 1

2

]
∆t, (2.2.66)

and cs = c/
√

3 where c = ∆x/∆t for the D2Q9 model. For small Mach number

(Ma), the density variation can be removable and assuming incompressibility in order

to arrive to the Navier-Stokes (NS) equations as

∇.u = 0, (2.2.67)

∂t u + u.∇u = −1

ρ
∇ p+ ν∇2u. (2.2.68)

2.3 Boundary Conditions

Boundary conditions play an important part in describing fluid flow behaviour in LB

simulations. There are several types such as periodic, bounce back, pressure or velocity

flow boundary condition, open boundary condition, symmetry condition and so on. In

this study, the bounce back method is used for moving or stationary boundaries. Also, it

is known as no-slip boundary condition which the fluid velocity is zero at the boundary

(He et al. 1997, Zhao 2008). Nodes located in the wall are known as solid nodes and

otherwise are called fluid nodes. Therefore the solid boundary is located on solid nodes

or between solid and the fluid nodes according to the bounce back technique. Here

two different types of bounce back conditions will be discussed: on-grid and half-way

bounce back.

2.3.1 On-Grid Bounce Back Method

This method is applied when the solid boundary lies exactly on solid nodes and

it is easy to implement (Viggen 2009). This bounce back boundary can be explained
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using Figure (2.3). After the streaming process the particle distribution function (pdf)

move toward to the solid boundary from the fluid nodes. These particles hit the solid

boundary and are reflected to the fluid nodes. The particles that stream to the boundary

are known distribution functions (dfs) while the other particles which reflect to the

fluid node are unknown quantities at these solid boundaries. For example, at the left

boundary the known dfs f3, f6 and f7 are found from streaming step. The unknown

values f5, f1 and f8 are found from the opposite directions of the known dfs.

f5 = f7, f1 = f3 and f8 = f6.

Some authors such as (He et al. 1997, Succi 2001) claimed that the on-grid method can

be compute the unknown dfs at the boundary with second order accuracy.
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Figure 2.3: The on-grid bounce back method.
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2.3.2 Half-way Bounce Back Method

The half-way bounce back requires that the solid boundary is located between fluid

and solid nodes. Figure (2.4) shows the half-way method. The collision process is not

performed at the solid node and it gives second order accurate according to He et al.

(1997), Succi (2001). The bounce back is used to evaluate the three unknown dfs f2, f5

and f6 at bottom boundary. Then,

f2 = f4, f5 = f7 and f6 = f8.

Figure 2.4: The half-way bounce back method.

2.3.3 Specification On-grid of Velocity at Corners

This specific boundary condition is based on a conception of the on-grid bounce

back method. By assuming the velocity u = (ux, uy) is given (ux = 0, uy = 0) at the

corners and density specified (Zou & He 1997). For example, post streaming the dfs

f1, f2, f5, f6 and f8 are unknown values and ρ is assumed to be a known value at left
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bottom corner. the bounce back method is used to evaluate f1, f2 and f5 (those that

have red colours in Figure (2.5)). The conservation of mass and momentum are applied

for this boundary (Succi 2001).

f1 = f3, f2 = f4 and f5 = f7. (2.3.1)

Thereafter, the values of f6,f8 ( they have blue colours) and ρ pressure (density) need

to determine. From the conservation of mass:

ρ =
∑
i

fi = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8. (2.3.2)

By the conservation of momentum, yields

ρux = (f1 + f5 + f8)− (f3 + f6 + f7), (2.3.3)

ρuy = (f2 + f5 + f6)− (f4 + f7 + f8), (2.3.4)

From eqs.(2.3.1), (2.3.3) and (2.3.4), the value of f6 = f8 is obtained then by substitu-

tion this quantity into eq.(2.3.2) as

ρ = f0 + f1 + f2 + f3 + f4 + f5 + f7 + 2f8.

Thus

f8 =
1

2
(ρ− f0 − f1 − f2 − f3 − f4 − f5 − f7),

similar procedure can be used in the other corners.
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Figure 2.5: Specification on-grid of Velocity at Corners.

2.3.4 Periodic boundary conditions

Periodic boundary conditions are the simplest boundary conditions. It is useful

for modeling bulk system because it tend to reduce finite size edge effects, such as

flow in along channel driven by a pressure or an external force density (body force)

in the x-direction. In the D2Q9 model, the periodic boundary is applied in the left

and right boundaries as illustrated in Figure (2.6). For example, the known particles

f6, f3 and f7 leaving the left boundary (at i = 0) then they re-entered to the unknown

particles f6, f3 and f7 in the right boundary (at i = lx) and vice-versa. It can be
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2.4. THE ALGORITHM FOR LATTICE BOLTZMANN METHOD

written as

fk(0, j, t) = fk(lx, j, t) , k = 1, 5, 8, j = 0, 1, 2, . . . , ly.

fk(lx, j, t) = fk(0, j, t) , k = 3, 6, 7, j = 0, 1, 2, . . . , ly.
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Figure 2.6: Periodic boundary conditions.

2.4 The Algorithm for Lattice Boltzmann Method

A simple implementation of LBM is illustrated in Figure (2.7). The collision and

streaming steps are performed for each time iteration. The arrangement of the collision

and streaming can be changed according to the process of LBM, either collide-stream

or stream-collide (Bao & Meskas 2011, Zhao 2008). This algorithm of the LBM with

the SRT stops by obtaining the steady state simulations or controls by choosing the

proper time (maxt) for the loop.
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2.5. LBM WITH MULTIPLE RELAXATION TIME (MRT)

Initialize fi(x, t) (particle distribution function)

Compute the macroscopic quantities

ρ(x, y) =
∑

i fi(x, t)

u(x, y) =
1

ρ(x, y)

∑
i ci fi(x, t)

Compute the equilibrium distribution function f eqi (x, t):

f eqi (x, t) = ρ ωi

[
1 + 3 (ci.u)

c2
+ 9 (ci.u)2

2c4
− 3 u2

2c2

]

Compute the updated distribution function f ∗i (x, t). (Collision step)

f ∗i (x, t∗) = fi(x, t)−
1

τ
[fi(x, t)− f eqi (x, t)]

Propagate f ∗i (x, t∗) to fi(x, t) in the direction ci. (streaming step)

fi(x+ ci∆t, t+ ∆t)− fi(x, t) = f ∗i (x, t∗)

Applying boundary conditions. t<maxt

Yes

Stop

No

Figure 2.7: General algorithm for LBM with SRT.

2.5 LBM with Multiple Relaxation Time (MRT)

The Lattice Boltzmann Bhatnagar–Gross–Krook (BGK) model, a single relaxation

time (SRT) is used in order to describe the collision effect. This means the pdfs relax
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2.5. LBM WITH MULTIPLE RELAXATION TIME (MRT)

to their local equilibrium with the same rate determined by a single parameter. Physi-

cally, however, the relaxation rates at the collision step may be different. Wherefore, a

collision matrix with different relaxation times can be used to eliminate this limitation

(Guo & Shu 2013). d’Humieres (1994) presented a 2D MRT LB model for D2Q9. The

collision operator in the LBE with a MRT can be define as

fi(x+ ci∆t, t+ ∆t)− fi(x, t) = −
∑
i

Λij ( fj(x, t)− f (eq)
j (x, t) ), (2.5.1)

or

f(x+ ci∆t, t+ ∆t)− f(x, t) = −Λ ( f(x, t)− f(eq)j(x, t) ), (2.5.2)

where Λ is collision matrix. Eq.(2.5.2) characterize the evolution of f = (f0, f1, f2, f3,

f4, f5, f6, f7, f8)T in the velocity space which is represented in a moment space

(Lallemand & Luo 2000). The relation between the distribution function and the mo-

ments vector can be defined by

m = M f = (ρ, e, ε, jx, qx, jy, qy, pxx, pxy)
T , (2.5.3)

and

f = M−1 m, (2.5.4)

where M is the 9 × 9 matrix transforming f in the velocity space to m in the moment

space. In the vector m, ρ is the density mode, e is the energy mode, ε is related to

the energy squared, jx and jy correspond to the momentum density (or mass flux), qx

and qy correspond to the energy flux, and pxx and pxy correspond to the diagonal and
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2.5. LBM WITH MULTIPLE RELAXATION TIME (MRT)

off-diagonal component of the viscous stress tensor (Lallemand & Luo 2000).

jx = ρ ux =
∑
i

cix f
(eq)
i and jy = ρ uy =

∑
i

ciy f
(eq)
i , (2.5.5)

and the transformation matrix M is

M =



1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1


, (2.5.6)

and the inverse of M is

M−1 = a



4 −4 4 0 0 0 0 0 0

4 −1 −2 6 −6 0 0 9 0

4 −1 −2 0 0 6 −6 −9 0

4 −1 −2 −6 6 0 0 9 0

4 −1 −2 0 0 −6 6 −9 0

4 2 1 6 3 6 3 0 −1

4 2 1 −6 −3 6 3 0 −1

4 2 1 −6 −3 −6 −3 0 0

4 2 1 6 3 −6 −3 0 −1


, (2.5.7)

where a = 1/36. From eq.(2.5.4), the eq.(2.5.2) is rewritten as follows

M−1 m(x+ ci∆t, t+ ∆t)− M−1 m(x, t) = −Λ ( M−1 m−M−1 m(eq) ),

= −Λ M−1( m−m(eq) ), (2.5.8)
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2.5. LBM WITH MULTIPLE RELAXATION TIME (MRT)

by using the left multiplication to M, yield

M M−1 m(x+ ci∆t, t+ ∆t)−M M−1 m(x, t) = −M Λ M−1( m−m(eq) ),

so

m(x+ ci∆t, t+ ∆t)−m(x, t) = −M Λ M−1( m−m(eq) ), ,

thus

m(x+ ci∆t, t+ ∆t)−m(x, t) = −S ( m−m(eq) ), (2.5.9)

where S = M Λ M−1 is diagonal matrix can be expressed as follows

S =



s0 0 0 0 0 0 0 0 0

0 s1 0 0 0 0 0 0 0

0 0 s2 0 0 0 0 0 0

0 0 0 s3 0 0 0 0 0

0 0 0 0 s4 0 0 0 0

0 0 0 0 0 s5 0 0 0

0 0 0 0 0 0 s6 0 0

0 0 0 0 0 0 0 s7 0

0 0 0 0 0 0 0 0 s8


.

It is more flexible to make the remaining the relaxation parameters (Yu et al. 2003).

S = (1.0, 1.4, 1.4, s3, 1.2, s5, 1.2, s7, s8), where s7 = s8 = ω = 1
(3ν+0.5)

, s3 and s5

are arbitrary, can be set to 1.0 (Sidik et al. 2013). The the equilibrium in the moment

space is meq = M f(eq) which can be defined as
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2.5. LBM WITH MULTIPLE RELAXATION TIME (MRT)

meq =



ρ

−2 ρ+ 3 ρ(u2
x + u2

y)

ρ− 3 ρ(u2
x + u2

y)

ρ ux

−ρ ux

ρ uy

−ρ uy

ρ (u2
x − u2

y)

ρ ux uy



= M f(eq). (2.5.10)

In the practical applications, the MRT combines the evolutions in the moment space

and the velocity space. The collision process is performed in the moment space, but the

streaming step is implemented in the velocity space such as the Lattice Boltzmann BGK

approximation (SRT model). The MRT collision operator is used to obtain more stable

simulations specially for high Re numbers as shown in chapter 3. In addition, a new

MRT model is derived in chapter 7 to simulated breaking dams problems with high

density ratio and high Re numbers which is impossible with SRT model. Therefore,

a numerical comparison is made between SRT and MRT models in chapter 3. This

algorithm with MRT model has same terminate that explained in the SRT model. The

basic algorithm of a MRT can be represented as follows
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2.5. LBM WITH MULTIPLE RELAXATION TIME (MRT)

Initialize fi(x, t) (particle distribution function)

Compute the macroscopic quantities

ρ(x, y) =
∑

i fi(x, t),

u(x, y) =
1

ρ(x, y)

∑
i ci fi(x, t),

transformation matrix M from (2.5.6) and M−1 from (2.5.7)

Transform the fi(x, t) to the moments (m) according to eq.(2.5.3).

Calculate equilibrium moments (m(eq)) from eq.(2.5.10).

Colliding in the moment space:

m∗(x, t) = m(x, t)− S ( m−m(eq) )

Transforming post-collision m∗ back to the post-collision f ∗ :

f∗ = M−1 m∗.

Streaming in the velocity space:

fi(x+ ci∆x, t+ ∆t) = f ∗i (x, t).

Applying boundary conditions. t<maxt

Yes

Stop

No

Figure 2.8: General algorithm for LBM with MRT.
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2.6 Summary

In this chapter, a LBM is presented because of the accurate ability to deal and couple

with various numerical techniques to simulate multiphase fluid flows with single and

multi components, and capability for treating with complex fluid dynamics problems.

Advantages include its ease for coding and parallelisation because of the lattice arrange-

ment from the discretization of lattice Boltzmann equation. The derivation LBE from

the continuous Boltzmann equation is explained with discrete time, velocity and lattice

space. Also, the Navier-Stokes equation is recovered from LBE by using multi-scale

Chapman-Enskog expansion. Several type of boundary condition has been explained

such as bounce back (on-grid and half-way) and periodic boundary conditions. Finally,

the algorithms for LBGK (or SRT) and MRT collision operator are illustrated.
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Chapter 3

Simulation of Lid-Driven Cavity Flow

Using LBM with SRT and MRT

3.1 Introduction

In this chapter, the LB computations in this study are performed for various Reynolds

numbers (Re) with different number of grids to simulate 2D lid driven cavity flow. In

order to study the stability and the accuracy, the numerical results between SRT (with

on-grid and half-way bounce back boundary conditions) and MRT with on-grid bounce

back boundary conditions are implemented. The minimum stream function value and

the total kinetic energy per unit volume are used for the convergence to the steady state

with a fine grid in LBM with SRT and MRT. Also, the numerical results for the veloc-

ity profiles and streamlines are compared with the numerical results from Ghia et al.

(1982). This chapter is organized as follows: Section 3.2 describes the two dimensional

nine velocity lid-driven square cavity flow. In sections 3.3 - 3.4, two functions are used

as a measure to test the steady state of the convergence. Section 3.5 provides numerical

result and discusses the results. Finally, summary of this chapter is given in Section

3.6.
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3.2. LID-DRIVEN CAVITY FLOW

3.2 Lid-Driven Cavity Flow

Lid driven cavity flow is a benchmark problem for computational fluid dynamics. It

consists of a two dimensional viscous flow inside a cavity that is driven by a lid at the

top of the cavity which moves to the right side (Ghia et al. 1982). In LBM a lid velocity

Ulid taken to be 0.1 (in lattice units) to guarantee low Mach number (Ma = Ulid/cs),

where cs = c√
3
,c = ∆x

∆t
and ∆x= ∆t= 1 lattice unit leads Ma equal to 0.1732 (Hou

et al. 1995, Dabbaghitehrani 2013). The other boundaries have no slip boundary con-

ditions for velocity u = (ux, uy) = (0, 0); see Figure (3.1) (Bao & Meskas 2011).

The results obtained from SRT and MRT simulations of the cavity will be compared

with numerical results of Ghia et al. (1982). The computations are performed for the

same (Re) from 100 to 10000 with various number of grids lx = ly = [33, 65, 129, 257, 513].

The results of the simulation need to be scaled. The scaling parameters are:

X =
x

lx
, Y =

y

ly
,

where lx and ly are the number of grids in LBM. The velocity and the time as follow:

U =
u

Ulid
, T =

t ∗ Ulid

lx
,

with

Re =
Ulid lx

ν
,

where

ν = cs
2

[
τ − 1

2

]
∆t,
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3.3. STREAM FUNCTION

is the kinematic viscosity and it is related to the relaxation frequency (ω) of the collision

operator in the LBE (Qian et al. 1992), as follows

ω =
1

τ
=

1

(3v + 0.5)
.

1.0,1 ==

lid
UU

0

0

=

=

v

u

0

0

=

=

v

u

0,0 == vu

0  y  1 

0  x  1 

Figure 3.1: Lid driven cavity flow.

3.3 Stream Function

The stream function is important theoretically for visualising two-dimensional in-

compressible flow problems. The stream function can be used to examine the steady-

state of the problems (Hou et al. 1995). It consists of solving the following equation

dψ =
∂ψ

∂x
dx+

∂ψ

∂y
dy, (3.3.1)

54
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where ψ is the stream function and the velocity component can be define from the

stream function as:

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (3.3.2)

In the current study, the stream function is calculated at lattice points as follows:

∆ψ(i, j) =
1

2
[u(i, j + 1) + u(i, j)] dy − 1

2
[v(i+ 1, j) + v(i, j)] dx, (3.3.3)

and

ψ(i+ 1, j + 1) = ψ(i, j) + ∆ψ(i, j). (3.3.4)

3.4 Kinetic Energy

Kinetic energy is the energy of motion. It is essential for the fluid motion as a

measure when the steady state involves no change in the fluid motion. The kinetic

energy per unit volume is given by (Chen et al. 1992) as:

Kinetic Energy

V olume
=

1

2
ρ u2, (3.4.1)

where u is the velocity and ρ is density then the total kinetic energy is given by:

E =
∑
i,j

1

2
ρ(i, j) [u(i, j)2 + v(i, j)2]dx dy. (3.4.2)
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3.5 Results and Discussion

In this section, the measures of the total kinetic energy per unit volume and the

minimum stream function value are used for testing the convergence to the steady

state of the cavity flow for SRT (on-grid and half-way bounce back boundary condi-

tions) and MRT. The iterative process is used to examine the convergence by kinetic

energy and stream function. On the other hand, the same Re with number of grids

lx, ly = [33, 65, 129, 257, 513] are performed by SRT and MRT. The ψmin(Re, 513)

which represents the errors ψmin at the best lattice region (513× 513) is used to define

the error1 in the simulations. It can be defined as follows

error1 = |ψmin(Re, lx)− ψmin(Re, 513) |, (3.5.1)

with a similar definition for the energy error ( error2 ):

error2 = | energy(Re, lx)− energy(Re, 513) |. (3.5.2)

Furthermore, the results obtained from Lattice Boltzmann simulation of the cavity

will be compared with numerical results of finite difference method (FDM) by Ghia

et al. (1982) for the velocity component and the streamlines.

3.5.1 Convergence of Iterative process

In order to study the convergence of iterative process, different Re and number of

lattice grids are performed for the current simulations with two dimensional lid driven

cavity flow. The measure of convergence of stream function with iterative process (e1)
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3.5. RESULTS AND DISCUSSION

can be written as:

e1 =

∣∣∣∣∣ ψ(n+1)
min − ψ

(n)
min

ψ
(n+1)
min

∣∣∣∣∣ ≤ tol1, (3.5.3)

where n refers to iteration number and the measure of convergence of energy with

iterative process (e2) can be define as follow:

e2 =

∣∣∣∣ E(n+1) − E(n)

E(n+1)

∣∣∣∣ ≤ tol2. (3.5.4)

In the calculations, for each Re that convergence to the steady state was achieved

when both e1 ≤ tol1 and e2 ≤ tol2 was considered. The low value of tol1 = 10−7 and

tol2 = 10−7 was chosen with Re = 100, 400, 1000, 3200, 5000 and 7500 to guarantee

that the current solutions are accurate and with Re = 10000 the tol1 = tol2 = 10−6

was taken. The convergence of ψmin with iterative process is illustrated in Figure (3.2).

It shows the relation between dimensionless time (T ) and the grid sizes. The (T ) from

number of iteration can be found as follows

T =
t ∗ Ulid
lx

, (3.5.5)

t is the number of iterations. From the results, it found that the level of convergence of

ψmin with SRT using half-way bounce back boundary conditions at Re = 100 stay the

same for lx, ly = [33, 65, 129, 257, 513]. At Re = 400, the convergence has become

flatten after (65 × 65), for Re = 1000 and 3200 the line of convergence stays in the

same level after (129×129) and (257×257), respectively. A large number of the lattice

grid required to obtain the convergence flat behaviour for high Re for Re = 5000, 7500

and 10000. Also, the half-way bounce back that obtained is more convergent than on-

grid bounce back boundary conditions by SRT as shown in Figure (3.2).

On the other hand, the results from MRT with Re = 100, 400 and 1000 are found
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that the level of convergence stays the same at all number of the grids. For Re = 3200

and 5000 are convergent at the grids lx, ly = [65, 129, 257, 513], with Re = 7500

is convergent at lx, ly = [129, 257, 513], and with Re = 10000 is stable at lx, ly =

[257, 513] as shown in Figure (3.3).

Furthermore, It was observed that the level of convergences of energy at Re = 100

and 400 stay the same for lx, ly = [33, 65, 129, 257, 513] with half-way bounce back

boundary in SRT. At Re = 1000 the convergence has approximately become flattened

after (65 × 65) and to see the flatten the convergence for Reynolds number from 3200

to 10000 need a large grid as illustrated in Figure (3.4). The convergences of the energy

with half-way bounce back more convergence to the steady state than on-grid bounce

back boundary conditions.

In the MRT, the same results obtained with convergences of energy except forRe =

1000 the level of convergence stays the same at the grids lx, ly = [65, 129, 257, 513]

by comparing with SRT as illustrated in Figure (3.5). Therefore, for high Re numbers

the result that are found from MRT is more stable than SRT.

In addition, from these results the number of iterations required for large grids can

be estimated. For example, (t = 130000) is required to obtain the steady state of ψmin

for Re = 400 with (513 × 513) in the MRT. That corresponds to the dimensionless

time (T = 25.09551) by using eq.(3.5.5). Since the level of convergence stays the

same at Re = 400 and from eq.(3.5.5) the dimensionless time (T = 25.09551) with

(1025×1025) can be guessed. Therefore, the double number of iterations (t = 260000)

is required to get the steady state.
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Figure 3.2: Convergence of ψmin for cavity flow with iterative process.
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Figure 3.3: Convergence of ψmin for SRT and MRT simulation of cavity flow with
iterative process.
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Figure 3.4: Convergence of energy for cavity flow with iterative process.
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Figure 3.5: Convergence of energy for SRT and MRT simulation of cavity flow with
iterative process.

3.5.2 Convergence with Grid

The energy and stream function for finding the error are used as a function of grid.

For SRT (on-grid and half-way bounce back), Figures (3.6-3.9) illustrate the errors of
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ψmin and energy become very small when increasing the grids and they have several

order of accuracy. This means that the accuracy of these functions for SRT (on-grid and

half-way bounce back) with Re = 100, 400 and 1000 have 1st order at the grids from

(lx = 33) to (lx = 129) and 2nd order at the grids from (lx = 129) to (lx = 257). The

SRT does not convergent at small grids with Re = 3200, 5000, 7500 and 10000. On the

other hand, the errors of ψmin and energy for MRT that illustrate in Figures (3.7-3.9)

with Re = 100, 400, 1000, 3200 and 5000 have 2nd order after the grids (65× 65) and

less than 2nd order with the grids (65 × 65). In general, It observed that MRT does

not need a large numbers of grids to estimate the accuracy of these functions as SRT

because the MRT more convergence than SRT.
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Figure 3.6: Error of ψmin with grid for on-grid and half-way bounce back boundaries.
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Figure 3.7: Error of ψmin with grid for SRT and MRT.
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Figure 3.9: Error of energy with grid for SRT and MRT.

3.5.3 Comparison Velocity profiles and Stream functions

The lid driven cavity flow does not have an analytic solution. There are several

studies of cavity flow that proposed by (Bruneau & Jouron 1990), (Botella & Peyret

1998), (Sahin & Owens 2003, Deng et al. 1994) and (Luo et al. 2011, Hou et al. 1995)

using FDM, a Chebyshev collocation method, Finite Volume Method (FVM) and LBM,

respectively which are compared their result with Ghia et al. (1982). So the results that

obtained from SRT and MRT simulations of the cavity will be compared with the nu-

merical results by Ghia et al. (1982) for the velocity component and the streamlines.

The Figures (3.10-3.13) show the velocity profiles along vertical and horizontal

lines passing through the centre of cavity flow at (x = 0.5) with various Re from 100

to 10000 at different grids in SRT (on-grid and half-way bounce back boundary) and

MRT. A comparison of the results for ux-velocity and uy-velocity along these centre

lines are made. The relative errors (RE1), (RE2) and (RE3) are referred to for ux-

velocity and uy-velocity between Ghia et al. (1982) and SRT (on-grid and half-way

bounce back boundary) as well as MRT for Re = 100, 400, 1000, 3200, 5000, 7500 and
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10000 with (513 × 513) as shown in Tables (3.1 - 3.2). It observed that the results of

velocities for high Reynolds number with on-grid bounce back are closer to the results

of Ghia et al. (1982) than half-way bounce back as shown in Tables (3.3 - 3.4), but the

half-way bounce back is more convergent than on-grid bounce back as illustrated in

Figures 3.10 (e,f ) and 3.11 (e,f ).

Also, the results that are found with velocities of MRT are more convergent at

higher Re than SRT as illustrated in Table (3.5 - 3.8) and Figures (3.12-3.13). In gen-

eral, the comparisons of the present work with Ghia et al.(1982) are good. RE1, RE2

and RE3 are defined in which umin is either uxmin velocity or uymin the velocity as

follows

RE1 =

∣∣∣ uGhia
min − uSRT(on-grid )

min

∣∣∣∣∣ uGhia
min

∣∣ , (3.5.6)

RE2 =

∣∣∣ uGhia
min − uSRT(half-way)

min

∣∣∣∣∣ uGhia
min

∣∣ , (3.5.7)

RE3 =

∣∣ uGhia
min − uMRT

min

∣∣∣∣ uGhia
min

∣∣ . (3.5.8)
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Table 3.1: Comparison of the results for ux-velocity along vertical centre line of the
cavity between Ghia et al. (1982) and SRT (on-grid and half-way) as well
as MRT with Re from 100 to 10000.

Re

Ghia et al. (1982) SRT (on-grid ) SRT (half-way) MRT

y uxmin y uxmin y uxmin y uxmin

100 0.4531 -0.21090 0.45313 -0.19767 0.46086 -0.20516 0.45695 -0.19772

400 0.2813 -0.32726 0.28516 -0.31129 0.28278 -0.32483 0.28474 -0.31137

1000 0.1719 -0.38289 0.17578 -0.37214 0.17123 -0.38972 0.17515 -0.37205

3200 0.1016 -0.41933 0.0957 -0.41869 0.09295 -0.44523 0.09491 -0.41898

5000 0.0703 -0.43643 0.07617 -0.4303 0.07339 -0.46308 0.0773 -0.42949

7500 0.0625 -0.43590 0.06055 -0.43541 0.05969 -0.47467 0.06164 -0.43535

10000 0.0547 -0.42735 0.05469 -0.44404 0.05186 -0.48395 0.05382 -0.43542
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Table 3.2: Comparison of the results for uy-velocity along vertical centre line of the
cavity between Ghia et al. (1982) and SRT (on-grid and half-way) as well
as MRT with Re from 100 to 10000.

Re

Ghia et al. (1982) SRT (on-grid ) SRT (half-way) MRT

x uymin x uymin x uymin x uymin

100 0.8047 -0.24533 0.8125 -0.23743 0.81115 -0.24297 0.81115 -0.23729

400 0.8594 -0.44993 0.86133 -0.43173 0.86204 -0.44825 0.86008 -0.43192

1000 0.9063 -0.51550 0.9082 -0.50534 0.909 -0.52801 0.90705 -0.50523

3200 0.9453 -0.54053 0.94727 -0.54564 0.94814 -0.5795 0.94618 -0.54600

5000 0.9531 -0.55408 0.95703 -0.55329 0.95793 -0.59462 0.95597 -0.55238

7500 0.9609 -0.55216 0.96289 -0.55375 0.9638 -0.6024 0.96184 -0.55364

10000 0.9688 -0.54302 0.9668 -0.55391 0.9697 -0.60512 0.96771 -0.55124

Table 3.3: Comparison of RE for ux-velocity between Ghia et al. (1982) and SRT as
well as MRT with Re from 100 to 10000.

RE of ux-velocity Re=100 Re=400 Re=1000 Re=3200 Re=5000 Re=7500 Re=10000

RE1 0.0627 0.0488 0.0281 0.00153 0.0141 0.0011 0.0391

RE2 0.0272 0.0074 0.01784 0.06177 0.06106 0.0889 0.13244

RE3 0.06249 0.04855 0.02831 0.00083 0.01581 0.00126 0.0189
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Table 3.4: Comparison of RE for uy-velocity between Ghia et al. (1982) and SRT as
well as MRT with Re from 100 to 10000.

RE uy-velocity Re=100 Re=400 Re=1000 Re=3200 Re=5000 Re=7500 Re=10000

RE1 0.03220 0.04045 0.01971 0.0095 0.0014 0.0029 0.02

RE2 0.00962 0.00373 0.0247 0.0721 0.07317 0.0919 0.1144

RE3 0.03277 0.04001 0.01992 0.01012 0.00307 0.00268 0.01514

Table 3.5: Comparison of the results for ux-velocity along vertical centre line of the
cavity between Ghia et al. (1982) and SRT as well as MRT with Re from
100 to 7500 at lx = 129.

Re

Ghia et al. (1982) SRT MRT

y uxmin y uxmin y uxmin

100 0.4531 -0.21090 0.45276 -0.19811 0.45276 -0.19811

400 0.2813 -0.32726 0.2874 -0.31228 0.2874 -0.31228

1000 0.1719 -0.38289 0.17717 -0.374175 0.17717 -0.374241

3200 0.1016 -0.41933 — — 0.09843 -0.42364

5000 0.0703 -0.43643 — — 0.0748 -0.43281

7500 0.0625 -0.43590 — — 0.06693 -0.44416
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Table 3.6: Comparison of the results for uy-velocity along horizontal centre line of the
cavity between Ghia et al. (1982) and SRT as well as MRT with Re from
100 to 7500 at lx = 129.

Re

Ghia et al. (1982) SRT MRT

x uymin x uymin x uymin

100 0.8047 -0.24533 0.80709 -0.23931 0.80709 -0.23929

400 0.8594 -0.44993 0.8622 -0.43393 0.8622 -0.43391

1000 0.9063 -0.51550 0.90157 -0.50749 0.90157 -0.50756

3200 0.9453 -0.54053 — — 0.94094 -0.55079

5000 0.9531 -0.55408 — — 0.94882 -0.55584

7500 0.9609 -0.55216 — — 0.95669 -0.56253

Table 3.7: Comparison of RE for ux-velocity between Ghia et al. (1982) and SRT as
well as MRT with Re from 100 to 7500 at lx = 129.

RE of ux-velocity Re=100 Re=400 Re=1000 Re=3200 Re=5000 Re=7500

RE1 0.06065 0.04577 0.02276 — — —

RE2 0.06065 0.04577 0.02259 0.01028 0.00830 0.01895

Table 3.8: Comparison of RE for uy-velocity between Ghia et al. (1982) and SRT as
well as MRT with Re from 100 to 7500 at lx = 129.

RE of uy-velocity Re=100 Re=400 Re=1000 Re=3200 Re=5000 Re=7500

RE1 0.02454 0.03556 0.01554 — — —

RE2 0.02462 0.03556 0.01540 0.01898 0.00318 0.18781
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Figure 3.10: Velocity profiles show the ux-velocity distribution along a vertical line
passing through the centre of cavity (x = 0.5) at different Re for bounce
back boundary by SRT are compared with Ghia et al. (1982).
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Figure 3.11: Velocity profiles show the uy-velocity distribution along a horizontal line
passing through the centre of cavity (y=0.5) at different Re for bounce
back boundary by SRT are compared with Ghia et al. (1982).
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Figure 3.12: Velocity profiles show the ux-velocity distribution along a vertical line
passing through the centre of cavity (x = 0.5) at different Re for MRT
are compared with Ghia et al. (1982).
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Figure 3.13: Velocity profiles show the uy-velocity distribution along a vertical line
passing through the centre of cavity (x = 0.5) at different Re for MRT
are compared with Ghia et al. (1982).
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In Figure (3.14), a comparison of the streamline contours for cavity flow between

the present work (SRT and MRT) and Ghia et al. (1982) was made with various Reynolds

number from 100 to 10000 at (129×129), (257×257) and (513×513) grids. The stream

function value ψ for Ghia et al. (1982) along the contours are listed in Table (3.9). The

range of streamline values are taken from the minimum value -0.11 to the maximum

value 0.01 with the number of contours 12 for Re = 100 at (129 × 129), from the

minimum value -0.12 to the maximum value 0.01 with the number of contours 13 for

Re = 400 at (129×129),Re = 400, 1000 and 3200 at (257×257) andRe = 5000, 7500

and 10000 at (513× 513).

It observed that the streamline patterns agree with Ghia et al. (1982) as shown in

Figure (3.14), when increasing Reynolds number leads to that the vortex for streamlines

trend toward to the centre and created three vortices at bottom right corner, bottom left

corner and top left corner, respectively.

Also, the result of the simulation at Re = 10000 is created a second small vortex

in the bottom right corner. In addition, the minimum stream function value is predicted

a slightly better with half-way compared than on-grid bounce back boundary in SRT

as well as MRT which shown in Table (3.10) that have a good match with Ghia et al.

(1982).

Table 3.9: Streamlines value of Ghia et al. (1982).

Contour letter b c d e f g h i j k l m

Value of ψ -1×10−7 -1×10−5 -1×10−4 -0.01 -0.03 -0.05 -0.07 -0.09 -0.1 -0.11 -0.115 -0.1175

Contour number 0 1 2 3 4 5 6 7 8 9 10

Value of ψ 1×10−8 1×10−7 1×10−6 1×10−5 5×10−5 1×10−4 2.5×10−4 5×10−4 1×10−3 1.5×10−3 3×10−3
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Table 3.10: Comparison of cavity flow of the centre of streamline for Re from 100 to
10000 between Ghia et al. (1982) and SRT as well as MRT.

Re

Ghia et al. (1982) SRT(on-grid ) SRT(half-way) MRT

ψmin x y ψmin x y ψmin x y ψmin x y

100 -0.10342 0.6172 0.7344 -0.09594 0.61133 0.73242 -0.0992 0.61328 0.73632 -0.09557 0.61133 0.73242

400 -0.11391 0.5547 0.6055 -0.10823 0.55469 0.60352 -0.11223 0.55273 0.60352 -0.10786 0.55469 0.60563

1000 -0.11793 0.5313 0.5625 -0.11377 0.52930 0.5625 -0.11864 0.52734 0.5625 -0.11332 0.52930 0.5625

3200 -0.12038 0.5165 0.5469 -0.11587 0.51563 0.53711 -0.1220 0.51563 0.53906 -0.11583 0.51563 0.53711

5000 -0.11897 0.5117 0.5352 -0.11686 0.51367 0.53320 -0.12509 0.51172 0.53320 -0.11501 0.51367 0.53320

7500 -0.11998 0.5117 0.5322 -0.11154 0.51172 0.52930 -0.12195 0.50977 0.53125 -0.11113 0.51172 0.52930

10000 -0.11973 0.5117 0.5333 -0.10894 0.56977 0.52539 -0.12029 0.50977 0.52734 -0.10898 0.50977 0.52734
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Figure 3.14: Streamlines for Re = 100, 400, 1000, 3200, 5000, 7500 and 10000.
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3.6 Summary

In this chapter, two cases of relaxation times the SRT (on-grid and half-way) bounce

back boundary conditions and the MRT with on-grid bounce back boundary condition

for LBM were tested to simulate 2D cavity flow. In the computations, the stream func-

tion and energy were used as measures to study the convergence to steady state and

estimate the error for Re from 100 to 10000 at lx, ly = [33, 65, 129, 257, 513] as shown

in Figures (3.2 - 3.9). For these Re, the convergence to steady state was achieved when

both e1 ≤ tol1 and e2 ≤ tol2. The low value of tol1 = tol2 = 10−7 was chosen at

Re = 100, 400, 1000, 3200, 5000 and 7500 to guarantee the accurate solutions and for

Re = 10000 the tol1 = tol2 = 10−6 was chosen with SRT and MRT. In general, MRT

is more stable than SRT especially with ψmin at Re = 1000.

The behaviours of the current simulation has 1st order for small grids and 2nd or-

der for large grids of accuracy in SRT while MRT with Re = 3200 and 5000 has 2nd

order as shown in Figures (3.6 - 3.9). On the other hand, The comparisons are made

between current numerical results (for the velocity profiles and streamlines) and the

numerical results from Ghia et al. (1982). In SRT with half-way bounce back is more

convergent than on-grid bounce back as illustrated in cases e and f as shown in Figures

(3.10-3.11) and they are close to the results of Ghia et al. (1982) as illustrated in Fig-

ures (3.10-3.13). From the obtained results, it found that here is not much difference

between SRT and MRT and they are close to the results of Ghia et al. (1982) for ve-

locity profiles except MRT is more stable than SRT as illustrated in Tables (3.7 - 3.8).

Also, the minima of the stream function using SRT agree slightly better with Ghia et al.

(1982) than MRT. Figure (3.14) and Tables (3.10) shows the streamlines have a good

match with Ghia et al. (1982).
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Chapter 4

Multiphase for LBM with high den-

sity ratios

4.1 Introduction

Modelling of multiphase fluid flows has been studied and researched with various

LB techniques as reviewed in chapter 1. The multiphase flows LB approach with high

density ratios is presented in this chapter. The model suggested by Banari et al. (2014)

will be introduced by defining three particle distribution functions. The interface mov-

ing between fluids is captured by the Cahn-Hilliard (CH) equation which is related to

free energy model as shown in chapter 1. A unified LBM approach is used with sep-

arate formulations for the phase field, the pressureless velocity of Navier-Stokes (NS)

equations and the corrected velocity field (found by solving a Poisson equation).

In this chapter, Section 4.2 introduces the phase separation using the order param-

eters with the phase-field model. Section 4.3, describes the three three particle distri-

bution functions of the two fluid flows that represent the CH equation, pressureless NS

equation and Poisson equation for correction of the velocity. Section 4.4, illustrates the

algorithm of multiphase LBM with SRT. Section 4.5, The Chapman-Enskog expansion

is presented for Solving multiphase flow. Finally, a summary of this chapter is given in

Section 4.6.
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4.2 Phase-field models

The main difficulties of multiphase simulations occur when modelling the interfa-

cial dynamics between various phases. The phase-field models are the best of several

models that represent the diffuse-interface models for multiphase flows. The key con-

cept of the diffuse-interface models is to approximate the sharp-interfaces with non-

zero thickness at the interface which guarantee smooth density, viscosity, and the phys-

ical properties for the multiphase (Fakhari et al. 2017).

The features of the phase-field methods constitute an easy technique to implement

for the interface and can be easily applied to three spatial dimensions according to

Jacqmin (1999). On the contrary, with tracking force models (Tryggvason et al. 2001),

it needs the obligation to deal with topological variations, it does not maintain mass

or volume and it demands the use of moving grids which might cause computational

difficulties in tracking interfaces in three dimensions (Jacqmin 1999).

In phase-field model, following Banari et al. (2014), the total FE function can be

written as a function of the order parameter φ(ζ) to separate two phases of the fluid and

the ζ is refer to the coordinate (Cahn & Hilliard 1958, Penrose & Fife 1990):

F =

∫
Ω

ef (φ,∇φ) dΩ, (4.2.1)

where Ω is the domain occupied by the system and the free energy density (ef ) for

two-phase an isothermal system proposed by Cahn & Hilliard (1958) as,

ef =
k

2
|∇φ|2 + βΨ(φ) , (4.2.2)

where k
2
|∇φ|2 represents the gradient of FE which defines the surface energy at the

interface region, β and k are parameters which depend on the surface tension coefficient

σ1 2 and thickness of the interface D , and Ψ(φ) is bulk FE density which has a double-
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well form (Jacqmin 1999),

Ψ(φ) = (φ− φ1)2 (φ− φ2)2 , (4.2.3)

with φ1 and φ2 are constant minima value that refer to fluid A and fluid B, respectively.

The rate of the variation of the FE F with respect of the order parameter Ψ introduces

the chemical potential µφ (Cahn & Hilliard 1958, Jacqmin 1999, Badalassi et al. 2003),

and then φ satisfied Euler-Lagrange equation (Penrose & Fife 1990) as follows:

µφ =
δF
δ φ

= β Ψ́− k∇2φ = 4 β (φ− φ0)(φ− φ1) (φ− φ2)− k∇2φ , (4.2.4)

where φ0 =
(φ1 + φ2)

2
. The interface profile at the equilibrium state (along the ζ

coordinate) obtained by minimizing F , which means µφ = 0, yields

k
d2φ

dζ2
= β

dΨ

dφ
, (4.2.5)

by integrating both side with respect to ζ , yields

k
(∂φ
∂ζ

)2

= 2 βΨ , (4.2.6)

which can be solved for φ as

φ(ζ) =
(φ1 + φ2)

2
+

(φ1 − φ2)

2
tanh

(2 ζ

W

)
, (4.2.7)

where

W =
4

(φ1 − φ2)

√
k

2 β
, (4.2.8)
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is the thickness of the interface (Rowlinson & Widom 1982, Jacqmin 1999, Badalassi

et al. 2003) and they estimated the surface tension coefficient in a plane interface as,

σ1 2 = k

∫ ∞
−∞

(∂φ
∂ζ

)2

dζ . (4.2.9)

By integrating eq. (4.2.9) for φ with respect to ζ:

σ1 2 =
2 k

3

(φ1 − φ2)2

W
=

(φ1 − φ2)3

6

√
2 k β. (4.2.10)

The diffusive interface motion can be represented by solving the CH equation as fol-

lowing the strategy of Jacqmin (1999), Banari et al. (2014)

∂φ

∂t
+∇ .(φu) = M ∇2 µφ , (4.2.11)

whereM is a diffusion parameter named as mobility coefficient. The advection and dif-

fusion of the interface movement appear in the left and right hand side of eq.(4.2.11),

respectively. The β and k parameters can be computed from eqs. (4.2.8) and (4.2.10)

which are determined by the interface thickness W and the coefficient of surface ten-

sion (σ1 2) (Banari et al. 2014). Three parameters were introduced to determine W and

σ1 2 which is one considerable difference with respect to Inamuro et al.’s approach (In-

amuro et al. 2004). Furthermore, the CH equation in their model included the pressure

tensor Pαβ term which is different than that suggested from (Banari et al. 2014). In the

next section, the probability distribution functions with multiphase LBM in SRT will

be presented to recover the CH equation.
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4.3 Two phase LBM

In this section, the two phase LBM with SRT collision step will be introduced for

three different probability distribution functions according to Banari et al. (2014) and

then extending that to MRT collision step and using in chapters (7 - 8).

4.3.1 LBM for phase separation by Cahn-Hilliard equation

In order to solve the CH equation in eq.(4.2.11), the probability distribution func-

tions (fi(x, t)) is proposed for phase parameter (φ) according to the classical LBM

approach as follows (Swift et al. 1996, Inamuro et al. 2004, Fakhari & Rahimian 2010,

Banari et al. 2014).

fi(x + ci∆t, t+ ∆t)− fi(x, t) = −∆t

τf

(
fi(x, t)− f (eq)

i (x, t)
)
, (4.3.1)

where τ́f = τf/∆t is the dimensionless relaxation time and the equilibrium distribution

functions (f
(eq)
i ) can be written as

f
(eq)
i = Hi φ+ vi

M

τf − 1
2
∆t

µφ + φωi

[
(ciα.u)

c2
s

+
(ciα.u)2

2c4
s

− u2

2c2
s

]
, (4.3.2)

where ciα is the velocity with index α = (x, y) = (1, 2), the weight function (ωi) is

defined in eq.(2.2.27) and

vi =


−5
3 c2
, for i = 0,

3wi
c2
, for i = 1, 2, · · · , 8 ,

(4.3.3)
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with

Hi =


1, for i = 0,

0, for i = 1, 2, 3, · · · , 8 ,
(4.3.4)

are weight functions defined according to (Swift et al. 1996, Inamuro et al. 2004, Banari

et al. 2014). The zero, first and second order moments of fi for the Phase-field models

can be written as

∑
i

fi = φ , (4.3.5)

∑
i

ciα fi = φuα , (4.3.6)

∑
i

ciα ciβ fi =
M

τf − 1
2
∆t

Mφ δαβ + φuα uβ . (4.3.7)

The density ρ can be computed as function for φ values according to cut-off at the

interface as defined below by Inamuro et al. (2004):

ρ(φ) =


ρ2, φ < φ2

(ρ1−ρ2)
2

[
sin( φ−φ0

φ1−φ2π) + 1
]
, φ2 6 φ 6 φ1

ρ1, φ > φ1,

(4.3.8)

82



4.3. TWO PHASE LBM

or use the linear interpolation to differ smoothly across the interface as pointed out from

Banari et al. (2014):

ρ(φ) =


ρ2, φ 6 φ2

(φ−φ2)
(φ1−φ2)

(ρ1 − ρ2) + ρ2, φ2 < φ < φ1

ρ1, φ > φ1,

(4.3.9)

where ρ1 and ρ2 are represent the densities of the two phase.

Same technique is used to compute the kinematic viscosity as a function of density,

hence in the current multiphase LB study the dynamic viscosity or vice versa is deter-

mined as

ν(ρ) =
(ρ− ρ2)

(ρ1 − ρ2)
(ν1 − ν2) + ν2 and µ(ρ) = ρ(φ) ν(ρ). (4.3.10)

4.3.2 LBM for Pressure-less Navier-Stokes equation

Nadiga & Zaleski (1995) pointed out that the mass and momentum conservation

equations for ideal gases such as the Navier–Stokes equations with absence of force

terms can be written as

∂ρ

∂t
+
∂ρuα
∂xα

= 0, (4.3.11)

ρ
{∂uα
∂t

+ uβ
∂uα
∂xβ

}
=
∂σ

(ig)
αβ

∂xβ
, (4.3.12)

where ρ is a function of φ in two phase model and σ(ig)
αβ is the stress of ideal-gas (Lee

& Lin 2005)

σ
(ig)
αβ = −P δαβ + µ

(∂uα
∂xβ

+
∂uβ
∂xα

)
, (4.3.13)
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where the first term is the thermodynamic pressure and the second term is the viscous

stress tensor σviscα β which includes the dynamic viscosity µ of the two fluid system.

In this model, the essential concept is represented by adding the force term to the

NS equation which is obtained thermodynamically from the CH equation free energy

(Nadiga & Zaleski 1995). That means the eq. (4.3.12) changes to non-ideal form after

adding the surface tension force

ρ
{∂uα
∂t

+ uβ
∂uα
∂xβ

}
=
∂σαβ
∂xβ

, (4.3.14)

where σαβ contains three terms (Lee & Lin 2005)

σαβ = −P δαβ + σviscα β + σstα β , (4.3.15)

and with the gradient of the order parameter of σstα β takes the form

σstα β = k
{(1

2

∂φ

∂xγ

∂φ

∂xγ
+ φ

∂2φ

xγ xγ

)
δαβ −

( ∂φ
∂xα

∂φ

∂xβ

)}
, (4.3.16)

Lee & Lin (2005) developed the pressure P effect by adding new terms P new to pre-

serve the equipoise between the pressure and the σstα β term which leads to improve the

stability of the numerical computations (Banari et al. 2014) as

P newδαβ = Pδαβ + k
(1

2

∂φ

∂xγ

∂φ

∂xγ
− φ ∂2φ

xγ xγ

)
δαβ , (4.3.17)

by substitution of eq.(4.3.17) in eq.(4.3.15), the new form of σαβ is obtained (Banari

et al. 2014)

σαβ = −P newδαβ + µ
(∂uα
∂xβ

+
∂uβ
∂xα

)
+ k

{ ∂φ
∂xγ

∂φ

∂xγ
δαβ −

∂φ

∂xα

∂φ

∂xβ

}
, (4.3.18)
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which can deal with large force of surface tension and also obtain smooth differ at

interfaces for two fluid flows.

The mass and momentum in eqs. (4.3.11) and (4.3.14) with the simplest form of

the force term (Bi = ωiciαBα/c
2
s) as suggested by (He et al. 1997, Buick & Greated

2000) can be recovered from the particle distribution function (gi(x, t)) as

gi(x + ci∆t, t+ ∆t)− gi(x, t) = −∆t

τg
(gi(x, t)− g(eq)

i (x, t)) + ∆t Bi, (4.3.19)

where τ́g = τg/∆t is the dimensionless relaxation time. Banari et al. (2014) claimed

that the classical LBM for the multiphase model is limited to low density ratios. The

equilibrium distribution function (g
(eq)
i ), can be defined as

g
(eq)
i = ωi

[
1 +

(ciα.u)

c2
s

+
(ciα.u)2

2c4
s

− u2

2c2
s

]
+ ωi k Gαβciαciβ − vi

k

2
|∇φ|2, (4.3.20)

where

Gαβ =
9

2 c4

(
∂φ

∂xα

∂φ

∂xβ

)
− 9

4 c4

(
∂φ

∂xγ

∂φ

∂xγ

)
δαβ, (4.3.21)

is the same formula presented by Swift et al. (1996), Inamuro et al. (2004) and Banari

et al. (2014) that can be written as

G =
9

2c4

G1 1 G1 2

G2 1 G2 2

 , (4.3.22)

where

G1 1 = −G2 2 =
1

2

[
(
∂φ

∂x1

)2 − (
∂φ

∂x2

)2

]
and G1 2 = G2 1 =

∂φ

∂x1

∂φ

∂x2

.
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The particle distribution function (gi(x, t)) should satisfy the following constraints:

∑
i

g
(eq)
i = ρ , (4.3.23)

∑
i

ciαg
(eq)
i = ρ uα , (4.3.24)

∑
i

ciα ciβ g
(eq)
i = ρ uα uβ + k

(
∂φ

∂xα

∂φ

∂xβ

)
+

(
ρ c2

s − k
∂φ

∂xγ

∂φ

∂xγ

)
δαβ , (4.3.25)

In order to improve the multiphase LB simulations for high density ratios, the bulk

density is removed from eqs. (4.3.23), (4.3.23) and (4.3.25) as suggested by Inamuro

et al. (2004) and based on Banari et al. (2014) model. This leads to absence of the

gradient of the pressure which known as pressureless NS equations. The equilibrium

distribution function proposed by Banari et al. (2014) is

g
(eq)
i = ωi

[
(ciα.u∗)
c2
s

+
(ciα.u∗)2

2c4
s

− u∗2

2c2
s

]
+ ωi

k

ρ
Gαβciαciβ − vi

k

2ρ
|∇φ|2, (4.3.26)

The new constraints for the zero, first and second order moments of (g
(eq)
i ) with absence

the pressure can be define as

∑
i

g
(eq)
i = 0 , (4.3.27)
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∑
i

ciαg
(eq)
i = u∗α , (4.3.28)

∑
i

ciα ciβ g
(eq)
i = u∗α u

∗
β+

k

ρ

(
∂φ

∂xα

∂φ

∂xβ

)
− k

ρ

(
∂φ

∂xγ

∂φ

∂xγ

)
δαβ , (4.3.29)

where u∗α refers to the pressureless velocity. In general, the pressure value in classi-

cal LBM is computed from zero order moment of g(eq)
i in (4.3.23) and because this

constraint is changed in the improved multiphase LBM models leads to the absence of

density in (4.3.27). The second order moment of g(eq)
i in eqs.(4.3.29) is different than

Banari et al. (2014) equation which is without c2
s as shown by details in the appendix

B.1.

Chapman & Cowling (1970) proposed the Chapman-Enskog expansion for LBE to

recover the NS equation. This expansion is used for LBE with a suitable equilibrium

distribution function as defined in eq.(4.3.19) and eqs.(4.3.26), respectively. So the

resulting (pressureless) equation can be written as

∂u∗α
∂t

+ u∗β
∂u∗α
∂xβ

=
k

ρ

∂

∂xβ

{( ∂φ
∂xγ

∂φ

∂xγ

)
δαβ −

( ∂φ
∂xα

∂φ

∂xβ

)}

+
∂

∂xβ

{µ
ρ

(∂u∗α
∂xβ

+
∂u∗β
∂xα

)}
− µ

(∂u∗α
∂xβ

+
∂u∗β
∂xα

) ∂

∂xβ

1

ρ
+
Bα

ρ
, (4.3.30)

From the definition of pressureless surface tension (σ∗αβ), yields

σ∗αβ =
k

ρ

{( ∂φ
∂xγ

∂φ

∂xγ

)
δαβ −

( ∂φ
∂xα

∂φ

∂xβ

)}
+
{µ
ρ

(∂u∗α
∂xβ

+
∂u∗β
∂xα

)}
. (4.3.31)

According to Banari et al. (2014), the previous equation and eq.(4.3.19) with the sim-
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ple body force (Bα) which was defined from (Buick & Greated 2000) the LBM for

multiphase for the pressureless velocity takes the follow form,

gi(x + ci∆t, t+ ∆t)− gi(x, t) = −∆t

τg
(gi(x, t)− g(eq)

i (x, t))

+
3

c2
ωi ciα ∆t

{Bα

ρ
− σvisc,∗αβ

∂

∂xβ

(
1

ρ

)}
, (4.3.32)

where

σvisc,∗αβ = µ
(∂u∗α
∂xβ

+
∂u∗β
∂xα

)
, (4.3.33)

is viscous stress tensor with u∗ and body force Bα = ρ gα .

4.3.3 Correction of velocity field based on a Poisson equation.

As in Inamuro et al. (2004), Banari et al. (2014) presented the diffusive Poisson

equation to correct the pressureless velocity u∗ which is computed from first order mo-

ment of gi(x, t) at each time step in the pressureless NS eq.(4.3.30). For fully solving

the NS equation, a new particle distribution function hi(x, t) is presented to calculate

the pressure term and obtain the proper velocity field u by adding (∆u) term to pres-

sureless velocity u∗ (Banari et al. 2014). The Poisson equation according to (Inamuro

et al. 2004) defined as,

∇. (∆t∇p
ρ

) = ∇.u∗ , (4.3.34)

which is recovered from pressureless velocity u∗ in order to satisfy the continuity equa-

tion

∇.u = 0 . (4.3.35)
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The pressure term in the Poisson eq.(4.3.34) equivalents to the correction part of

the pressureless velocity u∗ as

∆u ∼= −
∆t∇p
ρ

, (4.3.36)

and

u = u∗ + ∆u. (4.3.37)

Many different method are available for discretization of the Poisson equation such

as Finite Element and Finite Difference Methods (Golberg 1995). Here in the current

study follow Banari et al. (2014), who solved the equation by using LBM. So the third

particle distribution function hi(x, t) presented for Poisson equation as

hni (x + ci∆t, t+ ∆t)− hni (x, t) = −∆t

τh

(
hni (x, t)− h(eq,n)

i (x, t)
)

−∆t ωi (∇.u∗(t)) , (4.3.38)

with suitable equilibrium distribution function

h
(eq,n)
i = ωi

pn(x, t)
ρo c2

, (4.3.39)

where n refer to the iteration which obtain the stable solution, ρo the reference density

and

τh = ∆t

(
1

2
+
ρo c

2

ρ c2
s

)
, (4.3.40)
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is the relaxation time. According to Banari et al. (2014) definition of LBM parameters

for the length scale (λx) and mass scale (λm) with of ρ́ = ρ λ3
x/λm and ρ́0 = ρ0 λ

3
x/λm.

It observed that in the current study different form of the dimensionless relation time

τ́h = τh/∆t than Banari et al. (2014) form which define as

τ́h =
1

2
+
ρ0 c

2

ρ c2
s

=
1

2
+

3 ρ́0

ρ́
, (4.3.41)

where ρ0 is the reference density, the non-dimensional form of ρ0 which is (ρ́0) equal

to 1 for simplicity.

The zero order moments of the particle distribution function h(n)
i is used to compute

the pressure as defined below

∑
i

h
(n)
i =

pn+1

ρ0 c2
, (4.3.42)

where ρ0 = 1 (in lattice unit), ρ́1 = ρ1/ρ0 and ρ́2 = ρ2/ρ0. The iterative process is used

until stable computation is achieved. Then use the accurate value of pressure which

leads to the obtain the pressure gradient and correct the velocity.

4.4 The Algorithm of Multiphase LBM

The algorithm of multiphase LBM with high density ratio is illustrated in Figure

(4.1). In general, the definitions and scale the parameters is used in each simulation

according the domain and geometry. After the boundary of the fluid flow is known, the

particle distribution functions fi(x, t) , gi(x, t) and hni (x, t) at the boundary is specified

such as bounce back or a periodic boundary condition. The boundary with respect to

hi(x, t) that represented by a correction of velocity with pressure Poisson equation and
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according to NS equation, as supposed from Banari et al. (2014), can be defined as

∂p

∂y
= −ρ g + µ

(∂2uy
∂x2

+
∂2uy
∂y2

)
, (4.4.1)

the Taylor expansion for FDM used to define the pressure at the top boundary (x = xn),

as follow

∂p(xn, yn, t)

∂y
∆x = p(xn, yn, t)− p(xn, yn −∆x, t) , (4.4.2)

which is simplified from eq.(4.4.1) to

p(xn, yn, t) = p(xn, yn −∆x, t)− ρ g + µ
(∂2uy
∂x2

+
∂2uy
∂y2

)
. (4.4.3)

Thus the unknown hi(xn, t) can be computed from their equilibrium distribution func-

tion h(eq)
i (xn, t) as

hi(xn, t) = h
(eq)
i (p(xn, t)) . (4.4.4)

When initialize all values such as time, phases, densities, radius, domain, length,

velocity, viscosity and etc. From the zero order moment of distribution function fi(x, t),

the phases that represented by the order parameter is computed from eq.(4.3.5). By

defining the order parameter, the densities of the fluid can be computed smoothly across

interface according to the linear interpolation of the order parameters in eq.(4.3.8) or

(4.3.9).

In the meantime from the first order moment of the equilibrium distribution function

geqi (x, t), the pressureless velocity (u∗) is computed according to eq.(4.3.28). In order

to correct this velocity (u∗), the third particle distribution function is defined hi(x, t) for

91



4.4. THE ALGORITHM OF MULTIPHASE LBM

pressure Poisson equation which is the pressure computed from (4.3.42) by an iterative

process as

∣∣∣∣ p(n+1) − p(n)

p(n)

∣∣∣∣ ≤ tol, (4.4.5)

where the tolerance tol = 10−5.

The central finite difference approximations of first and second order are used ac-

cording to Lee & Lin (2005) and Banari et al. (2014) to calculate the first and sec-

ond derivatives with respect to space (xα) for eqs.(4.2.4), (4.3.21), (4.3.26), (4.3.32),

(4.3.33) and (4.3.36), as shown below

∂φ

∂xα
=

8∑
i=0

ωi ci
φ(x + ci∆t)− φ(x− ci∆t)

2c2
s ∆t

, (4.4.6)

and

∂2φ

∂x2
α

=
8∑
i=0

ωi
φ(x + ci∆t)− 2φ(x) + φ(x− ci∆t)

c2
s ∆t2

, (4.4.7)

where α refer to 1, 2 -coordinate (in the x or y-directions) in the D2Q9 lattice model

and these derivatives can be used for any related variables. For more details for the

computation see appendix C.
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Definition and the

scale variables.

count=0

Initialize all val-

ues and variables

count<maxt

count=count+1

mod(count,dt-

print)=0

Compute:

1) fi for the next time step from eq.(4.3.2).

2) gi for the next time step from eq.(4.3.32).

3) φ=
∑

ifi.

4) φ derivs:

∂φ
∂x ,

∂φ
∂y ,

∂2φ
∂x∂y ,

∂2φ
∂x2

, ∂
2φ
∂y2

, ∂
2φ
∂x2

+ ∂2φ
∂y2

, |∇φ|2.

5) u∗:u∗α=
∑

iciα gi.

6) ρ, ν and µ from eqs.(4.3.9) and (4.3.10).

7) ρ and u∗ derivs:∂u
2
x

∂x ,
∂u2x
∂y ,

∂u2y
∂x ,

∂u2y
∂y ,

∂ρ
∂x ,

∂ρ
∂y .

8) h and u from eqs.(4.3.38) and (4.3.34)

according to the iterative process as is defined

in eqs.(4.4.5)

write output

and stop

Print

time step

No

Yes

Yes

No

Figure 4.1: The Algorithm for Multiphase LBM.
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4.5 Chapman-Enskog Expansion for Solving Multiphase Flow

4.5.1 Chapman-Enskog expansion for recovery pressure-less Navier-Stokes

equations

In this section, It observed that the LBGK equation

gi(x + ci∆t, t+ ∆t)− gi(x, t) = −∆t

τg
(gi(x, t)− g(eq)

i (x, t)) + ∆t Bi, (4.5.1)

with the equilibrium distribution function of D2Q9

g
(eq)
i = ωi

[
(ciα.u∗)
c2
s

+
(ciα.u∗)2

2c4
s

− u∗2

2c2
s

]
+ ωi

k

ρ
Gαβciαciβ − vi

k

2ρ
|∇φ|2, (4.5.2)

leads to the macroscopic (pressureless) Navier-Stokes equations

∂u∗α
∂t

+u∗β
∂u∗α
∂xβ

=
k

ρ

∂

∂xβ

{(
∂φ

∂xγ

∂φ

∂xγ

)
δαβ−

(
∂φ

∂xα

∂φ

∂xβ

)}
+

∂

∂xβ

{
µ

ρ

(
∂u∗α
∂xβ

+
∂u∗β
∂xα

)}

− µ
(
∂u∗α
∂xβ

+
∂u∗β
∂xα

)
∂

∂xβ

1

ρ
+
Bα

ρ
, (4.5.3)

where

µ

ρ
= ν = c2

s

(
τ́g −

1

2
∆t

)
. (4.5.4)

Full details are given in appendix B.1.
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4.5.2 Chapman-Enskog expansion for satisfying the Cahn-Hilliard equa-

tion

Here the LBGK equation

fi(x + ci∆t, t+ ∆t)− fi(x, t) = −∆t

τf

(
fi(x, t)− f (eq)

i (x, t)
)
, (4.5.5)

with the equilibrium distribution function of D2Q9

f
(eq)
i = Hi φ+ vi

M

τf − 1
2
∆t

Mφ + φωi

[
(ciα.u)

c2
s

+
(ciα.u)2

2c4
s

− u2

2c2
s

]
, (4.5.6)

recovers the diffusive interface motion modeled by the Cahn-Hilliard (CH) equation,

∂φ

∂t
+∇ .(φu) = M ∇2Mφ , (4.5.7)

where M diffusive is the coefficient ( Mobility) and

Mφ = β Ψ́− k∇2 φ , (4.5.8)

is the chemical potential, where β and k are parameters which depend on the surface

tension coefficient σ1 2 and thickness of the interface D, Ψ is related to bulk FE density

and ∇φ is the energy gradient. Full details are given in appendix B.2.
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4.5.3 Chapman-Enskog expansion for solving pressure Poisson equa-

tion

The Chapman-Enskog expansion is applied to the LB equation for solving pressure

Poisson equation

hni (x + ci∆t, t+ ∆t)− hni (x, t) = −∆t

τh

(
hni (x, t)− h(eq,n)

i (x, t)
)

−∆t ωi (∇.u∗(t)) , (4.5.9)

where n is n − th iteration for the pressure, with the equilibrium distribution function

of the D2Q9 lattice model

h
(eq,n)
i = ωi

pn(x, t)
ρo c2

, (4.5.10)

where

τh = ∆t

(
1

2
+
ρo c

2

ρ c2
s

)
. (4.5.11)

This leads to

∇. (∆t∇p
ρ

) = ∇.u∗ , (4.5.12)

the Poisson equation. For more details see appendix B.3.
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4.6 Summary

In this chapter, a single relaxation time multiphase LBM model was introduced.

Following the Banari et al. (2014) model, the motion of the interface between fluids

is modelled by solving the Cahn-Hilliard equation based on free energy density with

LBM. Incompressibility of the velocity fields in each phase is imposed by using a pres-

sure correction scheme. A unified LBM approach is used with separate formulations for

the phase field, the pressure-less Navier-Stokes (NS) equations and the pressure Pois-

son equation required for correction of the velocity field. Also, the implementation of

the algorithm for multiphase in SRT LBM is illustrated. Finally, the Chapman-Enskog

expansion for solving multiphase LBM is derived.
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Chapter 5

Verifications of Multiphase LBM

5.1 Introduction

In order to improve the multiphase LB approach proposed by Banari et al. (2014) is

extended from SRT to the MRT. This development improves the stability of the com-

putations with high Re. In this chapter, it should be apply the simulations that is used

in the literature with SRT such as two fluid Poiseuille flow, static and a rising bubble

flows in order to investigate the codes of the current work for multiphase LBM.

This chapter consists of the following sections. Sections 5.2 - 5.3 include the ana-

lytic solution and the convergence of implementations of two fluid Poiseuille flow with

different lattice grids. Section 5.4 investigates the pressure jump by the Laplace law

for two static initial square and circular droplets. Section 5.5 presents the study of non-

dimensional velocity profile for the terminal shapes of the rising bubble. Finally, the

summary of this chapter is given in Section 5.6.

5.2 Implementations

In the simulations, the lattice variables are given as: ∆x́ = ∆t́ = ć = 1. For

the stability of LB simulations require that the non-dimensional relaxation time (τ́g)

to satisfy 0.5 < τ́g 6 1 for solving Navier-Stokes equation (Yu et al. 2003). The

non-dimensional relaxation time (τ́f ) is recovered from a Cahn-Hilliard equation by
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5.3. TWO FLUID POISEUILLE FLOW

satisfying τ́f = 1 (Inamuro et al. 2004, Banari et al. 2014). The order parameters are

chosen to be φ1 = 0.4, φ2 = 0.1 or φ1 = 1, φ2 = 0 with the interface thickness Ẃ = 4

and for more stable simulations the mobility is chosen to be Ḿ = 0.02
β

according to

Banari et al. (2014). Using the interface thickness (W ) and the coefficient of surface

tension (σ1 2), the parameters of interface ḱ and β́ can be defined as follow

ḱ =
6 σ́1 2

(φ1 − φ2)2
, (5.2.1)

and

β́ =
3 σ́1 2

(φA − φ2)4
, (5.2.2)

where

σ́1 2 =
σ1 2

ρ0 c2 ∆x
, with ḱ =

k

ρ0 c2 ∆x2
, with β́ =

β

ρ0 c2
. (5.2.3)

The non-dimensional relaxation time (τ́h) satisfying Poisson equation as suggested

by Grunau et al. (1993), Banari et al. (2014) should be defined as

0.5 < τ́h 6 1 where τ́h = τh/∆t in eq.(4.3.38). This leads to determine the minimum

density values (6 6 ρ́1 or ρ́2).

5.3 Two fluid Poiseuille flow

5.3.1 Analytic solution of Two fluid Poiseuille flow

The Poiseuille flow consists of two immiscible fluid between two horizontally par-

allel plates with the angle (α) is equal to π
2

as illustrated in Figure (5.1). The flow has
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5.3. TWO FLUID POISEUILLE FLOW

different phase (φi), dynamic viscosities (µi), velocities(ui) and densities (ρi) where

i = 1, 2. The surface tension is taken to be zero. The two fluids are driven by a body

force (ρ g) in the x−direction (Zu & He 2013, Huang et al. 2015).

111
,, mrf

222
,, mrf

2
hy=

Interface

y

x

1
hy -=

0=y

Figure 5.1: The two fluid flow configuration for Poiseuille flow between two parallel
plates.

An analytical solution for Poiseuille flow is considered as a perfect technique to

investigate the high density ratio (ρ1/ρ2) and high kinematic viscosity ratio (ν1/ν2).

The fully developed of the velocity of Poiseuille flow, so the NS equations can be

written as

µ
d2u

d y2
= G = −ρ g , (5.3.1)

so

u(y) =
G

2µ
y2 +B y + C , (5.3.2)
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the velocity components in the two fluid flow, reads

u1(y) =
−ρ1 g

2µ1

y2 +B1 y + C1 , (5.3.3)

and

u2(y) =
−ρ2 g

2µ2

y2 +B2 y + C2 . (5.3.4)

Applying the boundary conditions at the interface the constant values B1, B2, C1 and

C2 can be evaluated. At the upper and lower boundaries, the no-slip condition is used

(u1(−h1) = u2(h2) = 0) where h1 and h2 are the depths of the two fluid Poiseuille flow.

The continuity of fluid velocity (u1(0) = u2(0)) and stresses (µ1
du1(0)
d y

= µ2
du2(0)
d y

)

have to be satisfied at the interface of two the fluid. From the continuity of fluid velocity,

C1 = C2 and from the continuity of fluid stresses, the B2 =
µ1

µ2

B1 is obtained. By

applying the upper and lower no- slip boundary conditions, yields

u1(−h1) =
−ρ1 g

2µ1

h2
1 −B1 h1 + C1 = 0 , (5.3.5)

and

u2(h2) =
−ρ2 g

2µ2

h2
2 +

µ1

µ2

B1 h2 + C2 = 0 . (5.3.6)

From the eqs. (5.3.5) and (5.3.6), yield

B1 =
−g
2

(
µ2 ρ1 h

2
1 − µ1 ρ2 h

2
2

)
µ1

(
h1 µ2 + h2 µ1

) . and B2 =
−g
2

(
µ2 ρ1 h

2
1 − µ1 ρ2 h

2
2

)
µ2

(
h1 µ2 + h2 µ1

) ,

101



5.3. TWO FLUID POISEUILLE FLOW

By substituting B1 and B1 in eqs. (5.3.5) and (5.3.6):

u1(−h1) =
−ρ1 g

2µ1

h2
1 +

g

2

(
µ2 ρ1 h

2
1 − µ1 ρ2 h

2
2

)
µ1

(
h1 µ2 + h2 µ1

) h1 + C1 = 0 , (5.3.7)

and

u2(h2) =
−ρ2 g

2µ2

h2
2 −

g

2

(
µ2 ρ1 h

2
1 − µ1 ρ2 h

2
2

)
µ2

(
h1 µ2 + h2 µ1

) h2 + C1 = 0 . (5.3.8)

The eqs. (5.3.7) and (5.3.8) can be simplified to,

−
(µ1

h1

+
µ2

h2

)
C1 =

−g
2

(ρ1 h1 + ρ2 h2) ,

then,

C1 = C2 =
g

2

(
ρ1 h1 + ρ2 h2

)
h1 h2(

h1 µ2 + h2 µ1

) ,

By substituting B1, B2, C1 and C2 into eqs. (5.3.3) and (5.3.4), the velocities of two

phases is obtained as

u1(y)=
g

2

[
−ρ1

µ1

y2−
(
µ2 ρ1 h

2
1 − µ1 ρ2 h

2
2

)
µ1

(
h1 µ2 + h2 µ1

) y+

(
ρ1 h1 + ρ2 h2

)
h1 h2(

h1 µ2 + h2 µ1

) ]
, (5.3.9)

and

u2(y)=
g

2

[
−ρ2

µ2

y2−
(
µ2 ρ1 h

2
1 − µ1 ρ2 h

2
2

)
µ2

(
h1 µ2 + h2 µ1

) y+

(
ρ1 h1 + ρ2 h2

)
h1 h2(

h1 µ2 + h2 µ1

) ]
. (5.3.10)
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5.3.2 The Convergence results of Poiseuille flow with grid in a two fluid

system

In this study, the convergence of LB simulations with the grids will be investi-

gated for different cases of density and viscosity ratios. The number of grid cells

in the horizontal x-direction is lx = 2 and the vertical y-direction is ly = 2 h́ =

16, 32, 64, 128, 256 and 512, where h is the depth of the flow and equals to 1. In the

simulation, the order parameters φ1 = 1, φ2 = 0 is used with no slip bounce back

boundary condition at the top and bottom boundaries and periodic at the left and right

side walls. The interface parameters ḱ = 0.01 and β́ = 0.02 are defined as in Banari

et al. (2014). The convergent of LB simulation is considered as a function of ly which

performs by fixing

Re =
u1,scale ly

ν1

= 100 or 1000 ,

where ν1 is kinematic viscosity of fluid 1 with constant

Ma =
u1,scale

cs
= 0.01 or 0.005 ,

where u1,scale is the scale velocity of fluid 1.

In the equilibrium state, the two phases is setted from the order parameters and the

density of the fluid 2 (ρ́2) and density ratio (ρratio) are specified, respectively. According

to the value of low density ρ́2 which is 6 as mentioned in section 5.2, the value of

high density ρ́1 is determined with given the proper density ratio from ρ́1 = ρ́2 ρratio.

For a constant Ma value, the u1,scale can be found as 0.005774 or 0.002887. In the

computations, the ratios of µ and ν are defined as µratio = µ́1/µ́2 and νratio = ν́1/ν́2,
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respectively. By fixing Re, µ1 is determined as

µ́1 =
ρ́1 u1,scale ly

Re
. (5.3.11)

From the value of µ1, the µ2 can be read as follows:

µ́2 =
µ́1 ρ́2

νratio ρ́1

. (5.3.12)

The initial values of ν́1 and ν́2 are given by µ́1/ρ́1 and µ́2/ρ́2, respectively.

Velocity profiles u1(y) and u2(y) in eqs. (5.3.9 and 5.3.10) correspond to:

u1(y) = a1 + b1 y + c1 y
2 , (5.3.13)

and

u2(y) = a2 + b2 y + c2 y
2 . (5.3.14)

In order to find the maximum velocity value (umax) for fluid 1 or 2:

du1

d y
= b1 + 2 c1 y = 0 and

du2

d y
= b2 + 2 c2 y = 0 ,

which gives either

y =
−b1

2 c1

or y =
−b2

2 c2

,

by substituting y-values in eqs. (5.3.13) and (5.3.14), yields

u1,max = a1 −
b2

1

4 c2
1

and u2,max = a2 −
b2

2

4 c2
2

.

104



5.3. TWO FLUID POISEUILLE FLOW

Then the coefficient values of u1,max and u2,max can be defined by eqs. (5.3.9) and

(5.3.10) as

a1 =
g
(
ρ1 h1 + ρ2 h2

)
h1 h2

2
(
h1 µ2 + h2 µ1

) , b1 =
−g
(
µ2 ρ1 h

2
1 − µ1 ρ2 h

2
2

)
2µ1

(
h1 µ2 + h2 µ1

) , c1 =
−g ρ1

2µ1

, (5.3.15)

and

a2 =
g
(
ρ1 h1 + ρ2 h2

)
h1 h2

2
(
h1 µ2 + h2 µ1

) , b2 =
−g
(
µ2 ρ1 h

2
1 − µ1 ρ2 h

2
2

)
2µ2

(
h1 µ2 + h2 µ1

) , c2 =
−g ρ2

2µ2

. (5.3.16)

Therefore, the values of u1,max and u2,max after substitution the coefficient values

can be read as

u1,max =
g
(
ρ1 h1 + ρ2 h2

)
h1 h2

2
(
h1 µ2 + h2 µ1

) −
(
µ2 ρ1 h

2
1 − µ1 ρ2 h

2
2

)2

4 ρ2
1

(
h1 µ2 + h2 µ1

)2 , (5.3.17)

and

u2,max =
g
(
ρ1 h1 + ρ2 h2

)
h1 h2

2
(
h1 µ2 + h2 µ1

) −
(
µ2 ρ1 h

2
1 − µ1 ρ2 h

2
2

)2

4 ρ2
1

(
h1 µ2 + h2 µ1

)2 . (5.3.18)

There are two cases to normalize the maximum velocity umax for fluid 1 or fluid 2,

from the relation if µ2 ρ1 h
2
1 > µ1 ρ2 h

2
2 which

g =
2
(
h1 µ2 + h2 µ1

)(
ρ1 h1 + ρ2 h2

)
h1 h2

+

(
µ2 ρ1 h

2
1 − µ1 ρ2 h

2
2

)2

2 ρ2
1

(
h1 µ2 + h2 µ1

)(
ρ1 h1 + ρ2 h2

)
h1 h2

, (5.3.19)

else, It can be obtained that

g =
2
(
h1 µ2 + h2 µ1

)(
ρ1 h1 + ρ2 h2

)
h1 h2

+

(
µ2 ρ1 h

2
1 − µ1 ρ2 h

2
2

)2

2 ρ2
2

(
h1 µ2 + h2 µ1

)(
ρ1 h1 + ρ2 h2

)
h1 h2

. (5.3.20)

In order to scale the parameters in the simulations of the current study, the length

scale (λl) is computed as λl = ly/(h1 + h1), where h1 = h1 = 1. From the veloc-
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ity scale uscale, µ and ν scales are calculated as µscale = uscale λl and νscale = uscale λl,

respectively. So g is scaled according to gscale = u2
scale/λl and the force is driven in

the x-axis. Normalizing g requires to divide by maximum velocity value u1,max of the

two fluid in the system. Similarly, the numerical and the analytical (exact) velocity are

normalized by division by the u1,max value.

In this study, the simulations of Poiseuille flow with various density and viscosity

ratios is checked and then the convergence with different grids tested. Figure (5.2),

shows the simulation of the two fluid flow with Ma = 0.005 for Re = 100 and 1000 at

ρ́1/ρ́2 = 1 and ν́1/ν́2 = 0.1. The numerical velocity profile is convergent to the exact

solution by increasing the grid number. It can be observed that the steady state solution

for the non dimensional parabolic velocity profiles with ρ́1/ρ́2 = 100 and ν́1/ν́2 = 1

for Re = 100 and 1000 as illustrated in Figure (5.3). By changing the ρ́1/ρ́2 = 1000

and ν́1/ν́2 = 1/15 which represents the air and water phases shows the accurate LB

result by increasing the grid resolutions in Figure (5.4). Furthermore, the Ma fixed by

choosing 0.01 with Re = 100 for ρ́1/ρ́2 = 100 and ν́1/ν́2 = 1/10 as shown in Figure

(5.5).

In addition, a comparison between the exact solution and the numerical solution for

the velocity profiles is given by the L2-norm error

L2 =

√√√√∑i

∑
j

(
uLBM(x, y)− uexact(x, y)

)2∑
i

∑
j uexact(x, y)2

, (5.3.21)
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Figure 5.2: Non dimensional velocity profiles of two fluid Poiseuille flow, for Ma =
0.005, ρ́1/ρ́2 = 1 and ν́1/ν́2 = 0.1 with various lattice grids ly.
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Figure 5.3: Non dimensional velocity profiles in two fluid Poiseuille flow, for Ma =
0.005, ρ́1/ρ́2 = 100 and ν́1/ν́2 = 1 with various lattice grids ly.
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Figure 5.4: Non dimensional velocity profiles in two fluid Poiseuille flow, for Ma =
0.005, ρ́1/ρ́2 = 1000 and ν́1/ν́2 = 1/15 with various lattice grids ly.
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Figure 5.5: Non dimensional velocity profiles in two fluid Poiseuille flow, for Ma =
0.01, ρ́1/ρ́2 = 100 and ν1/ν2 = 0.1 with various lattice grids ly.
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TheL2-norm error of Figures (5.2-5.5) for various number of grid sizes are illustrate

in Figures (5.6 - 5.9), respectively. From the results of L2-norm error test are found that

all are convergent with accurate resolutions have first order error except the case of

ρ́1/ρ́2 = 100 and ν́1/ν́2 = 1 for Re = 100 and 1000 has second order accuracy because

the kinematic viscosity ratio for each phase has the same value as shown in Figure (5.7).

It has the same behaviour of the error with single phase component as obtain from using

bounce back boundary. It also found that the flow is not affected with changing the Re.
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Figure 5.6: L2-norm error with grid (ly) between Analytical and LBM result for the
two fluid Poiseuille flow whenMa = 0.005, density ratio 1 and kinematic
ratio 0.1.
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Figure 5.7: L2-norm error with grid (ly) between Analytical and LBM result for the
two fluid Poiseuille flow when Ma = 0.005, density ratio 100 and kine-
matic ratio 1.
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Figure 5.8: L2-norm error with grid (ly) between Analytical and LBM result for the
two fluid Poiseuille flow when Ma = 0.005, density ratio 1000 and kine-
matic ratio 0.0667.

112



5.4. STATIC BUBBLE

101 102

10−3

10−2

10−1

Grid (ly)

L
2
-n

or
m

er
ro

r

Re=100
1st order
2nd order

Figure 5.9: L2-norm error with grid (ly) between Analytical and LBM result for the
two fluid Poiseuille flow when Ma = 0.01, density ratio 100 and kine-
matic ratio 0.1.

In addition, from the result that is obtained in Figure (5.9) had first order accuracy as

is noted in work of Banari et al. (2014). In general, It observed that the results from the

current study had excellent comparisons with the analytic solutions at different density

and viscosity ratios.

5.4 Static bubble

As a further test of the code of the current study for the multiphase LB approach, the

verification for Laplace’s law is performed. It is represented by the pressure difference

or the pressure jump (∆P ) between the outside and the inside of the static bubble (see

Figure (5.10)). It can be observed that the high density is sited in outside the bubble

and low density is lied inside the bubble. The pressure jump (∆P ) for a two dimension
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circular bubble with radius R is given by:

∆P =
σ1 2

R
,

(5.4.1)

where σ1 2 is the surface tension coefficient. The pressure jump (∆P ) is computed af-

ter the bubble reaches the steady state. The periodic boundary condition is used at all

four sides of the domain with zero gravity. The parameters to distinguish the phases

are defined as φ1 = 0.4, and φ2 = 0.1, and density ratio 100 with R = 0.005m and

d = 0.02m according to Banari et al. (2014).

R

d

ϕ ρ1 1,

ϕ ρ2 2,

Figure 5.10: Two dimensional circular bubble.

In simulations of the current study, two initial static (square and circular) droplets

implemented for various surface tension coefficient σ1 2 = 0.01, 0.004, 0.001 and ra-

dius with lattice (128 × 128) grid. The physical kinematic viscosity for each phase

have the same values ν1 = ν2 = 0.002m2/s and the surface tension coefficient σ1 2 =

0.004N/m, so according to Laplace law the pressure jump equation is equal to 0.753N/m.

It can be illustrated in Figure (5.11) the density, order parameter and velocity of each
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phase in the simulation. From the definition of kinematic viscosity which relates to the

relaxation time reads

ν = (τg −
1

2
) c2

s ∆t

corresponding to ν́ = 1
6

in the LB computation by choosing τ́g = 1 and the relation

between the physical and LB kinematic viscosity can be written as

ν́ = ν
∆t

∆x2
. (5.4.2)
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Figure 5.11: The initially square droplet with lx = 128 for two phases.
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Then lattice surface tension coefficient is defined as

σ́1 2 =
σ1 2

c2 ∆x
, where the step size is ∆x =

d

lx
. (5.4.3)

For more details of scaling the parameters see appendix A. In the current work, the

dynamic viscosity is defined after specifying the density ratios then the kinematic vis-

cosity values is computed as µ(ρ) = ρ(φ) ν(ρ).

For a (128 × 128) lattice grid, ∆x = 0.0001563m and ∆t = 2.03 × 10−6 s which

leads to c2 = 5899.42m2/s2. The lattice surface tension coefficient (σ́1 2) is equal to

4.34× 10−3 from eq. (5.4.3).

Therefore, the parameters

ḱ =
6 σ́1 2

(φ1 − φ2)2
and β́ =

3 σ́1 2

(φ1 − φ2)4
,

are computed as ḱ = 0.289 and β́ = 1.607. The lattice radius (Ŕ = 34) which

corresponding to the physical radii R = 0.005313m can be calculated as

Ŕ =
R lx

d
. (5.4.4)

For the physical jump pressure (∆P ), the lattice jump pressure (∆Ṕ ) is defined as

follows

∆Ṕ =
∆P

c2
, (5.4.5)

In Figure (5.12), from the results a good comparison is obtained between the the-

oretical and the LB results of the two initial droplet cases with various surface tension

coefficient σ1 2. The four lattice radius of the static bubble flow started from 12 to 34

lattice units.
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Figure 5.12: Pressure difference across the interface for different σ1 2 and bubble radii
between LBM simulation and theoretical solution.

5.5 Rising bubble

In this section, the rising bubble flow is implemented to check the properties of a

single bubble movement under the gravitational acceleration (g). The low-density fluid

(ρ́2) of bubble rising in the denser fluid (ρ́1) according to g is simulated with different

cases. The terminal shape of the bubble is related to the non-dimensional parameters;

for instance Eotvos number (Eo) (or Bond number) , Morton number (Mo) and Re
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which are defined as follows

Eo =
(ρ́1 − ρ́2) g D2

σ1 2

,

Mo =
g µ4

1

σ3
1 2 ρ́1

(1− ρ́2

ρ́2

) ,

and

Re =
ρ́1 g

1/2D3/2

µ́1

.

where D is the diameter of the bubble and g is the gravitational acceleration force. The

bubble rising is based on the fundamental properties of the drops as introduced by Clift

et al. (2005). According to Banari et al. (2014) study, the high Re and Eo diminishes

the effect of the surface tension on the terminal shape of the bubble.

In simulation of the current work, periodic boundary conditions are used with the

left and right walls and no slip bounce back boundary is imposed at the top and bottom

boundary conditions. Three cases of rising bubble with density ratio 100 at (128×512)

lattice grid have a good comparison with Sun & Tao (2010) simulations as illustrated in

Figure (5.13). It found that the spherical, oblate ellipsoidal and oblate ellipsoidal cap

terminal shapes are formed by using Eo = 0.1, Mo = 1 × 10−3, Eo = 10, Mo =

1× 10−1 and Eo = 100, Mo = 1× 103 ,respectively. For the (128× 512) lattice grid

with initial diameter D = 30 for the oblate ellipsoidal terminal shape, the parameters

in lattice units are defined as ḱ = 0.532 and β́ = 2.962 which correspond to the lattice

surface tension coefficient σ́1 2 = 0.008.
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(a) Eo = 0.1, Mo = 1× 10−3

(b) Eo = 10, Mo = 1× 10−1

(c) Eo = 100, Mo = 1× 103

Figure 5.13: The terminal shape with the velocity vectors for rising bubble between
the present results at (128 × 512) lattice grid and Sun & Tao (2010)
results.
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The parameters of terminal shapes for each cases for lattice unit of rising bubble

simulations are defined in Table (5.1)

Table 5.1: The parameters of terminal shapes in lattice unit for rising bubble simula-
tions.

Terminal shapes ν́1 = ν́1 g Eo Mo

Spherical 0.002 1.496× 10−9 1× 10−1 1× 10−3

Oblate ellipsoidal 0.002 1.493× 10−7 10 1× 10−1

Oblate ellipsoidal cap 0.012 5.892× 10−7 100 1× 103
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Figure 5.14: The position and the non-dimensional rising velocity (U∗) as a function
of non-dimensional time (t∗) at (128× 512) lattice grid.
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The position and the non-dimensional rising velocity (U∗ = u/
√
g D) can be de-

fined as a function of non-dimensional time (t∗ = t
√
g /D) for oblate ellipsoidal cap

bubble shape as illustrated in Figure (5.14). The value of bubble rising velocity (U∗)

agree well with predicted result that obtained from Hua & Lou (2007). It found by

computing Re for the oblate ellipsoidal cap that 10 < Re < 20 as expected by the

relation between the Eo and Re according to Hua & Lou (2007).

5.6 Summary

In this chapter a single relaxation time multiphase LBM model is used to simulate

two fluid Poiseuille flow, static and rising bubble flows. The L2-norm errors for the

results shown in Figures (5.2-5.5) for different number of grids are shown in Figures

(5.6 - 5.9), respectively. From the results, the first order error convergence are obtained

except the case of ρ́1/ρ́2 = 100 and ν́1/ν́2 = 1 which has second order accuracy

as illustrated in Figure (5.7). For the static bubble flow, a good comparison is made

between the theoretical (Laplace law) and current computations with different surface

tension coefficient values and various radius with density ratio 100 (see Figure (5.12)).

Finally, when comparing the terminal shapes and the non-dimensional rising velocity

profile as shown in Figures (5.13) and (5.14), respectively, the simulations for a rising

bubble agree well with those in the literature.
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Chapter 6

Single and Multiple Rayleigh-Taylor

Instability

6.1 Introduction

The Rayleigh–Taylor instability (RTI) appears when the denser phase of the fluid

at the start lies above a lighter phase with influence of a gravity. It was proposed

from Taylor (1950) and then implemented with whole fluid flows according to Lord

(1900). Sharp (1983) was the first to suggested the terms of a bubble and spikes due

to the instability of the tiny perturbations for a initial state which is increased by de-

velopment of the complexity of the fluid with time. The implementation has been

verified for various test cases: single Rayleigh-Taylor Instability with different Re

(256, 600, 614.4, 2048, 3000 and 5000), density ratios (3, 19, 100 and 1000) at var-

ious number of lattice grids. The multiple mode Rayleigh-Taylor Instability is studied

with various surface tension coefficients and values of initial perturbations functions at

density ratio 3 and Re = 4096.

The organization of this chapter is as follows: Section 6.2, details the convergence

of implementations of single mode Rayleigh-Taylor Instability (RTI) fluid flow with

number of the grid and various Re and density ratios. In section 6.3, The effect of

changing the surface tension coefficient is investigated in the multiple mode RTI with
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different grid resolutions. Finally, summary of this chapter is given in Section 6.4.

6.2 Single Rayleigh-Taylor Instability

Rayleigh-Taylor instability (RTI) appears when a low density fluid (blue colour in

Figure (6.1)) sits below the more dense fluid (red). The low density fluid (ρ2) rises

when the denser fluid (ρ1) drops under the effect of the gravitational acceleration (g).

Here, an initial interface location in the 1× 4 domain is specified as

y(x) = 2 + A cos(2π x) , (6.2.1)

with disturbance amplitude A = 0.1. The periodic boundary condition is used at left

and right side boundaries and the no slip bounce back boundary is applied at top and

bottom boundaries.

In the current multiphase study, the time evolution of the two fluid interface from

a single mode perturbation of RTI is presented with different density ratios ( ρ́1
ρ́2

). The

gravitational acceleration (g) value is chosen to achieve the characteristic velocity (Uc)

as

Uc =
√
lx g = 0.04 (6.2.2)

in lattice units, where lx and ly are the numbers of lattice grids in the x, y-directions,

respectively.

The comparison between He et al. (1999) and the present results of the time evo-

lution of the two fluid interface from a single mode perturbation illustrated in Figure

(6.1) for 10 dimensionless times (t́) which reads as follow

t́ =
t√
lx/g

. (6.2.3)

123



6.2. SINGLE RAYLEIGH-TAYLOR INSTABILITY
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(f) t́ = 3
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(g) t́ = 3.5
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Figure 6.1: The comparison of the time evolution of the two fluid interface from a
single mode perturbation for 10 dimensionless times (t́) between He et al.
(1999) and the present results with different grids lx = 64, 128 and 256.
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The non dimensional parameters such as Reynolds number (Re) is read as

Re =

√
lx g lx

ν
, (6.2.4)

where ν is the kinematic viscosity and the Atwood number (At) is defined as

At =
(ρ1 − ρ2)

(ρ1 + ρ2)
. (6.2.5)

The density ratio is equal to 3, At = 0.5 and Re = 2048 with different number

of the grids lx = 64, 128 and 256 with order parameters φ1 = 0.4 and φ2 = 0.1. It

observed that the simulations converged by using further investigation with different

φ1 = 0.5, φ2 = −0.5 and φ1 = 1, φ2 = 0.

The evolution of the fluid interface appears identical with top and bottom at the

initial state (t́ = 0). With developing the interface under effect of g the denser fluid

drops like a spike which starts to roll up and the low density fluid rises to bubbles

shape. Then the vortices grow unstable with second vortices appearing at the ends

of the roll ups with time evolution. The results show a good comparison with He

et al. (1999) results by obtaining the complicated form with time evolution at t́ = 5.

In the meantime, the interface along the central line of the fluid stays symmetric and

comparatively smooth which is significant with combining the high and low density

fluids.

The grid convergence of numerical solution between He et al. (1999) and the present

results with the contour of (ρ1+ρ2)/2 is investigated. In the work of He et al. (1999), the

molecular interactions is incorporated to model the interfacial dynamics. It observed

that they are used two distribution functions in their simulations. The density ratio is

equal to 3, At = 0.5 with the number of grids lx = 128 and 256 for Re = 256 and

2048 are illustrated in Figure (6.2).
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256 x 1024256 x 1024128 x 512 128 x 512

(a) Re = 256, t́ = 5

128 x 512 128 x 512 256 x 1024 256 x 1024

(b) Re = 2048, t́ = 2.5

256 x 1024 256 x 1024128 x 512 128 x 512

(c) Re = 2048, t́ = 5

Figure 6.2: The comparison of grid convergence of numerical solution between He
et al. (1999) and the present results. The contour of (ρ1 + ρ2)/2 is plotted
with different Re.
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Figure (6.3) shows an excellent agreement of the position and velocities results of

the bubble and spike fronts versus time with variousRe atAt = 0.5 which implemented

in Figures (6.1) and (6.2).
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Figure 6.3: Position and velocities of the bubble and spike fronts versus time with
Re = 2048 and 256 at At = 0.5.

The behaviour of convergence with grid resolution of single RTI for ρ́1
ρ́2

= 19, At =

0.9, Re = 614.4 and the order parameters φ1 = 0.4, φ2 = 0.1 has been studied and

compared with the results of He et al. (1999) as shown in Figure (6.4) is agree well

with those in the literature. In addition, various cases of the order parameters such as

φ1 = 0.5, φ2 = −0.5 and φ1 = 1, φ2 = 0 have been tested and the results obtained a

good agreements with He et al. (1999).
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(b) t́ = 0.5
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Figure 6.4: The comparison of 5 dimensionless time evolution of single mode pertur-
bation between He et al. (1999) and the present results for ρ́1

ρ́2
= 19 and

φ1 = 0.4, φ2 = 0.1.

The simulations in the current study were improved by increasing the values of Re

and density ratios to 5000 and 1000, respectively rather than Re = 256, 614, 2048 and

density ratio= 3, 19 that were applied in work of He et al. (1999). So an addition tests

made for single RTI with two different density ratios ρ́1
ρ́2

= 100 and ρ́1
ρ́2

= 1000 for 5

different Re = 600, 3000, 4000 and 5000 to study the time evolution of the two fluid

interface, relative mass and the kinetic energy.

Ren et al. (2016) investigated the single mode RTI simulation by modifying the

conservative from Allen-Cahn equation (ACE) Allen & Cahn (1976) for tracking the

interface with ρ́1
ρ́2

= 99 and Re = 600 and high Re = 3000. From the present results

for the ρ́1
ρ́2

= 100 withRe = 600 andRe = 3000 is illustrated in Figures (6.5) and (6.6),

respectively. As well as, the results with ρ́1
ρ́2

= 100 has been improved for Re = 5000

as shown in Figure (6.7).
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Figure 6.5: The time evolution of single mode perturbation for ρ́1
ρ́2

= 100, At = 0.98
and Re = 600 with φ1 = 0.5, φ2 = 0.5.
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Figure 6.6: The time evolution of a single mode perturbation for ρ́1ρ́2 = 100,At = 0.98
and Re = 3000 with φ1 = 0.5, φ2 = 0.5.
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Figure 6.7: The time evolution of single mode perturbation for ρ́1
ρ́2

= 100, At = 0.98
and Re = 5000 with φ1 = 0.5, φ2 = 0.5.

Fakhari et al. (2017) developed the model of the multiphase that suggested by Zu &

He (2013) for conservative phase field model to present the result for high density ratio

( ρ́1
ρ́2

= 1000) with Re = 3000 while Shao & Shu (2015) employed for ρ́1
ρ́2

= 1000 with

Re = 200.

The simulations in the current study of the multiphase is presented for ρ́1
ρ́2

= 1000

with Re = 600 and 3000. Stable results of single RTI with Re = 600 and 3000 for

high density ratio up to 1000 has been simulated in Figures (6.8) and (6.9), respectively

as pointed out by Fakhari et al. (2017). In addition, the simulations of the high density

ratios with Re = 5000 has been implemented well as shown in Figure (6.10). It worth

mention that the results performed by using single relaxation times (SRT) collision op-

erator for both ρ́1
ρ́2

= 100 and 1000. Furthermore, it observed from the results in Figures

for ρ́1
ρ́2

= 1000 that the high density fluid is dropped as column without complexity of

the ends of roll up when it compared with low density ratios.
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Figure 6.8: The time evolution of single mode perturbation for ρ́1ρ́2 =1000, At=0.998
and Re = 600 with φ1 = 0.5, φ2 = 0.5.
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Figure 6.9: The time evolution of single mode perturbation for ρ́1ρ́2 =1000, At=0.998
and Re = 3000 with φ1 = 0.5, φ2 = 0.5.

131



6.2. SINGLE RAYLEIGH-TAYLOR INSTABILITY

64 x 256 128 x 512 256 x 1024

(a) t́=0

64 x 256 128 x 512 256 x 1024

(b) t́=1

64 x 256 128 x 512 256 x 1024

(c) t́=1.5

64 x 256 128 x 512 256 x 1024

(d) t́=1.75

64 x 256 128 x 512 256 x 1024

(e) t́=2

Figure 6.10: The time evolution of single mode perturbation for ρ́1ρ́2 =1000,At=0.998
and Re = 5000 with φ1 = 0.5, φ2 = 0.5.

The kinetic energy of the RTI is computed according to density and the velocity

values. A made a comparison is made to test the kinetic energy for various density

ratios with Re as illustrated in Figure (6.11). The energy of the flow is increased ac-

cording to time evolution of the simulation for ρ́1
ρ́2

= 100 and 1000. The values of

the kinetic energy with high density ratio is larger than the low one because of it de-

pend on the given density ratio value. The result with the number of grid resolution at

(64 × 256), (128 × 512) and (256 × 1024) is convergence. From the results, it found

that the value of kinetic energy are increased with increasing the density ratios and Re

values as shown in Figure (6.11). In addition, the relative mass is studied for the differ-

ent density, Re and number of grids as illustrated in Figure (6.12). It found that with

low density ratios the mass conserved better than the large density ratios.
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Figure 6.11: The time evolution of the kinetic energy for ρ́1
ρ́2

=100 and 1000 with dif-
ferent Re .
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(b) ρ́1
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= 1000, Re = 600
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= 100, Re = 3000
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= 1000, Re = 3000
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(e) ρ́1
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= 100, Re = 5000
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= 1000, Re = 5000

Figure 6.12: The time evolution of the relative mass for ρ́1ρ́2 =100 and 1000 with differ-
ent Re .

134



6.3. MULTIPLE MODE RAYLEIGH-TAYLOR INSTABILITY

6.3 Multiple mode Rayleigh-Taylor Instability

This kind of Rayleigh-Taylor Instability (RTI) is represented by the development

of the interface into turbulent fluid flow. For the multiple mode RTI, the characteristic

velocity is Uc =
√
lx g = 0.08 and the initial interface function is defined as a random

combination of frequency modes

y(x) =
1

2
+
∑
n

(an cos(kn x) + bn sin(kn x)) , (6.3.1)

with amplitudes an and bn chosen randomly from a Gaussian distribution and kn = 2nπ

is the wave number.

The effect of the surface tension coefficient (σ12) is investigated in the current study.

The no slip bounce back boundary is applied in the top and bottom walls and the peri-

odic boundary condition is imposed at left and right side walls of the square domain.

In Figures (6.13)-(6.16), the evolution of two fluid interfaces for different val-

ues of the surface tension coefficient (σ12) are illustrated at 6 dimensionless times

t́ = t/
√
lx/g with 512× 512 grid and Re = 4096.

The results has been demonstrated the expected in increasing complexity of the

interface as surface tension coefficient decreases. As shown in Figures (6.13)-(6.16),

the small bubbles occur from the small perturbations in the interface move slowly and

combine with the big bubbles with the fast motion.
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(a) t́ = 1 (b) t́ = 2 (c) t́ = 3

(d) t́ = 4 (e) t́ = 5

Figure 6.13: The time evolution of Rayleigh-Taylor instability from a multiple mode
perturbation at 5 t́ with σ12 = 0.1.

(a) t́ = 1 (b) t́ = 2 (c) t́ = 3

(d) t́ = 4 (e) t́ = 5 (f) t́ = 6

Figure 6.14: The time evolution of Rayleigh-Taylor instability from a multiple mode
perturbation at 6 t́ with σ12 = 0.01.
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(a) t́ = 1 (b) t́ = 2 (c) t́ = 3

(d) t́ = 4 (e) t́ = 5 (f) t́ = 6

Figure 6.15: The time evolution of Rayleigh-Taylor instability from a multiple mode
perturbation at 6 t́ with σ12 = 0.001.

(a) t́ = 1 (b) t́ = 2 (c) t́ = 3

(d) t́ = 4 (e) t́ = 5 (f) t́ = 6

Figure 6.16: The time evolution of Rayleigh-Taylor instability from a multiple mode
perturbation at 6 t́ with σ12 = 0.000001.
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In Figure (6.17), the time evolution of the relative mass difference is shown for

lx = ly = [64, 128, 256, 512, 1024] and σ12 = 0.1, 0.01, 0.001, 0.0001, 0.00001 and

0.000001 with density ratio= 3, At = 0.5, Re = 4096.
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(e) σ12 = 0.00001
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(f) σ12 = 0.000001

Figure 6.17: The time evolution of the relative mass difference for various σ12 and
number of grids.
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It observed that the mass is conserved with increasing the resolution of the number

of grids. The kinetic energy increased according to combine the small bubble with the

large one and hit the walls of the simulation as illustrated in Figure (6.18).
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(c) σ12 = 0.001
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(e) σ12 = 0.00001
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(f) σ12 = 0.000001

Figure 6.18: The time evolution of the kinetic energy for various σ12 and number of
grids.
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Figure (6.19) are illustrated the convergence of the results for kinetic energy be-

tween one initial and average of four initial distribution functions across the interface

with the effect of various values of σ12 at (512× 512) lattice grid. The results show the

effect of the σ12 which occurred after non dimensional time t́ = 3. The small values

of σ12 slightly different than the large one might be because of the small perturbations

that generates the complexity of the flow with time evolution.
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Figure 6.19: The time evolution of the kinetic energy for two distributions initial func-
tion with various σ12 at (512× 512) grid.

The results in Figures (6.20) - (6.23), agree well with those in He et al. (1999) when

the comparison made for the average density profiles across the depth in multiple mode

RTI with various σ12 at four dimensionless time. The results with small value of σ12

give excellent agreement with those in the literature.
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Figure 6.20: The comparison of the average density profiles across the depth in the
multiple mode RTI at t́ = 1 between He et al. (1999) and the present
results with various σ12 at (512× 512) grid.
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Figure 6.21: The comparison of the average density profiles across the depth in the
multiple mode RTI at t́ = 2 between He et al. (1999) and the present
results with various σ12 at (512× 512) grid.
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Figure 6.22: The comparison of the average density profiles across the depth in the
multiple mode RTI at t́ = 3 between He et al. (1999) and the present
results with various σ12 at (512× 512) grid.
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Figure 6.23: The comparison of the average density profiles across the depth in the
multiple mode RTI at t́ = 4 between He et al. (1999) and the present
results with various σ12 at (512× 512) grid.

The investigation of the position of the bubble and spike fronts versus time for

multiple mode RTI has been made as shown in Figure (6.24). As well as, the convergent

the grid numbers are tested or each suggestion of σ12 at dimensionless time t́ = 6. The
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results of the position for lx = 128 are not stable at σ12 = 0.1 and do not converge with

respect to the grid resolutions.
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(d) σ12 = 0.0001
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(e) σ12 = 0.000001

Figure 6.24: The Position of the bubble and spike fronts versus time for multiple mode
Rayleigh-Taylor instability at Re=4096, At=0.5, different σ12 with num-
ber of grid lx =1024, 512, 256 and 128.
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Large numbers of grid points are necessary to obtain a satisfactory comparison with

the results of He et al. (1999). In the meantime, the results for the positions of the

bubble and spike agree well at very small values of σ12 such as 1 × 10−6 with all grid

numbers in the simulations. Further, the convergence with σ12 for two different initial

distribution function of the positions of the bubble and spike at (512× 512) lattice grid

in Figures (6.25). From the results, It observed that small values of σ12 give an excellent

comparison with reference results.
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Figure 6.25: The Position of the bubble and spike fronts versus time for two cases of
multiple mode RTI with 3 different σ12 at number of grid lx = 512 with
t́ = 6.
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6.4 Summary

In this chapter, the LBM for multiphase flows with high density and viscosity ra-

tios have been used to simulate 2D single and multiple mode Rayleigh Taylor instability

(RTI). The results agree well with those of He et al. (1999) for single-mode RTI at mod-

erate with small density ratios up to 3 and Re = 256, 614, 2048. Also, the investiga-

tions are performed at high density up to 100 and 1000 atRe = 600, 3000 as mentioned

by Fakhari et al. (2017). A good simulations are obtained with ρ́1
ρ́2

= 100 and 1000 and

high Re = 5000. The evolution of interface in a multiple mode RTI with different val-

ues of surface tension coefficient (σ12) is examined. Further, the convergence with σ12

and grid resolution for the positions of bubble and spike has been investigated. A good

result compared with those in He et al. (1999) for the average density profiles across the

depth in multiple mode RTI with various σ12 at dimensionless time t́ = 4. Finally, the

results followed the expected pattern of increased interface complexity with decreasing

surface tension coefficient (σ12).
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Chapter 7

MRT extension of multiphase LBM:

Simulation of a Breaking Dam

7.1 Introduction

Nonlinear free surface flows represent a significant problem for studying the appli-

cation of ocean engineering that can be included the dam breaking problems, breaking

wave flow, wave impact and tsunami problems (Janssen & Krafczyk 2011). This type

of applications demand large Reynolds number (Re) with high density ratios which can

be performed in three dimension simulations. Janssen & Krafczyk (2010) introduced

a Volume of fluid (VOF) method based on the Lattice Boltzmann Method (LBM) to

implement free surface motion for breaking waves and breaking dams.

Rüde & Thürey (2004) pointed out the advantage of using the mass tracking method

of free LB to conserve the mass with tracking the interface, but lack of this approach

represent with the difficulties with obtaining the smooth curvature of the simulations

for a breaking dam. Janssen et al. (2013) suggested an extension of a hybrid LBM-VOF

model of free surface flows with a MRT collision operator. It was applied to several free

surface problems, such as breaking dams, free filling jets and breaking waves during

shoaling problems. LBM is applied by combining it with different methods to model

the physical phenomena such as VOF, LSM and FEM.
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In this chapter, the multiphase method has been extended by using MRT to study

different cases of breaking dam problems with LBM. The range of the possible density

ratios and Reynolds numbers (Re) are explained beyond what was possible with SRT.

The convergence with grid resolutions have been investigated in the current study.

This chapter is organized as follows: Section 7.2 presents the Multiple Relaxation

Time (MRT) for multiphase with LBM. In section 7.3, different cases of breaking dam

simulations are implemented. Section 7.4 provides results for numerical simulations of

a two dimensional physical model of a breaking dam on a wet bed. Finally, summary

of this chapter is given in Section 7.5.

7.2 Multiple Relaxation Time (MRT) for multiphase with LBM

In the single relaxation time process used in LBGK, the particle distributions func-

tions relax to their local equilibrium with the same rate determined by a single param-

eter. However, the relaxation rates at the collision step may be different. Wherefore,

a collision matrix approach with different relaxation times can be used to eliminate

this limitation (Guo & Shu 2013). d’Humieres (1994) presented a 2D MRT lattice

Boltzmann model for D2Q9. In the current study a new multi relaxation time collision

operator with equilibrium distribution function is applied to deal with two-phase flows

at high density ratios and high Re number. The collision operator in the multiphase

LBM with a MRT for pressureless Navier-Stokes equation, can be defined as

gi(x+ ci∆t, t+ ∆t)− gi(x, t) = −
∑
i

Λij ( gj(x, t)− g(eq)
j (x, t) ), (7.2.1)

or

g(x+ ci∆t, t+ ∆t)− g(x, t) = −Λ ( g(x, t)− g(eq)j(x, t) ), (7.2.2)
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where Λ is the collision matrix. Eq.(7.2.2) characterizes the evolution of

g = (g0, g1, g2, g3, g4, g5, g6, g7, g8)T , (7.2.3)

in the velocity space. Also, g is represented in a moment space (Lallemand & Luo

2000). The relation between the distribution function and moment can be defined by

m = M g = (ρ, e, ε, jx, qx, jy, qy, pxx, pxy)
T , (7.2.4)

and

g = M−1 m, (7.2.5)

where m is the moments vector and M is a 9× 9 matrix transforming g in the velocity

space to m in moment space. In the vector m, ρ is the density mode, e is the energy

mode, ε is related to the energy squared, jx and jy correspond to the momentum den-

sity (or mass flux), qx and qy correspond to the energy flux, and pxx and pxy correspond

to the diagonal and off-diagonal component of the viscous stress tensor (Lallemand &

Luo 2000).

jx = ρ ux =
∑
i

cix g
(eq)
i and jy = ρ uy =

∑
i

ciy g
(eq)
i , (7.2.6)
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with

g
(eq)
i = wi

[
(ciα.u∗)
c2
s

+
(ciα.u∗)2

2c4
s

− u∗2

2c2
s

]
+ wi

k

ρ
Gαβciαciβ − vi

k

2ρ
|∇φ|2, (7.2.7)

where

Gαβ =
9

2 c4

(
∂φ

∂xα

∂φ

∂xβ

)
− 9

4 c4

(
∂φ

∂xγ

∂φ

∂xγ

)
δαβ, (7.2.8)

and the transformation matrix M is

M =



1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1



,

and the inverse of transformation matrix M is M−1
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M−1 = a



4 −4 4 0 0 0 0 0 0

4 −1 −2 6 −6 0 0 9 0

4 −1 −2 0 0 6 −6 −9 0

4 −1 −2 −6 6 0 0 9 0

4 −1 −2 0 0 −6 6 −9 0

4 2 1 6 3 6 3 0 −1

4 2 1 −6 −3 6 3 0 −1

4 2 1 −6 −3 −6 −3 0 0

4 2 1 6 3 −6 −3 0 −1



,

where a = 1
36

. From eq.(7.2.5), the eq.(7.2.2) can be rewritten as follows

M−1 m(x+ ci∆t, t+ ∆t)− M−1 m(x, t) = −Λ M−1( m−m(eq) ), (7.2.9)

by using the left multiplication to M, yields

M M−1 m(x+ ci∆t, t+ ∆t)−M M−1 m(x, t) = −M Λ M−1( m−m(eq) ),

so

m(x+ ci∆t, t+ ∆t)−m(x, t) = −M Λ M−1( m−m(eq) ),

= −S ( m−m(eq) ),
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where S = M Λ M−1 is diagonal matrix can be expressed as follows

S =



s0 0 0 0 0 0 0 0 0

0 s1 0 0 0 0 0 0 0

0 0 s2 0 0 0 0 0 0

0 0 0 s3 0 0 0 0 0

0 0 0 0 s4 0 0 0 0

0 0 0 0 0 s5 0 0 0

0 0 0 0 0 0 s6 0 0

0 0 0 0 0 0 0 s7 0

0 0 0 0 0 0 0 0 s8



,

It is more flexible to make the rest of the relaxation parameters (Yu et al. 2003).

S = (1.0, 1.4, 1.4, s3, 1.2, s5, 1.2, s7, s8), where s7 = s8 = ω = 1
(3ν+0.5)

, s3 and s5

are arbitrary, can be set to 1.0 (Sidik et al. 2013). thus

m(x+ ci∆t, t+ ∆t)−m(x, t) = −S ( m−m(eq) ), (7.2.10)

The equilibrium in the moment space of the multiphase approach is meq = M g(eq)

which can defined as
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meq=



k (Gxx +Gyy)

3 ρ

3 (u2
x + u2

y) ρ− 3 k

(
(
∂φ

∂x
)2 + (

∂φ

∂y
)2

)
3 ρ

27 k

(
(
∂φ

∂x
)2 + (

∂φ

∂y
)2

)
−2 k(Gxx +Gyy)−18 ρ(u2

x + u2
y)

3 ρ

ux

− ux

uy

− uy

9 (u2
x + u2

y) ρ+ 2 k(Gxx −Gyy)

9 ρ

3 ρ ux uy + 2 k Gxy

9 ρ



=M g(eq).

(7.2.11)

7.3 Numerical results and analysis of the Simulation of Breaking

Dam problem

In this section, the dam break problems by multi phase LBM method with high

density and viscosity ratios are simulated for different cases and physical geometry.

In this study, the MRT mode is applied with breaking dam problems especially for

density ratio up to 1000 and high Re numbers which was imposable with SRT mode.

Succi (2001) introduced various kind of boundary conditions such as the no-slip, free-

slip and partial slip boundary conditions as illustrated in Figure (7.1). It observed that
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these boundaries are used with breaking waves and breaking dams as are mentioned

in literature review of chapter 1. In the current simulations, the free-slip at bottom

boundary has been employed as shown in Figure (7.1). For the no-slip bounce back

boundary condition, the distribution function with normal and tangential direction is

reversed at the boundary. The unknown distribution function at boundary is obtained

from f5 = f7, f2 = f4 and f6 = f8 at bottom boundary. Free-slip boundary condition is

implemented for the smooth boundary with little contact spend when the fluid flowing

and the momentum in tangential direction is not modified at the boundary. In this case,

the unknown distribution function at boundary found from f5 = f8, f2 = f4 and f6 =

f7 at bottom boundary. The partial slip boundary conditions is combine between no-slip

and free-slip boundary condition and the unknown distribution function at boundary

estimates from

funknowni = α fi no−slip + (1− α) fi free−slip 0 ≤ α ≤ 1, (7.3.1)

where α is partial slip coefficient.

Figure 7.1: Schematic boundary condition.
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7.3.1 H=2W and D=2H

The two dimensional physical model of breaking dam problem illustrated in Figure

(7.2). The simulation of breaking dam is adopted to investigate the MRT of multiphase

LBM by comparing the numerical result with Martin et al. (1952). The same setup

of breaking dam in Sun & Tao (2010) which coupled volume of fluid and level set

(VOSET) method are is used.

The height of initial water column (H = 2W ) is 0.292m and width (W ) equals to

0.146m and D = 0.584m. The density of water column is 1 × 103kg/m2, viscosity

equals to 1 × 10−6m2/s and gravity is 9.8m/s2. The parameters of the dam breaking

is obtained by applying the scaling parameters among the physical (dimensional), non

dimensional and the computational (LBM), for more details see appendix A. The free-

slip boundary conditions are applied for four walls in Figure (7.2).

D=4 W
W

H=2W
Water

column

Figure 7.2: Schematic illustration of dam break problem.
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In the current simulations, the dimensionless parameters of LB are ∆x = ∆t = 1,

the number of grid points (200 × 200, 300 × 300, 400 × 400, 500 × 500) with corre-

sponding gravity (g) (2.817×10−6, 8.346×10−7, 3.521×10−7, 1.803×10−7), which

is represented as a body force according to Guo et al. (2002). The comparison of the

position of the surge front and water column height between the numerical results and

experimental result from Martin et al. (1952) with square domain of the tank is illus-

trated in Figure (7.3) and Figure (7.4). From the result for leading edge position have

shown a good comparison with Martin et al. (1952) by increasing the grid resolution. In

addition, the perfect result obtained for water column height with those in the literature.

Further, simulation is applied with a rectangular domain.

The results of Figure (7.5) and Figure (7.6) illustrated the convergence with grid

numbers of the domain of the breaking dam to Martin et al. (1952) results for both

leading edge position and water column height results. For the results of square do-

main is slightly more convergent than the rectangular one to Martin et al. (1952) results

might be increasing the gird numbers agree well with the those in the literature.

In addition, the comparison between the numerical (LBM) and experimental simu-

lation of Koshizuka & Oka (1996) at four times is shown in Figure (7.7). It observed

that the results of the LBM simulations showing agreement with Koshizuka & Oka

(1996) results.
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Figure 7.3: The comparison between the numerical and experimental results for lead-
ing edge location.
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Figure 7.4: The comparison between the numerical and experimental results for water
column height.
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Figure 7.5: The comparison between the numerical and experimental results for lead-
ing edge location.
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Figure 7.6: The comparison between the numerical and experimental results for water
column height.
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Fig. 9. Configuration of particles at 0.35 s with re, 
reLap = 2.010 in Eq. (20). 

TABLE I 

Calculation Parameters 

Kernel size 
Particle number density, ren 2.110 
Laplacian, reI ap 4.0 /0 

Time step control 
Courant condition umaxAt/l0 < 0.2 
Maximum limit At < 10~3 

Free surface parameter, /3 0.97 

Distance between neighboring 
particles in the initial 
configuration, l0 8.0 X 10"3 m 

with the current kernel function. Selected values of cal-
culation parameters are summarized in Table I. 

IV. C. Calculation Result and Comparison 
with the Experiment 

Calculation of the collapse of a water column is car-
ried out with the selected parameters listed in Table I. 
Viscosity and surface tension are neglected. In Fig. 10, 
configurations of the fluid are shown at 0.1-s intervals 
f rom 0.0 to 1 .Q s for the experimental (the photographs) 
and calculated (the computer-generated graphs) results. 

A removable board supports the initial water col-
umn in the experiment. This board is pulled up within 
0.05 s and collapse starts. In the calculation, the water 
column is represented by 648 particles, which are lo-
cated like a square grid. The distance between two 
neighboring particles l0 is 8.0 X 10" 3 m. 

The left, right, and bot tom walls are represented by 
474 particles. Their coordinates are fixed, and veloci-
ties are zero. The particles on the inner first line of the 
walls are involved in the pressure calculation. As the 
source term of the incompressibility model , the parti-
cle number densities are needed at these particles. Thus, 
two other lines of particles should be added outside be-
cause ren — 2.1/0 , otherwise the particle number densi-
ties are small and the wall particles are recognized as 
the free surface. In M P S , the wall boundary is repre-
sented by arranging fixed particles. This is simpler than 
the grid methods. 

In Fig. 10, the flow velocity vectors are shown as 
lines f r o m the particles' centers. The velocity scale is 
10~2 , which means that velocity 1.0 m / s is shown by 
line length 10"2 m. At 0.1 s (Fig. 10b), the right sur-
face of the water column is disturbed by the motion of 
the supporting board in the experiment. The collapsing 

(a-1) T=0.0sec (experiment) (a-2) T=0.0sec (calculation) 

Fig. 10a. Comparisons between experimental and calculated collapse of a water column. 

(a-1) t=0.0 sec (a-2) t=0.0 sec

Ztl-. 

(b-1) T=0.1sec (experiment) (b-2) T=0.1sec (calculation) 

(c-1) T=0.2sec (experiment) (c-2) T=0.2sec (calculation) 

(d-1) T=0.3sec (experiment) 

S-^i^iSr/:: 

(d-2) T=0.3sec (calculation) 

Figs. 10b, 10c, and lOd. Comparisons between experimental and calculated collapse of a water column. 

NUCLEAR SCIENCE A N D E N G I N E E R I N G VOL. 123 JULY 1996 

(b-1) t=0.1 sec (b-2) t=0.1 sec

Ztl-. 

(b-1) T=0.1sec (experiment) (b-2) T=0.1sec (calculation) 

(c-1) T=0.2sec (experiment) (c-2) T=0.2sec (calculation) 

(d-1) T=0.3sec (experiment) 

S-^i^iSr/:: 

(d-2) T=0.3sec (calculation) 

Figs. 10b, 10c, and lOd. Comparisons between experimental and calculated collapse of a water column. 

NUCLEAR SCIENCE A N D E N G I N E E R I N G VOL. 123 JULY 1996 

(c-1) t=0.2 sec (c-2) t=0.2 sec

Ztl-. 

(b-1) T=0.1sec (experiment) (b-2) T=0.1sec (calculation) 

(c-1) T=0.2sec (experiment) (c-2) T=0.2sec (calculation) 

(d-1) T=0.3sec (experiment) 

S-^i^iSr/:: 

(d-2) T=0.3sec (calculation) 

Figs. 10b, 10c, and lOd. Comparisons between experimental and calculated collapse of a water column. 

NUCLEAR SCIENCE A N D E N G I N E E R I N G VOL. 123 JULY 1996 

(d-1) t=0.3 sec (d-2) t=0.3 sec

Figure 7.7: Comparison of the evolution of leading edge between the experimental
data of Koshizuka & Oka (1996) and the present breaking dam problem.
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7.3.2 H=0.5W and D=5.366H

The two dimensional physical model of breaking dam problem proposed by Cola-

grossi & Landrini (2003) as illustrated in the Figure (7.8). The simulation of breaking

dam is adopted to investigate the MRT of multiphase LBM by comparing the numerical

result with Colagrossi & Landrini (2003). The height of initial water column is H=0.5W

and width is W and D = 5.366H . The density of water column is 1 × 103 kg/m2

, viscosity is 1 × 10−6m2/s and gravity is 9.8m/s2. The slip boundary conditions

for four walls are applied. In the simulations the dimensionless parameters of LB are

∆x = ∆t = 1, number of grid points (lx×ly = 268×100, 536×200, 804×300) with

(W ×H = 100×50, 200×100, 300×150) at different Ma = 0.08, 0.04, 0.027 with

corresponding gravity (1.459×10−5, 1.8239×10−6, 5.4042×10−7), respectively. The

Re = H ∗ Umax/ν is 169367 and Froude number (Fr = Umax/
√
g H = 1.71), where

Umax = Ma cs is maximum non dimensional velocity.

D=5.366 H

W=2 H

H
Water

column

Figure 7.8: Sketch of dam break problem in a rectangular tank.

A good agreement is obtained see (Figure (7.10)) by comparing with Colagrossi &

Landrini (2003) when fixing Ma = 0.02 and increase the number of grid points (lx×

ly = 268×100, 536×200, 804×300) with corresponding g (9.1196×10−7, 4.5598×

10−7, 3.0399×10−7) and relaxation time coefficient τ (0.50001, 0.500025, 0.500031).
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Figure 7.9: The comparison between the numerical and experimental results for lead-
ing edge location with different Ma.
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Figure 7.10: The comparison between the numerical and experimental results for lead-
ing edge location with Ma = 0.02.

160



7.4. DAM BREAKING WITH A WET BED

7.4 Dam breaking with a wet bed

The two dimensional physical model of breaking dam on a wet bed simulation pro-

posed by Badarch et al. (2016) is illustrated in Figure (7.11). The simulation of wet

bed for breaking dam is adopted to investigate the MRT of multiphase LBM by com-

paring the numerical result with both results (experiment and numerical) of Badarch

et al. (2016). Badarch et al. (2016) used free-surface algorithm for LBM adopted

from Thürey et al. (2005). The height of initial water depth is H=0.27m with width

W = 0.1m, length of downstream domain D = 0.8m and water depth of the wet bed is

d = 0.04m as followed the configuration of Badarch et al. (2016). The density of water

column is 1× 103kg/m2 , viscosity is 1× 10−6m2/s and gravity is 9.8m/s2. The free

slip boundary conditions is used for the walls.

In order to investigate the simulation, the non dimensional scale can be written for the

position of the water front X́ at time T́ as

X́ =
x

W
, and T́ = t

√
n g

W
, (7.4.1)

where n = H
W

, the first point P1 is defined at position D
4

and the second point P2 at 3D
4

.

In the simulations the dimensionless parameters of LB are ∆x = ∆t = 1, number

of grid points (lx × ly = 320 × 160, 400 × 200) with corresponding (W × H =

40 × 108, 50 × 135) and gravity (8.3333 × 10−7, 6.6667 × 10−7), respectively. The

Re = H ∗Umax/ν equals to 439420, where Umax = Ma cs is maximum non dimensional

velocity. It observed that the result becomes more accurate by increasing the number

of grid point to (400 × 200) as shown in Figure (7.12) which illustrated a comparison

of the position of the surge front and water column height between the numerical re-

sults and both experimental and numerical results from Badarch et al. (2016). A good

agreement obtained from Figure (7.12) by comparing when with fix Ma = 0.01 and in-
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crease the number of grid points (lx× ly = 320×160, 400×200) with corresponding

relaxation time coefficient τ (0.5000043, 0.5000053) and d (16, 20), respectively. Fur-

ther, the comparison between the numerical and experimental simulation at four time

is illustrated in Figure (7.13) shows agreement with Badarch et al. (2016) results.

D=0.8m
W=0.1m

H
=0

.2
7m

0.
4m

Water

column

WaterP1 P2 d

Figure 7.11: Sketch of dam break problem on a wet bed in a rectangular tank.
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Figure 7.12: The comparison between the numerical and experimental results for lead-
ing edge location with different number of grid point.
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Fig. 4. Time sequence image comparison of experimental and numerical dam break tests with the wet bed.

fraction and distribution functions must be initialized for the

next time step of simulation. Distribution functions for the new

interface cell can be constructed by equilibrium distribution

function using (2), where use an average velocity and density

among neighboring nongas cells. Boundary condition in LBM

method has to be imposed in terms of the distribution func-

tions. So, after the streaming with mass exchange, unknown

distribution function on the interface cell, which satisfies

condition that n · ci > 0 and distribution function had to be

streamed from gas cells, need to be reconstructed according

to the free surface boundary condition as follow,

fı̃(x, t+�t) = feq
i (ρA,u) + fe

ı̃ q(ρA,u)− fi(x, t), (11)

where ρA is a gas density and notation ı̃ stands on the opposite

direction of i. With this condition, gas state can be negligible

for simulation since liquid has lower kinematic viscosity than

gas.

III. VALIDATION OF FREE SURFACE SIMULATION

A. Dam break analysis

First we applied the Free-surface LBM on a dam break

benchmark problem to validate capability of the algorithm.

Simulated result compared against the experimental test con-

ducted with same geometrical configuration shown in Fig. 1.

For the wall, slip boundary condition is imposed. To validate

numerical simulation, we measured dimensionless water-front

position X∗ at dimensionless time T ∗ [8] as,

T ∗ = t
√

ng/L, X∗ = x/L (12)

and time evolution of water depth at specific points (A and

B) depicted in Fig. 1. In (12), n(= H/L) is the aspect

ratio of water column, H and L are the initial height and

width of water column, x is the water-front displacement at

time t. We conducted two numerical cases, grids are 200x400

and 300x600, to investigate grid resolution independence and

time steps dt400 = 0.00007sec and dt600 = 0.00006sec
were used, respectively. The parameters used in simulations

are determined through parametrization formula given in [8].

It seemed that the grid resolution has slightly influence in

numerical result since curve of case of 300x600 has been

plotted very nearly with experimental one in Fig. 2. In the

numerical experiment, plate gate, separating water column

from the wet bottom in the tank, had not yet included. Effect

of the gate removing in the lab experiment appears with water

depth evolution on the point A at time 0.2sec to 0.4sec in Fig.

3, where experiment’s time had been delayed. Except some

offset, time evolution of water depths have same tendency with

experimental one in Fig. 3. Some discrepancies are considered

what might be some deficiency of data extraction from video

frame of the experiment. Because normal video camera had

been used to capture phenomena in laboratory experiment and

the image has some perspective representation, which can be

seen in Fig. 4. For sake of convenience to printed document,

we used edge detecting effect on the each frame of image and

black line to express ideal water surface avoiding doubt with

perspective surfaces in Fig. 4. Free surface shape for three

cases are in good similarity except flying water droplet and

splash on the wall. Water splash on the wall and flying droplets

are difficult to be captured in small scale LBM simulation

since the interface between water and air phase is expressed

by continuous single layer of IF cells. Based on the validation

process, it can be claimed that single phase simulation of LBM

for free surface problem has a substantial capability.

IV. HYDRAULICS APPLICATION

A. Flow over weirs

Weirs are well studied structures by theoretically and ex-

perimentally, but less effort has been made by numerically

because of perfection and priority. Matured weirs measure

flow discharge very precisely, if a best fit discharge coefficient

curve has determined accurately. Advance in the numerical

simulation, there exist many opportunity to develop brand-

new weir or flume. In this study we simulate sharp-crested

rectangular weir in two dimensional space to determine the

discharge coefficient and flow pattern over the weir. Weirs and

spillways are same hydraulics manner in inflow and outflow

a terms of boundary condition. We impose Zou/He boundary

condition [5] at the inflow and zero gradient open boundary

condition [6] at the outflow. Geometry of simulation is given

in Fig. 5 with its numerical results. Discharge equation of
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Fig. 4. Time sequence image comparison of experimental and numerical dam break tests with the wet bed.

fraction and distribution functions must be initialized for the

next time step of simulation. Distribution functions for the new

interface cell can be constructed by equilibrium distribution

function using (2), where use an average velocity and density

among neighboring nongas cells. Boundary condition in LBM

method has to be imposed in terms of the distribution func-

tions. So, after the streaming with mass exchange, unknown

distribution function on the interface cell, which satisfies

condition that n · ci > 0 and distribution function had to be

streamed from gas cells, need to be reconstructed according

to the free surface boundary condition as follow,

fı̃(x, t+�t) = feq
i (ρA,u) + fe

ı̃ q(ρA,u)− fi(x, t), (11)

where ρA is a gas density and notation ı̃ stands on the opposite

direction of i. With this condition, gas state can be negligible

for simulation since liquid has lower kinematic viscosity than

gas.

III. VALIDATION OF FREE SURFACE SIMULATION

A. Dam break analysis

First we applied the Free-surface LBM on a dam break

benchmark problem to validate capability of the algorithm.

Simulated result compared against the experimental test con-

ducted with same geometrical configuration shown in Fig. 1.

For the wall, slip boundary condition is imposed. To validate

numerical simulation, we measured dimensionless water-front

position X∗ at dimensionless time T ∗ [8] as,

T ∗ = t
√

ng/L, X∗ = x/L (12)

and time evolution of water depth at specific points (A and

B) depicted in Fig. 1. In (12), n(= H/L) is the aspect

ratio of water column, H and L are the initial height and

width of water column, x is the water-front displacement at

time t. We conducted two numerical cases, grids are 200x400

and 300x600, to investigate grid resolution independence and

time steps dt400 = 0.00007sec and dt600 = 0.00006sec
were used, respectively. The parameters used in simulations

are determined through parametrization formula given in [8].

It seemed that the grid resolution has slightly influence in

numerical result since curve of case of 300x600 has been

plotted very nearly with experimental one in Fig. 2. In the

numerical experiment, plate gate, separating water column

from the wet bottom in the tank, had not yet included. Effect

of the gate removing in the lab experiment appears with water

depth evolution on the point A at time 0.2sec to 0.4sec in Fig.

3, where experiment’s time had been delayed. Except some

offset, time evolution of water depths have same tendency with

experimental one in Fig. 3. Some discrepancies are considered

what might be some deficiency of data extraction from video

frame of the experiment. Because normal video camera had

been used to capture phenomena in laboratory experiment and

the image has some perspective representation, which can be

seen in Fig. 4. For sake of convenience to printed document,

we used edge detecting effect on the each frame of image and

black line to express ideal water surface avoiding doubt with

perspective surfaces in Fig. 4. Free surface shape for three

cases are in good similarity except flying water droplet and

splash on the wall. Water splash on the wall and flying droplets

are difficult to be captured in small scale LBM simulation

since the interface between water and air phase is expressed

by continuous single layer of IF cells. Based on the validation

process, it can be claimed that single phase simulation of LBM

for free surface problem has a substantial capability.

IV. HYDRAULICS APPLICATION

A. Flow over weirs

Weirs are well studied structures by theoretically and ex-

perimentally, but less effort has been made by numerically

because of perfection and priority. Matured weirs measure

flow discharge very precisely, if a best fit discharge coefficient

curve has determined accurately. Advance in the numerical

simulation, there exist many opportunity to develop brand-

new weir or flume. In this study we simulate sharp-crested

rectangular weir in two dimensional space to determine the

discharge coefficient and flow pattern over the weir. Weirs and

spillways are same hydraulics manner in inflow and outflow

a terms of boundary condition. We impose Zou/He boundary

condition [5] at the inflow and zero gradient open boundary

condition [6] at the outflow. Geometry of simulation is given

in Fig. 5 with its numerical results. Discharge equation of
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fraction and distribution functions must be initialized for the

next time step of simulation. Distribution functions for the new

interface cell can be constructed by equilibrium distribution

function using (2), where use an average velocity and density

among neighboring nongas cells. Boundary condition in LBM

method has to be imposed in terms of the distribution func-

tions. So, after the streaming with mass exchange, unknown

distribution function on the interface cell, which satisfies

condition that n · ci > 0 and distribution function had to be

streamed from gas cells, need to be reconstructed according

to the free surface boundary condition as follow,

fı̃(x, t+�t) = feq
i (ρA,u) + fe

ı̃ q(ρA,u)− fi(x, t), (11)

where ρA is a gas density and notation ı̃ stands on the opposite

direction of i. With this condition, gas state can be negligible

for simulation since liquid has lower kinematic viscosity than

gas.

III. VALIDATION OF FREE SURFACE SIMULATION

A. Dam break analysis

First we applied the Free-surface LBM on a dam break

benchmark problem to validate capability of the algorithm.

Simulated result compared against the experimental test con-

ducted with same geometrical configuration shown in Fig. 1.

For the wall, slip boundary condition is imposed. To validate

numerical simulation, we measured dimensionless water-front

position X∗ at dimensionless time T ∗ [8] as,

T ∗ = t
√

ng/L, X∗ = x/L (12)

and time evolution of water depth at specific points (A and

B) depicted in Fig. 1. In (12), n(= H/L) is the aspect

ratio of water column, H and L are the initial height and

width of water column, x is the water-front displacement at

time t. We conducted two numerical cases, grids are 200x400

and 300x600, to investigate grid resolution independence and

time steps dt400 = 0.00007sec and dt600 = 0.00006sec
were used, respectively. The parameters used in simulations

are determined through parametrization formula given in [8].

It seemed that the grid resolution has slightly influence in

numerical result since curve of case of 300x600 has been

plotted very nearly with experimental one in Fig. 2. In the

numerical experiment, plate gate, separating water column

from the wet bottom in the tank, had not yet included. Effect

of the gate removing in the lab experiment appears with water

depth evolution on the point A at time 0.2sec to 0.4sec in Fig.

3, where experiment’s time had been delayed. Except some

offset, time evolution of water depths have same tendency with

experimental one in Fig. 3. Some discrepancies are considered

what might be some deficiency of data extraction from video

frame of the experiment. Because normal video camera had

been used to capture phenomena in laboratory experiment and

the image has some perspective representation, which can be

seen in Fig. 4. For sake of convenience to printed document,

we used edge detecting effect on the each frame of image and

black line to express ideal water surface avoiding doubt with

perspective surfaces in Fig. 4. Free surface shape for three

cases are in good similarity except flying water droplet and

splash on the wall. Water splash on the wall and flying droplets

are difficult to be captured in small scale LBM simulation

since the interface between water and air phase is expressed

by continuous single layer of IF cells. Based on the validation

process, it can be claimed that single phase simulation of LBM

for free surface problem has a substantial capability.

IV. HYDRAULICS APPLICATION

A. Flow over weirs

Weirs are well studied structures by theoretically and ex-

perimentally, but less effort has been made by numerically

because of perfection and priority. Matured weirs measure

flow discharge very precisely, if a best fit discharge coefficient

curve has determined accurately. Advance in the numerical

simulation, there exist many opportunity to develop brand-

new weir or flume. In this study we simulate sharp-crested

rectangular weir in two dimensional space to determine the

discharge coefficient and flow pattern over the weir. Weirs and

spillways are same hydraulics manner in inflow and outflow

a terms of boundary condition. We impose Zou/He boundary

condition [5] at the inflow and zero gradient open boundary

condition [6] at the outflow. Geometry of simulation is given

in Fig. 5 with its numerical results. Discharge equation of
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fraction and distribution functions must be initialized for the

next time step of simulation. Distribution functions for the new

interface cell can be constructed by equilibrium distribution

function using (2), where use an average velocity and density

among neighboring nongas cells. Boundary condition in LBM

method has to be imposed in terms of the distribution func-

tions. So, after the streaming with mass exchange, unknown

distribution function on the interface cell, which satisfies

condition that n · ci > 0 and distribution function had to be

streamed from gas cells, need to be reconstructed according

to the free surface boundary condition as follow,

fı̃(x, t+�t) = feq
i (ρA,u) + fe

ı̃ q(ρA,u)− fi(x, t), (11)

where ρA is a gas density and notation ı̃ stands on the opposite

direction of i. With this condition, gas state can be negligible

for simulation since liquid has lower kinematic viscosity than

gas.

III. VALIDATION OF FREE SURFACE SIMULATION

A. Dam break analysis

First we applied the Free-surface LBM on a dam break

benchmark problem to validate capability of the algorithm.

Simulated result compared against the experimental test con-

ducted with same geometrical configuration shown in Fig. 1.

For the wall, slip boundary condition is imposed. To validate

numerical simulation, we measured dimensionless water-front

position X∗ at dimensionless time T ∗ [8] as,

T ∗ = t
√

ng/L, X∗ = x/L (12)

and time evolution of water depth at specific points (A and

B) depicted in Fig. 1. In (12), n(= H/L) is the aspect

ratio of water column, H and L are the initial height and

width of water column, x is the water-front displacement at

time t. We conducted two numerical cases, grids are 200x400

and 300x600, to investigate grid resolution independence and

time steps dt400 = 0.00007sec and dt600 = 0.00006sec
were used, respectively. The parameters used in simulations

are determined through parametrization formula given in [8].

It seemed that the grid resolution has slightly influence in

numerical result since curve of case of 300x600 has been

plotted very nearly with experimental one in Fig. 2. In the

numerical experiment, plate gate, separating water column

from the wet bottom in the tank, had not yet included. Effect

of the gate removing in the lab experiment appears with water

depth evolution on the point A at time 0.2sec to 0.4sec in Fig.

3, where experiment’s time had been delayed. Except some

offset, time evolution of water depths have same tendency with

experimental one in Fig. 3. Some discrepancies are considered

what might be some deficiency of data extraction from video

frame of the experiment. Because normal video camera had

been used to capture phenomena in laboratory experiment and

the image has some perspective representation, which can be

seen in Fig. 4. For sake of convenience to printed document,

we used edge detecting effect on the each frame of image and

black line to express ideal water surface avoiding doubt with

perspective surfaces in Fig. 4. Free surface shape for three

cases are in good similarity except flying water droplet and

splash on the wall. Water splash on the wall and flying droplets

are difficult to be captured in small scale LBM simulation

since the interface between water and air phase is expressed

by continuous single layer of IF cells. Based on the validation

process, it can be claimed that single phase simulation of LBM

for free surface problem has a substantial capability.

IV. HYDRAULICS APPLICATION

A. Flow over weirs

Weirs are well studied structures by theoretically and ex-

perimentally, but less effort has been made by numerically

because of perfection and priority. Matured weirs measure

flow discharge very precisely, if a best fit discharge coefficient

curve has determined accurately. Advance in the numerical

simulation, there exist many opportunity to develop brand-

new weir or flume. In this study we simulate sharp-crested

rectangular weir in two dimensional space to determine the

discharge coefficient and flow pattern over the weir. Weirs and

spillways are same hydraulics manner in inflow and outflow

a terms of boundary condition. We impose Zou/He boundary

condition [5] at the inflow and zero gradient open boundary

condition [6] at the outflow. Geometry of simulation is given

in Fig. 5 with its numerical results. Discharge equation of
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Figure 7.13: Comparison of the evolution of leading edge between the experimental
data of Badarch et al. (2016) and the present breaking wet bed of dam
problem.
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7.5 Summary

In this chapter, the multiphase LB approach has been improved by using MRT to

study different cases of breaking dam problems. The range of the possible density ratios

and Reynolds number (Re) are explained beyond what was possible with SRT. The

results has been illustrated for teasing the convergence with grid numbers of the square

and rectangular domain of the breaking dam. The result of the simulation for both

leading edge position and water column height results for grid resolutions is give a good

comparison with Martin et al. (1952). In addition, A good agreement is obtained when

investigated the second case of the Dam break problems with Colagrossi & Landrini

(2003). In addition, the wet bed of the dam break problems have been tested and show

a fine results of the simulation by comparing with Badarch et al. (2016). Finally, the

MRT mode is implemented with breaking dam problems especially for density ratio up

to 1000 and high Re numbers which was impossible with SRT mode.
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Chapter 8

Standing Wave Simulations

8.1 Introduction

The first movement of the internal wave was registered by Nansen in the 17th cen-

tury. For the density variation, waves the interface gravity might appear in coastal

waters (Buick & Greated 1998). The authors simulated the interfacial gravity waves

numerically for binary fluid lattice Boltzmann Method (LBM) by incorporating a grav-

itational interaction for viscous fluids with various density ratio in a sharp interface.

Grid convergence was investigated by using both acoustic and diffusive scaling for

standing wave simulations with density ratios up to 1000. Using MRT was found to

improve the stability for high density ratios. This method has been developed to study

two scaling cases with standing wave simulations: firstly, with difference density ratios

which parameters based on Hodges et al. (1996) and Zhao et al. (2013). Secondly, for

small density ratio and both high and low viscosity standing waves that depends on

Buick & Greated (1998).

This chapter is organized as follows: Section 8.2 introduces the simulations of

the standing wave with Single Relaxation Time (SRT). In section 8.3, different cases

of standing wave simulations was implemented using the Multiple Relaxation Time

(MRT) for multiphase with LBM. Section 8.4 provides numerical results for the stand-

ing wave with high and low viscosity values at small density ratios. Finally, summary
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8.2. STANDING WAVE WITH SRT

of this chapter is given in Section 8.5.

8.2 Standing Wave with SRT

In the first instance, the standing wave with SRT is simulated at Re effect to inves-

tigate the codes of the current study for multiphase method. According to Hodges et al.

(1996) and Zhao et al. (2013), two dimensional standing wave is implemented with

length 2m, depth 2m, wavelength 2m, the wave number k equals to 3.1 and wave pe-

riod 1.1339s. For the non dimensional parameters, the wavelength L equal to 1, depth

d is 0.5, wave amplitude a is 0.1 and Froude number Fr is 0.13 at Reynolds number

(Re)

Re =
LUc
ν

,

where ν is the kinematic viscosity and Uc is the Characteristic velocity defined as

Uc = aω ,

where ω is the frequency of wave.

In the simulations, different Re = 10, 100 and 1000 are performed with various

Mach numbers Ma = 0.015, 0.0075, 0.00375, 0.001875, 0.00009375 and 0.00004875

at various number of grid points. In the implementation for the standing wave of the

lx × ly square domain, Uc can be found from Ma number as

Uc = Macs ,

where cs = c√
3

is speed of sound, a = 0.1 lx
2

and the frequency ω is obtained as

ω =
Uc
a
.
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8.2. STANDING WAVE WITH SRT

The kinematic viscosity ν and the gravitational acceleration g are taken, respectively as

ν =
aω Lx
Re

,

and

g =
(aω)2

Fr2 Lx
.

Thus, the period of the wave p is defined as

p =
Lx√

g

k
tanh(k d)

=

√
2π Lx

g tanh(2π
Lx
d)
,

where wave number k =
2π

Lx
, and the celerity of the wave Cw is

Cw =
Lx
p
,

So, the number of the iteration for time in the simulation is computed according to the

non dimensional time per period.

8.2.1 Density ratio 2 and different Reynolds number

The implementation of acoustic scaling, consider as fixing the values of Ma num-

bers and different grid number while the diffusive scaling is defined by taking the dou-

ble grid numbers when half the value of Ma numbers. The results with density ratio 2

at Re = 100 are illustrated in Figure (8.1) and (8.2). It observed that the results show

convergence with grid number less than time = 1 for a acoustic scaling and less than
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time = 2 for the diffusive scaling.
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Figure 8.1: The evolution of the height of wave at the centreline for standing wave
against time with density ratio= 2, Re = 100, number of lattice grids
lx = 64, 128, 256 and 512 and fixing Ma = 0.00375 using acoustic
scaling.
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Figure 8.2: The evolution of the height of wave at the centreline for standing wave
against time with density ratio= 2, Re = 100, number of lattice grids
lx = 256 and 512 and different Ma numbers using diffusive scaling.
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8.2. STANDING WAVE WITH SRT

8.2.2 Density ratio 100 and different Reynolds number

The results with density ratio 100 at Re = 10 are illustrated in Figure (8.3) and

(8.4). The Figure (8.3) illustrated more convergence results with accurate Ma numbers

at grid number for acoustic scaling. In the meantime in Figure (8.4), the convergence

with lattice grid such as 64×64 improved by halving the Ma numbers according to the

diffusive scaling.
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(a) Ma = 0.0009375
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Figure 8.3: The evolution of the height of wave at the centreline for standing wave
against time with density ratio= 100, Re = 10, number of lattice grids
lx = 64, 128 and 256 and differentMa numbers using acoustic scaling.
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Figure 8.4: The evolution of the height of wave at the centreline for standing wave
against time with density ratio= 100, Re = 10, different number of lattice
grids and various Ma numbers using diffusive scaling.

It observed that the results of density ratio 100 and Re = 100 gives a good and

accurate convergence with using diffusive scaling than the acoustic scaling specially

for small Ma number at grid numbers as shown in Figures (8.5) and (8.6).
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Figure 8.5: The evolution of the height of wave at the centreline for standing wave
against time with density ratio= 100, Re = 100, number of lattice grids
lx = 256 and 512 and different Ma numbers using diffusive scaling.

170



8.2. STANDING WAVE WITH SRT

0 1 2 3 4 5 6 7 8
−0.10

−0.05

0.00

0.05

0.10

Time

H
ig

ht
of

w
av

e
512× 512
256× 256
128× 128
64× 64

(a) Ma = 0.0075
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Figure 8.6: The evolution of the height of wave at the centreline for standing wave
against time with density ratio= 100, Re = 100, number of lattice grids
lx = 64, 128, 256 and 512 and different Ma numbers using acoustic
scaling.

8.2.3 Density ratio 1000 and different Reynolds number

The density ratio up to 1000 with small Re = 10 gives a reasonable convergence

with grid numbers as shown in Figures (8.7) and (8.8). The results with diffusive scale

is more convergent with lattice grid than the acoustic scale. The simulations for SRT

with high density ratio at large Re numbers are not stable. So the MRT model is used

in the next section.
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Figure 8.7: The evolution of the height of wave at the centreline for standing wave
against time with density ratio= 1000, Re = 10, number of lattice grids
lx = 64, 128, and 256 and different Ma numbers using acoustic scal-
ing.

0 1 2 3 4 5 6 7 8
−0.05

0.00

0.05

0.10

Time

H
ig

ht
of

w
av

e

256× 256,Ma = 0.0009375

128× 128,Ma = 0.0001875

64× 64,Ma = 0.00375

Figure 8.8: The evolution of the height of wave at the centreline for standing wave
against time with density ratio= 1000, Re = 10, number of lattice grids
lx = 64, 128 and 256 and differentMa numbers using diffusive scaling.
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8.3 Standing Wave with MRT

The results with MRT model is applied for high density ratio up to 1000 at Re =

100 and 1000. Thus the MRT is improved the results for the standing wave simulations

as shown in Figures (8.9), (8.10) and (8.11). It observed that the results become more

stable with increasing the accuracy of Ma number with doubling the lattice grids. In

addition, the results that is obtained from the diffusive scale is more convergent than

the acoustic scale for Re = 100 and 1000.
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Figure 8.9: The evolution of the height of wave at the centreline for standing wave
against time with density ratio= 1000, Re = 100, number of lattice grids
lx = 64, 128, and 256 and differentMa numbers using acoustic scaling
in MRT.
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Figure 8.10: The evolution of the height of wave at the centreline for standing wave
against time with density ratio= 1000, Re = 1000, number of lattice
grids lx = 256 and 512 and different Ma numbers using acoustic scal-
ing in MRT.
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Figure 8.11: The evolution of the height of wave at the centreline for standing wave
against time with density ratio= 1000, Re = 1000, number of lattice
grids lx = 256 and 512 and differentMa numbers using diffusive scal-
ing in MRT.

The results that are obtained from MRT model for the multiphase LB are more

stable than the SRT collision operator especially for large Re with high density ratio.

It observed that from the implementations of standing wave with the MRT model for
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density ratio up 1000 and Re = 100, 1000 which are not obtainable with SRT model.

8.4 The second case of the standing wave simulations

In the second case, The results are presented for a standing wave with Buick &

Greated (1998) for ρ́1
ρ́2

= 2 and initial interface at y(x) = 1
2

+ A cos(2π x) in a 1 × 1

domain for both low and high viscosity as shown in Figures (8.12) and (8.13), respec-

tively. Figure (8.12) shows the evolution of wave height at the centreline (x = 1/2)

against dimensionless time t́ = t/
√
lx/g using A = 0.07 on a 256 × 256 lattice. The

predicted period p = 3.66 and decay rate α = 1.679 × 10−1 agree well with results

from Buick & Greated (1998). Figure 8.13 illustrates the standing wave for low viscos-

ity (Re = 10000), A = 0.077 for a 512× 512 lattice, with predicted period p = 2 and

decay rate α = 2.71× 10−2.
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Figure 8.12: The evolution of the height of wave at the centreline for standing wave
against t́ with Re = 400. The circle marker is the present result, the line
is the best fitting curve and the square is for Buick et al. (1998).
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Figure 8.13: The evolution of the height of wave at the centreline for standing wave
against t́ with Re = 10000. The circle marker is the present result and
the line is the best fitting curve.

8.5 Summary

In this work, the implementations of multiphase LB flows is applied for different

density and viscosity ratios with various Re numbers to simulate two different scaling

for 2D standing waves. The first scale is given with different density and viscosity

ratios which based on Hodges et al. (1996) and Zhao et al. (2013). The results with

high density ratio up to 1000 at large Re = 1000 was obtained using the MRT model

in the current study. The results that are given from MRT model are more stable than

the SRT mode especially for large Re with high density ratio. In the second scale,

the evolution of the height of a standing wave was presented for both high and low

viscosity. The high viscosity result agrees well with results of Buick & Greated (1998).

As expected the decay rate was reduced for low viscosity (Re = 10000) standing wave.
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Chapter 9

Summary and Future work

9.1 Summary

The overall aim of this thesis was to simulate multiphase Lattice Boltzmann flows

with high density and viscosity ratios at large Reynolds numbers (Re). In order to

overcome the numerical instabilities which occurred with high Re or high density ratio

a Multi Relaxation Time (MRT) model was developed by using LBM. A brief review

of the free surface with different approaches that have been coupled with LBM is given

to simulate wave structure interaction, wave and dam breaking. In meantime, the de-

velopment of main significant multiphase LB approaches was presented such as Color-

Gradient model, SC model, FE based model and HCZ model. It observed that in their

stable implementations was focused for various applications with respect to the values

of density ratio, viscosity ratio andRe for each model. Eventually, the unified approach

of Banari et al. (2014) for high density ratio with Single Relaxation Time (SRT) was

chosen. So for that reason the multiphase LB method was developed by using MRT to

apply with large Re and high density ratio.

So the basic outline of LBM and the relation with the Navier-Stokes (NS) equations

was presented according to Guo & Shu (2013). Also, the boundary conditions was de-

scribed then the algorithms of the classical LBM with Single Relaxation Time (SRT)

and Multi Relaxation Time (MRT) were illustrated.
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In the classical LBM, two cases of relaxation Time SRT (on grid and half way)

bounce back boundary conditions and MRT with on grid bounce back boundary con-

dition for LBM have been used to simulate 2D cavity flow. In the computations, the

stream function and energy were used as measures to study the convergence to steady

state and estimate the error for Re from 100 to 10000 at lx, ly = [33, 65, 129, 257, 513]

as shown in Figures (3.2 - 3.9). In general, MRT model is more stable than SRT espe-

cially with highRe as shown in Tables (3.5 - 3.6). It observed that the behaviours of the

simulations have 1st order accuracy for small lattice grids and 2nd order accuracy for

large lattice grids of in SRT while MRT with Re = 3200 and 5000 has 2nd order accu-

racy as illustrated in Figures (3.10-3.13). On the other hand, A comparisons between

the numerical results of the current study (for the velocity profiles and streamlines) and

the numerical results from Ghia et al. (1982) were made. The results of minima of the

stream function have excellent match with Ghia et al. (1982) results.

The methodology of multiphase flows with unified LB approach for high density

and viscosity ratios was presented. The movement of interface was modelled as follow

Banari et al. (2014) by the Cahn-Hilliard (CH) equation then the values of order param-

eter were used to specify the densities of each phases. The pressureless NS equations

and the correction of the pressureless velocity field was found by the Poisson equation.

Also, the Chapman-Enskog expansion for solving multiphase LBM was derived.

The implementations of LBM for two dimensional multiphase flows with high den-

sity and viscosity ratios was simulated to investigate the codes of multiphase in the

current study. Two fluid Poiseuille flow was simulated with various values of density

and kinematic viscosity ratios with different Re number. The a good comparisons be-

tween the current study and the analytic solution were obtain then the L2-norm errors

for these results in Figures (5.2-5.5) are illustrated the convergence with lattice grids.

The verification of static bubble flow with density ratio 100 is made and obtained good

comparisons between the theoretical (Laplace law) and current computations with dif-
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9.1. SUMMARY

ferent surface tension coefficient values and various radius (see Figure (5.12)). The

gravitational acceleration force for rising bubble was studied and the terminal shape

with the velocity vectors for rising bubble between the present results at (128 × 512)

lattice grid and Sun & Tao (2010) results were tested (see Figure (5.13)).

A LBM for multiphase flows with high density and viscosity ratios to simulate 2D

single and multiple mode Rayleigh-Taylor instability (RTI) is studied. The single RTI

at high density up to 100 and 1000 at Re = 600, 3000, 5000 were investigated. It ob-

served that from the simulations are obtained a good result with ρ́1
ρ́2

= 100 and 1000

and high Re. Also, the study of the evolution of interface and the convergence of a

multiple mode RTI with different values of surface tension coefficient (σ12) and lattice

grid for the positions of bubble and spike are made. A good result is obtained by com-

paring with those in He et al. (1999) for the average density profiles across the depth

in multiple mode RTI with various σ12. In addition, the results followed the expected

pattern of increased interface complexity with decreasing σ12.

The multiphase using MRT for LBM was developed and three cases of breaking

dam problems were studied. The expanding of range of applying high density ratios

with large Reynolds number (Re) beyond what was possible with SRT. The results

has been agreed well for testing the convergence with grid numbers of the square and

rectangular domain of the breaking dams and for both leading edge position and water

column height results. The simulations give a good comparisons with with Martin et al.

(1952) by using the MRT. Also, comparisons was show agreements when investigated

the second case of the Dam break problems with Colagrossi & Landrini (2003). In

addition, the wet bed of the dam break problems was studied and show a fine results

by comparing with Badarch et al. (2016). Finally, the MRT mode is implemented with

breaking dam problems especially for density ratio up to 1000 and high Re numbers

which was impossible with SRT model.

The multiphase LB with MRT model improved for different density and viscosity
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ratios with large Re to simulate two different scaling for standing waves. The results

shown good convergence with lattice grid for density ratio up to 1000 at Re = 1000.

In the second case, the development of the height of a standing wave for both high

and low viscosity was introduced. The high viscosity result agrees well with results of

Buick & Greated (1998). As expected the decay rate was reduced for the low viscosity

(Re = 10000) standing wave.

9.2 Future work

The LBM multiphase scheme introduced of this thesis is limited to 2D. The model

should be extend to three spatial dimensions. So, in order to investigate this, paralleli-

sation would be required with three dimensional model.

The MRT is a more general form of the LBM with a collision matrix where mo-

ments of distribution functions as density, momentum are relaxed with different time

scales, because of the MRT model is more stable than SRT then it can be investigated

with three dimensional model for multiphase LB approach .

Extension of the model to include fluid-structure interactions problems could en-

able prediction of ship motion.

The extension of multiphase with LBM can be applied at each phase for ship motion

structure with solid phase of the problem with need to create new approach to simulate

the flow with three phases. It is likely that MRT model would be required for such

stability.
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Appendix A

Scaling the parameters

The correct conversion between the physical and Lattice Boltzmann (LB) scale is a

most important step to simulate the physical problems when implemented in LBM. It

is necessary when comparing results obtained from LB simulations to convert to either

physical parameters or non dimensional parameters. The converted variables in LB

depend on the scaling factor parameters as are explained below

A.1 Direct Method

The relation between physical and LB parameters can be illustrated directly by

the grid size ∆x and the time step ∆t in table (A.1) and used to convert the physical

parameters unit to LB and vice versa (Jain 2010, Inamuro et al. 1997).
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Table A.1: Convert physical parameters unit to LB and vice versa.

Parameter Units Physical Lattice Boltzmann Conversion

Density Kg/m3 ρPhy ρLB ρPhy=ρref ρLB

Grid size m ∆xPhyor∆yPhy ∆xLB =∆yLB =1 —

length m xPhy xLB or lx xPhy=∆xPhy xLB

Time space s ∆tPhy ∆tLB =1 —

lattice speed m/s cPhy=
∆xPhy
∆tPhy

cLB = ∆xLB
∆tLB

=1 —

Velocity m/s uPhy=
∆xPhy
∆tPhy

uLB = ∆xLB
∆tLB

=1 uPhy=
∆xPhy
∆tPhy

uLB

Speed of sound m/s cs
Phy

= 1√
3

∆xPhy
∆tPhy

cs
LB

= 1√
3

∆xLB
∆tLB

= 1√
3

cs
Phy

=
∆xPhy
∆tPhy

cs
LB

Acceleration m/s2 aPhy=
∆uPhy
∆tPhy

aLB = ∆uLB
∆tLB

∆uPhy=
∆xPhy
∆tPhy

∆uLB

so aPhy=
∆xPhy
∆t2Phy

aLB

Kinematic

viscosity

m2/s νPhy=c2s
LB

(τ−0.5)∆x2
Phy

∆tPhy
νLB=c2s

LB

(τ−0.5)∆x2
LB

∆tLB
νPhy=

∆x2Phy
∆tPhy

νLB

A.2 The Governing equations for the physical system

The equations of fluid mechanics problem represent conservation of mass and mo-

mentum. The conservation of mass guaranteed by the equation of the continuity in

which the velocity field is divergence free, as defined below

∇phy .uphy = 0 , (A.2.1)

where the subscript “phy” refers to the physical system. The Navier-Stokes equations,

are given by

∂t
phy

uphy + (uphy . ∇phy) uphy = −1

ρo,phy
∇phy pphy + νphy ∇2

phy uphy . (A.2.2)
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A.3. THE NON-DIMENSIONAL SCALING

Non dimensions of the parameters is necessary for the LBM.

A.3 The non-dimensional scaling

The dimensionless variables is represented by removing the units of the param-

eters. The “nd” subscript refer to non-dimensional scale. The characteristic length

l0,phy and the characteristic time t0,phy is used to convert the parameters from physi-

cal units (phy) that were introduced by governing equations (A.2.1) and (A.2.2) to the

non-dimensional units (nd). The characteristic length l0,phy can be define as length of

an obstacle, radius of bubble or length of the fluid that needs t0,phy time or period scale

for developing of the flow. These quantities used to find the non dimensional length

lnd and non-dimensional time tnd scale from the physical length lphy and time tphy are

illustrated according to the relations below (Latt 2008)

tnd =
tphy
t0,phy

, and lnd =
lphy
l0,phy

. (A.3.1)

According to dimensional analysis, the same technique is used to convert the other

parameters which can be represented as

uphy =
l0,phy
t0,phy

und, ∂t
phy

=
1

t0,phy
∂t
nd
, ∇phy =

1

l0,phy
∇nd, Pphy = ρ0,phy

l20,phy
t20,phy

Pnd .

(A.3.2)

By substitution the above parameters into eqs (A.2.1) and (A.2.2), the dimensionless of

the governing equation is obtained as

l0,phy
t20,phy

∂t
nd

und +
l0,phy
t20,phy

(und . ∇nd) und = − l0,phy
t20,phy

∇nd pnd +
νnd t0,phy
l20,phy

∇2
nd uphy .
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A.3. THE NON-DIMENSIONAL SCALING

Multiplying by
t20,phy
l0,phy

, yield

∂t
nd

und + (und .∇nd) und = −∇nd pnd +
1

Re
∇2
nd uphy , (A.3.3)

where

Re =
l20,phy

νnd t0,phy
. (A.3.4)

By setting the reference parameters in the non dimensional scale as

l0,nd =
l0,phy
l0,phy

= 1 , (A.3.5)

and

t0,nd =
t0,phy
t0,phy

= 1 . (A.3.6)

Since the Re is dimensionless unit for that it has same quantity in the physical and non

dimensional scale, can be written as

Re =
1

νnd
, (A.3.7)

and from this non dimensional property of Re that leads to viscosity in the non dimen-

sional scale defined as

νnd =
1

Re
. (A.3.8)
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A.4 Conversion of the non-dimensional to Lattice Boltzmann units

Assuming dimensionless length and time scales l0,nd = t0,nd = 1. The step size

(∆x) and the time steps (∆t), can be written as

∆x =
l0,nd
lx

=
1

lx
, (A.4.1)

and

∆t =
t0,nd

Niteration

=
1

Niteration

. (A.4.2)

Dimensionless analysis is used a base to convert the other parameters from non-dimensional

to LB units and the “LB” subscript refers to the Lattice Boltzmann. The length and time

factors are (λx) and (λt), respectively. They are used to define the other parameters,

such as velocity factor (λu):

und
uLB

= λu, so , und =
λx
λt
uLB ,

which results as

und =
∆x

∆t
uLB , (A.4.3)

and from the viscosity in eq. (A.3.8), can be obtained as

νnd =
∆2x

∆t
νLB , (A.4.4)
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and thus

uLB =
∆t

∆x
und , (A.4.5)

and

νLB =
∆t

∆2x
νnd =

∆t

∆2x
=

1

Re
. (A.4.6)

Since reference length and time is unity (l0,nd = t0,nd = 1), so

u0,nd =
l0,nd
t0,nd

= 1 . (A.4.7)

Therefore from eq. (A.4.5)

uLB =
∆t

∆x
. (A.4.8)

In general, non dimensional parameters such as Reynolds number (Re) and Froude

number (Fr) can be used to obtain the unknown parameters in Lattice Boltzmann scal-

ing. The relation between the three scales of Reynolds number (Re) and Froude number

(Fr) is same, so

Rephy = ReLB which means ReLB =
ULB LLB
νLB

,

and similarly,

Frphy = FrLB.
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Thus as

FrLB =
ULB√
gLB LLB

,

where (gLB) is the lattice gravity. In addition, If the valued of the Re, velocity, length

are known in the LB leads to determine lattice kinematic viscosity (ν) from Re. Then

from the ν, the relaxation time (τ) can defined

τ = 3 ν + 0.5

Also, The lattice time space can be obtained according to lowMa number with an other

relation by knowing the lattice grid space and the lattice viscosity (ν) as

∆tLB =
ULB ∆xLB
Uphy

or the lattice time space can be found with respect to lattice gravity (gLB) which is

define as an external force (Nils 2007).

gphy =
∆xLB gLB
(∆tLB)2

, that give as ∆tLB =

√
gLB LLB
gphy

.
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Appendix B

Chapman-Enskog Expansion for Solv-

ing Multiphase Flow

B.1 Chapman-Enskog expansion for recovery the pressure-less

Navier -Stokes equations

In this section, the LBGK equation

gi(x + ci∆t, t+ ∆t)− gi(x, t) = −∆t

τg
(gi(x, t)− g(eq)

i (x, t)) + ∆t Bi,

(B.1.1)

with the equilibrium distribution function of D2Q9

g
(eq)
i = ωi

[
(ciα.u∗)
c2
s

+
(ciα.u∗)2

2c4
s

− u∗2

2c2
s

]
+ ωi

k

ρ
Gαβciαciβ − vi

k

2ρ
|∇φ|2, (B.1.2)
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NAVIER -STOKES EQUATIONS

where cs is speed of sound, ciα is the velocity with index α = (x, y) = (1, 2) or also

β = (x, y) = (1, 2) and

wi =



4
9
, for i = 0,

1
9
, for i = 1, 2, 3, 4,

1
36
, for i = 5, 6, 7, 8.

(B.1.3)

vi =


−5
3 c2
, for i = 0,

3wi
c2
, for i = 1, 2, · · · , 8.

(B.1.4)

are weight functions and

Gαβ =
9

2 c4

(
∂φ

∂xα

∂φ

∂xβ

)
− 9

4 c4

(
∂φ

∂xγ

∂φ

∂xγ

)
δαβ, (B.1.5)

leads to the macroscopic (pressure-less) Navier-Stokes equations

∂u∗α
∂t

+u∗β
∂u∗α
∂xβ

=
k

ρ

∂

∂xβ

{(
∂φ

∂xγ

∂φ

∂xγ

)
δαβ−

(
∂φ

∂xα

∂φ

∂xβ

)}
+

∂

∂xβ

{
µ

ρ

(
∂u∗α
∂xβ

+
∂u∗β
∂xα

)}
− µ

(
∂u∗α
∂xβ

+
∂u∗β
∂xα

)
∂

∂xβ

1

ρ
+
Bα

ρ
, (B.1.6)

where

µ

ρ
= ν = c2

s

(
τ́g −

1

2
∆t

)
. (B.1.7)
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The multi-scale expansions are introduced,

gi = g
(0)
i + εg

(1)
i + ε2g

(2)
i +O(ε3) (B.1.8)

∂t = ∂to + ε∂t1 +O(ε2) (B.1.9)

∂α = ∂αo +O(ε1). (B.1.10)

where ε is a small number known as Knudsen number, which is, the ratio between the

mean free path and the microscopic length scale, and ∂t and ∂α are the derivatives with

respect to space and time, respectively. ∂to is represented to be the time scale for fast

advective scale, while ∂t1 is the slow diffusive scale. By starting with the second order

Taylor series expanding the lattice BGK ( LBGK ) equation (B.1.1) without force term,

reads

ε(∂t+ciα∂α)gi+
ε2

2
(∂t+ciα∂α)(∂t+ciβ∂β)gi+O(ε3)=− 1

τ́g
(gi−g(eq)

i ), (B.1.11)

where τ́g = τg/∆t the dimensionless relaxation time. Inserting equations (B.1.8),

(B.1.9) and (B.1.10) into eq.(B.1.11), yield

ε(∂to+ciα∂αo)g
(0)
i +ε2

{
∂t1 g

(0)
i +(∂to+ciα∂αo)g

(1)
i +

1

2
(∂to+ciα∂αo)(∂to + ciβ∂βo)g

(0)
i

}
+O(ε3) = − 1

τ́g

[
g

(0)
i + εg

(1)
i + ε2g

(2)
i − g

(eq)
i

]
+O(ε3). (B.1.12)

Equating the coefficients of each order ε, at the zeroth-order of ε is obtained as

g
(0)
i = g

(eq)
i , (B.1.13)
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and at the first-order of ε

(∂to + ciα∂αo) g
(eq)
i =

−1

τ́g
g

(1)
i , (B.1.14)

and at the second-order of ε

∂t1 g
(eq)
i +(∂to+ciα∂αo) g

(1)
i +

1

2
(∂to+ciα∂αo)(∂to+ciβ∂βo) g

(eq)
i =

−1

τ́g
g

(2)
i , (B.1.15)

equation (B.1.15) can be written as follows

∂t1 g
(eq)
i +

[
2 τ́g − 1

2 τ́g

]
(∂to + ciα∂αo) g

(1)
i = − 1

τ́g
g

(2)
i , (B.1.16)

To evaluate zeroth-, first-, second- and third-order moments of equilibrium distribution

functions Eq.(B.1.2), the properties of the generalized lattice tensor according to (Guo

& Shu 2013) for D2Q9 are required as follows

∑
i

wi = 1 (B.1.17a)

∑
i

wiciα = 0 (B.1.17b)

∑
i

wiciαciβ = c2
sδαβ (B.1.17c)

∑
i

wiciαciβciγ = 0 (B.1.17d)

∑
i

wiciαciβciγciδ = c4
s (δαβ δγδ + δαγ δβδ + δαδ δβγ) (B.1.17e)

∑
i

wiciαciβciγciδciθ = 0 . (B.1.17f)
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Gαβ in equation(B.1.5) can be written as

G =
9

2c4

G1 1 G1 2

G2 1 G2 2

 ,

where

G1 1 = −G2 2 =
1

2

[
(
∂φ

∂x1

)2 − (
∂φ

∂x2

)2

]
and G1 2 = G2 1 =

∂φ

∂x1

∂φ

∂x2

, (B.1.18)

the zeroth-order moment of equilibrium distribution function is evaluated as follows

∑
i

g
(eq)
i =

1

c2
s

∑
i

ωi ciα.u
∗
α +

1

2 c4
s

∑
i

ωi ciα ciβ u
∗
α u
∗
β −

1

2 c2
s

∑
i

ωi u
∗
γ u
∗
γ

+
k

ρ

∑
i

ωiGαβciαciβ −
k

2ρ

∑
i

vi |∇φ|2,

from eqs. (B.1.17) yields,

∑
i

g
(eq)
i =

1

c2
s

(0) +
1

2 c2
s

u∗β u
∗
β −

1

2 c2
s

u∗γ u
∗
γ +

k

ρ
(0)− k

2ρ
(0) = 0 , (B.1.19)

the first-order moments of equilibrium distribution function is competed as follows

∑
i

ciα g
(eq)
i =

1

c2
s

∑
i

ωi ciα ciβ u
∗
β+

1

2 c4
s

∑
i

ωi ciα ciβ ciδ u
∗
β u
∗
δ−

1

2 c2
s

∑
i

ωi ciα u
∗
β u
∗
β

+
k

ρ

∑
i

ωiGβδ ciαciβciδ −
k

2ρ

∑
i

vi ciα|∇φ|2,

by substituting eqs. (B.1.17) into above equation
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∑
i

ciαg
(eq)
i =

1

c2
s

(c2
s δαβ u

∗
β)+

1

2 c4
s

(0)− 1

2 c2
s

(0)+
k

ρ
(0)− k

2ρ
(0)=u∗α . (B.1.20)

The second-order moments of the equilibrium distribution function (π
(0)
αβ =

∑
i ciα ciβ g

(eq)
i )

is evaluated as below

∑
i

ciα ciβ g
(eq)
i =

1

c2
s

∑
i

ωi ciα ciβ ciδ u
∗
δ +

1

2 c4
s

∑
i

ωi ciα ciβ ciδ ciγ u
∗
δ u
∗
γ

− 1

2 c2
s

∑
i

ωi ciα ciβ u
∗
γ u
∗
γ +

k

ρ

∑
i

ωiGδγ ciαciβciδ ciγ

− k

2ρ

∑
i

vi ciα ciβ|∇φ|2,

from eqs. (B.1.17), yields

∑
i

ciα ciβ g
(eq)
i =

1

c2
s

(0) +
c4
s

2 c4
s

(δαβ δδγ + δαδ δβγ + δαγ δβδ)u
∗
δ u
∗
γ −

c2
s

2 c2
s

δαβ u
∗
γ u
∗
γ

+
k

ρ
c4
s (δαβ δδγ + δαδ δβγ + δαγ δβδ)Gδγ −

k

2ρ
|∇φ|2 δαβ ,

=
1

2
(δαβ u

∗
γ u
∗
γ + δαδ u

∗
δ u
∗
β + δαγ u

∗
β u
∗
γ) −

1

2
δαβ u

∗
γ u
∗
γ

+
k

9 ρ
(2Gαβ + Gγγ δαβ)− k

2ρ

∂φ

∂xγ

∂φ

∂xγ
δαβ ,

=u∗α u
∗
β+

2 k

9 ρ

[
9

2c4

(
∂φ

∂xα

∂φ

∂xβ

)
− 9

4c4

(
∂φ

∂xγ

∂φ

∂xγ

)
δαβ

]
− k

2ρ

∂φ

∂xγ

∂φ

∂xγ
δαβ ,

thus

∑
i

ciα ciβ g
(eq)
i =π

(0)
αβ = u∗α u

∗
β+

k

ρ

(
∂φ

∂xα

∂φ

∂xβ

)
− k

ρ

(
∂φ

∂xγ

∂φ

∂xγ

)
δαβ , (B.1.21)
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the third-order moments of equilibrium distribution function is evaluated as follow

∑
i

ciα ciβ ciγ g
(eq)
i =

1

c2
s

∑
i

ωi ciα ciβ ciγ ciδ u
∗
δ+

1

2 c4
s

∑
i

ωi ciα ciβ ciγ ciδ ciθ u
∗
δ u
∗
θ

− 1

2 c2
s

∑
i

ωi ciα ciβ ciγ u
∗
δ u
∗
δ +

k

ρ

∑
i

ωiGδθ ciα ciβ ciγ ciδ ciθ

− k

2ρ

∑
i

vi ciα ciβ ciγ |∇φ|2,

from eqs. (B.1.17), yields

∑
i

ciα ciβ ciγ g
(eq)
i =

c4
s

c2
s

(δαβ δδγ + δαδ δβγ + δαγ δβδ)u
∗
δ ,

then,

∑
i

ciα ciβ ciγ g
(eq)
i = c2

s (δαβ u
∗
γ + δβγ u

∗
α + δαγ u

∗
β) . (B.1.22)

The zero and first moments of distribution function and equilibrium distribution func-

tion are defined as follow

∑
i

gi =
∑
i

g
(eq)
i = 0 and

∑
i

ciα gi =
∑
i

ciα g
(eq)
i = u∗α. (B.1.23)

From equations (B.1.8), (B.1.13) and (B.1.23), yield

∑
i

g
(k)
i = 0 and

∑
i

ciα g
(k)
i = 0 for k > 0 . (B.1.24)

Now, by taking the zeroth-order moment of equation (B.1.14)
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∂to
∑
i

g
(eq)
i + ∂αo

∑
i

ciα g
(eq)
i = − 1

τ́g

∑
i

g
(1)
i ,

from zeroth- and first-order moments of of equilibrium distribution function Eqs. (B.1.19)

and (B.1.20) with eq. (B.1.24), yields

∂αo u
∗
α = 0 . (B.1.25)

By taking the first-order moment of equation (B.1.14), reads

∂to
∑
i

ciα g
(eq)
i + ∂βo

∑
i

ciα ciβ g
(eq)
i = − 1

τ́g

∑
i

ciα g
(1)
i ,

from first- and second-order moments of equilibrium distribution function Eqs. (B.1.20)

and (B.1.21) with eq. (B.1.24), yields

∂to u
∗
α + ∂βo

[
k

ρ

(
∂φ

∂xα

∂φ

∂xβ

)
− k

ρ

(
∂φ

∂xγ

∂φ

∂xγ

)
δαβ + u∗α u

∗
β

]
= 0 . (B.1.26)

The first-order moment of equation (B.1.16)

∂t1
∑
i

ciα g
(eq)
i +

[
2 τ́g − 1

2 τ́g

]{
∂to
∑
i

ciα g
(1)
i +∂βo

∑
i

ciα ciβ g
(1)
i

}
=
−1

τ́g

∑
i

ciα g
(2)
i ,

from eqs. (B.1.20) with eq. (B.1.24), yields

∂t1 u
∗
α +

[
2 τ́g − 1

2 τ́g

]
∂βo
∑
i

ciα ciβ g
(1)
i = 0 . (B.1.27)
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From eq. (B.1.14), (π
(1)
αβ =

∑
i ciα ciβ g

(1)
i ) can be evaluated as follow

π
(1)
αβ =

∑
i

ciαciβg
(1)
i =−τ́g

{
∂to
∑
i

ciα ciβ g
(eq)
i +∂γo

∑
i

ciα ciβ ciγ g
(eq)
i

}
, (B.1.28)

By using the definitions of eqs. (B.1.21) with eq. (B.1.22), reads

π
(1)
αβ =− τ́g

{
∂to

[
k

ρ

(
∂φ

∂xα

∂φ

∂xβ

)
− k

ρ

(
∂φ

∂xγ

∂φ

∂xγ

)
δαβ + u∗α u

∗
β

]}

− τ́g ∂γo c2
s (δαβ u

∗
γ + δβγ u

∗
α + δαγ u

∗
β) ,

by substituting eq. (B.1.25), yields

π
(1)
αβ =− τ́g∂to

[
k

ρ

(
∂φ

∂xα

∂φ

∂xβ

)
− k

ρ

(
∂φ

∂xγ

∂φ

∂xγ

)
δαβ

]
− τ́g

(
u∗β∂to u

∗
α + u∗α∂to u

∗
β

)
− τ́g c2

s (∂βo u
∗
α + ∂αo u

∗
β) . (B.1.29)

To evaluate ∂to u
∗
α and ∂to u∗β , by taking zeroth-order moments of eq. (B.1.14) as fol-

low

∂γo u
∗
γ = 0 . (B.1.30)

and first-order moments of eq. (B.1.14) as follow

∂to u
∗
α + ∂γo π

(0)
αγ = 0 , (B.1.31)
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also

∂to u
∗
β + ∂γo π

(0)
βγ = 0 , (B.1.32)

then,

∂to u
∗
α=−∂γo π(0)

αγ

=−∂γo
[
k

ρ

(
∂φ

∂xα

∂φ

∂xγ

)
− k
ρ

(
∂φ

∂xβ

∂φ

∂xβ

)
δαγ+u∗α u

∗
γ

]
= −∂γo

k

ρ

(
∂φ

∂xα

∂φ

∂xγ

)
+ ∂αo

k

ρ

(
∂φ

∂xβ

∂φ

∂xβ

)
− ∂γo

(
u∗α u

∗
γ

)
, (B.1.33)

also

∂to u
∗
β = −∂γo π(0)

βγ

= −∂γo
[
k

ρ

(
∂φ

∂xβ

∂φ

∂xγ

)
−
(
k

ρ

∂φ

∂xα

∂φ

∂xα

)
δβγ + u∗β u

∗
γ

]
= −∂γo

k

ρ

(
∂φ

∂xβ

∂φ

∂xγ

)
+ ∂βo

k

ρ

(
∂φ

∂xα

∂φ

∂xα

)
− ∂γo

(
u∗β u

∗
γ

)
, (B.1.34)

by substituting eqs. (B.1.33) and (B.1.34) into eq. (B.1.29), yields

π
(1)
αβ =−τ́g∂to

[
k

ρ

(
∂φ

∂xα

∂φ

∂xβ

)
− k
ρ

(
∂φ

∂xγ

∂φ

∂xγ

)
δαβ

]
−τ́g c2

s (∂βo u
∗
α + ∂αo u

∗
β)

− τ́g
{
−u∗β ∂γo

k

ρ

(
∂φ

∂xα

∂φ

∂xγ

)
+u∗β ∂αo

k

ρ

(
∂φ

∂xβ

∂φ

∂xβ

)
−u∗β ∂γo

(
u∗α u

∗
γ

)}
− τ́g

{
−u∗α ∂γo

k

ρ

(
∂φ

∂xβ

∂φ

∂xγ

)
+u∗α∂βo

k

ρ

(
∂φ

∂xα

∂φ

∂xα

)
−u∗α ∂γo

(
u∗β u

∗
γ

)}
. (B.1.35)

Now substitute eq. (B.1.35) into eq. (B.1.27), reads
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∂t1u
∗
α−
(́
τg−

1

2

)
∂βo

{
∂to

[
k

ρ

(
∂φ

∂xα

∂φ

∂xβ

)
− k
ρ

(
∂φ

∂xγ

∂φ

∂xγ

)
δαβ

]
+c2

s(∂βou
∗
α+∂αo, u

∗
β)

}
−
(́
τg −

1

2

)
∂βo

{
−u∗β∂γo

k

ρ

(
∂φ

∂xα

∂φ

∂xγ

)
+u∗β∂αo

k

ρ

(
∂φ

∂xγ

∂φ

∂xγ

)
−∂γo

(
u∗αu

∗
βu
∗
γ

)}
−
(
τ́g −

1

2

)
∂βo

{
−u∗α∂γo

k

ρ

(
∂φ

∂xβ

∂φ

∂xγ

)
+ u∗α∂βo

k

ρ

(
∂φ

∂xγ

∂φ

∂xγ

)}
= 0 .

which can be multiplied to ε = ∆t, the term that contain (u∗αu
∗
βu
∗
γ) is O(Ma3) Mach

number can be neglected (Guo & Shu 2013) and simplified to,

ε∂t1u
∗
α−∂βo∂to

{(
τ́g−

1

2

)
k∆t

ρ

(
∂φ

∂xα

∂φ

∂xβ

)}
+∂αo∂to

{(́
τg−

1

2

)
k∆t

ρ

(
∂φ

∂xγ

∂φ

∂xγ

)}
−∂βo

{
c2
s∆t

(́
τg−

1

2

)
(∂βou

∗
α+∂αou

∗
β)

}
+u∗β∂βo∂γo

{(́
τg−

1

2

)
k∆t

ρ

(
∂φ

∂xα

∂φ

∂xγ

)}
−u∗β∂βo∂αo

{(
τ́g−

1

2

)
k∆t

ρ

(
∂φ

∂xγ

∂φ

∂xγ

)}
+u∗α∂βo∂γo

{(
τ́g−

1

2

)
k∆t

ρ

(
∂φ

∂xβ

∂φ

∂xγ

)}
− u∗α(∂βo)

2

{(
τ́g −

1

2

)
k∆t

ρ

(
∂φ

∂xγ

∂φ

∂xγ

)}
= 0 . (B.1.36)
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In order to recover pressure-less Navier-Stokes momentum equation (B.1.6), by adding

eq. (B.1.36) to eq. (B.1.26), yielding

∂tu
∗
α=−∂βo

[
k

ρ

(
∂φ

∂xα

∂φ

∂xβ

)
− k

ρ

(
∂φ

∂xγ

∂φ

∂xγ

)
δαβ + u∗α u

∗
β

]
+∂βo∂to

{(
τ́g−

1

2

)
k∆t

ρ

(
∂φ

∂xα

∂φ

∂xβ

)}
−∂αo∂to

{(
τ́g−

1

2

)
k∆t

ρ

(
∂φ

∂xγ

∂φ

∂xγ

)}
+∂βo

{
c2
s∆t

(
τ́g−

1

2

)
(∂βou

∗
α + ∂αou

∗
β)

}
−u∗β∂βo∂γo

{(
τ́g−

1

2

)
k∆t

ρ

(
∂φ

∂xα

∂φ

∂xγ

)}
+u∗β∂βo∂αo

{(
τ́g−

1

2

)
k∆t

ρ

(
∂φ

∂xγ

∂φ

∂xγ

)}
−u∗α∂βo∂γo

{(
τ́g−

1

2

)
k∆t

ρ

(
∂φ

∂xβ

∂φ

∂xγ

)}
+u∗α(∂βo)

2

{(
τ́g −

1

2

)
k∆t

ρ

(
∂φ

∂xγ

∂φ

∂xγ

)}
= 0 . (B.1.37)

In the RHS of eq.(B.1.37), the terms ∂βo∂to
{(
τ́g − 1

2

)
k∆t
ρ

(
∂φ
∂xα

∂φ
∂xβ

)}
, ∂αo∂to

{(
τ́g − 1

2

)
k∆t
ρ

(
∂φ
∂xγ

∂φ
∂xγ

)}
, u∗β∂βo∂γo

{(
τ́g − 1

2

)
k∆t
ρ

(
∂φ
∂xα

∂φ
∂xγ

)}
, u∗β∂βo∂αo

{(
τ́g − 1

2

)
k∆t
ρ

(
∂φ
∂xγ

∂φ
∂xγ

)}
,

u∗α∂βo∂γo

{(
τ́g − 1

2

)
k∆t
ρ

(
∂φ
∂xβ

∂φ
∂xγ

)}
and u∗α(∂βo)

2
{(
τ́g − 1

2

)
k∆t
ρ

(
∂φ
∂xγ

∂φ
∂xγ

)}
have small

parameter k multiplying to ∆t and thus can be eliminated. After using these simplifi-

cation into eq. (B.1.37), yields

∂tu
∗
α + ∂βo

(
u∗α u

∗
β

)
=
k

ρ
∂βo

{(
∂φ

∂xγ

∂φ

∂xγ

)
δαβ −

(
∂φ

∂xα

∂φ

∂xβ

)}
+ ∂βo

{
c2
s∆t

(
τ́g −

1

2

)
(∂βou

∗
α + ∂αou

∗
β)

}
= 0 . (B.1.38)

By using the continuity equation (B.1.25), reads
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∂tu
∗
α + u∗β ∂βo (u∗α) =

k

ρ
∂βo

{(
∂φ

∂xγ

∂φ

∂xγ

)
δαβ −

(
∂φ

∂xα

∂φ

∂xβ

)}
+ ∂βo

{
c2
s∆t

(
τ́g −

1

2

)
(∂βou

∗
α + ∂αou

∗
β)

}
= 0 . (B.1.39)

After adding the force term the eq. (B.1.39) correspond to the (pressure-less) momen-

tum Navier-Stokes equation (B.1.6).

B.2 Chapman-Enskog expansion for satisfying the Cahn-Hilliard

equation

In this section, the same technique is used to derive that the LBGK equation

fi(x + ci∆t, t+ ∆t)− fi(x, t) = −∆t

τf

(
fi(x, t)− f (eq)

i (x, t)
)
, (B.2.1)

with the equilibrium distribution function of D2Q9

f
(eq)
i = Hi φ+ vi

M

τf − 1
2
∆t

Mφ + φωi

[
(ciα.u)

c2
s

+
(ciα.u)2

2c4
s

− u2

2c2
s

]
, (B.2.2)

where

Hi =


1, for i = 0,

0, for i = 1, 2, 3, · · · , 8
(B.2.3)
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is weight functions. The diffusive interface motion modelled by Cahn-Hilliard (CH)

equation may be recovered.

∂φ

∂t
+∇ .(φu) = M ∇2Mφ , (B.2.4)

where M diffusive coefficient ( Mobility) and

Mφ = β Ψ́− k∇2 φ , (B.2.5)

is the chemical potential, β and k are parameters, Ψ is related to bulk FE density and

∇φ is the energy gradient. The multi-scale expansions are introduced,

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i +O(ε3) (B.2.6)

∂t = ∂to + ε∂t1 +O(ε2) (B.2.7)

∂α = ∂αo +O(ε1) . (B.2.8)

by starting with the second order Taylor series expanding the lattice BGK ( LBGK )

equation (B.2.1), as

ε (∂t+ciα∂α) fi+
ε2

2
(∂t+ciα∂α)(∂t+ciβ∂β)fi+O(ε3)=

−1

τ́f
(fi−f (eq)

i ) , (B.2.9)
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where τ́f = τf/∆t is the dimensionless relaxation time. Inserting equations (B.2.6),

(B.2.7) and (B.2.8) into eq.(B.2.9), yields

ε(∂to+ciα∂αo)f
(0)
i +ε2

{
∂t1 f

(0)
i +(∂to+ciα∂αo)f

(1)
i +

1

2
(∂to+ciα∂αo)(∂to+ciβ∂βo)f

(0)
i

}
+O(ε3) = − 1

τ́f

[
f

(0)
i + εf

(1)
i + ε2f

(2)
i − f

(eq)
i

]
+O(ε3). (B.2.10)

Equating the coefficients of each order ε, It observed that at the zeroth-order of ε

f
(0)
i = f

(eq)
i , (B.2.11)

and at the first-order of ε

(∂to + ciα∂αo) f
(eq)
i = − 1

τ́f
f

(1)
i , (B.2.12)

and at the second-order of ε

∂t1 f
(eq)
i +(∂to+ciα∂αo)f

(1)
i +

1

2
(∂to+ciα∂αo)(∂to+ciβ∂βo)f

(eq)
i =

−1

τ́f
f

(2)
i . (B.2.13)

Equation (B.2.13) can be written as follow

∂t1f
(eq)
i −

(
τ́f−

1

2

)
(∂to+ciα∂αo)(∂to+ciβ∂βo)f

(eq)
i =

−1

τ́f
f

(2)
i . (B.2.14)

By using the properties of the generalized lattice tensor (Guo & Shu 2013) for D2Q9,

the zeroth-order moment of equilibrium distribution function Eq.(B.2.2) is evaluated as
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follow

∑
i

f
(eq)
i = φ

∑
i

Hi +
M

τf − 1
2
∆t

Mφ

∑
i

vi +
φ

c2
s

∑
i

ωi ciα.uα

+
φ

2 c4
s

∑
i

ωi ciα ciβ uα uβ −
φ

2 c2
s

∑
i

ωi uγ uγ .

From eqs. (B.1.17) yields,

∑
i

f
(eq)
i =φ+

M

τf− 1
2
∆t

Mφ(0)+
φ

c2
s

(0)+
φ

2 c2
s

uβ uβ −
φ

2 c2
s

uγ uγ = φ . (B.2.15)

The first-order moments of f (eq)
i is computed as follow

∑
i

ciα f
(eq)
i = φ

∑
i

Hi ciα +
M

τf − 1
2
∆t

Mφ

∑
i

vi ciα +
φ

c2
s

∑
i

ωi ciα ciβ.uβ

+
φ

2 c4
s

∑
i

ωi ciα ciβ ciδ uβ uδ −
φ

2 c2
s

∑
i

ωi ciαuγ uγ ,

by substituting eqs. (B.1.17) into above equation, yields

∑
i

ciα f
(eq)
i =φ (0)+

M Mφ (0)

τf− 1
2
∆t

+
φ

c2
s

c2
s δαβ uβ+

φ

2 c4
s

(0)− φ

2 c2
s

(0)=φuα , (B.2.16)

the second-order moments of equilibrium df (π
(0)
αβ =

∑
iciα ciβ f

(eq)
i ) is evaluated as

below
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∑
i

ciα ciβ f
(eq)
i =φ

∑
i

Hi ciα ciβ+
MMφ

τf− 1
2
∆t

∑
i

vi ciα ciβ+
φ

c2
s

∑
i

ωi ciα ciβ ciδ uδ

+
φ

2 c4
s

∑
i

ωi ciα ciβ ciδ ciγ uδ uγ −
φ

2 c2
s

∑
i

ωi ciα ciβ uγ uγ ,

from eqs. (B.1.17), yields

∑
i

ciα ciβ f
(eq)
i =φ(0) +

MMφ

τf − 1
2
∆t

3

c2

∑
i

ωi ciα ciβ −
φ

c2
s

(0)

+
φ c4

s

2 c4
s

(δαβ δδγ + δαδ δβγ + δαγ δβδ)uδ uγ −
φ c2

s

2 c2
s

δαβ uγ uγ

=
MMφ 3 c2

sδαβ
(τf − 1

2
∆t) c2

+
φ

2
(δαβ uγ uγ+δαδ uδ uβ + δαγ uβ uγ)−

φ

2
δαβ uγ uγ

=
MMφ δαβ
τf − 1

2
∆t

+
φ

2
δαβ uγ uγ +

φ

2
(uα uβ + uβ uα) − φ

2
δαβ uγ uγ ,

thus

∑
i

ciα ciβ f
(eq)
i =

M

τf − 1
2
∆t

Mφ δαβ + φuα uβ . (B.2.17)

The zero and first moments of distribution function and equilibrium distribution func-

tion are defined as follow

∑
i

fi=
∑
i

f
(eq)
i = φ and

∑
i

ciα fi =
∑
i

ciα f
(eq)
i = φuα. (B.2.18)
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From equations (B.2.6), (B.2.11) and (B.2.18), it observed that

∑
i

f
(k)
i = 0 and

∑
i

ciα f
(k)
i = 0 for k > 0 . (B.2.19)

Now, by taking the zeroth-order moment of equation (B.2.12)

∂to
∑
i

f
(eq)
i + ∂αo

∑
i

ciα f
(eq)
i = − 1

τ́f

∑
i

f
(1)
i ,

from the zeroth- and first-order moments of of equilibrium distribution function Eqs.

(B.2.15) and (B.2.16) with eq. (B.2.19), yielding

∂to φ+ ∂αo (φuα) = 0 .

(B.2.20)

By taking the zeroth-order moment of eq. (B.2.14) and simplified to

∂t1
∑
i

f
(eq)
i −

(
τ́f −

1

2

){
∂to ∂to

∑
i

f
(eq)
i + ∂to ∂αo

∑
i

ciα f
(eq)
i

}
−
(
τ́f −

1

2

){
∂βo ∂to

∑
i

ciβ f
(eq)
i + ∂βo ∂αo

∑
i

ciβ f
(eq)
i

}
= − 1

τ́f

∑
i

f
(2)
i ,

By substituting eqs. (B.2.15), (B.2.16), (B.2.17) and (B.2.19), yields
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∂t1φ−
(
τ́f −

1

2

)
∂to

{
∂to φ+ ∂αo (φuα)

}
−
(
τ́f −

1

2

)
{
∂βo ∂to (φuβ) + ∂βo ∂αo

[ M

τf − 1
2
∆t

Mφ δαβ + φuα uβ

]}
= 0 , (B.2.21)

From eq. (B.2.20), yields

∂t1φ=
(
τ́f−

1

2

)
∂βo

{
∂to (φuβ)+∂αo (φuα uβ)

}
+

(
τ́f− 1

2

)
∂αo ∂αoMMφ(

τ́f − 1
2

)
∆t

, (B.2.22)

by multiplying eq. (B.2.22) by ε = ∆t, It observed that

ε ∂t1φ=
(
τ́f−

1

2

)
∆t ∂βo

{
∂to (φuβ)+∂αo (φuα uβ)

}
+∂αo ∂αoMMφ . (B.2.23)

By adding eq. (B.2.23) to the eq. (B.2.20), reads

∂tφ+∂α (φuα)=
(
τ́f−

1

2

)
∆t ∂β

{
∂to (φuβ) + ∂α (φuα uβ)

}
+∂α ∂αMMφ . (B.2.24)

The term that contain
(
τ́f − 1

2

)
∂β ∂to (φuβ) is multiplied by a small parameter ∆t

can be neglected and the term that contain (φuα uβ) can be removed, because it has

O(Ma)3 Mach number, so

∂tφ+ ∂α (φuα) = M ∇2Mφ ,
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which is the Cahn-Hilliard equation.

B.3 Chapman-Enskog expansion for solving pressure Poisson equa-

tion

In this section, by applying the Chapman-Enskog expansion to the LB equation for

solving pressure Poisson equation

hni (x + ci∆t, t+ ∆t)− hni (x, t) = −∆t

τh

(
hni (x, t)− h(eq,n)

i (x, t)
)

−∆t ωi (∇.u∗(t)) , (B.3.1)

where n is n− th iteration for the pressure. With the equilibrium distribution function

of D2Q9

h
(eq,n)
i = ωi

pn(x, t)
ρo c2

, (B.3.2)

where

τh = ∆t

(
1

2
+
ρo c

2

ρ c2
s

)
, (B.3.3)

and

∇. (∆t∇p
ρ

) = ∇.u∗ , (B.3.4)
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is the Poisson equation. The multi-scale expansions are introduced,

hni = h
(0)
i + εh

(1)
i + ε2h

(2)
i +O(ε3) , (B.3.5)

∂t = ∂to + ε∂t1 +O(ε2) , (B.3.6)

∂α = ∂αo +O(ε1) . (B.3.7)

By the second order Taylor series expanding the lattice BGK ( LBGK ) equation (B.3.1),

yields

ε (∂t + ciα∂α) hni +
ε2

2
(∂t + ciα∂α)(∂t + ciβ∂β) hni +O(ε3) = − 1

τ́h
(hni − h

(eq,n)
i )

−∆t ωi∇.u∗ , (B.3.8)

where τ́h = τh/∆t the dimensionless relaxation time. Inserting equations (B.3.5),

(B.3.6) and (B.3.7) into eq. (B.3.8), reads

ε(∂to+ciα∂αo)h
(0)
i +ε2

{
∂t1h

(0)
i +(∂to + ciα∂αo)h

(1)
i +

1

2
(∂to+ciα∂αo)(∂to+ciβ∂βo)h

(0)
i

}
+O(ε3)=

−1

τ́h

[
h

(0)
i +εh

(1)
i +ε2h

(2)
i − h

(eq,n)
i

]
−ε ωi∇.u∗+O(ε3). (B.3.9)

Equating the coefficients of each order ε, it is observed that at the zeroth-order of ε

h
(0)
i = h

(eq,n)
i , (B.3.10)
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and at the first-order of ε

(∂to + ciα∂αo) h
(eq,n)
i = − 1

τ́h
h

(1)
i − ωi∇.u∗ , (B.3.11)

and at the second-order of ε

∂t1 h
(eq,n)
i + (∂to + ciα∂αo)h

(1)
i +

1

2
(∂to + ciα∂αo)(∂to + ciβ∂βo)h

(eq,n)
i

= − 1

τ́h
h

(2)
i , (B.3.12)

which can be written as follow

∂t1 h
(eq,n)
i +

(2τ́f − 1

2τ́f

)
(∂to + ciα∂αo)h

(1)
i −

ωi
2

(∂to + ciα∂αo)∇.u∗

= − 1

τ́h
h

(2)
i . (B.3.13)

By using the properties of the generalized lattice tensor (Guo & Shu 2013) for D2Q9,

the zeroth-order moment of equilibrium distribution function eq. (B.3.2) is evaluated

as follow

∑
i

h
(eq,n)
i =

∑
i

ωi
pn

ρo c2
,

from eqs. (B.1.17), yields

∑
i

h
(eq,n)
i =

pn

ρo c2
, (B.3.14)

the first-order moments of equilibrium distribution function is competed as follow
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∑
i

ciα h
(eq,n)
i =

∑
i

ciα ωi
pn

ρo c2
.

By substituting eqs. (B.1.17) into above equation, yields

∑
i

ciα h
(eq,n)
i = 0 . (B.3.15)

The second-order moments of equilibrium distribution function is evaluated as below

∑
i

ciα ciβ h
(eq,n)
i =

∑
i

ciα ciβ ωi
pn

ρo c2
,

from eqs. (B.1.17), yields

∑
i

ciα ciβ h
(eq,n)
i = c2

s δαβ
pn

ρo c2
, (B.3.16)

the zero and first moments of distribution function and equilibrium distribution func-

tion are defined as follow

∑
i

hni =
∑
i

h
(eq,n)
i =

pn

ρo c2
, (B.3.17)

from equations (B.3.5), (B.3.10) and (B.3.17), it observed that

∑
i

h
(k)
i = 0 . (B.3.18)
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Now, by taking the zeroth-order moment of equation (B.3.11), yields

∂to
∑
i

h
(eq,n)
i + ∂αo

∑
i

ciα h
(eq,n)
i = − 1

τ́h

∑
i

h
(1)
i −

∑
i

ωi∇.u∗ ,

then,

∂to (
pn

ρo c2
) = −∇.u∗ , (B.3.19)

and the zeroth-order moment of equation (B.3.13), yields

∂t1
∑
i

h
(eq,n)
i +

(2τ́f − 1

2τ́f

)(
∂to
∑
i

h
(1)
i + ∂αo

∑
i

ciα h
(1)
i

)
− 1

2
∂to
∑
i

ωi∇.u∗

− 1

2
∂αo
∑
i

ωi ciα∇.u∗ = − 1

τ́h

∑
i

h
(2)
i ,

which can be simplified to,

∂t1
∑
i

h
(eq,n)
i + ∂αo

(2τ́f − 1

2τ́f

) ∑
i

ciα h
(1)
i −

1

2
∂to
∑
i

ωi∇.u∗ = 0 . (B.3.20)

From eqs. (B.3.11) and (B.1.17), yields

∂t1
∑
i

h
(eq,n)
i −∂αo

(2τ́f−1

2

)∑
i

ciα

(
(∂to+ciβ∂βo)h

(eq,n)
i +ωi∇.u∗

)
− 1

2
∂to∇.u∗=0 .
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Then,

∂t1
∑
i

h
(eq,n)
i −∂to ∂αo

(2τ́f−1

2

)∑
i

ciα h
(eq,n)
i −∂αo

((2τ́f−1

2

)
∂βo

∑
i

ciα ciβ h
(eq,n)
i

)

− ∂αo
(2τ́f − 1

2

) ∑
i

ciα ωi∇.u∗ −
1

2
∂to∇.u∗ = 0 ,

and from eqs. (B.1.17), (B.3.14), (B.3.15) and (B.3.16), it observed that

∂t1

( pn

ρo c2

)
− ∂αo

((2τ́f − 1

2

) c2
s

ρo c2
∂βo δαβ p

n

)
− 1

2
∂to∇.u∗ = 0 ,

then,

∂t1

( pn

ρo c2

)
− ∂αo

((
τ́f −

1

2

) c2
s

ρo c2
∂αo p

n

)
− 1

2
∂to∇.u∗ = 0 . (B.3.21)

By multiplying eq. (B.3.21) by ε = ∆t and adding with eq. (B.3.19), yields

∂t

( pn

ρo c2

)
− ∂αo

((
τ́f −

1

2

) ∆t c2
s

ρo c2
∂αo p

n

)
− ∆t

2
∂to∇.u∗ = −∇.u∗ . (B.3.22)

The term that contain 1
2
∂to∇.u∗ is multiplied by a small parameter ∆t can be neglected

and when ∂t (pn) −→ 0 eq. (B.3.22) becomes,

∇.

((
τ́f −

1

2

) ∆t c2
s

ρo c2
∇. pn

)
= ∇.u∗ , (B.3.23)

212



B.3. CHAPMAN-ENSKOG EXPANSION FOR SOLVING PRESSURE POISSON
EQUATION

which identical to the diffusive Poison equation eq. (B.3.4), that satisfies

(
τ́f −

1

2

) c2
s

ρo c2
=

1

ρ
. (B.3.24)

Since τ́h = τh/∆t, so

τh = ∆t

(
1

2
+
ρo c

2

ρ c2
s

)
.
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Appendix C

The discretization of the first and

second derivative

The first and second order derivative can be calculated by central finite difference

approximations for equation according to Lee & Lin (2005) as follows:

The first order derivation in the x-direction:

∂φ

∂x
|(i,j) =

1

3
(φ(i+ 1, j)− φ(i− 1, j)) +

1

12
(φ(i+ 1, j + 1)− φ(i− 1, j − 1))

+
1

12
(φ(i+ 1, j − 1)− φ(i− 1, j + 1)) , (C.0.1)

and in the y-direction:

∂φ

∂y
|(i,j) =

1

3
(φ(i, j + 1)− φ(i, j − 1)) +

1

12
(φ(i+ 1, j + 1)− φ(i− 1, j − 1))

+
1

12
(φ(i− 1, j + 1)− φ(i+ 1, j − 1)) , (C.0.2)

where i and j refer to the grid coordinate.

The second order derivative can be computed as:

∂φ2

∂x2
k

|(i,j) =
−20

6
(φ(i, j) +

4

6
(φ(i+1, j) + φ(i−1, j) + φ(i, j+1) + φ(i, j−1))

+
1

6
(φ(i+1, j+1)+φ(i−1, j+1)+φ(i+1, j−1)+φ(i−1, j−1)) , (C.0.3)
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and

∂φ2

∂x ∂y
|(i,j) =

1

4
(φ(i+ 1, j + 1)− φ(i+ 1, j − 1)− φ(i− 1, j + 1)

+ φ(i− 1, j − 1)) , (C.0.4)

where i, j and k refer to the grid coordinate.
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