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Abstract 23 

On glacial-interglacial and millennial timescales, sea ice is an important player in the 24 

circulation and primary productivity of high latitude oceans, affecting regional and global 25 

biogeochemical cycling. In the modern North Pacific, brine rejection during sea-ice freezing 26 

in the Sea of Okhotsk drives the formation of North Pacific Intermediate Water (NPIW) that 27 

ventilates the North Pacific Ocean at 300 m to 1000 m water depth. Glacial intervals of the 28 

late Quaternary, however, experienced a deepening of glacial NPIW to at least 2000 m, with 29 

the strongest ventilation observed during cold stadial conditions of the last deglaciation. 30 

However, the origin of the shifts in NPIW ventilation is poorly understood. Numerical 31 

simulations suggest an atmospheric teleconnection between the North Atlantic and the North 32 

Pacific, in response to a slowdown or shutdown of the Atlantic meridional overturning 33 

circulation. This leads to a build-up of salinity in the North Pacific surface ocean, triggering 34 

deep ventilation. Alternatively, increased sea-ice formation in the North Pacific and its 35 

marginal seas may have caused strengthened overturning in response to enhanced brine 36 

rejection.  37 

Here we use a multi-proxy approach to explore sea-ice dynamics, sedimentary redox 38 

chemistry, and benthic ecology at Integrated Ocean Drilling Program Site U1343 in the 39 

eastern Bering Sea across the last 40 ka. Our results suggest that brine rejection from 40 

enhanced sea-ice formation during early Heinrich Stadial 1 locally weakened the halocline, 41 

aiding in the initiation of deep overturning. Additionally, deglacial sea-ice retreat likely 42 

contributed to increased primary productivity and expansion of mid-depth hypoxia at Site 43 

U1343 during interstadials, confirming a vital role of sea ice in the deglacial North Pacific 44 

carbon cycle.  45 
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1. Introduction 46 

High latitude oceans play a pivotal role in global biogeochemical cycling. Depending on the 47 

mode of oceanic circulation and the efficiency of the biological pump, carbon, oxygen, and 48 

nutrients are redistributed in these regions, both within the ocean and between the ocean and 49 

the atmosphere (Knox and McElroy, 1984; Levitus et al., 1993; Sarmiento et al., 2004, 1988; 50 

Sigman et al., 2010; Toggweiler, 1999; Weber et al., 2016). The formation of deep and 51 

intermediate water masses at high latitudes ventilates the ocean’s interior, replenishing its O2 52 

reservoir (Shcherbina et al., 2003; Talley, 1993; Toggweiler, 1999). Conversely, Ekman 53 

suction (Gargett, 1991; Talley and Talley, 1985) and, in the case of the eastern Bering Sea, 54 

eddy formation (Ladd, 2014; Mizobata et al., 2002; Mizobata and Saitoh, 2004), cause 55 

upwelling of old, low-O2, high-nutrient, and CO2-rich deep waters to the surface ocean. Here 56 

the exchange of CO2 between the ocean and the atmosphere hinges on net primary 57 

productivity, fueled by the supply of macronutrients from below and dependent on light and 58 

micronutrient availability, and the efficiency of the biological pump. On glacial/interglacial 59 

(G/IG) and millennial timescales, the dynamics of the ocean circulation and the biological 60 

pump are thus fundamental for the distribution of carbon and oxygen in the ocean interior and 61 

the atmosphere. In the Bering Sea, the northernmost marginal sea of the Pacific Ocean, sea-62 

ice dynamics strongly influence the regional circulation and primary productivity, modifying 63 

the biogeochemical cycling and influencing sedimentary redox conditions. 64 

Large areas of the modern North Pacific surface ocean are characterized as high nutrient low 65 

chlorophyll (HNLC) regions with iron representing the limiting micronutrient (Lam and 66 

Bishop, 2008; Moore et al., 2001). As such, the North Pacific currently represents a net 67 

source of CO2 to the atmosphere and excess nutrients are re-circulated to lower latitudes 68 

(Takahashi et al., 2009, 1997). However, a pronounced spring bloom with high rates of 69 

primary productivity is observed along the eastern Bering Sea slope and near the retreating 70 
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sea-ice edge (Niebauer et al., 1995; Springer et al., 1996). This is due to nutrient upwelling as 71 

well as nutrient release and increased stratification of the water column during spring sea-ice 72 

melting (Wang et al., 2014). On longer timescales, sea ice also influences primary 73 

productivity by affecting light availability in the surface ocean. While extended sea-ice cover, 74 

especially during glacial intervals,  may reduce light transmission (Frey et al., 2011; 75 

Perovich, 2016), sea-ice melting, on the other hand, leads to stratification in the upper water 76 

column, shoaling the mixed layer and increasing light availability (Niebauer et al., 1990; 77 

Smith, 1987).  78 

Sea ice is also a critical control of the regional circulation regime of the North Pacific due to 79 

brine rejection during sea-ice freezing. At present, no deep water convection takes place in 80 

the North Pacific, where excess precipitation and runoff over evaporation result in low 81 

surface salinities and a permanent halocline (Emile-Geay et al., 2003; Warren, 1983). 82 

Nevertheless, North Pacific Intermediate Water (NPIW) forms in the mixed water region 83 

between the Kuroshio and Oyashio Current east of Japan (Talley, 1993). The Oyashio water 84 

obtains its characteristic density from Okhotsk Sea Mode Water, which forms via brine 85 

rejection during sea ice freezing over the shelves of the Sea of Okhotsk (Shcherbina et al., 86 

2003; Talley, 1993). Characterized as a salinity minimum and an oxygen maximum following 87 

the 26.8 σθ isopycnal surface (Talley, 1993), NPIW can be traced throughout the North 88 

Pacific Ocean between approximately 300 m and 1000 m water depth (Fujii et al., 2013) and 89 

can be recognized as far south as 20°N in the eastern subtropical Pacific and even further 90 

south in the west (Talley, 1993). 91 

Proxy reconstructions of past oxygenation, nutrient, temperature, and salinity variability of 92 

the intermediate and deep North Pacific suggest a deeper and better ventilated intermediate 93 

water mass during the Last Glacial Maximum (LGM, 19-26.5 ka) and stadial periods of the 94 

last deglaciation (Heinrich Stadial 1 (HS1, 14.7-18 ka) and Younger Dryas (YD, 11.8-12.8 95 
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ka)) (Ahagon et al., 2003; Cook et al., 2016; Duplessy et al., 1989; Gong et al., 2019; Jang et 96 

al., 2017; Matsumoto et al., 2002; Max et al., 2014; Okazaki et al., 2010, 2012; Rae et al., 97 

2014; Rella et al., 2012; Saenko et al., 2004; Sagawa and Ikehara, 2008). The division 98 

between well-ventilated glacial NPIW (GNPIW) and poorly ventilated North Pacific Deep 99 

Water (NPDW) has been placed at around 2000 m depth in the North Pacific during the LGM 100 

and the early deglaciation (Jaccard and Galbraith, 2013). Studies from the Bering Sea suggest 101 

a maximum GNPIW depth of 1000 m to 2000 m during marine isotope stage (MIS) 2 (Cook 102 

et al., 2016; Worne et al., 2019), while sediment cores from the Gulf of Alaska indicate 103 

potential mixing of well-ventilated waters down to ~3500 m during HS1 (Rae et al., 2014). A 104 

vertically expanded intermediate water mass during glacial intervals has the potential to 105 

fundamentally alter the North Pacific carbon cycle by reducing the amount of NPDW that is 106 

mixed to the surface, thus preventing the release of deeply sequestered carbon (Gong et al., 107 

2019; Gray et al., 2018; Kender et al., 2018; Max et al., 2014). Breakdown of enhanced 108 

GNPIW formation and shoaling of NPDW across the last deglaciation, on the other hand, 109 

would have increased the upwelling of carbon and nutrients into the photic zone (Gray et al., 110 

2018). The enhanced supply of macronutrients due to shoaling of NPDW likely contributed 111 

to peaks in primary productivity observed during warm interstadial periods across the last 112 

deglaciation, such as the Bølling-Allerød (BA, 12.8-14.7 ka) and the earliest Holocene, 113 

coinciding with widespread mid-depth hypoxia in the North Pacific as seen from laminated 114 

sediments (Aiello and Ravelo, 2012; Cook et al., 2005; Expedition 323 Scientists, 2010; 115 

Kuehn et al., 2014; Ohkushi et al., 2013; Praetorius et al., 2015; Schlung et al., 2013; Zheng 116 

et al., 2000).  117 

The LGM and stadial periods of the last deglaciation were marked by a reduced Atlantic 118 

meridional overturning circulation (AMOC), while the BA and early Holocene likely 119 

experienced a strengthened AMOC (McManus et al., 2004), suggesting an Atlantic-Pacific 120 
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overturning seesaw. The dynamics of the seesaw and specifically the trigger mechanism for 121 

deep convection in the North Pacific, however, remain equivocal. Numerical simulations 122 

suggest an atmospheric teleconnection between the North Atlantic and the North Pacific via 123 

lower latitudes, affecting the oceanic and atmospheric circulation in the Pacific and leading to 124 

a salinity build up in the North Pacific, driving enhanced regional overturning (Chikamoto et 125 

al., 2012; Gong et al., 2019; Menviel et al., 2012; Okazaki et al., 2010; Okumura et al., 2009; 126 

Wu et al., 2008). Proxy reconstructions, on the other hand, indicate a pivotal role of brine 127 

rejection from increased sea-ice formation in the Bering Sea and/or the Sea of Okhotsk, as a 128 

mechanism driving enhanced GNPIW ventilation (Cook et al., 2016; Horikawa et al., 2010; 129 

Knudson and Ravelo, 2015; Max et al., 2014; Rella et al., 2012). Alternatively, some 130 

combination of both the sea ice and atmospheric teleconnection mechanisms might drive the 131 

suggested overturning seesaw (Gong et al., 2019).       132 

Although there are only a few LGM sea-ice reconstructions in the Bering Sea, previous 133 

investigations demonstrate that sea-ice extent in the Bering Sea responds sensitively to 134 

climate change on millennial and G/IG timescales (Caissie et al., 2010; Itaki et al., 2012; 135 

Méheust et al., 2016, 2018), in line with a potential role of sea ice for GNPIW formation. As 136 

of yet, however, no studies have co-investigated the sea-ice history of the Bering Sea in 137 

combination with local changes in the biogeochemical cycling, to decipher the mechanisms 138 

driving sea-ice variability, the potential of sea ice to trigger enhanced overturning, and its role 139 

in the deglacial North Pacific carbon cycle.  140 

This study, thus, uses a multi-proxy approach to simultaneously investigate past changes in 141 

eastern Bering Sea sea-ice cover and changes in the biogeochemical cycling at Integrated 142 

Ocean Drilling Program (IODP) Site U1343 (57°33.4′N, 176°49.0′W; 1953 m) (Figure 1) 143 

(Expedition 323 Scientists, 2010) across the last ~40 ka. Sea-ice reconstructions are based on 144 

source-specific biomarkers, while past changes in sedimentary redox chemistry are inferred 145 
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from authigenic foraminiferal U/Ca and U/Mn, in combination with the benthic foraminiferal 146 

assemblage. This provides a more complete picture of the late Quaternary sea-ice evolution in 147 

the North Pacific and its role for GNPIW formation and primary productivity.  148 

2. Regional oceanography  149 

The modern Bering Sea is characterized by a subarctic water column structure. Above the 150 

permanent halocline (100-200 m) a warm surface layer (0-50 m) forms during summer 151 

underlain by a cold dichothermal layer (50-200 m), a remnant of winter mixing (Miura et al., 152 

2002; Tanaka and Takahashi, 2005). Cooling and deepening of the thermocline during winter 153 

promotes the formation of a winter mixed layer, restricted by the halocline depth (Miura et 154 

al., 2002; Tanaka and Takahashi, 2005). While only little is known about the water masses in 155 

the mid-depth Bering Sea today, the deep Bering Sea is characterized by NPDW (Coachman 156 

et al., 1999; Stabeno et al., 1999), entering through Kamchatka Strait at depth below 2500 m 157 

(Coachman et al., 1999; Stabeno et al., 1999) and modified by small amounts of deep water 158 

that are formed in situ in the Bering Sea today (Warner and Roden, 1995).  159 

The surface circulation in the Bering Sea forms a cyclonic gyre, fed by the inflow of 160 

relatively warm and nutrient-rich Alaskan Stream waters through several passes in the 161 

Aleutian Arc (Stabeno et al., 1999) (Figure 1). Within the Bering Sea, the cyclonic gyre is 162 

composed of the eastward flowing Aleutian North Slope Current (ANSC), the Bering Slope 163 

Current (BSC), and the southward flowing East Kamchatka Current (EKC). Main surface 164 

outflow occurs through Kamchatka Strait, while some surface water (0.85 Sverdrup) 165 

(Coachman, 1993) flows northward on the eastern Bering Sea shelf and into the Arctic Ocean 166 

through the 50 m deep Bering Strait. Along the eastern Bering Sea slope, mesoscale eddies 167 

form within the BSC, causing upwelling of nutrient-rich deep waters (Ladd et al., 2012; 168 

Mizobata et al., 2008, 2002; Mizobata and Saitoh, 2004). Together with the mixing of shelf 169 
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and basin waters (Hurst et al., 2010; Springer et al., 1996; Tanaka et al., 2012) and nutrient 170 

release during spring sea-ice melting (Wang et al., 2014), this fuels one of the most 171 

productive ecosystems in the world’s ocean, often termed the ‘Green Belt’ (Springer et al., 172 

1996). High rates of primary productivity (175-275 g C m-2 yr-1, (Springer et al., 1996)) and 173 

demineralization of sinking organic matter lead to depleted oxygen concentrations in mid-174 

depth waters, forming a pronounced oxygen minimum zone (OMZ) between 600-1000 m 175 

(Figure 1) (Expedition 323 Scientists, 2010; Whitledge and Luchin, 1999). Within the core of 176 

the OMZ, oxygen concentrations range from 0.43-1.57 mg L-1 (0.3-1.1 ml L-1) (Whitledge 177 

and Luchin, 1999). Beyond the Green Belt, the Bering Sea is largely characterized as a 178 

HNLC region, with iron representing the limiting micronutrient (Aguilar-Islas et al., 2007; 179 

Leblanc et al., 2005; Springer et al., 1996). However, a pronounced spring phytoplankton 180 

bloom can be observed on the eastern shelf, tightly coupled to the northward retreat of sea ice 181 

from March/April onwards (Brown and Arrigo, 2013; Niebauer et al., 1995).  182 

Seasonal sea ice in the eastern Bering Sea originates in the Chukchi Sea and in polynyas on 183 

the southward facing coastlines (Niebauer et al., 1999), with an average winter sea ice and 184 

brine formation in Bering Sea polynyas of 10-12 cm day-1 and 0.006-0.042 Sv, respectively 185 

(Niebauer et al., 1999). Based on observational data and modelling studies, Cavalieri and 186 

Martin (1994) concluded that brines formed on the eastern Bering shelf flow northward 187 

across the shelf and into the Arctic Ocean. The maximum extent of sea ice in the eastern 188 

Bering Sea is closely coupled to atmospheric and oceanic temperatures together with the 189 

predominant direction of winter storm tracks (Rodionov et al., 2007). Typically, the 190 

maximum sea-ice extent is reached near the eastern Bering Sea slope during March/April 191 

(Figure 1). Recent years, however, have seen a pronounced retreat of the winter sea-ice edge 192 

with important implications for the marine ecosystem (Brown et al., 2011; Brown and Arrigo, 193 

2013; Grebmeier et al., 2006).  194 
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3. Materials and methods 195 

3.1 IODP Site U1343 196 

IODP Site U1343 (57°33.4′N, 176°49.0′W, water depth 1953 m) (Figure 1) was recovered 197 

from a topographic high off the eastern Bering Sea slope. In total, five holes were cored (A-198 

E) and a composite depth scale was constructed between 0-270 m core composite depth using 199 

cores from holes A, C, and E (Expedition 323 Scientists, 2010). Under modern conditions, 200 

the core site is bathed in NPDW, characterized by local bottom water temperatures of 1.9°C, 201 

salinities of 34.6, and [O2] of 1.2 ml L-1 (Garcia et al., 2014; Locarnini et al., 2013; Zweng et 202 

al., 2013). 203 

The age model is based on benthic foraminifera oxygen isotope (δ18Ob) stratigraphy (Asahi et 204 

al., 2016; Kender et al., 2018; Worne et al., 2019) and correlation to the LR04 stack (Lisiecki 205 

and Raymo, 2005). As the δ18Ob record at Site U1343 is of relatively low resolution and 206 

correlation to the LR04 stack has been performed over multiple G/IG cycles, uncertainty in 207 

the chronology, especially when interpreting millennial-scale climate events, needs to be 208 

considered. Across the last deglaciation a prominent reduction in mid-depth oxygen 209 

concentrations in the North Pacific, related to increased productivity during interstadial 210 

conditions, led to the expansion of the mid-depth OMZ in the Bering Sea and preservation of 211 

laminated sediments, formed under anoxic conditions between ~800 m and 2100 m (Caissie 212 

et al., 2010; Cook et al., 2005; Expedition 323 Scientists, 2010; Gersonde, 2012; Kuehn et al., 213 

2014; Max et al., 2012; Schlung et al., 2013). Previous studies on the north-eastern Bering 214 

Sea slope (SO202-18-3/6, HLY02-02-3JPC (Figure 1)) at ~1000 m water depth have dated 215 

the base of laminated sediment section to 14.4-14.6 ka and ~11.7 ka, corresponding to the 216 

onset of the BA and the early Holocene, respectively (Cook et al., 2005; Kuehn et al., 2014). 217 

At Site U1343 the base of the laminated intervals are found at 1.07 m CCSF-A and 2.69 m 218 
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CCSF-A (Supplementary Figure 1) (Expedition 323 Scientists, 2010). Using the δ18Ob 219 

stratigraphy for Site U1343 recently updated by Worne et al. (2019) this yields ages of 10.5 220 

ka and 16.3 ka for the base of the laminations, respectively. Considering that the present day 221 

core of the OMZ lies at 800 m water depth (Expedition 323 Scientists, 2010; Whitledge and 222 

Luchin, 1999), it seems unlikely that the onset of the laminations at 2000 m water depth 223 

would predate those occurring at ~1000 m by ~2 kyr. Using the original δ18Ob stratigraphy by 224 

Asahi et al. (2016), the base of the laminated intervals at Site U1343 are dated to 10.5 ka and 225 

14.7 ka, suggesting that this age model provides a better fit for the LGM-Holocene transition. 226 

Thus, we use those age-depth tie points as the base for our chronology (Supplementary 227 

Figure 2) (Table 1). Further, we added the bases of the laminations at 1.07 and 2.69 m CCSF-228 

A as additional age-depth tie points using ages of 11.7 ka and 14.5 ka, respectively, based on 229 

previous studies from the north-eastern Bering Sea slope (Cook et al., 2005; Kuehn et al., 230 

2014) (Supplementary Figure 2). This approach assumes vertically synchronous expansion of 231 

the OMZ between 1000 m and 2000 m at the onset of the BA and the early Holocene. The 232 

expansion of the OMZ was most likely caused by the high rates of primary productivity 233 

during interstadial phases and subsequent demineralization of organic matter in the water 234 

column (Kuehn et al., 2014). This suggests that anoxic conditions associated with the OMZ 235 

expansion might have occurred somewhat earlier at the shallower sites. Considering the 236 

average sample resolution of our highest resolved dataset (0.5 kyr temporal spacing), 237 

however, we assume this temporal discrepancy to be negligible. Further, by applying this 238 

chronology, the mass accumulation rate of opal (MARopal) (Kim et al., 2014) peaks at ~13.5 239 

ka at Site U1343 (Supplementary Figure 2) within the BA interval, consistent with similar 240 

productivity peaks between ~13 ka and 14.5 ka from numerous other sites in the subarctic 241 

North Pacific (Addison et al., 2012; Brunelle et al., 2007, 2010; Caissie et al., 2010; Cook et 242 
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al., 2005; Gebhardt et al., 2008; Jaccard et al., 2009; Kuehn et al., 2014; Ren et al., 2015; 243 

Schlung et al., 2013).  244 

Our chronology thus allows us to identify general millennial-scale trends at Site U1343 245 

across the last deglaciation, while short-term events (e.g. the YD) and the exact timing of 246 

stadial/interstadial boundaries should be considered with more caution.  247 

3.2 Sea-ice biomarker analyses 248 

3.2.1 Methodology  249 

Reconstructions of past sea-ice extent are based primarily on selected source-specific highly 250 

branched isoprenoid (HBI) biomarkers. IP25 (Ice Proxy with 25 carbon atoms) is a mono-251 

unsaturated HBI produced by certain Arctic diatoms living in brine channels at the bottom 252 

surface of seasonal sea ice (Belt, 2018; Belt et al., 2007; Brown et al., 2014). Thus, its 253 

sedimentary presence provides binary evidence of past seasonal sea ice (Belt, 2018). To 254 

complement IP25 data, we co-measured a tri-unsaturated HBI (HBI III), produced by diatoms 255 

characteristic of the spring sea-ice edge bloom within the open waters of the marginal ice 256 

zone (MIZ) (Belt et al., 2017, 2015; Smik et al., 2016), and used the MARopal (Kim et al., 257 

2014), as an indicator of primary productivity. We also measured a di-unsaturated HBI (HBI 258 

II), which typically co-varies with IP25 in the Arctic (Belt et al., 2007; Brown et al., 2014; 259 

Vare et al., 2009), and a range of sterol biomarkers. Sterols are common lipids in cell 260 

membranes of eukaryotic organisms, occurring in a range of marine primary producers and in 261 

higher plants, which can complicate their use as environmental tracers (Belt and Müller, 262 

2013; Volkman, 1986). Nonetheless, diatoms are a common source of brassicasterol and 263 

dinosterol in the marine realm (Volkman, 1986; Volkman et al., 1998; Volkmanm, 2006) and 264 

they are routinely applied as indicators of open water productivity (e.g. Berben et al., 2017; 265 

Méheust et al., 2013; Müller et al., 2009; Navarro-Rodriguez et al., 2013). Other sterols, such 266 
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as campesterol and β-sitosterol, on the other hand, are more common in higher plants and are 267 

often considered to reflect terrestrial organic matter (Volkman, 1986; Volkmanm, 2006).  268 

3.2.2 Lipid extraction and analysis 269 

Biomarkers were extracted from ~3 g of freeze-dried homogenized sediments. The samples 270 

were freeze dried (-45°C; 0.2 mbar; 48 h) using an Edwards K4 Modulyo freeze drier and a 271 

Christ Alpha 1-4 LSC freeze drier at Cardiff and Aarhus University, respectively. Dried 272 

samples were homogenized using an agate pestle and mortar. 9-octylheptadec-8-ene (9-OHD) 273 

and 5α-androstan-3βol (0.1 µg each) were used as internal standards for HBI and sterol 274 

quantification, respectively. Lipid biomarkers were extracted using two different extraction 275 

techniques. A relatively small number of samples (n = 15) were extracted using 276 

Dichloromethane (DCM):Methanol (2:1, v/v) as outlined in Belt et al. (2012). Elemental 277 

Sulphur was removed from extracts using tetrabutylammonium sulphite (Cabedo-Sanz and 278 

Belt, 2015) and lipid classes were separated using silica column chromatography. Apolar 279 

lipids (e.g. HBIs) were eluted with hexane, while more polar lipids, including sterols, were 280 

eluted using hexane/methyl acetate (1:4; v/v). All other samples (n = 28) were extracted by a 281 

saponification-based method (5% Potassium hydroxide (KOH) solution in Methanol:H2O 282 

(9:1, v/v); 70°C; 1 h). After cooling to room temperature, the non-saponifiable lipids were 283 

extracted (hexane; 3 x 2 mL), transferred into glass vials, and dried (N2; 25°C). HBI fractions 284 

were further purified using silver-ion chromatography (5:95 AgNO3:SiO2). Saturated 285 

hydrocarbons were eluted with hexane (1 mL) and HBI fractions then eluted with acetone (2 286 

mL). Sterol fractions were derivatised using N,O- Bis(trimethylsilyl)trifluoroacetamide 287 

(50 μL, 70 °C, 1 h) and diluted with 0.5 mL DCM immediately prior to analysis by gas 288 

chromatography-mass spectrometry (GC-MS). To check for consistency between the two 289 

extraction procedures, five samples (between ~8 ka and ~24 ka) were extracted using both 290 

methods and the HBI fractions purified using silver-ion chromatography. The IP25 and HBI 291 
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III concentrations were comparable between the two methods with an average relative 292 

standard deviation (r.s.d.) of 11% and 16% and a significant correlation between the two 293 

methods for both IP25 (R
2 = 0.99 [0.98; 1], n = 5) and HBI III (R2 = 0.99 [0.99; 1], n = 5) 294 

(Supplementary Figure 3 and 4). As such, we consider the HBI data from both methods to be 295 

mutually consistent. In contrast, brassicasterol concentrations were significantly lower with 296 

the DCM:Methanol extraction method, likely due to a (variable) percentage of the total 297 

extracted sterols remaining in a bound format and thus not readily derivatised using BSTFA. 298 

As such, we only report brassicasterol concentrations for samples obtained using the KOH 299 

extraction method. 300 

All biomarker samples were analyzed at Plymouth University using an Agilent 7890A GC 301 

coupled to a 5975 series mass selective detector fitted with an Agilent HP-5ms column. The 302 

operating conditions are specified in Belt et al. (2012). The identification of individual lipids 303 

was based on their characteristic retention indices and mass spectra (Belt, 2018), while 304 

quantification was achieved through comparison of the integrated peak area (PA) of the 305 

selected ions (m/z 350 (IP25); 348 (HBI II); 346 (HBI III); 470 (brassicasterol); 458 306 

(cholesterol); 382 (campesterol); 396 (β-sitosterol)) with the PA of the respective internal 307 

standards (Belt et al., 2012), together with individual instrumental response factors and the 308 

mass of sediment extracted (Belt et al., 2012).  309 

Semi-quantitative measures of sea-ice extent were determined via the so-called PIP25 index 310 

(Müller et al., 2011) and classification tree (CT) methods (Köseoğlu et al., 2018b, 2018a). 311 

The latter is based on distributions of a suite of HBIs in surface sediments from the Barents 312 

Sea, which has a similar modern sea-ice cycle to the Bering Sea (Köseoğlu et al., 2018a, 313 

2018b). CT analysis categorizes sea-ice conditions into marginal (0-10%), intermediate (10-314 

50%), and extensive (>50%) spring sea-ice concentration. PIP25 indices (Equation 1) were 315 

calculated for both HBI III (PIIIIP25) (Smik et al., 2016) and brassicasterol (PBIP25) (Müller et 316 
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al., 2011) as counterparts to IP25, with the c-factor (Equation 2) based on the average 317 

biomarker concentrations in the analyzed interval.  318 

𝑃𝐼𝑃25 =  
[𝐼𝑃25]

([𝐼𝑃25]+([𝑝ℎ𝑦𝑡𝑜𝑝𝑙𝑎𝑛𝑘𝑡𝑜𝑛 𝑚𝑎𝑟𝑘𝑒𝑟]∗𝑐))
                                         (1) 319 

𝑐 =  
𝑚𝑒𝑎𝑛 [𝐼𝑃25]

𝑚𝑒𝑎𝑛 [𝑝ℎ𝑦𝑡𝑜𝑝𝑙𝑎𝑛𝑘𝑡𝑜𝑛 𝑚𝑎𝑟𝑘𝑒𝑟]
                                                 (2) 320 

3.3 Geochemical and taxonomic foraminiferal analyses 321 

In total, 27 samples (10 cc) between ~8 ka and ~42 ka with an average resolution of ~1.4 ka 322 

were processed for foraminiferal geochemistry and taxonomy. The samples were washed 323 

over a 63 µm sieve and dried over night at 30°C. Benthic and planktonic foraminifera were 324 

counted and picked from the 150-250 µm size fraction.  325 

3.3.1 Authigenic foraminiferal U/Ca and U/Mn 326 

The authigenic U/Ca (aU/Ca) and U/Mn (aU/Mn) of planktonic and benthic foraminifera are 327 

sensitive to sedimentary redox conditions, via post-depositional diagenetic processes, and 328 

have recently been proposed as proxies for sedimentary redox chemistry (Boiteau et al., 329 

2012; Chen et al., 2017; Gottschalk et al., 2016). At Site U1343 scanning electron 330 

microscope images and geochemical analyses of discolored foraminiferal specimens clearly 331 

demonstrate authigenic carbonate formation, related to organoclastic sulphate reduction (> 8 332 

meters below seafloor (mbsf)) and anaerobic oxidation of methane (~8 mbsf) (Detlef et al., 333 

2020). Compared to primary foraminiferal carbonate, foraminifera-bound authigenic 334 

carbonates are enriched in both U and Mn (Detlef et al., 2020), suggesting that U/Ca and 335 

U/Mn may be valuable proxies to determine past changes in sedimentary redox chemistry at 336 

Site U1343. In the modern ocean uranium behaves conservatively in seawater but is removed 337 

from pore waters as U4+ under anoxic conditions (Boiteau et al., 2012). Both planktonic and 338 

benthic foraminiferal tests act as a low uranium substrate (3-23 nmol/mol) (Boiteau et al., 339 
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2012; Chen et al., 2017; Raitzsch et al., 2011; Russell et al., 2004) and can accumulate 340 

authigenic uranium. As the ionic radius of U4+ is similar to that of Ca2+, U4+ can be readily 341 

incorporated into authigenic carbonates forming in the sediment during early diagenesis 342 

(Sturchio et al., 1998; Zhao et al., 2016). Sedimentation rates of 34 ± 11 cm ka-1 (Asahi et al., 343 

2016) at Site U1343 suggest that authigenic U accumulation is unlikely to be affected by re-344 

oxidation processes. Manganese, on the other hand, precipitates as Mn4+ in sediments under 345 

oxic conditions in the form of Mn-oxides or Mn-carbonates and is re-dissolved into pore 346 

waters as Mn2+ under reducing conditions (Froelich et al., 1979). The dissolved Mn2+ either 347 

migrates upwards until it reaches the depth of oxygen penetration where it re-precipitates or 348 

is removed from pore waters by the formation of diagenetic carbonates (Froelich et al., 1979; 349 

Pedersen and Price, 1982). Thus, Gottschalk et al. (2016) proposed to normalize authigenic 350 

foraminiferal uranium to manganese (U/Mn) rather than calcium (U/Ca), to avoid species-351 

specific differences resulting from changes in the surface-to-mass ratio. Recently, however, 352 

Skinner et al. (2019) showed that U and Mn might be incorporated into foraminiferal 353 

authigenic coatings in different ways and caution should be taken when interpreting aU/Mn 354 

alone. 355 

As the abundance of different benthic foraminiferal species varies across the analyzed time 356 

interval, the record of authigenic trace metals is based on multiple species. Authigenic 357 

foraminiferal trace metals were analyzed for the benthic foraminiferal species Islandiella 358 

norcrossi (n = 7) and Uvigerina spp. (n = 3), and the planktonic foraminiferal species 359 

Neogloboquadrina pachyderma (n = 6), for all samples with sufficient specimens (>80 µg). 360 

We were unable to determine planktonic aU/Mn ratios, as N. pachyderma samples were too 361 

small to yield reliable Mn/Ca results (signal-to-noise-ratio < 5). Previous studies suggest that 362 

foraminiferal aU/Ca may be susceptible to changes in the surface-to-mass-ratio of 363 

foraminiferal tests, indicating that aU/Ca is likely species-specific and sensitive to the 364 
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foraminiferal test size (Gottschalk et al., 2016). To circumvent the effect of test size on 365 

authigenic mineral precipitation, both planktonic and benthic foraminifera were picked from 366 

a narrow size fraction (150-250 µm). Planktonic aU/Ca was measured exclusively on N. 367 

pachyderma, avoiding any effects of species-specific surface-to-mass ratio on aU/Ca. 368 

Analyses of authigenic foraminiferal trace metals typically only require weak chemical 369 

cleaning (Gottschalk et al., 2016) to preserve the authigenic geochemical signal. Benthic 370 

foraminiferal samples at Site U1343, however, were also analyzed for primary foraminiferal 371 

trace metal ratios, such as Mg/Ca, a faithful proxy of bottom water temperatures (e.g. Lea et 372 

al., 1999; Nürnberg et al., 1996; Rosenthal et al., 1997). Thus, benthic foraminiferal samples 373 

were cleaned according to the Cd-cleaning protocol (Boyle, 1983; Boyle and Keigwin, 1985), 374 

consisting of: (i) A clay removal step with repeated rinses in UHQ water and methanol with 375 

intervals of ultrasonication, to remove adhered clay particles. (ii) A reductive step in a hot 376 

solution of 1200 μl hydrous hydrazine in a citric acid (10 mL)/ammonia (10 mL) buffer for 377 

30 minutes, including several intervals of short (~5 seconds) ultrasonication followed by 378 

extensive rinsing with UHQ water and a sample transfer to fresh acid-cleaned micro-379 

centrifuge tubes, targeting the removal of oxide coatings. (iii) An oxidative step in a hot 380 

solution of alkali (0.1 M NaOH) buffered 1% H2O2 to remove remnant organic material. (iiii) 381 

A dilute acid leach in 0.001 M HNO3 to remove remaining contaminants adsorbed to the 382 

surface of the foraminifera fragments. Planktonic foraminifera, on the other hand, were 383 

cleaned according to the Mg-cleaning protocol (Barker et al., 2003), which omits the 384 

reductive step compared to the Cd-cleaning protocol. As, Cd-cleaning is more effective in the 385 

removal of authigenic mineral phases compared to Mg-cleaning (Hasenfratz et al., 2017; 386 

Pena et al., 2005), Cd-cleaned benthic foraminiferal trace metal ratios can be compared to 387 

Mg-cleaned planktonic foraminiferal trace metal ratios to ensure a signal of authigenic origin. 388 
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Following the chemical cleaning, foraminiferal samples were dissolved in 120 µL 0.065M 389 

HNO3. All samples were analyzed using a Thermo Element XR High Resolution Inductively 390 

Coupled Plasma Mass Spectrometer (ICP-MS) at Cardiff University. Trace metal ratios were 391 

quantified using matrix-matched standards and two consistency standards were run at the 392 

beginning and end of every sequence. The two consistency standards have U/Ca 393 

concentrations of 4.49 nmol/mol and 27.21 nmol/mol, respectively and U/Mn concentrations 394 

of 0.16 mmol/mol and 0.14 mmol/mol, respectively. The long-term reproducibility between 395 

2015 and 2018 (n = 25) was ±3.03% (relative standard deviation, r.s.d.), ±2.63% (r.s.d.), 396 

±3.11% (r.s.d.), and ±2.26% (r.s.d.) for U/Ca and U/Mn, respectively.  397 

3.3.2 Benthic foraminiferal assemblages 398 

Benthic foraminiferal assemblages in the mid-depth Bering Sea is dominated by calcareous 399 

infaunal species, controlled primarily by the supply of organic matter to the sediments 400 

(Kender et al., 2019; Kender and Kaminski, 2017; Okazaki et al., 2005; Setoyama and 401 

Kaminski, 2015). The dominant species are typically tolerant of high-productivity-low-402 

oxygen conditions, related to the pronounced mid-depth OMZ and export of organic carbon 403 

to the sediments, particularly within the Green Belt along the eastern Bering Sea slope 404 

(Expedition 323 Scientists, 2010; Kender et al., 2019; Khusid et al., 2006; Setoyama and 405 

Kaminski, 2015).  406 

Typically, foraminiferal census counts rely on a representative subset of the sample with 407 

>300 specimens. However, at Site U1343 the foraminiferal abundance is generally low 408 

(Expedition 323 Scientists, 2010) with 0-309 specimens in the 150-250 µm fraction per 409 

sample for the studied interval. We consider all samples with >50 specimens for 410 

environmental inferences, which has previously been shown to yield reliable diversity at the 411 

Bowers Ridge in the southern Bering Sea (Kender et al., 2019).  412 
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In addition to the relative abundance of species with strong environmental preferences (e.g. 413 

Bulimina exilis), we use correspondence analysis (CA) to gain insights into the overall 414 

changes in benthic foraminiferal assemblages at Site U1343. CA (using the software PAST 415 

(Hammer et al., 2001)) was performed on all samples with >50 specimens. Species that only 416 

occurred in very low numbers (<10 specimens for the entire dataset) were grouped and 417 

excluded from the CA. CA uses reciprocal averaging to compare the species within a given 418 

dataset (Greenacre, 1983), with CA scores characterizing similar faunal traits (e.g. Hammer 419 

and Harper, 2006; Kender et al., 2019). The CA axes describe the variance in the dataset, 420 

corresponding to the ecological parameter predominantly controlling the abundance of 421 

species within the assemblage.  422 

3.4 Statistical analyses 423 

Correlation analyses of time-series data (n > 10) was performed in PearsonT3 (Mudelsee, 424 

2003), which automatically performs mean detrending and estimates the persistence time of 425 

both variables. The reported confidence intervals (CI) for these correlations are students t CIs 426 

based on nonparametric bootstrapping (Mudelsee, 2003). For all time-series data with n < 10 427 

and non-time-series data, correlation analyses were performed in R Studio (R Studio Team, 428 

2015) with a 95% significance level. We further calculated a 10-pt moving window 429 

correlation for IP25 and HBI III, as well as IP25 from Site U1343 and IP25 from SO202-27-6, 430 

in R Studio (R Studio Team, 2015) with CIs based on Monte Carlo simulations (n = 10,000) 431 

of random variables with the same amount of observations and window width as for the data 432 

set.  433 

4. Results 434 

4.1 Sea ice related biomarkers 435 
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4.1.2 HBI biomarker concentrations in sediments from MIS 3 to MIS 1 at IODP Site 436 

U1343 437 

HBIs were measured on 43 samples with an average temporal resolution of 0.5 ka between 438 

7.8 ka and 25 ka and 2.5 ka between 25 ka and 42.5 ka. IP25 concentrations vary from 0-6.2 439 

ng/g sed with the highest concentrations occurring during early MIS 2 at ~25 ka (Figure 2). 440 

In general, IP25 is relatively high during MIS 3 and MIS 2 (mean concentration = 3.2 ng/g 441 

sed.) and much lower during early MIS 1 (mean concentration = 0.2 ng/g sed.) (Figure 2). 442 

HBI II varies between 0 ng/g sed and 29.9 ng/g sed. It follows the IP25 trend with a 443 

significant correlation between the two biomarkers (R2 = 0.90 [0.49; 0.98], n = 43), as 444 

expected given their co-production (Brown et al., 2014). Since HBI II concentrations are 445 

higher than those for IP25, its detection in some samples where IP25 could not be quantified 446 

(BA and early Holocene) suggests that the latter was likely present, but below the limit of 447 

detection and thus in very low concentration.  448 

HBI III concentrations vary between 0.4 ng/g sed and 43.5 ng/g sed. and are generally low 449 

during MIS 3 and MIS 2 (<3.2 ng/g sed) with local maxima around 16 ka and 21 ka (Figure 450 

2). MIS 1 is characterized by an increase in HBI III concentrations at the BA/YD transition 451 

up to ~4.5 ng/g sed., followed by a sharp decrease. Starting at ~11 ka HBI III concentrations 452 

increase to values of up to 43.5 ng/g sed., an order of magnitude higher than values during 453 

MIS 3 and MIS 2 (Figure 2). HBI III and IP25 show a weak negative correlation (R2 = -0.35 [-454 

0.58; -0.06], n = 43) for the entire dataset, which is likely influenced by the extreme increase 455 

of HBI III during the early Holocene. We thus calculated a 10-pt moving window correlation 456 

with 95% and 99% confidence intervals based on Monte Carlo simulations (n = 10,000) of 457 

random variables with 43 data points and a window width of 10. The running correlation 458 

reveals no significant correlation of IP25 and HBI III throughout the analyzed interval 459 
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(Supplementary Figure 5), consistent with a pronounced seasonal sea-ice cycle in the eastern 460 

Bering Sea from late MIS 3 to the early Holocene (Detlef et al., 2018).  461 

All HBIs exhibit millennial-scale variability across the last deglaciation (Figure 2). HS1 is 462 

marked by an increase in IP25, HBI II, and HBI III. Both IP25 and HBI II demonstrate an early 463 

(~17.5 ka) and mid-HS1 peak (~16 ka). HBI III, on the other hand, is characterized by one 464 

broad peak during mid-HS1 (~15.3-16.4 ka) (Figure 2), which coincides with the second peak 465 

in IP25 and HBI II. Late HS1 (<15.3 ka) sees a rapid decrease in the concentrations of all 466 

three HBIs towards the BA. IP25 and HBI II are low throughout the BA, with IP25 below the 467 

level of detection. During the YD, both biomarkers increase again, although with lower 468 

concentrations compared to the early deglaciation (Figure 2). HBI III is low during the early 469 

BA and increases again towards the end, peaking around the BA/YD transition followed by 470 

another decrease (Figure 2). The early Holocene is marked by a sharp increase in HBI III yet 471 

low IP25 and HBI II concentrations (Figure 2).  472 

4.1.3 Sterol biomarker concentrations in sediments from MIS 3 to MIS 1 at IODP Site 473 

U1343 474 

We analyzed 28 samples from 7.8 ka to 25 ka with an average temporal resolution of 0.63 ka 475 

for their brassicasterol, campesterol, cholesterol, and β-sitosterol content. Sterol 476 

concentrations vary between 3.1-23.6 µg/g sed., 2.0-12.3 µg/g sed., 3.2-18.0 µg/g sed., and 477 

3.8-19.8 µg/g sed. for brassicasterol, campesterol, cholesterol, and β-sitosterol, respectively 478 

(Figure 2). The temporal trend in sterol biomarker concentrations is relatively uniform with 479 

small differences between sterols classified as being predominantly marine (brassicasterol 480 

and cholesterol) and predominantly terrestrial (campesterol and β-sitosterol). In general, 481 

sterol concentrations are low during the LGM, followed by an increase during HS1. The 482 

increase in campesterol and β-sitosterol across HS1 is more continuous compared to 483 
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brassicasterol and cholesterol, suggesting a two-stepped increase (Figure 2). Maximum sterol 484 

concentrations occur during the early BA, followed by a decrease into the early Holocene 485 

(Figure 2). Across the YD, sterol concentrations were only measured for one sample, thus we 486 

cannot draw reliable conclusions for this period. Across the early Holocene, brassicasterol 487 

and cholesterol are consistently low, while campesterol and β-sitosterol have a local 488 

maximum at the onset of the Holocene (Figure 2). 489 

4.1.4 Semi-quantitative sea-ice reconstructions based on the PIP25 index and 490 

classification tree analysis 491 

PIIIIP25 and PBIP25 vary from 0-0.65 and 0-0.61, respectively, indicating reduced/ice free to 492 

seasonal sea-ice conditions in the eastern Bering Sea across the last ~45 ka. PIIIIP25 is high 493 

throughout most of MIS 3 and MIS 2 (~0.3-0.7) with a decrease observed during late HS1 494 

(Figure 3). This is followed by low values during MIS 1 with the exception of two data points 495 

in the YD (Figure 3). There are no PBIP25 data beyond 25 ka (see section 4.1.3), but PBIP25 is 496 

generally high during MIS 2 (~0.4-0.6) with a decrease during late HS1 and overall low 497 

values throughout MIS 1 apart from one data point that falls into the YD interval (Figure 3). 498 

Although PBIP25 and PIIIIP25 are highly correlated (R2 = 0.94 [0.88; 0.97], n = 28), some 499 

differences in the peak values occur during the YD, late HS1, and around 25 ka (Figure 3). 500 

According to the CT approach (Köseoğlu et al., 2018b, 2018a), sea-ice conditions in the 501 

eastern Bering Sea were generally extensive (i.e. >50% spring sea-ice concentration) during 502 

MIS 3 and early MIS 2 (Figure 3). Intermediate sea-ice conditions (i.e. 10-50%) 503 

characterized the mid to late MIS 2 with a sporadic return to extensive sea-ice extent during 504 

early HS1 and a decrease to marginal ice conditions (i.e. <10%) at the HS1/BA transition 505 

(Figure 3). Early MIS 1 is also characterized by marginal sea-ice conditions with two peaks 506 
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of intermediate sea-ice concentrations during the YD (Figure 3). Thus, the overall trend of the 507 

two PIP25 indices and CT results compare well, especially across the deglaciation (Figure 3). 508 

4.2 Authigenic foraminiferal geochemistry 509 

4.2.1 Authigenic benthic and planktonic foraminiferal U/Ca 510 

Foraminiferal aU/Ca ratios at Site U1343 were determined on 6 N. pachyderma, 3 Uvigerina 511 

spp., and 7 I. norcrossi samples between 10.0 ka and 27.2 ka (Figure 4). Planktonic aU/Ca 512 

are consistently higher compared to benthic aU/Ca, with an offset of 6.1-12.0 nmol/mol 513 

(Figure 4), as a result of more effective removal of authigenic mineral phases during Cd-514 

cleaning. 515 

Planktonic foraminiferal aU/Ca ranges from 10.6-48.8 nmol/mol with highest values during 516 

the early Holocene (Figure 4). Benthic foraminiferal aU/Ca varies between 4.4 nmol/mol and 517 

18.2 nmol/mol. Although foraminiferal U/Ca ratios are low and predominantly within the 518 

range expected for primary foraminiferal calcite (<23 nmol/mol (Boiteau et al., 2012; Chen et 519 

al., 2017; Raitzsch et al., 2011; Russell et al., 2004)), we argue for an authigenic origin. 520 

Previous studies propose that primary foraminiferal U/Ca responds to changes in Δ[CO3
2-] 521 

(Keul et al., 2013; Raitzsch et al., 2011), although recent core-top results by Chen et al. 522 

(2017) did not find a significant correlation between benthic foraminiferal U/Ca and 523 

carbonate system parameters. Parallel benthic and planktonic aU/Ca ratios, available for 4 524 

samples at Site U1343, show a significant positive correlation (R2 = 0.98 [0.28;1], n = 4). 525 

This, together with previous results on the presence of high U and Mn authigenic carbonates 526 

at Site U1343 (Detlef et al., 2020), strongly suggests that the aU/Ca signal was acquired post-527 

depositional when co-deposited benthic and planktonic foraminifera tests were exposed to the 528 

same sedimentary redox conditions.  529 
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The benthic foraminiferal assemblage is characterized by a faunal change associated with the 530 

deglaciation. MIS 2 benthic aU/Ca was measured on I. norcrossi (4.4-18.2 nmol/mol), while 531 

benthic aU/Ca across MIS 1 was measured exclusively on Uvigerina spp. (7.1-10.0 532 

nmol/mol) (Figure 4). This suggests, that the benthic aU/Ca change associated with the 533 

transition from I. norcrossi to Uvigerina spp. could reflect changes in the species-specific 534 

accumulation of authigenic mineral phases (due to differences in the surface-to-mass ratio 535 

and/or shell morphology) rather than sedimentary redox changes. Nonetheless, intra-species 536 

benthic aU/Ca changes across MIS 2 and MIS 1, respectively, can be interpreted as reflecting 537 

relative changes in the sedimentary redox chemistry at Site U1343.  538 

There are two episodes of decreased I. norcrossi aU/Ca at ~24.7 ka and ~17.4 ka suggesting 539 

changes in the sedimentary redox chemistry across MIS 2 (Figure 4). While there is no 540 

planktonic aU/Ca data available around 24.7 ka, a contemporaneous decrease in planktonic 541 

aU/Ca is observed at ~17.4 ka (Figure 4), substantiating the proposed sedimentary redox 542 

changes based on benthic aU/Ca. Across the deglaciation benthic aU/Ca remains relatively 543 

constant, however this is associated with the faunal change from I. norcrossi to Uvigerina 544 

spp. Planktonic aU/Ca, on the other hand, demonstrates an increase associated with the 545 

deglaciation, suggesting more reducing conditions (Figure 4), in line with the preservation of 546 

laminated sediments at Site U1343.  547 

4.2.2 Authigenic benthic foraminiferal U/Mn 548 

Benthic aU/Mn varies between 0.1-0.2 mmol/mol and 0.5-1.2 mmol/mol for Uvigerina spp. 549 

and I. norcrossi, respectively (Figure 4). Across MIS 2 benthic aU/Mn, based on I. norcrossi, 550 

shows two episodes of decreased ratios around 25 ka and 17.5 ka, corresponding to 551 

simultaneous decreases in the benthic aU/Ca ratio and the planktonic aU/Ca ratio at ~17.5 ka 552 

(Figure 4). Additionally, Uvigerina spp. aU/Mn suggest changes in the sedimentary redox 553 
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chemistry associated with the YD interval. However, it is unclear how this relates to the 554 

changes observed during MIS 2 due to the faunal shift in the benthic foraminiferal 555 

assemblage.  556 

Although previous studies suggested, that aU/Mn is less susceptible to species-specific 557 

changes in the surface-to-mass ratio (Gottschalk et al., 2016), benthic foraminiferal aU/Mn 558 

decreases across the deglaciation associated with the shift from I. norcrossi to Uvigerina spp., 559 

while planktonic aU/Ca increases and the preservation of laminated sediments at Site U1343 560 

indicate more reducing conditions (Figure 4, Supplementary Figure 1). There are several 561 

potential explanations for the observed discrepancy. Firstly, planktonic aU/Ca and benthic 562 

aU/Mn were not measured on the same sample material across MIS 1. Thus, it is possible that 563 

both reflect actual changes in the sedimentary redox chemistry with large shifts on relatively 564 

short timescales of ~1 ka (Figure 4). On the other hand, benthic aU/Mn may be subject to 565 

species-specific effects, similar to benthic aU/Ca. Species-specific effects may result from 566 

differences in the accumulation of authigenic carbonates due to differences in the surface-to-567 

mass ratio or shell morphology and/or differences in the partitioning of Mn and U into 568 

primary foraminiferal calcite. Both U/Ca and Mn/Ca ratios of benthic foraminifera are within 569 

the range expected for primary foraminiferal calcite across the analyzed interval (<23 570 

nmol/mol and <50 µmol/mol for U/Ca and Mn/Ca, respectively (Chen et al., 2017; Raitzsch 571 

et al., 2011; Russell et al., 2004)). Even though the co-variance of benthic and planktonic 572 

U/Ca ratios strongly supports a signal of predominantly authigenic origin, relatively low 573 

U/Ca and Mn/Ca ratios could result in aU/Mn being more susceptible to species-specific 574 

differences in the primary trace metal partitioning. Koho et al. (2017), for example, 575 

demonstrate differences in the primary foraminiferal Mn/Ca ratio based on the microhabitat 576 

preferences of the living organism, with deep infaunal foraminifera having higher Mn/Ca 577 

ratios in response to changes in the dissolved Mn concentrations. If microhabitat preferences 578 
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were the determining factor of foraminiferal Mn/Ca ratios, an average Mn/Ca of 40.6 579 

µmol/mol and 11.4 µmol/mol for Uvigerina spp. and I. norcrossi, respectively would suggest 580 

a shallower habitat for I. norcrossi. While Uvigerina spp. has a proposed habitat depth of 1-2 581 

cm within the sediment (Tachikawa and Elderfield, 2002), I. norcrossi may be migrating 582 

between shallower and deeper layers in search of a preferred microhabitat (Hunt and Corliss, 583 

1993; Ishimura et al., 2012; Ivanova et al., 2008), potentially in line with the observed 584 

differences in Mn/Ca ratios between the two species. Further, results by Skinner et al. (2019) 585 

suggest that Mn and U may be incorporated into authigenic foraminiferal coatings in different 586 

ways, with Mn tracking the dissolved pore water Mn concentrations, while U appears to 587 

record changes in the U-flux to the sediments, complicating a straightforward application of 588 

aU/Mn as a proxy for changes in the sedimentary redox chemistry.  589 

Nonetheless, aU/Mn of I. norcrossi supports the two intervals of less reducing sedimentary 590 

redox conditions across MIS 2 (~17.5 and 25 ka), observed in both benthic and planktonic 591 

aU/Ca (Figure 4). Across the deglaciation planktonic aU/Ca seems to provide the most 592 

reliable trends in sedimentary redox chemistry changes, as benthic aU/Ca and aU/Mn are 593 

likely affected by changes in the assemblage composition and thus subject to species-specific 594 

effects (Figure 4).  595 

4.3 Benthic foraminiferal assemblage 596 

At Site U1343 the dominant benthic foraminiferal species are Elphidium batialis Saidova 597 

(1961), Uvigerina spp., Islandiella norcrossi (Cushman, 1933), Bulimina exilis Brady (1884), 598 

Cassidulinoides parkerianus (Brady, 1881), Nonionella labradorica (Dawson, 1860), 599 

Valvulineria araucana (D’Orbigny, 1839), and Globobulimina spp. (predominantly G. 600 

pacifica Cushman (1927) and G. affinis (D’Orbigny, 1839)). When present, B. exilis typically 601 

occurs in large abundances and dominates the benthic foraminiferal assemblage. B. exilis is 602 
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tolerant to hypoxic conditions and has previously been reported from environments with very 603 

high primary productivity and export of labile organic matter to the seafloor (Caralp, 1989; 604 

Caulle et al., 2014; Filipsson et al., 2011; Jannink et al., 1998; McKay et al., 2016). During 605 

MIS 2 the abundance of B. exilis varies between 30-45 % (Figure 4) with two pronounced 606 

decreases to 20 % at ~25 ka and 1.5-3 % between ~16.4-17.4 ka (Figure 4). Following the 607 

latter decrease the abundance increases to >80 % and then remains high throughout MIS 1 608 

compared to MIS 2 (Figure 4). 609 

The CA analysis also reveals clear changes in the benthic foraminiferal assemblage across the 610 

last glacial interval and the deglaciation. CA axis 1 describes 45 % of the total variance in the 611 

dataset, with negative scores for B. exilis, N. labradorica, and Uvigerina spp. (Assemblage 1) 612 

and positive scores for E. batialis, N. digitata, Globobulimina spp., and I. norcrossi 613 

(Assemblage 2) (Supplementary Figure 6). CA axis 2 explains 24 % of the total variance and 614 

shows negative correlation with C. parkerianus, V. araucana, and I. norcrossi (Assemblage 615 

3) and positive correlation with E. batialis, N. digitata, and Uvigerina spp. (Supplementary 616 

Figure 6). Axes 3 explains 12 % of the variance but does not define another meaningful 617 

assemblage. 618 

MIS 2 is dominated by Assemblage 3, as seen from the negative scores for CA axis 2. The 619 

even lower scores during HS1 and Heinrich Stadial 2 (HS2, 24.3-26.5 ka) are driven by an 620 

increase in the abundance of C. parkerianus (Figure 4). Simultaneously, CA axis 1 increases 621 

during HS1 and HS2, driven by a decrease in the abundance of B. exilis (Figure 4). Across 622 

the deglaciation, Assemblage 1 becomes dominant, as seen from the decrease in scores for 623 

CA axis 1 (Figure 4). The increase in the scores for CA axis 2 during the deglaciation is 624 

dominated by the occurrence of Uvigerina spp., while all other species positively correlated 625 

with CA axis 2 remain low. 626 
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5. Discussion 627 

5.1 Sea-ice dynamics in the eastern Bering Sea and the subarctic North Pacific across 628 

the last ~40 ka 629 

The seasonal extent of sea ice in the modern Bering Sea is governed by the interplay of 630 

atmospheric and oceanic forcings (Zhang et al., 2010). While low atmospheric and sea 631 

surface temperatures (SST) initiate sea ice formation during winter, prevailing northerly 632 

winds over the Bering Sea cause a south-eastward expansion, with the maximum position of 633 

the ice edge determined by the SST-induced melting of sea ice (Zhang et al., 2010). Across 634 

the last ~ 40 ka, these boundary conditions changed continuously in response to global 635 

climate and the transition from a glacial to an interglacial state, affecting the sea-ice 636 

concentration in the Bering Sea and the subarctic North Pacific.  637 

Biomarker-based sea-ice reconstructions at Site U1343 in the eastern Bering Sea reveal 638 

dynamic behavior on G/IG timescales, with an overall decrease in the spring sea-ice 639 

concentration between the last glacial maximum (LGM) and the early Holocene and 640 

millennial-scale variability across the last deglaciation (Figure 2). Late MIS 3 to LGM 641 

conditions are characterized by elevated IP25 concentrations, with maximum values during 642 

early MIS 2 (Figure 2). Contemporaneously, HBI III and sterol concentrations are low, in line 643 

with the MARopal at Site U1343 (Kim et al., 2014) (Figure 2), attributed to low primary 644 

productivity and no spring sea ice bloom in the vicinity of the core site. In combination with 645 

the PIIIIP25, PBIP25, and CT results (Figure 3) this suggests extensive seasonal sea ice in the 646 

eastern Bering Sea during late MIS 3 and early MIS 2 with a transition towards slightly 647 

decreased sea-ice extent around 23 ka (Figure 2, Figure 3). This is corroborated by 648 

radiolarian and diatom assemblages in the north-eastern Bering Sea and at the Umnak Plateau 649 

(Caissie et al., 2010; Itaki et al., 2012). While the record of diatom assemblages only reaches 650 
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back to ~22 ka, the abundance of Actinomma boreale and A. leptodermum, radiolarian 651 

species characteristic of extensive to perennial sea ice environments, is highest during early 652 

MIS 2, decreasing towards ~23 ka and again at ~21 ka (Figure 5) (Itaki et al., 2012). Thus, 653 

throughout the studied interval, the eastern Bering Sea might have experienced the most 654 

severe sea-ice conditions during early MIS 2, coinciding with HS2. Additional support for an 655 

expanded sea-ice cover during MIS 2 compared to today, comes from sea-ice biomarker 656 

studies in the eastern (SO202-27-6) and western (SO202-07-6) North Pacific (Figure 5), 657 

demonstrating extended to marginal sea-ice conditions, respectively (Méheust et al., 2018) 658 

and the central Sea of Okhotsk (Lo et al., 2018). In contrast, sea ice related diatoms are 659 

absent in LGM sediments at the Bowers Ridge (BOW-12A) (Katsuki and Takahashi, 2005), 660 

while IRD occurrence is consistently high (GC-11, GC-13) (Gorbarenko et al., 2010), 661 

indicating (at least) the occurrence of drift ice in the central southern Bering Sea. 662 

As previously mentioned, the sea-ice extent in the Bering Sea is sensitive to the interaction of 663 

atmospheric and oceanic forcing mechanisms (Zhang et al., 2010). Reconstructions of SST in 664 

the subarctic North Pacific and its marginal seas across the LGM reveal large spatial 665 

heterogeneity, with some sites documenting warming from the LGM to the Holocene, while 666 

others show no change or even cooling (Caissie et al., 2010; Gebhardt et al., 2008; Gray et 667 

al., 2020; Harada et al., 2008, 2006, 2004; Hernández-Almeida et al., 2020; Kiefer and 668 

Kienast, 2005; Max et al., 2012; Méheust et al., 2018; Meyer et al., 2016; Praetorius et al., 669 

2020; Riethdorf et al., 2013; Taylor et al., 2014) (Supplementary Figure 8, Supplementary 670 

Table 1). This discrepancy can partly be attributed to the varying proxy carriers used as 671 

paleothermometers, including microfossil assemblages, planktonic foraminiferal Mg/Ca, 672 

alkenone unsaturation indices, and the Tetra Ether indeX (TEX86). Such proxies may be 673 

biased towards subsurface vs. surface temperatures, and/or temperatures during the respective 674 

bloom seasons, which might have changed across G/IG transitions. Nonetheless, a spatially 675 
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heterogeneous North Pacific SST development contrasts a region-wide expanded sea-ice 676 

cover during the LGM (Supplementary Table 1). A potential mechanism to reconcile this 677 

divergence would be an increased sensitivity of sea ice to atmospheric temperatures and 678 

circulation, rather than oceanic dynamics. 679 

Numerical simulations and proxy reconstructions suggest a strengthening and expansion of 680 

the North Pacific subarctic gyre caused by a southward shift of the mid-latitude westerlies 681 

and polar easterlies during the LGM in response to the Laurentide ice sheet and atmospheric 682 

CO2 concentrations (Gray et al., 2020; Nagashima et al., 2007). The strengthened wind stress 683 

curl over the subarctic North Pacific might have caused enhanced thermodynamic ice growth, 684 

as well as increased export of sea ice away from the nucleation sites, in line with the regional-685 

wide increase of sea-ice extent during MIS 2 (Caissie et al., 2010; Itaki et al., 2012; Lo et al., 686 

2018; Méheust et al., 2018). Further, weakening of the oceanic connection between the 687 

subarctic North Pacific gyre and the Bering Sea via the Alaskan Stream due to sea level fall 688 

and restriction of several Aleutian passes (Caissie et al., 2010; Meyer et al., 2016; Riethdorf 689 

et al., 2013), as well as closure of the Bering Strait may have isolated the glacial Bering Sea 690 

making it more sensitive to atmospheric rather than oceanic forcing. A strong sensitivity to 691 

atmospheric temperatures is supported by the decrease in sea ice extent around ~23 ka 692 

(Figure 5). This is contemporaneous with an increase in atmospheric temperatures over 693 

Greenland, as suggested by the North Greenland Ice Core Project (NGRIP) δ18O curve 694 

(Rasmussen et al., 2006; Svensson et al., 2008; Vinther et al., 2006) (Figure 5), indicating 695 

close atmospheric coupling between the Bering Sea and the North Atlantic during MIS 2. 696 

This decrease, however, is not observed in the eastern and western subarctic Pacific (Méheust 697 

et al., 2018) (Figure 5). Although the records are of relatively low resolution, this could 698 

indicate that sea-ice extent in the western and eastern North Pacific was additionally 699 

modulated by oceanic changes in relation to the subarctic gyre dynamics. Different 700 
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sensitivities to oceanic and atmospheric forcing between the eastern Bering Sea and eastern 701 

North Pacific are further supported by the lack of correlation between IP25 records from these 702 

two regions during the LGM, which changes to a significant positive correlation during HS1 703 

(Supplementary Figure 7).  704 

HS1 is marked by a double peak in IP25 and HBI II in the eastern Bering Sea, also recognized 705 

in the eastern North Pacific (Méheust et al., 2018) (Figure 5, Supplementary Figure 7). In the 706 

eastern North Pacific, the double peak is associated with an increase in brassicasterol, 707 

suggesting more marginal sea-conditions compared to the LGM. Seasonal sea-ice conditions 708 

during HS1 are also evident from biomarker records in the western North Pacific (Méheust et 709 

al., 2018, 2016) (Figure 5). In the eastern Bering Sea, on the other hand, the collective 710 

biomarker data for the early HS1 peak indicate extended seasonal sea ice in line with the 711 

PIIIIP25, PBIP25, and CT results (Figure 2, Figure 3). This is supported by the re-appearance of 712 

the radiolarian species A. boreale and A. leptodermum, in the north-eastern Bering Sea (Itaki 713 

et al., 2012) (Figure 5), characteristic of an extensive sea-ice cover. Further, diatom 714 

assemblages at the Umnak Plateau suggest more than 6 months of sea-ice per year during 715 

early HS1 (Caissie et al., 2010), in line with biomarker records from the Shirshov Ridge in 716 

the western Bering Sea also indicating extensive sea-ice cover (Méheust et al., 2016).  717 

Contemporaneous IP25 peaks in the eastern North Pacific and the eastern Bering Sea during 718 

HS1 could indicate a more unified forcing in the eastern subarctic Pacific during HS1 719 

compared to the LGM (Supplementary Figure 7), although higher resolution records are 720 

needed to confirm the observed similarities. As the oceanic connection between the eastern 721 

Bering Sea and the eastern North Pacific was still restricted during the early deglaciation  722 

(Supplementary Figure 7), one possibility would be a heightened sensitivity to atmospheric 723 

temperatures. While NGRIP δ18O suggests warming over Greenland during early HS1 724 

(Rasmussen et al., 2006; Svensson et al., 2008; Vinther et al., 2006), North Greenland 725 
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Eemian Ice Drilling (NEEM) δ18O (Buizert et al., 2014) and the northern hemisphere 726 

temperature stack (Shakun et al., 2012) both indicate atmospheric cooling (Figure 5). Under 727 

glacial boundary conditions, NEEM might be more representative of Pacific climate and 728 

moisture fluxes, compared to NGRIP (Buizert et al., 2014). Atmospheric cooling during early 729 

HS1 is further supported by pollen records from eastern Beringia (150-180°W) (Viau et al., 730 

2008) (Figure 5). Alternatively, flood events from the retreating Cordilleran Ice Sheet, routed 731 

into the eastern North Pacific might have caused surface ocean cooling and freshening during 732 

the early deglaciation, causing region-wide synchronous sea-ice patterns (Praetorius et al., 733 

2020). However, while a compilation of SST records from the eastern North Pacific suggests 734 

cooling during the early HS1 compared to the LGM (Praetorius et al., 2020), available Bering 735 

Sea SST records indicate early warming from ~19 ka (Hernández-Almeida et al., 2020; 736 

Meyer et al., 2016; Riethdorf et al., 2013), with only transient cooling events (Supplementary 737 

Figure 8). Warming SSTs, especially during the summer season (Meyer et al., 2016), at the 738 

same time as an increase in the sea-ice extent, might suggest a larger seasonal contrast in the 739 

Bering Sea during early HS1 compared to the LGM.  740 

Following the interval of enhanced sea-ice cover during early HS1 (~17.5 ka), the second 741 

HS1 peak in IP25 is associated with increased HBI III and brassicasterol, suggesting a shift 742 

towards MIZ conditions in the eastern Bering Sea around 16.5 ka (Figure 2). This is 743 

supported by a more dynamic sea-ice cover at the Umnak Plateau from ~16.7 ka onwards 744 

(Caissie et al., 2010) and the disappearance of A. boreale and A. leptodermum in the northern 745 

Bering Sea (Itaki et al., 2012) (Figure 5). From 16 ka onward, a sharp decline in all three HBI 746 

biomarkers is observed at Site U1343, contemporaneous with a decrease of IP25 in the eastern 747 

North Pacific (Figure 2, Figure 5) (Méheust et al., 2018). At the same time all sterol 748 

biomarkers, as well as MARopal, start to increase rapidly (Figure 2), indicating a northward 749 

retreat of the sea-ice margin in the eastern Bering Sea and eastern North Pacific during late 750 
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HS1. This sea-ice retreat is synchronous with local and northern hemisphere atmospheric 751 

warming (Kurek et al., 2009; Shakun et al., 2012; Viau et al., 2008) and increasing northern 752 

hemisphere summer insolation (Figure 5).  753 

In contrast, biomarker records from the western Bering Sea and the western North Pacific, as 754 

well as in the central Sea of Okhotsk, document continuously extensive sea ice until ~15 ka 755 

(Lo et al., 2018; Méheust et al., 2018, 2016) (Figure 5). This suggests an east-west gradient in 756 

the late HS1 sea-ice retreat in the subarctic North Pacific. Recently, using planktonic 757 

foraminiferal δ18O and numerical simulations, Gray et al. (2020) demonstrated an east-west 758 

gradient in the deglacial northward migration of the subarctic gyre. From 16.5 ka onwards, 759 

northward migration of the gyre boundary is evident in the eastern subarctic Pacific, while 760 

the western boundary changes occur between ~12.5-10 ka (Gray et al., 2020). Further, Gong 761 

et al. (2019) demonstrate a strengthened Aleutian Low during HS1, which transports cold air 762 

masses from East Siberia to the Sea of Okhotsk and the western Bering Sea. Thus, an east-763 

west gradient in deglacial sea-ice dynamics is consistent with atmospheric and oceanic 764 

circulation patterns at this time, suggesting colder conditions in the west compared to the east 765 

during late HS1. The latter is also observed in a recent compilation of high resolution SST 766 

reconstructions, showing colder SSTs in the western North Pacific compared to the east 767 

during late HS1 (Praetorius et al., 2020).  768 

From ~15 ka, however, sea-ice biomarker records demonstrate a consistent decrease in the 769 

Bering Sea and the subarctic North Pacific sea-ice cover (Figure 5) (Méheust et al., 2018, 770 

2016); while the record from the central Sea of Okhotsk indicates a transition towards 771 

marginal sea-ice conditions (Lo et al., 2018). This is in line with substantial hemisphere-wide 772 

atmospheric (Shakun et al., 2012) and region-wide SST warming at the onset of the BA 773 

(Caissie et al., 2010; Hernández-Almeida et al., 2020; Max et al., 2012; Méheust et al., 2018; 774 

Meyer et al., 2016; Praetorius et al., 2020; Riethdorf et al., 2013) (Supplementary Figure 8).  775 
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Consistent with warming during the BA, sea-ice biomarker records at Site U1343 suggest 776 

predominantly ice-free conditions, with a renewed increase in MIZ sedimentation during the 777 

late BA, as indicated by increasing HBI III concentrations (Figure 2). An ice-free 778 

environment is further supported by very high sterol concentrations throughout the BA and a 779 

peak in MARopal (Figure 2), attributed to increased primary productivity and increased 780 

continental runoff throughout this interval (Supplementary Figure 9). Ice-free conditions in 781 

the eastern Bering Sea are consistent with previous biomarker-based sea-ice reconstructions 782 

from the western Bering Sea and the subarctic North Pacific (Méheust et al., 2018, 2016), 783 

also indicating very low spring sea-ice occurrence during the early and mid-BA (Figure 5). 784 

Diatom assemblages at the Umnak Plateau, on the other hand, suggest a shift from near 785 

perennial to seasonal sea ice associated with the onset of the BA, while ice-free conditions 786 

are not encountered until 11 ka (Caissie et al., 2010). This suggests a discrepancy between 787 

biomarker-based and diatom-based sea-ice reconstruction in the deglacial Bering Sea and 788 

further research is needed to understand the cause of this disagreement. Nonetheless, diatoms 789 

characteristic of high productivity environments seem to dominate the assemblage at the 790 

Umnak plateau during the BA (Caissie et al., 2010), indicative of a major environmental shift 791 

and reduced ice cover compared to HS1.  792 

Following peak BA northern hemisphere warmth at ~13.5 ka, atmospheric temperatures 793 

(Shakun et al., 2012) and Bering Sea SSTs (Hernández-Almeida et al., 2020; Max et al., 794 

2012; Méheust et al., 2018; Meyer et al., 2016) decrease into the YD stadial (Figure 5, 795 

Supplementary Figure 8). Simultaneously, sea-ice biomarkers increase in the western and 796 

eastern Bering Sea (Méheust et al., 2016) (Figure 5). An increase in IP25 is also observed in 797 

the western North Pacific off Kamchatka, while the Emperor Seamount further to the east 798 

remained ice-free during the YD (Méheust et al., 2018). In the central Sea of Okhotsk IP25 is 799 

slightly lower compared to the BA. In combination with lowered HBI III concentrations, 800 
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however, this also indicates a renewed sea-ice advance compared to the BA interstadial (Lo 801 

et al., 2018).  The YD stadial is thus characterized by seasonal sea ice in the Bering Sea, off 802 

Kamchatka and in the central Sea of Okhotsk (Lo et al., 2018; Méheust et al., 2018, 2016). 803 

MIZ conditions with high HBI III concentrations at Site U1343 (Figure 2), however, suggest 804 

that, at least in the eastern Bering Sea, sea ice did not extend as far south as during early HS1. 805 

This is in line with sea ice not reaching the Bowers Ridge during the YD stadial (Cook et al., 806 

2005). 807 

The early Holocene is characterized by ice-free conditions in the Bering Sea, the subarctic 808 

North Pacific, and the central Sea of Okhotsk, with a mid-Holocene increase in IP25 809 

accumulation observed in the northern and western Bering Sea after ~10 ka (Figure 5) 810 

(Caissie et al., 2010; Itaki et al., 2012; Lo et al., 2018; Méheust et al., 2016, 2018). Diatom 811 

assemblages at the Umnak Plateau also suggest ice-free conditions during the early Holocene 812 

(Caissie et al., 2010). This is consistent with substantial environmental changes in the Bering 813 

Sea during the early Holocene, corresponding to a widespread regional warming (Elias et al., 814 

1996; Kaufman et al., 2004) in response to maximum northern hemisphere summer insolation 815 

(Kaufman et al., 2004). Further, deglacial sea level rise resulted in the flooding of the Bering 816 

Land Bridge around 11 ka (Jakobsson et al., 2017) and enhanced influence of warm and 817 

nutrient-rich Alaskan Stream waters in the eastern Bering Sea (Caissie et al., 2010). While 818 

the MARopal, cholesterol, and brassicasterol are relatively low during the early Holocene, 819 

campesterol and β-sitosterol peak following the YD/Holocene transition (Figure 2). 820 

Contemporaneously, the abundance of radiolarian species, indicative of melt-water discharge 821 

spike in the northern Bering Sea (Itaki et al., 2012), suggesting increased continental runoff 822 

and input of terrestrial organic matter (Supplementary Figure 9). 823 

From ~11 ka onwards, HBI III values at Site U1343 increase by orders of magnitude, yet the 824 

IP25, HBI II and brassicasterol concentrations remain low, indicating absence of MIZ 825 
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sedimentation at Site U1343. Similar biomarker patterns have been observed in sediment 826 

cores from the Barents Sea and the Norwegian Sea (Belt et al., 2015; Berben et al., 2017; 827 

Xiao et al., 2017), with absent IP25 and increased HBI III from 9.9-8.0 ka and 11.2-9.3 ka, 828 

respectively (Belt et al., 2015). This was attributed to enhanced warm Atlantic Water inflow 829 

resulting in increased productivity. In the eastern Bering Sea, we suggest that the steep 830 

increase in HBI III is most likely related to warming and enhanced nutrient concentrations 831 

during the early Holocene. At the Umnak Plateau the abundance of Rhizosolenia hebetata, a 832 

known producer of HBI III (Belt et al., 2017), increases from 9 ka onwards, together with 833 

increased occurrence of Neodenticula seminae, a species characteristic of the Alaskan Stream 834 

(Caissie et al., 2010). Species of the genus Rhizosolenia are often associated with oceanic 835 

fronts (Oksman et al., 2019), regions of enhanced nutrient supply. Thus, strengthened inflow 836 

of warm, nutrient-rich Alaskan Stream waters into the eastern Bering Sea potentially created 837 

an environment especially suitable for HBI III producing diatoms.  838 

5.2 Ventilation changes in the eastern Bering Sea over the last ~30 ka and the role of sea 839 

ice for glacial NPIW formation  840 

Under modern conditions, deep water masses are formed in the North Atlantic and the 841 

Southern Ocean, while in the North Pacific, a permanent halocline (Emile-Geay et al., 2003; 842 

Warren, 1983) impedes the formation of deep water masses. Instead, intermediate water 843 

forms via brine rejection during sea-ice freezing in the Sea of Okhotsk (Shcherbina et al., 844 

2003; Talley, 1993). Numerous proxy studies and numerical simulations indicate that 845 

intermediate depths of the North Pacific experienced enhanced ventilation during the LGM 846 

(GNPIW) and especially during stadial periods of the last deglaciation (Ahagon et al., 2003; 847 

Cook et al., 2016; Cook and Keigwin, 2015; Duplessy et al., 1989; Gong et al., 2019; Jaccard 848 

and Galbraith, 2013; Jang et al., 2017; Keigwin, 1998; Knudson and Ravelo, 2015; 849 

Matsumoto et al., 2002; Max et al., 2014; Okazaki et al., 2010, 2012; Ovsepyan et al., 2017; 850 
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Rae et al., 2014; Saenko et al., 2004; Sagawa and Ikehara, 2008; Worne et al., 2019; Zou et 851 

al., 2020) (Supplementary Table 1). This suggests an Atlantic-Pacific overturning seesaw 852 

with increased Pacific meridional overturning circulation (PMOC) at times of a reduced 853 

AMOC (McManus et al., 2004). Improved ventilation of the glacial North Pacific from 854 

GNPIW is widely recorded to depth of up to ~2000 m, while HS1 might have experienced 855 

enhanced ventilation up to >3000 m (Okazaki et al., 2010; Rae et al., 2014). This is in 856 

contrast to NPDW, which was characterized by reduced oxygen concentrations during the 857 

LGM (Jaccard et al., 2009), likely a result of changes in the preformed to regenerated nutrient 858 

ratio, facilitating deep ocean carbon storage (Galbraith et al., 2007; Jaccard et al., 2009). 859 

Across the deglaciation, during the BA and the early Holocene, these trends were reversed. 860 

NPDW experienced improved ventilation (Galbraith et al., 2007), while the mid-depth North 861 

Pacific was marked by widespread anoxia (Aiello and Ravelo, 2012; Cook et al., 2005; 862 

Expedition 323 Scientists, 2010; Kuehn et al., 2014; Ovsepyan et al., 2017; Pelto et al., 2018; 863 

Rella et al., 2012). 864 

At ~2000 m water depth, Site U1343 is located at the proposed boundary of GNPIW and 865 

NPDW, making it ideal to study past changes in North Pacific ventilation. However, the 866 

records of benthic foraminiferal assemblages, planktonic and benthic aU/Ca, and benthic 867 

aU/Mn are of relatively low resolution due to low foraminiferal abundance in the sediments. 868 

The most robust features are two distinct events of less reducing conditions at ~17.5 ka and 869 

~25 ka, marked by decreased aU/Ca, aU/Mn, and a lower abundance of hypoxia-tolerant 870 

benthic foraminiferal species from Assemblage 1, including B. exilis (Supplementary Figure 871 

6, Figure 4). Further, planktonic aU/Ca and the benthic foraminiferal assemblage suggest 872 

more reducing conditions associated with the BA and the early Holocene, characterized by 873 

elevated planktonic aU/Ca and a dominance of B. exilis in sediments at Site U1343 (Figure 874 

4).  875 
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The two events of less reducing conditions at ~17.5 ka and ~25 ka, correspond to early HS1 876 

and late HS2, respectively (Figure 6). As there are no changes in the MARopal, representing 877 

first order changes in primary productivity, during these intervals (Figure 6), the two events 878 

are interpreted to reflect increased bottom water oxygenation. Two primary reasons have 879 

been identified for enhanced bottom water oxygen concentrations: (i) enhanced ventilation 880 

(via lateral or vertical water mass exchange) or (ii) the release of carbon from the deep ocean. 881 

Volumetrically, the deep North Pacific represents the largest reservoir of carbon in the 882 

world’s deep ocean. Thus, a release of carbon from the North Pacific abyss should result in 883 

increased atmospheric CO2 concentrations and/or increased primary productivity, capturing 884 

the released carbon. Atmospheric CO2, however, does not increase significantly until 17 ka 885 

(Bereiter et al., 2015) and subarctic North Pacific primary productivity remains low until ~16 886 

ka (Brunelle et al., 2010, 2007; Cook et al., 2005; Kim et al., 2014; Kohfeld and Chase, 2011; 887 

Lam et al., 2013; Max et al., 2012; Okazaki et al., 2005). Further, NPDW ventilation does not 888 

increase on a region-wide scale until the onset of the BA (Galbraith et al., 2007; Jaccard et 889 

al., 2009; Jaccard and Galbraith, 2012; Lund et al., 2011), suggesting that deep ocean carbon 890 

release did not drive the increased sedimentary oxygenation at 25 ka and 17.5 ka in the 891 

eastern Bering Sea. Instead, we attribute improved ventilation via expansion of GNPIW as 892 

the cause for the enhanced oxygenation of sediments at Site U1343 during late HS2 and early 893 

HS1. 894 

As research has primarily focused on the deglacial history of North Pacific ventilation, few 895 

records reach as far back as HS2. However, there is evidence for improved ventilation in the 896 

Okinawa Trough at 703 m water depth, attributed to enhanced formation and ventilation of 897 

GNPIW (Zou et al., 2020). Further, records of oxic benthic foraminiferal abundance peak 898 

around 25 ka in a sediment core from 1300 m water depth off Japan (Shibahara et al., 2007) 899 

as well as at 500-600 m water depth in the Santa Barbara Basin (Cannariato and Kennett, 900 
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1999; Ohkushi et al., 2013). Under modern conditions, these sites are from the distal reaches 901 

of NPIW, however records of foraminiferal carbon isotopes (δ13C) suggest that GNPIW 902 

extended further south under glacial boundary conditions (Max et al., 2017). In contrast, 903 

more proximal records of δ13C from the mid-depth Bering Sea (600-1000 m) do not show a 904 

clear signal of improved ventilation during HS2 (Max et al., 2017; Rella et al., 2012) (Figure 905 

6). As the age model at Site U1343 is more uncertain at the lower end of the record, further 906 

research is needed to confirm the exact timing and duration of the proposed deep ventilation 907 

event.  908 

The second ventilation event at 17.5 ka during early HS1 coincides with the onset of 909 

widespread improved ventilation in the mid-depth Bering Sea and Sea of Okhotsk 910 

(Gorbarenko et al., 2010; Max et al., 2014; Rella et al., 2012) (Figure 6), and precedes a deep 911 

ventilation event to >3000 m water depth observed in the Gulf of Alaska by ~500 years (Rae 912 

et al., 2014). Evidence for improved ventilation at ~17.5 ka is also available from the wider 913 

North Pacific region off Japan (978-2700 m) (Ahagon et al., 2003; Ohkouchi et al., 1994; 914 

Zou et al., 2020) and off California and Baja California (500-600 m) (Cannariato and 915 

Kennett, 1999; Ohkushi et al., 2013; Tetard et al., 2017).  916 

Compared to shallower records from the northern and western Bering Sea (975-1000 m), 917 

where improved ventilation is sustained until 16 ka and 15 ka, respectively (Max et al., 2014; 918 

Rella et al., 2012), the ventilation event at U1343 seems to be of relatively short duration, 919 

indicating a pulse of enhanced GNPIW formation to 2000 m water depth in the eastern 920 

Bering Sea during early HS1 (Figure 6). Increased North Pacific overturning during HS1 is 921 

further supported by records of carbon cycle dynamics. From 17.5 ka onwards, diatom-bound 922 

nitrogen isotopes (δ15N) suggest a decrease in the nutrient utilization in the Bering Sea 923 

(Brunelle et al., 2010, 2007) and North Pacific surface ocean CO2 partial pressure (pCO2) 924 

shows a transient increase during early HS1 (Gray et al., 2018) (Figure 6). This is attributed 925 
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to increased mixing of nutrient and CO2-rich deep water to the surface at the onset of deep 926 

overturning during HS1. Subsequently, deepening of the relatively warm and fresh GNPIW 927 

intensified the deep ocean stratification, preventing further upwelling of NPDW until the 928 

breakdown of GNPIW formation at the HS1/BA transition (Gong et al., 2019; Gray et al., 929 

2018). While nutrient utilization decreases from 17.5 ka (Figure 6), primary productivity in 930 

the subarctic North Pacific remains low until 16 ka (Brunelle et al., 2010, 2007; Cook et al., 931 

2005; Kim et al., 2014; Kohfeld and Chase, 2011; Lam et al., 2013; Max et al., 2012; 932 

Okazaki et al., 2005; Riethdorf et al., 2016), which can be attributed to light limitation in 933 

response to seasonal sea-ice cover and a deepened mixed layer due to enhanced GNPIW 934 

formation.   935 

Improved ventilation of the mid-depth North Pacific during HS1, observed in numerous 936 

studies from the subarctic to the subtropics (Ahagon et al., 2003; Cannariato and Kennett, 937 

1999; Cook et al., 2016; Duplessy et al., 1989; Gorbarenko et al., 2010; Max et al., 2014; 938 

Ohkushi et al., 2013; Rae et al., 2014; Rella et al., 2012; Sagawa and Ikehara, 2008; 939 

Shibahara et al., 2007; Tetard et al., 2017; Zou et al., 2020) (Supplementary Table 1), is in 940 

line with increased overturning in the North Pacific at times of a reduced AMOC. The 941 

reasons for a stronger PMOC, however, are still under debate. Several numerical simulations 942 

suggest prominent changes in the atmospheric circulation over the subtropical and subarctic 943 

North Pacific in response to reduced northward heat transport in the Atlantic during an 944 

AMOC-off mode (Chikamoto et al., 2012; Gong et al., 2019; Menviel et al., 2012; Okazaki et 945 

al., 2010; Okumura et al., 2009; Wu et al., 2008). These changes include a southward shift in 946 

the Intertropical Convergence Zone (ITCZ) (Chikamoto et al., 2012; Okumura et al., 2009; 947 

Wu et al., 2008), stronger midlatitude westerlies (Gong et al., 2019; Okumura et al., 2009), 948 

and a strengthened Aleutian Low over the subarctic North Pacific (Chikamoto et al., 2012; 949 

Gong et al., 2019; Okumura et al., 2009). A stronger Aleutian Low results in colder, drier 950 
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East Siberian air masses over the western Bering Sea and Sea of Okhotsk reducing the net 951 

precipitation in this region (Gong et al., 2019). Additionally, strengthened atmospheric 952 

circulation would lead to a spin up of the subarctic North Pacific gyre with enhanced Ekman 953 

suction and increased meridional transport of saline subtropical waters to the subarctic North 954 

Pacific (Chikamoto et al., 2012; Gong et al., 2019; Gray et al., 2020; Menviel et al., 2012; 955 

Okazaki et al., 2010; Okumura et al., 2009). In combination, these processes might act to 956 

increase the North Pacific surface ocean salinity (SSS), which could weaken the permanent 957 

halocline, initiating thermohaline overturning. A positive overturning-salinity feedback might 958 

then aid to sustain high SSS in the North Pacific (Chikamoto et al., 2012; Gong et al., 2019; 959 

Max et al., 2014). Along with increased meridional transport, several models suggest an 960 

enhanced northward heat transport in the Pacific in response to increased overturning 961 

(Chikamoto et al., 2012; Gong et al., 2019; Menviel et al., 2012; Okazaki et al., 2010). In 962 

contrast, studies of foraminiferal δ18O and εNd in the Bering Sea suggest a pivotal role of 963 

brine rejection during sea-ice freezing for enhanced GNPIW formation (Cook et al., 2016; 964 

Horikawa et al., 2010; Knudson and Ravelo, 2015).  965 

Both deep ventilation events, as recognized at Site U1343, correspond to times of increased 966 

sea-ice extent in the eastern Bering Sea (Figure 6). Especially during early HS1, warming 967 

Bering Sea summer SSTs (Meyer et al., 2016) in combination with increased sea-ice extent 968 

suggest a stronger seasonal contrast, likely associated with intensified new ice growth and 969 

brine rejection. Brine rejection during early HS1 and late HS2 is also supported by the δ18Ob 970 

at Site U1343 (Asahi et al., 2016). During sea-ice freezing, brine rejection leads to an 971 

increase in surface water salinity without significantly fractionating surface water δ18O 972 

(Brennan et al., 2013), transporting the low surface water δ18O signature to greater depth, 973 

resulting in a negative offset of local benthic δ18O from the global benthic δ18O stack (LR04) 974 

(Knudson and Ravelo, 2015; Lisiecki and Raymo, 2005). Even though δ18Ob at Site U1343 is 975 
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of relatively low resolution, negative offsets from the LR04 stack can be observed across 976 

both ventilation events, albeit of lower amplitude compared to IODP Site U1342 at 800 m 977 

water depth in the southern Bering Sea (Figure 6) (Knudson and Ravelo, 2015). The 978 

difference between δ18Ob at Site U1343 and the shallower Site U1342 (~800 m), as well as 979 

the similarities between U1343 δ18Ob and the LR04 stack, however, suggest that NPDW 980 

remained the predominant water mass at ~2000 m in the eastern Bering Sea during MIS 2, 981 

with entrainment of GNPIW restricted to the two deep ventilation events during HS1 and 982 

HS2.  983 

This indicates that while the LGM in the Bering Sea, in line with glacial intervals of the last 984 

1.2 Ma, may have experienced enhanced GNPIW ventilation to depth of ~1000 m (Cook et 985 

al., 2016; Knudson and Ravelo, 2015; Rella et al., 2012), deep convection to at least 2000 m 986 

was restricted to HS1 and potentially also HS2 (Figure 7). We propose that during early HS1 987 

increased brine rejection locally weakened the halocline by promoting downward transport of 988 

low salinity surface waters and upward mixing of higher salinity intermediate waters (Figure 989 

7). Thus, enhanced sea-ice formation during early HS1 in the Bering Sea and the subarctic 990 

North Pacific might have helped to ‘kick start’ deep convection, in line with the observed 991 

pulse of improved ventilation at 2000 m water depth in the eastern Bering Sea (Figure 6). The 992 

subsequent northward retreat of the sea-ice margin in the eastern Bering Sea and eastern 993 

North Pacific from ~16 ka onwards (Figure 5), however, suggests that while sea ice likely 994 

aided in the initiation of deep convection, other mechanisms might have been more important 995 

in sustaining increased ventilation until the onset of the BA. These mechanisms might include 996 

a positive salinity-circulation feedback, transporting high salinity subtropical waters to the 997 

North Pacific, decreased precipitation over the North Pacific, and/or increased upwelling of 998 

high salinity surface waters in the subarctic gyre due to intensified Ekman suction 999 

(Chikamoto et al., 2012; Gong et al., 2019; Gray et al., 2020; Max et al., 2014; Menviel et al., 1000 
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2012; Okazaki et al., 2010; Okumura et al., 2009). Alternatively, sustained brine rejection in 1001 

the western Bering Sea and Sea of Okhotsk, in line with a later sea-ice demise (~15 ka) in 1002 

this region (Figure 5) (Lo et al., 2018; Méheust et al., 2018, 2016), might have 1003 

driven/contributed to enhanced North Pacific overturning during late HS1 (Gong et al., 1004 

2019).  1005 

An increased sea-ice cover during times of an intensified PMOC conflicts with results 1006 

suggesting enhanced northward heat transport in response to PMOC strengthening 1007 

(Chikamoto et al., 2012; Gong et al., 2019; Gray et al., 2020; Menviel et al., 2012; Okazaki et 1008 

al., 2010). As mentioned in section 5.1, the increase in sea-ice extent during early HS1 is 1009 

most likely a response to either atmospheric cooling (Kurek et al., 2009; Shakun et al., 2012; 1010 

Viau et al., 2008) and/or meltwater runoff from the retreating Cordilleran Ice Sheet 1011 

(Praetorius et al., 2020). If the former was the case, atmospheric cooling might have masked 1012 

any significant increase in northward heat transport, as suggested in a recent modelling study 1013 

(Gong et al., 2019). In contrast, a sea-ice increase in response to surface freshening is 1014 

difficult to reconcile with the enhanced ventilation of the mid-depth North Pacific during 1015 

HS1, unless brine rejection was able to compensate for the freshwater-induced halocline 1016 

strengthening. In this case, input of cold freshwater might have compensated for increased 1017 

northward heat transport, allowing for an extended sea-ice cover. Future modelling studies 1018 

might be able to explore this relationship further. 1019 

From 16 ka onwards primary productivity increases on a North Pacific wide scale (Brunelle 1020 

et al., 2010, 2007; Cook et al., 2005; Kim et al., 2014; Kohfeld and Chase, 2011; Lam et al., 1021 

2013; Max et al., 2012; Okazaki et al., 2005; Riethdorf et al., 2016). At Site U1343, rising 1022 

primary productivity is recorded by a steep increase in MARopal (Kim et al., 2014) and sterol 1023 

biomarkers from 16 ka, peaking during the early BA interstadial (Figure 2). As the timing 1024 

corresponds to the onset of sea-ice decline (Figure 2), increased primary productivity was 1025 
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likely a result of alleviation of light limitation due to diminishing sea-ice cover, and a 1026 

shallower mixed layer, promoted by sea-ice melting inducing surface ocean stratification. At 1027 

the HS1/BA transition, subarctic North Pacific surface ocean pCO2 increased rapidly above 1028 

atmospheric CO2 concentrations at the time (Figure 6), indicating outgassing of CO2 from the 1029 

North Pacific (Gray et al., 2018). Gray et al. (2018) suggest that increased surface ocean 1030 

pCO2 resulted from the breakdown of GNPIW formation following the resumption of the 1031 

AMOC (McManus et al., 2004) resulting in upwelling of NPDW, due to enhanced Ekman 1032 

suction in the subarctic gyre as a result of the remnant Laurentide Ice Sheet. Enhanced 1033 

upwelling of NPDW during the BA would have flushed deeply sequestered CO2 and nutrients 1034 

from the abyss to the surface, in line with signs of improved NPDW ventilation (Galbraith et 1035 

al., 2007) and increased primary productivity in the North Pacific (Brunelle et al., 2010, 1036 

2007; Cook et al., 2005; Kim et al., 2014; Kohfeld and Chase, 2011; Lam et al., 2013; Max et 1037 

al., 2012; Riethdorf et al., 2016). 1038 

Contemporaneously, planktonic aU/Ca and benthic foraminiferal assemblages at Site U1343 1039 

record reduced sedimentary oxygenation across the BA and the early Holocene (Figure 6). 1040 

While the last glacial interval was dominated by Assemblage 3, predominately composed of 1041 

phytodetritivore species (Kender et al. 2019), the BA and the early Holocene are dominated 1042 

by Assemblage 1 (Figure 6). The latter is composed of species adapted to low oxygen 1043 

conditions and very high export of organic carbon to the seafloor (Kender et al., 2019; 1044 

Okazaki et al., 2005; Piña-Ochoa et al., 2010; Schumacher et al., 2007; Sen Gupta and 1045 

Machain-Castillo, 1993), dominated by B. exilis (Figure 6). Decreased oxygenation is in line 1046 

with the preservation of laminations in sediment core U1343 (Expedition 323 Scientists, 1047 

2010) (Supplementary Figure 1) and numerous other cores from the mid-depth Bering Sea 1048 

(Aiello and Ravelo, 2012; Cook et al., 2005; Expedition 323 Scientists, 2010; Kuehn et al., 1049 

2014; Pelto et al., 2018; Schlung et al., 2013) and across the North Pacific (Crusius et al., 1050 
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2004; Ikehara et al., 2006; Praetorius et al., 2015; Zheng et al., 2000). Laminated sediments 1051 

during the BA and the early Holocene suggest that waters with [O2] <5 µmol/kg (Moffitt et 1052 

al., 2015) intersected the sediment-water interface, bearing witness of a substantial 1053 

intensification and expansion of the mid-depth OMZ throughout these intervals (Kuehn et al., 1054 

2014). During the BA, OMZ expansion was most likely attributed to enhanced respiration of 1055 

organic carbon in the ocean interior due to increased export productivity (Figure 2), fueled by 1056 

upwelling of nutrient-rich NPDW and increased mixed layer stratification as a result of 1057 

warming atmospheric temperatures and enhanced meltwater discharge (Gray et al., 2018; 1058 

Itaki et al., 2012; Kuehn et al., 2014; Ren et al., 2015) (Figure 7). Additionally, the 1059 

breakdown of GNPIW formation likely contributed to reduced ventilation of the mid-depth 1060 

North Pacific (Gray et al., 2018). During the early Holocene, on the other hand, sterol 1061 

biomarkers and MARopal at Site U1343 indicate relatively lower in situ primary productivity 1062 

compared to the BA (Figure 2). Instead, sterol biomarkers suggest enhanced input of 1063 

terrestrial organic carbon due to sea level rise and increased meltwater discharge (Itaki et al., 1064 

2012; Spratt and Lisiecki, 2016) (Supplementary Figure 9) as the primary cause for OMZ 1065 

expansion in the eastern Bering Sea.  1066 

6. Conclusions 1067 

1. MIS 3 and MIS 2 were characterized by seasonal to extended seasonal sea-ice 1068 

concentration in the eastern Bering Sea, with the most severe sea-ice conditions 1069 

occurring during early MIS 2.  1070 

2. Across the deglaciation, sea-ice dynamics in the eastern Bering Sea demonstrate 1071 

millennial-scale variability. HS1 was marked by an initial intensification of sea-ice 1072 

conditions around 17.5 ka, followed by a transition to MIZ conditions around 16.5 ka 1073 

and a rapid northward retreat of the sea ice margin at the HS1/BA transition. The BA 1074 
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and early Holocene were characterized by primarily ice-free conditions in the eastern 1075 

Bering Sea, separated by a return of MIZ conditions during the YD. 1076 

3. The timing of sea-ice changes in the eastern Bering Sea, as well as its oceanic 1077 

isolation due to glacial sea-level fall, suggest that sea ice was most sensitive to 1078 

atmospheric forcing during MIS 3 and MIS 2. Across the deglaciation, the effects of 1079 

oceanic forcing likely strengthened in response to sea level rise and subarctic gyre 1080 

dynamics.   1081 

4. During late HS2 (~25 ka) and early HS1 (~17.5 ka), foraminiferal assemblages and 1082 

authigenic trace metals, suggest pulses of improved ventilation at Site U1343, 1083 

corresponding to times of enhanced sea-ice cover. Especially during early HS1, we 1084 

propose that enhanced sea-ice formation aided in the initiation of deep overturning by 1085 

locally weakening the halocline. The subsequent retreat of the sea-ice margin however 1086 

indicates that other mechanisms, such as a positive circulation salinity feedback, 1087 

and/or sea ice in the western Bering Sea/Sea of Okhotsk were more important to 1088 

sustain deep overturning during HS1. As the age model becomes more uncertain 1089 

towards the lower end of the record, additional research is needed, but the similarities 1090 

between the events at 17.5 ka and 25 ka, suggest that deep ventilation initiated by sea-1091 

ice formation may have been a recurrent feature of Heinrich events in the North 1092 

Pacific.  1093 

5. The dominance of the high productivity, hypoxia-tolerant benthic foraminiferal 1094 

species B. exilis during the BA and the early Holocene, is in line with the preservation 1095 

of laminations and OMZ expansion in the eastern Bering Sea. During the BA, high 1096 

concentrations of all sterol biomarkers and MARopal, indicate that an increase in in 1097 

situ primary productivity in combination with influx of terrestrial organic carbon 1098 

drove down mid-depth oxygen concentrations. During the early Holocene, however, 1099 
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terrestrial sterol biomarkers dominate, suggesting that organic carbon from meltwater 1100 

runoff and sea level rise might have been the dominant driver of OMZ expansion at 1101 

this time. 1102 
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Table captions 1801 

 1802 

Table 1. Age-depth tie points for the late Quaternary chronology of IODP Site U1343. 1803 

 1804 
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Figure captions 1805 

 1806 

Figure 1. Map of the Bering Sea (top) and annual mean oxygen concentrations (Boyer et al., 1807 

2013) along a north (A) south (B) transect in the central Bering Sea (bottom) drawn with 1808 

Ocean Data View (Schlitzer, 2016) (Bathymetry from ‘The GEBCO_2014 Grid, version 1809 

20141103, http://www.gebco.net’). IODP Site U1343 is indicated with a red dot, additional 1810 

core locations discussed in the text are marked with yellow dots. The map shows the surface 1811 

ocean circulation (dark blue), including the Alaskan Stream, the Aleutian North Slope 1812 

Current (ANSC), the Bering Slope Current (BSC), and the East Kamchatka Current (EKC). 1813 

The maximum winter sea ice extent between 1981 and 2010 is indicated as an orange dashed 1814 

line (Fetterer et al., 2017) and the last glacial maximum (LGM) coastline is shown in purple 1815 

(The PALE Beringian Working Group, 1999).  1816 

 1817 

Figure 2. Biomarker results from IODP Site U1343. (A) MARopal at Site U1343 (light grey) 1818 

(Kim et al., 2014); (B) Marine sterol biomarkers cholesterol (red) and brassicasterol (orange); 1819 

(C) terrestrial sterol biomarker campesterol (purple) and β-sitosterol (yellow); (D) HBI III 1820 

(green); and (E) IP25 (dark blue) together with HBI II (light blue circles). Note the break in 1821 

the HBI III axis. The grey shaded vertical bars indicate the YD, HS1, and HS2. 1822 

 1823 

Figure 3. Semi-quantitative sea ice results. (A) Classification tree results (pink) indicating 1824 

marginal (0-10%), intermediate (10-50%), and extensive (>50%) sea-ice conditions. (B) 1825 

PIIIIP25 (orange) and PBIP25 (yellow), with PIP25 values of zero indicating no sea ice and 1826 

values of one being characteristic of perennial sea-ice conditions. The grey shaded vertical 1827 

bars indicate the YD, HS1, and HS2. 1828 

 1829 

Figure 4. Results of sedimentary redox chemistry proxies. (A) Scores of the benthic 1830 

foraminiferal assemblage correspondence analysis axis 1 (blue) and 2 (yellow); (B) Relative 1831 

abundance of the benthic foraminifera Bulimina exilis (red); (C) U/Ca (open circles) of N. 1832 

pachyderma (orange), I. norcrossi (red), and Uvigerina spp. (purple). The shaded areas 1833 

indicate the 2σ envelope. (D) U/Mn (open diamonds) of I. norcrossi (red) and Uvigerina spp. 1834 

(purple). The shaded areas indicate the 2σ envelope. The grey shaded vertical bars indicate 1835 

the YD, HS1, and HS2. 1836 

 1837 

Figure 5. A compilation of sea-ice reconstructions discussed in this manuscript. (A) IP25 1838 

concentrations at SO202-18-6 (Méheust et al., 2018); (B) The abundance of A. boreale plus 1839 

A. leptodermum at PC-23A (Itaki et al., 2012); (C) IP25 concentrations at SO201-2-114 1840 

(Méheust et al., 2016); (D) IP25 concentrations at U1343 (blue) (this study); (E) IP25 1841 

concentrations at SO201-2-77 (Méheust et al., 2016); (F) IP25 concentrations at SO201-2-12 1842 

(Méheust et al., 2016); (G) IP25 concentrations at SO202-27-6 (Méheust et al., 2018); (H) 1843 

IP25 concentrations at SO202-07-06 (Méheust et al., 2018); (I) Northern Hemisphere 1844 

temperature stack (black) including a 1σ error envelope (Shakun et al., 2012) and Eastern 1845 
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Beringia (150-180°W) atmospheric temperature stacks from 60-65°N and 65-70°N (light 1846 

grey) based on pollen records (Viau et al., 2008); (J) July insolation at 65°N (black) and 1847 

NGRIP (light grey) and NEEM (medium grey) δ18O on the GICC05 time scale (Buizert et al., 1848 

2014; Rasmussen et al., 2006; Svensson et al., 2008; Vinther et al., 2006). 1849 

 1850 

Figure 6. A compilation of ventilation and carbon cycle records discussed in this manuscript 1851 

in combination with regional and global climate records. (A) HBI III (green) at Site U1343 1852 

(this study); (B) IP25 (dark blue) together with HBI II (light blue circles) (this study); (C) 1853 

North Pacific pCO2 at MD01-2416 (Gray et al., 2018); (D) Diatom-bound δ15N at JPC17 1854 

(Brunelle et al., 2007); (E) Benthic foraminiferal δ13C at MR06-04-PC23A (medium grey) 1855 

(Rella et al., 2012), SO201-2-85KL (dark grey), and SO201-2-101KL (light grey) (Max et al., 1856 

2014); (F) Intermediate water ventilation ages in the Bering Sea and the Sea of Okhotsk 1857 

(Max et al., 2014); (G) Scores of the benthic foraminiferal assemblage correspondence 1858 

analysis axis 1 (blue) and 2 (yellow) and the relative abundance of the benthic foraminifera 1859 

Bulimina exilis (red) at Site U1343; (H) U/Ca of N. pachyderma (orange), I. norcrossi (red), 1860 

and Uvigerina spp. (purple) at Site U1343; (I) MARopal at Site U1343 (Kim et al., 2014); (J) 1861 

Benthic foraminiferal δ18O at IODP Site U1342 (light grey) (Knudson and Ravelo, 2015), 1862 

Site U1343 (black) (Asahi et al., 2016), and the LR04 stack (grey) (Lisiecki and Raymo, 1863 

2005); (K) NGRIP δ18O on the GICC05 time scale (Rasmussen et al., 2006; Svensson et al., 1864 

2008; Vinther et al., 2006), and the Northern Hemisphere temperature stack including a 1σ 1865 

error envelope (Shakun et al., 2012). 1866 

 1867 

Figure 7. Simplified schematic of the deglacial sea-ice dynamics, intermediate water 1868 

ventilation, and biogeochemical cycling in the eastern Bering Sea. The schematic was 1869 

produced using features from the IAN symbol library (Courtesy of the Integration and 1870 

Application Network, University of Maryland Center for Environmental Science 1871 

(ian.umces.edu/symbols/)). (A) The LGM (17.5-24 ka) was characterized by a seasonal sea-1872 

cover, reduced upwelling of NPDW, and an expanded GNPIW resulting from enhanced brine 1873 

rejection. GNPIW, however, did not reach to depth of 2000 m. (B) Early HS1 (16.5-17.5 ka) 1874 

was characterized by an enhanced seasonal sea-ice cover, in response to atmospheric cooling. 1875 

Increased sea-ice formation lead to enhanced brine rejection and increased GNPIW formation 1876 

and ventilation compared to the LGM, which in turn caused modest up-mixing of nutrients, 1877 

as well as a deepening of the mixed layer resulting in light limitation of primary producers. 1878 

(C) The BA (12.8-14.7 ka) is marked by a reduced sea-ice cover due to atmospheric 1879 

warming, enhanced NPDW upwelling, increased primary productivity, and pronounced mid-1880 

depth hypoxia causing the preservation of laminations along the eastern Bering Sea slope. 1881 

 1882 
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Table 1.  

Depth (m 

CCSF-A) 

Age (ka) Reference 

0.01 7.6 Asahi et al. (2016) 

1.07 11.7 Correlation to SO202-18-6/3 and HLY02-02-3JPC 

(Cook et al., 2005; Kuehn et al., 2014) 

2.69 14.5 Correlation to SO202-18-6/3 and HLY02-02-3JPC 

(Cook et al., 2005; Kuehn et al., 2014) 

3.86 17.8 Asahi et al. (2016) 

7.71 33.02 Asahi et al. (2016) 

11.56 48.2 Asahi et al. (2016) 
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Supplementary Material: ‘Late Quaternary sea-ice and sedimentary redox conditions in 

the eastern Bering Sea – implications for ventilation of the mid-depth North Pacific and 

an Atlantic-Pacific seesaw mechanism’ 

 

 

Supplementary Figure 1. Core photo of U1343C-1H from web.iodp.tamu.edu/LORE/, tonal 

range adjusted to enhance the brightness and contrast. The red arrows indiacte the base of the 

laminated sediment sections (Expedition 323 Scientists, 2010). 
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Supplementary Figure 2. (A) MARopal (Kim et al., 2014) (pink) at Site U1343. (B) δ18Ob 

(black) at Site U1343 (Asahi et al., 2016) together with the LR04 stack (grey) (Lisiecki and 

Raymo, 2005). The bases of the laminated intervals are marked by blue vertical lines 

(Expedition 323 Scientists, 2010). The triangles at the bottom represent the age-depth tie 

points: The black triangles are tie points based on δ18Ob stratigraphy (Asahi et al., 2016) and 

the orange triangles represent the age-depth tie point based on the correlation of the onset of 

the BA and early Holocene sediment laminations at Site U1343 with sites HLY02-02-3JPC 

(60°07.67’N, 180°33.49’E, 1132 m water depth) and SO202-18-3/6 (60°07.60’N, 

179°26.64’W, 1109 m water depth) (Cook et al., 2005; Kuehn et al., 2014). 
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Supplementary Figure 3. Comparison of biomarker results from samples extracted with 

DCM:Methanol (x-axis) and KOH (y-axis), respectively. Both IP25 (blue) and HBI III (green) 

show only a minor offset between the two methods, while brassicasterol (orange) is 

significantly higher in samples extracted with KOH.  
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Supplementary Figure 4. Comparison of sea ice biomarkers extracted using DCM:Methanol 

and KOH against age. The biomarker trends are the same, while there are small offsets 

between the methods for HBIs (IP25 in blue, HBI III in green) and a large offset for 

brassicasterol (orange). 
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Supplementary Figure 5. (A) 10-pt moving window correlation of IP25 and HBI III (orange) 

including the 95% (long red dashed line) and 99% (short red dashed line) confidence interval; 

(B) HBI III (green) at Site U1343; (C) IP25 (dark blue) and HBI II (light blue circles) at Site 

U1343; (D) δ18Ob at Site U1343 (black) together with the LR04 stack (grey). The grey shaded 

areas indicate HS2, HS1, and the YD.  
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Supplementary Figure 6. (A) Correspondence analysis (CA) of the benthic foraminiferal 

assemblage data from Site U1343 with samples >50 specimens and for species with >10 

individuals in total. The ovals indicate the foraminifera species included in Assemblage 1 

(blue), 2 (red) and 3 (green). (B) CA axis 1 scores against the percentage counts of 

Assemblage 1 (blue) and assemblage 2 (red). (C) CA axis 2 scores against the percentage 

counts of Assemblage 3 (green). 
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Supplementary Figure 7. (A) Relative sea level stack including a 2σ error envelope (Spratt 

and Lisiecki, 2016) and the depth of several eastern Aleutian Passes and the Bering Strait; (B) 

10-pt moving window correlation of IP25 at SO202-27-6 and re-sampled IP25 at Site U1343 

including the 95% (long red dashed line) and 99% (short red dashed line) confidence interval; 

(C) IP25 at SO202-27-6 (medium blue), Site U1343 (light blue) and re-sampled IP25 at Site 

U1343 (navy blue). 
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Supplementary Figure 8. Compilation of SST and IP25 records from the North Pacific. SST 

reconstructions are based on planktonic foraminiferal Mg/Ca (pink), TEX86 (dark green), 

alkenones (green), and radiolarian modern analogue technique (MAT) (orange). (A) SST 

records (Harada et al., 2006, 2004; Hernández-Almeida et al., 2020; Max et al., 2012; 

Riethdorf et al., 2013) and IP25 (Lo et al., 2018) from the Sea of Okhotsk; (B) SST records 

(Max et al., 2012; Meyer et al., 2016; Riethdorf et al., 2013) and IP25 (Méheust et al., 2016) 

from the western Bering Sea; (C) SST records (Hernández-Almeida et al., 2020) and IP25 

(this study, Méheust et al., 2018) from the eastern Bering Sea; (D) SST records (Max et al., 

2012; Meyer et al., 2016; Riethdorf et al., 2013) and IP25 (Méheust et al., 2018) from the 

western North Pacific; (E) SST stack including the standard error of the mean (Praetorius et 

al., 2020) and IP25 (Méheust et al., 2018) from the eastern North Pacific. 
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Supplementary Figure 9. (A) MARopal at Site U1343 (Kim et al., 2014); (B) 

Concentrations of brassicasterol (orange), cholesterol (red), campesterol (purple), and β-

sitosterol (yellow) at Site U1343; (C) Relative concentration of the radiolarian species 

Rhizoplegma boreale at site PC-23A in the northern Bering Sea, indicative of meltwater 

runoff (Itaki et al., 2012).  

“ Disclaimer: This is a pre-publication version. Readers are recommended to consult the full published 
version for accuracy and citation.”   



83 
 

Supplementary Table 1. Synthesis of sea ice, SST, oceanic circulation, ventilation, primary productivity, atmospheric temperature and 

atmospheric circulation dynamics in the Bering Sea and the North Pacific during the LGM, HS1, the BA, the YD, and the early Holocene.  

 

Climate 

Parameter 
Region 

Early Holocene 

(~8-11.8 ka) 

YD 

(11.8-12.8 ka) 

BA 

(12.8-14.7 ka) 

HS1 

(14.7-18 ka) 

LGM 

(19-26.5 ka) 
References 

Sea ice 

Bering 

Sea 

Western 

Ice free to marginal 

sea-ice conditions 

Marginal to 

extended 

seasonal sea-ice 

cover, sharp 

decline in sea-ice 

extent at the 

YD/Holocene 

boundary 

Ice free to 

marginal sea-ice 

conditions during 

the early BA, 

followed by an 

increase in sea-ice 

extent prior to the 

BA/YD boundary 

Extended 

seasonal sea-ice 

cover, decline of 

the sea-ice cover 

from 15 ka 

onward 

 

No records 

Caissie et al., 2010; 

Itaki et al., 2012; 

Méheust et al., 2018, 

2016, this study 

Eastern 

Extended 

seasonal sea-ice 

cover during early 

HS1, followed by 

a transition to 

MIZ conditions  

(16.5 ka) and a 

northward retreat 

of the sea-ice 

margin from 16 

ka 

Intermediate 

seasonal sea-ice 

cover 

Subarctic 

North 

Pacific 

Western 

Ice free conditions 

Reduced to 

extended 

seasonal sea-ice 

cover 

Ice free conditions 

Marginal to 

extended sea-ice 

cover, decline of 

the sea-ice cover 

from 15 ka 

Reduced to 

marginal seasonal 

sea-ice cover 

Eastern 
Ice free 

conditions 

Ice free to reduced 

seasonal sea-ice 

conditions 

 

Marginal to 

extended sea-ice 

cover, decline of 

the sea-ice cover 

from 16 ka 

 

Extended seasonal 

sea-ice cover 
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Sea surface 

(SST) and 

subsurface 

temperatures 

Bering 

Sea 

Western 

Reconstruction 

based on alkenones 

and TEX86 suggest 

early Holocene SST 

warming, planktonic 

foraminiferal Mg/Ca 

suggests subsurface 

cooling  

Planktonic 

foraminiferal 

Mg/Ca suggest 

relatively 

constant 

subsurface 

temperatures 

with minimal 

cooling, alkenone 

and TEX86 

records indicate 

SST cooling 

Substantial 

region-wide SST 

warming recorded 

at the HS1/BA 

boundary, 

independent of the 

applied 

temperature 

proxy. SST and 

subsurface 

cooling into the 

YD interval. 

Planktonic 

foraminiferal 

Mg/Ca suggest 

constant 

subsurface 

temperatures with 

minimal cooling, 

TEX86 indicates 

transient SST 

cooling during 

early HS1 

followed by 

warming  

Planktonic 

foraminiferal 

Mg/Ca suggest 

relatively mild 

LGM subsurface 

temperatures, 

TEX86 records 

indicate 

substantial SST 

warming since the 

LGM and  

warming summer 

SSTs from ~19 ka 
Caissie et al., 2010; 

Gray et al., 2018; 

Hernández-Almeida et 

al., 2020; Meyer et al., 

2016; Praetorius et al., 

2020 and references 

therein; Riethdorf et 

al., 2013; Harada et 

al., 2012; Kiefer and 

Kienast, 2005; 

Kienast and McKay, 

2001; Sarnthein et al., 

2006 

Eastern No records 

Relatively 

constant SSTs 

based on 

radiolarian 

assemblages with 

potential early 

YD cooling and 

warming at the 

YD/Holocene 

boundary 

Radiolarian 

assemblages 

suggest variable 

SSTs with overall 

warming trend 

Radiolarian 

assemblages 

suggest colder 

LGM SSTs 

compared to the 

early Holocene, 

early deglacial 

warming spikes in 

SST from ~20 ka 

Subarctic 

North 

Pacific 

Western 

Reconstruction 

based on alkenones 

and TEX86 suggest 

early Holocene SST 

warming, planktonic 

foraminiferal Mg/Ca 

suggests subsurface 

cooling 

Planktonic 

foraminiferal 

Mg/Ca suggest 

early YD 

subsurface 

cooling, TEX86 

and alkenone 

records indicate 

SST cooling  

Planktonic 

foraminiferal 

Mg/Ca indicate 

cooling 

subsurface 

temperatures, 

while TEX86 

SSTs remain 

stable 

TEX86, alkenone 

SSTs, and 

planktonic 

foraminiferal 

Mg/Ca suggest 

relatively mild 

LGM SST and 

subsurface 

temperatures 

Eastern 

SST stack indicates 

rapid warming until 

~11 ka, followed by 

relatively stable 

Holocene SSTs  

SST stack 

suggests 

substantial 

cooling 

SST stack 

suggests cooling 

during early HS1, 

followed by 

warming from 

~16.5 ka 

Planktonic 

foraminiferal 

Mg/Ca suggest 

relatively mild 

LGM subsurface 

temperatures 
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Oceanic 

Surface 

circulation 

Bering 

Sea 

Western 

Complete flooding 

of the Bering Sea 

shelf and Bering 

Strait, enhanced 

Alaskan Stream 

inflow into the 

Bering Sea, 

strengthening of the 

Bering Sea surface 

circulation 

Marine 

transgression, 

onset of flooding 

of eastern 

Aleutian passes 

and Bering Sea 

shelf 

Reduced inflow of 

Alaskan Stream 

waters through 

eastern Aleutian 

Passes, closed 

Bering Strait 

Reduced inflow of Alaskan Stream 

waters through eastern Aleutian Passes 

and a closed Bering Strait. The strength 

of the Bering Slope Current (BSC) 

depends on the Alaskan Stream inflow 

to the Bering Sea, thus the BSC was 

likely weaker. A weaker BSC would 

also result in less eddy upwelling 

activity along the eastern slope.  

Caissie et al., 2010; 

Jakobsson et al., 2017; 

Mann and Hamilton, 

1995; Meyer et al., 

2016; Pico et al., 

2020; Tanaka and 

Takahashi, 2005; 

Pelto et al., 2018 

Eastern 

Subarctic 

North 

Pacific 

Western 

Modern subpolar 

gyre (SPG) 

boundaries, reduced 

influence of the 

Alaskan Stream in 

the western 

subarctic Pacific 

Northward 

migration of the 

western SPG 

boundary from 

12.5 ka 

Less zonal SPG 

extending further 

south in the west 

Northward 

migration of the 

eastern SPG 

boundary from 

16.5 ka 

Wind-driven 

strengthening and 

southward 

expansion of the 

SPG, enhanced 

Alaskan Stream 

influence in the 

west 

Gray et al., 2020; 

Meyer et al., 2016; 

Riethdorf et al., 2013 

Eastern 

Primary 

productivity, 

nutrients, and 

pCO2 

Bering 

Sea 

Western 

Increased primary 

productivity and 

enhanced input of 

terrestrial organic 

carbon (eastern 

Bering Sea) during 

the Preboreal (10.7-

11.7 ka), followed 

by reduction in 

productivity  

Renewed 

decrease in 

primary 

productivity, 

albeit of lower 

extent compared 

to the LGM 

High primary and 

export 

productivity and 

enhanced input of 

terrestrial organic 

carbon  

Initial deglacial 

weakening of 

nutrient 

utilization from 

17.5 ka, increase 

in  primary 

productivity from 

~16 ka Overall low 

primary 

productivity and 

enhanced nutrient 

utilization 

Brunelle et al., 2010, 

2007; Caissie et al., 

2010; Cook et al., 

2005; Crusius et al., 

2004; Gebhardt et al., 

2008; Gorbarenko et 

al., 2005; Gray et al., 

2018; Kim et al., 

2014; Kohfeld and 

Chase, 2011; Lam et 

al., 2013; Max et al., 

2012; Okazaki et al., 

2005; Pelto et al., 

2018; Riethdorf et al., 

2016 

 

Eastern 

Subarctic 

North 

Pacific 

Western 
Increased primary 

productivity 

compared to the 

LGM, but reduced 

compared to the BA 

High primary and 

export 

productivity, rapid 

increase in surface 

ocean pCO2 and 

CO2 outgassing  

Early HS1 

increase in 

surface ocean 

pCO2, initial 

decrease in 

nutrient 

utilization, 

increase in 

primary 

productivity from 

~16-15 ka 

Eastern 
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Ventilation, 

(G)NPIW 

formation, 

and OMZ 

dynamics 

Bering 

Sea 

Western 

Expansion and 

strengthening of the 

mid-depth OMZ and 

preservation of 

laminated sediments 

during the Preboreal 

period (10.7-11.7 

ka) followed by a 

decrease in mid-

depth hypoxia and 

cessation of 

laminated sediments 

Improved 

ventilation to 

depth of at least  

~1500 m 

Break-down of 

GNPIW 

formation, 

expansion and 

strengthening of 

the mid-depth 

OMZ and 

preservation of 

laminated 

sediments due to 

enhanced 

respiration of 

organic carbon 

Improved 

ventilation to 

depth of at least 

2000 m during 

early HS1 and to 

1000 m during 

remaining HS1 

Improved 

ventilation to 

depth of 1000 m 

Ahagon, 2003; Aiello 

and Ravelo, 2012; 

Cannariato and 

Kennett, 1999; 

Chikamoto et al., 2012; 

Cook et al., 2016, 

2005; Cook and 

Keigwin, 2015; Crusius 

et al., 2004; Duplessy 

et al., 1989; Expedition 

323 Scientists, 2010; 

Gong et al., 2019; 

Gorbarenko et al., 

2010; Gray et al., 2018; 

Ikehara et al., 2006; 

Jaccard and Galbraith, 

2013; Jang et al., 2017; 

Keigwin, 1998; 

Knudson and Ravelo, 

2015; Kuehn et al., 

2014; Matsumoto et al., 

2002; Max et al., 2014; 

Menviel et al., 2012; 

Ohkouchi et al., 1994; 

Ohkushi et al., 2013; 

Okazaki et al., 2012, 

2010; Okumura et al., 

2009; Ovsepyan et al., 

2017; Pelto et al., 2018; 

Praetorius et al., 2015; 

Rae et al., 2014; Rella 

et al., 2012; Saenko et 

al., 2004; Sagawa and 

Ikehara, 2008; Schlung 

et al., 2013; Shibahara 

et al., 2007; Tetard et 

al., 2017; Worne et al., 

2019; Wu et al., 2008; 

Zheng et al., 2000; Zou 

et al., 2020 

Eastern 

Subarctic 

North 

Pacific 

Western 

Decrease in the 

ventilation of the 

mid-depth North 

Pacific 

Improved 

ventilation to 

depth of ~1500 m 

Break-down of 

GNPIW formation 

and improved 

ventilation of 

NPDW, enhanced 

upwelling of 

nutrient-, CO2-

rich NPDW, 

widespread mid-

depth hypoxia and 

preservation of 

laminated 

sediments 

Enhanced 

GNPIW 

formation and 

improved 

ventilation to 

depth of 2000 m GNPIW formation 

and improved 

ventilation to 

depth of 2000 m, 

reduced 

oxygenation of 

NPDW 

Eastern 

Potentially 

enhanced 

overturning but 

of lower extent 

compared to HS1 

Enhanced 

GNPIW 

formation and 

improved 

ventilation to 

depth of 3600 m  

“ Disclaimer: This is a pre-publication version. Readers are recommended to consult the full published 
version for accuracy and citation.”   



87 
 

Atmospheric 

temperatures 

Bering 

Sea 

Western 

Northern 

hemisphere-wide 

warming 

Northern 

hemisphere 

cooling during 

the early YD, 

followed by 

consistent 

warming into the 

early Holocene  

Enhanced rate of 

northern 

hemisphere 

warming, peak 

BA northern 

hemisphere 

warmth at ~13.5 

ka followed by 

cooling into the 

YD interval 

Early HS1 

cooling in 

Beringia and the 

northern 

hemisphere, 

overall warming 

during the second 

half of HS1 

Northern 

hemisphere 

temperatures were 

colder by 3-3.5 °C 

during the LGM 

compared to the 

early Holocene 

Buizert et al., 2014; 

Kurek et al., 2009; 

Rasmussen et al., 

2006; Shakun et al., 

2012; Svensson et al., 

2008; Viau et al., 

2008; Vinther et al., 

2006 

Eastern 

Subarctic 

North 

Pacific 

Western 

Eastern 

Atmospheric 

circulation 

Bering 

Sea 

Western 

Establishment of 

modern positions of 

polar easterlies and 

mid-latitude 

westerlies 

Northward shift 

of the westerlies 

in the western 

North Pacific 

from 12.5 ka 

Less zonal jet 

stream, weakened 

atmospheric 

circulation 

compared to HS1, 

but enhanced 

compared to the 

Holocene due to 

the remnant 

Laurentide Ice 

Sheet 

Strengthened 

Aleutian Low 

bringing cold air 

masses to the 

western Bering 

Sea and western 

North Pacific, 

northward 

migration of the 

westerlies in the 

eastern North 

Pacific from 16.5 

ka 

Southward shift of 

the mid-latitude 

westerlies and 

polar easterlies, 

enhanced wind 

stress curl over 

the subarctic 

North Pacific 

Gong et al., 2019; 

Gray et al., 2020, 

2018; Nagashima et 

al., 2007; Yanase and 

Abe-Ouchi, 2007 

Eastern 

Subarctic 

North 

Pacific 

Western 

Eastern 
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