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Abstract

Over the past few decades, partitioning of the surface ocean into ecologically-

meaningful spatial domains has been approached using a range of data types,

with the aim of improving our understanding of open ocean processes, sup-

porting marine management decisions and constraining coupled ocean-biogeochemical

models. The simplest partitioning method, which could provide low-latency

information for managers at low cost, remains a purely optical classification

based on ocean colour remote sensing. The question is whether such a simple

approach has value. Here, the efficacy of optical classifications in constrain-

ing physical variables that modulate the epipelagic environment is tested for

the tropical Indian Ocean, with a focus on the Chagos marine protected area

(MPA). Using remote sensing data, it was found that optical classes corre-

sponded to distinctive ranges of wind speed, wind stress curl, sea surface

temperature, sea surface slope, sea surface height anomaly and geostrophic

currents (Kruskal-Wallis and post-hoc Tukey honestly significantly different
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tests, α = 0.01). Between-class differences were significant for a set of sub-

domains that resolved zonal and meridional gradients across the MPA and

Seychelles-Chagos Thermocline Ridge, whereas between-domain differences

were only significant for the north-south gradient (PERMANOVA, α = 0.01).

A preliminary test of between-class differences in surface CO2 concentrations

from the Orbiting Carbon Observatory-2 demonstrated a small decrease in

mean pCO2 with increasing chl, from 418 to 398 ppm. Simple optical class

maps therefore provide an overview of growth conditions, the spatial dis-

tribution of resources – from which habitat fragmentation metrics can be

calculated, and carbon sequestration potential. Within the 18 year study pe-

riod, biotic variables were found to have decreased at up to 0.025%a−1 for all

optical classes, which is slower than reported elsewhere (Mann-Kendall-Sen

regression, α = 0.01). Within the MPA, positive Indian Ocean Dipole condi-

tions and negative Southern Oscillation Indices were weakly associated with

decreasing chl, fluorescence line height (FLH), eddy kinetic energy, easterly

wind stress and wind stress curl, and with increasing FLH/chl, sea surface

temperature, SSH gradients and northerly wind stress, consistent with re-

duced surface mixing and increased stratification. The optical partitioning

scheme described here can be applied in Google Earth Engine to support

management decisions at daily or monthly scales, and potential applications

are discussed.

Keywords: Remote sensing, biogeography, habitat fragmentation, Orbiting

Carbon Observatory-2 (OCO-2), Marine Protected Area, epipelagic
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1. Introduction1

Physical drivers such as light, temperature and dynamical mixing shape2

the epipelagic ecosystem, and the biota of deeper water layers is determined,3

at least in part, by the productivity of upper layers (Jerlov, 1976; Longhurst,4

2007; Spalding et al., 2012; Kavanaugh et al., 2016; Proud et al., 2017). Di-5

viding the oceans into geographical areas with common physical conditions6

has been approached using a range of methods and suites of data (reviewed by7

Krug et al., 2017; Kavanaugh et al., 2016), and referred to variously as eco-8

logical geography, partitioning, biogeography, biohydrography, biogeographi-9

cal provinces and seascapes. Most schemes include nested spatial scales with10

slightly different nomenclature for different elements of heirarchical structure.11

Partitioning the oceans is similar to habitat mapping and species distribu-12

tion modelling in the sense that a geographical representation of resources is13

produced. However, it does not relate to specific organisms, and no model14

of the relationships between predictor and response variables is produced15

(c.f. Blanco et al., 2015; Coelho et al., 2013; Scales et al., 2014; Zydelis et16

al., 2011).Partitioning schemes have found application to two key challenges.17

Firstly, they provide static and dynamical geographical boundaries to guide18

management planning (over the long term) and intervention (in the short19

term). Management tasks include monitoring ecosystem health, assessing20

risk and implementing control measures such as fishery closure, and informa-21

tion is required at multiple spatial scales and depth ranges to support these22

actions (Rice et al, 2011; Spalding et al., 2012; Caldow et al., 2015; Roberson23

et al, 2017). Short-term responses can only be supported when the frequency24

at which new data is available exceeds the rate of critical fluctuations occur-25
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ring within the ecosystem. The second use is to provide spatial context for26

the evaluation of climate model reliability (Vichi et al., 2011; Kavanaugh27

et al., 2014; Fay & McKinley, 2014). The focus here is on the exchange of28

climate-relevant gases across the air-sea interface and there is no require-29

ment for low-latency information. Partitions serve as a proxy for ecosystem30

function with the inference that they constrain rates of CO2 diffusion, bi-31

otic carbon uptake and the efficiency with which carbon is removed from the32

surface layer. Earth system models (ESM), in which the representation of33

biogeochemical cycles remains quite simplistic (Hense et al., 2017; Jung et34

al., 2019; Sreeush et al., 2018) and which are sensitive to feedback between35

biotic and abiotic components (Lim & Kug, 2017; Park & Kug, 2014; Ro-36

manou et al., 2014) can then be evaluated in the context of static or dynamic37

seascapes (Landschützer et al., 2019; Lovenduski et al., 2019).38

Satellite remote sensing data, which currently provides the best compro-39

mise between area coverage and temporal resolution for surface ocean studies,40

has increasingly been used for partitioning, as the disparate worlds of marine41

management and oceanography converge on how this rich data source can42

best be used (Kachelriess et al., 2014; Maxwell et al., 2015; Miloslavich et43

al., 2018). Figure 1 illustrates some of the pelagic abiotic and biotic factors44

that can be derived from remote sensing data, and characteristics relevant45

for modelling and management decisions.46

[FIGURE 1 HERE: SINGLE-COLUMN; COLOUR ONLY ONLINE]47

Of the variables amenable to remote sensing, only ocean colour is di-48

rectly affected by the pelagic ecosystem at short time-scales. Partitioning49

schemes mostly use an ocean-colour-derived variable, chlorophyll-a concen-50
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tration (hereafter chl), as a measure of biomass and combine it with other51

key physical drivers such as temperature. However, being a function of the52

concentrations of dissolved and particulate substances in the surface ocean,53

ocean colour itself represents a response to the physical drivers. Using ocean54

colour to derive chl incurs spatially-varying errors (Jackson et al., 2017) and55

ignores other coloured variables of interest that may, or may not, covary with56

chl (O’Reilly et al., 1998; Werdell et al., 2018).57

Classifications based on water colour alone have shown that, whilst chl is58

generally constrained by these classifications, information about other water59

mass tracers is also present (Alvain et al., 2005, 2008; Vantrepotte et al., 2012;60

Trochta et al., 2015; Krug et al., 2018; Monolisha et al., 2018; Dierssen, 2010).61

Taken together with the knowledge that physical dynamics at all scales com-62

bine to control the growth environment, this suggests an opportunity to use63

pure optical classes as the smallest scale in a seascape heirarchy, with the64

advantage that it is a low-latency product which could feed into decision-65

making flows on a daily basis (e.g. using GoogleEarthEngine; Gorelick et al.,66

2017) where coverage allows. This possibility is explored here, with a focus67

on the Chagos marine protected area (MPA). If optical classes are found to68

constrain abiotic drivers as well as biotic response, then a further question69

arises of whether they can also be used to estimate carbon flows (extending70

Kavanaugh et al., 2014) without the need to identify individual elements,71

such as phytoplankton function type, as an intermediate step.72

1.1. The study area73

The Chagos marine protected area occupies 640,000 km2 in the tropical74

Indian Ocean, with the Chagos Archipelago system of islands and atolls at it75
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centre (Figure 2; UNEP-WCMC, 2016). The coastline of the Indian Ocean76

is shared amongst over twenty countries, representing a substantial fraction77

of the human population with variable socio-economic status and strong re-78

liance on coastal and open-ocean fisheries (Hermes et al., 2019). The MPA79

is of particular value because of its coral health, resilience and diversity,80

extensive seagrass beds, potential support for the wider Indian Ocean fish-81

eries and related benefits (Koldeway et al., 2010; Ateweberhan et al., 2018;82

Gravestock & Sheppard, 2015; Esteban et al., 2018). In common with shallow83

tropical corals around the world, reefs in the Chagos MPA are vulnerable to84

temperature increases associated with climate change as well as to increases85

in extreme high energy dynamics. Their relative resilience compared with86

other reef systems is associated with protection from human disturbance as87

well as to geographical location. Although extensive coral bleaching has oc-88

curred (Sheppard et al., 2008), interactions between dynamical processes at89

a range of scales and topographic diversity may alleviate temperature stress90

(Sheppard, 2012; Hosegood et al., 2019). Understanding whether this nat-91

ural protection will continue under ongoing climate change is important in92

terms of economic as well as natural resource value.93

The Chagos Archipelago lies at the edge of the South Indian tropical94

gyre within the influence of the Indian Ocean monsoon. In austral summer,95

northerly winds drive an anticyclonic cell and the gyre contracts, so that96

the archipelago is at the northern edge. For the rest of the year, the MPA97

lies at or near the southern edge of the gyre. The location and large-scale98

circulation features are summarised in Figure 2. In the west, divergent winds99

and negative wind stress curl lift the thermocline along 5-12◦S creating the100

6



Seychelles-Chagos Thermocline Ridge (SCTR), with a thermocline depth101

around of 50 m and no surface signature, which extends around the MPA102

throughout the year (Hermes & Reason, 2008, 2009; Aguiar-Gonzalez et al.,103

2016; Xie et al., 2002).104

[FIGURE 2 HERE: SINGLE or 1.5 COLUMN; COLOUR ONLY ON-105

LINE]106

The South Equatorial Current (SEC), flowing to the south of the MPA,107

denotes the boundary between relatively nutrient replete but O2-poor surface108

waters to the north and southern sub-tropical gyre waters to the south which109

are nutrient-depleted throughout the water column but represent a CO2 sink110

(Garcia et al., 2018; Landschützer et al., 2016). In situ biogeochemical data111

are sparse across the tropical Indian Ocean and considerable deviations from112

the mean conditions in the World Ocean Atlas have been reported (Subha113

Anand et al., 2017; Chinni et al., 2019). Whilst the tropics are generally114

considered to be oligotrophic, year-round elevated phytoplankton biomass115

is observed close to the archipelago as well as over the Mascarene Plateau116

to the west and broadly over the SCTR (Wilson & Qiu, 2008; Levy et al.,117

2007). In situ measurements of net primary production in this region range118

from close to zero up to 20 mgCm−2d−1 and can be exceeded by bacterial119

production (Subha Anand et al., 2017; Fernandes et al., 2008; Veldhuis et al.,120

1997). A few high temporal resolution datasets from moored fluorometers121

have shown high frequency, high magnitude fluctuations in phytoplankton122

biomass (Hosegood et al., 2019; Strutton et al., 2015). Phytoplankton as-123

semblages have been found to be dominated by Prochlorococcus and Syneco-124

coccus as expected in the oligotrophic gyres, but substantial fractions of di-125
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atoms, dinoflagellates and prymnesiophytes have also been reported in the126

TIO (Thorrington-Smith, 1971; Veldhuis et al., 1997; Soares et al., 2015).127

To my knowledge, there are no long-term biogeochemical monitoring efforts128

in the pelagic SCTR, despite detailed repeat monitoring in the shallow reef129

waters of the MPA (e.g. Sheppard, 2012). Many studies have used cou-130

pled ocean-biogeochemical models, together with available in situ or remote131

sensing data, to elucidate biophysical coupling in the tropical Indian Ocean132

(TIO) (e.g. Wiggert et al., 2006; Jin et al., 2012; Liu et al., 2013; Resplandy133

et al., 2009; George et al., 2018). Of particular interest here are the results134

of George et al. (2018), Dilmahamod et al. (2016) and Wiggert et al. (2006),135

who explore meridional and zonal gradients in the SCTR.136

The epipelagic growth environment is directly modulated by entrainment137

and advection of nutrients and plankton, fluctuations in mixed layer tem-138

perature and depth, the relative euphotic to mixed layer depths, turbulence139

and varying illumination conditions. Conversely, feedback effects have been140

demonstrated between chl and shortwave heating, SST, surface convergence141

and basin-scale dynamical features (Back & Bretherton, 2009; Park & Kug,142

2014). At the seasonal scale, the eastward extent of the SCTR and westward143

extent of Indonesian Throughflow (ITF) respond to monsoon wind weakening144

and reversal (Aguiar-Gonzalez et al., 2016). Two of the eight Madden-Julian145

Oscillation (MJO) phases are centred in the TIO (Hendon & Salby, 2994),146

with a westward-progagating Rossby wave (Seiki et al., 2013) impacting SST,147

evaporation, precipitation, cloud cover, rainfall, salinity gradients (Guan et148

al., 2014; Jin et al., 2013; McPhaden & Foltz, 2013) and wind-driven en-149

trainment of nutrients into the mixed layer (Jin et al., 2012b). At the in-150
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terannual scale, El Nino and the Southern Oscillation (ENSO) and Indian151

Ocean Dipole (IOD) events have been reported to affect surface conditions152

and surface chlorophyll concentrations. Nino conditions affect mixed layer153

temperatures through precipitation, downwelling (anticyclonic) winds and154

westward propagating Rossby waves (Santoso et al., 2010; Dilmahamod et155

al., 2016; Ma et al., 2014; Racault et al., 2017). Positive IOD phases coincide156

with cooler surface temperatures in the eastern TIO and warmer conditions157

to the west (SST anomalies of 0.1 to 0.3 ◦C or more; Currie et al., 2013;158

Vialard et al., 2009). The impact of ENSO and IOD events is amplified when159

they coincide, and both are expected to increase in frequency (IPCC, 2013;160

Sheppard et al., 2008; Currie et al., 2013; Cai et al., 2014).161

Despite the scarcity of data in the epipelagic in and around the Cha-162

gos MPA, the importance of conditions in these waters has recently been163

highlighted by electronic tagging of seabirds and high trophic level pelagic164

feeders, which has been used to document foraging at considerable distances165

(Pecoraro et al., 2017; Danckwerts et al., 2014; Le Corre et al., 2012), with166

measurable positive impacts on reef health through nutrient redistribution167

(Graham et al., 2018). The near-shore pelagic biome is also a critical food re-168

source for corals (Houlbréque & Ferrier-Pagés, 2009) and the strength of this169

relationship has now been demonstrated using remotely sensed ocean colour170

data (Fox et al., 2019). Elevated chl related to the wind-driven circulation171

around the Chagos MPA is therefore a potential resource both for the reef172

and for pelagic organisms.173

The underlying hypothesis for this study is that water colour represents174

the evolving trophic status of the upper ocean and is characteristic of the suite175
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of physical drivers of ecosystem function as illustrated in Figure 1 (e.g. Jerlov,176

1976), making it a candidate as a low-latency, fine-scale level in a seascape177

heirarchy. This paper addresses how methodological choices affect optical178

classifications, whether pure optical classes provide useful information about179

the physical environment and potential applications of optical class maps.180

2. Methods181

2.1. Remote sensing data182

This study spans August 2002 to October 2018. Remote sensing re-183

flectance (Rrs), chlorophyll-a concentration (chl), normalised fluorescence184

line height (nFLH) and sea surface temperature (SST) data from the NASA185

Moderate Resolution Imaging Spectrometer aboard the Aqua satellite (MODIS-186

Aqua), at Level 2 and Level 3, were acquired from the Ocean Biology Pro-187

cessing Group (oceancolor.gsfc.nasa.gov). Rrs is the ocean colour product188

with the least degree of processing and therefore the lowest uncertainty, with189

errors on the order of 0.001 sr−1 but varying with waveband and water type190

(Franz et al., 2007; IOCCG, 2019). Reflectances from the seven 1 km reso-191

lution, 10 nm wavebands in the visible domain were augmented by band 1,192

with 250 m resolution (50 nm waveband) and bands 3 and 4, with 500 m res-193

olution (20 nm wavebands), and these three bands were spatially averaged to194

match the 1 km wavebands. Globally, chl is the best-validated ocean colour195

product, with mean errors of ca. ±33 mgm−3 (Hu, et al., 2012; O’Reilly et196

al., 1998). Little product validation data is available for nFLH in the tropi-197

cal Indian Ocean, but the MODIS-Aqua and MODIS-Terra products perform198

well against in situ data in the Southern and Atlantic Oceans (Erickson et199
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al., 2019; Hoge et al., 2003).200

Daily sea surface height (SSH), height anomalies (SSHA) and geostrophic201

current velocities (denoted eastwards u and northwards v), from merged al-202

timeter datasets, were acquired at ca. 30 km resolution from the Coper-203

nicus Marine Environment Monitoring Service (CMEMS). Reported errors204

on these products range from < 1 cm to 30 cm, with higher uncertainties205

under more dynamic conditions (CMEMS, 2020). Eddy kinetic energy was206

calculated as EKE = 1/2(u2 + v2). Sea surface slope was calculated pixel-207

wise as ∇SSH = ∂SSH/∂x+ ∂SSH/∂y, with no smoothing. Each product208

was subsampled to 4 km resolution before applying the optical class masks209

(section 2.7).210

Daily surface wind fields from the SeaWinds and ASCAT scatterometer211

sensors were acquired at 25 km resolution from the Jet Propulsion Labo-212

ratory Physical Oceanography Distributed Archive Center (SeaPAC, 2006;213

EUMETSAT/OSI SAF, 2018). Errors in these products are of order 0.1214

ms−1 (Verhoef et al., 2017). Wind stress curl was calculated pixelwise as215

∇× τ = −∂τN/∂x− ∂τE/∂y, where τN and τE are the north-south and east-216

west components of the wind stress and ∂x and ∂y are the pixel dimensions.217

Monthly averages were calculated before subsampling to 4 km resolution and218

applying the optical class masks (section 2.7)219

Profiles of the partial pressure of CO2 derived from Orbiting Carbon220

Observatory 2 (OCO-2) data using the full physics model version 7.3 (O’Dell221

et al., 2018) were acquired at native resolution (ca. 3 km2) from the Goddard222

Earth Sciences Data and Information Services Center (OCO-2 Science Team,223

2016, GES DISC). Only estimates of pCO2 from the lowest model altitude224
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were used and the ramifications of this are discussed in section 3.4. No spatial225

or temporal compositing was applied.226

Bathymetry data were acquired at 1 arc-second resolution from the Na-227

tional Centers for Environmental Information (ETOPO1, 2019) and regrid-228

ded using nearest-neighbour gridding to match the Level 3 Rrs data.229

Data products, sources and abbreviations are summarised in table 1.230

[TABLE 1 HERE]231

2.2. Dynamic partitioning based on ocean colour232

Fuzzy classification was applied to the Indian Ocean domain surrounding233

the BIOT MPA (after Moore et al., 2001; Jackson et al., 2017). This method234

was chosen for its potential to allow a single pixel to have multiple class235

memberships, which is likely in natural phytoplankton populations, particu-236

larly at the relatively coarse spatial scales of remote sensing data (1 to >30237

km) in waters where mesoscale and submesoscale processes may be at play.238

The study bounds were 40o to 100o E, -20o to 15o N, spanning the central239

tropical Indian Ocean with the BIOT MPA roughly central to the domain240

(Figure 3; UNEP-WCMC, 2016). In the absence of in situ data with which241

to verify class memberships or interpret class composition, only the dominant242

class assigned to each pixel at any given time was retained (multiple class243

memberships were removed, to be considered in future work when validation244

data are available). Biovolumes calculated from miscroscopy analysis on five245

stations within the MPA were used as a preliminary test of whether differ-246

ent classes represented different phytoplankton biomass (Kruskal-Wallis test;247

Schwarz, 2020).248
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Variable Abbreviation Source

Remote sensing reflectance, Level 2 L2 Rrs Ocean Biology Processing Group Level 2 data ocean-

color.gsfc.nasa.gov

Remote sensing reflectance, Level 3 L3 Rrs

MODIS-Aqua Level 3 monthly data, Giovanni data

portal giovanni.gsfc.nasa.gov

Surface chlorophyll-a concentration chl

Surface normalised fluorescence line height nflh

Ratio of fluorescence line height to

chlorophyll-a

flh:chl

Sea surface temperature SST

Metric for within-class spectral variability

(chlorophyll-like pigments): ratio of residual

reflectances (Rrs - class mean) at 555 nm to

443 nm

R555:443

Metric for within-class spectral variability

(accessory pigments): ratio of residual re-

flectances (Rrs - class mean) at 555 nm to

488 nm

R555:488

Sea surface height (absolute dynamic topog-

raphy)

SSH AVISO Level 4 reprocessed gridded sea surface

heights and derived variables (product suite

SEALEVEL GLO PHY L4

REP OBSERVATIONS 008 047),

marine.copernicus.eu, 0.25o x 0.25o regridded to 4 x

4 km

Sea surface slope ∇ SSH

Sea surface height anomaly SLA

Eastward component of the geostrophic cur-

rent

u

Northward component of the geostrophic

current

v

Eddy kinetic energy EKE

Eastward component of the surface wind

field

τE Quikscat and ASCAT Level 3 gridded wind fields,

podaac.jpl.nasa.gov, 25 x 25 km regridded to 4 x 4

kmNorthward compoent of the surface wind

field

τN

Wind stress curl ∇× τ

Water depth z ETOPO 1 arc-minute bathymetry regridded to 4 x 4

km (Amante & Eakins, 2009)

Indian Ocean Dipole index IOD Dipole mode index (Saji & Yamagata, 2003)

esrl.noaa.gov/psd/gcos wgsp/Timeseries/DMI

Madden Julian Oscillation index MJO Kilidas et al. (2014) esrl.noaa.gov/pas/mjo/mjoindex

Southern Oscillation Index SOI Ropelewski & Jones (1987)

esrl.noaa.gov/psd/data/20thC Rean/ time-

series/monthly/SOI

Surface partial pressure of CO2 pCO2 Level 2 OCO-2 physical model surface pCO2, release

9, GES DISC (Boesch et al., 2019)

Table 1: Optical, biological and physical remote sensing products used to explore optical

classes
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[FIGURE 3 HERE: SINGLE-COLUMN or 1.5 COLUMN; PLEASE QUOTE249

FOR COLOUR PRINTING COSTS]250

2.3. Impact of spatial and temporal compositing on optical classification251

As noted by Jackson et al. (2017, hereafter JSM), averaging of the re-252

motely sensed reflectance spectra from instantaneous, Level 2 (ca. 1 x 1253

km resolution) to Level 3 (ca. 4 x 4 km resolution, weekly or monthly)254

data incurs a risk of smoothing out phytoplankton dynamics associated with255

growth/decay/advection events that are short-lived, and it increases the dif-256

ference between any available in situ reflectance data used in characterising or257

evaluating optical classes from the already spatially-averaged remote sensing258

pixel values. Daily data may also be most appropriate for some management259

applications. However, cloud-cover and the reduced overpass rates at low260

latitudes make the use of daily data for capturing spatial patterns challeng-261

ing in this region. The impact of spectral aliasing (from averaging) on the262

classification was tested by creating classes firstly from all the Level 2 (L2)263

data for 2003, with no averaging or regridding. The resulting classes were264

compared against the same suite of classification procedures applied to the265

Level 3 (L3) monthly, 4 km gridded data for 2003 and against the hybrid266

classification scheme produced by JSM and Moore et al. (2001) who used in267

situ data.268

Both the L2 and L3 data were classified in three forms: Remote sensing269

reflectance (Rrs), Rrs with the mean 2003 Rrs subtracted (Rrs-Rrs2003)270

and Rrs normalized to 488 nm (Rrs/Rrs488). Training data were selected271

randomly in space and time from the study domain. For comparability with272

previous studies, three sizes of training dataset were used. The smallest273

14



dataset contained 42,000 pixels, corresponding approximately to the volume274

of data used by JSM for two of their study sites - they used two central275

Indian Ocean sites referenced to Longhurst (2007) provinces. Additional276

datasets of double and fifty times the original size were added to test for277

sensitivity of the classification scheme to dataset size. Each dataset was278

classified using the Matlab fcm function (Bezdek, 1981) with between 2 and 9279

classes and the weighting exponent m was varied between 1.05 and 2.0. Class280

separability and compactness were assessed using the partition coefficient281

(F) and compactness and separation index (S) as in Moore et al. (2001);282

Windham (1982); Xie & Beni (1991). In contrast to previous studies, all283

ten available MODIS visible wavebands were used in the fuzzy classification284

procedure.285

2.4. Interpretation of within-class spectral variability286

The use of ten wavebands for an optical classification allows limited explo-287

ration of within-class spectral variability, which may be related to pigmen-288

tation and size differences caused by change in phytoplankton community289

composition or physiology, differences in backscatter related to the viral,290

bacterial and phytoplankton communities, variability in the relative quanti-291

tites of coloured, dissolved organic matter or inorganic particulate matter,292

variability in the depth distributions of coloured materials and noise in the293

satellite signal (Kirk, 1994; Brown et al., 2008; Defoin-Platel & Chami, 2007;294

Alvain et al., 2005; Lain & Bernard, 2018; Brewin et al., 2011b). Having295

excluded water depths shallower than 200 m and in the absence of in situ296

validation data, the main focus here is on testing whether Rrs spectra varied297

uniformly with optical class. Residual reflectance ratios Rrs(555)/Rrs(443)298
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and Rrs(555)/Rrs(488) were calculated after subtracting the dominant class299

mean reflectance spectrum (Table 4) at each pixel, as indicators of spectral300

variability. In a full application of the fuzzy classification scheme (Moore et301

al., 2001), this step could be pre-empted by allowing multiple class member-302

ships at each pixel.303

304

2.5. Comparison against other classifications305

Class spectra produced in this study and by JSM were mapped to other306

interpretations for comparison. Firstly, the standard NASA OC3M-CI algo-307

rithms were applied to each central class spectrum to produce chl concentra-308

tion (O’Reilly et al., 1998; Hu, et al., 2012). This was passed to abundance-309

based algorithms for phytoplankton size class published by Brewin et al.310

(2010, Atlantic Ocean), Brewin et al. (2011a, global in situ data), Brewin et311

al. (2012, eastern Indian Ocean) and Devred et al. (2011) (North Atlantic312

and global in situ data; IOCCG, 2014). Chl was also used to select the313

closest stratified water trophic class from Uitz et al. (2006). For comparison314

against Alvain et al. (2005, 2008), every 10th Level 2 MODIS Rrs file from315

2003 was used to generate local PHYSAT-equivalent mean-chl spectra (39 chl316

divisions from 0.01 to 4.00 mgm−3 in intervals of ln(0.15); between 67016 and317

5488110 pixels per chl interval with a total of 64733448 pixels). These were318

subtracted from each mean optical class spectrum and the residual compared319

against the criteria provided by Alvain et al. (2008).320
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Name Weighting coefficient m Partition coefficient F Separation index S Source

N5 1.05 10 0.986 0.211 This study

N8 1.05 10 0.982 0.342 This study

JSM Unknown 6 Unknown Unknown Jackson et al.

(2017)

Table 2: Classification schemes used for further analysis. See supplementary online mate-

rial, Table S1, for full classification evaluation metrics.

2.6. Classification of the 17 year Level 3 dataset321

Following evaluation of the L2 and L3 classifications, a suite of three322

classification schemes was chosen and applied to 17 full years of MODIS-Aqua323

Level 3 Rrs version 2018.0 (Table 2). Water depths shallower than 200 m were324

excluded from analysis. This provided the framework for testing whether325

other remotely sensed parameters were well constrained by the optical classes.326

[TABLE 2 HERE]327

2.7. Relationship between colour class and biophysical parameters328

Summary statistics of remotely sensed biological and physical variables329

were produced to characterize each class in each of seven geographical do-330

mains (Figure 3): SCTR-W (10o to 5o S, 50o to 62o E), SCTR-E (10o to 5o
331

S, 63o to 75o E), SCTR-C (10o to 5o S, 76o to 88o E), Wiggert-N (7o to 2o
332

S, 60o to 85o E), Wiggert-S (12o to 7o S, 60o to 85o E), the MPA, z200 (the333

whole study domain at depths greater than 200 m) and z1000 (the whole334

study domain at depths greater than 1000 m).335

The potential of purely optical classifications as indicators of the pelagic336

growth environment was explored using within- and between-class statistics.337

Non-parametric analysis of variance was used to test whether the optical338

classifications reflected differences in each of the the biological and physical339
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variables (Kruskal-Wallis, applied to one variable at a time, assuming that340

underlying distributions of each variable within each class subset of each geo-341

graphical domain are the same, followed by post-hoc Tukey’s honestly signifi-342

cantly difference, HSD, tests between pairs of classes; Ruxton & Beauchamp,343

2008) for each of the geographical domains. The distinctiveness of smaller344

domains for which contrasting processes across zonal or meridional gradients345

have been discussed in the literature (SCTR-W,E,C; Wiggert-N, S Wiggert346

et al., 2006; George et al., 2018; Dilmahamod et al., 2016) was tested using347

permuted multivariate analysis of variance (PERMANOVA; Anderson, 2001,348

2017) on standardised variables (z-scores), with all fifteen biological and phys-349

ical variables. Anomaly time-series were used in addition to simple z-scores350

where clear seasonal cycles were present. Because of the large dataset sizes,351

100 subsets of 1000 pixels were selected randomly through time within each352

geographical domain for bootstrapped testing; pixels with missing data were353

excluded at each iteration. Domain was taken as the first, fixed, factor and354

class as the second, nested factor. Euclidean distance, correlation distance355

and squared correlation distance gave similar PERMANOVA hypothesis test356

results, whilst χ and χ2 results varied; euclidean distance and 1000 permuta-357

tions were used for all reported results (McCune & Grace, 2002; Anderson,358

2017; Pillar, 2013). The fathom Matlab toolbox was used for PERMANOVA359

tests (Jones, 2012). Mann-Kendall-Sen correlation coefficients (Sen, 1968;360

Hamed & Rao, 1998) were used to identify which biological and physical361

variables covaried within each class. Correlations were tested firstly using all362

data and secondly using bootstrapping to insure against spatial and temporal363

autocorrelation effects (100 random subsamples of 1000 pixels).364
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A full comparison of optical classes with OCO-2 pCO2 data was beyond365

the scope of this study - OCO-2 was launched in July, 2014, and the data366

therefore do not span the study period considered here. OCO-2 data are also367

lower in spatial and temporal coverage, although the recent launch of OCO-3368

will mitigate this. As a proof of concept, a single month of OCO-2 surface369

pCO2 data were matched to MODIS Level 2 optical classes for January 2015370

(same-day match-ups only), and between-class differences evaluated using371

Kruskal-Wallis and post-hoc HSD tests, for the z1000 study domain.372

Assuming that optical classifications do partition pixels dynamically in373

space and time according to the physical and biological variables that can374

be derived from remote sensing data, two additional tests were applied to375

establish whether conditions within pixels assigned to each class changed376

during the study period, and whether they are correlated with basin- and377

global-scale circulation patterns. Mann-Kendall-Sen trend tests were ap-378

plied in regressions of the class-averaged time-series of each remote sensing379

variable against climate indices that characterize the Indian Ocean Dipole380

(Dipole Mode Index, referred to hereafter as IOD; Saji & Yamagata, 2003),381

Madden-Julian Oscillation (MJO; Kilidas et al., 2014) and El Nino-Southern382

Oscillation, Southern Oscillation index (SOI; Ropelewski & Jones, 1987).383

The SOI was chosen because it represents variability in the Walker circula-384

tion, rather than directly in SST or combinations of variables. Habitat frag-385

mentation metrics were used to characterise the distribution of lower trophic386

level resources in the MPA, Wiggert-S and Wiggert-N domains to investigate387

whether changes related to climate patterns can be detected in the pelagic388

growth environment using available remote sensing data between 2002 and389
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2018. Patches of the same optical class were created using each month’s390

class map as a binary image, grouping adjacent pixels of like-class (Matlab391

bwconncomp) and finding the perimeter, patch centre and number of pix-392

els contained within each class patch (Matlab regionprops). Average patch393

area, distance between patches and patch density were calculated (Wang394

et al., 2014) for each month for temporal regression and regression against395

climate indices (Mann-Kendall-Sen test). Finally, correlations between the396

total area occupied by each optical class within each subdomain and climate397

indices were tested (Mann-Kendall-Sen trend test).398

To test whether optical classifications could form a useful basis for fish-399

eries management and enforcement, fishing catch and effort data from the400

Indian Ocean Tuna Commission were acquired at monthly temporal resolu-401

tion, in 1o and 5o grids (IOTC, 2020, 2014). The most common optical class402

was assigned to each of these coarse fisheries grid cells, matched by year and403

month, and between-class differences in catch, effort and catch per unit effort404

(CPUE) were evaluated (Kruskal-Wallis and post-hoc HSD). This compari-405

son was applied across the z1000 domain and within the IOTC data gridcells406

that contain the MPA as well as 15o x 15o and 25o x 25o domains centred407

on the MPA and the full z1000 area. Long-line fishing effort was reported in408

hooks, whereas surface fishery effort was reported in hours; the two datasets409

were analysed separately.410

All data analysis and visualisation was carried out using Matlab 2018a411

running under MacOS10.12.6.412
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3. Results & Discussion413

3.1. Comparison of classification results with Level 2 and Level 3 input data414

Classification results were similar for L2 and L3 data for the two smaller415

datasets, but classes were less compact when the largest dataset was used.416

Partition coefficients (F) remained above 0.9 for all three Rrs treatments417

with weighting coefficients 1.05, 1.1 and 1.2, but separation coefficient S418

increased from O0.15 to O0.3 as the number of classes, N, was increased419

from two to nine, and the best separability was obtained for 2 classes with420

all data treatments. Beyond N=8 classes, processing time increased signifi-421

cantly and F and S values were unstable between repeat runs, therefore no422

classification with 9 or more classes was pursued. Classification performance423

metrics (F and S) for all L2 and L3 classifications are provided in full in the424

Supplementary Online Material, Table S1, sheet ‘L2 L3 Classification F S’.425

Rrs treatment made little difference to F and S for Rrs and Rrs-(Rrs(2003))426

(<1% variability in performance metrics for m < 1.3), but separation index427

increased by a factor of 20 for Rrs/Rrs(488).428

Figure 4 shows the JSM classes and the L2 and L3 class spectra produced429

using Rrs with m = 1.05 and two to eight classes, and Table 3 shows the pro-430

portions of pixels mapped to each class, with N=5 and N=8 class schemes431

mapped to JSM classes using Euclidean distance between Rrs values at the432

six common wavebands. Fewer of the JSM classes were reproduced in L3433

classifications than in L2 classifications, with the extreme blue-water spectra434

(highest and lowest Rrs(412) values) lost in an N=8-class scheme (Table 3).435

Class spectra fell within or at the edges of the JSM classes, with most devi-436

ation in spectral shape (relative to the closest JSM class) in the blue:green437
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wavebands. Only one of the three JSM coastal water classes was found in438

the N=8 classifications produced here, and none with N=5.439

[FIGURE 4 HERE, SINGLE-COLUMN; COLOUR ONLINE ONLY]440

[TABLE 3 HERE]441

As a compromise between F and S metrics and representation of the JSM442

classes, and to enable direct comparison of results against similar studies,443

the 5- and 8-class schemes (henceforth N5 and N8) produced using m=1.05,444

42,000 training pixels and absolute Rrs spectra were used for further analy-445

sis, together with the 6-waveband JSM classification. These Level 2 and 3446

classifications for 2003 are summarized in Table 3 and the class spectra are447

given in Table 4.448

[TABLE 4 HERE]449

Mapping of the N5 and N8 classifications from Level 2 and Level 3 data450

to abundance-based and reflectance-based PFT algorithms is shown in Fig-451

ure 5. PFT algorithms consistently interpreted the lower-OC3-CI chl classes452

as being dominated by picoplankton, with the contribution of nano- and453

microplankton fractions increasing with increasing chl. Eutrophic-type dis-454

tributions, dominated by microplankton, were only produced in the N8 clas-455

sification, but this was the only difference between 5- and 8-class schemes.456

Since the proportion of pixels assigned to the 8th class was 0.3% (Table 3),457

the abundance-based PFT algorithms generally classify these optical classes458

as dominated by small cells. In contrast, switching from Level 2 to Level 3459

data produced more PHYSAT-type spectra that fell into the pseudo-diatom460

class (similar spectral shape to PHYSAT-diatom, but higher Rrs values).461

The N5 and N8 schemes correspond to JSM classes between 1 and 9, and462
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Class Level 2 % pixels assigned to each class Level 3 % pixels assigned to each class

N5 N8 JSM N5 N8 JSM

1 5.7 1.9 0.5

2 10.7 6.7 11.9 8.1 5.6

3 14.8 14.6 14.0 13.2

4 24.7 19.7 18.0 20.9 16.3 17.2

5 28.0 20.9 16.6 24.7 17.7 17.2

6 18.5 13.4 14.8 12.9

7 23.9 9.7 19.7 10.9 8.3

8 14.0 7.7 6.0

9 12.8 4.6 12.0 6.0 3.5

10 6.3 3.6 2.3

11 2.6 0.8

12 0.3 0.3

13 0.3 0.2 0.3 0.2

14 0.1 0.1

Table 3: Total number of Level 2 and Level 3 dominant classes mapped to each fuzzy

cluster in the 10-waveband classifications (5 classes and 8 classes, N5, N8) and in the

Jackson-Moore 6-waveband classification. The 10-waveband classes are mapped to the

JSM classification by Euclidean distance (Figure 4).
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Classification Rrs(412) Rrs(443) Rrs(469) Rrs(488) Rrs(531) Rrs(547) Rrs(555) Rrs(645) Rrs(667) Rrs(678)

/ class no. x1000 x1000 x1000 x1000 x1000 x1000 x1000 x1000 x1000 x1000

N5: 1 15.032 11.065 9.366 7.298 2.621 1.929 1.535 0.009 0.204 0.256

N5:2 12.186 9.035 7.988 6.455 2.523 1.857 1.489 0.076 0.197 0.248

N5:3 9.620 7.332 6.782 5.672 2.447 1.814 1.458 0.059 0.191 0.247

N5:4 6.974 5.602 5.482 4.787 2.388 1.807 1.468 0.058 0.196 0.262

N5:5 3.961 3.476 3.748 3.480 2.215 1.768 1.474 0.085 0.224 0.324

N8:1 15.530 11.400 9.556 7.381 2.558 1.861 1.467 0.077 0.183 0.236

N8:2 13.131 9.683 8.426 6.718 2.519 1.842 1.469 0.070 0.189 0.241

N8:3 11.193 8.355 7.507 6.138 2.462 1.808 1.445 0.057 0.184 0.236

N8:4 9.375 7.166 6.656 5.583 2.418 1.787 1.433 0.048 0.183 0.241

N8:5 7.500 5.948 5.743 4.965 2.375 1.778 1.435 0.045 0.186 0.250

N8:6 5.514 4.593 4.680 4.196 2.313 1.779 1.457 0.054 0.195 0.271

N8:7 3.184 2.913 3.268 3.103 2.146 1.746 1.467 0.096 0.236 0.348

N8:8 7.662 9.253 11.578 12.541 14.101 14.027 13.220 4.781 3.947 3.880

Table 4: Class Rrs spectra for the N5 and N8 classifications produced in this study using

Level 3 data.

with a finer gradation of Rrs spectra corresponding to 0.03 to 0.5 mgm−3, the463

JSM classes include more scope for identifying mixed size-class waters with464

the PFT algorithms included here. The PHYSAT classification was designed465

to identify cases in which a single PFT dominates water colour and, corre-466

spondingly, not all classes could be mapped to a PHYSAT class (Figure 5).467

Of those that did, Synechococcus-like cyanobacteria was the most common468

designation (3 classes at Level 2, N5; 4 classes at Level 2, N8; 1 class at Level469

3, N5 and JSM and 2 classes at Level 3, N8).470

[FIGURE 5 HERE: SINGLE-COLUMN; ONLINE COLOUR ONLY]471

Class maps for every second month of 2003 (Figure 6) show more frag-472

mented spatial distribution of classes in the L2 data, corresponding to the473

higher spatial resolution of the data and higher spectral separability. Broader474

spatial patterns (O1000 km) are consistent between all classifications and in-475

clude a limited seasonal north to south shift in class, distinction of coastal,476

Somali Current and Arabian Sea waters from the central domain and coher-477
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ent and elongated patches of higher class (4-5 in the N5 classification) waters478

in the central Indian Ocean, often enveloping the Chagos MPA. These zonal479

bands are more evident in Figure 7, which summarises class diversity at each480

pixel, as corresponding to the seasonally-varying SCTR, SEC and SECC481

domains. Figure 8 shows a subset of the remote sensing climatologies, for482

comparison.483

[FIGURE 6, 7, 8 CLOSE TO HERE: SINGLE-COLUMN or 1.5 COL-484

UMN; PLEASE QUOTE FOR COLOUR PRINTING]485

Whether or not the smaller features correspond to ecologically meaning-486

ful variations in the microbial biome or carbon cycling can only be answered487

definitively with in situ data. The microscopy stations lay within classes 3488

and 4, and a significant difference in phytoplankton biovolume was confirmed489

(class 3 mean biovolume = 8.1x105 ± 2.6x105 µm3l−1, N=3; class 4 mean490

biovolume = 2.3x106 ± 8.4x105 µm3l−1, N=9; Kruskal Wallis p = 0.0126).491

There was also an order of magnitude difference in the ratio between phyto-492

plankton and zooplankton biovolume (Schwarz, 2020). In the absence of a493

larger in situ dataset with which to evaluate the full classification, comparison494

between these classifications and previous studies is helpful. In spatial and495

temporal variability, these optical classifications are most similar to previous496

studies that use Rrs or radiance, as expected, and to some of the mesopelagic497

biogeographies. The degree of patchiness is consistent with examples given498

by JSM, and the classes assigned to the SCTR in their example of July 2004499

are in direct agreement with the N5 classification produced here (JSM classes500

7/8, based on 6 wavebands, correspond to N5 class 4, based on 10 wavebands;501

Table 3). A similar degree of patchiness is reported by Oliver & Irwin (2008)502
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using nLw412, nLw551 and SST, and their approach, allowing the number503

of classes to emerge from the data, assigned up to ten classes over the TIO,504

which supports the richer N8 or JSM (N=14) classifications tested here in505

terms of spectral separability. George et al. (2013) reported multiple patches506

of elevated chl extending some 200 km along 67o E in the SCTR, as well as507

suppression of surface chl by eddies further south. In contrast, classifications508

that used chl as the only ocean colour variable, together with other physical509

drivers, have been less spatially diverse (e.g. Longhurst, 2007; Spalding et510

al., 2012; Reygondeau et al., 2013; Fay & McKinley, 2014; Sayre et al., 2017,511

surface zone) and do not distinguish the SEC or SCTR domains clearly.512

Mesopelagic classifications using a range of approaches including derived513

ocean colour variables, acoustic data, World Ocean Atlas data and species514

abundance mostly do distinguish the SCTR and SEC zones (Proud et al.,515

2017; Sutton et al., 2017; Sutton & Beckley, 2017; Sayre et al., 2017, 200 to516

800 m zones) although in some cases the distinction between coastal influ-517

ences and SEC/SCTR features is unclear (Costello et al., 2017; Reygondeau518

et al., 2018). Differences in the spatial richness of mixed-input epipelagic519

classifications relate partly to the scales and methods used, but may also520

reflect subtle changes in the growth environment that are related to phyto-521

plankton community composition that are not detected in the chl algorithms,522

or to chl variability being outweighed in a classification by the contribution523

of SST, producing spatially coarser structures because of dynamics that have524

no surface signature in SST (e.g. Santoso et al., 2010; Drushka et al., 2012;525

Strutton et al., 2015), or both. Previous analysis of phytoplankton bloom526

dynamics in the TIO, based on satellite-derived chl and biogeochemical mod-527
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elling, suggested a summer bloom spanning the full breadth of the basin at528

SEC latitudes, but no winter bloom (Levy et al., 2007), and the modelled529

emergent biogeography of Follows & Dutkiewicz (2011) predicted a band530

of Prochlorococcus analogs and low species richness in this region which is531

consistent with the PFT algorithm interpretation of classes 1 to 3 with N5.532

However, Wiggert et al. (2006) predict larger phytoplankton cells between533

January and May in the deep chlorophyll maximum in the SCTR and Jeffries534

et al. (2015) found eukaryotes contributed >10% to relative cell abundance535

at a deep water site within the Chagos MPA. Similarly, Thorrington-Smith536

(1971) found diatom and dinoflagellite communities in water samples from537

100 m depth across the western TIO - a signal that is consistent with the538

higher-chl PFT interpretations of classes 5 (N5) and 6-8 (N8) which could be539

expected to be detected in satellite data in zones of strong vertical mixing,540

such as the tropical gyre boundaries.541

The loss, at L3, of classes representing high and very low chl values,542

may be important for monitoring carbon export and ecosystem resources and543

Duarte et al. (2013) suggested that a chlorophyll concentration of 0.44 mgm−3
544

represents a transition between heterotrophic and autotrophic communities.545

Application of the Duarte et al. (2013) threshold to L3 chl values in this area546

is consistent with Fernandes et al. (2008), who reported net heterotrophic547

production between 1o N and 5o S at 83o E, but the appearance of higher548

ranges in L2 data, the prevalence of higher classes for most of the year and549

the paucity of in situ data for the pelagic MPA domain area renders this550

use of the classification results uncertain. Level 2 data classifications are551

therefore potentially valuable for modelling and monitoring tasks (Tweddle552
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et al., 2018), despite the low daily spatial coverage. For the purposes of553

exploring spatiotemporal variability over the MPA and wider TIO domain,554

Level 3 classifications are explored further.555

3.2. Are biological and physical variables distinct for each optical class ?556

The class-specific ranges of remote sensing variables are summarised for557

the MPA and z1000 domains in Figure 9 and Appendix 1. The N5 optical558

classification constrained all variables most effectively. For the MPA, only sea559

surface height (classes 4 and 5), eddy kinetic energy (classes 3 and 5) and the560

R443:R555 reflectance ratio (classes 1 and 5) were ambiguous (Kruskal-Wallis561

with post-hoc HSD tests, p<0.01, N>10000). Increasing class number in the562

MPA was associated with increasing chl, FLH, ∇SSH, u, τN and depth, and563

with decreasing FLH:chl ratio, SST, SSH, v and τE. Westerly and northerly564

currents, and westerly wind stress, associated with SWM wind reversals, were565

associated with class 1 only (lowest chl).566

[FIGURE 9 HERE; SINGLE-COLUMN; COLOUR ONLINE ONLY]567

Greater between-class ambiguity in optical and physical variables was568

found with N8 and JSM, both of which included sparse classes (N<10000).569

For N8, class 8, representing OC3M-CI chl = 2.39 mgm−3, was always sparse570

and class 7 (chl = 0.46 mgm−3) was sparse in the SCTR-E and -C domains.571

Similarly, JSM classes 10 to 14, representing chl > 0.62 mgm−3, were al-572

ways sparse or empty, and class 9 (chl = 0.47 mgm−3) was sparse in all the573

sub-domains except z1000 and SCTR-W. Between-class variability was not574

significant in the MPA for the majority of physical variables in N8 and JSM575

(SSH, EKE, u, v, τ , ∇× τ) or for FLH, but chl and the residual reflectance576

ratios were significantly different in all 8 classes. This could be interpreted as577
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a smaller number of physically-distinct conditions hosting a larger number578

of optically distinct conditions, consistent with growth, decay and succes-579

sion occuring within each physical ’province’ over the averaging period of 1580

month. In JSM, only 8 classes were well-populated (No. pixels > 10000) and581

all variables except ∇ × τ were ambiguous for two or more classes. In the582

wider z1000 domain, between-class variability was significant for most vari-583

ables in each of the classifications (exceptions were N5: SST for classes 2 and584

3; N8: ∇SSH for classes 4 and 7, u for classes 6 and 7; JSM: SST for classes585

1 and 8, v for classes 7 and 8 and τE for classes 1 and 2), reflecting the much586

greater size of this dataset. In this wider domain, the tendency of windstress587

variables with increasing class number was reversed so that increasing class588

and chl were associated with increasing τE and decreasing τN .589

All between-class test results are given in Supplementary Online Mate-590

rial Table S1, sheet ‘Variable Ranges by Class’. The optical classifications do591

correspond to distinct ranges of biotic and abiotic variables, suggesting their592

potential value in providing a useful diagnostic for management and mod-593

elling applications. Five optical classes produces least ambiguity in physical594

variables, although significant residual ocean colour differences are detected595

in up to 7 classes. However, the biophysical relationships vary within the596

wider domain, as may be expected from the known oceanographic processes597

in the region, suggesting that the use of optical classes may be most appro-598

priate within a heirarchical scheme (c.f. Kavanaugh et al., 2014; Oliver et al.,599

2004; Oliver & Irwin, 2008). Exploration of between-class variability within600

different sub-domains is addressed in the next section.601

To test whether seasonal variability in winds and associated mixing and602
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entrainment (Halkides & Lee, 2011; Wiggert et al., 2006) produces between-603

class ambiguity, Kruskal-Wallis tests were applied to the MPA data for each604

month (Online Supplementary Figures S2, S3; Tables S2, S3). Seasonal wind605

stress reversals were detected with the annual average conditions (negative606

τE decreasing with increasing class number) found during austral winter and607

the opposite trend (positive τE increasing with increasing class number) dur-608

ing austral summer (Figure S2).The winter months were significantly differ-609

ent at α=0.01 for classes 3, 4 and 5 (higher chl), whereas austral summer610

months were distinct in classes 2 and 4, and τN trends generally mirrored τE611

trends. Less pronounced seasonal reversals were found for u, v and ∇SSH.612

One heirarchical partitioning approach could therefore be to use the optical613

classifications with a monthly or seasonal interpretation to constrain vari-614

ability in the epipelagic growth environment, but a more objective approach615

using the physical variables at higher levels of the heirarchy avoids the need616

to assume a regular seasonal cycle. In either case, the correspondence be-617

tween optical class and biotic environmental conditions needs to be explored618

using in situ biogeochemical data if the optical classification is to be used to619

deduce ecological function.620

3.3. Do optical classifications capture zonal or meridional differences around621

the Chagos MPA?622

Between-class variability in remotely sensed variables for each of the sub-623

domains is shown in Figure 10. Most remotely sensed variables tended to624

increase or decrease monotonically with increasing optical class number, and625

spatially segmenting the dataset had little effect on these tendencies. Of the626

three SCTR domains, the westernmost area had the lowest SST values in627
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all classes, as well as lower SST and higher τN in the highest-chl class 5.628

The central TIO domain, SCTR-C, which is the easternmost of the three,629

had the highest SST and EKE values and much lower nFLH:chl values in630

all classes. Stronger contrasts were evident between the Wiggert-N and -S631

domains. nFLH, v, τN and nFLH:chl were lower in the northern than the632

southern domain in some or all classes, whilst SST, ∇SSH, EKE, u and633

τE were higher. Whereas the depth-resolved modelling studies of George et634

al. (2018) and Dilmahamod et al. (2016) suggested east-west gradients in635

biophysical mechanisms operating across the SCTR, sub-domains SCTR-E,-636

W and -C could not be distinguished in the surface remote sensing variables637

studied here (PERMANOVA, p > 0.1, N > 691x100; Table ??), although the638

optical classes were significantly different in all domains and classifications639

(p < 0.005, N > 692x100). In contrast, differences were detected between640

classes and domains for the north-south division discussed by Wiggert et al.641

(2006) (p < 0.037, N > 692; Table 5). Excluding the shelf slope depths642

between 200 and 1000 m had no impact on class ambiguities in any variable643

(Figure 10).644

[FIGURE 10 HERE; SINGLE-COLUMN; ONLINE COLOUR ONLY]645

[TABLE 5 HERE]646

Correlations between physical and biological variables within each class647

and domain are shown in Figure 8. Chl was negatively correlated with SST in648

all but the z200/z1000 domains. In the MPA, increasing SST was associated649

with lower EKE and τN and with higher v, τE and ∇ × τ in the lowest-chl650

class (class 1) only, with the reverse relationships found in classes 2 to 5. The651

lower chl class 1 is therefore associated with conditions in which τE and ∇×τ652
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Table 5: Results of PERMANOVA tests for differences between regions. a) Fixed factor

1 is location in the western or eastern SCTR or adjacent central Indian Ocean domain;

nested factor 2 is optical class. All 15 remotely sensed variables were included in the test

as z-scores. Average values are from 100 random draws of 1000 data points from each

domain, time-matched. Pixels with any missing data were excluded, yielding residual

degrees of freedom between 600 and 800 (denoted ’Resid’). p-values were calculated using

999 permutations. b) Fixed factor 1 is location in the northern or southern central Indian

Ocean sectors; other details as for a).
a) Seychelles-Chagos Thermocline Ridge W / E / C (George et al., 2018)

Factor df F p p range

N5 F1: Domain 2 1.096 0.406 0.104 to 0.847

F2: Class 10.9 (10-12) 15.066 0.0012 0.001 to 0.006

Resid: [691-766]

N8 F1: Domain 2 1.256 0.271 0.048 to 0.700

F2: Class 15.8 (14-18) 13.785 0.001 0.001 to 0.003

Resid: [703-765]

JSM F1: Domain 2 1.515 0.142 0.015 to 0.424

F2: Class 18.3 (16-22) 12.825 0.001 0.001 to 0.001

Resid: [688-771]

b) Central tropical Indian Ocean N / S (Wiggert et al., 2006)

Factor df F p p range

N5 F1: Domain 1 3.420 0.0093 0.001 to 0.037

F2: Class 7.4 (6-8) 20.871 0.0011 0.001 to 0.005

Resid: [692-755]

N8 F1: Domain 1 4.030 0.003 0.001 to 0.014

F2: Class 10.2 (9-11) 18.127 0.001 0.001 to 0.001

Resid: [708-775]

JSM F1: Domain 1 4.415 0.0023 0.001 to 0.013

F2: Class 12.1 (10-15) 16.044 0.001 0.001 to 0.001

Resid: [692-755]
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do not correspond to surface cooling and the northward geostrophic current653

component is positive. Chl and nFLH were positively correlated everywhere654

except in class 1 (lowest chl) in the MPA, SCTR-C and Wiggert-N,S areas.655

Higher nFLH:chl ratios were associated with lower τE, ∇×τ , u, EKE, ∇SSH,656

SSH and SST in the MPA class 5, and to a lesser extent for classes 3 and 4,657

suggesting the importance of the tropical gyre strength for surface chl. These658

relationships are similar, but less pronounced, in the SCTR-W, Wiggert-N659

and Wiggert-S domains, and in z1000 classes 3 and 4. Assuming relative660

homogeneity of the phytoplankton community within a given optical class,661

nFLH:chl can be interpreted as a proxy for relatively high iron limitation662

(as opposed to other limiting factors, Behrenfeld et al., 2009). Although663

Chinni et al. (2019) and Wiggert et al. (2006) suggest Fe-limitation in some664

seasons within and north of the SCTR, George et al. (2013) reported that665

the deep chlorophyll maximum (DCM) followed the nitricline and did not666

measure iron concentrations, so the interpretation of nFLH:chl requires more667

in situ data in this region. SLA, which is related to westward-propagating,668

downwelling Rossby waves in the SCTR (George et al., 2018), decreased669

with increasing optical class and was negatively correlated with chl in at670

least 4 classes in all domains, including z1000 (Figure 11). The use of class-671

specific correlations across different sub-domains captured other contrasts in672

physical relationships, such as a switch from positive to negative coupling673

between u and EKE in MPA class 1, SCTR-W classes 1,2,3 and 5; SCTR-C674

classes 1 and 2; Wiggert-N class 1, whilst the relationship was negative for675

all classes in Wiggert-S, suggesting dominance of the westward SEC in the676

southern domain and more varied interactions in the northern SCTR (e.g.677
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mesoscale and fine-scale processes, George et al., 2013; Hosegood et al., 2019).678

For all domains, the greatest between-class differences were found between679

classes [1,2] and classes [3,4,5], suggesting that the different physical processes680

driving the growth environment can be distinguished by the chl 0.08 mgm3
681

isoline (Figure 5). Biophysical coupling in the Chagos MPA was most similar682

to that in the Wiggert-S domain (Figure 10; Supplementary Material Table683

1, sheet ‘Variable Ranges by Class’).684

[FIGURE 11 HERE; SINGLE-COLUMN; COLOUR ONLINE ONLY]685

3.4. Modelling applications of optical partitioning686

Assessment of the global carbon cycle and sequestration of anthropogenic687

CO2 emissions underpins the Paris Agreement (UN, 2015). The oceanic bio-688

geochemical models used for global carbon cycle assessment remain fairly689

simplistic and uncertainties are high (Lim & Kug, 2017; Le Quéré et al., 2013,690

2018; Gruber et al., 2019); increasing the complexity of ecosystem dynamics691

in models without rendering them unstable is challenging (Anderson, 2005)692

and different approaches are still being developed (e.g. Hense et al., 2017;693

Wanninkhof et al., 2013). Optical classes offer an empirical contstraint on694

ecosystem models and provide a dynamic framework for aggregating model695

outputs and assessing model skill, for example in the prediction of CO2 up-696

take or sequestration rates. The preliminary comparison of pCO2 between697

optical classes supports both of these applications (Figure 12). Between-698

class differences in surface partial pressure of CO2 were significant (p < 0.01,699

N > 13,000) for all N5 classes. pCO2 distributions were mostly bi-modal,700

reflecting a background latitudinal gradient in class (increasing class num-701

ber, reflecting increasing chl, to the north) with patches of higher classes to702
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the south. The average pCO2 value decreased slightly with increasing class703

number (416±49, 418±48, 404±44, 406±48, 398±48 ppm), in contrast with704

Nagelkerken et al. (2015) who reported no simple relationship between pri-705

mary production and CO2 uptake in this area. Between-class differences in706

this study were within the version 8 OCO-2 model error for XCO2 , but uncer-707

tainties in the profile retrieval are not specified (O’Dell et al., 2018). Because708

of these uncertainties, the scope of this comparison and because too few data709

were available to test between-area differences, a more complete comparison710

is reserved for a future study.711

[FIGURE 12 HERE; TWO-COLUMN; COLOUR ONLINE ONLY]712

In a fully-realised fuzzy optical classification, multiple colour class mem-713

berships enable mixed phytoplankton communities (or mixed water types)714

to be represented and this has been shown to be useful in enhancing the in-715

terpretation of ocean colour data as well as constraining chl algorithm errors716

(e.g. Moore et al., 2001, 2009). Better remote sensing information about the717

ocean surface microbial community feeds into the Conservation on Biodi-718

versity as well as monitoring and understanding the ecosystem services they719

provide (CBD, 2010; Tweddle et al., 2018; Roberts et al., 2017). In this study,720

the Rrs class residuals did not show promise for identifying details of phyto-721

plankton community composition, but ensemble class biophysical agreement722

suggests that ecosystem function may be constrained by optical class.723

3.5. Management and conservation applications of optical partitioning724

Information is lost when Rrs spectra are partitioned into discrete classes,725

rather than applying an algorithm to produce a continuous biological variable726

such as chl, but a distinct advantage of this is the possibility of using habitat727
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fragmentation metrics on the class maps. Fragmentation metrics applied to728

the N5 class maps are shown in Figure 13 for the MPA and the Wiggert-729

N and -S domains. The lower-chl classes 1 and 2 behaved differently in730

the three domains: Class 1 patches were of order 5000 km2 and generally731

largest to the south, where they were separated by ca. 200 km. In the732

MPA, between-patch distances were shorter and stable through time, whereas733

they fluctuated between 20 and 100 km to the south. The 2011 La Nina734

period coincided with particularly high separation distances in Wiggert-N735

(separation ca. 500 km) and with high patch sizes in Wiggert-S (areas up to736

ca. 15 000 km2; Figure 13). In contrast, class 2 patches were larger overall737

(O20 000 km2) with higher values to the north, and a maximum coinciding738

with the 2015 El Nino (mean patch size ca. 50 000 km2). Class 2 patch739

separation distances fluctuated in Wiggert-N as for class 1 but with a lower740

range (20 to 70 km). The 2015 El Nino coincided with the highest class 2741

patch sizes in Wiggert-N (up to ca. 50 000 km2). Classes 1 and 2 represent742

clear, warm water, which is a foraging habitat used by seabirds preying on743

flying fish and squid, often in association with subsurface predators (e.g.744

Weimerskirch et al., 2005; Catry et al., 2009b; Le Corre et al., 2012). The745

absence of seasonal cycles in the fragmentation metrics for these classes is746

marked: Prey occurence, driven by cetaceans and tuna, is stochastic, but747

patches of similar foraging conditions are predictable at the monthly scales748

used here, with patch separations that are within the known range of some749

seabirds (Weimerskirch et al., 2007; Nel et al., 2001; Pinaud & Weimerskirch,750

2007).751

[FIGURE 13 HERE: SIGNLE-COLUMN; BLACK AND WHITE]752
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Patch sizes were smaller in the higher-chl classes 3 and 4 (mostly within753

5000 km2), with separation distances between 20 and 200 km and marked754

seasonality. For classes 1 to 4 the MPA clearly straddles the Wiggert-N755

and Wiggert-S conditions, potentially providing stability of resource within756

foraging range in the event of extreme (Nino/Nina/IOD) conditions. The757

highest-chl class 5 was not always present (Figure 13e, j, o) and represents the758

smallest but most intense resource patches (10 to 300 km2 in size), separated759

by 20 to 100 km in the MPA, 40 to 300 km in Wiggert-S and 20 to 1000760

km in Wiggert-N. Scott et al. (2010) and Trevail et al. (2019) highlight the761

importance of fine spatial and temporal scales in prey resource; Level 2 (ca.762

daily, 1 km) or higher spatial resolution data are therefore also of interest.763

Class 5 patches were largest within the MPA domain up to 2014, after764

which increasingly large class 5 patches appear in Wiggert-N (Figure 13j).765

However, the time-series is too short to confirm whether this is a robust766

trend. Significant temporal trends in fragmentation metrics were only found767

for fragmentation distance in the MPA, where the average distance between768

class 2 patches increased over the study period, whilst the distance between769

class 3 patches decreased (p < 0.05, N = 204). There is evidence of a shift in770

the spatial distribution of resources over the study period, but without loss771

of any of the colour classes, suggesting that the range of niches that seabirds772

exploit has been maintained across the Wiggert-N and -S domains (Waugh &773

Weimerskirch, 2003; Catry et al., 2009a; Le Corre et al., 2012). In this study,774

water depths shallower than 200 m were excluded to avoid land adjacency775

and bottom reflectance effects, so the MPA domain metrics do not include776

the near-shore and lagoon waters which may augment class 5.777
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Although mesopelagic biomes have been shown to reflect the spatial dis-778

tribution of primary production (Proud et al., 2017), the only direct link779

between optical classes and large, commercially-fished species that could be780

expected is through water clarity for foraging. To test whether optical classes781

could provide useful fisheries management information, class maps were com-782

pared against fisheries records. The Chagos MPA has been a no-take zone783

since it was established in 2010, and IOTC fishing records amalgamated over784

the study period (2002 to 2018) are correspondingly lower in waters imme-785

diately adjacent to the MPA and increase further away (Table 6). However,786

284 surface fishery records and 43 longline records were reported after 2010787

in the IOTC gridcells that contain the MPA (-2.3 to -10.8oS, 67.9 to 79.4oE).788

Figure 14 shows the distribution of average effort, catch and CPUE at in-789

creasing distances from the MPA for the surface and longline fisheries. In790

the wider domain (z1000), surface fishery catch and CPUE mostly increased791

with increasing N5 class, as expected (e.g. Solanki et al., 2015, 2017; Mo-792

hamed et al., 2018), with significant between-class differences between low-793

and high-chl waters (Kruskal-Wallis, p < 0.01), and effort focussed in class 5794

waters. Longline fishery effort and catch were highest in class 3, and although795

a trend for increasing CPUE with increasing class was apparent, it was not796

statistically significant. Few significant between-class differences were found797

in the MPA, but CPUE was highest in class 4, whereas effort was decreased798

from class 2 to 4 (Figure 14d, f). These patterns reflect reported catches, but799

may be used to infer behaviours of illegal fisheries and so target monitoring800

resources. This management application of the optical classification is easy801

to apply using L2 data, but is limited by cloud cover and ca. 1 day data802
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Table 6: Number of fishing records submitted to the IOTC within the 1o and 5o IOTC

gridcells that contain the MPA, then incrementally as boxes of 3 x 3 and 5 x 5 of the

5o IOTC gridcells are added around the MPA area, and finally for entire z1000 domain.

LL=long-line fisheries; Surf=surface fisheries; + denotes an increment from the MPA

number and Total is the number of records reported within the full z1000 domain.
N5 class MPA 3x3 x5o 5x5 x5o z1000 Total

LL Surf LL Surf LL Surf LL Surf LL Surf

1 0 73 +15 +131 +84 +254 +792 +948 891 1406

2 14 588 +527 +1375 +650 +2821 +1691 +12078 3152 16862

3 23 668 +648 +1381 +1681 +4674 +3264 +20870 5616 27593

4 6 82 +63 +178 +701 +1665 +2614 +20746 3384 22671

5 0 0 0 0 +25 +100 +1266 +11457 1291 11557

latency.803

[TABLE 6 ROUGHLY HERE]804

Knowledge of fishing behaviours is also relevant to MPA design and, po-805

tentially, to the use of dynamic MPA designations. Dynamic protection806

boundaries serve as a compromise between static MPA boundaries, which807

protect relatively small areas of rare or valuable habitat (e.g. Oppel et al.,808

2018; Heerah et al., 2019; Handley et al., 2020; Williamson et al., 2019), and809

the very large foraging domains that are intractable to static protection but810

where seabirds, cetaceans and large predatory fishes such as tuna are known811

to colocate in the tropical Indian Ocean (Anderson, 2014; Letessier et al.,812

2017, 2019; Pinheiro et al., 2019; Hobday et al., 2010).813

[FIGURE 14 ROUGHLY HERE: 1-COLUMN or 1.5-COLUMN; COLOUR814

ONLINE ONLY]815

3.6. Are there class-specific temporal trends in biological/physical variables?816

All conservation and management efforts must consider temporal variabil-817

ity and the possible impacts of climate change (IPCC, 2013). The 17-year818
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study period used here is sufficient to characterise temporal variability but819

not to detect long-term change in this region (Henson et al., 2016). However,820

where biophysical conditions are coupled to large-scale climate indices for821

which robust, long-term time-series are available, the patterns observed can822

be extrapolated backwards and, with modelling, forward in time.823

Time-series of selected variables are shown in Figure 15 for the MPA and824

Figure S4 for the Wiggert-S domain. A weak tendency for increased chl825

values in the austral winter was observed, but with no clear seasonal cycle826

either for the MPA as a whole or within a given class. This is consistent with827

removal of seasonality by class-switching (c.f. Figure 6). The class 4 and828

5 chl values overlapped (Figure 15a), with class 4 representing an elevated829

background level of chl compared with classes 1 to 3, superimposed with830

stochastic, higher chl events in class 5, which often coincided with increases831

in nFLH. The strongest chl peak, in 2011, coincided with higher ∇SSH and a832

protracted period of positive SOI index (Nina conditions). Higher nFLH:Chl833

ratios and SSH values were evident for class 1 in both the MPA and Wiggert-S834

domains, as were lower SST values for class 5. Class 5 chl peaks in the MPA835

were not synchronised (or time-lagged, judging by visual inspection) with836

those in the Wiggert-S domain, suggesting small-scale, rather than basin-837

wide processes are being captured, despite the use of composited Level 3838

data. Significant trends are not shown on Figures 15 and S4, for clarity, but839

are summarised in Figure 16a. Chl, nFLH and nFLH:Chl decreased over the840

study period in most classes and most sub-domains (when appraised using841

both absolute values and with anomaly time-series). For chl, the rate of842

change was between -7.5 x10−6 and -1.2 x10−4 mgm−3a−1 (up to 0.025%a−1
843
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in the MPA and 0.055%a−1 in z1000, compared with decreases of 0.7%a−1
844

reported by Gregg et al., 2017, for the Indian Ocean).845

Of the abiotic variables, significant trends in all five N5 classes were only846

found for the MPA, z1000 and Wiggert-N domains, with weaker positive847

trends in some areas (domain-integrated) and classes for SST, ∇SSH, u and848

v, and a positive trend in ∇ × τ in Wiggert-S only. Full temporal trend849

results, including 95% confidence intervals on the rates of change, are given850

in Table S1, sheet ‘Trends Correlations’.851

[FIGURE 15 ROUGHLY HERE: SINGLE-COLUMN; PLEASE QUOTE852

FOR COLOUR PRINTING]853

[FIGURE 16 ROUGHLY HERE: 1.5 OR SINGLE-COLUMN; PLEASE854

QUOTE FOR COLOUR PRINTING]855

No significant correlations were found between the MJO and remotely856

sensed variables, consistent with the brief residence of MJO events over the857

TIO as well as the short time-scales of response of chl to MJO events which858

precludes detection of MJO effects in this Level 3 data analysis (order of859

days to weeks; Vialard et al., 2009; Jin et al., 2012; Wheeler & Hendon,860

2004). Surface cooling and enhanced surface primary production have been861

documented in response to the MJO (Vialard et al., 2009; Resplandy et al.,862

2009, Supplementary material Figure S5), making the use of higher temporal863

resolution data desirable where coverage allows. The monthly-averaged MJO864

index was not correlated with the IOD or SOI indices over the study period.865

However, a weak, negative correlation was found between the IOD and SOI866

(SOI = -0.39 IOD + 0.27; n=202, p = 0.084), in contrast to the decoupling of867

these cycles found using EOF analysis by Saji et al. (1999). Fragmentation868
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metrics for N5 class 3 were related to the SOI (negative relationship for patch869

density; positive relationship for patch area) and IOD (positive relationship870

for patch density only). No relationships between fragmentation metrics871

and any climate index were found for the Wiggert-S domain, whereas for872

Wiggert-N, patch density increased with increasing IOD for classes 1 and873

3, and decreased with increasing IOD for classes 4 and 5. Similarly, patch874

area increased with increasing IOD for classes 1 and 2 and decreased for875

classes 3 and 4. Fewer significant relationships were found with the SOI, but876

they mirrored the IOD relationships, consistent with a negative relationship877

between the two climate indices. These results suggest that within the MPA,878

if the frequency of Nino events increases as predicted, incurring more negative879

SOI conditions, the higher chl N5 classes 3 and 4 will yield to larger and more880

closely spaced patches of lower N5 class 1. If positive IOD events increase881

in frequency, fewer, smaller N5 class 4 and 5 patches separated by greater882

distances are predicted. The observed North-South diversity in epipelagic883

conditions and temporal trends may contribute to resilience of reefs and884

mobile species in the MPA. However, only surface effects are characterised885

and, in this study, processes lasting days to weeks, such as MJO events and886

cyclones that have an impact on vertical mixing (Jin et al., 2012; Webster et887

al., 2005), may be averaged out.888

Positive IOD events are associated with elevated SST in the western TIO889

as the easterly wind driving the SEC converges further west (Saji et al.,890

1999). Domain-specific correlations between IOD and SST (Table 16) were891

in agreement, with positive correlations in all but the SCTR-C (eastern-most)892

domain. Positive relationships were also found for SSH, τN and nFLH:chl,893
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whilst negative relationships were found with Chl, FLH, R555:488, EKE and894

τE. Mostly positive, class-specific relationships only were found for ∇SST,895

suggesting stronger gradients at the sub-domain spatial scale which can not896

be explained by the regressions undertaken here as the spatially coarse altime-897

try products used to calculate ∇SSH and EKE, which might indicate small-898

scale processes, tended to decrease with increasing IOD. The SST product (4899

x 4 km resolution) is more sensitive to mesoscale and perhaps submesoscale900

processes.901

Negative impacts of Nino and (positive) IOD conditions on biotic re-902

motely sensed variables is consistent with surface warming and deepening of903

the mixed layer in the western TIO, corresponding to down-mixing of phyto-904

plankton within a strong, westward SEC current extending several hundreds905

of metres below the surface (Vialard et al., 2009). The response of elevated906

nFLH:chl ratios (Figure 15) under such a deeply-mixed layer could indicate907

nutrient stress (e.g. Fe, NO3) or possibly a thin, surface freshening related to908

precipitation that is isolating a surface, light-stressed population (Behrenfeld909

et al., 2009; Chinni et al., 2019; George et al., 2013). The satellite data used910

for this study can not distinguish between these possibilities and are further911

limited by their short time-span (Dilmahamod et al., 2016; Landschützer912

et al., 2019), coarse spatial and temporal resolution (Hosegood et al., 2019;913

Vialard et al., 2009) and lack of information about depth variability. In situ914

data are needed to interpret many of the possible biophysical interactions in915

the MPA domain in terms of management application. For example, deep-916

ening of the mixed layer in the SCTR has been found to be associated with917

deepening of the DCM with an increase in chl owing to nutrient entrainment918
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(George et al., 2013); or with no net impact on water-column productivity919

owing to redistribution of light (Resplandy et al., 2009) or with a decrease in920

chl owing to reduced nutrient entrainment (Ma et al., 2014). Mesopelagic bio-921

geographies suggest a strong positive relationship between satellite-derived922

primary production and zooplankton scattering layers (Proud et al., 2017),923

which is consistent with two of those scenarios. Depending on the response924

of grazers, a deepened DCM may have a protective effect on pelagic fish925

that are forced to forage further from the surface (Vialard et al., 2009) but926

a negative effect for surface-foraging seabirds, so that any future increase in927

the frequency of these events may have unexpected ramifications at higher928

trophic levels and for the Chagos MPA reefs (Graham et al., 2018; Fox et al.,929

2019).930

4. Conclusions931

Pure, optical classifications of unnormalised satellite remotely sensed re-932

flectance data have been shown here to constrain physical variables that933

shape the epipelagic growth environment, making them a potentially useful934

source of management-relevant information at low- to medium latency. Con-935

straint of most remotely sensed variables was best when used within spatial936

sub-domains such as the MPA area, suggesting their use within a seascape937

heirarchy. Potential applications discussed here include monitoring ecosys-938

tem services, including CO2 uptake, and resource distribution, but in all cases939

in situ validation data are needed to elucidate optical biome composition and940

function.941

Optical classification provides a snapshot at monthly (or better) time-942
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scales of spatial variability of epipelagic resources that are amenable to habi-943

tat fragmentation analysis, which suggested a change in the spacing and size944

of richer surface food resources in response to Nino and IOD events in this945

study. However, ecological interpretation of the trends and interactions be-946

tween remotely sensed variables requires knowledge of higher trophic level947

responses. Inclusion of fragmentation metrics in species distribution models948

might help to address this, where target species observations are sparse. Al-949

though ocean colour remote sensing is among the most finely resolved satellite950

products in space and time, it is limited by cloud cover and does not capture951

the full range of dynamical interactions that are relevant to habitat structure952

and use. Increased spatiotemporal coverage is needed and may be provided953

by combining information from all available sensors (though this is prob-954

lematic) and by increased in situ monitoring using moorings and perhaps955

unmanned devices. The improved spectral resolution of NASAs forthcoming956

PACES mission may provide better discrimination of microbial community957

composition.958

The suggested applications of optical classifications are globally applica-959

ble, but the need for more in situ data is not restricted to the tropical Indian960

Ocean. Data requirements include repeat vertical profiles (reflectance, tem-961

perature, salinity, vertical mixing, nutrient concentrations and carbon cycle962

parameters) and spatial fields of surface bio-optical and oceanographic condi-963

tions that resolve sub-pixel variability, so that appropriate spatial scales can964

be identified for a given question. This scope of fieldwork has been attempted965

in a few international, inter-disciplinary projects and it is to be hoped that966

more will take shape under the biogeoscapes programme (?).967
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ries, No. 18, International Ocean Colour Coordinating Group, Dartmouth,1234

Canada. http://dx.doi.org/10.25607/OBP6961235

57



Jackson, T., S. Sathyendranath, F. Melin, 2017. An improved optical clas-1236

sification scheme for the Ocean Colour Essential Climate Variable and its1237

applications. Remote Sensing of Environment 203, 152-161.1238

Jeffries, T.C., M. Ostrowski, R.B. Williams, C. Xie, R.M. Jensen et al., 2015.1239

Spatially extensive microbial biogeography of the Indian Ocean provides1240

insights into the unique community structure of a pristine coral atoll. Sci-1241

entific Reports 5:15383, doi:10.1038/srep15383.1242

Jerlov, N.G., 1976. Marine Optics. Elsevier Oceanography Series, 14. 2nd1243

revised and enlarged edition of Optical Oceanography (Elsevier Oceanog-1244

raphy Series, 5), Elsevier Scientific Publishing Company, Amsterdam, Ox-1245

ford, New York.1246

Jin, D., R. Murtugudde, D.E. Waliser, 2012. Tropical Indo-Pacific Ocean1247

chlorophyll response to MJO forcing. Journal of Geophysical Research:1248

Oceans 117, C11008, doi:10.1029/2012JC008015.1249

Jin, D., D.E. Waliser, C. Jones, R. Murtugudde, 2012b. Modulation of trop-1250

ical ocean surface chlorophyll by the Madden-Julian Oscillation. Climate1251

Dynamics 41:1321, doi:10.1007/s00382-012-1321-4.1252

Jin, D., R.G. Murtugudde, D.E. Waliser, 2013. Intraseasonal atmospheric1253

forcing effects on the mean state of ocean surface chlorophyll. Journal of1254

Geophysical Research: Oceans 118, 184-196, doi:10.1029/2012JC008256.1255

Jones, D. L., 2012. The Fathom Toolbox for Matlab: multivariate eco-1256

logical and oceanographic data analysis. College of Marine Science,1257

58



University of South Florida, St. Petersburg, Florida, USA. Available from:1258

https://github.com/stripathy/neuroelectro matlab analysis/tree/master/Fathom.1259

Jung, H.-C., B.-K. Moon, J. Wie, H.-S. Park, J. Lee, Y.-H. Byun, 2019. A1260

single-column ocean biogeochemistry model (GOTM-TOPAZ) version 1.0.1261

Geoscientific Model Development 12, 699-722, doi:10.5194/gmd-12/699-1262

2019.1263

Kachelriess, D., M. Wegmann, M. Gollock, N. Pettorelli, 2014. The applica-1264

tion of remote sensing for marine protected area management. Ecological1265

Indicators 36, 169-177, doi:10.1016/j.ecolind.2013.07.003.1266

Kavanaugh, M.T., B. Hales, M. Saraceno, Y.H. Spitz, A.E. White, R.M. Lete-1267

lier, 2014. Heirarchical and dynamic seascapes: A quantitative framework1268

for scaling pelagic biogeochemistry and ecology. Progress in Oceanography1269

120, 291-304, doi:10.1016/j.pocean.2013.10.013.1270

Kavanaugh, M.T., M.J. Oliver, F.P. Chavez, R.M. Letelier, F.E. Muller-1271

Karger, S.C. Doney, 2016. Seascapes as a new vernacular for pelagic ocean1272

monitoring, management and conservation. ICES Journal of Marine Sci-1273

ence 73(7), 1839-1850, doi:10.1093/icesjms/fsw086.1274

Kilidas, G.N., J. Dias, K.H. Straub, M.C. Wheeler, S.N. Tulich, K. Kikuchi,1275

.M. Weickmann and M.J. Ventrice, 2014. A comparison of OLR and circu-1276

lation based indices for tracking the MJO. Monthly Weather Review 142,1277

May 2014, 1697-1715.1278

Kirk, J.T.O., 1994. Light and photosynthesis in aquatic ecosystems, 2nd1279

Edition. Cambridge University Press, UK, ISBN: 0 521 45966 4, 509pp.1280

59



Koldeway, H.J., D. Curnick, S. Harding, L.R. Harrison, M. Gol-1281

lock, 2010. Potential benefits to fisheries and biodiversity of1282

the Chagos Archipelago/British Indian Ocean Territory as a no-1283

take marine reserve. Marine Pollution Bulletin 60, 1906-1915,1284

doi:10.1016/j.marpolbul.2010.10.002.1285

Krug, L.A., T. Platt, S. Sathyendranath, A.B. Barbosa, 2017. Ocean sur-1286

face partitioning strategies using ocean colour remote sensing: A review.1287

Progress in Oceanography 155, 41-53, doi:10.1016/j.pocean.2017.05.013.1288

Krug, L.A., T. Platt, A.B. Barbosa, 2018. Delineation of ocean surface1289

provinces over a complex marine domain (off SW Iberia): An objective1290

abiotic-based approach. Regional Studies in Marine Science 18, 80-96,1291

doi:10.1016/j.rsma.2018.01.003.1292

Lain, L.R., S. Bernard, 2018. The fundamental contribution of phytoplank-1293

ton spectral scattering to ocean colour: Implications for satellite detec-1294

tion of phytoplankton community structure. Applied Sciences 8, 2681,1295

doi:10.3390/app8122681.1296

Landschützer, P., N. Gruber, D.C.E. Bakker, 2016. Decadal variations and1297

trends of the global ocean carbon sink. Global Biogeochemical Cycles 30,1298

1396-1417, doi:10.1002/2015GB005359.1299

Landschützer, P., T. Ilyina, N.S. Lovenduski, 2019. Detecting regional modes1300

of variability in observation-based surface pCO2. Geophysical Research1301

Letters 46, 2670-2679, doi:10.1029/2018GL081756.1302

60



Le Corre, M., A. Jaeger, P. Pinet, M.A. Kappes, H. Weimerskirch, T. Catry1303

et al., 2012. Tracking seabirds to identify potential Marine Protected Areas1304

in the tropical western Indian Ocean. Biological Conservation 156, 83-93,1305

doi:10.1016/j.biocon.2011.11.015.1306

Le Quere, C., R.J. Andres, T. Boden, T. Conway, R.A. Houghton et al.,1307

2013. The global carbon budget 1959-2011. Earth System Science Data 5,1308

165-185, doi:10.5194/essd-5-165-2013.1309

Le Quere, C., R.M. Andrew, P. Friedlingstein, S. Sitch, J. Hauck et al., 2018.1310

Global Carbon Budget 2018. Earth System Science Data 10, 2141-2194,1311

doi:10.5194/essd-10-2141-2018.1312

Letessier, T.B., P.J. Bouchet, J.J. Meeuwig, 2017. Sampling mobile oceanic1313

fishes and sharks: implications for fisheries and conservation planning.1314

Biological Reviews 92, 627-646, doi:10.1111/brv.12246.1315

Letessier. T.B., D. Mouillot, P.J. Bouchet, L. Vigliola, M.C. Fernandes1316

et al., 2019. Remote reefs and seamounts are the last refuges for ma-1317

rine predators across the Indo-Pacific. PLoS Biology 17(8):e3000366,1318

doi:10.1371/journal.pbio.3000366.1319

Levy, M., D. Shankar, J.-M. Andre, S.S.C. Shenoi, F. Durand, C. Boyer de1320

Montegut, 2007. Basin-wide seasonal evolution of the Indian Ocean’s phy-1321

toplankton blooms. Journal of Geophysical Research: Oceans 112(C12),1322

C12014, doi:10.1029/2007JC004090.1323

Lim, H.G., J.S. Kug, 2017. Impact of chlorophyll bias on the tropi-1324

61



cal Pacific mean climate in an earth system model. Climate Dynamics1325

doi:10.1007/s00382-017-4036-8.1326

Longhurst, A.R., 2007. Ecological Geography of the Sea, 2nd Edition. Aca-1327

demic Press, Burlington, MA. ISBN 0-12-455521-7.1328

Lovenduski, N.S., S.G. Yeager, K. Lindsay, M.C. Long, 2019. Predicting1329

near-term variability in ocean carbon uptake. Earth System Dynamics 10,1330

45-57, doi:10.5194/esd-10-45-2019.1331

Liu, L., L. Feng, W. Yu, H. Wang, Y. Liu, S. Sun, 2013. The distribution and1332

variability of simulated chlorophyll concentration over the tropical Indian1333

Ocean from five CMIP5 models. Journal of Ocean University of China1334

12(2), 253-259, doi:10.1007/s11802-013-2168-y.1335

Ma, J., Y. Du, H. Zhan, H. Liu, J. Wang, 2014. Influence of oceanic Rossby1336

waves on phytoplankton production in the southern tropical Indian Ocean.1337

Journal of Marine Systems 134, 12-19, doi:10.1016/j.marsys.2014.02.003.1338

Maldonaldo, M.T., A. Marchetti, M. Saito, A. Tagliabue, 2018. Biogeoscapes:1339

Ocean Metabolism and Nutrient Cycles on a Changing Planet. Min-1340

utes of a working group at Woods Hole, November, 2018. Accessed on-1341

line 2020-06 at https://drive.google.com/file/d/1EjIE4Fz2edd hmusaaio-1342

JHQQaDazGYn/view.1343

Maxwell, S.M., E.L. Hazen, R.L. Lewison, D.C. Dunn, H. Bailey et1344

al., 2015. Dynamic ocean management: Definining and conceptual-1345

izing real-time management of the ocean. Marine Policy 58, 42-50,1346

doi:10.1016/j.marpol.2015.03.014.1347

62



McCune, B., J.B. Grace, 2002. Analysis of Ecological Communities. MjM1348

Software, Gleneden Beach, Oregon, USA. ISBN: 0-9721290-0-6.1349

McPhaden, M.J., G.R. Foltz, 2013. Intraseasonal variations in the surface1350

layer heat balance of the central equatorial Indian Ocean: The importance1351

of zonal advection and vertical mixing. Geophysical Research Letters 40,1352

2737-2741, doi:10.1002/grl.50536.1353

Miloslavich, P., N.J. Bax, S.E. Simmons, E. Klein, W. Appeltans et al.,1354

2018. Essential ocean variables for global sustained observations of biodi-1355

versity and ecosystem changes. Global Change Biology 24(6), 2416-2433,1356

doi:10.1111/gcb.14108.1357

Mohamed, K.S., K.K. Sajikumar, N. Ragesh, T.V. Jayasankar, K.P.1358

Said Koya, G. Sasikumar, 2018. Relating abundance of purpleback1359

flying squid Sthenoteuthis oualaniensis (Cephalopoda: Ommastrephi-1360

dae) to environmental parameters using GIS and GAM in south-1361

eastern Arabian Sea. Journal of Natural History 52(29-30), 1869 – 1882,1362

doi:10.1080/00222933.2018.1497721.1363

Monolisha, S., T. Platt, S. Sathyendranath, J. Jayasankar, G.1364

George, T. Jackson, 2018. Optical classification of the coastal wa-1365

ters of the northern Indian Ocean. Frontiers in Marine Science 5:87,1366

doi:10.3389/fmars.2018.00087.1367

Moore, T.S., J.W. Campbell and H. Feng, 2001. A fuzzy logic classification1368

scheme for selecting and blending satellite ocean color algorithms. IEEE1369

Transactions in Geoscience and Remote Sensing 39(8), 1764-1776.1370

63



Moore, T.S., J.W. Campbell, M.D. Dowell, 2009. A class-based approach1371

to characterizing and mapping the uncertainty of the MODIS ocean1372

chlorophyll product. Remote Sensing of Environment 113(11), 2424-2430,1373

doi:10.1016/j.rse.2009.07.016.1374

Nagelkerken, I., S.D. Connell, 2015. Global alteration of ocean ecosys-1375

tem functioning due to increasing human CO2 emissions. Proceed-1376

ings of the National Academy of Sciences 112(43), 13727 – 13277,1377

doi:10.1073/pnas.151056112.1378

Nel, D.C., J.R.E. Lutjeharms, E.A. Pakhomov, I.J. Ansorge, P.G.1379

Ryan, N.T.W. Klages, 2001. Exploitation of mesoscale oceanographic1380

features by grey-headed albatross Thalassarche chrysostoma in the1381

southern Indian Ocean. Marine Ecology Progress Series 217, 15-26,1382

doi:10.3354/meps217015.1383

OCO-2 Science Team/M. Gunson, A. Eldering, 2016. ACOS1384

GOSAT/TANSO-FTS Level 2 Full Physics Standard Product V7.3,1385

Greenbelt, MD, USA, Goddard Earth Sciences Data and Infor-1386

mation Services Center (GES DISC). Dataset accessed 2019-04 at1387

https://disc.gsfc.nasa.gov/datacollection/ACOS L2S 7.3.html.1388

O’Dell, C.W., A. Eldering, P.O. Wennberg, D. Crisp, M.R. Gunson et1389

al, 2018. Improved retrievals of carbon dioxide from Orbiting Carbon1390

Observatory-2 with the version 8 ACOS algorithm. Atmospheric Measure-1391

ment Techniques 11, 6539-6576, doi:10.5194/amt-11-6539-2018.1392

Oliver, M.J., S. Glenn, J.T. Kohut, A.J. Irwin, O.M. Schofield, M.A. Moline,1393

64



W.P. Bissett, 2004. Bioinformatic approaches for objective detection of1394

water masses on continental shelves. Journal of Geophysical Research 109,1395

C07S04, doi:10.1029/2003.JC002072.1396

Oliver, J.J., A.J. Irwin, 2008. Objective global ocean biogeographic provinces.1397

Geophysical Research Letters 35, L15601, doi:10.1029/2008GL034238.1398

Oppel, S., M. Bolton, A.P.B. Carneiro, M.P. Dias, J.A. Green et al., 2018.1399

Spatial scales of marine conservation management for breeding seabirds.1400

Marine Policy 98, 37 – 46, doi:10.1016/j.marpol.2018.08.024.1401

O’Reilly, J.E., S. Maritorena, B.G. Mitchell, D.A. Siegel, K.L. Carder et al.,1402

1998. Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophys-1403

ical Research: Oceans 103(C11), 24937-24953, doi:10.1029/98JC02160.1404

Park, J.-Y., J.-S. Kug, 2014. Marine biological feedback associated with In-1405

dian Ocean Dipole in a coupled ocean/biogeochemical model. Climate Dy-1406

namics 42(1-2), 329-343, doi:10.1007/s00382-012-1640-5.1407

Pecoraro, C., I. Zudaire, N. Bodin, H. Murua, P. Taconet et al., 2017. Putting1408

all the pieces together: integrating current knowledge of the biology, ecol-1409

ogy, fisheries status, stock structure and management of yellowfin tuna1410

(Thunnus albacares). Reviews in Fish Biology and Fisheries 27(4), 811-1411

841, doi:10.1007/s11160-016-9460-z.1412

Pinaud, D., H. Weimerskirch, 2007. At-sea distribution and scale-dependent1413

foraging behaviour of petrels and albatrosses: a comparative study. Journal1414

of Animal Ecology 76, 9-19, doi:10.1111/j.1365-2656.2006.01186.x.1415

65



Pinheiro, H.T., J.B. Teixeira, R.B. Francini-Filho, A. Soares-Gomes, C.E.L.1416

Ferreira, L.A. Rocha, 2019. Hope and doubt for the world’s marine1417

ecosystems. Perspectives in Ecology and Conservation 17, 19 – 25,1418

doi:10.1016/j.pecon.2018.11.001.1419

Pillar, V.D., 2013. How accurate and powerful are randomization tests in1420

multivariate analysis of variance? Community Ecology 14(2), 153-163,1421

doi:10.1556/ComEc.14.2013.2.5.1422

Proud, R., M.J. Cox, A.S. Brierley, 2017. Biogeography of the1423

global ocean’s mesopelagic zone. Current Biology 27(1),113-119,1424

doi:10.1016/j.cub.2016.11.003.1425

Racault, M.F., S. Sathyendranath, R.J. Brewin, D.E. Raitsos, T. Jackson,1426

T. Platt, 2017. Impact of El Nino variability on oceanic phytoplankton.1427

Frontiers in Marine Science 4:133, doi:10.3389/fmars.2017.00133.1428

Resplandy, L., J. Vialard, M. Levy, O. Aumont, Y. Dandonneau, 2009. Sea-1429

sonal and intraseasonal biogeochemical variability in the thermocline ridge1430

of the southern tropical Indian Ocean. Journal of Geophysical Research1431

114, C07024, doi:10.1029/2008JC005246.1432

Reygondeau, G., A. Longhurst, E. Martinez, G. Beaugrand, D. Antoine,1433

O. Maury, 2013. Dynamic biogeographical provinces in the global ocean.1434

Global Biogeochemical Cycles 27(1), 1046-1058, doi:10.1002/gbc.20089.1435

Reygondeau, G., L. Guidi, G. Beaugrand, S.A. Henson, P. Koubbi et al.,1436

2018. Global biogeochemical provinces of the mesopelagic zone. Journal of1437

Biogeography 45, 500-514, doi:10.1111/jbi.13149.1438

66



Rice, J., K.M. Gjerde, J. Ardron, S. Arico, I. Cresswell et al., 2011. Pol-1439

icy relevance of biogeographic classification for conservation and manage-1440

ment of marine biodiversity beyond national jurisdiction, and the GOODS1441

biogeographic classification. Ocean & Coastal Management 54, 110-122,1442

doi:10.1016/j.ocecoaman.2010.10.010.1443

Roberson, L.A., E. Lagabrielle, A.T. Lombard, K. Sink, T. Livingstone et al.,1444

2017. Pelagic bioregionalisation using open-access data for better planning1445

of marine protected area networks. Ocean & Coastal Management 148,1446

214-230, doi:10.1016/j.ocecoaman.2017.08.017.1447

Roberts, C.M., B.C. O’Leary, D.J. McCauley, P.M. Cury, C.M. Duarte et1448

al., 2017. Marine reserves can mitigate and promote adaptation to climate1449

change. Proceedings of the National Academy of Sciences 114(24), 6167-1450

6175, doi:10.1073/pnas.1701262114.1451

Romanou, A., J. Romanski, W.W. Gregg, 2014. Natural ocean carbon cy-1452

cle sensitivity to parameterizations of the recycling in a climate model.1453

Biogeosciences 11, 1137-1154, doi:10.5194/bg-11-1137-2014.1454

Ropelewski, C.F. and P.D. Jones, 1987. An extension of the Tahiti-Darwin1455

Southern Oscillation Index. Monthly Weather Review 115, 2161-2165,1456

doi:10.1175/1520-0493(1987)115¡2161:AEOTTS¿2.0.CO;2.1457

Ruxton, G.D., G. Beauchamp, 2008. Some suggestions about appropri-1458

ate use of the Kruskal-Wallis test. Animal Behaviour 76, 1083-1087,1459

doi:10.1016/j.anbehav.2008.04.01 1.1460

67



Saji, N.H., B.N. Goswami, P.N. Vinayachandran, T. Yamagata, 1999. A1461

dipole mode in the tropical Indian Ocean. Nature 401, 360-363, 23 Sept.1462

1999.1463

Saji, N.H. and T. Yagamaga, 2003. Possible impacts of Indian Ocean Dipole1464

mode events on global climate. Climate Research 25(2), 151-169.1465

Santoso, A., A. Sen Gupta, M.H. England, 2010. Genesis of Indian Ocean1466

mixed layer temperature anomalies: A heat budget analysis. Journal of1467

Climate 23(20), 5375-5403, doi:10.1175/2010JCLI2072.1.1468

Sayre, R.G., D.J. Wright, S.P. Breyer, K.A. Butler, K. Van Graafeiland et al.,1469

2017. A three-dimensional mapping of the ocean based on environmental1470

data. Oceanography 30(1), 90-103, doi:10.5670/oceanog.2017.116.1471

Scales, K.L., P.I. Miller, C.B. Embling, S.N. Ingram, E. Pirotta, S.C. Votier,1472

2014. Mesoscale fronts as foraging habitats: composite front mapping re-1473

veals oceanographic drivers of habitat use for a pelagic seabird. Journal of1474

the Royal Society Interface 11, doi:10.1098/rsif.2014.0679.1475

Schwarz, J.N., 2020. Phytoplankton biovolumes from light microscopy; Cha-1476

gos Archipelago, Indian Ocean, May 2018. Data submission 2020-06-1477

30T16:25:05Z, pangaea.de.1478

Scott, B.E., J. Sharples, O.N. Ross, J. Wang, G.J. Pierce, C.J. Camphuy-1479

sen, 2010. Foraging plasticity in a pelagic seabird species along a ma-1480

rine productivity gradient. Marine Ecology Progress Series 408, 207 – 226,1481

doi:10.3354/meps08552.1482

68



SeaPAC. 2006. SeaWinds on QuikSCAT Level 3 Daily Gridded Ocean Wind1483

Vectors (JPL Version 2). Ver. 2. PO.DAAC, CA, USA. Dataset accessed1484

2019-03 at https://doi.org/10.5067/QSXXX-L3002.1485

Seiki, A., M. Katsumata, T. Horii, T. Hasegawa, K.J. Richards et al., 2013.1486

Abrupt cooling associated with the oceanic Rossby wave and lateral advec-1487

tion during CINDY2011. Journal of Geophysical Research: OCeans 118,1488

5523-5535, doi:10.1002/jgrc.20381.1489

Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall’s1490

tau. Journal of the Americal Statistical Association 63(324), 1379-1389.1491

Sheppard, C.R.C., A. Harris, A.L.S. Sheppard, 2008. Archipelago-wide1492

coral recovery patterns since 1998 in the Chagos Archipelago, cen-1493

tral Indian Ocean. Marine Ecology Progress Series 362, 109-117,1494

doi:10.3354/meps07436.1495

Sheppard, C.R.C., M. Ateweberhan, B.W. Bowen, P. Carr, C.A. Chen et al.,1496

2012. Reefs and islands of the Chagos Archipelago, Indian Ocean: why it1497

is the world’s largest no-take marine protected area. Aquatic Conservation1498

22(2), 232-261, doi:10.1002/aqc.1248.1499

Soares, M.A., P.V. Bhaskar, R.K. Naik, D. Dessai, J. George et al., 2015. Lat-1500

itudinal δ13C and δ15N variations in particulate organic matter (POM)1501

in surface waters from the Indian ocean sector of Southern Ocean and1502

the Tropical Indian Ocean in 2012. Deep-Sea Research 118, 186-196,1503

doi:10.1016/j.dsr2.2015.06.009.1504

69



Solanki, H.U., D. Bhatpuria, P. Chauhan, 2015. Signature analysis of satel-1505

lite derived SSHa, SST and chlorophyll concentration and their linkage1506

with marine fishery resources. Journal of Marine Systems 150, 12 – 21,1507

doi:10.1016/j.jmarsys.2015.05.004.1508

Solanki, H.U., D. Bhatpuria, P. Chauhan, 2017. Applications of generalized1509

additive model (GAM) to satellite-derived variables and fishery data for1510

prediction of fishery resources distributions in the Arabian Sea. Geocarto1511

International 32(1), 30 – 43, doi:10.1080/10106049.2015.1120357.1512

Spalding, M.D., V.N. Agostini, J. Rice, S.M. Grant, 2012. Pelagic1513

provinces of the world: A biogeographic classification of the world’s1514

surface pelagic waters. Ocean & Coastal Management 60, 19-30,1515

doi:10.1016/j.ocecoaman.2011.12.016.1516

Sreeush, M.G., V. Valsala, S. Pentakota, K. Venkata Siva Rama Prasad,1517

R. Murtugudde, 2018. Biological production in the Indian Ocean up-1518

welling zones – Part 1: refined estimation via the use of a variable com-1519

pensation depth in ocean carbon models. Biogeosciences 15, 1895-1918,1520

doi:10.5194/bg-15-1895-2018.1521

Strutton, P.G., V.J. Coles, R.R. Hood, R.J. Matear, M.J. McPhaden, H.E.1522

Phillips, 2015. Biogeochemical variability in the central equatorial In-1523

dian Ocean during the monsoon transition. Biogeosciences 12, 2367-2382,1524

doi:10.5194/bg-12-2367-2015.1525

Sutton, T.T., M.R. Clark, D.C. Dunn, P.N. Halpin, A.D. Rogers et al., 2017.1526

70



A global biogeographic classification of the mesopelagic zone. Deep-Sea1527

Research Part I 126, 85-102, doi:10.1016/j.dsr.2017.05.006.1528

Sutton, A.L., L.E. Beckley, 2017. Species richness, taxonomic distinctness1529

and environmental influences on Euphausiid zoogeography in the Indian1530

Ocean. Diversity 9, 23, doi:10.3390/d9020023.1531

Subha Anand, S., R. Rengarajan, V.V.S.S. Sarma, A.K. Sudheer, R.1532

Bhushan, S.K. Singh, 2017. Spatial variability of upper ocean POC export1533

in the Bay of Bengal and the Indian Ocean determined using particle-1534

reactive 234Th. Journal of Geophysical Research – Oceans 122, 3753-3770,1535

doi:10.1002/2016JC012639.1536

Talley, L.D., G.L. Pickard, W.J. Emery, J.H. Swift, 2011. Indian Ocean.1537

Chapter 11 in Descriptive Physical Oceanography (6th Ed.), Academic1538

Press, doi:10.1016/B978-0-7506-4552-2.10033-2.1539

Thorrington-Smith, M., 1971. West Indian Ocean phytoplankton: a numeri-1540

cal investigation of phytohydrographic regions and their characteristic phy-1541

toplankton associations. Marine Biology 9, 115-137.1542

Trevail, A.M., J.A. Green, J. Sharples, J.A. Poloton, J.P. Arnould, S.C.1543

Patrick, 2019. Environmental heterogeneity amplifies behavioural response1544

to a temporal cycle. Oikos 128, 517 – 528, doi:10.1111/oik.05579.1545

Trochta, J.T., C.B. Mouw, T.S. Moore, 2015. Remote sensing of phys-1546

ical cycles in Lake Superior using a spatio-temporal analysis of op-1547

tical water typologies. Remote Sensing of Environment 171, 149-161,1548

doi:10.1016/j.rse.2015.10.008.1549

71



Tweddle, J.F., M. Gubbins, B.E. Scott, 2018. Should phytoplankton be1550

a key consideration for marine management? Marine Policy 97, 1-9,1551

doi:10.1016/j.marpol.2018.08.026.1552

Uitz, J., H. Claustre, A. Morel, S.B. Hooker, 2006. Vertical distribu-1553

tion of phytoplankton communities in open ocean: An assessment based1554

on surface chlorophyll. Journal of Geophysical Research 111, C08005,1555

doi:10.1029/2005JC003207.1556

United Nations Framework Convention on Climate Change, 2015. Adoption1557

of the Paris Agreement. Proposal by the President. UNFCCC. Con-1558

ference of the Parties (COP), United Nations, Geneva. Available at:1559

https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-1560

agreement.1561

UNEP-WCMC, 2016. World database on protected areas user1562

manual 1.4. UNEP-WCMC: Cambridge, UK. Available at:1563

http://wcmc.io/WDPA Manual.1564

Vantrepotte, V., H. Loisel, D. Dessailly, X. Mériaux, 2012. Optical classifi-1565

cation of contrasted coastal waters. Remote Sensing of Environment 123,1566

306-323, doi:10.1016/j.rse.2012.03.004.1567

Veldhuis, M.J.W., G.W. Kraay, J.D.L. van Bleijswijk, M.A. Baars, 1997.1568

Seasonal and spatial variability in phytoplankton biomass, productivity1569

and growth in the northwest Indian Ocean: the southwest and northeast1570

monsoon, 1992-1993. Deep-Sea Research I 44(3), 425-449.1571

72



Verhoef, A., J. Vogelzang, J. Verspeek, A. Stoffelen, 2018. Long-1572

term scatterometer wind climate data records. IEEE Journal of1573

Selected Topics in Applied Earth Observation 10(5), 2186-2194,1574

doi:10.1109/JSTARS.2016.2615873.1575

Vialard, J., J.P. Duvel, M.J. McPhaden, P. Bouruet-Aubertot, B. Ward et al.,1576

2009. CIRENE: Air-sea interactions in the Seychelles-Chagos thermocline1577

ridge region. Bulletin of the American Meteorological Society 90(1), 45-61,1578

doi:10.1175/2008BAMS2499.11579

Vichi, M., J. Icarus Allen, S. Masina, N.J. Hardman-Mountford, 2011. The1580

emergence of ocean biogeochemical provinces: A quantitative assessment1581

and a diagnostic for model evaluation. Global Biogeochemical Cycles 25,1582

GB2005, doi:10.1029/2010GB003867.1583

Wang, X., F. Guillaume Blanchet, N. Koper, 2014. Measuring habitat frag-1584

mentation: An evaluation of landscape pattern metrics. Methods in Ecol-1585

ogy & Evolution 5, 634-646, doi:10.1111/2041-210X.12198.1586

Wanningkhof, R., G.-H. Park, T. Takahashi, C. Sweeney, R. Feely et al., 2013.1587

Global ocean carbon uptake: magnitude, variability and trends. Biogeo-1588

sciences 10, 1983-2000, doi:10.5194/bg-10-1983-2013.1589

Waugh, S.M., H. Weimerskirch, 2003. Environmental heterogeneity and the1590

evolution of foraging behaviour in long ranging greater albatrosses. Oikos1591

103, 374-384.1592

Webster, P.J., G.J. Holland, J.A. Curry, H.-R. Chang, 2005. Changes in1593

73



tropical cyclone number, duration and intensity in a warming environment.1594

Science 309(5742), 1844-1846, doi:10.1126/science.1116448.1595

Weimerskirch, H., M. Le Corre, Y. Ropert-Coudert, A. Kato, F. Marsac,1596

2005. The three-dimensional flight of red-footed boobies: adaptations to1597

foraging in a tropical environment? Proceedings of the Royal Society B1598

272, 53 – 61, doi:10.1098/rspb.2004.2918.1599

Weimerskirch, H., 2007. Are seabirds foraging for unpredictable resources?1600

Deep-Sea Research II 54, 211 – 223, doi:10.1016/j.dsr2.2006.11.013.1601

Werdell, P.J., L.I.W. McKinna, E. Boss, S.G. Ackleson, S.E. Craig et al.,1602

2018. An overview of approaches and challenges for retrieving marine1603

inherent optical properties from ocean color remote sensing. Progress in1604

Oceanography 160, 186-212, doi:10.1016/j.pocean.2018.01.001.1605

Wheeler, M.C., H.H. Hendon, 2004. An all-season real-time multivari-1606

ate MJO index: Development of an index for monitoring and pre-1607

diction. Monthly Weather Review 132, 1917-132, doi:10.1175/1520-1608

0493(2004)132¡1917:AARMMI¿2.0.CO;2.1609

Williamson, M.J., E.J. Tebbs, T.P. Dawson, D.M.P. Jacoby 2019. Satellite1610

remote sensing in shark and ray ecology, conservation and management.1611

Frontiers in Marine Science 6:135, doi:10.3389/fmars.2019.00135.1612

Wiggert, J.D., R.G. Murtugudde, J.R. Christian, 2006. Annual ecosys-1613

tem variability in the tropical Indian Ocean: Results of a coupled bio-1614

physical ocean general circulation model. Deep-Sea Research II 53, 644-1615

676, doi:10.1016/j.dsr2.2006.01.027.1616

74



Wilson, C., X. Qiu, 2008. Global distribution of summer chlorophyll blooms1617

in the oligotrophic gyres. Progress in Oceanography 78(2), 107-134,1618

doi:10.1016/j.pocean.2008.05.002.1619

Windham, M.P., 1982. IEEE Transactions on Pattern Analysis and Machine1620

Intelligence PAMI-4(4), 357-363.1621

Xie, X.L. and G. Beni, 1991. A validity measure for fuzzy clustering.IEEE1622

Transactions on Pattern Analysis and Machine Intelligence 13(8), 841-847.1623

Xie, S.-P., H. Annamalai, F.A. Schott, J.P. McCreary, 2002. Structure and1624

mechanisms of south Indian Ocean climate variability. Journal of Climate1625

15, 864-878.1626

Zydelis, R., R.L. Lewison, S.A. Schaffer, J.E. Moore, A.M. Boustany, J.J.1627

Roberts, M. Sims, D.C. Duncan, B.D. Best, Y. Tremblay et al., 2011.1628

Dynamic habitat models: using telemetry data to project fisheries bycatch.1629

Proceedings of the Royal Society B – Biological Sciences 278(1722), 31911630

– 3200, doi:10.1098/rspb.2011.0330.1631

75



5. Figure captions1632

Figure 1: Schematic representation of key biophysical linkages (not ex-1633

haustive). The flow of information begins with sunlight to the left. Physical1634

variables that can be detected using remote sensing, followed by the oceano-1635

graphic variables derived from them, are shown between the sun and the1636

ocean surface processes. Oceanographic variables of interest that can be de-1637

rived from remote sensing data are outlined in blue and abbreviations are1638

explained in Table 1. The other variables shown are of interest to conser-1639

vation, management or climate change applications but are not amenable to1640

remote sensing.1641

Figure 2: Location of the study domain, adapted from Talley et al. (2011);1642

Aguiar-Gonzalez et al. (2016). SCTR = Seychelles Chagos Thermocline1643

Ridge; MPA = Chagos Marine Protected Area; SECC = South Equatorial1644

Countercurrent1645

Figure 3: Bathymetry of the study domain. Shaded regions denote the1646

sub-areas related to other published studies. Black line: coast; grey line:1647

200 m contour; black dashed line: 1000 m contour; thick black line: MPA1648

boundary.1649

Figure 4: Central spectra for the 10-band classifications from Level 21650

(upper) and Level 3 (lower) datasets with two to nine classes, compared with1651

the 6-band JSM classification (shaded).1652

Figure 5: Mapping of the N5, N8 and JSM classes onto published PFT al-1653

gorithms. SLC=Synechococcus-like cyanobacteria; xDiat was assigned where1654
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the residual PHYSAT-like spectrum resembled the diatom criteria in Al-1655

vain et al. (2008) but with higher values; SynPro=spectrum matches SLC or1656

Prochlorococcus except for one waveband, which fell in the other small-cell1657

category. Algorithm acronyms are explained in section 3.1.1658

Figure 6: Comparison of class maps produced with the Level 2 and Level1659

3 Rrs data, classifications N5, N8 and JSM, in 2003. The Chagos MPA1660

outline, 0 m and 1000 m isobaths are shown in black and the 2000 m isobath1661

in grey.1662

Figure 7: Number of classes held at each pixel over the 17 year study1663

period, by month, for Level 3 data, N=5. The Chagos MPA outline is shown1664

in black.1665

Figure 8: Monthly 17-year climatologies of key remote sensing variables.1666

The Chagos MPA outline and 0 m contour are shown in black, and the 30001667

m isobath in grey.1668

Figure 9: Variability of remotely sensed parameters in the MPA and z10001669

domains: Top row = N5; Middle row = N8; Lower row = JSM; black=MPA;1670

cyan=whole domain with depth > 1000 m (z1000).1671

Figure 10: Variability of remotely sensed parameters for each sub-domain1672

using the N5 classification.1673

Figure 11: Averaged Mann-Kendall-Sen correlation coefficients between1674

variables within each class for each domain: a) MPA, b) SCTR-W, c) SCTR-1675
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C, d) Wiggert-N, e) Wiggert-S, f) z1000. Only results with a p-value < 0.01,1676

confirmed using bootstrapping to remove autocorrelation and subsampling1677

effects, are shown.1678

Figure 12: OCO-2 lowest altitude pCO2 distributions within the z10001679

domain for the N5 classes applied to MODIS Level 2 data, January 2015.1680

Figure 13: a) to e) Density of patches of each N5 class (a=class 1, e=class1681

5); f) to j) Average patch area (f=class 1, j=class 5); k) to o) Average1682

distance between patches (k=class 1, o=class 5) for the MPA, Wiggert-N1683

and Wiggert-S domains. Note different y-axis limits are used to show detail.1684

1685

Figure 14: IOTC fishing catch and catch per unit effort for the Indian1686

Ocean surface (top row; a, b,c) and longline (lower row; d, e, f) fisheries.1687

Figure 15: Time-series for each N5 class within the MPA for a) Chl, b)1688

FLH, c) FLH:Chl, d) SST, e) SSH and f) ∇SSH.1689

Figure 16: a) Summary of the temporal trends found within each do-1690

main (p < 0.05), including ranges of the Sen regression coefficient and rates1691

of change. Trends for specific classes are denoted by class number; trends1692

for the entire domain are indicated by block colour (red=positive trend;1693

blue=negative trend). b) Summary of significant (p < 0.05) correlations be-1694

tween remotely sensed variables and the Indian Dipole Mode Index, including1695

ranges of the Sen regression coefficient. Correlations for specific classes are1696

denoted by class number; correlations for the entire domain are indicated1697
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by block colour (red=positive trend; blue=negative trend). Full correlation1698

results, including 95% confidence intervals on the regression slopes, are given1699

in Table S1.1700
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Figure 1: Schematic representation of key biophysical linkages (not exhaustive). The flow

of information begins with sunlight to the left. Physical variables that can be detected us-

ing remote sensing, followed by the oceanographic variables derived from them, are shown

between the sun and the ocean surface processes. Oceanographic variables of interest that

can be derived from remote sensing data are outlined in blue and abbreviations are ex-

plained in Table 1. The other variables shown are of interest to conservation, management

or climate change applications but are not amenable to remote sensing.
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Figure 2: Location of the study domain, adapted from Talley et al. (2011); Aguiar-

Gonzalez et al. (2016). SCTR = Seychelles Chagos Thermocline Ridge; MPA = Chagos

Marine Protected Area; SECC = South Equatorial Countercurrent
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Figure 3: Bathymetry of the study domain. Shaded regions denote the sub-areas related

to other published studies. Black line: coast; grey line: 200 m contour; black dashed line:

1000 m contour; thick black line: MPA boundary.

Figure 4: Central spectra for the 10-band classifications from Level 2 (upper) and Level

3 (lower) datasets with two to nine classes, compared with the 6-band JSM classification

(shaded).
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Figure 5: Mapping of the N5, N8 and JSM classes onto published PFT algorithms.

SLC=Synechococcus-like cyanobacteria; xDiat was assigned where the residual PHYSAT-

like spectrum resembled the diatom criteria in Alvain et al. (2008) but with higher values;

SynPro=spectrum matches SLC or Prochlorococcus except for one waveband, which fell

in the other small-cell category. Algorithm acronyms are explained in section 3.1.
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Figure 6: Comparison of class maps produced with the Level 2 and Level 3 Rrs data,

classifications N5, N8 and JSM, in 2003. The Chagos MPA outline, 0 m and 1000 m

isobaths are shown in black and the 2000 m isobath in grey.
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Figure 7: Number of classes held at each pixel over the 17 year study period, by month,

for Level 3 data, N=5. The Chagos MPA outline is shown in black.
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Figure 8: Monthly 17-year climatologies of key remote sensing variables. The Chagos

MPA outline and 0 m contour are shown in black, and the 3000 m isobath in grey.
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Figure 9: Variability of remotely sensed parameters in the MPA and z1000 domains: Top

row = N5; Middle row = N8; Lower row = JSM; black=MPA; cyan=whole domain with

depth > 1000 m (z1000).

Figure 10: Variability of remotely sensed parameters for each sub-domain using the N5

classification.
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Figure 11: Averaged Mann-Kendall-Sen correlation coefficients between variables within

each class for each domain: a) MPA, b) SCTR-W, c) SCTR-C, d) Wiggert-N, e) Wiggert-

S, f) z1000. Only results with a p-value < 0.01, confirmed using bootstrapping to remove

autocorrelation and subsampling effects, are shown.
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Figure 12: OCO-2 lowest altitude pCO2 distributions within the z1000 domain for the N5

classes applied to MODIS Level 2 data, January 2015.
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Figure 13: a) to e) Density of patches of each N5 class (a=class 1, e=class 5); f) to j)

Average patch area (f=class 1, j=class 5); k) to o) Average distance between patches

(k=class 1, o=class 5) for the MPA, Wiggert-N and Wiggert-S domains. Note different

y-axis limits are used to show detail.
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Figure 14: IOTC fishing catch and catch per unit effort for the Indian Ocean surface (top

row; a, b,c) and longline (lower row; d, e, f) fisheries.
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Figure 15: Time-series for each N5 class within the MPA for a) Chl, b) FLH, c) FLH:Chl,

d) SST, e) SSH and f) ∇SSH.
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Figure 16: a) Summary of the temporal trends found within each domain (p < 0.05),

including ranges of the Sen regression coefficient and rates of change. Trends for spe-

cific classes are denoted by class number; trends for the entire domain are indicated by

block colour (red=positive trend; blue=negative trend). b) Summary of significant (p

< 0.05) correlations between remotely sensed variables and the Indian Dipole Mode In-

dex, including ranges of the Sen regression coefficient. Correlations for specific classes

are denoted by class number; correlations for the entire domain are indicated by block

colour (red=positive trend; blue=negative trend). Full correlation results, including 95%

confidence intervals on the regression slopes, are given in Table S1.
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