2017-06-13

Metabolic basis to Sherpa altitude adaptation

Horscroft, JA

http://hdl.handle.net/10026.1/16404

10.1073/pnas.1700527114
Proceedings of the National Academy of Sciences
Proceedings of the National Academy of Sciences

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Metabolic basis to Sherpa altitude adaptation

James Horscroft1, Aleksandra Kotwica1, Verena Laner1, James West1, Philip Hennis3, Denny Levett2, David Howard3, Bernadette Fernandez2, Sarah Burgess2, Zsuzsanna Ament1, Edward Gilbert-Kawai3, Andre Vercueil3, Blaine Landis1, Kay Mitchell1, Monty Mythen3, Cristina Branco1, Randall Johnson1, Martin Feischl4, Hugh Montgomery3, Julian Griffin1, Michael Grocott5, Erich Gaiger5, Daniel Martin3, Andrew J Murray1

1University of Cambridge, 2Ororos Instruments, 3University College London, 4University of Southampton, 5Innsbruck Medical University

Submitted to Proceedings of the National Academy of Sciences of the United States of America

The Himalayan Sherpas, a human population of Tibetan descent, are highly adapted to life in the hypobaric hypoxia of high altitude. Mechanisms involving enhanced tissue oxygen delivery in comparison with Lowlander populations, have been postulated to play a role in such adaptation. Whether differences in tissue oxygen utilization (i.e. metabolic adaptation) underpin this adaptation is not however known. We sought to address this issue, applying parallel molecular, biochemical, physiological and genetic approaches to the study of Sherpas and native Lowlanders, studied before and during exposure to hypobaric hypoxia on a gradual ascent to Mount Everest Base Camp (5,300 m). When compared with Lowlanders, Sherpas demonstrated a lower capacity for fatty acid oxidation in skeletal muscle biopsies, along with enhanced efficiency of oxygen utilization, improved muscle energetics and protection against oxidative stress. This in part appeared to be related to a putatively advantageous allele for the PPARα gene, which was enriched in the Sherpas compared with the Lowlanders.

Our findings suggest that metabolic adaptations underpin human evolution to life at high altitude, and could impact upon our understanding of human diseases in which hypoxia is a feature.

metabolism | altitude | skeletal muscle | hypoxia | mitochondria

Introduction

At high altitude, low barometric pressure is accompanied by a fall in the partial pressure of inspired O2, resulting in hypobaric hypoxia. The cellular response to hypoxia is orchestrated by the Hypoxia Inducible Factor (HIF) transcription factors, with HIF-1α and HIF-2α respectively mediating responses to short-term and more sustained hypoxia (1). In normoxia, prolyl-hydroxylases target HIFα subunits for destruction (2). Under low O2 partial pressures, however, HIF-1α/HIF-2α are stabilized and dimerize with the nuclear HIF-1β subunit. This dimer interacts with hypoxia-response elements in promoter regions to increase expression of specific genes, e.g. EPO (encoding erythropoietin) and VEGFA (vascular endothelial growth factor) (3).

The Tibetan Plateau has an average altitude of some 4,500 m. Humans were first present on the Plateau ~30,000 years ago, with the earliest permanent settlements appearing 6-9,000 years ago (4) – a period sufficient to drive the natural selection of genetic variants (and associated features) favouring survival and performance in sustained hypoxia (5, 6). Evidence supports the selection of genetic variants encoding components of the hypoxia-inducible factor (HIF) pathway, such as EPAS1 (encoding HIF-2α) (7) and EGLN1 (prolyl-hydroxylase-2, PHD2) (8) in Tibetan populations. One population, the Sherpas, migrated from Tibet to eastern Nepal ~500 years ago and exhibit remarkable physical performance at extreme altitude (9).

Whilst the human adaptive response to hypoxia is incompletely understood, mitigation against the fall in convective O2 delivery plays an important role. In Lowlanders, increased ventilation and cardiac output, and the production of more O2-carrying red blood cells help to sustain O2 delivery and content (10, 11). Likewise, exhaled concentrations of nitric oxide (NO), a key regulator of blood flow, are higher in Tibetans than Lowlanders (12), as are circulating NO metabolites and limb blood flow (13).

The rise in red cell mass in response to hypobaric hypoxia is not as great in Tibetans as in Lowlanders, however (14, 15), suggesting that adaptation involves more than just increased O2 delivery. In fact, acclimatization also involves alterations in O2 use. In Lowlander muscle, mitochondrial density declines with sustained exposure to extreme altitude (16-18), whilst exposure to more moderate high altitude is associated with a reprogramming of muscle metabolism (19) even without altered mitochondrial density (20), including downregulation of electron transfer complex (19) and tricarboxylic acid (TCA) cycle enzymes (21), loss of fatty acid oxidation (FAO) capacity (19, 20) and improved oxidative phosphorylation coupling efficiency (20). Sherpas have lower muscle mitochondrial densities than unacclimatized Lowlanders (22), but little is known of their metabolic adaptation to hypoxia, or any genetic selection which might underpin it. A role has been suggested for peroxisome proliferator-activated receptor alpha (PPARα), a transcriptional regulator of FAO in liver, heart and muscle. HIF downregulates PPARα in some tissues (23), whilst there is evidence for selection of variants in its encoding gene (PPARα) in some Tibetan subgroups (8, 24). We hypothesized that metabolic adaptation, and PPARα in particular, play a central role in the Sherpa adaptation to hypobaric hypoxia.

Results and Discussion

Selection of PPARα Variants in Sherpas

Lowlander and Sherpa subjects were participants of the research expedition, Xtreme Everest 2 (25). The Lowlanders comprised 10 investigators selected to operate the Everest Base Camp (EBC) laboratory. Sherpas (n = 15) were sex-matched (73% male) from 15 villages in the region, with ages ranging from 25–80 years (median age 43). They had lived in their home village since birth and had never visited the Lowlands. The Sherpas were studied before and after a 3-week acclimatization period in Kathmandu (1,500 m), with further visits to the EBC (5,300 m) (26).

Significance

A relative fall in tissue oxygen levels (hypoxia) is a common feature of many human diseases including heart failure, lung diseases, anemia and many cancers, and can compromise normal cellular function. Hypoxia also occurs in healthy humans at high altitude due to low barometric pressures. Human populations resident at high altitude in the Himalayas have evolved mechanisms that allow them to survive and perform, including adaptations that preserve oxygen delivery to the tissues. Here we studied one such population, the Sherpas, and found metabolic adaptations, underpinned by genetic differences, which allow their tissues to use oxygen more efficiently, thereby conserving muscle energy levels at high altitude, and possibly contributing to the superior performance of elite climbing Sherpas at extreme altitudes.

Reserved for Publication Footnotes
Fig. 1. Subject genetics, ascent profile, arterial blood O\textsubscript{2} saturation, muscle hypoxia and circulating NO metabolites. A) Genotypes of Lowlanders and Sherpas at 3 PPAR\textalpha SNPs - subjects homozygous for the putatively advantageous allele in black, heterozygous subjects in gray and subjects homozygous for the non-advantageous allele in white (digits in segments refer to number of subjects with genotype); B) Ascent profile including timing of biopsies; C) Arterial hemoglobin-\textsubscript{O2} saturations; D) Muscle VEGFA expression, and E-H) plasma nitrogen oxides in Lowlanders (L) and Sherpas (S) at baseline (B) and early (A1) and late (A2) altitude. Mean ± SEM (n = 4-15). †P ≤ 0.05; †††P ≤ 0.001 B vs A1 within cohort. ΔP ≤ 0.05 A1 vs A2 within cohort.

Solukhumbu and Rolwaling valleys. No subject ascended higher than 4,200 m in the 3 months preceding the trek, nor above 2,500 m in the preceding 3 weeks. In addition, Sherpas presented evidence of sole Sherpa ancestry for 2 generations (i.e. 4 Sherpa grandparents). The frequency of putatively advantageous PPAR\textalpha alleles (8) was higher in Sherpas than Lowlanders (Fig. 1A; Table S1), with genotype frequencies of the cohorts being significantly different at 2 single nucleotide polymorphisms (SNPs), rs6520015 and rs7292407 (P = 0.0091), though not rs9627403. This reflected patterns reported in some other Tibetan groups (26).

Muscle Hypoxia and Circulating NO Metabolites

Baseline testing, including blood sampling, muscle biopsy sampling, high-resolution respirometry of permeabilized muscle fibers and oral glucose tolerance tests (OGTT) took place in London (35 m) for Lowlanders and Kathmandu (1,300 m) for Sherpas (25). All subjects then followed an identical ascent (Fig. 1B) from Kathmandu to EBC (5,300 m) whereupon further testing took place at an early timepoint (A1; 15-20 d post-departure for Lowlanders, 11-12 d for Sherpas), and a late timepoint (A2; 54-59 d post-departure) for Lowlanders only. At the time of sampling, both groups had passed through the acute phase of hypoxic exposure (<24 h) (1) and had been sufficiently exposed to chronic hypoxia for acclimatization to have occurred. Indeed, arterial hemoglobin-\textsubscript{O2} saturations were similarly low in both groups (Fig. 1C), whilst muscle expression of the HIF-target VEGFA increased in all subjects (Fig. 1D), indicating a molecular response to hypoxia. Following measurements at A1, the Lowlanders remained at EBC for 2 months to carry out research, presenting an opportunity to collect data pertaining to longer-term metabolic acclimatization. Interestingly, VEGFA

male, cf. 70% in Lowlanders) and age-matched (26.8 ± 1.2 yr, cf. 28.0 ± 1.6 yr in Lowlanders) group living in Kathmandu and the

Fig. 2. Fatty acid oxidation and regulation in muscle. A) PPAR\textalpha expression; B) CPT1B expression; C) HADH activity; D) Oxidative phosphorylation with octanoylcarnitine&malate (FAO\textsubscript{P}); E) Total carnitine; F) Long chain/total carnitine ratio in Lowlanders and Sherpas. Gene expression and carnitine levels are expressed relative to Lowlanders at baseline. Mean ± SEM (n = 6-13). *P ≤ 0.05; **P ≤ 0.01 Lowlanders vs Sherpas at baseline. †P ≤ 0.05 baseline vs altitude within cohort.
Fig. 3. TCA intermediates and activity in muscle. A) Citrate synthase activity and B-L C) TCA cycle intermediates in Lowlanders and Sherpas. Metabolite
levels are expressed relative to Lowlanders at baseline. Mean ± SEM (n = 7-14). *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001 Lowlanders vs Sherpas at baseline.
†P ≤ 0.05; ††P ≤ 0.01 baseline vs altitude within cohort.

expression was no longer elevated by this timepoint, suggesting further acclimatization had occurred.

Fig. 4. Mitochondrial oxygen consumption, efficiency and uncoupling protein expression. A) N-OXPHOS (GMp), B) S-ETS capacity (Sε) and C) NS-
OXPHOS capacity (GMP) in permeabilized muscle fibers from Lowlanders and Sherpas. D) Octanoylcarnitine&malate-supported LEAK (FAO
L) and E) OXPHOS coupling efficiency. F) Muscle UCP3 expression relative to Lowlanders at baseline. Mean ± SEM (n = 7-11). **P ≤ 0.01; ***P ≤ 0.001 Lowlander vs
Sherpas at baseline. †P ≤ 0.05; ††P ≤ 0.01 baseline vs altitude within cohort. ΔP ≤ 0.05; ΔΔP ≤ 0.01 altitude 1 vs 2 within cohort.

To our surprise, there were no differences in circulating N-nitrosamine (RNNO), S-nitrosothiol (RSNO), nitrate (NO3-) or nitrite (NO2-)
concentrations between Lowlanders and Sherpas at baseline (Fig. 1E-H). In Lowlanders, a transient increase in plasma RNNO levels occurred
upon arrival at EBC (P < 0.05) but disappeared by the later timepoint (Fig. 1E). In Sherpas, plasma nitrate levels fell at altitude (P < 0.05; Fig. 1G) and
nitrite levels increased (P < 0.05; Fig. 1H), whilst in Lowlanders nitrite levels fell by the later timepoint (P < 0.05). The absence of large
differences in NO metabolites between the groups at baseline or at altitude, suggested an adaptive phenotype in Sherpas that is
distinct from other Tibetan highlanders (13).

Lower Fatty Acid Oxidation Capacity in Sherpas
Skeletalmusclebiopsiesrevealedmarkeddifferencesingene
expression and FAO capacity between Sherpas and Lowlanders. Expression of
PPARA mRNA was 48% lower in Sherpas than Lowlanders (P < 0.05; Fig. 2A), thus the putatively advantageous PPARα allele is associated with diminished expression. Correspondingly, expression of the PPARα target CPT1B was 32% lower in Sherpas at baseline compared with Lowlanders (P < 0.05; Fig. 2B). The PPAR4 gene contains 139 SNPs. rs6520015 is one of the tagging SNPs reported by Simonson et al (8), however it appears to be a non-coding variant. It is thus uncertain whether the SNP itself affects transcriptional regulation, or whether it tagging a functional variant elsewhere, modifying expression or mRNA stability. Ascent to EBC did not alter PPAR4 expression in either
group, yet despite this CPT1B expression decreased by 44% in
Lowlanders ($P < 0.05$) but did not decrease further in Sherpas. This suggests that the Lowlander response to hypoxia involves decreased PPARG transcriptional activity without changes in PPARG expression, similar to hypoxic rat skeletal muscle (27).

Gene expression changes do not necessarily reflect protein levels or activity, therefore we measured activity of the β-oxidation enzyme 3-hydroxyacyl-CoA dehydrogenase (HADH), finding it to be 27% lower in Sherpas than Lowlanders at baseline ($P < 0.05$), and not changing in either group following ascent (Fig. 2C). Moreover, fatty acid oxidative phosphorylation capacity (FAO) was measured as the oxygen flux in saponin-permeabilized muscle fibers with octanoyl carnitine, malate and ADP, using high-resolution respirometry (28). FAO was 24% lower in Sherpas than Lowlanders at baseline ($P < 0.01$), and did not change in either group following ascent (Fig. 2D, Fig. S1). Ex vivo measurements may be particular to assay conditions used, therefore we also measured muscle metabolite levels to indicate changes in metabolism in vivo. Total carnitine concentrations decreased in Lowlanders with time at altitude ($P < 0.05$), though were not significantly different to those in Sherpas at baseline (Fig. 2E). The ratio of long chain acylcarnitines to total carnitines, however, increased in Lowlanders with time at altitude ($P < 0.05$; Fig. 2F), suggesting incomplete FAO results in accumulation of potentially-harmful lipid intermediates (29). In Sherpa muscle, however, the long chain acylcarnitine to total carnitine ratio was lower than in Lowlanders at baseline ($P < 0.05$), perhaps resulting from lower expression of CPT-1. In further contrast with Lowlanders, the long chain acylcarnitine to total carnitine ratio remained low in Sherpa muscle at altitude.

TCA Cycle Regulation at High Altitude

We therefore sought to understand whether there were differences between the populations in other aspects of mitochondrial metabolism. The TCA cycle enzyme citrate synthase (CS) is a candidate marker of mitochondrial content in human muscle (30). At baseline, Sherpas had a 26% lower muscle CS activity than Lowlanders ($P < 0.05$; Fig. 3A), in agreement with findings of 17-33% lower mitochondrial volume density in Sherpa versus Latin American and high altitude-adapted populations in the Americas and Asia (31) aimed to identify pathways of convergent evolution, and high altitude-acclimatization differences between the populations in other aspects of mitochondrial metabolism. The TCA cycle enzyme citrate synthase (CS) is a candidate marker of mitochondrial content in human muscle (30). At baseline, Sherpas had a 26% lower muscle CS activity than Lowlanders ($P < 0.05$; Fig. 3A), in agreement with findings of 17-33% lower mitochondrial volume density in Sherpa versus Latin American populations (22). In accordance with lower CS activity, concentrations of 6- and 5-carbon TCA cycle intermediates downstream of CS (citrate, aconitate, isocitrate, α-ketoglutarate) were lower in Sherpas than Lowlanders ($P < 0.001$). However, concentrations of 4-carbon intermediates (succinate, fumarate, malate, oxaloacetate) were not different (Fig 3B-I). This suggests an alternative strategy to supply the TCA cycle with succinate. Intriguingly, recent analysis of a large SNP dataset from low and high altitude-adapted populations in the Americas and Asia aimed to identify pathways of convergent evolution, and high altitude-acclimatization differences between the populations in other aspects of mitochondrial metabolism. The TCA cycle enzyme citrate synthase (CS) is a candidate marker of mitochondrial content in human muscle (30). At baseline, Sherpas had a 26% lower muscle CS activity than Lowlanders ($P < 0.05$; Fig. 3A), in agreement with findings of 17-33% lower mitochondrial volume density in Sherpa versus Latin American populations (22). In accordance with lower CS activity, concentrations of 6- and 5-carbon TCA cycle intermediates downstream of CS (citrate, aconitate, isocitrate, α-ketoglutarate) were lower in Sherpas than Lowlanders ($P < 0.001$). However, concentrations of 4-carbon intermediates (succinate, fumarate, malate, oxaloacetate) were not different (Fig 3B-I). This suggests an alternative strategy to supply the TCA cycle with succinate. Intriguingly, recent analysis of a large SNP dataset from low and high altitude-adapted populations in the Americas and Asia (31) aimed to identify pathways of convergent evolution, and highlighted fatty acid ω-oxidation as the most significant cluster of overlapping gene sets between high altitude groups (32). ω-oxidation, is normally a minor pathway in vertebrates, becoming more important when β-oxidation is defective (33), and through successive cycles oxidizes fatty acids to adipate and succinate in the endoplasmic reticulum, after which succinate enters the mitochondria with anaplerotic regulation of the TCA cycle (34).

Upon ascent to altitude, 6- and 5-carbon TCA cycle intermediates increased in Sherpa muscle ($P < 0.05$; Fig. 3B-E), suggesting improved coupling of intermediary metabolism. TCA cycle and oxidative phosphorylation. In Lowlanders, however, citrate, aconitate and isocitrate decreased at altitude ($P < 0.05$; Fig. 3B-D), despite no significant change in CS activity, perhaps reflecting impairments upstream. Interestingly, α-ketoglutarate concentrations were maintained in Lowlanders at altitude (Fig. 3E), despite decreased succinate downstream, which could be explained by the fall in both α-ketoglutarate dehydrogenase and isocitrate dehydrogenase activities at hypoxic concentration.
dehydrogenase, reported previously in Lowlanders following an identical ascent to EBC (21). ω-oxidation plays regulatory roles in hypoxia, including a suppression of HIF stabilization (35), but also supporting glutathione synthesis (36). Taken together, these results indicate different TCA cycle regulation in Sherpas and Lowlanders. The replete TCA cycle of Sherpas at altitude contrasts sharply with the depletion of TCA cycle intermediates in Lowlanders, and suggests a coupling of the TCA cycle in Sherpa muscle to their distinct intermediary substrate metabolism.

Greater Mitochondrial Coupling Efficiency in Sherpas

To further understand whether mitochondrial function differs between Sherpas and Lowlanders, we used high-resolution respirometry, to probe electron transfer system (ETS) capacity and coupling efficiency in permeabilized muscle fibers. At baseline, there was no significant difference between the two groups in OXPHOS or ETS capacities with either malate and glutamate (N-pathway through Complex I) or succinate as substrates (S-pathway through Complex II; Fig. 4A,B; Fig. S2), but Sherpas had a lower OXPHOS capacity with malate, glutamate and succinate combined to reconstitute TCA cycle function (NS-pathway; P < 0.01; Fig. 4C). There were no early changes in either group upon ascent. By the later timepoint, however, succinate-limited respiration had fallen in Lowlanders (P < 0.05; consistent with previous findings of decreased succinate dehydrogenase (Complex II) levels in subjects with sustained exposure >5300 m (21)).

In addition, we measured muscle fiber respiration in the absence of ADP (LEAK), i.e. O2 consumption without ADP phosphorylation. Expressing LEAK relative to OXPHOS capacity, it is possible to calculate OXPHOS coupling efficiency (37, 38). At baseline, Sherpa muscle mitochondria had lower LEAK respiration and greater coupling efficiency than Lowlander mitochondria (P < 0.001; Fig. 4D,E), indicating more efficient use of O2. Upon ascent to EBC and with sustained time at altitude, LEAK decreased in Lowlanders (P < 0.01), though it remained higher than in Sherpas (Fig. 4D), and coupling efficiency improved (P < 0.05; Fig. 4E). In Sherpas at altitude, LEAK did not change although coupling efficiency decreased (P < 0.01). One possible explanation for these differences in coupling efficiency might be the altered expression of uncoupling protein 3 (UCP3). UCP3 expression also increased in Lowlanders in the short-term (P < 0.01) in which there was decreased LEAK respiration. Moreover, UCP3 expression returned to baseline in Lowlanders with longer-term exposure with no further change in LEAK respiration. Overall, our results indicate that Sherpa muscle mitochondria are characterized by a lower OXPHOS capacity and greater, albeit declining, efficiency, whilst in Lowlanders OXPHOS efficiency improved with acclimatization.

Glycolysis and Glucose Metabolism

Next we investigated the capacity to derive cellular energy via glycolysis, which is increased in hypoxic cells (40), as this may allow ATP levels to be maintained when O2 is limited. Hexokinase activity was the same in both groups at baseline, and did not change at altitude (Fig. 5A), however lactate dehydrogenase (LDH) activity was 48% higher in Sherpa muscle than in Lowlanders (P < 0.05), indicating greater capacity for anaerobic lactate production (Fig. 5B). Fasting blood glucose was the same in Sherpas and Lowlanders at baseline, and decreased upon ascent in Lowlanders (P < 0.01; Fig. 5C), who also showed faster clearance of glucose during an OGTT (P < 0.001; Fig. 5D) in agreement with previous reports (41). In Sherpas, however, there was no indication of altered glucose homeostasis. Meanwhile, over time at altitude glycolytic intermediates increased in Lowlander muscle (Fig. 5E) with increased glucose-6-phosphate/fructose-6-phosphate and 2-phosphoglycerate/3-phosphoglycerate (Table S2). In contrast, total glycolytic intermediates did not change in Sherpa muscle, although 2-phosphoglycerate/3-phosphoglycerate decreased. These findings, might to some extent be explained by altered HIF activities. Many genes encoding glycolytic enzymes are upregulated by HIF-1 (42), whilst hypoglycemia is seen in Chuvash polycythemia, an autosomal recessive disorder in which HIF degradation is impaired (43). Taken together, our findings suggest an increased reliance on glucose by Lowlanders under resting conditions at altitude compared with Sherpas, but a greater capacity for lactate production in Sherpas which may prove effective upon exertion.

Energetics and Oxidative Stress

Finally, to understand the implications of Sherpa metabolic adaptation we investigated muscle energetics and redox homeostasis. Lowlanders at altitude showed progressive loss of muscle phosphocreatine (PCr; P < 0.001; Fig. 6A), indicating a loss of energetic reserve, which may relate to downregulation of muscle creatine kinase, as reported previously (21). By contrast, in Sherpa muscle, PCr increased at altitude (P < 0.01). Similarly, Sherpa muscle ATP levels, which were lower than in Lowlanders at baseline (P < 0.05), increased at altitude (P < 0.001; Fig. 6B), indicating superior redox homeostasis in the Sherpas. Antioxidant protection may represent another outcome of convergent evolution, having been reported in Andean subjects in association with protection of fetal growth (44), whilst glutathione levels are raised in Chuvash polycythemia suggesting a possible role for HIF activation (45).

Conclusions

It has long been suspected that Sherpa people are better adapted to life at high altitude than Lowlanders (46). Recent findings have suggested a genetic basis to adaptation in populations around the world (6), and here we show that Sherpas have a metabolic adaptation associated with improved muscle energetics and protection against oxidative stress. Genetic selection on the PPARα gene is associated with decreased expression, and thus lower fatty acid β-oxidation and improved mitochondrial coupling compared with Lowlanders, with a possible compensatory increase in fatty acid ω-oxidation. Sherpas also have a greater capacity for lactate production. With acclimatization to altitude, Lowlanders accumulate potentially-harmful lipid intermediates in muscle as a result of incomplete β-oxidation, alongside depletion of TCA cycle intermediates, accumulation of glycolytic intermediates, a loss of PCr despite improved mitochondrial coupling, and a transient increase in oxidative stress markers. In Sherpas, however, there were remarkably few changes in intermediary metabolism at altitude, but increased TCA cycle intermediates and PCR and ATP levels, with no sign of oxidative stress.

Genetic selection, by definition, requires an increased likelihood of advantageous gene variants being passed on to offspring. This may occur if the disadvantageous variant is associated with poorer survival to reproductive age and beyond, including greater fetal/neonatal mortality. Evidence supports precisely such effects with fetal growth at altitude being poorer in Lowlander populations than many native highlanders (47), including Tibetans (48) and Sherpas (49). Likewise, gene variants may affect
survival through childhood or fecundity/fertility in the hypoxic environment. We cannot speculate on the mechanism by which PPARα variants prove advantageous, however PPAR isoforms are expressed in the placenta (50) and influence female reproductive function (51). It would be of interest to see association of the PPARα variants with birth weight and measures of placental function in high altitude natives and Lowlanders exposed to hypoxia.

Our findings suggest a metabolic basis to Sherpa adaptation, which may permit the population to survive and perform at high altitude. Such adaptations may also underpin the superior performance of elite climbing Sherpas at extreme high altitude.

Materials and Methods

Subjects were selected from the participants of Xtreme Everest 2 (25). All Lowlanders were born and lived below 1,000 m, not descended from a high altitude-dwelling population and of European (Caucasian) origin. Subjects gave written consent, and underwent medical screening. All protocols were approved by UCL Research Ethics Committee and Nepali Health Research Council. Vastus lateralis biopsies were taken from the mid-thigh, muscle fibers prepared for respirometry (28) and respiration measured using a cell-permeant fluorochrome (53), 54. Enzyme activities were assayed as described (27). RNA was extracted and Taqman® assays used to analyse gene expression (Table 55). For metabolite analysis, a methanol/chloroform extraction (52) was followed by liquid chromatography-mass spectrometry (LC-MS). OTGIs were carried out on selected subjects on the day after biopsies. Blood plasma NO metabolites were quantified as described (53). Genomic DNA was isolated from whole blood and PPARα SNPs genotyped using Taqman® based allelic discrimination (Applied Biosystems). To compare cohorts at baseline, an unpaired two-tailed Student’s t-test was used (significance at P ≤ 0.05). Genotype frequencies were compared using a Chi-squared test. To assess the effects of altitude, a one-way ANOVA with repeated measures was used. Post-hoc pairwise comparisons were carried out with a Tukey correction.

Acknowledgements

The work was supported by PhD studentships from the BBSRC to JH (BB/F016581/1) and British Heart Foundation to AK (FS/09/050), an Academic Fellowship to AM from the Research Councils UK (EPSRC/E505052/1), a Physiological Society grant and support from Oroboros Instruments. JG thanks the MRC (MC UP A90 1006) and AB Sci. MF thanks the MRC and Faculty of Medicine, Southampton University. For all acknowledgements see SI.