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The development of intelligent music production tools has been of growing interest in re-
cent years. Deep learning approaches have been shown as being a highly effective method
for approximating individual audio effects. In this work, we propose an end-to-end deep neu-
ral network based on the Wave-U-Net to perform automatic mixing of drums. We follow an
end-to-end approach, where raw audio from the individual drum recordings is the input of the
system and the waveform of the stereo mix is the output. We compare the system to exist-
ing machine learning approaches to intelligent drum mixing. Through a subjective listening
test, we explore the performance of these systems when processing various types of drum
mixes. We report that the mixes generated by our model are virtually indistinguishable from
professional human mixes, while also outperforming previous intelligent mixing approaches.

0 INTRODUCTION

Audio mixing is the process of blending multitrack
recordings by manipulating the dynamics, spatialisation, or
timbre of the respective musical sources. This manipula-
tion is achieved through a set of linear and nonlinear audio
effects, such as gain, panning, equalisation (EQ), dynamic
range compression (DRC) and artificial reverberation [1].

A fully automatic mixing system is one where a set of
audio tracks can be fully mixed and produced by a compu-
tational system without human intervention [2]. There have
been a number of different approaches to attempt to solve
this task [3], however there is no single unified approach or
solution to the mixing problem [4].

Intelligent music production has been a growing field,
with many focuses on the latest growth in machine learn-
ing to be applied to audio. The aim of this work, is to
identify if it is possible for a deep learning approach to
learn the entire audio transformation. In this work, we will
use the task of mixing a set of drums together, to simplify
the problem from all musical mixes to a specific subgroup
mix [5]. Subgrouping is a common practice in music pro-
duction, where individual parts of a mix are broken down

*This paper is supported by EPSRC Grant EP/ L019981/1,
EPSRC grant EP/L01632X/1, Fusing Audio and Semantic Tech-
nologies for Intelligent Music Production and Consumption, EP-
SRC Grant EP/S026991/1 RadioMe: Real-time Radio Remixing.

into smaller mixes or stems, and drum subgroups are one
of the most commonly used stems [6].

This paper presents an end-to-end deep neural network
(DNN) approach to mixing of audio content, where raw au-
dio is both the input and the output of the system. A data
driven approach based on a variant of the Wave-U-Net [7]
is used to represent the mixing process to be undertaken,
and the audio will be manipulated directly by the neural
network to produce an output mix. Taking into account
that the Wave-U-Net is originally designed to perform au-
dio source separation, we investigate automatic mixing by
swapping input and output of the Wave-U-Net, i.e. the in-
put corresponds to the musical sources and the output to
the mixture.

The performance of this model is compared to a range
of human-made mixes. In addition, alternative approaches
to automatic mixing based on signal processing and ran-
dom forests regressors are used as baseline models. It is ex-
pected that a neural network approach to automatic mixing
considerably outperforms mixing approaches derived from
traditional signal processing. We explore the performance
of these systems via a listening test and we find that the
Wave-U-Net mixes are virtually indistinguishable from a
human-made mix while also achieving higher ratings than
mixes from baseline models.

The rest of the paper is structured as follows. Section 1
presents the state-of-the-art in intelligent mixing systems,
discussing existing machine learning approaches to music
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production and identifying relevant preceding work. Sec-
tion 2.1 explains the deep learning approach that is im-
plemented and compared to a previous machine learning
approach, presented in Section 2.2. Section 2.3 presents
the dataset that we will use for training and evaluation of
this paper. The resulting generated mixes are then evalu-
ated using a subjective listening experiment, described in
Section 3. The effectiveness of the deep learning mixing
methods are evaluated in Section 4, and conclusions pre-
sented in Section 5.

1 RELATED WORK

There are a number of different approaches that have at-
tempted to automate the process of music mixing. Pachet
and Delerue [8] first framed the music mixing process as
a constraint optimisation problem, where rules are defined
and simultaneously evaluated to find the most optimal solu-
tion in a dynamically changing environment. The concept
of mixing rules has since been taken up in a large portion
of literature, including by Bocko et al. [9], who proposed
building an expert knowledge fully automatic mixing sys-
tem, where audio features are related to mixing rules. De
Man and Reiss [10] developed this approach further, defin-
ing some potential rules for how they can be applied. Ev-
erardo [11] proposed formalising the logical rule structure,
defining a rule syntax and structure, which was then devel-
oped further and formalised within the semantic web con-
text by Moffat et al. [12].

Conversely, there are a number of approaches which rely
on some grounded theory and predefined signal processing
paths to perform music mixing. Matz et al. [13] combined
a range of different automatic mixing processes, and con-
structed a flow diagram as to how different tracks should be
mixed, including source separation. They demonstrate the
importance of gain and equalisation in automatic mixing.
De Man et al. [14] discussed many different approaches for
automating each individual audio effect, and how this can
be applied to automatic mixing process, however, there is
limited acknowledgement as to the impact that audio ef-
fects will have on each other.

Moffat and Sandler [2] present an overview of au-
tomatic mixing approaches. It is identified that, instead
of using formal logic structures for rule mixing, a data
driven approach to understanding the music mixing pro-
cess would be very valuable. This is demonstrated by
Martı́nez Ramı́rez and Reiss [15] who propose a proof-
of-concept of a data driven, neural network approach to
stem audio mixing. Furthermore, Mimilakis et al. [16] in-
vestigate DNNs to predict gain coefficients in order to per-
form automatic DRC for mastering applications. Moffat
and Sandler [17] developed a machine learning, data driven
approach for prediction of gain mixing parameters, where
the gain parameters are approximates using a reverse engi-
neering approach [18].

The approach we take in this paper leverages the recent
progress made in other audio processing tasks – mainly
audio source separation, which requires the prediction of
audio sources from a given audio mixture. While it intu-

itively represents the “opposite” to the mixing problem we
consider, there is considerable overlap in the types of chal-
lenges involved. Firstly, in both cases there is uncertainty
about the correct output for a given input – for separation,
since different sources can sometimes produce the same
mixture, and for automatic mixing due to the wide vari-
ety of suitable effects that could be applied to the stems.
Both tasks also require models that process audio signals
as input and output audio signals, which is challenging
as they are very high-dimensional due to their high sam-
pling rate. To deal with the audio input and output, almost
all previous separation approaches convert the audio in-
put to a spectrogram-based representation. Most systems
use this representation to predict spectrograms for each
source before converting them to time-domain audio out-
puts [19, 20, 21, 22, 23].

However, spectrogram-based approaches suffer from
two problems. Firstly, they cannot take input phase into ac-
count, which can be detrimental to performance. Secondly,
the spectrogram inversion step to obtain time-domain au-
dio signals is only approximate, which introduces artifacts.
When applying these approaches to our automatic mixing
task, where time-based effects cause phase manipulations
and oftentimes only subtle changes need to be applied, the
above issues can be expected to be especially noticeable.
Furthermore, preserving the phase of the stems when per-
forming mixing is a desirable property of an automatic
mixing approach to avoid unexpected phase interactions
between the stem signals.

To avoid the above issues, novel time-domain ap-
proaches have been proposed in recent literature.
Martı́nez Ramı́rez et al. [24, 25, 26, 27] investigated
DNNs for audio processing tasks, such as modeling of
various types of audio effects. Similarly, Wright et al. [28]
explored variants of the WaveNet architecture [29] and re-
current neural networks to model distortion audio effects.
Hawley et al. [30] proposed a DNN based on U-Net [31]
and Time-Frequency [32] networks to model DRC. In-
stead of requiring a spectrogram inversion step, most of
these systems are simply trained to minimise a mean-
absolute-error (L1) or mean-squared-error (L2) between
the predicted and the ground truth time-domain signal.

The aforementioned methods model only static or para-
metric configurations of individual audio processors, there-
fore a much more complex task such as mixing may not
be feasible. In the domain of speech enhancement, various
time-domain approaches have been proposed [33, 34]. The
Wave-U-Net [7] has been shown to achieve high perfor-
mances for the more general problem of audio source sep-
aration. Due to its generic, convolutional architecture, we
hypothesise that it can be used as a generic audio-to-audio
transformation model with only little adaptation. Thus, we
explore automatic mixing by swapping the inputs and out-
puts of the Wave-U-Net.
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Upsampling block 1Downsampling block 1

Stem 1

Crop and concat
Downsampling block 2
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Downsampling block L
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1D Convolution, Size 15

1D Convolution, Size 1
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...
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Crop and concat

Mixed audio (multi-channel)

Fig. 1. Block diagram of the adapted Wave-U-Net for automati-
cally mixing K stems using L layers

2 METHODOLOGY

2.1 Wave-U-Net
The main model used in this paper is a variant of the

Wave-U-Net proposed in [7] for the task of audio source
separation. It uses raw audio input and output combined
with a series of downsampling (DS) and upsampling (US)
blocks consisting of 1D convolutions followed by resam-
pling operators to compute features at multiple-timescales
that can be used for prediction.

Since the model was successfully employed for mono as
well as stereo separation simply by changing the number of
input and output channels in the first and last convolution,
respectively, we suspect it can be used for audio-to-audio
transformation tasks generally and adapt it to drum mixing.

Considering the model has raw audio input and output,
we did not use any preprocessing of the audio signals,
which are sampled at 44.1 kHz. Our goal is to blend K
monophonic waveforms or stems S1, . . . ,SK into a stereo
mixture waveform M.

Besides changing the number of input channels to the
number of mono sources to be mixed (K = 8), and the
number of output channels to 2 due to the stereo mixture
output required, we modify the original Wave-U-Net as fol-
lows. The number of layers L is reduced from 12 to 10 to
accelerate training and avoid overfitting.

This reduces the receptive field to 32750 samples or 0.74
seconds. However we use the Wave-U-Net variant with ex-
tra input context, which allows the model to consistently
learn temporal correlations and also reduces the output ar-
tifacts. The current receptive field together with the extra
input context should be sufficiently large for drum mixing
as the mixed output at a certain time point likely does not
depend on stem activity occurring multiple seconds before
or after.

Each input consist of 121843 samples or 2.76 seconds
and the output corresponds to the centre part of the inputs
and consists of 89093 samples or 2.02 seconds. In order to

Block Operation Shape

Input (121843, 8)

DS, repeated for Conv1D(Fc · i, fd)
i = 1, ...L Decimate

Conv1D(Fc · (L + 1), fd) (119, 264)

US, repeated for Upsample
i = L, ...1 Crop and Concat(DSi)

Conv1D(Fc · i, fu)

Crop and Concat(Input)
Conv1D(K,1) (89093, 2)

Table 1. Detailed architecture of the modified Wave-U-Net with
input and output frame sizes of 121843 and 89093 samples re-
spectively. DSi corresponds to the output of the ith DS block be-
fore decimation.

obtain the prediction for a full drum mixture, we concate-
nate the output frames as non-overlapping segments.

We remove the tanh nonlinearity from the last convolu-
tion and instead allow all real-valued outputs during train-
ing. This is to avoid the need to saturate the nonlinearity
with extreme values when outputting amplitudes close to
+1 or−1. To ensure the outputs are between +1 and−1 at
test time, we simply clip the outputs accordingly. The rest
of the convolutional layers are followed by the LeakyReLU
activation function.

A block diagram can be seen in Figure 1 and its structure
is described in detail in Table 1. The DS blocks perform
1D convolutions of Fc · i filters of size fd = 15, with layer
i ∈ [1,L]. Where Fc = 24 and corresponds to the number
of initial filters. The resulting feature map is followed by
a decimate operation which discards values for every other
time step to reduce the time resolution by 50%.

The US blocks use linear interpolation to perform an up-
sampling of a factor of two, and concatenate the resulting
feature map with the cropped output of the respective DS
block before decimation. This is followed by a 1D convolu-
tion of Fc · i filters of size fu = 5, with i ∈ [L,1]. All con-
volutions are along the time dimension, without implicit
padding and all strides are of unit value.

Training is performed as in the original paper [7], but
using the L1 instead of the L2 distance as training loss,
based on previous observations with neural models that
output raw audio obtaining perceptually more convincing
results [24, 26]. Adam is used as optimizer and we use an
early stopping patience of 20 epochs followed by a fine-
tuning step. The initial learning rate is 10−4 and the batch
size is 16. We do not double the batch size in the fine-tuning
stage due to memory requirements, but still lower the learn-
ing rate to 10−5. We select the model with the lowest loss
for the validation subset. A full implementation and trained
models can be found online.1

2.2 Random Forest-based Approach
For the purposes of evaluation, we felt it appropriate

to perform comparison with an existing data-driven au-
tomatic mixing approach. This is used, to understanding
how our automatic mixing approach works, in comparison

1https://github.com/f90/Mix-Wave-U-Net
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to other state of the art approaches. As there is currently
no existing end-to-end automatic mixing system published,
we have combined a series of different approaches, where
gain, compression and reverberation are applied to the au-
dio tracks in the mixing process.

For the gain balancing, we implement an alternative ma-
chine learning driven automatic mixing approach. The ran-
dom forests mixing method, as presented by [35], was used
for comparison. This approach uses a multiple estimator
random forest regressor to predict the gain parameters used
to mix each of the different tracks together. These gain pre-
dictions, are based on reverse engineering of a mix [18],
which provide the ground truth for training. For this case,
the training and validation datasets were combined, as the
validation set is not required, due to the bootstrap aggre-
gation approach inherent within the random forest method.
The objective results of this model on the training dataset
are R2 = 0.984, and on the combined test and validation
dataset we achieve R2 = 0.915. Once gains for each track
are calculated, the tracks were summed together to pro-
duced the dry mix.

To create the wet mix, dynamic range compression
and reverberation is applied once the individual tracks
are mixed. Both of these approaches use a knowledge-
engineering approaches, where effect parameters were au-
tomated based on signal analysis. This was done, as there
are no data-driven approaches to apply the dynamic range
compression or reverberation to audio. The compression
uses the work described in [36], and automatic reverbera-
tion is applied using the approach given in [37]. The com-
pressor is specifically designed for application to drums,
with the aim of emphasising transients.

The timing parameters are often considered the most im-
portant settings on a compressor [38]. A beat tracker is
used, in combination with a tail decay envelope follower,
to identify the appropriate attack and release times on the
compressor. The threshold of the compressor was set to the
Root Mean Square of the signal, and the ratio was set as a
function of the crest factor.

Reverberation is applied, to give a spatial balance. An
algorithmic reverberator is taken [39], and the control pa-
rameters automated based on the a list of known mixing
rules [40]. The tempo of the track is extracted, and used to
control the diffusion and tail decay parameters of the re-
verb, based on a mapping between the tempo and RT60 of
a musical piece [41, 42]. Pre-delay is calculated as a func-
tion of the tempo and the Haas fusion point [43], whilst
reverb gain and damping are both calculated as functions
of the transient nature of the audio signal.

In both the compressor and the reverb cases, these are
signal processing and audio feature derived approaches to
automate the effect based on known mixing rules, and as
such, it is expected that these approaches will produce
greatly different results to the proposed machine learning
methods. It is hypothesised that the signal processing de-
rived mixing methods will under-perform when compared
to the machine learning approaches, as these approaches
rely on manual interpretation of mixing approaches, rather
than an analysis of data to reproduce a mix - which, it is

expected will be more simple in the case of the drum stem,
as presented in this work.

2.3 Dataset
The ENST drum dataset [44], is a dataset which contains

multitrack drum recordings and two human expert made
stereo mixes for each drum track; the dry mix, which con-
sists of panning and loudness gain; and the wet mix, which
consists of the aforementioned effects, plus EQ, compres-
sion, artificial reverberation and mastering DRC.

This dataset includes recordings of three different drum-
mers, and three different drum kits, playing a variety of dif-
ferent musical styles and playing techniques. In each case,
the multitrack recordings are obtained with 7 or 8 mono
microphones: bass drum, snare drum, hi-hat, mid tom, low
tom, mid-low tom (if available), left overhead, and right
overhead. We use a silence signal of zeros as the input track
when the mid-low tom is not available.

The ENST dataset is arranged in four different types
recording: hits; phrase; solo; and accompaniment. Each
track is between 7 seconds and 84 seconds long, with a me-
dian duration of 19.8 seconds. The total duration of audio
material is around 225 minutes.

hits The drummer hits a single drum a number of times
with a single type of stick

phrase The drummer performs a short excerpt in a re-
quested style, and then at a range of different tempo
and complexity levels, determining whether fills
would be included.

solo A specific phrase, designed to last around 30 seconds,
in which the drummer is free to perform throughout
the entire drum kit, as they see fit.

accompaniment or minus-one The drummer performs
along with either a CD or a generated MIDI file,
playing to a strict rhythm.

Training Validation Test Total

Hits 96 7 5 103
Phrase 122 7 6 129
Solo 8 2 1 10

Minus-One 58 4 2 62
Total 284 20 14 304

Percentage 89.3% 6.3% 4.4% 100%
Table 2. Distribution of the number of drum recordings types into
training, validation and test set

All tracks in the dataset were used, and split between
training, validation and test, as described in Table 2. No
data augmentation techniques were used to increase the
data size.

3 EXPERIMENTS

The training procedures were performed for each
method and for each mixing task. Then, the models were
tested with samples from the test subset which resulting
mixes were evaluated using a subjective listening experi-
ment.

4 J. Audio Eng. Sco., Vol. 1, No. 1, 2020 October
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Fig. 2. Screenshot of the listening experiment interface.
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Fig. 3. Violin plot of preference ratings.

3.1 Participants
Twenty participants were recruited as volunteer staff and

students from the University of Plymouth and the Univer-
sity of London. All participants reported that they trusted
their ears, and had some experience of critical listening.
There were no financial incentives provided. Six partici-
pants identified as female and fourteen participants identi-
fied as male. No other genders were identified by the par-
ticipants. The mean age of participants was 26.5, with a
standard deviation of 8.48, and all participants were over
18 years old. No test took longer than 38 minutes, so fa-
tigue was not an issue [45].

3.2 Setup and Procedure
Participants were asked to complete an online listening

experiment, which was constructed using the Web Audio
Evaluation Tool [46]. Participants were asked to use a web
browser to access the online experiment where they were
asked to use a good pair of quality headphones to com-
plete the experiment. The headphone type and listening
conditions were self reported, and any poor quality bud-
get headphones, or excessively noisy environments were
removed from the listening experiment. All the different
mixes of a single drum loop were presented on the same

Mix p W

Anchor 2.22× 10−14 0.698
Random Forest Dry 1.48× 10−5 0.933
Random Forest Wet 7.66× 10−19 0.475
Reference Dry 6.22× 10−5 0.942
Reference Wet 1.63× 10−4 0.948
Wave-U-Net Dry 2.16× 10−4 0.950
Wave-U-Net Wet 3.82× 10−4 0.953

Table 3. Shapiro-Wilk test for normality.

Mix Anchor Random Forest Reference Wave-U-Net
Dry Wet Dry Wet Dry Wet

Anchor · *** * *** *** *** ***
Random Forest Dry *** · *** *** *** *** ***
Random Forest Wet * *** · *** *** *** ***
Reference Dry *** *** *** · o o o
Reference Wet *** *** *** o · o o
Wave-U-Net Dry *** *** *** o o · o
Wave-U-Net Wet *** *** *** o o o ·
Table 4. Post hoc Mann-Whitney test results of pairwise compar-
ison of mix creation method on preference rating, with Bonferroni
Correction. o≥ 0.05, * < 0.01, *** < 0.0001, · (no comparison).

screen, and participants had to finish evaluating all samples
before moving to the next screen. The interface, as shown
in Figure 2, where each vertical bar can be selected to play
back an audio sample. The participants were asked to rate
each sample based on their preference and within a con-
tinuous scale. The experiment conducted, was MUSHRA
inspired [47], however we used a slightly different proto-
col, to encourage direct comparison between audio sam-
ples, rather than comparison to a reference, and to ensure
that participants select the preferred mix. This approach
allows participants to present results in a specific order,
which is appropriate for the intended analysis, which is the
Mann-Whitney Rank Sum test. This follows a methodol-
ogy similar to that of other subjective evaluation experi-
ments [48, 49].

Participants were initially asked to set the volume to a
comfortable level and refrain from adjusting the device vol-
ume level for the duration of the experiment, instead using
the in-experiment volume control. No participant changed
the volume by more than 6dB, using the in-experiment vol-
ume control.

3.3 Materials
Participants were asked to rate a series of different mixes

of drum loops on preference. There were six different drum
loops from the test dataset, which were presented, one at a
time. In each case, there were seven different mixes of each
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drum loop, all presented together, and participants were
asked to inter-compare the samples presented and rank on
preference.

The seven different mixes were - two mixed by a hu-
man professional engineer, as the reference samples, both
provided from the ENST Drum dataset [44].Two were pro-
duced by our deep learning approach presented in Sec-
tion 2.1, which will be named the Wave-U-Net approach.
Two were produced by the Random Forest approach pre-
sented in Section 2.2, and the final sample was the hid-
den anchor. The latter makes use of two overhead mi-
crophones, with hard panning, and a 3.5 kHz low-pass
filter, as per the MUSHRA standard [50]. Two samples
each are presented for the reference, Wave-U-Net and Ran-
dom Forest, since one represents a dry and the other one
a wet mix. The drum loops to be evaluated were taken
from the phrases, solo, and minus-one sample groupings,
as the ability to mix the hits grouping was not considered
to be as important. The tracks used were also selected to
ensure that there were two examples from each drummer,
and each drum setup, to evaluate generalisability. All sam-
ples were loudness normalised to−28dBFS, in accordance
with ITU-R BS177-2 [51]. All samples were played back
at 44.1 kHz, the native sample rate of the tracks. The or-
der of the different drum loops, and the individual track
placement and naming was randomised to remove bias. All
audio samples used for evaluation can be found online2.

4 RESULTS

In this Section, we will present the results of our lis-
tening test and analyse how well our proposed approach
compares to the baseline approach as well as the reference
mixes.

4.1 Quantitative
Figure 3 shows the violin plot of the results. Firstly, the

references and anchors were chosen appropriately, since
they received extremely high and low ratings, respectively,
supporting the validity of our experimental results. Overall,
our Wave-U-Net approach performs very well, producing
ratings similar to those given to the reference mixes, with
small differences between the dry and wet tasks. The per-
formance of the Random Forest approach is substantially
lower and strongly depends on whether the wet or dry mix-
ing task is considered. The low ratings for the wet task are
due to the Random Forest method being a combination of
previous approaches for automatic gain, DRC, and reverb.
These methods have been shown to work well only in iso-
lation, and based on our results, a further exploration of the
parameters of each method is required.

To determine the statistical significance of these differ-
ences between approaches, we perform a series of statisti-
cal tests. Firstly, the Shapiro-Wilk test is used to check for
normality and homogeneity, with the null hypothesis being
that the data came from a normally distributed population.

2https://mchijmma.github.io/drum-mixing-wave-u-net/

Table 3 presents the results of the Shapiro-Wilk test, and
as can be seen, for all mix types, the results are statistically
significant (α = 0.001), the null hypothesis is rejected in
all cases, and the data are considered to be non-normal,
confirmed by visual inspection of Figure 3. As such, non-
parameteric analysis of the data is required.

A Kruskal-Wallis test is then conducted, based on the
non-parametric nature of the data, to identify whether a
statistically significant difference exists in the user pref-
erences between each of the different mixing approaches
(H = 485, p = 1.44× 10−101). The Kruskal-Wallis test
showed a between all mixing approaches, that the null
hypothesis, of all mixing approaches deriving from the
same distribution, was rejected, as p < α . There is a sig-
nificant difference between the preference rating between
each of the different mixing approaches. To identify ex-
actly which groups are significantly different, a post hoc
pairwise Mann-Whitney test is performed, with Bonferroni
correction. The results of this are presented in Table 4.

Through inspection of Figure 3 and Table 4, it can
be seen that the anchor, and each of the Random Forest
approaches are significantly different from all other ap-
proaches, including each other. It should also be noted
that there is no significant difference in the user ratings
for the Wave-U-Net mixed approaches and the reference
human-made mixes. Furthermore, the Wave-U-Net mixes
have very similar median values to the reference audio
samples.

4.2 Qualitative
For both dry and wet mixing tasks and from the test sub-

set, Figure 4 shows the waveform and spectrogram of se-
lected mixes. From the spectrograms, it can be seen that
the Random Forest wet mix highly diverges from refer-
ence, hence the reported poor perceptual ratings. This per-
formance is due to the model adding large amounts of arti-
ficial reverberation. From the waveforms, the Random For-
est dry model produces a better fit than the Random Forest
wet model, thus it applies gain and panning more effec-
tively.

However, dry and wet Wave-U-Net mixes, both in the
time and frequency domains, are indistinguishable from the
reference samples. The latter is displayed in greater detail
in Figure 5, where a segment of the wet mixes in Figure 4c
is shown. The segment corresponds to the onset transient of
a bass drum and, as expected, the reference and Wave-U-
Net mixes are almost identical sample-by-sample. In par-
ticular, the most noticeable effects properly applied by the
Wave-U-Net models are gain, panning, EQ and DRC. Em-
pirically, the wet mixes produced by the model seldom lack
some reverb that is present in the reference mixes, although
additional testing is required.

5 CONCLUSION

The results in Section 4, clearly show that the Wave-U-
Net approach performed significantly better than the alter-
native automatic mixing approach, and that the user pref-
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erence ratings are not significantly different from that of a
human made mix. As such, it can be deemed that the Wave-
U-Net mixing approach is indistinguishable from a human
mixer, in terms of preference rating. A user would not be
able to state that the human or computer made mix is better,
using this system.

We believe that this is the first time where an automatic
mixing system is able to produce a mix which is not signif-
icantly different from a human made mix, in terms of user
preference. Not only that, but this system has the capacity
to learn, not just a single audio effect or predefined audio
effect chain, but to directly learn the audio transformation
and all signal processing involved in producing a musical
mix. Thus, the ability learn and apply all audio effects si-
multaneously is highly beneficial to the mixing process, as
it acknowledges the fact that all aspects and parameters of
a mix are inherently intertwined and interrelated [52].

It is clear from this demonstration, that neural net-
work approaches to mixing can produce impressive re-
sults. These results were due to the mix being performed
specifically on drum content. The latter consists of a well

structured dataset, with a relatively consistent set of input
channels, channel ordering and source content. Thus, even
with the variation over three different recording setups,
three different drummers and a range of different drum-
ming styles, there is clear need for further development and
analysis of this approach to investigate how generalisable
our results are to other mixing contexts.

We have also demonstrated, that a musical mixing ap-
proach, where there is a focus on mixing based on sub-
groups and specific audio content, could lead to much more
effective intelligent mixing systems than developing intel-
ligent mixing tools making use of specific audio effects.

5.1 Further Work
There are a range of developments that could be utilised

to further improve this intelligent mixing system. Our ex-
periments are limited to drum mixing in particular, as this
problem is well defined, mixing is usually relatively con-
sistent, and occurs in a large number of styles and genres
of music. However, it is not known how well our approach
performs for similar mixing tasks. Additionally, the input
to the network is static – a fixed number of stems needs to
be provided in a certain order. Future developments could
aim to make the network invariant to the order of the differ-
ent inputs, and still produce suitable mixes even if some in-
puts are missing. This more generalisable approach would
then allow for an extension to musical content with varying
instrumentation beyond just drums. In addition, further ex-
ploration of model performance for each type of drum kit
could also be investigated.

The musical mixes were all produced by a single indi-
vidual, who mixed the tracks to fit in with a given musi-
cal content. The musical context of the mix will be very
important to the system, so perhaps improvements could
be provided with an associated musical context to fit the
mix into. Furthermore, obtaining multiple mixes per set of
stems would allow probabilistic modelling of the potential
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space of effects that could be applied in each case, rather
than predicting a single mix.

We did not use any preprocessing for the input record-
ings or target stereo mixes, as throughout the dataset the
mixing and recording engineer maintained similar ampli-
tude levels for each type of input and mix. Therefore, a
robustness analysis of the model is required for inputs with
different volume levels. A further approach to improve the
results could be to apply data augmentation techniques to
make the end result invariant to preprocessing on any or all
audio tracks. Tackling the above challenges and the avail-
ability of a more general, large dataset of annotated multi-
track audio would certainly facilitate a more generalizable
intelligent music production approach. The standardisation
of these datasets, with associated musical mixes, both hu-
man and computer produced mixes, would greatly aid in
the development of larger and more impressive intelligent
mixing systems.

To that end, there area number of technical improve-
ments that could be made to this work. The use of a more
appropriate loss function, that contains more perceptually
relevant parameters could be advantageous. Equipping the
model with some additional control parameters so the user
can shape certain aspects of the generated musical mix
would also be beneficial. As future work, different mixing
tasks such as automatic drum time-alignment and removal
of drum bleed could be explored.
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