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Abstract 

Iterative decoding techniques shaked the waters of the error correction and communica­
tions field in general. Their amazing compromise between complexity and performance 
offered much more freedom in code design and made highly complex codes, that were 
being considered undecodable until recently, part of almost any communication system. 
Nevertheless, iterative decoding is a sub-optimum decoding method and as such, it has 
attracted huge research interest. But the iterative decoder still hides many of its secrets, 
as i t has not been possible yet to fully describe its behaviour and its cost function. 
This work presents the convergence problem of iterative decoding from various angles 
and explores methods for reducing any sub-optimalities on its operation. The decoding 
algorithms for both LDPC and turbo codes were investigated and aspects that contribute 
to convergence problems were identified. A new algorithm was proposed, capable of pro­
viding considerable coding gain in any iterative scheme. Moreover, it was shown that 
for some codes the proposed algorithm is suflicient to eUminate any sub-optimality and 
perform maximum likelihood decoding. Its performance and efficiency was compared to 
that of other convergence improvement schemes. 

Various conditions that can be considered critical to the outcome of the iterative de­
coder were also investigated and the decoding algorithm of LDPC codes was followed 
analytically to verify the experimental results. 
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1 Introduction 

1.1 The problem of reliable communication, the role 
of redundancy and the idea of channel capacity 

The essence of communication theory deals, among others, with the rehable transmis­
sion of data from one point to another. In between the sending point (transmitter) and 
the receiving end (receiver) exists the channel, through which the data propagates. The 
communication problem is a result of the random disturbance that is introduced to the 
propagating data by the channel. The noise, as this disturbance is known, affects the 
abihty of the receiver to identify reliably the sent data and target of the communication 
theory is to offer the techniques that solve the communication problem in the optimal 
way. 

Until the work of Shannon in 1948 [59], it was widely accepted that reliable communi­
cation at low error rates with the presence of noise, was unattainable. Eai'lier, in 1924 
Nyquist [40] had concluded that the maximum number of pulses that can be transmitted 
over a channel of bandwidth B and successfully be resolved at the receiving end is 2B 
pulses per second. Hartley, in 1928 [32], combined Nyquist's result with the concept of 
accuracy in signal reception to obtain the maximum amount of data that can be reliably 
communicated over a channel. Due to Hartley M messages can be rehably transmitted 
by a pulse with amplitude confined in the voltage range [—A, -^-A] and a receiver that 
can estimate the amplitude with accuracy ± A , i.e. with separation between different 
messages of 2A volts. Hence, the maximum amount of data that could be transmitted 
reliably over a channel would be equal to 

M = ( i + ^ j (1.1) 

The presence of noise would cause fluctuations to the amplitude of the received pulse that 
would lead the receiver to error decisions. Thus, the maximum amount of data that could 
be reliably transmitted by the channel for certain amount of noise would be dictated by 
the minimum accuracy A that is necessary in order to keep the different transmitted 



messages distinguishable by the receiver. In other words, this model suggested that the 

only way to transmit the M messages and still guarantee with high probability that they 

will all be distinguishable at the receiving end (therefore ensuring reliable communication) 

would be either to increase the amplitude of the transmitted pulse (i.e. the transmitted 

power) or the bandwidth. However, Hartley's model is very simplistic and does not 

describe properly the interrelation between the various parameters. 

1.1.1 The effect of redundancy 

In 1948, Shannon [59] proved that reliable conmiunication over a noisy chaiuiel of re­

stricted bandwidth is feasible, and incorporated the concepts of noise, bandwidth and 

signal magnitude into a new parameter called channel capacity [C). Shannon showed 

that as long as the information rate R is kept lower than or equal to the capacity C, the 

RT information bits can be delivered reliably to the receiving end with probability of 

error that reduces as the transmission period T increases. The addition of redundant bits 

that makes the information rate R less than unity is the main idea behind error control. 

Consider the case of an uncoded system i.e. a system where no redundancy is added. 

Assume that R = I and A; = RT information bits are transmitted, each represented by a 

wave-shaped pulse x{t) of duration r = 1/7? and energy Eb — PbT where Ft, is the power 

contained on each pulse. The transmitted signal s(t) will then be 

k 
s{t) = Y^Six{t-ir) (1.2) 

t=i 

where 5,- = -1-1 when the z"* bit is 1 and Si = - 1 when the i " * bit is - 1 . For iui AWGN 

channel, the probability p that any of the received bits is in error is 

So the probability that at least one error occurs among the k bits is 

P, = l - ( l - p ) * ^ = l - ( l - p ) ' ^ (1.4) 

Fi'om the above it can be deduced that by increasing T, thus sending more information 

bits /c, the probability of error increases too. Hence, the only two choices for reducing Pc 

would be either to increase the transmitted power or to decrease the tranmission period 



T. Figure 1.1 offers a geometric interpretation of this result. As k increases the number 

of neighbours grows with the same rate and consequently the probability of error gets 

higher as more opponents appear in the same distance from the transmitted signal. 

(a) (b) 

Figure 1.1: Signal constellations for (a) k = l and (b) k=2 

In conjunction to the previous example let us assume that the code rate r = ^ is reduced 
(r < 1), so that n > R bits are transmitted to convey each information bit. Therefore, 
T{n — R) = nT{l — r) extra bits are sent over the channel. From the available signal 
combinations at the receiving end, only 2^ of them represent information signals; the 
rest are redundant. The effects of redundancy are two. First, the energy per information 
bit Eb is reduced by a fraction r since more bits are transmitted with the same amount 
of power. Secondly, since the dimension nT = N of the transmitted signal is larger than 
the dimension of the information sequence RT = fc, the null extra dimensional space can 
be used to increase the separation (distance) among the information signals and therefore 
reduce the probability of error. This is the main idea behind error control. A code sets 
the way that the additional dimensional space is managed so that any pair of valid signals 
(codewords) are separated by a distance of at least dmin {minimum distance). Note that 
in contrast to the uncoded case, incrementing T offers the ground for better code design 
with higher distances among the codewords, and therefore lower error probabilities. 
A vector space of N dimensions can be visualised as a N-dimensional hypercube on the 
vertices of whicli the 2^ codewords are arranged. As figure 1.2 depicts, the potential 
advantage that is offered by the redundant bits disappeai's if the codewords are not 
mapped properly on the 2^ available vertices to ensure high minimum distance separation. 
Shannon calculated the bounds of error probability based on the average error probability 
over all 2^''' distinct ways of assigning the 2*̂ ' codewords on the 2^ available vertices (i.e. 
over all codes). The fact that the average error probability was bounded over very low 



Figure 1.2: Signal constellations with k = l and N=3 for (a) a good code (b) a bad code 

values proved the existence of codes that can offer such performance. 

1.1.2 Shannon's capacity theorem 

A necessary condition for transmission with low probability of error is that the information 

rate is kept lower or equal to the channel capacity R < C. This section offers a brief 

derivation of channel capacity and a proof for the vahdity of the previous statement, 

based on the sphere 'packing bound [66] concept. 

Assuming an Added White Gaussian Noise (AWGN) channel, the received noisy replicas 
of the transmitted signals Si of energy |si^| = NEs is simply the sum of Si with the noise 
random variable n . 

Fi = si H- n 

The receiver's task is to associate each received vector r j with the correct (the transmitted) 

signal S i . The receiver will decide r j as s i only if v\ falls within the decision bound of S i . 

The decision bounds can be visualised as N-dimensional spheres of radius p = s\ = y/NEg 

centred at si. An error decision will occur if r i hes within the volume of the sphere of 

Sj (meaning that the Euclidean distance £?wc(ri ,Sj) < JS?ic(ri, S i ) ) . Since the size of the 

sphere is dependant on the code-length A ,̂ it is convenient to consider normalised vectors. 

n = n/y/N 

f i = n/y/N 



By using the sphere hardening theorem it is shown in [60, 76] that although the mean 
squared value of n remains constant and equal to the single sided noise density ^ for 
any value of A ,̂ its variance (7^( |np) is inversely proportional to A .̂ 

(1.5) 

For large enough A ,̂ the variance of n gets almost 0 aiid therefore, it can be assumed 
with probability that approaches 1 that the magnitude of the noise vector n will tilways 
be 

\n\=s/Nj2±5 (1.6) 

where 5 is a number arbitrarily close to zero. Equation 1.6 implies that the N-dimensional 
spheres around signals Si that define the decision bounds, should have a radius p of at 
least \/No/2 ±S to guarantee with high probability that the receiver will associate the 
received vector with the transmitted signal. In any other case, reliable decoding is im­
possible and the probability for erroneous decisions is very close to 1. Figure 1.3 offers a 
2-D visualisation of the predescribed situation. 

E u c ( r - , s . ) E u c ( r j , S j ) 

Figure L3: The received vector r\ is decoded in error since the radius A of the spheres is 
less than No/2 ±5, and therefore Euc{vi,s^) < Euc(ri,S\) 

I t is essential then that the radius of the spheres around each of the k signals si is compa­
rable or larger than y/No/2±5. The question is if the available power and bandwidth are 
large enough to accommodate all those A; spheres. In other words if the channel has the 
capacity to contain all these k spheres. This is the argument that is used for obtaining 
the capacity bounds of a channel for a predefined information rate, block-length, power 
and bandwidth. 

In [76] i t is proved that the volume V and radius p of an N-dimensional sphere are related 



by 

V = B^p^ (1.7) 

where Bi>j is a positive constant that depends only on the block-length A .̂ In our case, 

each of the k spheres around signals S] should have a minimum volume of 

N 

Vi = B, (^^ j (1.8) 

where 5 which is arbitrarily close to zero has been omitted. Considering the energy for 
each bit of S\ as Eb, the volume of the overall N-dimensional sphere with radius Eb-\- ^ 
that will contain the A: smaller spheres will be 

From 1.8 and 1.9 we obtain the inequality that if solved for the information rate R, will 
give us the channel capacity C. 

\ > V , (1.10) 

which becomes 

and solving for k 

Since A: = 2^*^ 

and equivalently 

k T (̂  " ^ 

^ " < l ^ ) (1.12) 
2 

^ < ^ l o g 2 f ^ ) (1.13) 

R<\\ogJ\+2^] (1.14) 

Equation 1.14 sets the maximum value of the information rate R for reliable transmission, 

which is known as the capacity C. Due to Nyquist [40], for a channel of bandwidth B 
the maximum number of bits per second that can be transmitted and be resolved by the 

receiver is 2B. Hence, the information rate is upper bounded by the bandwidth B. 

R (bits per second) <2B (1.15) 



As a consequence, the duration per information bit is r = = the energy per bit can 

be expresed as Eb = Pr = For rehable communication, the information rate should 

be lower than the maximum amount of information that the channel can accomodate i.e. 

R <2B -C. Equation 1.14 comes then to the well known form 

C = Blog^ (l + = 51og2 (1 - f SNR) (1.16) 

The theoretical limit in terms of Eb/No when transmitting at the maximum rate (capacity 

rate) through a channel of infinite bandwidth is obtained below. For Ri representing the 

information rate in bits per second we have 

C = B l o g , ( l + 2 § | ) (1.17) 

Using the fact that log2(2;) = the channel capacity equation becomes 

C = 1 . 4 4 B l n ( l + | | ^ ' ) (1.18) 

and as bandwidth approaches to infinity 

1 . 4 4 ^ (1.19) 

For transmission at the channel capacity Ri — C 

Eb 1 
A .̂ 1.44 

= -1.6 dB (1.20) 

Of course in real life infinite bandwidth channels do not exist so the cut-off limit of -

1.6dB is not useful for practical applications. For a given block-length and code rate it is 

possible though to obtain the sphere packing bound [66] that defines how many disjoint N 

dimensional spheres can be located at the available N-Euclidean space so that the fraction 

of the total space that is covered by the spheres is maximised. The sphere packing bound 

offers a very useful tool that can be used as a figure of merit for the performance of any 

designed code. 



1.2 Error correction coding over the years 

The work of Shaimon in 1948 changed the widely accepted view at the time, that reliable 
communication can only be achieved by increasing either the signal power or the band­
width. Shannon showed that with the addition of redundancy the probability of error can 
be made arbitrarily low for large lengths. Since the way that the redundancy should be 
incorporated within the information message was not specified, the coding communities 
were challenged to find the codes and decoding tecliniques that would show Shannon's 
promised results in practise. I t was apparent that any proposed codes should have a 
structured form so that the complexity of the encoder and decoder is affordable. 
The first efficient schemes were devised by Hamming [31] (1950) and Golay [30] (1949). 
Golay's (23,12) code {k = 12,N = 23) was the first example of a perfect code, i.e. a code 
where all error patterns up to its error correcting capabilities can be exactly rei^resented 
by the (A^ - k) parity bits. Although far from Shamion's promised results, these schemes 
found many applications and are still used even today. 

The need for better codes had driven many researcliers to approach code design from dif­
ferent angles. A new class of codes called cyclic were first introduced in 1957 and 1958 by 
Prange [49]. Shortly after, in 1959, we have the well-known code with algebraic structure, 
the Bose-Chaudhuri-Hocquenghem (BCH) [10]. The first error correction procedure for 
binary BCH codes was formulated by Peterson in 1960. The non binary error correction 
procedures are attributed to D.Gorenstein and N.Zierler in 1961 in their paper "A class of 
Error-Correcting Codes in p'" symbols". More efficient decoding methods were developed 
later by E.Berlekamp in 1966 [8] and J.Massey in 1969 [37]. BCH codes are used in the 
Global System for Mobile communications (GSM) and in the Hybrid Automatic-Repeat-
Request (ARQ) systems (Costello et al. 1998 [13]). In 1990 the BCH(511,439) was used 
for protecting digital video transmissions under the ITU-T H.261 standard (Costello et 
al. 1998). 

The Reed-Solomon [51] codes which ai'e named,after their inventors, were discovered in 
1960 and they are another example of algebraic codes. The RS codes are the subclass of 
BCH codes and they are maximum-distance-separable (MDS) codes in the sense that, for 
a given length and field, they have the optimum error correction capability. The power­
ful burst error correcting capabilities of RS codes have monopolised the error correction 
in the fields of magnetic/optical data storage. The Cross-Interleaved RS codes (CIRS), 
which are a combination of two shortened 2-error correcting RS codes, are used in the 
Compact Disc (CD) (Costello et al. 1998). 

Another class of cyclic codes with simple decoding algorithm is the majority-logic de-
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codable codes. Some examples of majority-logic decodable codes are the diff'erence-set 
Weldon] and the finite and projective geometry codes. The precursor of the majority-

logic decodable codes is the algorithm given by Reed [50] to decode the codes of MuUer 
39]. These are the Reed-Muller (RM) codes, that were used in the 1969 and 1971 Mariner 

space missions, and in the 1976 Viking missions to Mars (Costello et al. 1998). 
All the codes referred up to this point, belong to the family of block codes. Another 
important type of codes was invented by Elias in 1954 and are called convolutional codes. 
Unlike the block codes, the structure of convolutional codes allows efficient implemen­
tation of soft decision algorithms which can provide coding gain of 2-3dB over hard 
decision decoders. Soft decision decoders for convolutional codes were first introduced by 
Wozencraft in 1957, which were then improved by Fano in 1963 [18]. The inefficiency of 
these tecliniques for long constraint length convolutional codes was solved by Viterbi in 
1967 with the introduction of the Maximum-Likelihood (ML) decoder (known as Viterbi 
decoder) [71). The Viterbi decoder was further developed by Forney in 1973 with the 
introduction of the trellis diagrams [23]. Shortly after, in 1974, Bahl, Cocke, Jelinek and 
Raviv invented the BCJR decoder [5] (acronym from the authors' names) which is an 
optimal bit-by-bit Monimum a Posteriori decoder (that is why it is also widely known 
as MAP decoder). 

The idea of concatenation, i.e. the use of codes in cascade, was first introduced by Forney 
in 1966 [22] as a way o constructing long codes from shorter ones. Concatenated codes 
consist of two codes: the inner and the outer code. Inner codes are usually simpler and 
with lower bit error capability than the outer code, which is responsible for correcting all 
residual errors of the inner code. The most common aiTangement is to use short constraint 
length convolutional codes with soft decision Viterbi decoding as the inner codes and non 
binary RS codes with algebraic hard decision decoder as the outer codes. This arrange­
ment was accepted by the Consultative Committee on Space Data Systems (CCSDS) as 
the Telemetry Standard in 1987 (Costello et al. 1998). Concatenation schemes in general 
have been used in many applications such as the space missions of Mariner in 1971 and 
Voyager in 1977 (Costello et al. 1998). 

A significant milestone in the field of coding theory, and communications theory in gen­
eral, was the idea of combined coding and multilevel modulation (known as trellis-coded 
modulation TCM) by Ungerboeck in 1982 [69]. Before TCM, it was believed that error 
correction coding is only useful for power-limited channels which have plenty of bandwidth 
available to accommodate the introduced redundancy. For bandwidth-limited channels, 
as are the telephone lines, the bandwidth efficiency is crucial and the "power for band­
width" property of coding did not seem to be the best policy. The introduction of TCM 



improved the modem standards and allowed (because of the power reduction) full-duplex 

operation. The modem technology owes much of its evolution on TCM. 

1.2.1 The idea of iterative decoding: turbo codes and LDPC's 

For many years the Shannon's challenge of approaching the capacity limits still seemed 
far away. Optimum decoding of long powerful codes was computationally prohibited, and 
the best code sclieme known so far had been the concatenation of RS and covolutional 
codes. 

In 1993, Berrou et al. [9] achieved a major breakthrough in the field of error correction 
coding with the introduction of turbo codes. Turbo codes were shown to achieve very 
low error rates at SNR a fraction of decibel above the Shannon capacity limit, in a period 
that the best coding scheme could not perform closer than 3-4dB away from that. The 
first presented turbo coding scheme had achieved HER of 10"^ at Et,/No = 0.7dB by 
parallel concatenation of two convolutional codes of constraint length 5, and block length 
N=64,000. In his proposed scheme, the information stream is interleaved prior to enter­
ing to the second encoder. The interleaving operation implies that the trellis diagrtuns 
of the constituent codes are not suflicient to define the structure of the code. To perform 
ML decoding we would need a trellis diagram of approximately 2 '"" ' ' ' '2+^-u-t states, where 
si and 52 denote the number of states of the trellis of each constituent code. The turbo 
decoder however uses the trellis structure of the constituent convolutional codes but still, 
with performance very close to the optimum. The new concept that had managed to 
combine relatively low complexity with near to optimum performance, was the decoding 
of the received messages iteratively. The iterative decoder consists of two MAP decoders, 
one for each constituent code, that exchange information in an iterative form. That is, 
each decoder takes advantage of the progress made by the other by circulating their prol> 
ability estimations for the systematic bits. Positive feedback of information is avoided by 
the use of only the extrinsic part of the decoders' posterior decisions at the end of each 
iteration. The sub-optimahty of turbo (and generally iterative) decoding lies on the fact 
that the algorithm can not guarantee convergence to the ML solution, and in some ctises 
it cannot even guarantee convergence to any solution. In [7] the turbo concept was used 
in serial concatenated schemes with similar results. 

Benedetto et al. in 1995 [6], unveiled the secret behind the excellent performance of turbo 
codes by investigating their weight spectrum and denoting the very low multiphcity of 
the low weight codewords. The problem of convergence to the ML solution that accounts 
for the sub-optimality of turbo decoders has been investigated by many researchers of the 
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field. In [14] the convergence properties of turbo schemes are assessed by investigating the 
evolution of the densities of the extrinsic information. The authors use the close resem­
blance of the extrinsic distribution to a Gaussian, firstly denoted by Wiberg in [74]. In 
[65] the convergence properties of turbo schemes are visualised into extrinsic information 
transfer (EXIT) charts that are based on mutual information measurements. The modes 
of convergence are observed in [52] and categorised. The relation between turbo and ML 
decoding is described by Richardson in [56] where the turbo decoder is formalised as a 
discrete time non linear dynamic system. In the same paper, the existence of fixed points 
of the decoding algorithm for a class of turbo codes has been shown, together with a 
set of sufficient conditions for their uniqueness and stability. Following up Richardson's 
work, the authors of [2] describe a bifurcation analysis approach of the iterative decoding 
process as a dynamic system parameterised by SNR. The paper shows that at different 
SNR, fixed points with different characteristics exist. 

Shortly after the appeai-ance of turbo codes and the idea of iterative decoding, MacKay 
and Neal in 1996 [38] rediscovered the low-density parity-check (LDPC) codes. LDPC 
codes had been originally invented by Gallager back in 1962 [28] but they were abandoned 
for many years due to their high computational complexities at that time. LDPC codes 
are linear codes with sparse parity check matrix. The decoding can be performed by 
the sum-product (SP) algorithm which is an iterative message passing type of algorithm. 
Each parity check equation is processed individually and produces extrinsic information 
which is passed on to the next iteration. Like turbo codes, LDPC's operate very close to 
the channel capacity limit and it has been shown that for huge block-lengths it is possible 
to approach within 0.0045dB [12] of the Shannon limit. 

Belief propagation (and Sum-Product algorithm as a form of belief propagation) was de­
veloped to operate on single connected graplis, i.e. graphs with no cycles. The presence 
of cycles on LDPC codes implies that behef propagation works sub-optimally. However, 
if cycles are kept sufficiently long, belief propagation performs exceptionally well. Short 
cycles should in general be avoided when constructing LDPC codes. Due to [53] the 
presence of short cycles within the structure of the code and their contribution to small 
stopping sets are the major sources for the convergence problems of belief propagation on 
LDPC's. However, as i t has been shown in [67], not all short cycles are equally harmful. 
In [55] the authors have linked the evolution of the extrinsic densities to the convergence 
capabilities of the code (density evolution for turbo decoders was inspired by this paper). 
Wiberg in his Ph.D. thesis proves that the SP algorithm works optimally on graphs that 
do not contain any loops {tree graphs) and that SP decoding in a graph with loops is 
equivalent to optimal decoding on the associated computation graph. Soljanin and Offer 
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in [61, 41] denote that the SP algorithm works optimally for tree codes and nearly op­
timally for very sparse codes with loops when the group algebra product is applied. In 
27] the authors present a signal space characterisation of iterative decoders and link the 

presence of loops with the emergence of pseudo-codewords. 

Various schemes have been presented in the literature, aiming to improve the perfor­
mance of iterative decoding. Among these, the ordei^d statistics decoder (OSD) 25, 26] 
(which has been applied on turbo codes and LDPC's), the information correction method 
of [70, 48] and the Chase algorithm [11, 24]. Various schemes have been proposed that 
investigate the concatenation of turbo codes with BCH codes (in an attempt to correct 
residual errors that escape from the turbo decoder) [63] and CRC codes [57], Additionaly, 
alternative approaches to the iterative decoding problem originating from the computing 
science such as the Linear Programming (LP) methods have been also presented [19, 20 . 
Despite of the fact that nowadays iteratively decoding schemes ai'e widely used in many 
applications, their exact behaviour and cost function is not really known. Many fea­
tures of iterative decoding still remain unexplained and suffer from a lack of theoretical 
foundation. Questions concerning the conditions under which the iterative decoding til-
gorithm accepts a single fixed point solution, and the relation of fixed points with the 
ML codeword still wait for an answer. 

1.3 Thesis Outline 

Chapter 2 serves as an introduction into turbo codes and LDPC's. The chapter discusses 
aspects such as the structure of these codes, the encoding and the decoding mechanisms. 
Particular interest is given to the iterative decoding algorithms. 

Chapter 3 is dealing with the convergence problem of iterative decoders. Based on a turbo 
scheme and by using the correlation coefficient as a measure, it is shown with practical 
examples how the randomness assumption gradually fades with increasing iterations. 
Chapter 4 presents the two basic tools for the evaluation of the convergence properties 
of iterative decoders. Both methods exploit the simplicity in the representation of the 
extrinsic information, that originates from the Gaussian-like distribution of the latter. 
In chapter 5 three methods are proposed for the convergence improvement of iterative 
decoders. In the first method convergence improvement is attempted by variation of the 
variance, as a means of affecting the sensitivity of the iterative decoder to certain co­
ordinates of the channel output. In the second method a bounding function is used to 
limit the maximum growth rate (per iteration) of the extrinsic probabilities. Finally, the 
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last method attempts to improve the convergence performance of iterative decoders by 
re-processing all non-convergent blocks, after first applying a structured permutation to 
their received vector. 

In chapter 6 the SP decoding process is followed analytically and it is demonstrated how 
and why the iterative decoder diverges from the ML decision. In the same chapter it 
is also attempted to relate the iterative decoder failures to the correlation of pseudo-
codewords with the received vector. 

Inspired by the findings of chapter 6, cliapter 7 presents a novel algorithm {Received-
Vector-Coordinate-Modification RVCM) which aims to the reduction of the effect of 
pseudo-codewords, and generally the reduction of any distortion effects that are intro­
duced by the SP algorithm when applied on codes with loops. 

Chapter 8, presents the performance improvement imposed by RVCM algorithm on LDPC 
codes. The chapter also discusses the difi'erent methods that can be used for improving 
the efliciency and throughput of RVCM. In accordance to chapter 8, chapter 9 discusses 
application of RVCM on turbo schemes. 

In chapter 10 RVCM is compared to alternative convergence-improvement schemes for 

LDPC codes, in terms of performance and added computational load. 
Finally, the author's conclusions and future research directions are presented in the last 

chapter. 
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2 Iterative Decoding Algorithms 

Iterative decoding techniques bridged the gap between code design and decoding com­
plexity, with the minimum cost in performance. This chapter focuses on the two major 
iteratively decoded schemes, namely turbo and low-density parity-check (LDPC) codes. 
In the following pages the reader will be introduced into the meclianism of turbo and 
Sum Product (SP) iterative decoding algorithms. The reasons for the exceptional per-
formtmce of turbo codes will be attributed to the way that the interleaving action shapes 
the weight spectrum. Basic ideas of message passing algorithms, such as the concept of 
extrinsic information, will be also explained. 

2.1 Turbo codes 
Turbo codes where first presented in 1993 by BeiTou et al [9] and are considered as a 
milestone in the field of error correction coding. The authors presented results just 0.5dB 
away from the Shannon sphere packing capacity hmit with a scheme of affordable com­
plexity. The classical turbo scheme was based on parallel concatenation (PCCC) of two 
recursive systematic convolutional (RSC) encoders but the turbo concept can be extended 
to serial concatenation (SCCC) [7], concatenation of more than two encoding/decoding 
stages [29], or hybrid 16, 15] concatenation. Schematic graphs of the encoding and de­
coding stages of PCCC and SCCC systems are shown in figme 2.1. In the description 
of the algorithms we assume BPSK modulation with antipodal signals c,- € {—1,1} , 
1=0,1,...,N, and AWGN channel. 

2.1.1 Encoding of P C C C and S C C C turbo schemes 

Figures 2.1(a) and 2.1(b) depict the block diagrams of the encoding stage of PCCC and 
SCCC schemes. Starting with the case of the PCCC encoder two different versions of the 
information sequence X i = x i c X n , . . . , 3 : I ( A : - I ) are streamed into the RSC encoders. RSCl 
accepts X i in the normal order while the same sequence is interleaved prior entering to 
RSC2. The interleaving action is crucial for the performance of turbo codes [6, 47]. Its 
beneficial effect in the outcome of the decoding can be explained and justified in various 
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Figure 2.1: Schematic flow graphs of (a) PCCC encoder (b) SCCC encoder (c) PCCC 
decoder aiid (d) SCCC decoder 

ways: 

• Randomisation of burst errors: Depending on the type of the channel, the appro­
priate choice between codes with burst or random error correcting capability (like 
turbo codes) can be made. However, even in random error channels small bursts 
of errors ai*e frequent and can be the source of erroneous decisions at the output 
of the decoder, especially when short memory constituent codes are used. The use 
of an interleaver guarantees with high probability (at least for long block-lengths) 
that any burst errors produced by the channel will be randomised. 

• Pseudo-randomness: Although random codes are considered to perform better, 
structured codes are preferred mainly because of the much lower complexity that 
is required at the decoder side. The presence of the interleaver gives a sort of ran­
domness, in the sense that bits from widely separated positions of the block (hence 
uncorrected) are interleaved in neighbouring positions at the input of the second 
MAP decoder. However, as i t will be seen later, after the first few iterations cor­
relations start developing among these bits and the sense of randonmess gradually 
fades. 

• Reduction of low-weight sequences: The effect of the interleaving process is crucial 

on the weight spectrum of the code. I t is very unlike (especially for longer block-
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lengths) that an information sequence that produces a low-weight parity sequence 

at the output of the first constituent encoder, will also produce a low-weight parity 

sequence after the second encoding stage when an interleaver is intervened between 

the two. That property is responsible for the so called spectral-thinning and is 

the major reason for the exceptional performance of turbo codes. More about this 

property will be discussed in later section. 

Assuming half rate constituent RSC codes, the systematic information sequence X i and 

the non-systematic parity sequences X2 and X3 from RSCl and RSC2 are transmitted 

over the AWGN channel, and are received as X i , X 2 and X 3 . 

X 2 = {2:20 + 7120,3^21 + 7 Z 2 i , . . . , X 2 ( i + N - f c - l ) + ? l 2 ( i + y V - A : - l ) } 

X l = { 2 : 3 0 + 7 l 3 0 , a ; 3 i + 7 1 3 1 , . . . , a : 3 ( j 4 . ^ _ f c - l ) H - n 3 { : + N - J t - l ) } 

Where n n , 712; and 713̂  are the Gaussian, mutually independent noise samples. 

In the serial configuration the information bits and the parity sequence of RSCl are all 

streamed into RSC2. In that case the parity sequence of RSCl is also systematic and 

the overall rate of an SCCC scheme is lower than that of a PCCC scheme that uses the 

same constituent RSC codes. 

2.1.2 Turbo decoding 

Before describing the turbo decoding procedure it is essential to establish the optimal 

maximum a posteriori (MAP) rule [5], so that the compromises made by the iterative 

turbo decoding algorithm can be easily demonstrated later on. For a PCCC encoder, 

consider the code C consisting of 2^ codewords c € C 

C = C O , C I , . . . , C A / = ( 2 - X i o - l ) , ( 2 - 2 : n - 1 ) , ( 2 • - 1), (2 • Xao - 1), 

(2 • ̂ 2 , M ^ ) - i - (2 • X30 - 1), (2 • X3 - 1) 

Where is the block-length, r is the overall code rate, while and 7*2 are code rates of 

the associated constituent codes. 

The maximum a posteriori probability for the information bit xu in terms of likelihood 
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ratios is expressed as 
Pr(a;. = l|x„x„X3)_^^^_^_^_^^^_^ (2.1) 
Pr{xu = 0|xi,X2,X3) 

By using Bayes's rule the previous equation becomes 

Prjx^i = l |xi ,X2,X3) _ Ex . . .w=iP(^ i ' ^^ ' ^ ' » l^ ' ) - •P^(^i) 
Pr{xu = 0|Xi,X2,X3) Ex,:xH=0P(*l>*2'^3l'") ' ^ ' ' ( ' ^ ^ 

(2.2) 

Since we assume a AWGN channel, the noise samples are independent and the naive 

Bayes's rule can be applied so that 

p(xi ,X2,X3|xi) = p ( x i | x i ) ^(xslxi) •p(x3|xi) (2.3) 

Thus the optimal MAP equation of 2.2 can be written as 

Ex, :x„^i p ( x i | x i ) ^(xalxi) pCxalxi) • P r ( x i ) 
Ex,: iu=0P(^l |Xl) •?^(^2|Xi) •p(x3|Xi) •Pr (Xi ) 

Under the assumption of uniform a priori probability function for the information stream 

P r ( x i ) , the corresponding term can be omitted and the optimal MAP decision can be 

finally expressed as 
Exi:xn=l p(Xi|Xi) •p(x2|Xi) •p(X3|Xi) 
Ex,:xH=0P(Xl|Xi) •p(X2|Xi) .p(X3|x,) 

Optimal decoding of the interleaved code based on the above rule would require the use 

of a 2" '̂̂ '̂ "^^ state trellis. Hence, for practical block-lengths, application of the BCJR 

5] algorithm would be a prohibitively complex task. Here comes our previous statement 

about the difficulty of decoding a random code, and the need for structured schemes. 

Turbo decoders offer an alternative and feasible, in terms of complexity, approach. The 

joint treUis of the overall code C is substituted by the much simpler trellis diagrtuiis 

of RSCl and RSC2. So the overall decoding (2"»+'^+^ trellis states, where vi and V2 
the number of states of the first and second RSC trellis diagrtxm) is broken up into two 

individual MAP decoding operations which are performed at the constituent treUises 

(2''»+2^ states). 
For the case of a PCCC scheme with half-rate RSC codes, the first constituent decoder 
applies maximum a posteriori decoding (on the trellis of RSCl) on the sequences Xi and 
X 2 , while the second decoder operates optimally (on the trellis of RSC2) on the sequences 
X] and X3 . By that way the structure is retained and decoding becomes significantly 
easier. The optimum rule for each of the two constituent decoders would then be: 
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For the MAP decoder 

Pr{xu = 0 | x i , X 2 ) Ex,:xH=oMxi|xi) - p{x2\xi) • P r (x i ) 

For the 2"̂ ^ MAP decoder 

Frjxu = l | x i , X 3 ) ^ Exi:xH=i P ( x i | x i ) - P I X S I X J ) • P r ( X ] ) 

p ( x i | x i ) p ( x 3 | x i ) - P r ( x , ) 

(2.6) 

(2.7) 

Both equations are just approximations of the optimum decoding rule of 2.5. In both 

equations the a priori probability of tiie systematic bit Pr{xi) has substituted the variable 

that is missing from the constituent trellises. The question that rises is how is it possible 

to take the full advantage of the code's capabilities and perform optimal decoding based 

on the restrictions of the joint trellis. 

At this point comes the iterative concept. To account for the missing variable on the 

constituent decoders' expressions, the two decoders exchange information regarding their 

own estimation for that variable. That estimation can be used to substitute the a priori 

probability Pr{x.\) which, under the uniform probability assumption for X i , weights all 

terms equally and does not contribute to the final decisions of the constituent decoders 

(equations 2.6 and 2.7). Direct substitution of p(x3|xi) and p ( x 2 | X ] ) in equations 2.6 and 

2.7 respectively, would make both identical to the optimal expression of 2,5 but would not 

make much sense since none of the substituting variables imposes the constraints of the 

constituent trellises. On the other hand, direct feeding of each decoder stage output to 

the next, would create a kind of positive feedback. Information that has been produced by 

the constituent decoder 1 would be fed back to itself. That would bias the final decision 

of the decoder, eliminate any independency assumption between the two decisions and 

would cause instability to the turbo decoder dynamic non-linear system. Let us examine 

that case by defining the set of APP decisions of each decoding stage for bit i at iteration 

t as V f ) { x i ) and Vi:0 <i<k. Then 

P i - H l ) _ E x . x . = i P ( x i | x O - p ( x . | x O . P r ( ^ ^ 

Vf^iQ) Ex. : . .=oy^(xi |xi) .p(x2 xO • Pr(xO ^ • ^ 

After decoder-1 has decided for bit z, X^u^l) and Pj-^O) are fed to decoder-2, so that 

(2.9) 
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At that point is the beginning of the first iteration and the decisions of decoder-2 are fed 

back to decoder-1 for the new estimations. 

P S : ' ( 1 ) ^ E x . : . . . . ^ . P ( x i | X l ) - P C X . I X . ) .P<°)(1) 

^?S!'(0) E . . . . = o P ( x i | x , ) - p ( x 3 | x , ) - P < ° ' ( 0 ) 

If we now expand T>^^\xi) in the above equation, we have 

PS;'(1) ^ Ex. : . . . .^ iP(xi |x i ) -Plx^lx,) •p (x i | x , ) -Kxa lx . ) 

^'SI'W E „ : . . = o P ( ^ i | x . ) •P(x2|x,) -P lx i l x , ) -Mxalx,) -P i J 'W 

(2.10) 

(2.11) 

which shows that the output of decoder-1 for bit i at iteration 0, is fed back to decoder-1 

as a priori input at iteration 1. By continuing in the same manner we would notice that 

the same happens with decoder-2 and that this positive feedback effect is carried on at 

all iterations. The practical consequence of the positive feedback effect is that the turbo 

decoder resembles an oscillatory behaviour throughout the iterative process, with no signs 

of convergence to a solution. 

To avoid that problem it is necessary that the concatenated decoders do not exchange raw 

APP estimations but only certain information extracted from this. Consider equation 

2.7 for the decision of information bit i from decoder-2. This can be rewritten as 

Prjxu = l |xi .X3) ^ 7){xu\xu = 1) Prjxu = 1) EXI:ZH=I nj?^tP(^i«|3^ij)p(^ij|a^ij) 
Pr{xu = 0|xi,X3) p{xu\xu = 0) Pr(xu = 0) EXI:IH=OP (^3 |XI) nj5^iP(^i.|a;ij)p(:c,j|3;ij) 

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 
•V ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

(2.12) 

The denoted part on the above equation is the "extrinsic information" that is exchanged 

between the two decoders and it involves the contribution of all other bits except bit i to 

the estimation of the probability for bit i. By feeding back only the extrinsic part, the 

positive feedback problem that was denoted in equation 2.11 is eliminated. Decoder-1 

does not accept as new a priori information the decision that itself produced in the pre­

vious iteration. I t accepts only the independent decisions of decoder-2 whicli have been 

based on the previous iteration decisions of decoder-1 and vice versa. 

Retaining the expressions for the APP decisions of the two decoders at iteration 0 

and X>2-'(xi)) from equations 2.8 and 2.9 respectively (note that at iteration 0 

decoder-2 has not yet produced any decisions and the raw APP estimations from decoder-
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(2.13) 

1 can be fed directly), the new APP decisions at iteration 1 can be expressed as 

_ Ex . : . . .= lP(x l |x . ) p ( x , | x , ) - £ g ' ( l ) 

^ Ex . : . .= .P(Xl |Xl ) -p (x3 |Xi ) -g , ' ; ) ( l ) 

^^^;'(0) Ex, : . .=0P(Xl |x . ) p(X3|x,)-5<;'(0) 

Where Sl^\xu) denotes the extrinsic information produced by decoder-i; at iteration t 

for the systematic bit i , and can be generally expressed as 

= (2.16) 

The same turbo concept is retained in the case of SCCC schemes. The only difference 
is that in addition to the information bits, the parity bits of the first encoder are also 
systematic so extrinsic information is exclianged between the constituent decoders for 
those bits too. 

2.1.3 Weight spectrum of turbo codes 

The results from [6] and [46] came to justify the exceptional performance of turbo codes 
from a weight spectrum perspective. The effect of the interleaver on the weight spectrum 
of the code, and the impact on the performance of the code will be examined here. 
Let us assume an RSC convolutional encoder. The input information sequence Si {i — 
0,1,...,2*^ — 1) will produce at the output of the encoder"a parity sequence p i . The 
hamming weight of the resulted codeword c-, will be the sum of the hamming weights of 
the two sequences. 

w{c{)=w{sx)^w{px) (2.17) 

The codeword with the lowest hamming weight defines the minimum distance of the code 

d^n rnin{w{c{)) (2.18) 

The number of codewords with hamming weight equal toj is expressed by the multiplicity 

raj. If Si is one of these information sequences that produce a d^riin codeword at the output 
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of the encoder, then any shifted version Sj of S| will produce just a shifted version of Pi 
(assuming that the code is properly terminated and no ones are lost during the shifting 
operation). Thus, shifted versions of low weight generating input sequences will produce 
low weight parity sequences and use of longer block lengths N would proportionally 
increase the multiplicity of d^nin codewords m^^^.^. The ratio of multiplicity over block-
length A'̂  would be 

lim ^ ^ ^ K (2.19) 

where /t is a constant. 

Consider now a turbo encoding scheme like the one in figure 2.1. Assume the parity 
sequences of the two constituent encoders as p u and P21. Let si be an information 
input sequence that produces a low weight parity sequence p i i at the output of the 
first constituent encoder. The interleaved version s[ = Yl{si) is encoded by the second 
constituent encoder. I t is wise at this point to examine some properties of the interleaving 
function. 

n(£;(s)) ^ E{U(s)) (2.20) 

E denotes the convolutional encoding operation and FI represents the interleaving func­

tion. Direct consequence of the above is that 

E ( s ) ^ n - ' ( £ ( n ( s ) ) ) (2.21) 

where Yl~^ refers to the de-interleaving function. The above properties denote that the 
weight 'w{s\) of the sequence S\ at the output of the first encoding stage is not guaranteed 
to be equal to the weight of the sequence s\ = E{U(s)) at the output of the second 
encoder stage. Therefore, it is quite probable that w{pi\) ^ w{p2\). The crucial question 
is what are the chances that a low weight input sequence (and particularly a minimum 
weight input sequence) will be interleaved in such a way so that a sequence of higher 
weight is produced at the output of the second encoder, i.e. the turbo encoder output. 
Consider a minimum weight information sequence Si (for terminated RSC codes the 
minimum weight cannot be less than 2) and assume that after encoding i t produces a 
minimum weight parity sequence w(pi\). All shifted versions of the information sequence 
Si will cause the same minimum weight error event. Given that the interleaver length is 
N]], there will be A n̂ such permutations. So, the ratio of bad permutations (that just 
shift the low weight event) over all possible permutations will be 

Ratio of bad (wmin) permutations = ^ ^ (2.22) 
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Consequently, given that w{pu) = wJmin, the probability that the input sequence will 
be permuted in such a way that w{p2\) = yj{pi\) = '"̂ mm can be approximated by the 
following expression. 

PM,^^ = 1 - ^ = 1- ^ = 1 - y V ^ - - " (2.23) 

Equation 2.23 shows that the probability that RSC2 will also generate a low weight code­
word reduces as A r̂i grows longer and for higher information sequence weight w. This 
phenomenon is called interleaver gain and as a result of that, the multiphcity of low 
weight codewords reduces, i.e. the spectrum of turbo codes becomes thinner at the lower 
terms' side {spectral thinning). 

The impact of the spectral thinning on the performance is cleiu ly verified by the union 
bound equations [46]. Considering just a pair of codewords, the probability that an op­
timum decoder will erroneously choose codeword Cj instead of the transmitted codeword 
Ci is a function of the rate r, the Et^/No and the hamming distance between the two 
codewords. 

To draw an upper bound for the overall code the above calculation is repeated for all 

codeword pairs. 

where, as before, is the multiplicity of distance d. The above equations are expressed 
in terms of frame error rate (PER). To express the union bound in terms of the bit error 
rate (BER) it is a necessity to include the average information weight (w;^) of all paths 
with Hamming distance multiplied by the multiplicity of distance d and normalised by 

d=(Unin \ ^ I 

At higher E\,INo the lower distance term dmin dominates and the above equations can be 
accurately approximated by 

P < ^ ^ ^ ^ - ^ (2.27) 
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which is called the minimum distance asymptote. 

The ratio ^^^^ is called the effective multiplicity of distance d (f/min hi this Ciise). For 
convolutional codes this will be well above 1 because all shifted versions of a dmin gener­
ating information sequence produce f/„„-„ events. So, in order to improve the asymptote 
performance of the convolutional code, the only option is to increase the minimum dis­
tance of the code with the associated rise in the complexity of the decoder of course. 
In turbo codes though, the previously described time-varying property of the interleaver 
ensures with high probability, which increases for longer block lengths, that the second 
encoder parity sequence will be of higher weight. As a consequence of that, the low weight 
terms are reduced and the effective multiplicity ratio becomes 

If we consider a high dmin convolutional code and a low dmin turbo code, the asymp­
totic performance of the convolutional code due to equation 2.27 will be much steeper. 
However, the lower effective multiplicity coefficient exliibited by turbo codes results in 
lower asymptotic performance for sufficiently small Ei,/No. As E^/No becomes larger, the 
rapidly decreasing convolutional code and the slowly decreasing turbo code performances 
come closer and eventually they cross. After this point the role of d^in becomes dominant 
and the error performance of the higher dmin convolutional code keeps reducing while the 
low dmin turbo code performance flattens out. 

The above reveal that minimisation of the multiplicity of low distance terms is equally im­
portant to maximisation of dmin and that turbo codes owe their exceptional performance 
to their thin weight spectrum structure. At higher SNR where the minimum distance 
becomes dominant, their performance flattens out and that SNR region is known as the 
error floor. We could say that in contrast to the traditional code design philosophy 
where dmin had been considered as the one and only figure of merit, turbo codes offered 
a new perspective and redefined the standai'd idea of what a good code is. In a simpli­
fied 2-D visualisation, the practical effect of the reduced number of low weight terms is 
demonstrated in figure 2.2. 
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Figure 2.2: (a) Low multiplicity of dmin terms (b) high multiplicity of d^in terms 

2.2 Low-Density Parity-Check (LDPC) codes 

LDPC codes were first discovered by Gallager [28] in the early 1960s. The limiting com­
puting power of those years prohibited their practical implementation and the existence 
of LDPC codes was ignored for several years. The discovery of turbo codes in the early 
1990s turned the attention of researchers to iterative decoding and led to the rediscov­
ery of LDPCs. Since then, LDPCs are becoming more and more popular due to their 
simplicity, structured form and performance. With proper design and use of long-block 
lengths, LDPCs can offer performance very close to the channel capacity. Characteristi­
cally, simulations have shown performance within 0.0045dB from the Shannon limit at a 
bit error rate of 10"*̂  for = 10^ LDPC codes [12 . 

As their name implies, LDPC codes are based on low density (spai'se) H matrix struc­
tures. The sparse structure has a double advantageous effect when considering iterative 
decoding; I t reduces complexity and at the same time it boosts the performance of the 
iterative decoder. 

The encoding operation in LDPC codes is relatively simple and efficient. Simple manip­
ulation of the H matrix (by the Gaussian elimination method) can easily transform it 
into encodable form. 

In his original work, Gallager did not provide a specific method for constructing good 
LDPC codes, but he proposed a general method for constructing a class of pseudo-random 
codes. Later works introduced vai'ious construction methods based on finite-geometries 
[36] that will not be dealt in this thesis. The following sections will offer a description of 
the structure and philosophy behind LDPC codes with emphasis on the decoding side. 
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2.2.1 Description of LDPC codes 

LDPC codes ai'e specified by their J x N parity check matrix H , where J is equal 
to the number of parity bits J = Â  - A: of the code. An N-tuple binary sequence 
c = (CQ , Ci, . . . C T V - I ) is considered as a valid codeword only if cH'^ = 0 over the binary field 
GF{2), The code C is defined as the null space of H . Each row h j = (/ij .o,/ij . i , /ij,(N-i)) 
of H defines a parity check so that chj^ = 0. 

The parameters Wr and Wc represent the row and column weight (the number of ones 
on each row and column) of H , respectively. If Wr and Wc are constant for all rows and 
columns of the parity check matrix, then the code is called regular. In the opposite case 
the code is called irregidar. 

In this section's introduction we referred to the need of keeping H sparse, so that the 
complexity is kept low and the iterative decoder performs satisfactorily (by minimising 
the probability that short cycles exist within the code structure). The density p of the 
parity check matrix is defined as the ratio of the total number of I's in H to the total 
number of entries N x J. Thus, for a regular code 

The minimum distance of an LDPC code can be determined from its H matrix as normal, 

by examining the minimum number of columns f/, the J-tuple sum (over G-F(2)) of which 

becomes 0. 

2.2.2 Graphiccd representation of LDPC codes 

Tanner's work [64] in 1981 provided a new interpretation of LDPC codes from a graphical 
point of view. Tanner showed how LDPC codes can be represented by bipartite graphs 
that closely mirror the parity-check matrix representation of the code. Bipartite graphs 
that represent a code structure are generally known as Tanner graphs. 
A graph Q{V,£) consists of a set of vertices V = {vo,v\,...} and edges 8 = {eo,ei,-- } j 
and can be represented as a diagram in which the vertices are represented as points and 
the edges as lines that connect the vertices. A path within a graph Q is defined as an 
alternating sequence of vertices and edges, that starts and ends to a vertex. The length 
of the path is equal to the number of edges. A path that starts and ends in the same 
vertex (closed path) is called a cycle of length t. The effect of the cycles, particularly of 
short (small length) cycles in the outcome of iterative decoding will be examined further 
on. The length of the shortest cycle in a certain graph is called the girth of the graph. If 
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a graph exhibits no cycles, it is called a tree graph. 

As bipartite are considered those graphs whose vertices are partitioned into two disjoint 

sets, and no two vertices of the same set can be connected by an edge. In the rep­

resentation of LDPC codes the vertices are partitioned into two disjoint sets. The set 

U = U O , U I , . . . , U N - I represents the N code bits and S = SQ.SI, . . . , 5 J _ I the J parity check 

equations. An edge e connects the code bit node ui with the parity check node Sj only if 

the entry of the H matrix hj^i is a 1. As an example consider the following parity check 

matrix. 
UQ Ui U2 II3 U4 7A5 UG 

5 0 0 0 1 0 1 1 1 
5 , 0 1 0 1 0 1 1 
5 2 1 0 0 1 1 0 1 

The Tanner graph of the matrix is shown in the following figure. 

Figure 2.3: Tanner graph of the (7,4) Hamming code 

2.2.3 Decoding of LDPC codes 

There are several decoding methods for LDPC codes, most of them differing in decoding 
complexity and performance. Majority decision [4] and Bit Flipping (BP) [28] repre­
sent low complexity hard decision decoding methods. The Sum Product (SP) algorithm 
(equivalent to Belief Propagation) is an iterative SISO (Soft In Soft Out) synibol-by-
symbol algorithm that involves higher complexity but offers superior performance. Its 
excellent trade-off between complexity and performance makes it the most popular de­
coding method for LDPC codes. The rest of the section will provide an overview of the 
SP algorithm. 

The SP algorithm is included to the general family of message passing algorithms. The 
cliannel estimations for the probabilities of the transmitted bits propagate through the 
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code graph in an iterative manner until a valid solution that satisfies the stopping crite­
ria has been reached. Considering the Tanner graph of a code C, messages (estimated a 
posteriori probabilities) are exchanged between the code bit nodes Ui£U and the parity 
check nodes Si G S. 

The transmitted sequence x is disturbed by AWGN so that the received replica x of x is 

x = {xo + no,Xi +n i , . . . , xyv- i H-njv.i ; 

Initially, the received vector x is hard decided (x') to check if i t represents a valid codeword 
(c G C), i.e. if all J individual parity checks h are satisfied so that x ' H = 0 over GF(2). 
If not, the decoding procedure conmiences. We define the messages from the code bit 
nodes Ui = xi towards the check nodes Sj at iteration t as 'rri(b)^j and the messages with 
direction from Sj towards Ui as m{b)^l'j. (where b £ (0,1] for BPSK). At the beginning of 
the decoding algorithm (t = 0) we initialise m(/))|^^ = Pr{ui = b\xi) and m{b)f)- = 1 
for all j and i. We want to find the probability that the transmitted bit at position i 
is 6 G [0,1], conditional on the set of received replicas x and on the event F that all J 
parity check equations are satisfied. 

Pr{ui = b\St,F) (2.29) 

By the definition of conditional probabilities, and considering as Fj the event that parity 
check Sj is satisfied, we can write 

Pr{ui = 6|x, Fj) = Pr{ui = b\xi) • Pr{Fj\iii = b, x) (2.30) 

The straight forwai'd way for calculating the probability Pr{Fj\ui - 6,x) that parity 
check Sj is satisfied conditional on the bit Uj, would be to normalise the sum of the 
probabilities of all sequences with even number of I's that can occur in Sj given that 
Ui = 6. Gallager came up with a much more efficient method; we refer to the Lemma 4.1 
from [28]: If we consider a sequence of m independent bits in which the bit is a 1 with 
probability Ft, then the probability that an even number of digits are 1 is 

' • ^ " " j ' - ^ " - ' (2.31) 

and the probability that an odd number of bits are 1 is 

' - - " ' •^ (2.32) 
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Uui = I then the pai'ity check sj will be satisfied if the remaining Wr~l positions in the 
parity check set contain an odd number of ones. 

Pr{u, = l | x , F,) = K, . Pr{u, = • ' " ~ ^"^^^^'"^'^ (2.33) 

Similarly 

Pr(u, = 0|x, F,) = K, • Pr{u, = 0\x,) • ^ + " ^"^^^^''^'^ (2.34) 

where Ki and K2 are normalization factors, and Pr{ui = 0\xi) = 1 — Pr{ui = l\xi). 
Since all bits are statistically independent, the probability that all J parity checks are 
satisfied (event F) is just the product of the probabilities of the individual pai'ity checks 
being satisfied, that is 

Pr{u, = l | x , F) = Pr{ui = l | x , ) 17 ^ " ^=^TM^ " (2.35) 

which is the a posteriori probability for bit Ui being 1. Defining the messages "^(6)jj-• 
exchanged between parity check equation Sj and bit node Ui at iteration t as 

= •-naaia-2^wS) , , 3 ^ , 

the up-going messages (from bit node Ui to parity check equation Sj) are then updated 
for the next iteration 

( 0 ) 

. . ( i ) i : . ! , = P K ^ . = i i x o n - ^ (2.37) 

extrinsic 

The denoted ratio represents the extrinsic information, whicli means that the extrinsic 
concept had been identified by Gallagher long before it reappears with the invention of 
turbo codes in 1993. The SP algorithm continues in the same manner until all parity check 
equations have been satisfied or the maximum number of iterations has been reached. 
Like the turbo decoding algorithm, the SP algorithm is sub-optimal when loops exist in 
the H matrix of the code [74, 53]. If so, the vector space and consequently the decoder 
decisions, are distorted in a way that chapter 6 will attempt to clarify. 
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2 Convergence 

Iterative decoders are considered suboptimal in the sense that they do not guarantee 
convergence to the ML solution. This cliapter attempts to introduce the reader to the 
convergence problem, initially by describing the concept of "fixed point solutions" and 
the differences in the decision bounds between iterative and ML decoders. I t then deals 
with the stability problem of fixed point solutions and the noncompliance between min­
imisation of the Euclidean distance and of the number of information bits in error at the 
same time. The last two sections deal with the role of correlations and short cycles to 
the convergence properties of an iteratively decoded code. 

3-1 Convergence to a fixed point solution 

Taking as a reference a PCCC scheme, the MAP decoding operations of the two decoders 
on the trellises of the constituent codes will be denoted by the functions g^ and </2. The 
arguments and outputs of the MAP functions are the sets of extrinsic log-likelihood ratios 
L u ' at iteration t. Since the extrinsic information output of any decoder becomes the a 
priori input to the next, at any iteration t 

= 52(n(L(")) 

L r ' = „ ( n - ' ( 4 " ) ) 

where H and represent the interleaving and de-interleaving operations. The combined 
turbo decoding function / can be expressed as 

/ (L<") = <;,(n-'(52(n(L("))) (3.1) 

The decoder is considered to have converged to a solution when / becomes a contractor 
58] of L i , i.e. when / returns its own argument. 

L r ^ ' = / (L<") (3.2) 
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Generally, an iterative decoder function / has converged to a solution when the Caunchy 
criterion [58] is satisfied for a constant a <^ 1. 

| | / (L(^+i) ) | |<a | |L(^) (3.3) 

After convergence has been achieved the decoder is said to have settled to a fixed point 
solution i.e. a single point in the N dimension Euclidean space. Considering an extrinsic 
LLR vector L^'^ wandering in the Â  dimension Euclidean space through out the iterative 
process, it will be attracted by a fixed point solution X and fulfil the Caunchy criterion 
of convergence only if it exists within a certain Â  dimension area around the fixed point 
solution X , that is called contraction region [58]. Then, the iterative decoding function 
/ is a contractor to the vector L**^̂  

Figure 3.1 visualises this condition in a simplified 2-D sketch, comparing it to the case 
of optimal ML decoding. In contrast to ML decoding where the decision boundaries are 

c l 

c2 

c4' 

(a) 

c3< 
arbitrary fixed point solution I 

contraction regions 

V y 

arbitrary fixed point solution 2 

Figure 3.1: 2-D visualisation of Euclidean space for (a) ML and (b) iterative decoding 

clearly set and the received vector is always associated with the closest codeword, the 
iterative decoder cannot guarantee optimal decoding. In fact, i t is not even guai'anteed 
that the decoder will settle to a solution after a certain limited number of iterations. 
Assuming that a solution has been achieved though, any of the three following outcomes 
is possible: 

• The fixed point solution corresponds to the ML codeword, in which case the iterative 

decoder has operated optimally 
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The fixed point solution corresponds to a valid codeword c e C which is not the 
ML 

• The fixed point solution does not correspond to a valid codeword 

In any of the last two cases the iterative decoder has operated sui>optinialy. 
The fixed points can be categorised into unequivocal and indecisive [1, 56]. For unequivo­
cal fixed point solutions the extrinsic LLR vector L is extreme (clearly decided) -dnd most 
often it corresponds to mostly correct decisions. In the indecisive case the LLR values 
are not clearly decided (low reliabihty) and invoke several errors. Evtiluating the fixed 
points as a function of the SNR [2], their characteristics vary at different SNR regions. 
At very low SNR the great majority of fixed point solutions are indecisive and the BER 
high. As the SNR is increased, unequivocal solutions become more frequent and eventu­
ally at moderate to high SNR indecisive fixed point solutions disappear [1]. The gradual 
reduction, and eventually disappearance , of the "error-containing" indecisive fixed point 
solutions is the reason for the dramatical reduction of BER/FER at the waterfall region, 
the steepest part of the code's error probability curve. I t will be shown in later section 
how the density evolution theory [14] uses that concept together with some additional 
assumptions to determine the threshold of a particular code, i.e. the Eb/No at which the 
waterfall region starts. 

Eb/No [dB] Average Block Entropy BER 
0.0 0.5998 0.1352 
0.4 0.2895 0.0482 
0.8 0.137 6.02 X 10"^ 

Table 3.1: Average entropy of fixed point solution at various SNR in a SCCC, RSC(l,5/7) 
N=2000 code 
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3.2 Stability of the ML fixed point solution and 
relation between Euclidean distance and 
information errors 

For powerful codes of high dmin the most frequent convergence problem at low SNR is 
the incapability of the algorithm to converge to a valid solution (codeword). In contrast 
to that, when the iterative algorithm operates on weaker codes it rarely fails to settle to 
a valid solution but this is not always the closest to the received vector. 
The author has tried to use the reliability of the a posteriori decisions at the output of 
the iterative decoder as a criterion for deciding whether the ofi'ered solution is the ML 
or not. I t was proved in practise that the reliability of the decoder's decisions is not an 
adequate condition for that. In a similar manner, identifying the error positions from 
the behaviour of their extrinsic values throughout the iterative process was proved to be 
impossible. 

Another important aspect concerning the convergence properties of iterative algorithms 
is the stability of the fixed point solutions (a theoretical approach is given in [56]), and 
particularly the stability of the fixed point that represents the ML solution. I t has been 
observed that in some cases, during the iterations the decoder comes up with the correct 
solution but does not stabilise on it. Figure 3.2 shows a typical case where the turbo 
decoder readies the zero errors only at iteration 25. 

Figure 3.2: The graph shows the number of information errors with iterations 
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A good argument to overcome this problem would be to vise the Euclidean distance of 
the decoded vector (at the end of each iteration) from the received vector as a measure 
for the most likely solution. The plots of figure 3.3 show an occasion where this method 
works effectively. The iterative decoder converges to the ML solution at iteration 1 but 
it fails to stabilise on that and converges to a sub-optimal solution of higher Euclidean 
distance that involves 2 information bits in error. Selecting the decoder output with the 
minimum Euchdean distance automatically eliminates any sub-optimality by picking up 
the most likely codeword. 

(b) 

Figure 3.3: Plots of (a) Euchdean distance vs Iterations and (b) Number of information 
errors vs Iterations for the same block 

Both the turbo and the sum-product algorithms operate on a bit-by-bit basis hence, 
selecting the minimum Euclidean distance decision (among the decisions at the end of 
each iteration) does not necessarily mean that the number of errors is minimised too. 
Figure 3.4 shows a typical case, based on a PCCC scheme, in which the lowest Euclidean 
distance decision (at iterations 6-8) does not represent the solution with the minimum 
number of information bits in error. 

3.3 The effect of correlation in convergence 

In this section we are examining the effect of correlation to the convergence properties 
of iterative decoders. I t will be shown through experiments that the independency as­
sumption among the variables of the iterative decoder is not valid (at least for the whole 
iterative process) and the emerging correlations among the variables affect the final de­
cision [33]. 

In contrast to ML (MAP) decoding where the complete structure of the code is taken 
into account simultaneously, iterative decoders work on sub-codes with fewer variables 
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(b) • 

Figure 3.4: Plots of (a) Euclidean distance vs Iterations and (b) Number of information 
errors vs Iterations for the same block 

and simpler code restrictions to reduce the complexity. To compensate for the missing 
information, sub-codes exchange information regarding their common bits. Therefore, 
the restrictions of the overall code are passed indirectly to each of the sub-codes through 
their common bits that have the duty to convey the new information from other parts of 
the code. The whole procedure is iterative thus the decoder will need a certain number 
of iterations until all probabilities have been spread and the sul>codes have enough in­
formation to decide optimally. 

Correlation interrupts this process by restricting the propagation of probabilities. In 
other words, some of the decisions are mainly based on parts of the code that exhibit 
high correlation and the effect of the rest of the code restrictions for these decisions is 
minimised or ignored. After some point the two decoders do not exchange new informa­
tion and the independency assumption cannot be considered valid any more. 
Table 3.2 shows the error positions for a number of non-convergent blocks of a PCCC 
scheme with constituent codes RSC(l,5/7), block-length N=1500 and random interleav­
ing. I t can be seen that certain error combinations dominate as they occur most of the 
time. 

The structure of the interleaver can, up to an extend, explain why some of the positions 
are prone to errors. Consider the pair of bits 495 and 1 that is one of the dominating 
error events on the previous table. The use of tail-bite termination means that those bits 
aie only 6 positions away during the first decoding operation at M A P I (before interleav­
ing), therefore some considerable correlation exists between the two. The interleaving 
function is supposed to break this correlation by spreading the two bits far from each 
other within the block. The random interleaver used in this experiment though, maps 
the two bits next to each other (11(495) = 130 and 11(1) = 129). The information that 
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Error Block No. Error Positions Error Block No. Error Positions 
1 163,166 16 269,272 
3 163,166 18 163,166 
4 117,120 20 269,272 
5 163,166 21 1,495 
6 269,272 24 480,486 
7 163,166 25 294,297 
8 480,486 27 269,272 
9 271,272,277 28 1,495 
10 117,120 29 103,106 
14 1,495 31 471,477 
15 103,106 34 163,166 

Table 3.2: Error positions for various error blocks 

is sent back to M A P I for the next iteration does not contribute much to its knowledge 
for the two bits i.e. the information is barely new. I t is then highly probable that if the 
transmitted symbols 1 and 495 have been received with high distortion from the chaiuiel, 
the decoder will not be able to correct them. Two neighbouring bits that still remain in 
close proximity after interleaving, create a short cycle. Short cycles ai'e one of the main 
reasons for the convergence problems of iterative decoders. 

3.3.1 Correlation Coefficient 

A graphical and more in depth analysis of the correlations after each decoding operation 
can be obtained by calculation of the correlation coefficient [33] among the systematic 
bits. Through out the iterative process the output of M A P I becomes the input to MAP2 
and vice versa. The correlation coefficient p can be used here to examine the validity of 
the independency assumption of the exchanged information. If the correlation between 
the extrinsic output of decoder v and its extrinsic input from decoder u is high, the 
information fed back to decoder u h&s minimum contribution to its knowledge and the 
whole process might get stuck. We are interested in the correlation between the output 
extrinsic probability Cj and the input extrinsic probability Cj. The correlation coefficient 
Pci,cj is defined as 

COV C j , Cj 
(3.4) 

wliere a is the standard deviation for and e,, and Cov is the covariance expressed as 

(3.5) 
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Note that at the initial decoding operation (MAPI iteration 0) where there is no available 
extrinsic information yet from MAP2, the correlation coefficient is calculated with respect 
to the channel observations of the systematic bits. 

Bit 272 forms a cycle of length 4 with bit 273 (11(272) = 261 and n(273) = 262) and a 
dominating error event with bit 269. We will examine the correlations induced between 
bit 272 and the rest of the bits at different stages of the decoding procedure. Initially, at 
iteration 0 correlation peaks exist at positions adjacent to 272 as expected (figure 3.5(a)). 
Without the use of interleaver the correlations at the output of the second decoder would 
be similar. The interleaving action spreads the bits at difiFerent positions within the block 
and new correlation peaks should exist at different positions. In the case of bit 272 though 
the major correlation peaks remain around position 272 as a result of the bad interleaving 
at that position (figure 3.5(b)). 

TOO 130 

Figure 3.5: Extrinsic Output/Extrinsic Input correlation coefficient graphs for bit 272 
for iteration 0 at the output of (a) M A P I and (b) MAP2 

As the decoding proceeds further the correlations increase (look at figure 3.6 and compare 
with figure 3,5) and the independency assumption cannot be considered valid, i.e. the 
extrinsic information fails to decorrelate the two decoders' decisions. This increasing 
dependence among the exchanged extrinsic information is the major reason for the gradual 
reduction of the improvement achieved by later iteration increments. 
The effect of correlation to the convergence properties of turbo codes is enforced by the 
graphs of figure 3.7 where the peaks of the correlation coeflicient p match to the error 
events of table 3.2. For example, plotting the correlation coefficients between bit 166 and 
the rest of the block at the output of MAP2 after the end of the third iteration, it is clear 
that the highest correlation peak occurs at the position 163. Prom table 3.2 it is seen 
that the pair 163,166 is one of the most frequent error events. Similai* conclusions we get 
from the graphs for the bit positions 272, 120 and 486 where positions 269, 117 and 480 
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Figure 3.6: Extrinsic Output/Extrinsic Input correlation coefficient graphs for bit 272 at 
(a)iteration 1 M A P I (b)iteration 1 MAP2 (c)iteration 2 MAP2 and (d)iteration 3 MAP2 

respectively, exhibit the highest dependence and coincide with the error events listed on 

table 3.2. 

3.4 The effect of cycles in the performance of 
iterative decoders 

By using the correlation coefficient graphs for turbo decoders, it was shown how the 
increasing correlations between the exchanged extrinsic information are related to the 
most frequent error events and to the ability of the iterative decoder to converge to the 
maximum likelihood solution. I t was also explained that the existence of short cycles (also 
called short loops) contributes to the correlation of the decisions of the two decoders. In 
the case of turbo codes short cycles are the result of bad interleaving. When two bits are 
located in close proximity before and after interleaving, a short cycle is formed. 
Short cycles have the same unwanted effect on LDPC codes so it is essential that the ptirity 
check matrix H is free of short cycles, particularly of length 4. In general, the presence 
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Figure 3.7: Extrinsic Output/Extrinsic Input correlation coefficient graphs of MAP2 at 
iteration 3 for (a)bit 272 (b)bit 486 (c)bit 166 and (d)bit 120 

of short cycles results in information fed back very quickly without being influenced by 
many parity checks. In this chapter it is attempted to relate the existence and length of 
cycles with the degradation of the code's performance, by the use of computatioii graphs. 
A computation graph is a tree graph (free of loops) that traces recursively back in time 
all the interconnections of a certain bit (the root bit) with check and code bit nodes. 
It provides the same information with the original "loopy" Tanner graph but in a tree 
graph, thus making the analysis simpler. 

Wiberg in his thesis [74] proved that the SP algorithm decides optimally when applied 
on a tree graph. Hence, i f ((/, 5, Q) defines a computation graph where U represents the 
set of code bit nodes u that participate to the set of check nodes S = {SQ, S\....Sj} and Q 
defines the check sets (the code bit nodes that are connected with edges to each of the 
check nodes 5 € 5) , application of the SP algorithm will give the optimal maximum a 
posteriori decisions 

APP,{x)= ^ ' • ( f l ^ ) (3-6) 
fGF: /u .= i 
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Where F includes all the binary sequences f = {/uo,/«,, •••} that satisfy the check sets 
(3, and r is the received vector. 

Optimal decoding in the computation graph is not equivalent to optimal decoding in the 
Tanner graph when loops exist in the latter. As i t will be shown in later chapter iterative 
decoders perform optimal decoding on the computation graph. Hence, explanation of the 
effect of the cycles on the decoder's behaviour is literally an answer to the retisons for 
the sub-optimality of iterative decoders. Chapter 6 investigates among others, the direct 
consequences from the presence of cycles on iteratively decoded codes. This section 
approaches the same problem from a different point of view and investigates how the 
existence and the length of cycles (we alternate the use of words cycle and loop but they 
both have the same meaning) alter the weight distribution of the sequences f € f that 
contribute to the error decision of a particular bit. 

Starting with a tree (loop-free) code, its parity check H matrix is shown in figure 3.8 
together with its associated computation graph when bit position 0 {UQ) is used as root 
bit. Assume transmission of the all-zeros codeword 0 over a AWGN channel. The decision 

1 1 0 0 1 0 0 0 
s, 0 1 1 0 0 I 0 0 

0 0 1 1 0 0 1 0 
(r^) S3 1 0 0 0 0 0 0 1 

Figure 3.8: (a)tree code H matrix (b) computation graph 

for the root bit iio will be in error only if 

In other words an error will occur if the sum of the probabilities of those sequences that 
satisfy all parity checks of the computation graph and contain a 1 at is higher than 
those that contain a 0. The weight distribution of the error contributing sequences is 
given in table 3.3. Next, a cycle of length 8 is introduced at the loop-free parity check 
matrix of 3.8, as shown in figure 3.9. The associated computation graph is also depicted 
in the same figure. The weight distribution of the sequences that contribute to an error 

39 



Weight Distribution Sequences (Positions of I's) 
1 • w'-^ 
1 • ly" T i O , U 7 , U i , U 5 

3 - ly^ 
Uo,U7,U4,U2,U5,U3 

UO,U7,U],US,UG,U3 

Table 3.3: Weight distribution of tree code 

"o "2"3 "4 "5 "6 "7 

So r ~ 
; 1 

i i 0 0 1 0 0 0 
;o 1 "f; q 0 1 0 0 

2̂ 0 1 i | 0 0 1 0 

3̂ 11 0 0 i ; 0 0 0 1 

(a) cycle 8 

Figure 3.9: (a)H matrix with a cycle of length 8 (b) computation graph 

decision for ZLQ has now changed (tal)le 3.4). The important point is that the number 
of lower weight sequences (weight 4) has now increased. The addition of a cycle in the 
parity check matrix H has sUghtly weakened the immunity of the code to errors. 
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Weight Distribution Sequences (Positions of 1 's) 
1. W '^ 
3 - ly* 

Wo, ^ 1 1 ^ 5 ) ^ 6 ) ^3 

Table 3.4: Weight distribution when a cycle of length 8 is introduced 

The addition of an even shorter cycle of length 4 this time (figure 3.10), weakens the 

code even more by reducing the weight to the minimum value of 2. 

"o U , U 2 U 3 u 4 " 5 "6 "7 

So ; 1 1 0 0 i 0 0 0 

Si |o I 1 0 0 1 0 0 
io 0 1 1 0 0 1 0 

h • 1 0 0 0 1 0 0 I 
cycle 4 (a) cycles (b) u 

Figure 3.10: (a)H matrbc with a cycle of length 4 (b) computation gi*aph 
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Weight Distribution Sequences (Positions of I's) 

2 - IV^ 

i i y * ^ 

Table 3.5: Weight distribution when a cycle of length 4 is introduced 

42 



4 Methods for evaluating the 
convergence properties of iterative 
decoders 

This chapter describes and implements the two major methods for analysing the conver­
gent properties of iterative decoders, namely the Density Evolution[l4] and the Mutual 
Information Evolution [65]. 

4.1 Density Evolution 

The density evolution is a useful tool for the analysis of the convergence properties of 
iterative decoders. I t can be used to determine accurately the Eb/N^ thresholds^ i.e. the 
minimum Et/No required by the decoder to operate in the waterfall region. By this 
method many mysteries of iterative decoding such as the reasons why certain codes con­
verge better than powerful codes of higher minimum distance and the role of systematic 
bits and recursive convolutional constituent codes to the iterative process were explained. 
What density evolution does is to track the probability density fimction of the extrinsic 
information messages as this density evolves iteration after iteration. In section 3.1 the 
fixed point solutions were evaluated as a function of the SNR and it was stated that 
indecisive solutions ai'e mostly associated with the low SNR region where the BER is 
relatively high. At the waterfall region indecisive solutions gradually disappear and the 
convergence rate improves dramatically. Hence, by observing the evolution of the densi­
ties of the extrinsic extrinsic probabilities for a certain SNR it can be decided whether 
the code operates on the waterfall region or alternatively, what is the minimum SNR 
required for the code to operate on the waterfall region. 

TVacking the evolving extrinsic probability densities is simplified by the fact that, as it 
has been investigated in [74], these can be closely approximated as Gaussian and consis­
tent [54]. Density evolution was initially proposed by Richardson and Urbanke [55] for 
LDPC codes on AWGN channels. Divsalar et.al applied the same method on turbo-like 
decoders. In the rest of this subsection, the density evolution method will be described 
and applied on PCCC turbo schemes. 
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The log-likelihood ratio Z of an AWGN channel output for BPSK antipodal transmission 
can be written as 

Z = ln = \ (4.1) 

Where z is the noisy received signal x-\-n. I f we develop the conditional probability 
functions, 4.1 is simplified to 

Z = ^^z (4.2) 

Since z is the transmitted symbol plus noise 

2 = ^ ( x + n) (4.3) 

Where x is the systematic symbol (re = ±1) and n is a Gaussian distributed parameter 
with zero mean and variance ci^ — What we have in 4.3 is multiplication of the 
Gaussian distributed z by a constant, and Z can be formulated as a Gaussian function. 

Z = ii^x - f 71, (4.4) 

Assuming transmission of the all-zeros codeword for simplicity, the mean would be 

= ^ (4.5) 

For the Gaussian parameter n , , its standard deviation a„ is multiplied with the constant 
2 ̂ and squared to give us the variance of Z 

It turns out that mean and variance of the LLR distribution are related by 

A*. = y (4.7) 

which is the consistency (symmetrical) condition. For lai'ge interleavers the extrinsic 
LLRs A can be considered uncorrelated from the channel LLRs Z. Additionally, it has 
been already observed in [74] the Gaussian like distribution of A. Hence, A can be modelled 
by applying an independent Gaussian random vai-iable ux with variance cr? and mean zero 
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in conjunction with the transmitted systematic bits x. 

A = fix^: + Tlx (4.8) 

Since A is (hke Z) a log-likelihood ratio value based on Gaussian distribution, the con­
sistency condition can be considered valid for A too. The constituent decoders' decisions 
can be evaluated iteration after iteration based on the distribution of the extrinsic LLRs. 
As the decoders' outputs become more and more decisive the pdf curve moves away from 
the zero axis, as a clear indication that the decoder has converged and that the distance 
between pdf{X) and pdf{-X) has been maximised. In figure 4.1 is shown the evolution 
of the extrinsic LLRs pdf for a convergent block after 3 iterations have been performed. 
Note the Gaussian shape of the distribution and the validity of the consistency approx-

(a) (b) 

Figure 4.1: PCCC pdf plots of A at the output of IVIAP2 for a convergent block at (a) 
iteration 0 (b) iteration 3 

imation. For a non-convergent block though where there is high uncertainty involved in 
the decisions of the two decoders even after 10 iterations, the evolution is limited and the 
pdf curve remains at small distance from the zero axis as shown in figure 4.2. 
The plots of figures 4.1 and 4.2 have been based on single blocks, just for showing in 
practise the diflFerence in the evolution of the extrinsic A densities for blocks that fail to 
converge. To evaluate the convergence properties of a code it is essential to average over 
a large number of blocks at each Eh/No- To do that, a quantity is needed to be used as 
a qualitative measure. Clearly, successful evolution of the pdf curves is expressed by a 
gradual increase of the mean A value and a subsequent reduction of the pdf spread as the 
number of performed iterations increments. The qualitative quantity that has been used 
to evaluate the evolution of the extrinsic A's is the signal-to-noise ratio SNRx which can 
be thought as the discrimination between the consistent density pdf{X) from pdf{—X). I t 
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(a) (b) 

Figure 4.2: PCCC pdf plots of A at the output of MAP2 for a non-convergent block at 
(a) iteration 0 (b) iteration 10 

is defined as the ratio between the squared value of the mean / / A and its variance cr̂ . 

SNR, = 4 (4.9) 

From the consistency assumption of 4.7 it follows that 

SNR, = ^ (4.10) 

Thus, knowledge of the mean fi^ is adequate for estimating the quality of the A values 

and by tracking the magnitude of SNRx throughout the iterative process, it is possible 

to assess the convergence properties of a code and determine the Eij/No threshold point. 

4.1.1 Dynamic models of density evolution 

There are two ways for modelling the evolution of the A pdf. The full-itenition model 
treats the iterative decoder as a black box with one input (input to M A P I ) and one 
output (output of MAP2). The ratio of input and output SNRx is defined as the noise 
figure F. 

F = ^ ^ ^ (4 11) 

Clearly, when F is below 1 the turbo decoder improves its estimations at that iteration. 
Generally, this model concentrates on the SNRx change of the overall decoder to assess 
convergence to any solution without giving any further clues about the quality of this 
solution. Because of the early correlations created between components of the extrinsic 
information the decoder might stop producing any more gain and converge before it 
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reaches the correct solution. As we'll see later, investigation of the evolution of the 
mutual information of the extrinsic A values, offers direct feedback about the conditional 
entropy at each iteration. The same can be achieved by using the half-iteration model 
that keeps track of the SNRx at the output of both constituent decoders at the end of an 
iteration. The turbo concept is based on the fact that each decoder takes advantage of 
the progress that has been made by the previous stage. This progress can be expressed 
in terms of the SNRx^ As it was explained in the previous chapter that dealt with the 
convergence problem of iterative decodere, the growing correlation between the decisions 
of the constituent decoders is regarded as the main reason for the lack of progress after 
a certain instant of the iterative procedure. The use of the output of decoder stageA as 
input to the decoder stageB and vice versa, allows us to plot the SNRx quantities of the 
two decoders on the same graph. 

Figure 4.3 presents the half-iteration model plots of density evolution for two PCCC 
schemes with different constituent RSC codes, at higher and lower SNR. The distance 
between the two representative curves for SNRlx and SNR2x denotes the SNRx gain 
and can be used as a measure for the convergence capability of the code at a certain 
Elf/No. The narrow pass (known as tunnel) at the first few iterations is critical for 
the convergence properties of the decoder. Once the decoder has managed to evolve 
through the tunnel, the SNR gain increases and convergence can be achieved withing 
a few iterations. The SNR decreases again as the decoder approaclies convergence due 
to the saturation of the extrinsic probabilities. As expected, at lower SNR the tunnel 
is narrower (keep in mind the different scaling among the graphs) and the convergence 
rate lower. Note also from figure 4.3 the difference in the width of the tunnel path when 
constituent codes of longer constraint length are used. This verifies the better converging 
properties of weaker codes at low SNR. 
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Figure 4.3: Half-iteration density evolution model: (a) PCCC (1,5/7) at OdB (b)PCCC 
(1,25/37) at OdB (c) PCCC (1,5/7) at 0-3dB (d)PCCC (1,25/37) at 0.3dB (e) PCCC 
(1,5/7) at 0.8dB (f)PCCC (1,25/37) at 0.8dB. For all scliemes PCCC (1,5/7) N=1500 
and for PCCC (1,25/37) N=1503. The consistency approximation has been used in all 
cases 
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4.2 Mutual information evolution: E X I T charts 
Similar analysis and conclusions about decoder convergence can be conducted using al­
ternative averages over the A statistics, such as the mutual information between the 
systematic bits and the extrinsic A values at the input and output of the two decoding 
stages. 

Assume transmission of symbol a with a priori probability p{a). At the output of the 
noisy channel the received value b can be used to define the a posteriori probability of a, 
that is the conditional probabihty P{a\b). The change between the information uncer­
tainty before (a priori probability) and after reception of b (a posteriori probability) is 
the gain in information and is called mutual information I(a;b): 

'(»;») = log, - loe, ( ^ ) = log, ( ^ ) (4.12) 

The mutual information /(a; 6) expresses the amount of knowledge learnt about a by 
reception of 6. Multiplying numerator and denominator of the above equation with the 
a priori probability p(6), we get 

^(^ '^) = * ^ S 2 f ; ^ ^ ) (4.13) \p{a)p{b)J 

From equation 4.13 we can directly point out the essence of mutual information, that is 

if a and 6 are independent then 

P{a\b)=p{a) (4.14) 

and 

P{a,b)=p{a)p{b) (4.15) 

and as a consequence of that 

Hence, if a and b are independent, which means that reception of b does not provide any 
information at all about a, then the mutual information becomes zero. 
To obtain the mutual information over an alphabet of more than one symbols, it is 
essential to average using the appropriate probabilities of the symbols occurring: 

I{A-6) = P{a,ma,,b) = P(a,|6) log, ( ^ ^ ) (4-17) 
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Similarly 

J(a-B) = J2Pia\bj)I{a-bj) = P(a|6,) log^ f ^ ^ ] (4.I8) 
j J \ PI" ; / 

Finally, the mutual information between two symbol alphabets A and B can be obtained 
as: 

which is equivalent to the uncertainty (entropy) reduction 

I{A;B) = H{A)-H{A\B) (4.20) 

and for equiprobable transmitted symbols a: 

I{A;B) = l-H{A\B) (4.21) 

The conditional entropy H{A \ B) represents the uncertainty introduced by the channel 

which is also known as equivocation. The decoder's task is to eliminate any uncertainty 

from the received vector, i.e. to make the conditional entropy equal to zero (and therefore 

the mutual information equal to 1). We can track the evolution of the decoder as it 

attempts to reduce iteration after iteration the conditional entropy and increase the 

mutual information to the maximum value of 1. The main task of the mutual information 

evolution theory is to monitor the mutual information between the extrinsic A values 

and the systematic bits x at the input and output of both constituent decoders. The 

Gaussian and consistency assumption of the A pdf can also be used here for finding 

the conditional probabilities of the A values, and from these the I{B\ A) and I{B\ E) 
(considering A and E as the set of A values at the input and the output of the constituent 

decoders, respectively). Hence, treating A before and after have been processed by the 

MAP decoders as being the outputs of a fictitious LLR channel, we can determine the 

capacity at each iteration. Averaging over many blocks provides the average achievable 

capacity of the code at a fixed Eij/No level. Since IE is directly affected by (constituent 

decoder A accepts from decoder B a set of LLRs A with mutual information as a priori 

information and produces a set of A probabilities E with which is then used as a priori 

information from the next decoding stage) it can be expressed as a function of I A and 

E,/N,. 

lE = f { f A , E , / N o ) (4.22) 
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and for fixed EtlN^ 

IB = HIA) 

IE is a monotonically increasing function so we can express I A as 

(4.23) 

IA = r \ i E ) (4.24) 

Figure 4.4 shows the Extrinsic Information Transfer (EXIT) [65] charts of two PCCC 

(a) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (b) 
1 1 L 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 4.4: EXIT charts for two r=4/5 codes of information length k=4000 operating at 
1.6dB and with feed-forward memory of (a) 4 and (b) 2 

schemes of rate 4/5 with consistent RSC codes that differ only at the feedback polynomial. 
The trajectory within the curves represents the gain of the two decoders at each iteration 
which is analogous to the step widths. As in the density evolution case, the bottleneck in 
the diagrams is the tunnel region of the code. The opening of the tunnel is analogous to 
the convergence rate of the code at a given Eij/No. The narrower opening of the tunnel 
at 4.4(a) denotes worse convergence and as a result of that the trajectory stops evolving 
quite early, before reaching 1. At the point where the two curves ai-e close enough to 
touch each other the code operates well into the low convergence region. The EXIT 
charts indicate the better converging properties of the PCCC scheme that uses the RSC 
codes with the shorter memory feedback polynomials. 
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5 Attempts to improve the 
convergence properties of iterative 
decoders 

This chapter discusses three basic attempts for improving the performance of iterative 
decoders. The first deals with the sensitivity of the iterative decoder performance with 
respect to modification of the variance. In [62] and [75] the authors have investigated 
the problem of SNR estimation for turbo decoders and they have concluded that turbo 
decoders are much more tolerant to over-estimation than under-estimation of SNR. These 
investigations were mainly concerned with the problem of SNR estimation and the impact 
of estimation errors to the decoding performance. From the results though it can be 
observed that tiny reductions in terms of BER and FER are attainable when a small 
offset is added to the real SNR value. In this chapter the investigation is approaclied 
from a different angle, as the variance is modified only for specific bit positions where the 
quality of the associated channel output is below a certain pre-defined level. 
The second attempt has been inspired by the observations of [14] due to which a side 
effect of the correlations that are created during the iterative process (and up to a high 
extend can be blamed for the convergence problems) is the fast saturation of the decoders' 
decisions. In the experiments that will be presented in this chapter the rate of growth 
of the extrinsic probabilities is limited so that convergence is delayed and, hopefully, the 
effect of correlation is minimised. A similar scaling operation is briefly referred to the 
original turbo code paper of Berrou et.al.[9 . 

The third scheme under consideration deals with the impact of burst errors to the ability 
of the iterative decoder to converge to the optimum solution. Given that the iterative 
decoder has failed to converge optimally, the input probabiUties ai-e permuted so that 
either burst error events that persist after interleaving or formed randomly after the 
interleaving operation, are randomised. 

52 



5.1 Modification of the variance 

The variance, as this follows from the value of the SNR, can be alternatively thought 
as a measure of the sensitivity of the MAP decoder to the channel observations. For a 
certain channel output its associated conditional probabihty will tend to be more decisive 
when the variance is low. On the other hand the sensitivity of the conditional probability 
towards the same channel output reduces when higher variance is used. This property 
can be used as a way to affect the conditional probabihties of those bits that exliibit 
high uncertainty. For that reason an uncertainty threshold r is used so that whenever 
the entropy of the conditional input probability of bit i is higher than the uncertainty 
threshold r , the variance used for the calculation of its conditional probability is vaiied 
by an amount ±5% from the original channel variance. 

Figures 5.1 and 5.2 display the results obtained from application of this method to PCCC 
and LDPC schemes at various Ei^/No, and for several choices of the parameters r and 6. I t 
has not been possible in neither of the two schemes to achieve some significant reduction 
on the FER. Any observed improvements are small, sporadic and not consistent with the 
parameters r and 6. 

Figure 5.1: Change of FER with respect to r and 5 for a PCCC sclieme of block-length 
N=1500 at (a) 0.5dB and (b) 1.25dB 
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Figure 5.2: Change of FER with respect to r and 6 for a Tanner( 155,64) LDPC code at 
2.0dB 

5.2 Bounding the growth rate of extrinsic 
probabihties 

In this experiment we attempt to minimise the side effects of the induced correlations 
among the systematic bits by bounding the extrinsic probabilities' maximum rate of 
growth per iteration. The rate of growth must not exceed the exponential function 
exp(G), that is 

< exp{G) (5.1) 

where x G [0,1] and e\{x) is the extrinsic probability of x for bit i at the end of the t*-^ 
iteration. For all investigated cases on PCCC schemes, there has been observed at least 
one value of the parameter G for whicli considerable reduction of the iterative decoder 
error rate has been achieved. Figures 5.3 and 5.4 summarise these results by showing 
the variation of the FER performance versus G when the bounding method is applied on 
PCCC schemes. For comparison reasons, the standard turbo performance is indicated by 
a straight line on the same graphs. 

The same method did not deliver similarly good results on LDPC codes. In all tested 
cases, only tiny improvements were managed, and these only when the bounding method 
had been applied to the individual (local) extrinsic probabihties. Al l attempts to apply 
bounding on the overall extrinsic probabilities (the product of the local extrinsics) at 
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Figine 5.3: FER performance of the bounding method for various vakies of G for a 
PCCC(1,13/15) scheme of N=1500 at (a) 0.75 and (b) LOdB 
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Figure 5.4: FER performance of the bounding method for various values of G for a 
PCCC(l,25/37) scheme of N=1503 at (a) 0.75 and (b) l.OdB 

the end of each iteration, resulted on error rates higher than these of the standard SP 

algorithm. 
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Figure 5.5: FER performance of the bounding method for various values of G when 
applied on (a) LDPC (105,53) at 3.0dB and (b) LDPC (341,205) at 2.5dB 

5.3 Structured permutation of the received vector 

The presence of long bursts of errors can significantly influence the error capabihty of a 
convolutional code. Its immunity on long bursts is dependant on the memory of the con-
volutional code, i.e. higher memory codes exhibit higher resistance on burst errors. One 
of the advantageous properties of the use of interleavers in turbo codes is the randomisa­
tion of any bursts of errors that exist at the input of the first decoding stage. However, 
even after interleaving the possibility that certain bursts persist or that the interleaving 
action happens to create new error bursts, still exists. 

An observation that is implied by the error bursts concept and inspired this experiment, 
was that the actual Euclidean distance of the received vector from the transmitted can 
not be considered as a definite parameter to the decoding outcome. In other words, the 
way that the errors (and consequently the conditional probabilities of the input vector) 
are mapped within the block is equally important to whether the iterative decoder will 
successfully converge to the ML solution for a certain block. The question is if, and by 
how much, the performance of the iterative decoder would be enhanced from a different 
mapping of the input probabilities. To show the potential of this method, the following 
experiment has been made. 

Experiment description 
Consider a non-convergent block. The received vector (the input probabilities) are per­
muted but in a way that the structure of the code is not affected. In other words, permu­
tations are allowed only among those systematic bits of which the associated transmitted 
symbol is the same (look at figure 5.6). By this way, the code structure is maintained. 
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Figure 5.6: Permutations are allowed only among the received values of those positions 
that are associated with the same transmitted symbol value (1 in this case) 

Obviously, in practise the transmitted symbols are unknown. However, in this experi­
ment it is attempted to display the potential of such a method and to prove our previous 
argument concerning the significance of implementing different mapping at the input 
vector. Assuming equiprobable transmission and BPSK modulation, more or less half 
of the systematic bits will be I's or O's. For practical block-lengths, trying all possible 
permutations would be a highly complex task. To account for that, a parameter that sets 
the maximum number of performed permutations is defined. We call this parameter x-
Figure 5.7 displays the gain that is acliieved over standard turbo decoding by applying 
the structured permutation method for various valu^ of x- The coding gain is significant 
even for ̂  = 2 and increases steadily with higher x- I t should be expected that for higher 
values of x the performance will get arbitrarily close to the mrl bound. The obtained 
results reveal the great potential that is offered by the structured permutation method 
for the convergence improvement of turbo codes. But how much of this potential gain can 
be achieved in practise, where the actual transmitted symbols are not known in advance? 
The proposed algorithm is summarised below: 

• Step 1: Given a non-convergent block, store the received vector r and the hard 
decisions of the standard decoder after last iteration, for all systematic bits as 

• Step 2: Set the parameter x to the number of desired permutations, j equal to zero 
and specify a new parameter called SPAN 

• Step 3: Choose the SPAN most unreliable among those positions i where di = x 
(where x £ [0,1] is the transmitted symbol) 
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•landard tunx) 

Figure 5.7: Optimum implementation of the structured permutation method on a PCCC 
(1,5/7) scheme 

• Step 4- Restart decoding based on the permuted received vector r' 

• Step 5: Substitute D with the new decisions and store the new vector. Calculate 
the Euclidean distance of D from the original received vector r. 

• Step 6: Increment j and \i j < x return to Step 3. If j = x proceed to the next 
step 

• Step 1: Choose the sequence D that is associated with lower Euclidean distance 
from r 

The size of the permutation has been constrained to SPAN in order to reduce the number 
of erroneous components di that are involved in the permutation process. For the tested 
PCCC scheme of block-length A'" = 1500 and rate 1/3, the best results were obtain for 
5Pi4A^=100. The comparison to the standard turbo decoding is shown in figure 5.8. 
The coding gain increases steadily with x moderate to high SNR the structured 

permutation method offers significant gain. 
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Figure 5.8: Implementation of the structured permutation algorithm on a PCCC (1,5/7) 
scheme 
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6 Generation of pseudo-codewords and 
their role in the outcome of the 
Sum-Product algorithm 

As i t is already known, belief propagation is a sul>optimum decoding method when oper­
ating on graphs with loops. Optimum maximum hkelihood decoding involves complexity 
that increases exponentially with block-length N, hence for practical lengths optimum 
decoding is unrealistically complex. In this chapter it is attempted to explain the reasons 
why the iterative decoder does not always converge to the maximum hkehhood solution. 
The mechanism of SP algorithm is followed analytically through examples on short codes. 
It is shown that the iterative decoder performs optimum decoding based on a distorted 
vector space. In literature the distorted vectors are called pseudo-codewords [34, 35, 72 
and the same name will be used here. I t will be shown further on that the number of 
pseudo-codewords can be computed by the column and row weight of the parity check 
matrix. 

The influence of pseudo-codewords to the outcome of iterative decoding will be also in­
vestigated. The failure of of the SP decoding algorithm to converge to the ML optimum 
solution will be hnked with the correlation among the received vector and the pseudo-
codewords. 

6.1 Background 

An algebraic analysis of iterative decoding has been attempted by Offer et. al. in [41 
and by Soljanin et. al. in [61]. The authors show that by the use of the group algebm 
product, SP decoding of very sparse codes and tree codes becomes equivalent to optimum 
decoding. However, the analysis in any of these approaches does not give an insight into 
the way that pseudo-codewords are generated during the iterative decoding procedure, 
and the way that they affect the final decision. Moreover, application of the group algebra 
product is limited only to a theoretical basis. 

The effect of pseudo-codewords is discussed in [27]. The authors use the factor graph 
to describe the generation of pseudo-codewords and to define the number of these. The 
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iterative decoder is modelled by a loop-free graph (computation graph) that expands 
with increasing iterations. For each of the parity check nodes of the graph, as pseudo-
codewords ai*e defined all the associated even error sequences. Their number is shown to 
increase exponentially with iterations. 

The examples presented in this chapter will provide a detailed description of pseudo-
codewords. I t will be also shown that the number of pseudo-codewords for a given code 
can be obtained by the structure of its parity check matrix and that pseudo-codewords 
are equal contributors to the decisions of the iterative decoder. 

6.2 Generation of pseudo-codewords during 
iterative decoding 

6.2.1 A quick reminder of the Sum-Product (SP) decoding 
algorithm operations 

The SP algorithm was described analytically in chapter 2. This section acts as a quick 
reminder of the key points so that there is a smooth transition to the ideas of this chap­
ter. 
The SP algorithm acts locally in an equation-by-equation basis. Each of the N — k 
parity check equations forms a single parity check code (we will call them sub-codes). 
Messages are exchanged between the sub-codes about their independent estimations 
of their common participants probabilities. The procedure is repeated in an iterative 
manner until convergence to a predefined stopping criterion has been reached (or until 
the maximum number of iterations has been performed). Given a parity check matrix 
H = { / i j i } ( N - A : ) x N , Gallagher's "product of differences" [28] operation offers the basic 
expression for the probability of an equation being satisfied. 

n ( P i ( o h ) - p . ( i h ) ) (6.1) 

Where Sj, the set of variable nodes connected to check node (parity check equation) j (i.e. 
the set of positions with 1 in the particular row), and r,- the i^^ coordinate of the received 
vector r. By expanding equation 6.1 it can be shown that it expresses the difference of 
the joint probability of all the odd sequences from the joint probability of all the even 
sequences (i.e. the joint probability difference between these sequences that satisfy the 
parity check and those that do not) within the local group Sj. 
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The extrinsic information of bit i at equation j can be calculated as a sum of products 

that includes all even or odd combinations (depending on the wanted extrinsic probability 

for 0 or 1 respectively) that exist within the subgroup 5 j , excluding though the particular 

bit the extrinsic probability of which is to be found. Since this is evaluated locally (only 

for equation j ) i t will be called local extrinsic e/̂ .. 

e^,.-(l) = 7^odd,.,, ( 6 .2 ) 

e/,,(0)= 'Pe .cn , . , . ( 6 .3 ) 

The overall extrinsic information ej(x) where x € [0,1] will be the normalised product of 

all local extrinsic probabihties for bit i, 

Ci{x)= n %M ( 6 .4 ) 

At the end of an iteration, the associated APP decisions for any bit i can be obtained by 

the product 

APPi{x)=p{x\n)-ei{x) ( 6 .5 ) 

The original channel probabilities are then updated to be used as a priori for the next 

iteration. 

>fi:hj, = l^upd^,{x) = ^^:-^ ( 6 .6 ) 
APPijx) 

ei.,(x) 

The following sections investigate the reasons for the sub-optimality of the SP algorithm 

with respect to optimum MAP decoding. 

6.2.2 Vector space of iterative decoder 

Consider a parity check matrix H = { / i j t } ( N - f c ) x N . We denote as Wrj the row weight of 

parity check j and as Wa the column weight of position i. The 2 '̂ information sequences 

are mapped into the 2*̂  codewords c that form the code C. Assuming MAP decoding the 

decision for the transmitted symbol x at position i will be based on the vector set C, by 

summing up the probabilities of those codewords where Ci = x. 

APP,{x)= ^(^I--) (6.7) 
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Equivalently, the extrinsic information for bit i is expressed by the same equation but 

with the effect of bit i excluded. 

Considering now an iterative decoder, for each parity check equation j the extrinsic 
probabihties for the participating bits are calculated locally by equations 6.2 and 6.3. 
The Vodd and Veven normalised probabilities are the sum of the total 2'^''^ odd and even 
sequence probabilities that exist at parity check equation j. For calculation of the overall 
extrinsic information (equation 6.8) the number of terms increases exponentially due to 

Hence: 

e , ( i ) = n n ^ - ^ s , / . = n E P«.> (^-9) 
Vi:/ij,=l Vi:hji = l Vi:/»j, = l v=0 

and 

ei{o)= n ^0.(0)= n ^ - c n , ^ / . = n E P«.> ^ ^ i ^ ) 
Vt:hji=l Vi:/jj-i = l Vi:/ij, = l t;=0 

where Pô . „ and Pc,.„ represent the probability of the t;"* even and odd respectively, se­
quence of pai'ity check equation j. So, after processing all the (A^ — k) parity check 
equations, the extrinsic probability of bit i will be based on ^'(z) terms. Where *(z) is a 
function of the H matrix column weight at position i and the row weight at those parity 
checks where bit i participates. 

/ \ 
v (̂z) = 2 . Yl 2^'"o-'> (6.11) 

The ^'(z) vectors u form the vector space UiCU based on which the decoder will decide 
for bit i . 

Two distortion effects appear and can be summarised as: 

• If ^ '( i) > 2^, vectors whicli are not part of the codebook C will be involved to the 

decision in the form of an offset [3 . 

• The presence of cycles in the parity check matrix H will cause multiplication of the 
involved probability terms by themselves. In literature this is referred as unequal 
scaling distortion [27] or double counting [77] problem. 
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The following examples will demonstrate the distortion that is introduced by SP algorithm 
on various short codes. 

The effect of short loops: Example on a Hamming (7,4) code 

0 0 1 0 1 1 1 

0 1 0 1 0 1 1 

1 0 0 1 1 0 1 

Consider the first column as position 0. Bits 3 and 6 form a cycle of length 4. The 
analytical expressions for the local extrinsic information for bit 3 from parity checks 1 
and 2 ai'e 

parity check 1: ei,^{l) = [y;, • • f/e] + [̂ i • Ps • QG] + 

g\ • Qb ' P G ] + [pi • P 5 • P G ] 

(6.12) 

(6.13) 
parity check 2: ei^^{\) = [po • 94 • f/c] + [̂ o • P4 • ge] + 

(lo-Q^- Pc] + bo • P-i • P G 

Where Pj = p ( l | r j ) and qj = I - pj = p{0\rj) for j = 0,1, ...,6. The overall extrinsic for 

bit 3 would be the product of the two local extrinsics of equations 6.12 and 6.13. 

^3(1) = [po • Pi • 74 • <75 • Qe] + [qo Pi PA -qb- QG] + [̂ o • Pi • <74 • 75 - 9G • Pe) + 

PO • Pi • P4 • 75 • 76 • P G I + [PO • 71 • 74 • P5 • 76] + [70 " 7l " P4 ' P5 ' 76] + 

70 • 7i • 74 • P5 • 76 ' Pel + [Po • 7i • P4 • Ps * 76 • Pel + [Po • 7i * 74 • 75 • 76 • P G ) + 

r 21 r 0, (^•^'*) 
[70 • 71 • P4 • 75 • 76 • PeJ + [70 • 7i * 74 • 75 • P G J + [Po • 7i * P4 • 75 • P G J + 

[po • Pi • 74 • P5 • 76 • P G ] + [70 • Pi • P4 • P5 • 76 • P G ] + [70 • Pi * 74 • P5 • P G ] + 

PO • Pi • P4 • P5 • P6. 

Prom equation 6.14 the following types of distortion are observed: 

• The vector space U3 is formed by 16 terms, 8 more than the codewords that should 
contribute to the decision for 63(1). 

• None of the terms of equation 6.14 represents a valid codeword c 6 C. Bit 6 which 
participates with bit 3 in a cycle of length 4, appears scaled (it is double counted). 

The decision for the extrinsic probability of bit 3 at iteration 0 will be based on the 
vector set ^ C. In contrast to that, optimum decoding would only involve the 2''"^ 
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codewords for which = 1. 

e3,mi(l) = \po P\ q2 <iA- (15 * QG] + [QO ' P\ ' P2 ' PA • ' QG] + bo • (h Pl QA- Ph ' </g1 + 

ML[2\ MLVi] 

(lQ (i\-Q2 P4 P5- qe] + [(10 • (i\ • P2 • 94 • (15 • Pc] + [PO " 7̂1 " Q2 * P4 " 95 " Pel + (6.15) 
Af/.[4] A^L[5) A^L|6] 

90 • Pi • 92 • 94 • P5 • Pel + bo • Pi • P2 • P4 • P5 • P6 

Ai/,|7I Ai/.[8] 

Having the sokition for 63 obtained by both the optimum brute force decoder and the 
sul>optimum iterative beUef propagation decoder, we can compare the two and identify 
the way that they differ. A careful look at the two equations shows that the iterative 
algorithm induces a scaling part and an offset to the actual ML solution for bit 3. 

(^hW = - • {ML[l] + ML[4J) + ^ . (ML(6] + ML[7\) + 
92 92 

— • {ML[2] + ML[3]) + — . (ML[5] + MLlS]) + offset 
P2 P2 

The offset includes all the remaining terms, of which none is a codeword. 

offset = [90 • Pi • 94 • 95 • 9g • Pe] + bo • Pi • P4 • 95 • 96 • PG] + 

9o • 9i • 94 • P5 • 96 • Po] + bo • 9i • P4 • P5 ' 9c • Pe] + 

Po • 9i • 94 • 95 • 96 • PG] + (90 • 9i • P4 • 95 ' 96 • PG] 4" 

bo • Pi • 4̂ • Ps • 96 • Pg] + [90 • Pi • P4 • P5 • 96 • P6 

(6.16) 

(6.17) 

In [27] the non uniform scaling has been represented in the 3-D space as a skewness in 
the decision spheres that distort the optimal MAP decision bounds and lead the iterative 
decoder to errors. In practise, the distortion of the valid codewords and the addition 
of non-codeword sequences means that terms which are outside the code restrictions 
contribute to the decision of the iterative decoder. Their contribution is analogous to 
their correlation with the received vector as it will be discussed later on. 
While the effect of the shortest loops (length 4) is becoming apparent even from the 
beginning of iteration 0, the symptoms from the existence of longer loops within the 
code structure become noticeable only after the beginning of iteration 1. As an example, 
consider the case of a (7,3) code derived from cyclotornic cosets [68]. The H matrix of 
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the code is shown below. 
1 1 0 1 0 0 0 

0 1 1 0 1 0 0 

0 0 1 1 0 1 0 

0 0 0 1 1 0 1 

1 0 0 0 1 1 0 

0 1 0 0 0 11 

1 0 1 0 0 0 1 

From its structure we can deduce the following. 

• The H matrix is regular, so Wrj = WrJ^rn^j. Moreover, = xuc^i^m and 

= "" ĉjVj. That effectively means that for the decision of any bit i the vector 

space Ui involves = 2 • (ni:v/i,-.-=i 2̂ '"''-'"̂ )̂ terms. 

• ^'(z) = 16 > 2̂ *̂, V2. Thus, there will be 16 - 2̂  = 8 additional terms involved in 

the decision of any bit i. 

• Every bit i neighbours (exists in the same parity check equation) with every other 

bit exactly once. This is a perfect difference set cychc code [73 . 

- Absence of any cycles of length 4. 

The analysis will be based on the extrinsic information of bit 0. Its local extrinsic prob­

abilities e/̂ o at parity check equations 0, 4 and 6 where bit 0 participates, are calculated as 

Equation 0: 

e/oo(l) = bi-'73] + k/i-P3] (6.18) 

e/oo(0) = [9i-g3] + [pi-P3] (6.19) 

e/,o(l) = h-<75] + [<74P5] (6.20) 

e/<o(0) = k4-*75] + [p4-P5] (6.21) 

e/«o(l) = ['72-P6]-t-[?>2-*76] (6.22) 

ê co(0) = te-g6] + b2-P6] (6.23) 

Where Pj — p(l|rj) and = \ — — p(0|rj). The overall extrinsic probability of bit 0 

at iteration 0 is given by the product of the local extrinsic expressions. For convenience, 
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(6.24) 

only eo(l) is shown below. 

eo(l) =[P i '?2 '?3-P4-<?5-Pg|+ • P2 • 93 • Pi • <75 • Qo] + 

ML[\\ 

Pi • (72 • *73 • 74 • P5 • P6] + [Pl •P2 -QS-QA I h ' <?6] + 

ML\2\ 

QiQ2-P3-P4'Q5- PG] + [̂ 1 •P2 P3' PA • qs • %] + > ^ ' 
j^i •Q2-P3-QA-P5 -Pel+fgi • P 2 ' P 3 Q 4 - P 5 - QG] 

ML[4\ 

The output of the iterative decoder at iteration 0 is the optimum MAP expression plus 
an offset which includes the remaining ^'(0) — 2*̂ "̂  products that have emerged from the 
multiplication of local extrinsics. Therefore, due to the absence of cycles of length 4 in 
the structure of the code, no scaling problems exist at iteration 0. Prom the uniform 
structure of the parity check matrix it follows that analogous results can be derived for 
eo(0) and for every e^(x). Thus, for the (7,3) code, the vector space Hi for every bit i at 
the end of iteration 0 is 

Ui=C[jOi (6-25) 

where Oi C is the offset vector set, and in this case 

Oo={ \ 1110100,1100011,1001101,1011010,0010001,0000110,0101000,0111111 
• • • — \ associated with bit 0 decision equal to 1 associated with bit 0 decision equal to 

(6.26) 
The set of vectors o G O do not represent valid codewords but pseudo-codewords which 
are equal contributors (subject to their correlation with the received vector) to the a 
posteriori decisions of the iterative decoder. The APP decision of the iterative decoder 
for any bit i at iteration 0 is in this case expressed by 

APP,{x)= J 2 P("l'-)= E P(^l'")+ E (6.27) 
ueWi,ti,=i cec,ci=x oeOi,oi=x 

Equation 6.27 is the MAP equation over the vector space Ui and demonstrates that the 
iterative decoder operates optimally but on a vector space which is not exclusively formed 
by codewords c 6 C 

At the end of iteration 0 the input probabilities p{x\r) are updated according to equa-
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tion 6.6. At iteration 1 it is the updated channel probabihties that will be used for the 
computation of the new extrinsic probabilities. As a representative example, the local 
extrinsic equations of 6.18 and 6.19 would look as 

Equation 0: 

e L ( l ) = 
eo(l) - Pi 63(0) • (73 

+ e/o,(l) e,,3(0) J [ e,,.(0) e,,3(l) 
ei(0) - (/I 63(1) -ps 

(6.28) 

'ho (0) = 
eo(0)-f/i e3(0).(/3 

4-
ei{l)-pi 63(1) -ps 

e/oi(l) e/,3(l) 
(6.29) 

e/o.(0) e/,3(0) 

Where ej^(x) are the new local extrinsics at iteration 1. By substituting eo(a:) with the 
analytical expression of the overall extrinsic probability for bit 0 (equation 6.24) it is 
easy to observe the existence of duplicated terms and therefore, the presence of scaling 
problems. It can be concluded that scaling problems due to duplicated terms appear even 
on these codes that do not contain any cycles of length 4 in their structure. When short 
cycles exist though, the scaling effect is apparent at the very beginning of the iterative 
algorithm (iteration 0), that is before the first feedback of information. 

Codes with no loops (tree codes) 

It was shown how the loops in the structure of a code contribute to the distortion of 
the iterative decoder vector space U. But does this mean that the iterative decoder will 
operate optimally when applied on a code with no loops? Table 6.1 summarises the P E R 
performance obtained by application of the SP algorithm and optimal MAP decoding for 
the loop-free (8,4) code (its H matrix is shown below). 

1 1 0 0 1 0 0 0 
0 1 1 0 0 1 0 0 
0 0 1 1 0 0 1 0 
1 0 0 0 0 0 0 1 

Despite the absence of loops, there is still a slight deviation (very small though) from the 
optimal results. Using the same analysis as in the previous examples, the small devia­
tion is performance can be explained. Considering bit 0, the local extrinsic information 
expressions from parity check equations 0 and 3 will be 
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Eb/No[dBl SP PER optimum MAP PER 
2.0 0.090161 0.08965 
2.5 0.070358 0.07 
3.0 0.052056 0.05192 
3.5 0.035682 0.035601 
4.0 0.023855 0.023774 
4.5 0.015573 0.015558 
5.0 0.009829 0.0098079 

Table 6.1: P E R performance of the (8,4) tree code when decoded with the SP algorithm 
and optimally 

Equation 0: 

e/oo(0) = -94] + [Pi -Pd 

e/oo(l) = b i -^ij + ft/i •P4] 

Equation 3: 

e/3o(0) = 97 

e/3o(l) = P7 

So the overall extrinsics for bit 0 is given by 

eo(0) = [qi • ' Qi] + [QO • Pi • PA • Qi 

(6.30) 

(6.31) 

(6.32) 

(6.33) 

(6.34) 

eo(l) = [pi • 4̂ • P7] + [po • 9i • P4 • Pr] (6.35) 

The overall extrinsics for bits 1 and 4 at the end of iteration 0 can be obtained in the 
same manner 

ei(0) = [QQ • 92 • *74 • 95] + [% •P2-Q4- Ps] + 

PO • (72 • P4 • + [PO • P2 • P4 • P5 
(6.36) 

ei(l) = [po • P2 * 94 • Qb] + [Po • 92 * 94 • Ps] + 

90 • P2 • P4 • 95] + [90 • 92 • P4 • P5 
(6.37) 
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e4{0) = [qo-qi]-\-\po-Pi 

64(1) = [Po-91]+ [90-Pi] 

(6.38) 

(6.39) 

At the next iteration all channel probabilities are updated and the new local extrinsics 

will be computed by the updated set of probabilities. From the previous examples on 

codes with loops, it was noticed that the problems of longer loops (longer than 4) become 

apparent only after iteration 0, in the form of unequal (non-uniform) scalings. In this 

case where no loops are applicable, the expressions for the new local extrinsics e'l.. of bit 

0 at iteration 1 would be 

Equation 0: 

'ho (0) = 

e i (0 ) - ( / i 64(0) •f?4 

e/o.(0) • e,^(0) . 

ei ( l ) -pi e^{0)-qA 

4-

+ 

e i ( l ) - Pi 64(1) -pV 

e/oi(l) 

ei(0) -gi 64(1) •P4 
e/o.(0) * e/^(l) 

(6.40) 

(6.41) 
e/o.(l) ê (̂O) J 

The local expression for parity check equation 3 will remain the same as in equation 6.33 

since bit 7 participates in only one equation and it is not updated. Fi*om equation 6.40 

we get 

'ho (0) = 
e,(0).(7, 

'Q4 + 
e i ( l ) -p i 

P4 (6.42) 

Since bit 4 participates only in parity check equation 0, 6/̂ (̂0) = ef̂ ĵO) and 6/^4(1) = 

e;^(l). By substituting equations 6.34 and 6.35 into 6.42 we obtain the analytical 

expression for the local extrinsic information of bit 0 at iteration 1. Obviously, unequal 

scaling will occur since the updating equations of 6.34 and 6.35 both include q4 or p̂ . 

Thus, even for codes without loops there will be some minimum distortion in the vector 

space of the iterative decoder. That distortion accounts for the slight difference between 

the iterative and the optimum F E R performance. 

In [61, 41] the authors claim optimal iterative performance for very sparse and loop-free 

codes when the group algebra product (S» rule is applied: 

li • L if ?: 7^ j 

1 if z = j 
(6.43) 
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Where = ^ the log-likelihood ratio for bit i. By using the ® rule on equation 6.42, 
any double counting is ehminated (pi • Pi = 9,- • 9t = 1) and the iterative decoder becomes 
identical to the the optimal MAP. Practical use of the group algebra product ® is unre-
alisable though, because it implies knowledge of the exact analytical expressions for the 
extrinsic information of each bit. Such an approach would involve complexity equivalent 
to straight forward implementation of optimal MAP decoding. 

Modelling the iterative decoder at later iterations 

At iteration 0 it is relatively easy to obtain the analytical probabilities expressions when 
the block-length is short. After iteration 0 though we have an explosion in the number 
of terms, which makes sucli an analysis very difficult even for very short codes. As 
an example consider the local extrinsic expressions of 6.28 and 6.29 for pai'ity check 
0. Each of the overall extrinsics that update the channel probabilities involve 16 terms 
(the 8 terms that are associated with eo(l) are listed in equation 6.24) which effectively 
means that each of the local extrinsics at iteration 1 will contain 2 • 16̂  = 512 terms. 
Considering all 3 parity checks where bit 0 participates, the number of terms explodes 
to much higher values. Modelling the iterative decoder purely based on the conditional 
channel probabilities Pj(a;|7j-), becomes extremely complex after iteration 0. Simulations 
can easily verify that the output of the iterative decoder at iteration t is equivalent to 
MAP decoding (with respect to the received vector r) on the complete set of vectors u 
that have emerged at that iteration. Alternatively, the same outcome can be obtained by 
applying MAP decoding to the exact set of * vectors that have emerged during iteration 
0, but with respect to the updated set of probabilities. The advantage of this approach 
is that the size of the vector space U remains constant at all iterations. So at iteration t 
the APP for bit i is calculated as 

APPi{x) = J 2 (6-^4) 
ueWt,Ti»=x 

Where A**' is the updated input vector at iteration t. When £ = 0, A*** = r and for £ > 0 
af^ = " ' < " y + x , V i : / i , , = l . 
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6.2.3 Compeirison with the computation graph based 
pseudo-space aiicdysis 

In [27] the authors end up with a similar observation, that the iterative decoder performs 
optimum decoding in the pseudo-code defined by the computational tree of the code's 
factor graph. However, defining the pseudo-code based on the computational tree turns 
out to be an inefficient approach since a large amount of the defined pseudo-codewords 
can be considered redundant. Figure 6.1 shows the factor graph and computation tree 
after three iterations for a (3,2) code with parity check matrix H = l l l ; l l l . The pseudo-

Figure 6.1: a) Factor graph and b) computation tree after three iterations for the (3,2) 
code 

codewords are obtained by flipping the values of any pair of leaf bits that are connected to 
the same check in the computation tree. Following this approach the number of spurious 
pseudo-codewords (by spurious the authors define these pseudo-codewords that are not 
associated with codewords) turns out to be 32,764 after just three iterations. Fi'om these, 
the authors claim that only 480 are considered to occupy unique positions in signal space 
and play a decisive role in the decision of the iterative decoder for bit 1 (the root bit in 
the computation tree). 

Applying the previously presented analysis on the (3,2) code, it can be shown that the 
iterative decoder's decision for any bit i can be determined by optimum decoding on 
a much smaller set of pseudo-codewords. At any iteration t there will be the same 
2 • (rivir/iji^i 2*̂ '*"̂ )̂ = 8 pseudo-codewords that, given the input probabilities of the 
iterative decoder at iteration t, can accurately determine the APP decisions. Analytically, 
the lociil expressions from the two parity check equations for the extrinsic probability of 
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0 for bit 1 would be: 

Equationl: e^^^ (0) = [̂ 2 • 93] + [P2 • P3] (6.45) 

Equation2: 6/3, (0) = [̂ 2 • 93] + [P2 * P3) (6.46) 

Wliere Pj = p(l|7*j) and qj = I — pj = p(0|rj). The overall extrinsic of 0 for bit 0 would 

be 

ei (0) = 92 • 93 + 92 • P2 • 93 • P3 + P2 • P3 • 92 • 93 + P2 • P3 (6.47) 

and the APP output of the iterative decoder is just 

APPi{0) = (7i • (72 * 93 + 9i • 92 • P2 • 93 • P3 + 9i • P2 • P3 • 92 • 93 + 9i • P2 • P3 (<5-48) 

Comparing this with the decision of the optimal MAP decoder which is 

APPI,ML{0) = gi -^2 -93 + 9] •P2'P3 (6.49) 
ML\l\ ML[2\ 

it can be seen that the iterative decoder's decision at iteration 0 is a scaled version of the 

optimal ML, plus an offset. 

APP,{0) = {q2 • qs • ML[l]) + (p2 - Pa • ML[2]) + offset (6.50) 
^ V -

scaled ML solution 

In a similai- way the analytical decision of the iterative decoder for APPi{l) can be 

easily obtained. Given the updated input probabilities at each iteration the iterative 

decoder will perform optimal MAP decoding for the decision APPi (x) based on the set 

of pseudo-codewords u GUI, where in this case 

00000,00101,01100,01111,11100,11001,10110,10011 > (6.51) 
1=0 x=l 
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6.3 Correlation of pseudo-codewords with the 
received vector 

The previous examples have demonstrated some simple cases in which the iterative de­
coder performs optimal MAP decoding in the pseudo space U instead of the code space C. 
As a consequence the iterative decoder occasionaly fails to converge to the optimal ML 
solution. In [27] the authors have presented similar conclusions but through the code's 
computation graph (figure 6.1) that is used to specify the pseudo-code. The authors 
claim that iterative decoding is optimal but on the pseudo-code C and not the actual 
code C. In the same paper the pseudo-codewords are categorised as "good" and "bad" 
based on whether their component Ui is in favour or not of the transmitted symbol. 
It can be deduced from all these that during the iterative procedure, codewords are com­
peting with "good" and "bad" pseudo-codewords. Those that exliibit higher correlation 
with the received vector will dominate. As long as the codewords are strongly correlated 
to the received vector, the iterative decoder should be able to converge to the ML so­
lution. In the opposite case where none of the codewords is strongly correlated to the 
received vector, the chances that pseudo-codewords dominate increase. 
The correlation of the valid codewords c G C with the received vector r can be evalu­
ated by the final decisions of the MAP decoder. Wlien all decisions are saturated to a 
posteriori probabilities very close to 1 or 0 (extreme decisions), it is clear that one of the 
valid codewords dominates. The case where the a posteriori probabilities of the MAP 
decoder are not strongly decided, suggests that there is no clear domination of a code­
word and that one or more opponents exist in close Euclidean distance to the received 
vector. In that latter case it is very probable that if iterative decoding is applied, one 
or more pseudo-codewords might exhibit sufficient correlation with r to challenge and 
compete the valid codewords. In that case they will be capable of providing significant 
contribution to the final decision. The representative histogram of figure 6.2 proves that. 
Based on a sample of 500 blocks that the optimal MAP decoder has successfully decoded, 
the SP algorithm fails to converge to the ML solution for those blocks that the optimal 
MAP has decoded with low reliability. 

6.3.1 Modifying the weakest contributor 

The position (coordinate) with the least reliable APP decision at the optimal MAP 
decoder output can be considered as the weakest contributor to the correlation of the 
codewords with the received vector. Similarly, it can be considered as the strongest con-
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Figure 6.2: Histogram of the average reliabilities of the optimal MAP decoder APP 
decisions for blocks that converge and not converge to the ML solution when iteratively 
decoded by the Sum-Product algorithm. Results based on the perfect difference set (7,3) 
cyclic code 

tributor to the correlation of pseudo-codewords with the received vector. The immediate 
question that arises is if and by how much the performance of the iterative decoder would 
improve if the correlation of this specific bit with "good" pseudo-codewords and code­
words that are associated with the transmitted symbol at that position, was maximised. 
That could be achieved by modifying the received vector at that position, to one of the 
available transmitted values (±1 for BPSK modulation). 

The results of figure 6.3 show that the improvement achieved by modification of just one 
of the received vector coordinates is remarkable. For the (7,3) code the iterative decoder 
performance becomes identical to the ML. The same method apphed to the (63,16) code 
improves the iterative performance by almost an order of magnitude to just fractions of 
dB away from the optimum. For codes with low information length k as the ones in 
figure 6.3, implementation of the optimal MAP decoder is feasible and straight forward. 
For codes of higher k straight forward MAP decoding is computationally prohibited. In 
order to prove the significance of the modification of the least reliable position of the MAP 
output on codes with higher A;, it is crucial to find an indirect way of approximating as 
accurately as possible the exact APP decisions of the optimal MAP decoder. This can 
be achieved by the means of a list decoder. 
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Figure 6.3: Improvement of iterative decoding performance by modifying the position 
with the least reliable MAP decision 

6.3.2 Approximating the optimed MAP a posteriori 
probabilities by the use of an Ordered Statistics list 
decoder 

The list of codewords used for approximating the optimal MAP a posteriori probabilities 
can be created by the use of an ordered statistics decoder (OSD) [25, 26]. The main 
idea of this decoding method was invented originally by Dorsch [17] back in 1974 (Dorch 
algorithm). However, nowadays it is widely known as OSD. 

Since the created list will have only a fraction of the size of the full codeword list, it is 
expected that the computed APPs will only approximate the real ones. However, as the 
size of the list increases the approximation should be improving and the least reliable 
position of the optimal MAP should be identified more accurately. As a consequence 
the obtained improvement by a single bit modification should be analogous to the list 
size. That would prove the major role of the least reliable bit of the optimal MAP to 
the correlation between pseudo-codewords and the received vector, even for longer codes 
where the phenomenon cannot be investigated directly, via implementation of the optimal 
MAP decoder. 
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Description of the O S D 

The OSD is based on the idea that the least reliable channel outputs attract higher 
probability of being decoded in error, and that those positions can be recovered by the 
more reliable ones if the latter are error free. The received vector is permuted in such 
a way that its components are in descending order in terms of entropy, from the most 
unreliable to the most reliable. If the original received vector is r and its corresponding 
entropy vector is r is permuted due to H into a new vector r'. If we define the 
permutation function as Xn then the r' can be expressed as 

r' = A^(r) (6.52) 

The H matrix columns are reordered accordingly so that 

(Vz : 0 < i < A^), / / ; = XniHi) (6.53) 

where H' is equivalent to the original H matrix but with its columns reordered. The 
next step is to bring H ' into the echelon form so that the N — k least reliable positions 
can be derived from the A; most reliable ones by simple encoding operation. The resulted 
codeword is then a candidate ML solution. The above procedure summarises the order-0 
OSD. It is easy to realise that an order-0 OSD will only provide the correct solution if 
transmission errors occur only within the N — k least reliable positions. 
The OSD idea can be exploited further to higher order implementations that improves the 
performance but also increases the complexity of the scheme. An order — K OSD assumes 
K errors among the k most rehable bits and will trial all (J;) combinations. From the list 
of the candidate codewords, the one that exhibits the minimum Euchdean distance from 
the received vector will be chosen as the decoded output. The OSD is condemned to fail 
to converge to the ML solution whenever 

e > K (6.54) 

Where e is the number of errors among the k most reliable bits, and K is the order of the 
OSD. The binomial rise of the complexity with higher order implementations makes the 
use of the decoder impractical for orders higher than 3 and practical block-length. At 
the limit (order-A;) the OSD becomes equivalent to the maximum hkelihood decoder. 
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Creation of the list and computation of the approximated A P P bit decisions 

The ordered statistics decoder can be used as a way of listing a number of candidate 
codewords, hopefully the most likely ones, through which the a posteriori bit decisions 
of the optimal MAP decoder can be approximated. Assuming an order — K O S D the list 
size C will be equal to the sum of the binomial coefficients. 

£ = £ n (6.55) 

Based on the obtained codewords list we can compute the associated APP bit decisions 
di using the MAP equation below. 

c 
di{x)= (6.56) 

W here x e [0,1], Cj € C and C j = (cj,o,Cj,i, . . . , C j - A r - i . 

Approximation error with increasing order 

It is reasonable to assume that the bit APP values obtained by the list decoder should 
approach the real APPs of the optimal MAP decoder as the order H, increases. Eventually, 
when K = k the two decoders should be identical. For the case of the (63,16) code, 
imi^lementation of the optimal MAP decoding is realisable due to the low value of k 
and direct comparison between the two methods can be made. Figure 6.7 shows that 
implementation of an order — 3 list decoder is enough to determine accurately the APP 
decisions of the optimal MAP decoder. So, by using only 697 out of the 65,536 available 
codewords we can still get the exact optimal MAP decisions. 
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Figure 6.4: The average mean square error per processed block between the APP values 
obtained by optimal and list decoding of order 1, 2 and 3 (based on the 63,16 code) 

Performfoice improvement by modifying the position that corresponds to 
the least reliable A P P decision 

The following figures depict the F E R performance of various LDPC codes when the least 
rehable bit, as this is estimated by a list decoder of order — K , is modified. For all codes, 
better estimation of the least rehable bit position by higher order hst decoding results 
in better performance. Notice that for short codes, such as the (63,37) and (105,53), the 
F E R curves are arbitrarily close (almost identical) to the ML performance of the codes 
with K = 2 or K = 3. For the longer (255,64) code the improvement steps are smaller but 
steady and the order should be increased further to approach closer to the ML curve. 
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Figure 6.5: P E R performance of the (63,37) code when the least reliable APP position, 
as this is estimated by a list decoder of order — AC, is modified. 

6.4 Conclusive Remarks 

Concluding, some of the major points of this chapter. 

• By following analytically the operation of the SP algorithm, it was shown that the 
lack of convergence to ML solution can be attributed to the presence of pseudo-
codewords. 

- Iterative decoding performs optimum decoding on a vector space which is not 

identical to the codebook C. 

- The number of pseudo-codewords can be computed by using the column and 
row weight of the parity check matrix. 

- Feedback of information creates unequal scaling problems (the probability of 

some of the terms is double counted). 

- For codes with minimum length loops, the scaling effects are apparent even 
before the beginning of iteration 1. 

~ Distortion of the vector space is also noticeable on loop-free codes, with mini­

mum impact to the iterative decoder performance though. 

• When the correlation of one or more pseudo-codewords with the received vector is 

high, the cliances that the iterative decoder will fail to converge to the ML solution 

increase. 
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Figure 6.6: FER performance of the (105,53) code when the least reliable APP position, 
as this is estimated by a list decoder of ai'der — k , is modified, 

• Loose correlation of the actual valid codewords with the received vector is associ­

ated with considerably higher probability that pseudo-codewords will dominate and 

affect critically the final decisions. 

• The least decisive positions at the output of the optimal MAP can be considered as 

the strongest contributors to the correlation of pseudo-codewords with the received 

vector. 

- Modification of the received value of the single least reliable (decisive) bit 

position, offers significant coding gain. 
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Figure 6.7: FER performance of the (255,64) code when the least rehable APP position, 
as this is estimated by a hst decoder of order — is modified. 
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7 The Received Vector Coordinate 
Modification (RVCM) algorithm 

The previous cliapter revealed the significant impact that the modification of a single 
coordinate of the received vector has to the final decision of iterative decoders. This 
impact is maximised when the modified coordinate coincides with a strong contributor 
to the correlation of the received vector with one or more pseudo-codewords. 
The potential gain from the modification of a single bit, even for long codes, has in­
spired the invention of the RVCM algorithm [45]. Its description and some of its genertil 
characteristics are presented in the rest of this chapter. 

7.1 Description of the algorithm 

Assume an AWGN channel with BPSK modulation and output r = { r c n , . . , r ^ } . Con­

sider L = {loJ\j --J/^} as the log-likelihood-ratios vector. Given that the decoder fails 

to satisfy the set stopping criteria, the RVCM algorithm commences. The latter can be 

summarised as follows 

• Step 1: Vector L is stored 

• Step 2: Define parameter /?„uix, 0 < prnax < ^ 

• Step 3: Create a sizo-Pmax list of candidate positions I = /oi -̂ m̂ax be 
modified 

• Step 4: Initialise 0 = 0 

• Step 5: //^ is substituted by I'f^ ~ -f-oo and decoding restarts 

• Step 6: We store the Euclidean distance Euc\{P) of the decoder output d\{p) from 
the received vector r when bit 1^ has been modified and the associated output of 
the decoder as a candidate solution. 

• Step 7: //« is substituted by // = —oo and decoding restarts 
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• Step 8: We store the Euclidean distance EUCQ{P) of the decoder output rfo(/?) from 

the received vector r when bit Ip has been modified and the associated output of 

the decoder as a candidate solution. 

• Step 9: If ^ < Pmax we restore the original //^ value, increment p and return to 

step 5. If ̂  > = Prnax wG procced to the next step 

• Step 10: Choose the decoder output d^iP) which is associated with the minimum 

Eucx{P) {x e [Oj 1]) as the most likely solution 

The above algorithm can in many cases offer improvement of an order of magnitude or 
more in terms of FER and BER on both LDPC and turbo code schemes [44, 43]. For many 
short codes, application of RVCM delivere maximum likelihood performance as it will be 
shown in later chapters. Note that the complexity added in the case of LDPC codes is at 
most 2N additional decoding operations when P = P^^ax = ajid it increases lineai'ly 
with the block-length N since only one coordinate is modified at any time. However, this 
is just the worse case scenario since with just a fraction of modifications {Pmax ^ ^ ) we 
can get performance arbitrarily close to the optimum especially at the high SNR region. 
For turbo codes only the systematic bits are used in the algorithm, thus the highest value 
for p can only be equal to the number of the systematic bits involved. For convenience, 
the bit positions that are capable of correcting a prior non-convergent block i f modified, 
will be called critical bits throughout the rest of the thesis. 

7.2 The mrl criterion 
Target of any algorithm that attempts to improve the convergence of iteratively decoding 

schemes is the optimal ML performance. Since ML decoding is prohibitively complex for 

practical codes, the optimum performance is approximated by a bound. The mrl criterion 

21] serves as a practical lower ML bound. Let R be the received, T be the transmitted 

and D the error decoded vectors in the euclidean space. Then a block is considered as 

mrl if 
Euc{D,R)<Euc{T,R) (7.1) 

In this case we know for sure that the correct codeword does not coincide with the closest 
to the received vector since at least one error codeword is closer (is more hkely) than 
that. Thus, the maximum likelihood decoder would fail. After application of the RVCM 
algorithm the same check can be applied to these blocks that have failed to converge. 
RVCM algorithm has achieved the optimal performance when all the standard decoder's 
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non-convergent blocks that it has failed to correct satisfy equation 7.1. In other words, 

optimum performance has been achieved when all non-mrl blocks have been corrected by 

RVCM. 

Figure 7.1: Representation of an mrl decoded block in terms of Euclidean distances 

7.3 The effect of RVCM in the behaviour of 
iterative decoders 

The previous chapter presented a detailed analysis of the SP iterative algorithm with 

examples based on various LDPC codes, and highlighted the main problems that lead 

the iterative decoder to suboptimal solutions. The emergence of non-valid sequences 

(named as pseudo-codewords) that compete with the valid codewords was considered iis 

a major reason for any convergence problems. I t was also shown that the presence of 

loops in the code's parity check matrix is the source of unequal scaling problems which 

in [27] have been visualised in the Euclidean space as skewness effects in the decision 

boundaries of the iterative decoder. 

Considering the dummy (3,2) code used in [27] ( H = [111; 111]), we recall from the 

analysis of the previous chapter that the output of the iterative decoder for bit 1 at the 

end of iteration 0 is 

APPi{0) = 9l - (72 • 93 + 9l • '72 • P2 • (/3 • P3 + 9l • P2 • P3 • 2̂ • <?3 H- f/l • P2 • PI (7-2) 

The decision of the optimal MAP decoder is just the sum of the two valid codewords that 

involve q\. 
APPi^MLjO) = gi • ^ ' 7 3 + g i • ^ • P3 (7.3) 

ML[\\ ML\2] 

The two codewords, based on which the optimal decision should be made, have been 
unequally scaled at the output of the iterative decoder. Moreover, more terms have 
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emerged that contribute to the decision. Keeping track of the distortion so that unequal 

scaling and emergence of pseudo-codewords is prevented, would require exact analysis 

of the decoding procedure for all bits. Such a procedure is equivalently complex to ML 

decoding, thus unrealisable for practical codes. 

Let us assume that RVCM is applied on bit 2, so that 92 = 1 and p2 = 0. Then, equation 

7.2 becomes 
APPm = q^ q2ql (7.4) 

I t can be seen that the additional terms of 7.2 have been eliminated and the scaling 

problems of bit 2 have been also eliminated since ql = <72 and pi = P2- Given that the 

transmitted value for bit 2 is X2 = 0, so that the modification is made in favour of the 

correct decision, the second term (ML[2]) of the MAP decoder has no effect and the only 

distortion present at the output of the iterative decoder is the scaling of bit 3. Hence, 

with the minimum effort, RVCM is providing reduction of any distortion effects induced 

by iterative decoding. The interaction between all bits and the increasing correlation 

among them with iterations, sj^reads the effect of a single modification and improves the 

convergence even on long codes as i t will be seen on later chapters. Literally, the decoder 

is self-corrected during the iterative procedure. Similar conclusions can be drawn by 

investigation of the iterative output after RVCM has been applied on the Hamming (7,4) 

code. 
0 0 1 0 1 1 1 
0 1 0 1 0 1 1 
1 0 0 1 1 0 1 

The analytical output of the SP algorithm for bit 3 at iteration 0 is given by 

63(1) = ^ • {MLll] -h ML[4]) + - • (ML[6] - f ML(7]) + 

^ • {ML12] + Mm]) -t- — • (ML[5] -h ML[8]) - f offset 

Where ML denotes the valid codewords on which, ideally, the decision should be based 

on. The offset includes 8 non-valid sequences (pseudo-codewords), readily: 

offset = [qo • Pi • 94 • <?5 • qe • PQ] + [Po * Pi * PA • 95 • 6̂ • PG] + 

[̂ 0 • qi • q4 • 7̂ 5 • 96 • Pe] + [PO • 9l • P4 • P5 • 96 • P6] + 

[po • 9i • 94 • 95 • <76 • Pe] + (9o • q\ • PA • 95 • 96 • Po] + 

Po • Pi • 94 • P5 • 96 • PG] + [90 • Pi • P4 • P5 • 96 • P6 

(7.6) 
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I t is easy to see that applying RVCM on bit 6, i.e. setting either QQ or PQ to 0, eliminates 

all terms of the offset and the scaling problem of bit 6. The decision of the iterative 

decoder for bit 3 at iteration 0 resembles much closer the output of the optimal decoder. 

. . ML[l] -h ML[4] ML[6] -h ML[7] ML[2] -\- ML[3] ML[5] + ML\S , , 
63 1 = ^ ^ + -̂̂  + '̂ ^ + 7.7 

(72 92 P2 P2 

For SCCC and PCCC turbo schemes, an analysis similar to that of the SP algorithm is 

difficult. The sub-optimality of turbo decoders is due to the fact that MAP decoding is 

performed on the trellises of the component codes and not on the complex joint trellis of 

the overall code. In contrast to the SP algorithm where the analysis can be performed 

locally on each parity check equation, MAP decoding would involve the whole set of 

bits that participate on the trellis. Consider the joint transition probability (Ti(m, m') 

from state m' to state m at position t, as this is defined in the description of the BCJR 

algorithm [5 . 
(Ji{m\7n) = Qt-i(m') • ^t{m\m) • Pt{m) (7.8) 

I t seems from the above equation that the decision at the decoding instant t can be 
expressed based on the available information at £ - 1 and t. From the definitions of the 
forwai'd and backwards state probabilities though (denoted as q and /?) it can be seen 
how the total trellis participates on that decision. 

Qt(m) = ^ a t _ i ( m ' ) • jt{m\rn) (7.9) 
m ' 

Pt{m) = ^ /?e+i (m' ) • 7t+i(m,m') (7.10) 
m' 

Thus, in order to produce analytically the MAP decision for bit i at instant t it is 
essential to use the total information from the wliole trelhs. Even for short trellises 
this is a complex procedure. Instead, the effect of RVCM on turbp decoding can be 
demonstrated by the use of the existing convergence theory. Figure 7.2 shows the EXIT 
charts [65] of a non-convergent block before and after applying the RVCM algorithm. The 
EXIT graphs are based on a SCCC scheme with block-length N equal to 2000. Although 
the modification of just one bit among a block-length of 2000 seems to be insignificant, 
its effect proves to be quite important with later iterations. Note that in the first few 
iterations the mutual information gain before and after appHcation of RVCM is almost 
the same. The real improvement becomes apparent only after the decoder has processed 
the small modification, escapes the random walk and heads towards a solution which is 
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Figure 7.2: (a)EXIT chart of non convergent block (b)EXIT chart for the same block 
after successful application of RVCM 

the maximum likelihood in this case. 
A representative case of the effect of RVCM algorithm on the parameters a and /? of 

each MAP decoder can be seen from graph 7.3 where the information content of the state 

probabilities (q^ • /?;) at position % is plotted for a number of iterations. 

(a) (b) 

Figure 7.3: Uncertainty of state probabilities: (a)non-convergent block (b)application of 
RVCM on the same block 
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7.4 General cheiracteristics of RVCM 

This section will deal with some general characteristics and statistics of RVCM, obtained 

by application of the algorithm to LDPC and turbo codes. The performance of the 

algorithm and the methods for identifying critical bits will be dealt separately for eacli 

scheme in later chapters. 

7.4.1 Dependence of critical bits on the structure of the code 

Figure 7.4 depicts the distribution of the critical bit positions for an SCCC scheme. The 
two graphs have been obtained for the same code, the same transmitted data, for a 
channel with the same variance but different noise seed. The distribution is random and 

(b) 

Figure 7.4: Distribution of critical positions for a rate 1/4 SCCC scheme of block-length 
N=2000 and random interleaving. The two graphs have been both obtained at Eb/No of 
O.SdB but with different noise seed 

many bits are assigned more or less the same probability of being critical. Additionally, 

the actual frequency of occurrence of the most frequent bit does not exceed the value of 

0.3, thus the minimum effort solution (i.e. predefining a unique position on whicli the 

RVCM would be applied in case of non-convergence) would correct slightly less than a 

third of the error blocks in the best case. 

The fact that changing only the noise seed changes the distribution of the critical positions 

proves that the structure of the interleaver by itself is not adequate for determining these 

critical positions. Similar results have been obtained for PCCC scliemes (figure 7.5) and 

LDPC codes with regular structure. 
For non-regular LDPC codes there has not been observed any strong dependency between 
the column weight (number of participations in parity check equations) of any bit i and 
the corresponding frequency of occurrence of the same bit as critical. Figure 7.6 displays 
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(b) 

Figure 7.5: Distribution of critical positions for a rate 1/3 PCCC scheme of block-length 
N=1500 and S-interleaving. The two graphs have been both obtained at Eb/No of 1.25dB 
but with different noise seed 

the distribution of critical bits for the (200,100) irregular LDPC code at 2.0dB. The same 
figure depicts a plot of the column weight of each of the 200 participating bits. I t is easy 
to observe that the distribution is not analogous to the column weight of the code bits. 

(a) 

Figure 7.6: (a) Distribution of critical positions for a (200,100) irregular LDPC code at 
EbiNo of 2.0dB; (b) Column weight distribution for the same code 

On the other hand, critical bits associated with high column weight lead the decoder to 

convergence in less iterations as figiu'e 7,7 reveals. 

7.4.2 Number of existing critical bits per block 
The number of existing critical bits per block is a significant parameter when considering 
the practical application of RVCM. Since the bit(s) with the least reliable MAP decision(s) 
is(are) not known, various selection methods have been created so that the critical bits 
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(a) 

Figure 7.7: Histograms of the number of iterations required for the RVCM algorithm 
to converge to the ML solution when RVCM (a) 30 candidate critical bits with column 
weight Wc = 2 and (b) 30 candidate critical bits with 'u;c = 7 are applied to the irregular 
(200,100) LDPC code at Eb/No of 2.0dB (note the different scaling of the two histograms) 

are identified with the highest accuracy. An error is always involved in these selection 
methods so the larger the number of critical bits in a block the higher it is the chance of 
successfully identifying at least one of them. 

The number of critical bits is dependent on the SNR as, on average, more critical bits exist 
per block as the SNR increases. Figures 7.8 and 7.9 display the associated histograms 
for both LDPC and turbo schemes when operating at lower and higher SNR values. 

(a) (b) 
irlkKI.I.lO rflimn .n. fn , .-nn 

Figure 7.8: Histograms of the number of critical bits per block for a rate 1 /4 SCCC scheme 
of block-length N=2000 and random interleaving at (a)Eb/No of 0.8dB and (b)Eb/No of 
1.2dB 
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(a) (b) 

Figure 7.9: Histograms of the number of critical bits per block for the (255,64) cyclic 
LDPC code at (a)Eb/No of 1.5dB and (b)Eb/No of 3.0dB 

7.4.3 Number of iterations required for the RVCM to converge 

The number of iterations required by the iterative decoder to converge when modifying 
a critical position, is of great importance as it affects the overall complexity and the 
latency imposed by RVCM to the system. The depicted histograms are based on the crit­
ical position that provides the fastest convergence (convergence at the minimum number 
of iterations among all critical bits in a block). 

(a) • • (b) 

Figure 7.10: Histograms of the minimum number of iterations required when a critical bit 
is modified for a rate 1/4 SCCC scheme of block-length N=2000 and random interleaving 
at (a)Eb/No of 0.8dB and (b)Eb/No of 1.2dB 

As expected, at higher Eb/No convergence is achieved faster for all iterative schemes. 
The information obtained by these graphs can be used to increase the efficiency of prac­
tical applications of RVCM. As i t will be discussed in the following chapters, various 
methods have been developed for determining the critical positions and reducing the 
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number of trials {pmax < N in the description of the RVCM algorithm at the beginning 
of the chapter) with minimum loss in performance. An alternative strategy for schemes 
where modification of a critical bit is guaranteed to provide convergence within very few 
iterations (as in the case of graph 7.11) would be to keep the trials at the maximum value 
Pmax = ^ but at the same time to limit the maximum iterations performed per trial. 

(a) (b) • ' W t i M 

Figure 7.11: Histograms of the minimum number of iterations required when a critical 
bit is modified for a rate 1/3 PCCC scheme of block-length N=1500, RSC(l,5/7) and 
random interleaving at (a)Eb/No of 1.5dB and (b)Eb/No of 3.0dB 

(a) (b) 

Figure 7.12: Histograms of the minimum number of iterations required when a critical 
bit is modified for a (255,64) cyclic LDPC code at (a)Eb/No of 1.5dB and (b)Eb/No of 
3.0dB 
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8 RVCM on L D P C codes 

This chapter investigates the performance improvement delivered by RVCM when applied 
on LDPC codes [42]. Some of the chai'acteristics of critical bits (like the entropy of their 
input probabiUty and their participation in unsatisfied equations) are demonstrated and 
ai'e then used as measures for candidate critical bits selection criteria. I t is also attempted 
to determine the code characteristics that should be taken into account for the choice 
of the most appropriate selection criterion, as in many cases the deviation in the results 
obtained by the two is significant. 

8.1 Performance of RVCM on L D P C codes 

Figures 8.1 and 8.2 display typical performances of RVCM algorithm when applied to 
LDPC codes. Al l graphs have been obtained with P^^ax — hence they represent 
the maximum performance that can be achieved by RVCM on these codes. Al l codes 
used are regular, derived from cyclotomic cosets [68] and guarantee the absence of short 
cycles within the H matrix structure (Tanner 155,64 is not derived from cyclotomic cosets 
but it also guarantees absence of short cycles). Notice that for the two short codes 
(105,53 and 63,37) the optimum RVCM performance is identical to the mrl bound. At 
longer codes where the gap between iterative and ML decoding is larger, the RVCM 
achieves improvement of more than one order of magnitude in terms of FER (the BER 
improvement is similar). 

8.2 Distribution and frequency of critical bits 

RVCM algorithm was shown to work with high success on LDPC codes. The next chal­
lenge is to find a way of identifying any critical bits as accurately as possible. For that, it 
is necessary to extract information about distinctive characteristics shared among critical 
bits that make them distinguishable from the rest. 

It is straightforward to assume that critical bits belong to that group of bits that either 
during the iterative decoding process are estimated erroneously or their channel output 
value is closer to the wrong symbol. Table 8.1 reveals though that this is not entirely 
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Figure 8.1: Compai'ison between standard iterative SP decoding and maximum complex­
ity implementation of RVCM P^ax = ^ 

the case. Depending on the code, a considerable percentage of the critical bits exhibit 
correct APP values at all iterations and their corresponding cliannel outputs are closer 
to the transmitted ones. 

Eb/No[dB) %Error 
(63,37) (105,53) (85,37) 

2.0 75.6% 68.6% 85.4% 
3.5 80.6% 65.7% 83% 

Table 8.1: Percentage of critical bits which either exhibit at least one erroneous APP 
estimation during decoding or their corresponding channel output is closer to the wrong 
symbol 

The results of table 8.1, although interesting from a theoretical point of view, can be 
of little use in practise since of course the error bits are not known and additionally there 
will be many bits during the standard decoding process that exhibit similar behaviour. 
Narrowing down the choice for candidate critical bits requires the use of measures that 
are directly related to the evolution of iterative decoding. Such measures could be based 
on the information provided by the channel observations and the bits' participation in 
unsatisfied equations during the standard iterative decoding process. 
Figure 8.3 shows histograms based on the ranking of all critical bits in terms of input prob­
ability uncertainty and pai'ticipation in imsatisfied equations through out the iterations. 
The ranking method (e.g. rank of 1 means that a critical bit exliibited the most unreliable 
input probability or the highest rate of participation in unsatisfied equations) provides 
a better visualisation since different non-convergent blocks behave differently and plots 
of their raw measured values would encourage misleading conclusions. Acknowledging 
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Figure 8.2: Comparison between standard iterative SP decoding and maximum complex­
ity implementation of RVCM Prnax = ^ 

the fact that identification of only one of the possible available critical bits in a block is 
sufficient, the previous graphs can be replotted so that only the highest ranked bit per 
block is taken into consideration. Graph 8.4 indeed uses this argument and reveals that 
there exists a clear correlation between the critical property of a bit and the two major 
measures considered, namely the unrehability of the individual input probabilities and 
the participation in unsatisfied equations. For some codes this correlation is in favour of 
one of the two measures. 

MS I X 

Figure 8.3: Histograms of the ranking of critical bits in terms of (a) input entropy and 
(b) participation in unsatisfied equations for the 105,53 code at 3.5dB 
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(a) 

Figure 8.4: Histograms of the maximum ranking of critical bits per block in terms of (a) 
input entropy and (b) participation in unsatisfied equations for the 105,53 code at 3.5dB 

8.3 Candidate critical bits selection criteria 

In figure 8.4 i t was demonstrated the correlation of the critical bits with two major mea­
sures, namely the unreliabihty (uncertainty) of the input probability and the participation 
of bits to unsatisfied equations during standard iterative decoding. So, i t is possible to 
improve the throughput of RVCM by reducing the number of selected bits while keeping 
the performance very close to the optimum. Information about the selection of bits can 
be obtained either by the received vector or by the behaviour of the processed bits during 
standard decoding. Two selection criteria are proposed [42], namely 

• Input unreliability criterion (UNR) 

• Participation in unsatisfied equations criterion (UNSEQ) 

Their description, performance and suitability on different codes are discussed in the 

following sections. 

8.3.1 The UNR selection criterion 

The UNR criterion provides the simplest and most straight forward method for selecting 
candidate critical bits. The selection is based on the information content of the received 
vector coordinates. For an AWGN channel the conditional probabihties p(x|y) are given 

by 

p{xi\yi) = 
1 

N /2 
• exp 

7r<7' 

-(^ - Vi)' 
2^2 

(8.1) 
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The components with the highest entropy (or equivalently with the lowest information 

content) are given higher priority for the selection of candidate critical bits. The entropy 

vector E is defined for each of the coordinates i as 

Ei = p{0\yi) • log2 
\p(o|yOy 

+ - logs 
1 

(8.2) 

The UNR criterion offers an efficient way of selecting candidate critical bits and can im­
prove significantly the throughput of RVCM by narrowing down the number of potential 
critical bits. Figure 8.5 shows that case on the 105,53 cyclic code where selection of only 
10 bits based on the UNR criterion is enough to achieve performance almost identical to 
the optimum. Some more characteristics about the performance of the UNR criterion on 

105.53 P - L • 10 \jm criterion RV(±M o" 

10-=' 
1.5 2.5 3 

Ec/N„.(1B 
3.5 4.5 

Figure 8.5: Sub-optimum implementation of RVCM based on the UNR selection criterion 
for a 105,53 code 

different codes will be discussed after presenting the second proposed selection criterion. 

8.3.2 The UNSEQ selection criterion 
The UNSEQ criterion is basically a combination of two measures which gather informa­

tion in parallel at all iterations of standard decoding. 

part 1: The first measure deals with the participation of the bits in unsatisfied equations 

and bases its results on the standard decoder's output at the end of each iteration. Let 
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be the set of thresholded APP decisions of the standard decoder at iteration t. Assuming 

non convergence there will be a set of equations that remain unsatisfied. The number 

of occurrences of each bit i at the set of unsatisfied equations at iteration t can be 

easily computed as 

OS) = J2 ^-.̂  (8-3) 

At the end of the standard decoding procedure the records of the participation of each 

bit i in unsatisfied equations per iteration Fi{i) can be obtained by 

F,ii) = ^ f l ^ (8.4) 

where T the number of iterations performed by the standard decoder. 
The information from F\{j) can be combined with a second measure and considerably 

enhance the performance of the UNSEQ selection criterion. 

part 2: This second measure deals with the set of the updated probabilities obtained 
at the end of each iteration of the SP algorithm. Initially the extrinsic probabilities are 
computed locally for each one of the parity check equations. These extrinsic probabilities 
will be called local extrinsics ei-^ (the name that was used in the previous chapters) and 
are associated with all coordinates of the H matrix where hji = I. When all parity checks 
have been processed, the overall extrinsic information d for each bit i is calculated 'AS the 
product of all local extrinsics for this specific bit. 

The updated probabilities upciji are then calculated for all individual participants by 
multiphcation of the chamiel probabiUties P with the overall extrinsic information vector 
Cj, omitting though the corresponding local extrinsic value to prevent positive feedback. 

Pi{x)-ei{x) 

Consider now a thresholded version upd ' e [0,1] of the set of updated probabilities. 

Since the updated values are locally optimised it is guaranteed that they satisfy all parity 

check equations ( U = 0), but on the other hand it is not guaranteed that 

updr, = upd,, (8.7) 
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In other words we have the case where both equations j and A:, that bit i participates, 
are satisfied but updj- ^ upd'f,-. This imphes that one of the two equations involves even 
number of errors. To decide which of the two thresholded versions of the updated vakies 
for i is the erroneous one, a majority decision is appHed. If among all lUa participations of 
i to parity check equations the associated upd' appears as x € [0,1] in less than Wci/2 of 
these, that particular value x is considered to be in error and all parity check equations 
j where updj^ = 3; are considered to involve an even number of errors. The measure 
F2{i) uses the above method to evaluate the participation of bit i in even error equations 
throughout the iterative process. 

Thus, the overall F{i) parameter of the UNSEQ criterion which forms the basis for the 
selection of the candidate critical bits, is given by the sum of Fi{i) and ^2(2) . 

F(z) = Fi(z) + F 2 ( i ) (8.8) 

Similarly to the UNR criterion, selecting the bits with the highest F{i) values narrows 
down the choice for the potential critical bits with minimum losses from the optimum 
RVCM performance. Figure 8.6 shows the performance of UNSEQ criterion based on the 
same code that was used in the UNR criterion case. Again, setting the Pmax parameter 
as low as 10 it is sufficient to deliver performance arbitrarily close to that of an optimum 
RVCM scheme that exploits all bits (^^^ox = 

The two criteria seem to deliver very similar performance. However, there are major 
differences between the two and the choice of the right selection criterion depends on the 
code and the number of candidate bits selected (the parameter Pmax) as it will be seen 
in the next subsection. 
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Figure 8.6: Sub-optimum implementation of RVCM based on the UNSEQ selection cri­
terion for a 105,53 code 

8.3.3 Suitability of selection criteria 

Under certain circumstances, the choice of the appropriate selection criterion might have a 
large impact on the obtained performance. I t has been observed that the main parameters 
that dictate the use of the UNR or the UNSEQ criterion on regular codes are two: 

• The size of the selection {Pmax) 

• The code used 

For all regular codes tested, the UNSEQ criterion performs consistently better than the 
UNR criterion when the selection size is kept low. The difference between the two can 
be quite significant in some cases. In figures 8.5 and 8.6 it can be seen that both criteria 
perform identically when applied to a 105,53 code for a selection size of 10 bits. However, 
figure 8.7(a) shows that when the selection size reduces to the minimum {Pmax = 1 bit) 
the difference in the performance offered by eacli of the two criteria is considerable. 
In terms of the cumulative distribution function (cdf) the UNSEQ criterion initially 
exliibits a very steep rise which gradually flattens out as the selection size increases and 
eventually becomes almost identical to that of the UNR criterion. Similar behaviour has 
been observed for various other codes typical cases of which are shown in the plots of 
figures 8.8 and 8.9. Further simulations have also shown that the performance of the 
two criteria is related to the structure of the code's H matrix and the rate. For codes of 
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Figure 8.7: a)Comparison of selection criteria and b)cdf curves of selection criteria for 
the 105,53 code 

(a) " 

Figure 8.8: Comparison of the UNR and UNSEQ selection criteria for the low Wr a) 
255,64 {wr=b) and b) 155,64 {wr=5) codes 

high row weight (wr) the UNSEQ criterion performs better than the UNR only when the 

selection size Prnax 

is limited to very small numbers. For codes of low Wr it is possible for 

the UNSEQ to offer improvement even for slightly larger selection sizes, especially when 

the rate of the code is not too low. Tables 8.2 and 8.3 summarise the two cases for codes 

of low and high Wr. 
Since in a practical case it would be pretty uncommon to use a selection size of only 1 
bit, the UNR method can be definitely considered as the preferable selection criterion for 
codes with high Wr. On the other hand, the superiority of the UNSEQ method for codes 
with low lUr can in many cases be maintained even for selection sizes of 5 to 10 bits and 
can be proved to be useful for systems which can only afford to apply a certain limited 
selection size. 
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Figure 8.9: Comparison of the UNR and UNSEQ selection criteria for the 93,47 code 
K = 7 ) 

S J U M b E k OF BLOCKS C O I i a E C T E D 
105,53 G3,10 255,04 

tt>=7,r=0.605 ujr=4,r=0.254 ttv=5,r=0.26I 

l U N R l U N S E O lOUNSEQ l U M k l U W S E O 3 U N 5 E Q 1 U N 3 E 0 5UWk 5 iJrJ5E0 
1.5 - - - — - - - - 80 111 187 1»0 
2.0 170 257 20U 80 120 144 101 134 148 246 240 
-i.6 13H 33H 312 31U 114 144 1?1 IHO 140 1»V 2?3 280 
Lt.U 151 252 327 332 115 14U 177 1U2 171 223 2«J5 3U0 
3.6 1H4 352 354 142 lOU 204 215 2U1 240 315 320 
4.U 201 3U2 258 2U0 140 182 23U 239 - - -

Table 8.2: Summary of the performance of the two criteria for low lUr codes. 

8.3.4 The effect of correlation to the performance of the 
UNSEQ selection criterion 

In the previous subsection it was shown that the UNSEQ criterion has the potential of 
offering superior results to these of the UNR criterion, but only when the selection size 
Pmax is limited to small numbers. Moreover, the UNSEQ criterion exhibits higher tol­
erance to larger selection sizes for codes with low Wr. These two observations point out 
the effect of correlation to the validity of the information provided by the participation 
of bits to unsatisfied equations during the standard decoding procedure. For codes with 
high Wr more bits ai*e directly related with each other (by participating in the same parity 
check equations), thus the correlation among these is stronger. So, many bits' high par­
ticipation records mirror the participation records of their correlated bits and not their 
own. Therefore, by increasing the selection size we end up including many correlated 
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N U M B E R O F B L O C K S C O R R E C T E D 
255,175 127.84 

ti;r=15,r=0.661 

Eh/No l U N R 1 U N S E Q 5UNR 5 U N S E Q l U N R l U N S E Q 5UNR 5 U N S E Q 
1.5 40 AG 90 92 45 57 100 97 
2.0 67 85 139 139 75 90 138 132 
2.5 114 117 202 198 100 123 182 182 
3.0 156 176 266 257 148 158 250 232 
3.5 208 225 311 304 203 206 296 297 

Table 8.3: Summary of the performance of the two criteria for high Wj. codes. 

selections that do not contribute and waste computational effort. Hence, selection of 
bits that exhibit strong correlation links with each other, reduces the effectiveness of the 
UNSEQ criterion as the selection size increases (look at he cdf curve of figure 8.7(b)). 
In an attempt to identify and remove correlated selections, two characteristics are taken 
into account. If two or more bits have the same participation in unsatisfied equations 
and if in addition to that they coexist at a parity check equation, then only the bit with 
the highest input entropy is selected while the rest are rejected and not included in the 
selection list. 

The above selection method works for the majority of the cases. Although the improve­
ments whenever they exist are small, they provide an indication that the correlation 
among the bits is one of the reasons for the reduction of the effectiveness of the UNSEQ 
criterion for large selection sizes and especially for codes of high Wr- Table 8.4 compares 
the results of this technique with the straight forward UNSEQ criterion for various codes. 

N U M B E R O F B L O C K S C O R R E C T E i : ) 
85,37 93,47 105,32 

E b / N o 5 U N S E Q 5UNSEQuncor 5 U N S E Q aUNSEQuncor 5 U N S E Q 5UNSEQuncor 
1.5 130 134 - - - -
2.0 202 210 248 254 247 247 
2.5 226 238 302 300 298 303 
3.0 304 320 337 344 350 352 
3.5 355 357 355 361 380 373 
3.5 - - 364 364 414 414 

Table 8.4: Comparison of the UNSEQ criterion with the same criterion when correlation 
constraints are applied 

8.3.5 Convergence properties and selection criteria 

Powerful codes of high dmi^ generally seem to converge worse at low SNR. Their conver­
gence capability improves though at moderate and high SNR values where they exliibit 
very steep error rate reduction and low error floors. However, at all SNR regions it is a 

104 



common characteristic that whenever convergence is achieved it is highly probable that 
the converged solution is the maximum likelihood. This is equivalent to saying that high 
c^rnin codes exhibit a very low number of mrl blocks for a wide range of SNR. All these 
indicate that when such a code fails, the chances that the decoded output represents 
a valid solution are very low. That is the case for the high d„iin 155,64 Tanner code. 
Returning to the problem of selecting the candidate critical bits, the selection can be 
based on the non valid decoded vector of the decoder by picking up those bits with the 
highest participation in unsatisfied equations. Figure 8.10 compares this method with 
the existing pre-described RVCM selection criteria and shows that selecting bits based 
on the non-valid decoded output of the decoder does not provide any gain, but on the 
contrary performs slightly worse. 

155.64 
P_™-10 UNSEQ crtarion RVCM 

Figure 8.10: Comparison of the selection method based on the decoded output for the 
Tanner 155,64 code 
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8.4 An equation-wise approach for approximating 
the positions of critical bits 

Up to this point the investigation for the search of critical bits has focused on characteris­

tics and measures of the bits themselves. In this section the same problem is approached 

from a different angle, i.e. the search focuses on parity check equations that gather high 

chances of containing at least one of the critical bits. 

8.4.1 High Failure (HF) pfirity check equations 

We define as HF those equations that during the iterative procedure remain unsatisfied 

for more than <j> • 100% of the performed iterations. I t has been observed that at all 

times there is participation of at least one critical bit with </> > 0.5. Figure 8.11 shows 

histograms of the maximum value of the parameter <i> among those equations in which a 

critical bit participates. This result can be used as a way to narrow down the number of 

candidate bits by excluding any bit that does not participate in at least one equation of 

0 > 0.5. 

(c) (d) 
« I I » •) •« •» 

Figure 8.11: Histograms of the highest per block value (j) among parity check equations 
that contain at least 1 critical bit. 

106 



To assess any gain that can be achieved by this reduction on the number of candidate 
critical bits, we need to know how many equations are associated with high and low 
0 values. As a typical case, figure 8.12 shows the distribution of the number of HF 
equations {<j> > 0.5) for the 105,53 LDPC code when operating at 2.5dB. The large 
number of equations that fulfil this criterion makes this method inefficient. 

O.OB 

0.06 

105.53 @ 2.5dB 

. L I 

0.04 

0.02 

10 15 20 25 30 35 
Number of HF equations 

Figure 8.12: Distribution of the number of HF equations among 200 prior non-convergent 
blocks that have been successfully decoded with RVCM 
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9 RVCM on Turbo Codes 

This chapter investigates application of RVCiVI algorithm on turbo codes [45, 44]. I t 
is shown that significant gains are achieved for all tested codes on PCCC and SCCC 
43] schemes. Furthermore, application of RVCM at high SNR minimises the losses of 
turbo decoding with respect to the ML. I t is also demonstrated that the optimum RVCM 
performance can be closely approximated by keeping the parameter P^ax n^icli lower 
than the number of systematic bits when certain properties of the critical bits, such as the 
entropy of the input probabilities, the participation of the systematic bits in unsatisfied 
equations or the induced correlation between the bits, are taken into account. 
Finally, as in the case of LDPC codes, it is shown that the improvement achieved by 
RVCM is closely related to the reduction of pseudo-codewords. This idea is enhanced by 
the fact that modification of the strongest contributor to the correlation of the received 
vector with pseudo-codewords accounts for most of the improvement acliieved by RVCM. 

9.1 Performance of RVCM on turbo codes 

Figure 9.1 demonstrates the improvement imposed by RVCM on various turbo schemes 
in terms FER and BER performance. In all cases the coding gain varies from 0.15 to 
0.25dB. For moderate to high SNR the RVCM performance gets much closer and even 
achieves the lower mrl bound. 

Investigation of the characteristics of the critical bits in terms of their input probability 
entropy and their participation in unsatisfied equations, reveals that for the great majority 
of the blocks there exists at least one critical bit that resembles high values for one of 
the two measures. If all systematic bits are ordered in terms of any of the two measures, 
then as figure 9.2 shows the highest ranked bit is critical in more than 95% of the blocks 
that are correctable by RVCM. This precentage reduces at lower SNR but still selecting 
the candidate critical bits with respect to any of the two measures proves to be much 
more eflficient than random selection. The two measures can be used in favour of the 
selection for candidate critical bits in the form of the UNR and UNSEQ criteria that 
were described in the previous cliapter for LDPC codes. 
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Figure 9.1: RVCM performance on turbo codes. PCCC(l,5/7) (figures (a) and 
(b)), PCCC(1,13/15) (figures (c) and (d)), PCCC(l,25/37) (figures (e) ajid (f)) and 
SCCC(l,5/7) (figures (g) and (h)). For (a)-(d) N=1500, (e) & (f) N=1503, (g) &s (h) 
N=2000. S-interleaving and tail-bite termination has been used in all cases 
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Figure 9.2: Frequency plots of the percentage of blocks that are corrected by RVCM versus 
the highest rank among critical bits. Bits are ordered in terms of a) Input entropy and 
b) participation in unsatisfied equations. Results are based on a PCCC, RSC(1,13/15) 
with S-interleaver at O.SdB 

9.1.1 The UNR and UNSEQ selection criteria as an 
approximation to the optimal RVCM performance 

Figures 9.3 and 9.4 compare the results obtained by the two selection criteria versus the 

RVCM maximum performance {Pmax = ^syst) when applied on turbo schemes. I t can be 

seen that with P^ax ^ O l^ayat it is possible to acliieve performance in close reseniblance 

to the maximum. 

Comparison between the two selection methods (UNR and UNSEQ) reveals that the 

difference in performance is tiny. Moreover, it has not been investigated any relation 

between the delivered performance of the two criteria and the selection size (Pmax) ^ 

the case of LDPC codes. 

9.1.2 Correlation coefficient meeisure and critical bits 

By tracking the values of the extrinsic information for all iterations of the standard turbo 

decoder it is possible to obtain the correlation coefficients between any pair of bits in a 

code of block-length N. I f the extrinsic probability of bit i for a decision of b at iteration 

t ise\'\b) then 

0 if 4\b)<er\b) 

Keeping a record of the fluctuations of the extrinsic probabihties throughout the iterations 

incorporated into the matrix A, it is easy to measure the similarities between any two bits. 

(9.1) 
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Figure 9.3: Performance comparison of the UNR and UNSEQ selection criteria for a 
PCCC (1,5/7) scheme, when P^ax = 25 

The similarities information is kept into the matrix 5 and can be defined for 0 < ^ < T 

(where T is the maximum number of iterations) as 

Sij + l if Au = A j t 

Sij+0 if Aa=/^Ajt 
(9.2) 

The correlation coefficient Qij is then 

5 - - (9.3) 

which means that pairs of bits that exhibit identical or completely opposite behaviour 
are considered as maximally correlated. On the other hand, bits that exhibit identical 
behaviour just for half of the total iterations T can be considered totally uncorrelated. 
Let's see now the relation between the correlation coefficient and the critical ability of 
a bit. Normally it should be expected that bits which exhibit on average the highest 
correlations among the systematic bits would gather more chances for being critical. 
However, as figure 9.5 shows, exactly the opposite happens i.e. critical bits are associated 
with systematic bits of low average correlation coefficient. 

Using this measure as a selection criterion for candidate critical bits can in many cases 
offer slightly superior results with respect to the UNR and the UNSEQ criteria. It can 
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Figure 9.4: Performance comparison of the UNR and UNSEQ selection criteria for a 
PCCC (1,13/15) scheme, when = 25 

not be determined though when selection based on the correlation coefficients should be 

preferred. Even in the cases where this selection method works with better results, the 

undergone improvement is not sufficient to justify the significant computational load over 

the other two selection criteria. 
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Figure 9.5: Tiie systematic bits are rtuiked in terms of their correlation coefficient value 
Q. Lower ranked bits are most often among the critical bits 

9.1.3 Achieving efficient implementation of RVCM by 
reduction of the performed iterations 

In chapter 7, in the discussion about the RVCM algorithm, i t was shown that the RVCM 

is capable of converging to the ML solution in only a few iterations. The number of 

iterations to be performed so that all or most critical bits can be identified depends on 

the SNR and the constituent codes used. The results of chapter 7 can be used to further 

reduce the computational complexity of the algorithm (by reducing both Pmax an<J the 

maximum number of iterations performed per trial, denoted as ^ ) , or as an alternative 

method to the selection criteria UNR and UNSEQ (by keeping P^ax bigh and reducing 

B ) . 
A good way to compare the different approaches is to use as a measure of embedded 
complexity the number of additional iterations for a given / ? „ ^ and 0, and as a reference 
the number of iterations T performed by the standard decoder. For example, a system 
with T = 50, Pmax = 10 and ^ = 5 would have an additional complexity factor 7} = 

As a comparison figures 9.6 and 9.7 display the performance of schemes with the same 
complexity factor achieved either by reducing the selection size {Pmoj:) or by reducing 
the number of performed iterations by RVCM (9), The results reveal that by increasing 
Pmax and at the same time reducing 0 in such a way that the complexity factor rj remains 
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Figure 9.6: Comparison of different but of equal complexity {TJ = 50) implementations of 
RVCM on a PCCC (1,5/7) scheme 

constant, the performance is shghtly better. However, the tricky task in this approach is 

the optimum tuning of the two parameters P^nax 9 for a given code and SNR, so that 

maximum performance is delivered. 

9.2 The relation between pseudo-codewords and 
ML decoding for turbo codes 

Following the ideas of chapter 6, in this section i t is attempted to demonstrate that 

(similarly to LDPC's) the high correlation between pseudo-codewords and the received 

vector is one of the main reasons for the convergence problems of the iterative decoding 

algorithm. An analysis similar to that of the SP algorithm in chapter 6 seems to be 

impractical for the turbo algorithm, basically because of the difficulty of braking up the 

complex turbo decoding function into small localised equations of only a few variants 

each. Alternatively, we will investigate the validity of the observations that were made 

in chapter 6; these arc: 

• With high probability, the iterative decoder will fail to correct those blocks for 
which the received vector is not correlated strongly enough with a valid codeword. 

- For these blocks optimum MAP decoding would offer decisions of relatively 

low reliability 
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Figure 9.7: Comparison of different but of equal complexity [T] = 50) implementations of 
RVCM on a PCCC (1,13/15) scheme 

• The bit with the least reliable decision of the MAP decoder is with high probability 

a critical bit 

Figure 9.8 depicts the histograms of the average per block reliability of the optimal MAP 
decoder decisions. Histogram (a) displays only those blocks for whicli the iterative decoder 
has successfully converged to the ML solution, while (b) includes only blocks for which 
the iterative decoder has converged to a solution other than the ML. FVom these i t can 
be deduced that the iterative decoder will mostly fail to decode optimally those blocks 
that the optimal MAP decoder would decode with low reliability (although correctly). 
The lower the average reliabiUty of the optimal MAP decisions, the higher the cliances 
that the turbo algorithm will fail to converge to the optimal solution and vice versa. 
When the average reliability of the MAP decoder decisions is low, it can be considered as 
a sign that none of the codewords exhibits high correlation with the received vector and 
therefore, there is no codeword that clearly dominates. The similarity with the histograms 
obtained from the same experiment on LDPC codes encourages us to follow the same 
sequence of thoughts and assumptions. We can therefore deduce the existence of pseudo-
codewords in turbo codes and link the incapability of the turbo algorithm to converge to 
the ML solution, with the high correlations existing between the pseudo-codewords and 
the received vector. When the correlation between codewords and the received vector is 
not strong enough (low reliability of the optimum MAP decoder decisions) the chances 
that one or more pseudo-codewords will compete the codewords in the final decision of 
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(a) 

Figure 9.8: Histograms of the average reliability of the decisions of the optimum MAP 
decoder for blocks that (a) have been optimally decoded by iterative decoding and (b) 
have been decoded sub-optimally by the iterative decoder. Results based on a PCCC 
(1,5/7), N=48 sclieme 

the turbo decoder increases and accordingly, the probability that the algorithm will not 

converge to the ML solution increases too. 

Similarly, the least rehable bit decision of the MAP decoder can be considered as the 

weakest contributor to the correlation of the codewords with the received vector. In 

figure 9.9 it is shown that for a very high percentage of the processed blocks this bit is 

among the critical bits. Hence, the optimum RVCM performance (0max = ^sysi) would 

be very closely approximated with minimum effort if there could be an efficient way 

to determine the bit position that would exhibit the lowest reliability when optimally 

decoded. 
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criterion, optimum = Nsy.t) and RVCM Pma. = 1 using the least reUable bit of the 
MAP decoder PCCC (1,5/7), N=48 scheme 
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0 Comparison of RVCM with other 
convergence improvement methods 

In this chapter the RVCM algorithm is compared with alternative methods that have 

been developed by various researchers for improving the convergence properties of LDPC 

codes. The comparison takes into consideration the offered performance gain, but also 

the complexity involved. 
The first scheme is the Ordered Statistics Decoder (OSD) which is based on the Dorsch 
algorithm [17] and was re-discovered by Fossorier [25, 26]. 
The second scheme is the info-rmation correction method presented by Varnica et. al. 
in [70] and independently by Pishro-Nik et. al. in [48]. Both methods use a similar to 
RVCM approach, as they are based on modification of the received vector. 

10.1 RVCM compared to the ordered statistics 
decoder (OSD) 

Detailed description of the OSD can be found in chapter 6, where the basic idea of the 
particular scheme has been used for the implementation of a list decoder. As a brief 
description, the H matrix is reordered in such a way that the N — k bits that have been 
received with the least reliable values from the channel (hence gather higher chance of 
being in error) can be obtained from the k most reliable bits by simply encoding them. 
As long as the k encoded bits contain no errors, the decoder will decide the correct code­
word. If one or more errors exist within the k reliably received bits, it is necessary to flip 
one or more of those so that the correct codeword is obtained. An order-K OSD assumes 
K errors among tiie k most reliable bits, and since the error positions are unknown, all 
(Jj) possibilities should be tried. The Euclidean distance of the decoded vector (from the 
received vector) after each trial is stored and at the end of the procedure the decoder 
output that minimises the Euchdean distance is chosen as the most probable decision. 
The performance and complexity of the OSD method is determined by its order For 
low orders there is certainly an advantage over the classical SP decoding in terms of com­
plexity, but with the exchange of higher error rates. In order to overcome the performance 
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of standard SP decoding it is necessary to increase the OSD order with the associated 

price in complexity of course. So, an order-2 OSD would require 1 -h (^) -h (2) encoding 

operations (trials). Note that for each trial there is an extra computational load dealing 

with the manipulation of the reordered H matrix to the echelon form so that encoding 

is feasible. 
As figure 10.1 shows for a particular code, the OSD of order-2 improves the standard 
performance of the SP algorithm. To achieve higher improvement over SP decoding it 
is necessary to increment the order of OSD. Each increment of the OSD order by 1 is 
followed by an exponential rise in the complexity of the process. The RVCM algorithm 
can achieve higher gain much more efficiently with just a fraction of the complexity of 
the OSD. Application of RVCM with Priiax — 1 (only 2 additional operations) overcomes 
the performance of an order-2 OSD and at the same time operates 170 times faster in 
terms of CPU time. With Anax = 10 RVCM achieves the ML performance of the 105,53 
cychc code with less than 1% of the CPU time required by the order-2 OSD. 

10' 

10" 

105.si standard 
105,53 standard RVCM 1W UNSEQ 

105.53 OSOofdwl 
105.53 OSD onJw 2 

2 3 

Figure 10.1: Comparison of RVCM versus OSD 

Alternatively, the OSD method can be used together with SP decoding like RVCM does, 

i.e. only for blocks that the SP algorithm has failed to converge. The performance of 

the two sclienies then varies from code to code. In the case of the (255,64) code, RVCM 

can offer lower error rates and faster implementation. For the (105,53) the performance 

and implementation time is slightly in favour of RVCM while for the (127,84) code mi 

OSD of order 3 offers better performance than an optimum implementation of RVCM 

{Pmax = ^ ) but with the cost of significantly higher complexity. 
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(a) (b) 

Figure 10.2: Comparison of RVCM versus OSD for (a) LDPC (255,64) and (b) LDPC 
(341,205) 

Generally, a complexity/performance comparison of the two schemes is difficult. How­

ever, RVCM can be considered as a more flexible scheme that can adapt much easier to 

the demands of a system since the additional complexity increases linearly with the /?Tnax 

parameter. On the other hand, incrementing the order of OSD for achieving a certain 

target performance adds up considerably more computational load that might not worth 

the actual improvement in performance. 
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10.2 RVCM compared to information correction 
decoding method 

The information correction method is based on the fact that bit positions with unreliable 
input probabilities and participation in many unsatisfied equations, gather more chances 
of being decoded in error [70]. After standard SP decoding and if the SP algorithm has 
failed to converge, bits that fulfil the above two conditions (unreliable input probabiUty 
and high participation in unsatisfied equations) are considered suspicious of being in error 
and are given high priority for information correction. 

Considering a non-convergent block, at the end of the final iteration of the standard 
decoder there will be a set of unsatisfied equations U = {uj : hj - x**' ^ 0}, where x"̂  is 
the transposed output vector of the standard decoder and hj is the row of the parity 
check matrix H . The degî ee d{v) of variable nodes (bits) v e V is defined as 

d{v) = V." (101) 

Hence, d{v) is simply the number of participations of bit v to the set of unsatisfied 

equations. The set of suspicious bits S that aie candidates for information correction is 

then 
S = : d{v) = d"'"^} (10.2) 

where d"**" = maXv^vd{v). For two bits v and i with the same degree, higher priority is 

given to the bit with the higher uncertainty on its input probability. 

The next step is to apply the information correction at the input probabilities of the sus­

picious bits s E S by setting them to ± 1 and restarting the iterative decoding procedure. 

For each trial the Euclidean distance of the decoder's decision is stored, and at the end 

the decision vector that is associated with the minimum Euclidean distance is chosen as 

the most probable solution. 
The difference of this method to the RVCM algorithm lies on the way and the order that 
the changes are applied to the received vector. Figures 10.3 and 10.4 show flow graphs 
of the modification mechanisms for the two algorithms. In RVCM only a single bit is 
modified at any time and the maximum number of decoding operations (trials) for a given 
Pmax is calculated as 2-P,nax- Therefore, the relation between complexity and Pmax is lin­
ear. On the other hand, in the case of the information correction scheme every increment 
of the selection parameter j causes significant rise in the maximum number of decoding 
operations to be performed, and the relation between the two resembles a geometric pro-
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Figure 10.3: Flow graph of performed trials for the RVCM algorithm 

gression {max number of operations =2'̂ "*"̂ ). The information correction method assumes 

that if the bit with the highest priority in the S list {VSQ with d{vaQ) = rf'"**^ and the 

least reliable input probability among any other bits v with d{v) = cT^^) is not capable 

to converge the decoder to the ML decision when modified, then no other bit is capable 

of achieving that by itself. Consequently, combinations of more than one bits from the 

S list are tried. The performance of RVCM proves that most of the times, i t is worth 

continuing the seai'ch for a single bit instead of unnecessaiily moving on to trials of long 

combinations. 

Figures 10.5 and 10.6, compare the performance of the two schemes when applied on the 

cyclic (255,64) and the Tanner(155,64) LDPC codes. For a fair comparison, the selection 

parameters Pfnax and 3 for the two schemes have been chosen in such a way that the 

complexity involved, in terms of additional decoding operations, is exactly the same. In 

both graphs RVCM algorithm performs significantly better as it is capable of delivering 

superior performance with the same additional complexity. The advantage of RVCM is 

mainly on the moderate to higher SNR region where the gain over its opposed algorithm 

reaches IdB for the 255,64 code. 

122 



j = l j = 2 

V 

slan 

y . = - i 

j f 3 

V = + l 

v = - i 

Y.= + l 

02)-
V = - I 

y = - i 

(T3> 
v = + l 

( 3 -
V = - I 

Figure 10.4: Flow graph of performed trials for the information correction method 

123 



10' 

I 

10 

10" 

(255.84) standun) ' 
N bits RVCM (max docodtng oporetions:510) x 

nwl • 
)b8 Iformailon Corroction (max decoding opwatlonsiSIO} • 

2 3 
E«M,.dB 

Figure 10.5: Comparison of RVCM with the Information Correction algorithm on a cyclic 
(255,64) LDPC code 
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Figure 10.6: Comparison of RVCM with the Information Correction algorithm on a 
Tajiner(155,64) LDPC code 

124 



1 Conclusions and directions for future 
research 

In this thesis, the convergence problem of iterative decoders was investigated. The oi> 
eration of the iterative decoding algorithms for turbo codes and LDPCs was explained. 
The convergence problem of iterative decoders was initially introduced and it was linked 
with the concept of correlation and short cycles. Following analytically the operation 
of the SP algorithm for LDPC codes it was shown the mechanism for the generation 
of pseudo-codewords and their direct effect on the sul>optimality of iterative decoders. 
Furthermore, the ability of the iterative algorithm to decode optimally was related to 
the correlation of pseudo-codewords with the received vector. A new algorithm was pre­
sented, capable of providing significant coding gain with affordable added complexity. Its 
exceptional performance was attributed to its ability to reduce the number of pseudo-
codewords and to also minimise the effect of unequal scaling among the probabilities of 
the bit nodes. The algorithm was applied with remarkable success on turbo and LDPC 
codes, and i t was also compared to alternative approaches. The following is a summary 
of the main results and contributions. 

Analytical description of the mechanism responsible for the creation of pseudo-

codewords during S P decoding of L D P C codes 

• The iterative decoder was treated as an optimum algorithm that operates on a 

vector space different than the set of valid codewords c G C. That is equivalent to 

the conclusions of [27] due to which the iterative decoder performs optimally on the 

code's cycle-free computation graph. 

• Following the ideas of [3, 77] where the two main types of distortion imposed by SP 
algorithm are defined, the relation that deterniines the number of pseudo-codewords 
as a function of the parity check matrix characteristics (column and row weight) 
was specified. From the same relation it was deduced that the existence of pseudo-
codewords is an inherent characteristic of any iteratively decoded code. 
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Correlation of pseudo-codewords with the received vector 

• The level of correlation between pseudo-codewords and received vector was identi­

fied as the main cause for the convergence problems of iterative decoders. 

• The level of correlation exhibited between the two was evaluated indirectly, by 
investigation of the received vector's correlation with the valid codewords. The 
latter can be estimated by the reliability of the optimum MAP decoder decisions. 

• Low average reliability at the final decisions of the optimum MAP decoder sug­

gests with high probability that the correlation of the received vector with one or 

more pseudo-codewords is comparable to the correlation of the former with the 

actual codewords. Consequently, the contribution of pseudo-codewords to the final 

decisions of the iterative decoder is significant. 

• The above assumption was verified by experiments carried out upon turbo and 

LDPC schemes. I t was shown that the great majority of the iterative decoder's non-

convergent blocks, are blocks that would be decoded with low average reliability by 

the optimum MAP. 

• The positions that exhibit the lowest reliability among the optimum MAP decisions 

can be considered as the weakest contributors to the correlation of the codewords 

with the received vector. The same positions involve the highest potential of being 

the strongest contributors to the correlation of the received vector with pseudo-

codewords, if iterative decoding is applied. 

• A simple way to eliminate the unwanted contribution coming from those bit posi­

tions is to modify the associated coordinates of the received vector by setting them 

equal to the corresponding transmitted symbols. Simulation results showed that 

modification of a single coordinate is sufficient to improve dramatically the iterative 

decoder performance and bring it very close to the optimum. 

• To investigate the same phenomenon on longer codes and generalise the previous 
findings, it was necessary to substitute the direct implementation of optimum MAP 
decoding with an approximate method of manageable complexity. The OSD de­
coder Wits utilised to create a list of £ codewords, significantly shorter than the 
2* size of the complete codeword list. The optimum MAP decisions of the full 
code were approximated by MAP decoding on the smaller vector space of size £ . 
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For higher list size £ , the approximation error reduces and the actual least reli­

able position of the optimum MAP can be identified with higher accuracy. As the 

approximation error reduces, modification of the estimated least reliable position 

offers gradual improvement in terms of BER and FER. The loss with respect to 

optimum decoding is minimised or even eliminated in many cases. Therefore, with 

the aid of a list decoder it was shown that: 

- The least reliable bit decision of the optimum MAP decoder is indeed the 

strongest contributor to the correlation of pseudo-codewords with the received 

vector. 

- A very large percentage of the prior non-convergent blocks of an iterative 

decoder can be decoded optimally if the received value of the single strongest 

contributor is optimised (modified to the transmitted value). 

- The above method is equally effective on long codes too. 

The Received Vector Coordinate Modification ( R V C M ) algorithm 

• Takes full advantage of the potential gain that is offered when a single position of the 

received vector is modified. Applicable on turbo codes and LDPCs. Improvements 

that exceed one order of magnitude (and in some cases even more than two orders 

of magnitude) have been observed in terms of BER and FER. 

• In contrast to other schem(3S, the added computational load increases linearly with 

block-length as only a single bit is modified at any time. 

• Performance identical to ML has been observed for certain short LDPC codes. 

• At higher SNR it is capable of delivering optimum performance for both LDPC and 

turbo codes. 

• Selection criteria have been developed so that a critical coordinate is identified with 

high accuracy. 

• Comparison of RVCM with alternative convergence improving schemes for LDPC 

codes has revealed that RVCM is generally more efficient and more flexible. 

The structured permutation algorithm 

• I t was shown that by permuting certain positions of the received vector of a non-
convergent block and by then restarting the decoding algorithm it is possible to 
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correct many of the prior non-convergent blocks. The improvement gets much closer 

to the ML performance at high SNR. At moderate and higher SNR its performance 

becomes comparable to that of RVCM. 

Some ideas and questions for future research directions that may shed more light to 

the behaviour of iterative decoding and the convergence problem are: 

• Further investigation for a selection method that will identify critical bits with 100% 

accuracy. 

• What is the reason that a makes a non-convergent block not correctable by RVCM? 

Is it possible to identify those blocks? 

• The performance of some LDPC codes (such as the 105,53, the 63,37 and the 93,47) 
becomes identical to the ML when RVCM is applied (at any Ei,/No)> For other codes 
of similar length (e.g. the 85,37) the ML performance is only reached at very high 
SNR. Investigation of the weight spectrum of these codes might give the answers 
why this happens. The outcomes of this investigation might reveal some interesting 
conclusions in code design and pseudo-codewords generation. 

• Performance of RVCM on irregular LDPC codes. 

• Performance of RVCM on high rate LDPC and turbo codes 

• Extension of the convergence research and the performance of RVCM on different 

channels (e.g. magnetic) 

• Investigation of the concept of pseudo-distance and how can this be used for further 

understanding of the non-convergence issue of iterative decoders. 

• Application of RVCM to watermarking 

• I t has been investigated that for some LDPC codes the method that is used by 
the SP algorithm for updating the extrinsic probabilities (row or column updating 
method) affects significantly the performance. The variation in the performance 
of the two updating methods might be explained by analysing the distortion of 
the vector space (as in chapter 6) and the generation of pseudo-codewords. These 
results might be useful in identifying those code characteristics that affect most the 
performance of the two methods, so that the best choice is made for any given code. 
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• Further investigation of the extrinsic probabiHties bounding method. How can we 

optimise the choice of the bounding parameter Gl Why it does not work for L D P C 

codes? 

• Further investigation of the structure permutation algorithm. Various questions are 

still open, such as: 

- How can we improve or even optimise the criterion of selection for the bits 

that paiticipate in the permutation? 

- Is the optimum SPAN constant for any code of the same block-length? 

- Can the same method be apphed on L D P C codes? 

• Investigation of the Linear Programming decoding methods. Analysis of pseudo-

codewords based on Linear Progi amming. 

• How the concepts of minimal pseudo-codewords and pseudo-distance can be incor­

porated into the findings of this thesis? 

- New code-design apporaches? 

- Understanding of the cost function of iterative decoding? 

- Identifying the conditions for minimum participation of pseudo-codewords in 

the decisions of iterative decoder? 

- Development of optimum RVCM selection criterion? 
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1 A B S T R A C T 

The paper presents a method to improve significantly the convergence of iteratively decoded concatenated 
schemes, such as serial concatenated convolutional codes, tnrbo codes and product codes. I t is shown that majiy 
of the error blocks produced by tlie iterative decoder can be corrected by modifying a single, critical coordinate 
(channel value) of the received vector and repeating the decoding. Various statistics are presented abovit the 
critical coordinates, the evolution of the extrinsic vector and the effect of the memory of the component codes. 
The results are explained form an N-dimensional space point of view as a fixed-point problem, by analysing 
the contraction regions of the decoder and the evolution of the extrinsic information vector (EXIT charts). 
Results are shown mainly for serial concatenated codes, althought similar results have been obtained for parallel 
concatenated turbo codes and product codes. 

2 I N T R O D U C T I O N 

Iteratively decoded concatenated schemes, such as turbo codes [4], serial concatenated convolutional codes 
(SCCC) (3], have been shown to approach Shannon limit. They have low decoding complexity due to the 
suboptimol iterative decoder. Their performance curve luis two regions: the waterfall region and the error floor 
region. The waterfall region is attributted to the lack of convergence of the iterative decoder, and its starting 
point can be determined by using density evolution [5]. In this paper, we show that the waterfall region can 
be improved significantly by using a simple algorithm which modifies one of the coordinates (channel value) of 
the received vector. We detect error blocks produced by the iterative decoder, modify one of the channel values 
at the input of the decoder (we call this value a critical coordinate of the received vector) and then repeat the 
decoding. We show that in this way an improvement of about 0.2dB can be achieved in the waterfall region of 
the iterative decoder. This algorithm is exemplified by using serial concatenation of convolutional codes of low 
memory, but it is also applicable to other concatenated schemes. 
The iterative decoding procedure is the actual practical method of iteratively solving a system of N simultaneous 
equations with N unknowns. Analytical solution of such a system of a practical size would be extremely complex. 
A more efficient way of representing the turbo equations is in terms of fixed points. Mathematically the iterative 
decoder can be described as a problem of iteratively solving the equations [ I ] : 

pk = fiPl) (1) 
P'E = 9(Ph) 

Where / is the first M A P decoder's function, g represents the interleaving/de-interleaving process and the 
second M A P function while PE are the corresponding extrinsic information vectors. When the iterative decoder 
converges to a fixed point solution the extrinsic information produced by the two decoders is identical and 
stable. 

P'E = mph)) = HPh) (2) 

Here h is the turbo decoding function. Convergence to a fixed point doesn't imply that the decoder has 
necessarily converged to the zero error solution. I t only means that the decoder has decided on a single solution 
and as a consequence of that no further changes and no decoding gain can be made with increasing iterations. 
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2.1 Convergence and Contraction Regions 
Considering the N-dimensional space, fixed points are represented as single points in i t . Tlie extrinsic vector is 
initially undecided (all of its N components arc equal to 0.5). After each iteration the extrinsic vector evolves 
within tiie space, wi t l i a certain magnitude and direction. I f we denote with h the turbo decoding function then 
the system of N simultaneous equations can be expressed as: 

(0) _ ^(0) . (0)^ 
^n+l — "n+lV'^n ) 

^n+\ — "n+llC„ ) 

(3) 

Wlien all the components of the vector stabilize with iterations, k has converged to a fixed point solution. For 
that to happen k should be a contractor [7, 6), so that the change in the extrinsic vector with respect to that 
of the previous iteration is getting smaller and smaller. 

| | M e ( „ + i ) ) l | < ^ - | | e „ | | . 0 < / : < l (4) 

The magnitude of the differential extrinsic vector will keep reducing and wil l finally end up to the fixed point if 
/ i is a contractor for that vector. Function h will be a contractor for the vector if the latter lies within one of the 
contraction regions of the N-dimensional space. So based on this geometrical interpretation we can categorize 
the behaviour of the extrinsic vectors in the N-dimensional space into three types: 

• Non converging vectors that even after a large number of iterations are still wandering around without 
being trapped by any of the contraction regions. 

• Converging vectors the initial point of which is into a contraction region, so they converge to the corre­
sponding fixed point solution. 

Converging vectors which initially wander around until a certain iteration where they enter a contraction 
region and converge. 

As i t was previously stated even if the extrinsic vector converges to a stable solution this doesn't mean that 
i t is the correct. So the problem of improving the performance of the iterative decoder can be defined as a 
problem of guiding the extrinsic vector into the zero error contraction region. Alternatively, i t is the problem 
of reshaping the contraction region in such a way that the extrinsic vector starts, or at a certain stage ends up, 
within the region. Tliesc two approaches represent the main ideas of this paper. 

3 R E C E I V E D V E C T O R C O O R D I N A T E M O D I F I C A T I O N ( R V C M ) A L G O R I T H M F O R C O N ­
C A T E N A T E D C O D E S 

3.1 Description and Performance 
Given a non convergent block (at least 100 iterations ran without convergence) the decoding algorithm is 
restarted but with one of its systematic bits' channel probabilities modified in such a way that the residual error 
of the specific component becomes zero. For that to happen, the bit should take either an initial probability of 1 
or 0. Both of these should be tested starting from the one that is further from the observed channel probability. 
I f no convergence to a suitable stopping criterion is achieved, the modified bit returns to its real channel value 
and the next bit follows the same procedure. As a result of this algorithm a remarkable improvement is achieved. 
Depending on the Eb/No level and the actual constituent codes, more than half of the prior non convergent 
blocks are successfully decoded even at as low Eb/No as the threshold value right at the beginning of the 
waterfall region of the error performance. Some typical success rates for the tail-biting terminated SCCG with 
Recursive Systematic Convolutional constituent codes of forward/feedback polynomials 5/7 (RSC(1, 5/7)) and 
random interleaving are presented in table 1. Figure 1 shows the performance improvement achieved by the 
RVCM algorithm applied to two SCCC schemes. One of them consists of two RSC(1, 5/7) codes and the other 
one of two RSC(1, 7/5) codes. 
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Note tile considerable amount of gain that the very simple RVCM algorithm produces at such low SNR. Both 
of tl»e tested codes are of memory-2 which means that tlieir convergence properties at the low Eb/No region 
are very good and even a tiny improvement of fractions of dB at that steep region is difficult. 
At the same figure we plot the Shannon's sphere packing bound [8] as this is drawn for quarter rate codes of 
block length N=2000. Shannon's sphere packing curve sets the FER performance upper bound for finite block 
length and code rate codes. Both of the tested schemes are less than IdB away from that after apjilying the 
RVCM algorithm. The better converging RSC(1, 7/5) code is just 0.75dB away of it at Eb/No of 0.4dB and 
0.8dB away at Eb/No of I d B . At the lower to moderate Eb/No region the RSC(1, 5/7) SCCC FER improves 
by 0.16-0.175dB and reduces its distance from the bound to 0.9dB. 

Eb/No dB % success 
0.4 51% 
0.5 57% 
0.6 63% 
0.7 65% 
0.8 73% 
0.9 77% 
1.0 81% 

Table 1: Percentage of prior non convergent blocks that are successfully decoded by optimizing the initial value 
of a single bit (tail-biting RSC(1, 5/7) SCCC, block length N=2000, random interleaving). 

S 

RSC(1.5ffl80CC 
- . - RVCM RSC(1^) SCCC 
— RSC<1.7fl)8CCC 
-O- RVCMRSC(l.7fl)8CCC 
-o- SphOT PMJtlno Bawd 

Fig. 1: FER improvement of RSC(l,5/7) and RSC(1.7/5) SCCCs by applying the RVCM algorithm, and 
comparison with sphere packing bound. 

3.2 Discussion of the Algorithm and Results 
I t is rather surprising the effect that such a small change of only one bit has in tlic decoding performance. 
Recalling the introduction's discussion we can form an idea about the reasons that cause this performance 
improvement. We can think of the shape of the contraction regions, particularly of the optimum solution 
contraction region, as being a function of the code structure and the Eb/No. The reliability of tlie received 
channel observations is strongly dependant upon the Eb/No level. So the shape of the contraction region of 
the zero-error fixed point solution can be thought as a direct function of the code structure and the received 
clianncl observations, the initial values of the algorithm. By optimising (minimising the residual error) one of 
the components of the initial values we reshape all contraction regions in the N-dimensional space but more 
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importantly, we reshape the zero-error contraction region in favour of a successful decoding result. But how can 
such a small change in the initial values of the algorithm cause such a big improvement? Unlike an ordinary 
system of simultaneous equations, in turbo decoding a small change in the initial values produces a chain of 
reactions due to the interrelation of each bit with the whole sequence. Figure 2 shows the variation of the 
normalised norm of the differential extrinsic vectors for a non convergent block and for the same block after 
optimising the initial values of two individual bits (only one bi t optimised at each time). Depending on the 
actual bit choice, the differential extrinsic vector becomes zero (the extrinsic vector stabilises) after a certain 
number of iterations and the block converges. The fact that the differential extrinsic vector is zero does not 
guarantee a zero-error solution but i t denotes that the algorithm has provided a set of solutions for the equations' 
system of (3). In this particular example there are more than 100 bits that correctly converge the block to zero 
errors, among which bits No.39 and No.939. I t is difficult to say whether the dominant effect that forces the 
block to converge is the reshaping of the contraction region or the change of the extrinsic vector's path in the 
N-dimensional space. Looking at the effect of bit 939 in the pattern of the differential extrinsic vector i t seems 
that the contraction region of the optimal solution was reshaped in such a way that i t inckidcd the initial 
extrinsic vector ([0.5,0.5,.--lO-Sj) at the beginning of the algorithm. As a result of that, the block converged 
within a few iterations. However, the large peak at the 10th iteration anticipates the previous scenario and 
can be interpreted as a critical change in the path of the vector that directs it into the zero-error reshaped 
contraction region and to convergence. The pattern caused by the optimisation of tiie initial value of bit 39 
can be explained as an initial random walk of the extrinsic vector that is similar to that of the original non 
convergent block up to around iteration 44. A t that point we have a critical peak change in the extrinsic vector 
that directs i t to a solution for the system of (3). Sunnnarising we can point out a few observations regarding 
the RVCM algorithm's behaviour: 

• The RVCM algorithm alters the evolution of the extrinsic vector through out the number of iterations 
within the N-dimensional space 

• In most of the cases the algorithm provides solutions for the set of equations (3) of the iterative decoder. 
Given that the initial change is towards the right direction (the correct value of the individual component) 
it is likely that some of the changes will force the block to the optimum solution 

• In terms of the differential extrinsic vectors' evolution plots we can notice a common peak change in the 
extrinsic vector right before the vector enters into the contraction region and converges 

• For the blocks that finally converge, it is not yet clear if the oscillatory parts of their differential extrinsic 
vectors patterns are associated with random walks of the extrinsic vector within or outside the contraction 
region 
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Fig. 2: Evolution of differential vectors 
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3.3 Extrinsic Information Transfer (EXIT) charts 
A way of visualising the effect that a successful single bit optimisation has in terms of the mutual information 
exchanged between the decoders, is the EXIT cliart [9]. The fact that the extrinsic output of each decoder 
becomes the a priori input for the next, allows us to plot the trajectory of the exchanged information in a 
single plot for successive iterations. The main point of such a chart is to iteratively assess the information 
gain achieved by each of the constituent decoders. In other words, the contribution of each decoder to the 
whole decoding procedure. The proper means for this is the mutual information at the output of the decoders, 
averaged over the whole sequence. Mutual information can be thought as a measure of reliability or information 
gain, in this case the gain between the input and the output extrinsic sequence of each M A P decoder. I f at 
iteration n the averaged reliability of the input extrinsic vector is IE2 then, at iteration n + 1, IE2 should be 
greater for the decoding procedure to improve towards the correct solution. Since I^i is the input to constituent 
decoder-!, the previous condition will only apply if decoder-l has increased its mutual extrinsic information IE\ 
at Iteration n + 1. In EXIT charts, the gain is proportional to the step width towards higher mutual information 
values. Ideally, after a certain number of iterations the mutual information should reach 1 with both of the 
decoders saturated and stable. Then, the block has converged. 
Figures 3a and 3b show the EXIT charts of a particular block before and after optimising a single coordinate at 
the starting values of the iterative algorithm. In figure 3a, the iterative improvement stops at the third iteration. 
The extrinsic vector wanders around in the N-dimensional space and the mutual information cannot move higher 
than around 0.35. Small improvements and degradations occur through out the procedure and the block does 
not manage to escape from this loop. In figure 3b, we have the graph for the same block after optimising the 
initial value of one of the bits that force the decoder to convergence (critical bits) and restarting the iterative 
decoding procedure. Clearly the decoder finds the right path, escapes the loop after a short wandering of about 
10 iterations and converges to the correct solution. 

I 
0.8 h 

(a) 
0.2 0.4 0.6 0.8 

output 1̂ . Input to first decoder (b) 
0.2 0.4 0.6 0.8 1 

output l£2> input to first docodor 

Fig. 3: (a)EXIT chart of non convergent block (b)EXIT chart for the same block after optimising the starting 
point of a single bit 

3.4 Critical Bits 
An inmiediate question that arises from all previously discussed findings is about the criteria that should be used 
for selecting the individual bits that force the block to convergence (critical bits). From the current simulations 
it seems that there is a variety of individual bits that can correct a given block if the RVCM algorithm is 
applied. Blocks with as many as 400 critical bits have been found, each of them determining the convergence 
of the block. On the otlicr extreme, blocks with only 1 criticaJ bit have been also observed for the same Eb/No 
level. Graplis of the successful bits distribution for a given interleaver and Eb/No reveal no strong indication 
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of bit positions within the sequence that are more like to converge a block if their initial value is optimised. 
Figures 4a and 4b, show the plotted distribution for the same random interleaver at 0.6 and 0.8dB. In addition 
to the fact that the plots seem to reveal a noise-like random distribution, there is no correlation between them. 
Figures 5a and 5b reveal a characteristic of the RVCM algorithm that makes its practical implementation easier 
even without knowledge of the critical bit positions. I t would be desirable if one of the bits that successfully 
converge the decoder is towards the beginning of the block so that the search time is minimised. As shown 
in figures 5a and 5b, the first critical bit is usually detected quite early in the block. That is not surprising 
since the distribution of critical bits within the block is uniform if averaged over a large number of trials. From 
the cdf curve of figure 6 we can extract some useful results. Considering the I d B curve, almost 86% of the 
total critical positions are within the first 100 bits of the block and 76% within the first 50 bits. Even better, 
half of the total critical positions are within the first 10 bits. For the 0.7dB case there is a slight degradation 
of no more than 7%. So the span of the search for a critical bit that might correct a non convergent block 
can be significantly reduced depending on the performance loss that we are willing to tolerate. Even for very 
tight specifications, the search domain can be reduced by 75% with only 5% loss from the maximum achievable 
performance. The situation improves at higher Eb/No levels. 

1 0 O I l » n O < O 0 C 3 O C ! » 7 ! ) O C M O O 0 i a » 

Fig. 4: Distribution of successfull bit positions for the same random interleaver at (a)0.6dB and (b)0.8dB 
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Fig. 5: Distribution of the bits that first converge a block at (a)0.7dB and (b) ldB for the same code and 
interleaver 
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— 0.700 

Fig. 6: cdf curves of histograms 5a and 5b 

3.5 The RVCM Algorithm for Higher Memory Codes 
Compared with low-memory, SCCC schemes with constituent codes of higher memory perform worse at the 
lower Eb/No region but exhibit a lower error floor [2j. Figure 7 shows plots of the FER performance curves 
of an SCCC scheme with the RSC(1,17/13) memory-3 constituent codes. The coding gain achieved by using 
the RVCM algorithm is very similar to that of the previously discussed memory-2 codes, about 0.17 to 0.18dB. 
However, the number of the non convergent blocks that can be successfully corrected by using the RVCM is 
lower than that of the memory-2 codes' case. A t O-SdB for an SCCC with constituent codes RSC(1, 5/7), 73% 
of the prior non convergent blocks will be corrected. I f we change the constituent codes with the RSC(1, 7/5) 
the success rate increases to 78% while for the memory-3 RSC(1, 17/13) codes i t is just 61%. The convergence 
of the memory-3 code is slower and the error performance ciu-ve less steep, so even though the success rate has 
decreased the coding gain of RVCM remains very similar with that of the memory-2 codes. 

R5C(i.17/13) 8CCC 
- t - RVCMRSC(1.17/13)SCCC 

-06 -0 4 -0.2 0 02 0.4 0.8 08 
EbModO 

Fig. 7: FER improvement of RSC(1,17/13) SCCC by applying the RVCM algorithm, and comparison with 
sphere packing bound 
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4 C O N C L U S I O N S 

A large number of non-convergent error blocks can be corrected by modifying a single, critical coordinate of 
the received vector at the input of the iterative decoder. For each error block, there are generally more than 
one critical coordinates. Their number and position in the received vector is different for each error block. 
Investigation shows that tliere are no preferred critical values that work for all blocks. However, most of 
the blocks have at least one critical value in the first few coordinates of the received vector. Based on this 
observation, we have proposed an algorithm which improves the performance of the iterative decoder by about 
0.2dB. Different component codes show a similar improvement. The improvement due to the algorithm has also 
been verified for parallel concatenated turbo codes and product codes. Future work wil l be directed towards 
identifying the critical coordinates by examining the received vector and the evolution of the iterative decoder. 
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Abstract—The paper presents a method to signiricantly 
improve the convergence of iteratively decoded concatenated 
schemes and reduce the gap between iterative and maximum 
likelihood (ML) decoding. It is shown that many of the error 
blocks produced by the iterative decoder can be corrected by 
modifying a single critical coordinate (channel value) of the 
received vector and repeating the decoding. This is the basis of the 
R V C M (Recicved Vector Coordinate Modification) algorithm. Its 
description, performance and drawbacks are discussed later on. 
The paper also presents a practically obtained lower bound on 
M L performance based on the Euclidean distances of the trans­
mitted and the itcratively decoded codewords from the received 
vector. At low SNR this bound is assuming on unrealistic perfect 
code, while at high SNR the aproximations arc getting closer 
to the real characteristics of the code and the RVCM iterative 
decoder is shown to achieve the ultimate M L performance. 

I . I N T R O D U C T I O N 

For many years the main difficulty in using powerful codes 
that approach the capacity limits was the complexity involved 
in the decoding side. Turbo decoders [2J approximate the code 
performance with only a fraction of the effort required by 
an M L decoder. The worse performance of the turbo towards 
M L decoding, is attributed to the lack of convergence of the 
iterative algorithm to the most likely codeword decision. 
We can establish a lower bound for the M L performance and 
compare the turbo decoder with that, by using the MRL (more 
likely) codeword criterion [4J. Although we cannot define how 
many limes the M L decoder will choose the right codeword 
(the M L codeword is not always correct), we can actually 
identify all those cases that the M L decoder would definitely 
make an error. 
Over the years many methods have been proposed for im­
proving the performance of iterative decoding. In the context 
of LDPCs the bit-flipping algorithm [6] tar;gets the most 
unreliable bit of each partial parity equation. Chase [3] type 
decoding methods have also been proposed for algebraic 
decoding of block codes [5]. This paper attempts to improve 
the convergence performance of iterative turbo decoders by 
applying the RVCM (Received Vector Coordinate Modicaiion) 
algorithm [8] [7]. If RVCM is capable of correcting all the non-
converged (at least 100 iterations ran without convergence) 
non-MRL blocks, the iterative decoder should be identical to 
the code's optimum maximum likelihood decoding scheme. 
The difficulty associated with the RVCM algorithm is the 

increased computational effort required. For maximum gain 
the complexity increases significantly. For delay critical ap­
plications a compromise can be made by choosing a small 
group of coordinates that meet a certain set of criteria like the 
reliability of their received channel values. 

I I . RVCM A L G O R I T H M F O R C O N C A T E N A T E D C O D E S 

A. Description and Performance 

In order to apply the RVCM algorithm to a particular block 
we need to know the corresponding received vector. So each 
received vector is buffered for as long as the block is processed 
by the decoder. Given a non-convergent block the decoding 
algorithm is restarted, but with one of its systematic bits' 
received values modified to one of the possible transmitted 
values. In this paper we assume BPSK modulation, so the 
chosen coordinate (systematic bit's position) should be made 
either +1 or - 1 . Obviously, one of the two choices will make 
the residual error equal to zero and the other will maximise it. 
Since we can't know which is the appropriate value we have 
to try both. If no convergence to a suitable stopping criterion 
is achieved with any of the two. the modified bit is returned to 
its real channel value and the next systematic bit follows the 
same procedure. The algorithm offers gains of 0.15 to 0.2dB 
(the application is restricted to just non-MRL blocks for a 
fair comparison). The percentage of the prior non-convergent 
blocks that are corrected depends on the Eb/No level and 
the constituent codes themselves. The memory of a code is 
a major factor in the success rate of the RVCM algorithm. 
Nevertheless, the coding gain remains at the same levels 
eventhough the effectiveness of the RVCM algorithm reduces, 
because of the inherent inferior convergent characteristic of the 
higher memory codes [1] (on a less steep FER curve the same 
success rate of RVCM would be translated into higher coding 
gain). Table I shows the algorithm's success rates (percentage 
of prior non-convergent blocks corrected) based on a serial 
concatenated convolutional code (SCCC) scheme of memory-
2 and memory-3 recursive systematic convolulional (RSC) 
constituent codes. 

B, Discussion and Results 
The modification of the received vector reshapes the con­

traction region (the N-dimensional volume into which the 
extrinsic vector's change over iterations shrinks and stabilises 



Eb/No dB RSC( 1.5/7) RSC( 1,7/5) RSCd,17/13) 

0.6 63% 74.4% -
0.8 73% 78% 61% 
1.0 81% 84.6% 68.8% 
1.3 - - 79.47o 

TABLE I 
P H R C E N T A G E O F P R I O R N O N C O N V E R G E N T B L O C K S T H A T A R E 

S U C C E S S F U L L Y D E C O D E D B Y T H E R V C M A L G O R I T H M ( T A I L - B I T E . 

R = 1/4. B L O C K L E N G T H N=2000, R A N D O M I N T E R L E A V I N G ) . 

decoder) and mainly the continous exchange of infonnaiion 
between the decoders are the main reasons for the algorithm's 
behaviour 
Figure 2 shows the FER performance improvement achieved 
by the RVCM algorithm against the standard turbo code when 
applied in a SCCC scheme with the RSC( 1.5/7) memory-2 
constituent codes. The Shannon's sphere packing bound |91 
(drawn for N=2000, r^l /4) is shown in the same graph for 
direct comparison. 

to the corresponding fixed point solution) and alters the path 
foifowed by the extrinsic vector throughout (he decoding 
process. As long as the modification is towards the correct 
solution, all changes act in favour of successful decoding and 
most of the times the extrinsic vector stabilises to the zero-
error solution. 
The EXIT charts [lOJ in figure I give a very good picture of 
the effect that the modification of a single coordinate produces. 
The fact thai the extrinsic output of each decoder becomes 
the a priori for the next, allows us lo plot the trajectory 
of the exchanged information in a single plot for successive 
iterations. The target is to assess the information gain achieved 
by the individual decoders at each iteration. 

(a) ' (b) 

Fig. I. (a)EXrr Chan of non convcî cnt block (b)EXIT chan for the sumc 
block after optimiiting the sianing point of a single bii 

The information gain (step-width in the graph) is expressed 
by the mutual information, in other words the difference 
between the a posteriori (decoder's output) and the a jjrioH 
(decoder's input) probabilities. As we can point out from 
figure 1(a), iniually the two constituent MAP decoders produce 
gain and the reliability increases continuously. But after the 
first 2 iterations the turbo decoder enters in a loop and the 
average mutual information never exceeds 0.35. This is a non-
convergent block. In 1(b) we have the chart of the same block 
after applying the RVCM algorithm. The decoder wanders for 
around 10 iterations but it eventually manages to escape the 
loop and converge. Obviously, the small initial modification 
has a huge impact in the decoding outcome although any 
gain increase is hardly noticed in the first few iterations. The 
turbo decoder builds iteration by iteration on the tiny extra 
infonnaiion provided by the RVCM algorithm, and most of 
the times it corrects the block. The interrelation among the bits 
(all bits take part more or less to each decision of the MAP 

icccraciiflfTi 

Fig. 2. RVCM improvement towards .standaid SCCX (block-lengih=2000, 
tail-bile. i=l/4. RSC(I.5/7). random interleaving) 

Figure 3 presents the results of a parallel concatenated turbo 
code scheme with m-binary |4] component codes. It can 
be observed that the improvement provided by the RVCM 
algorithm is similar to that of the serial concatenated scheme. 
The figure also shows the sphere packing bound and the bound 
corresponding to binary modulation for rate equal to 2/3. 

I OOCOI 

Fig. 3. RVCM algorithm for parallel concatenated turbo codes of code rate 
2/3 and information block-lcnglh 1054 using m-binaiy component codes 

C. Critical Bits 
One of the major problems concerning the RVCM 

algorithm is the difficulty involved in finding the bit(s) that i f 
modified can converge the decoder to the zero-error solution. 
We name these as critical bits. The number of critical bits 
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in a block varies from 400 to I oul of 1000 systematic 
bits. The distribution of critical bits is uniform with no 
sign of vulnerable or favourite bit positions [8]. So for full 
exploitation of the capabilities of RVCM, all of the block's 
systematic bits should be tried. 
Because of the uniform distribution of the critical bits 
along the sequence it is very likely that if we limit our 
search to a smaller group, at least one of them will be 
found (given of course that a critical bit exists in the 
block). By using this method we can significantly reduce 
the computational effort but for the price of suboptimum 
performance. Funhermore» by choosing the candidate critical 
bits based on the reliability of their channel value instead of 
randomly, the algorithm can achieve up to 10% better success 
rates for small groups of 10 or 20 bits size. However, as it can 
be seen from figure 4, the gain in dB is negligible. Table IT 
summarises figure 4 and supplies some additional information. 

-f»- P««UN»IMMI»I 

Fig. 4. Suboplimum RVCM schemes 

Eb/No lOu lOr Avg(u/r) 

0.8 292/798 = 36.6% 241/798 = 30.27o 7/8 
1.2 212/394 = 53.870 203/394 = 51.57o 6/6 
1.5 185/266 = 69.5% 175/266 = 65.87o 4/5 
1.7 71/101 = 70.3% GO/101 =59.47o 5/6 

TABLE II 
S U C C K S S RATliS AND AVBRAGE NUMBHR OH T R I A L S FOR GROUPS OH 10 

RANDOM (10R) A N D O F T M E 10 MOST U N R E L I A B L E ( I O U ) BITS. 

to the product of the number of states of each constituent 
code. If an interieaver is placed between the two codes then 
complexity increases enormously. Even for short lengths it 
is almost impossible to implement an M L decoder because 
of the random-like interrelations, among the sequence bits, 
introduced by the inlerieaver. 
Iterative decoding offers a compromise between performance 
and complexity. It approximates M L decoding by exchanging 
information throughout a series of iterations. Turbo codes in 
particular, exchange extrinsic information which represent the 
independent decisions of each individual decoder. The iterative 
decoder algorithm though, does not always converge to the M L 
solution. Sometimes it doesn't converge to any solution. So, 
a straight forward question is about the scale of the loss of 
the iterative approximation and possible methods of reducing 
this. 

B. Explaination of the MRL Notion 

The MRL notion will serve as an approximation to the 
ML criterion. Since we perform suboptimum decoding (turbo 
decoding) the decoder's outcome is not always the most likely 
choice (the most likely codeword). In fact, most of the times 
the output of the turbo decoder is not even a codeword (at 
low to moderate SNR). The reader should be aware that the 
information output is re-encoded to give a valid codeword, 
and that is considered as the output of the turbo decoder. It 
wouldn't make sense to use the raw output of the turbo decoder 
in the effort of approaching the M L performance. 
By checking the Euclidean distances of the decoded and the 
transmitted codewords from the received vector, we can decide 
whether or not the iterative decoder's output is more likely than 
the transmitted (correct) codeword. I f it is, wc can be sure 
that the hypothetical exact M L decoder would definctely not 
pick the correct codeword since there is at least one erroneous 
codeword closer to the received vector. Recall that the best 
that any optimum probabilistic decoder can do is to find the 
valid codeword that is closer to the received vector (the actual 
M L criterion). 
Figure 5 visualises the above case in the Euclidean space. 
Where T is the transmitted vector, D is the decoded and 
R the received vector. I f vector D is closer than T to the 
received vector R in terms of Euclidean distance (rfi < f/2). 
then D is considered an MRL decision and due to the previous 
paragraph's discussion we can be sure that the optimum M L 
decoder would be in error. 

in. A P R O A C H I N G T H E M L P E R F O R M A N C E O P T H E C O D E 

A. Optimum and Iterative decoding 

The capabilities of a concatenated encoding scheme can be 
fully exploited i f the sent data is recovered by an optimum 
combined M L decoder. In terms of FER the M L decoder gives 
the maximum performance we can get. The price paid for the 
oplimality offered is a significant increase in the complexity 
since the number of states of the combined trellis will be equal 

Fig. 5. Represantaiion of an MRL decoded block in terms of Euclidean 
di.stanccs 
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The results obtained by this method set the lower bound on 
the M L performance since only the minimum of the possible 
error events are taken into account. Al l the non-MRL blocks 
are assumed to be corrected by an M L decoder. 

C The RVCM-Turbo Decoder closer to the ML Performance 
The RVCM algorithm offers signifjcani improvement to the 

turbo decoder's performance. As table I has already revealed, 
a large number of non convergent blocks can be successfully 
corrected as a result of this. 
If RVCM is capable of correcting all the non-MRL blocks 
that have not initially converged, then the iterative decoder 
performance will be identical to the optimum code perfor­
mance (lower bound). The obtained bound is an optimistic 
estimation of the code performance, especially at lower SNR. 
But as SNR increases, the RVCM-turbo decoder should get 
very close and even be identical to the M L bound. Figure 6 
shows the simulated results. Because of the weak, low memory 
consistueni codes (RSC(l,5/7)) the overall code has a high 
error floor. This is due to the increasing number of MRL 
blocks at high SNR. Eventhough al this Eb/No range the 
RVCM algorithm is capable of success rates of 100%, the 
increasing number of MRL blocks, as a result of the low djrv,. 

of the code, limits the performance. 

The capabilities of the RVCM algorithm are actually limited 
by the code's d/ree which is responsible for the increasing 
number of MRL blocks at higher SNR. However, the d j n c 

influences the convergence behaviour of the iterative decoder. 
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Fig. 6. Comparison with the MRL bound 

IV. CONCLUSIONS 
A large number of non-convergent error blocks can be 

corrected by modifying a single critical coordinate of the 
received vector at the input of the iterative decoder Their 
number and positions vary among the error blocks. Generally 
the most unreliable coordinates have a higher probability of 
converging an error block, if modified. 
The RVCM algorithm exploits the above characteristics and 
attains about 0.15 to 0.2dB of additional coding gain. The 
iterative decoder approaches the optimum M L performance of 
the code. The latter can be lower bounded with the aid of the 
MRL criterion. A l high SNR the RVCM turbo decoder man­
ages to correct all but the MRL blocks and, consequently, its 
performance becomes identical to the optimum M L decoder 
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Abstract 
An algorithm of improving (he performance of iter­
ative decoding on perpendicular magnetic record­
ing is presented. This algorithm follows on the au­
thors ' previous works on the parallel and serial 
concatenated turbo codes and low-density parity-
check codes. The application of this algorithm with 
signal-to-noise ratio mismatch technique shows 
promising results in the presence of media noise. 
We also show that, compare to the standard itera­
tive decoding algorithm, an improvement of within 
one order of magnitude can be achieved. 

1. Introduction 
Longitudinal recording has been the standard 
method in magnetic recording for decades. Recent 
research has shown that this method seems to reach 
its physical limits in the near future due to the su­
perparamagnetic effects. On the other hand, the 
technique which has been known prior to the longi­
tudinal recording-perpendicular recording, has re­
cently been the centre of research attention. Per­
pendicular magnetic recording offers promising in­
creased in recording densities, up to I Terabit per 
square inch seems feasible [1]. As the arcal den­
sity is increased, however, the signal processing as­
pects of magnetic recording becomes more diff i ­
cult. Sources o f distortion including media noise, 
electronics and head noise, jitter noise, inter-track 
interference, thermal asperity, partial erasure and 
dropouts become more apparent and unless appro­
priate mitigation techniques arc present, signals 
cannot be retrieved reliably from the recording me­
dia. 

Since the discovery of turbo codes, soft-decision 
iterative decoding has been shown to be able to 
provide significant coding gain over the conven­
tional detection method on magnetic recording. 
The utilisation of iterative decoding on the concate­
nation o f partial-response (PR) channel and pow­
erful error-correcting codes such as low-density 

parity-check (LDPC) and turbo codes has been pro­
posed in many literatures. Iterative decoding is 
a reduced-complexity method to achieve the op­
timum solution-the maximum-likelihood solution 
and as such, iterative decoding is sub-optimal. 

In this paper, we present a method to im­
prove the sub-optimality of the iterative decod­
ing and demonstrate its applications to perpendic­
ular magnetic recording in the presence of media 
noise. The improved method, which is known 
as the Received-Vcctor-Coordinate-Modification 
(RVCM) algorithm, follows on the previous works 
of the authors [2], [3], [4], [5], [6]. This method is 
similar to the works of [7] and [8]. This paper also 
investigates the use o f signal-to-noisc ratio (SNR) 
mismatch [9] to mitigate the effect of media noise. 

The rest o f the paper is organised as follows. 
Section 2 describes the perpendicular recording 
channel used. The description o f the RVCM algo­
rithm is outlined in Section 3 and the performance 
of this algorithm is demonstrated in Section 4. Sec­
tion 5 concludes this paper. 

2. Channel Model 
Figure I shows the block diagram of the perpen­
dicular recording system model used in this paper. 
The user data, denoted as ait, is a sequence of of 
input symbols taking values of { 0 , 1 ) . Some error-
protection redundancy is added to the sequence a*; 
by the error-corrccting-codes (ECC) encoder form­
ing codeword sequence c^. To simulate the write 
current, the sequence Ck is mapped to 
according to 2ck - 1 operation. The scaling fac­
tor of 0.5 is to ensure the transition takes values of 

We assume that the read head produces zero 
voltage in the region o f magnetic transitions and 
some voltage in the region of constant magnetic po­
larity. We approximate the single-transition step 
response, denoted as s(i) , using the hyperbolic-
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tangent function [10]: 

5(0 = ^ - t a n h ( l n ( 3 ) p ^ ) ( I ) 

where A is the saturation level or the amplitude 
from zero to peak (normalised to unity) and PW50 is 
the time taken for s{t) to go from -A/2 to +/1/2. 
ft is assumed that t and PW50 arc normalised to the 
symbol period, T. Throughout the paper, it is as­
sumed that PW50 = 1-4. We define the response of 
two adjacent transitions (dibit-response) p{t) as: 

p{t) = s ( t ) - s { t - l ) (2) 

and the readback signal r ( i ) is simply the convolu­
tion of Ck and p{t) plus some noise: 

r{t) = J^CkP(t-kT)-^7i(t) (3) 

where n{t) is the overall noise in the recording sys­
tem which consists of media, jitter and electronic 
noise, i.e. n(t) = 7 i^( i ) - i - nj(t) -\- ndt). 

The media noise, nm(t} originates from the im­
perfections of the media and its effect is significant 
in the magnetic transition regions. Typically, me­
dia noise is approximately four times the electronic 
noise at transition regions. In our system model, 
we consider the media noise as Additive-Whitc-
Gaussian-Noise (AWGN) with mean of 0 and vari­
ance of al^, which exists in the transition region 
only. As shown in Figure 1, the media saturation 
noise depends on the saturation level and it is eval­
uated as 1 - {xk/A)^. Unlike media noise which 
is media dependent, the jitter noise nj{t) is due to 
timing imperfection only. To model the sampling 
jitter noise, nj(t), the nth order Taylor approxima­
tion is used. The jitter estimation block shown in 

Figure 1 is done with Gth order Taylor series expan­
sion of s(i). The jitter probability density function 
is assumed to be uniform, limited by a maximum 
value. The electronic noise, ndt) is AWGN with 
mean of 0 and variance of CTC- The recording sys­
tem in Figure I caters for many different simulation 
cases with varying degree of electronics, media and 
sampling jincr noise. We define the channel SNR 
as: 

SNR = 101ogio ( 2 ( ^ H a ? j ) 
(4) 

The noisy readback signal is equalised to 
(4,6,4,2) PR target which is only optimal for elec­
tronic noise at the considered PW50 [11]. It serves 
for comparison purposes only. The Maximum-a-
Posteriori (MAP) decoder of the PR channel ex­
changes extrinsic with the ECC decoder to deliver 
solution which is used for performance evaluation. 

3. Received-Vector-Coordinate-
Modification (RVCM) Algo­
rithm 

It has been shown that the RVCM algorithm pro­
vides considerable coding gain for parallel and se­
rial concatenated turbo codes [3], [4] and LDPC 
codes [6]. The algorithm can be applied directly 
to perpendicular recording and is described briefly 
below. 

3.1. Description of the Algonthtn 

Let y = {yo,yu...,yn} denote an n-tuple 
vector at the output of the MAP decoder, that 
is the a-posteriori probability (APP) of the 
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MAP decoder. Let 1 = { / Q , / i , . . . , / „} de­
note the reliability sequence of y , where U = 
»og(Pr(i/i| + l ) /P r ( j / i | - 1)). Assume thai w 
is an integer where 1 < imax < n and p C 
{ 0 , 1 , . . . , n - 1} is a vector of length imax-

Step I . Store the vector I , let the integer i be ini­
tialised to 0. 

Step 2a. Set 1'^^ = Ip and Ip, = -oo . Restart the 
iterative decoder, store the decoded vec­
tor ( d " ) . 

Step 2b. Set Ip^ = +oo. Restart the iterative de­
coder, store the decoded vector (d J^) and 
restore ip;, i.e. lp^ = 1 Pi 

Step 3. I f i < inmx then set i = i -I-1 and con­
tinue to Step 2. Otherwise, stop the algo­
rithm and from the list of all decoded vec­
tors d " U d + , Vi e { 0 , 1 . . . . , w - 1 } , 
choose a decoded vector that has the min­
imum euclidean distance. It is assumed 
that the iterative decoder always outputs 
a codeword. 

From the steps above, it is clear that the complexity 
of the algorithm depends 

3.2. Critical Symbols 

One of the major obstacles concerning the RVCM 
algorithm is the difficulty in finding the symbol(s) 
that, i f modified, can converge the iterative decoder 
to the maximum-likelihood solution [3], [4]. These 
symbols are referred as the critical symbols and 
their distribution is uniform with no sign o f vulner­
able or favourite symbol positions. On the other 
hand, due to their uniform distribution^ it is likely 
that we can find one of the critical symbols i f we 
confine our search to a small group, i.e. keeping 
the value of inm low. In this way, we can reduce 
the computational complexity for the price of sub-
optimum performance. As we will show later that, 
the gain obtained by confining to a small value 
is still significant compared to the performance of 
the standard iterative decoder. 

There are various methods for selecting the crit­
ical symbols, sec [6] for details. In this paper, we 
restrict the selection to one method only, that is the 
reliability o f the APR ai the output o f the MAP de­
coder. 

4. RVCM Performance 
We evaluate the performance of the RVCM algo­
rithm on some short-block length turbo and LDPC 

Figure 2. Error performance of RVCM decoder on the 
turbo code in ihc presence of electronic noise only 

Figure 3. Error performance of RVCM decoder on the 
turbo code in the presence of electronic and media noise 

codes. Figure 2 and 3 show the error rate perfor­
mance of the turbo code under the standard iterative 
and RVCM decoders. The turbo code considered is 
the b/b + 1 tail-biting turbo code', where 6 = 3, 
k = 198 and n = 278. The interleaver used is 
an 5-intcrleaver Significant improvement is no­
ticed and the increase in performance gels better as 
SNR increases. It is worth noting that the results in 
Figure 3 were obtained using SNR mismatch tech­
nique. With this technique, the improvement in 
performance over standard iterative decoder is even 
greater as SNR increases. In the presence o f me­
dia noise, SNR mismatch methods do not provide 
the same performance as observed with electron­
ics noise only [9], however better targets for media 
noise are being investigated by the authors. 

Similar performance improvement is observed 
for the LDPC codes, see Figure 4. The [127,84] 
cyclic LDPC code, which has minimum-distance 
of 10, was constructed using a method described 
in [12]. As mentioned eariier, the RVCM algorithm 
allows one to trade o f f the performance against the 
computational complexity. From Figure 4, despite 
the performance obtained by setting imax = 10 
is approximately 0.3dB inferior to that by setting 
imax = the coding gain from the standard itera­
tive decoding is significant. For the case o f ima = 
10, we select the critical symbols based on the reli-

'C. Berrou once referred this code as duo-binary turbo code. 
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Figure 4. Error performance of RVCM decoder on the 
[127,84) cyclic LDPC code in the presence of electronic 
and media noise 

Figure 5. Pcrfonmance of the [255, 175] cyclic and 
[1248,864] codes in the presence of electronic and media 
noise 

ability measure at the output of the MAP decoder. 
From the vector 1, we construct a vector p of length 
inuA such that Ip^ P3 Pa-I 
In Figure 5, we compare the performance of the 
[255,175) cyclic code and that of the [1284,864] 
quasi-cyclic code. We can see that the RVCM algo­
rithm provides significant gain, within one order of 
magnitude improvement, over the BP algorithm. At 
approximately 3 x 10"^ BER, the performance of 
the cyclic code with RVCM is within 0.6dB away 
from the longer code under BP decoding. 

5. Conclusions 
We have shown that the application of the RVCM 
algorithm to perpendicular magnetic recording 
shows promising results. Simulation results show 
that improvement of within one order of magnitude 
is possible. Short block length offers an attractive 
error-correction scheme in which RVCM algorithm 
can be fully exploited by setting iu^x — n. A bank 
consisting of 2inuu parallel RVCM decoders can 
be built on chips and the decoding of short-block 
length data has low latency. The performance of 
longer block-length codes, up to a certain error-rate, 
can be outperformed by the application o f RVCM 
algorithm to shorter codes. The exact point, at 

which the longer codes start to perform better, de­
pends on the code structure. 

We also extended our investigations on using 
some non binaiy cyclic LDPC codes [13] and 
we observe similar improvcmcn! as in the binary 
cases. Further investigations in identifying the crit­
ical symbols will allow the application of RVCM 
algorithm to long powerful codes. 
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ABSTRACT 
The paper starts with an analysis of iterative decoding 
based on an implementation of the Sum-Product algorithm 
for LDPC codes. It is shown thai the iterative decoder 
performs optimum decoding but in a vector space differ­
ent than this defined by the codebook. The crucial role of 
the correlation between the received vector and the pseu-
docodewords is justified by simulation results. Based on 
these results we present an algorithm which can deliver sig­
nificant improvement to the iterative performance of LDPC 
codes, with relatively low complexity. It is shown that max­
imum likelihood performance can be achieved for a certain 
range of codes. 

K E Y WORDS 
Coding and Modulation Techniques, LDPC codes, iterative 
decoding, pseudocodewords 

1 Introduction 

LDPC codes f l ] can operate very close to channel capac­
ity. At practical block-lengths and code rales though, the 
Belief Propagation algorithm only approximates the maxi­
mum likelihood performance. Iterative decoding of power­
ful codes with high minimum distance often fails lo settle 
to a solution that is a valid codeword. For weaker codes the 
iterative decoderdoes provide a valid solution but this is not 
always the maximum likelihood one which means that the 
decoder is suboptimal. The sub-optimality of iterative de­
coders has been investigated by various authors [2] [3] and 
has been attributed to the presence of pseudocodewords in­
duced by small stopping sets within the structure of the 
code. The challenge here is to reduce, i f not eliminate, 
the sub-optimality of iterative decoding with the minimum 
amount of additional processing complexity. 

2 Generation of pseudocodewords during it­
erative decoding 

In the case of optimal Maximum A Posteriori (MAP) de­
coding the decisions for each bit j is calculated by the sum 
of the probabilities (with respect lo the received vector r ) 

of codewords c € C where Cj = i G { 0 , 1 } . 

cec,cj=i 
(1) 

In the case of iterative decoding though its vector space U 
is different than the code space C {U ^ C), which means 
that part or all of the vectors u € W do not represent valid 
codewords. This is due to the local operations of the Sum-
Product algorithm |3] . In this paper it is shown thai the 
distortion of the iterative vector space U might appear as 
an unequal scaling, as an additional offset [4], or as both in 
the iterative decoder decisions. 
Example I: Consider the Hamming (7,4) code with parity 
check matrix H given below. 

0 0 1 0 1 1 1 
0 1 0 1 0 1 1 
1 0 0 1 1 0 1 

Using the Sum-Product algorithm, the decision for each bit 
j at any iteration would be calculated by combining the ex­
pressions obtained by the parity check equations where bit 
j participates. Considering the case of bit 3 (first column 
is bit 0) the local extrinsic information (as local is defined 
the extrinsic information obtained by each individual par­
ity check equation) 6(^3(1) at iteration 0 as obtained by the 
parity check equations 0 and 2 can be expressed as 

pariry check 0: 6(03(1) = [pi • 95 ' Qo] + • Ps • Qo] + 

[QI • • Pol + [pi • P5 • PG] 

(2) 

parity check 2: ei,^(l) = [po • *74 • QG\ + [QO • PA • QG\ + 

[<7o • 94 • Pol + bo • P4 Pfl! 
(3) 

Where pj = p ( l | ry ) and qj = I - pj = p ( 0 | r j ) for 
j = 0,1, .. . ,6. The overall extrinsic of 0 for bit 3 would 
be the product of the two local extrinsics as this is shown 
in equation 4. From equations 4 and 5 it con be seen that 
none of the terms of the iterative decoder output represents 
a valid codeword c € C. The vectors u e U3 that account 
for the decision of bit 3 can be considered as pseudocode-
words. The decision by the iterative decoder will be based 



63(1) = [PO • Pi • 94 • 95 • Qe] + [̂ 0 • Pi • P4 • 95 • 9c] + [<70 " Pl * </4 ' 95 " 96 ' Pc] + bo " P» ' P4 ' 95 * 96 ' P6) + 

Po • 91 ' 94 • P5 • 96] + [90 • 91 • P4 • P5 • 9G] + (90 • 9i • 94 • P5 • 9G • P6) + [po • 91 • P4 • P5 • 9c • PG] + 

[Po • 91 • 94 • 95 • 96 • Pel + [90 • 9i * P4 • 95 • 9G • Pe) + [90 • 9i ' 94 • 95 * Po] + [po • 9i * P4 ' 95 ' Pc] + 

[po • Pi • 94 • P5 • 96 • PG) + (90 • Pi • P4 • Ps • 96 • Pc] + [90 • Pi • 94 • 7̂ 5 • PG] + [Po ' Pi • P4 • P5 • PG] 

(4) 

e3 ,m( ( l ) = bo • Pi 92 • 94 • 95 • 9c] + [90 • Pi • P2 • P4 • 95 • 9ol + bo • 9i • P2 • 94 • P5 • 9cl + [9o •91-92 • P4 • P5 • 96) + 

ML[l] ML{2] A/L31 AfL|4| 

[90 -91 •P2 • 94 • 95 • PG] + bo • 9i - 92 • P4 • 95 • Pel + [9o • Pi • 92 • 94 • Ps • PG] + bo - Pi • P2 • P4 • PG • P G [ 

ML151 A/L(GI AfL|7l A^L|8j 

e,e3(l) = I • [Aim + A.[4l) + ^ • (MLlG] + ML\7]) + ^ • {ML[2] + A^/.[3]) + ^ • {MLl^] + A^/.[8]) + offset (6) 

scaling pari 

on a pseudo space U3 <(. C, where W3 is a subset of the 
overall pseudo space C U. 

(7) 

The size * ( j ) of the pseudo-space i / j can be obtained from 
the structure of the parity check matrix H as 

vector space 6/3- Generally 

APPjix) = (9) 

At later iterations the iterative decoder will perform MAP 
decoding on the same set U but based on the updated 
received vector. 

* ( i ) = 2 . n •2) (8) 
, V / i i j = l 

Where is the row weight of the parity check equa­
tion that bit j participates. The number of product opera­
tions is equal (o the column weight of j. Cleariy when 
4 ' ( j ) > 2*-", vectors which are not part of the codebook C 
wil l be involved in this decision, thus adding an offset to 
the iterative decoder's expressions. 
The output of the iterative decoder (equation 4) can be al­
ternatively expressed as in equation 6. A quick check on 
the H matrix can verify that bit 3 does never occur in the 
same equation with bit 2, thus bit 2 does not appear in any 
of the iterative decoder expressions for the extrinsic infor­
mation of bit 3, which is why its effect is cancelled out 
from all terms of equation 6. On the other hand bit 6 forms 
a cycle of length 4 with bit 3 and that is the reason for the 
appearance of the squared components in equation 4, and 
equivalently, the reason of the extra multiplicative factors 
in equation 6. This provides an explanation why the pres­
ence of short cycles within the H matrix structures limits 
the performance of LDPC codes. 

The structure of the offset is slightly more complicated. It 
includes all the remaining vectors of equation 4 that have 
been Induced by the multiplication of the local sequences 
and are not associated with the M L solution. Notice that bit 
6 appears twice in each of these vectors. 
The decision of the iterative decoder for bit 3 at iteration 
0, will be the result of an optimal MAP operation on the 

Example 2: The (7,3) code, whose decoding parity 
check matrix is shown below, is a perfect difference set 
cyclic code [51 derived from cyclolomic cosets [6]. The 
special structure of these kind of codes permits the use 
of an extended (N equations) parity check matrix at the 
decoder side. 

1 1 0 1 0 0 0 
0 1 1 0 1 0 0 
0 0 1 1 0 1 0 
0 0 0 1 1 0 1 
1 0 0 0 1 1 0 
0 1 0 0 0 1 1 
1 0 1 0 0 0 1 

From its H matrix we can deduce the following character­
istics 

• The H matrix is regular so Wr^ = tWr^Vi,^ < A^. 
Moreover, = Wc,'^i,j < N and = Wcj^j < 
N. That effectively means that for the decision of 
any bit j the vector space Uj involves ^{j) = 2 • 

ternis. 

• ^{j) = 16 > 2 \ V j . Thus, there will be 16 - 2*= 
additional terms involved in the decision of any bit j . 

• Every bit j neighbours with every other bit at most 
once. Thus, the absence of cycles of length 4 is guar­
anteed and for every pair of bits j and in there is an 
equation i for which hij = 1 and hi^n = 1-
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1110100,1100011,1001101,1011010,0010001,0000110,0101000,0111111 

associated with bit 0 decision equal to I associated with bit 0 decision equal to 0 

(11) 

Using the previous analysis for bit 0, it turns out that the 
output of the iterative decoder at iteration 0 includes the 
ML terms undistorted, plus an offset since ^ (0 ) > 2'' for 
every j. The analytic output for eo(l) is shown in equa­
tion 10. Analogous results can be derived for Co(0) and for 
every ej{x) due to the uniform structure of the H matrix. 
The remaining *(0) - 2*̂  vectors that have emerged from 
the multiplication of the local extrinsic expressions form 
the offset (the non-underiined terms of equation 10). Thus 
the vector space Uj for every j at the end of iteration 0 is 

Uj=C\JOj (12) 

The vectors o e Oj C Uj are listed in 11. The set of 
vectors o 6 O do not represent valid codewords but pseu-
docodewords. However, they are equal contributors to the 
a posteriori decisions of the iterative decoder. The APP 
decision of the iterative decoder for any bit j at iteration 0 
is in this case expressed by 

APPjix)^ ^ P ( u i r ) = Y . 
oGOj,Oj=i 

(13) 

3 Correlation of pseudocodewords with the 
received vector 

Up to this point it has been shown that the iterative decoder 
performs optimal MAP decoding in the pseudo space U in­
stead of the code space C. As a consequence, the iterative 
decoder does not always converge to the optimal M L solu­
tion and is considered sub-optimal. Expanding the previous 
analysis to further iterations would involve an exponential 
increase in the number of terms since the extrinsic informa­
tion that is fed back to update the received vector includes 
all the contributions from all the neighbouring nodes of the 
updated position. Simulations can easily verify that the out­
put of the iterative decoder at iteration t is equivalent to 
MAP decoding (with respect to the received vector r) on 
the complete set of vectors u that have emerged at that it­
eration. Alternatively, the same outcome can be obtained 
by applying MAP decoding to the exact set of vectors that 
have emerged during iteration 0, but with respect to the up­
dated received vector. 
In |31 the authors have presented similar conclusions but 

n ' 

, . - r d i r 
i 

Figure I . Histogram of the average reliabilities of the opti­
mal MAP decoder APP decisions for blocks that converge 
and not converge to the M L solution when iteratively de­
coded by the Sum-Product algorithm. Results based on the 
perfect difference set (7,3) cyclic code 

through the code's computation graph that is used to spec­
ify the pseudocode [7]. The authors claim that iterative 
decoding is optimal but on the pseudocode C and not the 
actual code C. They categorise the pseudocodewords as 
"good" and "bad" based on whether their component Uj is 
in favour or not of the correct decoding. 
It can be deduced from all these that during the itera­
tive procedure, codewords are competing with "good" and 
"bad" pseudocodewords. Those that exhibit higher correla­
tion with the received vector will dominate. As long as the 
codewords are strongly correlated to the received vector, 
the iterative decoder should be able to converge to the M L 
solution. In the opposite case the chances that pseudocode-
words are dominating increase. The histogram of figure 1 
proves that case. The iterative decoder fails to converge 
to the M L solution in those cases where the M L decisions 
are not reliable enough, thus when none of the codewords 
c 6 C is strongly correlated to the received vector. The 
position with the least reliable APP decision of the M L de­
coder can be considered as the weakest contributor to the 
correlation of the codewords with the received vector. Sim-
ilariy, it can be considered as the strongest contributor to 
the correlation of pseudocodewords with the received vec­
tor. The immediate question is i f and by how much the 
performance of the iterative decoder would improve i f the 
correlation of this specific bit with "good" pseudocode-
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Figure 2. Improvement of iterative decoding perfonnance 
by modifying the position with the least reliable M L APP 
decision 

words and codewords that are associated with the trans­
mitted symbol at that position, is maximised. That could 
be achieved by modifying the received vector at that posi­
tion lo one of the possible transmitted values ( ± 1 for BPSK 
modulation). 
The results of figure 2 show that the improvement achieved 
by modification of just one of the received vector coordi­
nates is remarkable. For the case of the (7,3) code the it­
erative decoder performance becomes identical lo the ML. 
The same method applied to the (63,16) code improves the 
iterative performance by almost an order of magnitude and 
approaches the optimal ML. These results were the inspira­
tion for the development of an algorithm that is presented 
in the next section. 

4 The Received - Vector - Coordinate - Mod­
ification (RVCM) algorithm 

4.1 Description of the algorithm 

Assume an AWGN channel with BPSK modulation and 
outputr = { r o , r i , . . , r y v } . Consider L = { / Q , ' i , - . ' N } 
as the log-likelihood-ratios vector. Given that the decoder 
fails to satisfy the set stopping criteria, the RVCM algo­
rithm commences. The latter can be summarised as follows 

• Step I : Vector L is stored 

• Step2: Define parameter/?,„„:t, 0 < firnax < 

• Step3: is substituted by Ip = +oo if > 0 and by 
/^ = -oo i f / ^ < 0 

• Step4: Decoding restarts 

• Siep5: We store the Euclidean distance Euc(P) of the 
decoder output dp from the received vector r when 
bit p has been modified and the associated output of 
the decoder as a candidate solution. If /3 < Pmax we 
restore the original value, increment /? and return to 
slep3. up > = pjnax we proceed lo the next step 

• Slep6: Choose the decoder output which is associated 
with the minimum Euc{P) 

The above algorithm can in many cases offer improvement 
of an order of magnitude or more in terms of FER and BER. 
Remarkable improvement has been also obtained by appli­
cation of the algorithm in turbo code schemes 18)19J[10J. 
For many short codes, application of RVCM achieves max­
imum likelihood performance as it will be shown in later 
section. Note that the complexity added is ai most 2N ad­
ditional decoding operations when p^ax = and it in­
creases linearly with the block length N since only one co­
ordinate is modified at any time. However, this is just the 
worse case scenario since with just a fraction of modifica­
tions {p Pmax) we can get performance arbitrarily close 
to the optimum especially in the high SNR region. For 
convenience, the bit positions that are capable of correct­
ing a prior non-convergent block if modified will be called 
critical bits throughout the rest of the paper. 

4.2 Selection methods of critical positions 

Since the positions of the least reliable M L APP decisions 
are unknown, various selection methods have been inves­
tigated so that the positions of critical bits are accuratelly 
identified. Generally, a large number of bits are critical for 
each block and that increases the chances of identifying a 
critical position with the minimum effort. Target of any of 
the selection methods is to achieve the maximum perfor­
mance while the number of candidate bits p is minimised. 
Below, two selection criteria are presented that increase the 
throughput of the algorithm. 

4.2.1 Method A: Channel output unreliabil­
ity (UNR criterion) 

The UNR criterion provides the simplest and most straight 
forward method of selecting candidate critical bits. The se­
lection is based on the information content of the received 
vector coordinates. The coordinates with the highest en­
tropy (or equivalently with the lowest information content) 
are selected first, where the entropy vector 7i for each of 
the components is defined as 

T^j = Qj • Iog2 + Pj • Iog2 j (14) 

This method narrows down the number of potential critical 
bits and improves the throughput of RVCM. 

4.2.2 Method B: Average participation in un­
satisfied equations (UNSEQ criterion) 

The UNSEQ criterion is basically a combination of two 
measures which gather information in parallel at all 
iterations of standard decoding. 
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parti : The first measure deals with the participation 
of the bits in unsatisfied equations and bases its results on 
the standard decoder's output at the end of each iteration. 
Let be the set of thresholded APP decisions of the 
standard decoder at iteration L Assuming non convergence 
there will be a set of equations Y* that remain unsatisfied. 
The number of occurrences of each bit j at the set of un­
satisfied equations at iteration t can be easily computed 
as 

Where is the ith row and jtk column component of the 
H matrix. At the end of the standard decoding procedure 
the records of the participation of each bit j in unsatisfied 
equations per iteration Fi ( j ) can be obtained by 

T 
(16) 

where T the number of iterations performed by the 
standard decoder. 
The information from Fi{j) can be combined with a sec­
ond measure and considerably enhance the perfonnance of 
the UNSEQ selection criterion. 

pari2 : This second measure deals with the set of 
the updated probabilities obtained at the end of each iter­
ation of the Sum-Product algorithm. Considering the row 
updating implementation, the local extrinsic information 
etij of each equation participant j is calculated for all those 
positions where hij=\. When all parity checks have been 
processed, the overall extrinsic information cj for each bit 
j is calculated as the product of all local extrinsics for this 
specific bit. 

e , ( x ) r . J] e^,(x) (17) 

The updated probabilities updij V/ii^ ^ 1 can be then cal­
culated for all individual participants by multiplication of 
the channel probability p_;(x|rj) with the overall extrinsic 
information Cj (x) , omitting though the corresponding local 
extrinsic value to prevent positive feedback. 

upd^jix) 
Pj{x\rj)' cj(x) 

(18) 

Consider now a thresholded version u p d ' of the updated 
matrix. Since the updated values are locally optimised it 
is guaranteed that they satisfy all parity check equations 
( Y = 0), but on the other hand it is not guaranteed that 

upd'i 
i- 1 

- upd\ (19) 

In other words we have the case that a certain bit j satis­
fies two equations with two different values, and that points 
to the presence of even error equations that would not be 
detected i f only the Fx(j) measure of the first part of the 
UNSEQ criterion had been used. To decide which of the 
two updated values for j is the erroneous one a minority 

J 
\ 

Figure 3. RVCM performance of the cyclic codes (105,53) 
and (63,37) 

decision is applied. The value of j that appears with low­
est frequency is considered as erroneous and the number of 
occurrences can be used as a measure F-^U) of the partici­
pation of bit j in even error equations. 
Thus, the total F(j) parameter of the UNSEQ criterion 
which forms the basis for the selection of the candidate crit­
ical bits, is given by the sum of Fx ( j ) and F 2 ( j ) . 

m ^ F , { j ) - \ ' F 2 ( 3 ) (20) 

Like in the UNR criterion case, selecting the bils with the 
highest F{j) values narrows down the choice for the po­
tential critical bits with minimum losses from the optimum 
RVCM performance. 
In many cases the UNSEQ criterion can deliver consider­
ably better performance when /? is kept very low, especially 
for codes with low row weight Wr. For higher values of /? 
the UNR criterion performs slightly better in most of the 
limes. 

4.3 The effect of RVCM in the reduction of 
pseudocodewords 

The effect of RVCM can be easily demonstrated in cases 
where unequal scaling occurs during iterative decoding. 
Consider the analytical output of the Hamming(7,4) code at 
iteration 0 (equation 4). Modification of bit 6 would elimi­
nate most of the pseudocodewords and would minimise the 
distortion of the vector space U since i f pc= I then = pc-
Equivalently i f 9(i=l then ^ QQ and the scaling problem 
disappears. Moreover, since every term of the offset in­
cludes both PG and modification of bit 6 would set offset 
to zero. So the Co(l) at this case would be as in equation 21. 
Note that scaling problems will occur for all codes after it­
eration 0 because of the update operation from the overall 
extrinsic vector ej (x) which contains information from a 
large span of nodes. 

4.4 RVCM performance 

Figures 3 and 4 show typical performances of codes when 
RVCM is applied. Note that for the case of the short 
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M i l l ] -H ML{4] ML[6]-\-ML[7] M L[2]-\-M L[3] ^ ML[b]-hMLl8] 
(21) 

• IS* 

• V . 

X 

Figure 4. RVCM performance of the cyclic (255,64) and 
the Tanner( 155.64) codes 

weak codes of figure 3, application of the RVCM algo­
rithm achieves performance identical to ML, even when 
Pmax < ^- The M L performance is approximated by the 
mrl t l IJ curves which represent a practical lower bound. 
Let R be the received, T x be the transmitted and D the 
error decoded vectors in the euclidean space. Then a block 
is considered as mrl when 

£ ; u c ( D , R ) < Euc(Tx,K) (22) 

In this case we know for sure that the correct code­
word does not coincide with the closest to the received 
vector since at least one error codeword is closer (is more 
likely) than that and the M L decoder would fail. The 
RVCM improvement is more spectacular in the case of 
the longer and higher dmin codes of figure 4 where for 
Pmax — W the reduction in Frame Error Rale (FER) ex­
ceeds the two orders of magnitude at higher signal to noise 
ratios. 

5 Conclusion 

This paper deals with the reasons for the sub-optimaliiy 
of iterative decoding. The problem was approached from 
a point of view that relates the convergence problem to the 
generation and interaction of pseudocodewords with the 
valid codewords of the code. The analysis was carried out 
through simple examples on short codes, and was based 
on the row-update implementation of the Sum-Product 
algorithm. It was shown that the iterative decoder per­
forms optimum MAP decoding on a pseudo-space and 
the chances that the decoder does not converge to the 
M L solution increase when pseudocodewords arc highly 
correlated to the received vector. The histogram of figure 1 
strengthened that view since for blocks that the iterative 
decoder failed to converge their actual correlation with 
the available codewords was low (average APP decisions 
reliability of M L decoder was low). Modification in the 

received vector value of the coordinate with the least 
reliable APP decision at the output of the M L decoder 
was shown to improve dramatically the iterative perfor­
mance. This approach was based on the observation that a 
coordinate that is weakly correlated to the codewords can 
be considered as a major contributor to the correlation of 
specific pseudocodewords with the received vector. 
The effect of changing a single bit on the outcome of 
the iterative decoder, inspired the creation of a novel 
algorithm that exploits this characteristic. Simulations 
proved that the RVCM algorithm is capable of providing 
significant coding gain and even eliminate the gap between 
iterative and M L decoding in some cases. Results that 
show reductions in terms of FER that exceed two orders of 
magnitude have been presented. 
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