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Wilkinson, F., Wilson, H. R., & Habak, C. (1998). Detection and recognition 
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Shape	descriptors	93 

Radial	frequency	patterns	as	shape	descriptors	94 

RF patterns are sinusoidal modulations of a radius in polar coordinates [7]. Mathematically, 95 

an RF pattern is defined as: 96 

 97 
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 99 

and combinations of m RF patterns as:  100 

 101 
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 103 

where the radius r and the polar angle θÎ[0,2π[	refer to the polar coordinates of the contour and 104 

rmean the radius of the modulated circle. An defines the modulation amplitude, ωn the radial 105 

frequency and φn the phase (orientation) of each radial frequency component (n of m). Examples 106 

of various RF components and compound patterns are shown in Figure 1. 107 

 108 

 109 

 110 
Figure 1 Compound RF patterns. (a) shows three regular RF components with different radial frequencies (ω1, ω2, 111 
ω3), modulation amplitudes (A1, A2, A3) and the corresponding compound RF (rightmost). (b) shows RF components 112 
where one component has a half-integer radial frequency (ω3 = 6.5), which results in a non-smooth compound shape. 113 
Note the sharp concave indentation at 0˚. (c) shows RF components where each component has a non-integer radial 114 
frequency, which results in a non-closed compound shape.  115 
 116 

The function r(θ) is well-defined, hence there is a unique value of r(θ) for each angle θ. One can 117 

easily appreciate that each line radiating from the origin with angle θ should intersect the contour 118 

at the point r(θ). Therefore, closed shapes with features that fold back on themselves, such as the 119 

ones depicted in Figure 2, are impossible to define by a combination of RF functions.  For example, 120 

in Figure 2a only one radius is necessary to define the boundary of the shape at angular position 121 

θ1, whereas three radii are required at angular position θ2 (indicted by the green dots). Note that 122 

• Schmidtmann, G., & Fruend, I. (2019). Radial frequency patterns describe a small and 
perceptually distinct subset of all possible planar shapes. Vision research, 154, 122-130.

• Schmidtmann, G., Kingdom, F. A., & Loffler, G. (2019). The processing of compound radial 
frequency patterns. Vision research, 161, 63-74.

RF compounds – shape channels
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frequencies (x ¼ 3, 5) and also to 5 and 7 cycles for
radial frequencies of 10 and 24. In all cases, the non-
circular part of the pattern was presented in a continu-
ous stretch. The otherwise sharp transition between
deformation and circular remainder was smoothed by a
D1 (first derivative of a Gaussian) that was fitted to the
transitional part of the sinusoidal modulation. Mathe-
matically, patterns where the deformation was applied
to only a fraction of the contour, were defined as:

rðhÞ ¼ rmeanð1þ A sinðxhþ uÞÞ

for hcentre %
N % 1

x
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x p

rðhÞ ¼ rmean elsewhere

ð2Þ

where hcentre corresponds to the central location of the
deformed region and N to the number of cycles. B and r
are the two free parameters of the D1 which were set to
match the sine wave!s maximum (and minimum) devi-
ation from the base circle and its maximum slope. Note
that the above equation is defined for odd number of
cycles and the angular phases for the D1s is:

h0 ¼ h% hcentre
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& N % 1

x
p
"

ð2aÞ

Moreover, the phase of the pattern (u) was always set to
give a zero-crossing at the central location hcentre (sine
phase):

u ¼ x'hcentre ð2bÞ

Patterns with half a cycle of deformation were created
by either raising or lowering the radius of the appro-
priate part of the pattern in a way given by a raised (or
lowered) cosine function:

rðhÞ ¼ rmean 1

!

& A
2
ð1þ cosðxhþ uÞÞ

"

for hcentre %
p
x

6 h6 hcentre þ
p
x

rðhÞ ¼ rmean elsewhere

ð3Þ

where the positive sign represents a convex bump and
the negative sign a concave bump (Fig. 1, left insets).
Note that for the amplitude (A) to describe the same
maximum radial deviation from a circle as in Eqs. (1)
and (2), the value had to be reduced by a factor of two.

2.2. Observers

Three experienced psychophysical observers partici-
pated in these experiments, one of whom was na€ııve with
respect to the purpose of the study. All had normal or

corrected-to-normal vision. No feedback was given ei-
ther during practice or when data were taken.

2.3. Apparatus

Stimuli were presented on an Apple iMac. The spatial
resolution of the monitor was set to 1024( 768 pixels
(37.24 pixels per cm). The software lookup table was
defined to maximise contrast linearity using 150 equally
spaced grey levels. Pattern luminance was modulated
about a mean of 85.4 cd/m2. Subjects viewed the stimuli
under dim room illumination and a chin and forehead
rest was used to maintain a constant viewing distance of
131 cm. At this distance each pixel subtended 0.012!.
Viewing was always binocular. The program controlling
the experiments included routines from Pelli!s Video-
Toolbox (Pelli, 1997).

2.4. Procedure

The method of constant stimuli in a temporal two-
alternative forced choice paradigm was employed.
Subjects indicated which interval showed the deformed
RF pattern (i.e. which interval did not contain a per-
fect circle) by pressing one of two keys. The screen

Fig. 1. Dependence of modulation detection thresholds on the number
of cycles of deformation (abscissa) for three individual subjects (open
symbols) and their average fitted by the solid line. Thresholds (mini-
mum modulation amplitude) for a RF 5 pattern are expressed in visual
angle (right ordinate) and as the Weber fraction between the mean
radius of the pattern and the modulation amplitude (left ordinate).
Average performance improves with increasing number of cycles and is
fit well by a power–law function (exponent ¼ %0:69, solid line). The
dashed line gives the prediction of probability summation over locally
independent detectors arbitrarily anchored at one-half cycle. Proba-
bility summation clearly underestimates the increase in performance.
Here and throughout error bars represent standard errors of the mean.

G. Loffler et al. / Vision Research 43 (2003) 519–530 521

Loffler, G., Wilson, H. R., & Wilkinson, F. (2003). Local and global contributions to 
shape discrimination. Vision Research, 43(5), 519-530.

RF summation
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• Summation slopes are typically steeper than that predicted by probability summation (PS) under HTT -> PS 
rejected 

• Under HTT the component mechanisms will be activated if their input exceeds some fixed threshold value
• There is almost no ‘‘penalty’’ under HTT for monitoring additional non-target mechanisms, as any irrelevant 

internal noise carried by those mechanisms will have a vanishingly small effect on performance 

Hight Threshold Theory predictions
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circular part of the pattern was presented in a continu-
ous stretch. The otherwise sharp transition between
deformation and circular remainder was smoothed by a
D1 (first derivative of a Gaussian) that was fitted to the
transitional part of the sinusoidal modulation. Mathe-
matically, patterns where the deformation was applied
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where hcentre corresponds to the central location of the
deformed region and N to the number of cycles. B and r
are the two free parameters of the D1 which were set to
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that the above equation is defined for odd number of
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Moreover, the phase of the pattern (u) was always set to
give a zero-crossing at the central location hcentre (sine
phase):

u ¼ x'hcentre ð2bÞ

Patterns with half a cycle of deformation were created
by either raising or lowering the radius of the appro-
priate part of the pattern in a way given by a raised (or
lowered) cosine function:
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where the positive sign represents a convex bump and
the negative sign a concave bump (Fig. 1, left insets).
Note that for the amplitude (A) to describe the same
maximum radial deviation from a circle as in Eqs. (1)
and (2), the value had to be reduced by a factor of two.

2.2. Observers

Three experienced psychophysical observers partici-
pated in these experiments, one of whom was na€ııve with
respect to the purpose of the study. All had normal or

corrected-to-normal vision. No feedback was given ei-
ther during practice or when data were taken.

2.3. Apparatus

Stimuli were presented on an Apple iMac. The spatial
resolution of the monitor was set to 1024( 768 pixels
(37.24 pixels per cm). The software lookup table was
defined to maximise contrast linearity using 150 equally
spaced grey levels. Pattern luminance was modulated
about a mean of 85.4 cd/m2. Subjects viewed the stimuli
under dim room illumination and a chin and forehead
rest was used to maintain a constant viewing distance of
131 cm. At this distance each pixel subtended 0.012!.
Viewing was always binocular. The program controlling
the experiments included routines from Pelli!s Video-
Toolbox (Pelli, 1997).

2.4. Procedure

The method of constant stimuli in a temporal two-
alternative forced choice paradigm was employed.
Subjects indicated which interval showed the deformed
RF pattern (i.e. which interval did not contain a per-
fect circle) by pressing one of two keys. The screen

Fig. 1. Dependence of modulation detection thresholds on the number
of cycles of deformation (abscissa) for three individual subjects (open
symbols) and their average fitted by the solid line. Thresholds (mini-
mum modulation amplitude) for a RF 5 pattern are expressed in visual
angle (right ordinate) and as the Weber fraction between the mean
radius of the pattern and the modulation amplitude (left ordinate).
Average performance improves with increasing number of cycles and is
fit well by a power–law function (exponent ¼ %0:69, solid line). The
dashed line gives the prediction of probability summation over locally
independent detectors arbitrarily anchored at one-half cycle. Proba-
bility summation clearly underestimates the increase in performance.
Here and throughout error bars represent standard errors of the mean.

G. Loffler et al. / Vision Research 43 (2003) 519–530 521
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G. Loffler et al. / Vision Research 43 (2003) 519–530 521

further repetition was conducted, and the inconsistent data were
not used when producing the plots that illustrate our ROC curves.
This happened a few times for each observer in our initial experi-
ment (4 repetitions for AR, 4 for ASB, and 2 for GS). These data were
however still used in our statistical tests to avoid any bias. They are
the ringed data points in Fig. 5, where it can be seen that the
rejected points do not favour the HTT model. For the subsequent
experiments where all four cycles were modulated the observers
performed consistently and no data were rejected.

The ROC plots PðhitÞ against Pðfalse alarmÞ. The possible beha-
viour in response to a single stimulus intensity is described by a
line on the ROC plot. Under both HTT and SDT the lines pass
through the point (1, 1), representing the situation where the
observer responds that the modulation was present on every trial.
The major distinction between HTT and SDT is what happens as
Pðfalse alarmÞ reaches zero on the left hand side of the ROC plot.
Under HTT false alarms are due to the observer guessing
incorrectly, and because guess rates do not depend on the intensity
of the stimulus they can be factored out in yes/no tasks (this
was shown not to be the case empirically for contrast detection
by Nachmias, 1981). Between PðfalsealarmÞ ¼ 0 and
PðfalsealarmÞ ¼ 1 the prediction is that the two points are joined
by a straight line as the HTT observer varies their guess rate from
0 to 1. The slope of the line is determined by the stimulus intensity;
as it increases the line becomes shallower and the hit rate that the
observer can achieve in the absence of guessing increases. Under
HTT the responses in rating scale experiments are determined by
the observer adopting different guess rates for each point on the
scale. Differences between the two repetitions we conducted
would be due to variations in those guess rates.

Under SDT on the other hand it is impossible to eliminate false
alarms without also reducing the hit rate to zero. The ROC is
described by a line between (0, 0) and (1, 1) which curves inward
toward the top-left corner of the graph, since PðhitÞ is generally
greater than PðfalsealarmÞ. The degree of curvature is determined
by the stimulus intensity which results in a particular signal-to-
noise ratio (d0). Each position along the line between (0, 0) and
(1, 1) is the combination of values expected for a particular
response criterion. The criterion is the magnitude of the internal
response that the observer requires before classifying an interval
as ‘‘signal present”. Significantly this criterion can be exceeded
on trials where the modulation was not present, as a consequence
of the internal noise in the observer’s visual system. In a rating
scale experiment the observer assigns different criterion values
to the different points on the scale, and differences between the
two repetitions can be attributed to changes in those criteria.

2.5. Summation within and between RF patterns

A two-interval forced-choice ‘‘method of constant stimuli”
design was used to obtain psychometric functions for the summa-
tion experiment. Observers indicated which of the two intervals
had the stimulus with the RF modulation. We tested 36 trials at
9 modulation amplitudes. For the blocked condition the modulated
cycle or cycles were the same for all trials within a block. For the
interleaved condition we randomly interleaved all 15 possible
stimuli within a block, testing each condition 3 times. By testing
12 of these blocks for the interleaved condition we reach the same
number of trials per stimulus as was tested in the blocked condi-
tion. Psychometric functions for each condition were then fitted
with a cumulative normal function using Palamedes (Prins &
Kingdom, 2009). Parametric bootstrapping was performed (500
samples) to generate populations of threshold (a) and psychomet-
ric slope (equivalent Weilbull b) parameters for each observer. We
fixed the psychometric slopes to be constant for particular number

of modulated cycles for each observer, but allowed the thresholds
to vary when those modulated cycles were in different locations.
We combined data across observers by taking the mean of these
bootstrap populations and then reported the median and confi-
dence intervals of the resulting distributions.

3. Results and modelling

3.1. ROC curves

The ROCs from one observer (ASB) for the Single and Quad RF
conditions are shown in Figs. 2 and 3 respectively (similar figures
for the other observers are provided in the Supplementary
materials Figs. S1–S4). The empirical data are shown by the black
markers, with the coloured regions showing the distribution of
non-parametric bootstrap samples (indicating the error associated
with those black marker points). In all cases the data form a curved
line between the points (0, 0) and (1, 1) that is inflected toward the
top-left of the plot. This is the expected behaviour under the SDT
framework, with the appropriate model shown by the solid black
line. The dashed black line shows the best-fitting prediction from
the HTT model. It is immediately clear that this provides a poorer
account of the empirical data. The points from the two repetitions
of the experiment (squares and diamonds) do not overlap, falling
on distinct points along the ROC curve. This indicates that the cri-
teria associated with the response categories varied between rep-
etitions, while the sensitivity remained roughly constant. At the
request of a reviewer, we also obtained ROC data for each observer
where all four cycles were modulated (Fig. 4). These also demon-
strate the curved form that we expect under SDT.

We performed two-tailed sign tests in Matlab (Matlab R2013a,
MathWorks) to compare the deviances of the fits from the two
models (shown in Fig. 5) on a block-by-block basis (fitting the data

(a) (b)

(c) (d)

Fig. 2. ROC plots showing the relationship between hit and false alarm rates for the
four different modulation locations in the Single RF condition for observer ASB. Data
from the two repetitions are shown by the two marker symbols, with the
distribution of nonparametric bootstrap samples shown by the colour-map. The
median fit from the HTT model is shown by the dashed line. The median SDT fit is
shown by the solid line. The area outside the 95% confidence interval on the SDT fit
is shaded. Each graph also gives both the modulation amplitude A, as a Weber
fraction and the resulting d0 calculated from the SDT fit to the data.

A.S. Baldwin et al. / Vision Research 122 (2016) 124–134 127

Baldwin, A. S., Schmidtmann, G., Kingdom, F. A., & Hess, R. F. 
(2016). Rejecting probability summation for radial frequency 
patterns, not so Quick!. Vision Research, 122, 124-134.

Summation under Signal Detection Theory



Types of summation

Meese, 2010; Pirenne, 1943; Quick, Mullins, & Reich-
ert, 1978; Sachs, Nachmias, & Robson, 1971). Different
summation rules will make different predictions for the
AþB threshold, and so the results from the experiment
can be used to distinguish between them. The second
method is similar; instead of using component versus
compound stimuli the comparison is instead made
between stimuli that ‘‘grow’’ along some dimension
(e.g., increase in size). In terms of how the previous
method was described, this can be thought of as
obtaining thresholds for A, AþB, AþBþC, and so on
(e.g., Bell & Badcock, 2008; Dickinson, Han, Bell, &
Badcock, 2010; Dickinson, McGinty, Webster, &
Badcock, 2012; Loffler, Wilson, & Wilkinson, 2003;
Meese & Summers, 2012; Meese & Williams, 2000;
Robson & Graham, 1981; Rovamo, Luntinen, &
Näsänen, 1993; Schmidtmann, Kennedy, Orbach, &
Loffler, 2012; Tan, Dickinson & Badcock, 2013).
Again, different summation rules make different

predictions for how thresholds change with the number
of components.

Experiments using multiple stimuli can be used to
distinguish within and between two broad classes of
summation model: additive summation (AS) and
probability summation (PS), as illustrated in Figure 1.
AS implies that the responses from the individual
component mechanisms are summed together by a
mechanism that is sensitive to the compound stimulus.
This results in predictions that are relatively straight-
forward (see Table 1). For example, in the special case
of linear summation, one predicts an inverse propor-
tional relationship between the number of stimulated
component mechanisms and threshold. With PS on the
other hand, which is the main focus of this communi-
cation, there is no summation of the component signals
into a mechanism sensitive to the compound stimulus.
Rather, adding more stimuli improves performance
because there is a greater chance that any one of the
stimuli will be detected. Some investigators have
considered whether some combination of AS and PS
might underlie detection (e.g., Meese & Summers,
2012). However, for this communication we will only
deal with the predictions from one or another of the
standard forms of AS and PS.

When a PS model is tested it is frequently derived
under the assumptions of high threshold theory (HTT;
see Graham, 1989; Sachs et al., 1971). Under HTT the
component mechanisms will be activated if their input
exceeds some fixed threshold value. This threshold is
assumed to be sufficiently high that it is only very rarely
surpassed by the system’s internal noise on its own. The
component mechanisms in HTT have a binary
response; they are either activated or not activated
(though one must bear in mind that a weak signal may
be insufficient to reach threshold in which case the

Figure 1. The two broad classes of summation considered within
a signal detection theory framework. Top: PS; bottom: AS. N ¼
addition of internal noise, n¼ number of stimuli, s¼ exponent
on transducer function. A1 is the target alternative/interval,
while A2–AM are the non-target (i.e., noise-alone alternatives/

intervals) with M being the total number of alternatives/
intervals in the forced-choice task. MAX ¼MAX decision rule.

Attention
Window Transducer

Single
component

Multiple
components SS

Matched
(Q ¼ n)

Linear d 0 ¼ gs d 0 ¼ gs
ffiffiffi
n
p

a! 1ffiffi
n
p

Non-linear
(s 6¼ 1)

d 0 ¼ ðgsÞs d 0 ¼ ðgsÞs
ffiffiffi
n
p

a! 1ffiffi
n2sp

Fixed
(Q . n)

Linear d 0 ¼ gs d 0 ¼ nðgsÞffiffiffi
Q
p a! 1ffiffi

n
p

Non-linear
(s 6¼ 1)

d 0 ¼ ðgsÞs d 0 ¼ nðgsÞsffiffiffi
Q
p a! 1ffiffi

nsp

Table 1. Calculation of d0 and summation slope (SS) for four
models of additive summation. Notes: The number of stimulus
components is given by n, the stimulus strength of each
component by s, the input gain of the mechanism sensitive to
that component by g, and the exponent of the mechanism’s
transducer by s. Summation slopes indicate how thresholds a
decline as a function of n, assuming all component thresholds
are equal.

Journal of Vision (2015) 15(5):1, 1–16 Kingdom, Baldwin, & Schmidtmann 2

Downloaded From: https://jov.arvojournals.org/ on 12/07/2018

• N = internal noise
• 𝜏 = exponent of transducer function
• A1 = the target alternative / interval
• A2 – AM = the non-target (i.e. noise-alone alternatives / 

intervals) 
• M = the total number of alternatives/ intervals in the 

forced-choice task. 
• MAX = MAX decision rule

Kingdom, F.A.A., Baldwin, A. S., & Schmidtmann, G. (2015). Modeling
probability and additive summation for detection across multiple 
mechanisms under the assumptions of signal detection theory. Journal 
of vision, 15(5), 1-1.



observer guesses). Altogether this means that there is
almost no ‘‘penalty’’ under HTT for monitoring
additional non-target mechanisms, as any irrelevant
internal noise carried by those mechanisms will have a
vanishingly small effect on performance. This property
of the HTT–PS model affects how researchers design
their experiments. Specifically, there is no practical
difference in the HTT–PS prediction between experi-
ments that interleave their different summation condi-
tions and those that block those conditions.
Interleaving or blocking, however, does affect thresh-
olds, at least for contrast grating detection (Meese &
Summers, 2012), unfortunately for HTT.

The other form of the PS model is the one
formulated under signal detection theory, or SDT
(Green & Swets, 1966). Briefly, the component
mechanisms under SDT give a continuous response
to the presented stimulus, which is then perturbed by
independent internal noise. The SDT–PS model takes
the response from the most activated mechanism and
uses that to make a decision about the stimulus (for
example, by comparing the maximum response from
each of two intervals to determine which contained
the target). The internal noise in the non-target
interval plays a significant role in the predictions
made by the SDT–PS model, as there is no sensory

threshold to squelch it. Because of this, whether the
experimenter blocks or interleaves the different
summation, conditions will make a significant dif-
ference to the SDT–PS model prediction (as the
additional internal noise from the irrelevant moni-
tored mechanisms in the interleaved case will degrade
performance). When the conditions are blocked, the
observer can focus attention only on the relevant
channels, termed here the ‘‘Matched Attention
Window’’ scenario. On the other hand, when the
conditions are interleaved, the observer will likely
monitor all potentially relevant channels, which
means that the observer will also monitor the
channels that only contain internal noise. Tyler and
Chen (2000) coined the term ‘‘Fixed Attention
Window’’ for this scenario. The difference between
Matched and Fixed Attention Window scenarios is
illustrated in Figure 2. The figure also illustrates three
of the variables that are key to the expositions in this
communication: Q is the total number of monitored
channels/mechanisms on each trial; n is the number
of those mechanisms that are activated by the target
stimuli; and M is the number of intervals that are
presented on each trial (e.g., an M of 2 gives a two-
interval forced-choice task like that shown in Figure
2).

There is strong evidence that SDT is a better model
of detection than HTT (Green & Swets, 1966; Laming,
2013; Nachmias, 1981). The widespread use of the
HTT–PS model may therefore be surprising—howev-
er, there may be a number of reasons for this. First,
the mathematical basis for calculating PS under the
assumptions of SDT is more complex than with HTT.
Current expositions of the equations involved are not
fully generalized across n, Q, and M and are often
daunting to the non-mathematician. Moreover, the
predictions made by the existing theoretical papers on
PS under SDT are not always presented as sufficiently
different to those formulated under HTT-PS for
authors to reconsider their choice of model. One aim
of this paper is to reiterate what some investigators
have already pointed out (e.g., Meese & Summers,
2012; Tyler & Chen, 2000), namely that there are
significant differences between the two PS models both
in terms of threshold predictions and, as importantly,
predictions for the slopes of psychometric functions.
An additional limitation of previous theoretical
expositions is that they do not always incorporate a
term for a non-linear transducer function, whereas
many studies point to an accelerating transducer at
threshold (Heeger, 1991; Legge & Foley, 1980; Meese
& Summers, 2009, 2012; Tanner & Swets, 1954). Here
we use s as the exponent on stimulus intensity to
embody a non-linear transducer, with s . 1 for an
acclerating transducer.

Figure 2. Schematic showing different summation scenarios for
a two-interval forced-choice task (M¼2) with the target interval
containing two stimuli S1 and S2. N1–N4 signifies internal noise
in the channels/locations sensitive to the stimuli. Each green
box denotes a spatial location. In the Matched Attention
Window scenario on the left, irrespective of whether the two
stimuli are presented in the same or different spatial locations,
the observer attends to both channels sensitive to the stimuli or
locations that contain the stimuli. For this situation n¼ Q¼ 2,
where n is the number of stimuli and Q the number of
monitored channels/locations. In the Fixed Attention Window
scenario on the right, the observer attends to four channels/
locations, even though only two stimuli are present. For this
situation n ¼ 2 and Q ¼ 4.
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• Schematic showing different summation scenarios for a 
two-interval forced-choice task (M = 2) with the target 
interval containing two stimuli S1 and S2

• N1 – N4 internal noise in the channels/locations sensitive 
to the stimuli

• Each green box denotes a spatial location 
• When the conditions are blocked, the observer can focus 

attention only on the relevant channels, termed here the 
‘‘Matched Attention Window’’ scenario. 

• For this situation n = Q = 2, where n is the number of 
stimuli and Q the number of monitored 
channels/locations

• When the conditions are interleaved, the observer will 
likely monitor all potentially relevant channels, which 
means that the observer will also monitor the channels 
that only contain internal noise. Tyler and Chen (2000) 
coined the term ‘‘Fixed Attention Window’’ for this 
scenario. For this situation n = 2 and Q = 4 
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Spatial uncertainty

Change in number of modulated cycles

1 2 3 4

single RF left (Fig. S1a) and the Quad RF right conditions (Fig. S2d)
where it seems that it is a particular rotation of the stimulus that
they have difficulty detecting.

3.2. Summation results

The summation results averaged across our three principal
observers are shown in Fig. 6. Panels (a, b) shows how thresholds
change as the number of modulated cycles in the stimulus
increases, (c, d) show how the psychometric slopes are affected.
As expected (Kingdom et al., 2015; Tyler & Chen, 2000) the sum-
mation slopes for the interleaved condition are steeper than for
the blocked condition. What is surprising though is that there
seems to be very little summation at all in the blocked condition.
This can be seen in the slopes of the lines fit to the data. For the Sin-
gle RF condition there is a small decline in threshold as the number
of modulated cycles increases (the median value of the log–log
slope of the fit to 1000 bootstrapped thresholds was !0.18), and
for the Quad RF condition there is no improvement at all (slope
of 0.06). In our experiments it seems that the observers in the
blocked condition simply chose a single cycle of the RF stimulus
to monitor for the purpose of making the 2AFC decision, regardless
of how many cycles were in fact being modulated. Because the
observers did not exhibit summation behaviour in this condition,
we will exclude it from our modelling.

For the interleaved data we find threshold vs. n slopes of
approximately !0.53 for the Single RF condition and !0.60 for
the Quad RF condition. These are in the same range as those found
in previous experiments that tested summation within a single RF
(Table A1). The similarity of the slope between our Single and Quad
RF conditions indicates that any special quality attributed to sum-
mation within an RF pattern (e.g. that the component cycles are
additively combined in a higher level mechanism) could also apply
to summation between RF patterns. In fact, the summation slopes

we find may be consistent with either additive or probability sum-
mation under SDT. We shall address this in our modelling below.
The only clear difference we do see between the Single and Quad
RF conditions is that in the Single RF condition the thresholds for
the blocked condition are higher than for the interleaved condition,
whereas for the Quad RF condition they are generally lower. The
Single RF results are consistent with the explanation we offer
above for the lack of summation in the blocked condition, however
those for the Quad RF condition are more difficult to interpret. Our
best explanation is that there is some ‘‘cost” associated with inte-
grating the local outputs over a larger area in the interleaved con-
dition, and that this elevates the thresholds to be higher than those
for the blocked condition (where we suggest that the observer is
only making use of a single local output).

One key prediction from the SDT probability summation model
is that – under conditions where the threshold vs. n summation
slopes are steep – the psychometric function slopes should become
more shallow as the number of modulated cycles increases due to a
reduction in extrinsic uncertainty (Pelli, 1985). Such an effect is not
immediately apparent from the data shown in Fig. 6c, d. There is a
slight negative slope however in the Single RF interleaved condi-
tion (!0.23), which is comparable to the value we would predict
from our SDT probability summation model (Kingdom et al.,
2015). Overall though, our analysis of the data from the interleaved
conditions does not provide particularly strong evidence in favour
of either the additive or the probability summation models. We
shall address this by developing additive and probability summa-
tion models and fitting those to our data.

3.3. Summation modelling

The summation models that we used are outlined briefly here.
Further information and Matlab code can be found in our Supple-
mentary material. For additive summation we calculate d0 by sum-
ming over each i of n mechanisms

d0 ¼
Pn

i¼1ðgiAiÞsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1r2

i

q ð4Þ

where gi is the input gain at each location, Ai is the amplitude of the
modulation, and ri is the internal noise. In the additive summation
model having different values for the internal noise at different loca-
tions does not affect performance, so we fix these to be constant
across location. The resulting parameter has a directly inverse effect
to the gain, so we fix all of our internal noise r ¼ 1 and implicitly fit
any internal noise effects with our gain parameter. We test four ver-
sions of the additive summation model which are distinguished by
whether they feature linear (s ¼ 1) or nonlinear (s is free) transduc-
tion (T0 vs. T1) and by whether the gain is fixed across locations or
whether it is different for each location (G1 vs. G4). This nomencla-
ture is summarised in the first four rows of Table 1. The d0 value can
be converted topredictedpercent-correct using the standardmethod

PðcÞ ¼ 0:5þ Us
d0

ffiffiffi
2

p
" #

! 0:5
$ %

& ð1! 2kÞ ð5Þ

where Us is the standard cumulative normal distribution function
and k is the lapse rate.

For the probability summation model we used a modified ver-
sion of the equation derived in Kingdom et al. (2015). For this we
must define a general version of the cumulative normal distribu-
tion function Uðt;l;rÞ where t is the value for which the probabil-
ity is calculated (used as a dummy variable in the integration in
our equations), l is the mean of the normal distribution, and r is
its standard deviation. We also define the probability density
function /ðt;l;rÞ in the same way. For detection within a single
mechanism (no summation occurring) we calculate

Fig. 6. Summation results averaged across our three principal observers. The top
row shows thresholds (as Weber fractions) as a function of the number of
modulated cycles in the pattern for the Single and Quad RF conditions. The bottom
row shows the psychometric slopes. The data from each condition are fitted with
straight lines, the slopes of which are reported in the legends. The dashed grey lines
in panels a, b have a slope of !1.
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Fixed position and blocked (Fixed)

Number of monitored channels: Q = [1 2 3 4]

Number of stimuli: n = [1 2 3 4]

Number of alternatives: M = 2



Number of monitored channels: Q = [4 4 4 4]

Number of stimuli: n = [1 2 3 4]

Number of alternatives: M = 2

Variable position and blocked (Semi – Fixed)



Number of monitored channels: Q = [360 360 360 360]

Number of stimuli: n = [1 2 3 4]

Number of alternatives: M = 2

Random position and interleaved (Random)
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Results – Model simulations
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Results - Models
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Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in 
model selection. Sociological methods & research, 33(2), 261-304.

• The model with the smallest AIC values is the probability 
summation model 

• The differences in AIC values between the PS and AS models 
are relatively small

• According to Burnham and Anderson (2004), the preferred 
model can be determined by calculating the difference 
between the AIC scores of the i-th model (AICi) and the 
model with the lowest AIC score (AICmin) obtained from the 
set of models examined

Results - Models

∆/= 𝐴𝐼𝐶/ − 𝐴𝐼𝐶$/'
• Models with Δi > 7 can be rejected (Burnham & Anderson, 

2004)
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Discussion
1˚

2˚

4˚

• We can not reject PS as a model
• In agreement with Baldwin et al. (2016)
• Summation is similar whether it occurs within a 

single shape or across shapes
• In agreement with Baldwin et al. (2016)
• Independent of eccentricity 
• Largely independent of uncertainty (cf. Green et al., 

2017, 2018)
• This implies that the visual system does not treat 

single closed shapes any different from various 
shapes distributed across the visual field. 
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