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A B S T R A C T 
 

The quest for exploiting the ocean resources and understanding its behaviour has been a challenge with increasing 

needs for innovation and technology. Model testing is an essential step in offshore renewable energy technology 

development. It involves challenges that require experience and guidance. Costly mistakes might   arise with the 

subsequent waste of time and resources. This paper presents the model design and testing processes as part of 

wave energy projects and the results of experimental testing of two types of oscillating- water-column (OWC) wave 

energy converters (WEC). The model design aims at the creation of a reduced-scale model to simulate the physical 

phenomena found in full-scale devices. It is a process that requires several       skills and an adequate compromise 

among all variables. This design involves several approaches as different physical phenomena do not follow the 

same similarity conditions, requiring adjustments in scale, materials,       and other relevant properties. Besides, the 

model testing process comprises the necessary planning and actions to execute the tests and post-processing of 

data. This process is addressed here through model design and testing of two WECs: the coaxial-duct and the spar-

buoy OWCs. The configurations have been designed and studied for large-scale energy production and small-scale 

power in oceanographic applications. Although the devices are both OWCs,  the designs exhibit significant 

differences.  The development process of the models   and results are presented for the two OWC devices. Free-

decay tests, hydrodynamic performance and mooring tension results are presented and discussed. These may 

serve as guidelines and numerical modelling validation. 
 

 

 

1. Introduction 

Experimental testing is essential in the development of wave energy 

converters (WECs). Sea trials are usually prohibitively expensive [1], 

and should be preceded by small-to-medium scale testing [2]. Although 

this does not simulate all features and performance of prototypes accu- 

rately [3], it provides a valuable source of information to researchers, 

developers and investors/entrepreneurs. 

Model testing involves challenges that require experience and guid- 

ance. Costly mistakes might arise with the subsequent waste of time 

and resources. This paper presents two test cases to illustrate in detail 

the proposed methodologies. 

The technological development of wave energy conversion has been 

taking advantage of new knowledge and accumulation of experience. 

The technology readiness level (TRL) framework, initially conceptu- 

alised by NASA [4] for space technology, has been used and adapted to 

wave energy technology development. Considerable efforts have been 

made to apply TRLs to WECs, for example, Ref. [2] where five phases 

were proposed: (1) validation model, (2) design model, (3) process 

model, 4) prototype device, and (5) demonstration unit. About the same 

time, guidelines for testing, costs estimations and recommendations for 

presenting results appeared in Ref. [5]. The guidelines were prepared 

based on principles developed as part of the Danish Wave Energy 

Program 1997–2001. Subsequent adaptations were done in Refs. [6–8], 

with updated panoramas of the ongoing wave energy developments or 

completed at the time. Refs. [8,9] made contributions more focused on 

oscillating-water-column (OWC) WECs. More recent documents sum- 

marising guidelines and giving more precise recommendations on the 

development of WECs can be found in Refs. [10–12], which also 

provide detailed guidance on model testing for WECs. SANDIA National 

Laboratory produced guidelines to assess the technology performance 
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Fig. 1. (a) Shoreline OWC power plant equipped with a Wells turbine at Pico island, Azores, Portugal. (b) The IDOM Marmok-A-5 spar-buoy OWC equipped with a biradial turbine 

being towed for deployment at BiMEP test site, Basque Country, Spain. 

 

 
Fig. 2. (a) The Backward-Bent-Duct-Buoy testing at the Galway Bay, Ireland, with an axial impulse turbine. (b) The biradial turbine testing at Mutriku wave power plant, Spain. 

 

level (TPL) considering a wide range of factors associated with the 

techno-economics of extensive exploitation of wave energy [13]. 

Despite the progress so far, a clear need for guidance to acceler- ate 

the development of WECs continues to exist. The IEC TC114 in 

conjunction with the IEA-Ocean Energy Systems are working towards 

the development of standards for this emerging  industry.  A  set  of best 

practices and recommended procedures for WECs testing at the pre-

prototype stage are provided in Ref. [14]. Other groups prepared 

general guidelines like the ones in Ref. [15]. The European Commission 

(EC) funded EquiMar project, which sought to provide a rational suite of 

protocols to accelerate WECs development [16]. The EC has also 

implemented a broader definition of the TRL framework for the H2020 

programme [17]. 

Several EC projects funded the construction of OWCs. Fig. 1 shows 

two of those prototypes. The Pico pilot plant was completed in 1999 and 

operated until 2018, Fig. 1a. It was the first wave power plant designed 

and constructed to permanently supply an electrical grid [18]. The more 

recent IDOM Marmok-A-5 OWC spar-buoy prototype was tested at the 

BiMEP test site, Basque Country, Fig. 1b. It was equipped with a biradial 

self-rectifying air turbine coupled to a 30 kW electrical generator [19]. 

Another floating OWC device is shown in Fig. 2a. It is  a 1:4-scale model 

based on the Backward-Bent-Duct-Buoy (BBDB) due to Yoshio Masuda 

[20]. A full-scale version, OE35, with a rated power of 1 MW, was 

recently deployed off the Oahu island, Hawaii. A review on OWC 

technology and air turbines can be found in Ref. [21]. 

Physical modelling of floating OWCs is reported in the recent litera- 

ture. Refs. [22,23] compare experimental and numerical results for an 

OWC spar-buoy. Experimental and numerical results for the Tuperwave 

OWC spar-buoy with check valves and unidirectional air turbine are 

reported in Ref. [24], where the spring-like air compressibility effects 

are accounted for through an extra volume added as part of the air 

chamber. Ref. [25] describes model testing of a new floating semi- 

submersible structure which combines three OWCs with a 5 MW wind 

turbine. An experimental study of a floating OWC with tension legs 

is presented in Ref. [26]. The geometry was similar to typical break- 

water geometries. Ref. [27] presents the numerical and experimental 

results of a hybrid TLP platform wind/wave with three OWCs WECs. 

In Ref. [28] is presented a review of the progress on the use of 

dielectric elastomer generators as PTOs in WECs, in which it is also 

shown the application to OWCs. Other experimental studies on floating 

OWCs classified by the evaluation of specific features are: (i) Ref. [29] 

studies how the OWC performance is affected by moorings and by 

different levels of turbine damping. (ii) Refs. [30,31] involve multi- 

chamber OWCs, multiple OWCs in one floating structure and arrays 

of floating OWCs. (iii) Refs. [32–35] concern OWCs as part of hybrid 

systems, multi-use platforms or floating breakwaters. (iv) Refs. [19,36] 

address the control of PTOs for floating OWCs. (v) Ref. [37] involves 

the characterisation of floating OWCs. (vi) Refs. [38,39] address air 

compressibility effects. 

The present paper is focused on guidance for model testing of WECs, 

based on a process approach. The contributions of the present work are: 

• a process summary for different stages of model testing of WECs 

to serve as guidance for developers and scientific community; 

• model designs departing from idealised designs with test results 

that can serve as reference models information; 

• a systematic description of the tank testing process; 

• test results summarised for selected designs, which may serve to 

support or validate numerical models and to improve the design of 

these technologies. 

The paper is organised into four main sections. Section 2 presents 

an overview of wave energy projects, and the description of the model 

design and testing sub-process, with essential steps and common issues. 

Section 3 presents systems selected for this work and the processes in- 

volved in the design, manufacturing, verification and testing of scaled- 

models. Results are presented in Section 4. Conclusions are drawn in 

Section 5. 
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2. Overview of a wave energy project 

Fig. 3. Schematic representation of the life cycle of a wave energy project. 

Source: adapted from [40]. 

 
approach, presented in this work, is based on experience and best 

practices of the authors and research teams. 

The project development process of a wave energy system may be 

represented as in Fig. 3. The process is iterative and includes complex 

interactions between the phases and/or sub-processes. However, these 

interactions are ignored in Fig. 3 for ease of comprehension. A wave 

energy project may be divided into two main processes: design and 

implementation. The former comprises preliminary design, detailed 

design, and model design and testing sub-processes. Preliminary design 

starts with the definition of WEC and PTO (Power Take-Off) concepts, 

the definition of the mathematical and numerical models, site data 

gathering and analysis up to validation of the models, either through 

reference problems or model testing. Detailed design requires the ac- 

complishment of an optimisation phase followed by a performance 

assessment. Model design and testing may be transversal to both the 

preliminary design and the detailed design. It can be executed at 

different scales (small, medium and large-scale) to evaluate the perfor- 

mance of a WEC concept and tune the system components to achieve 

maximum efficiency and reliability. 

The implementation process involves construction, deployment, op- 

eration & maintenance, and decommissioning when the lifetime of the 

project is terminated. Each of these should be followed by continuous 

monitoring and control. 

This work focuses on the model design and testing sub-process, 

which is of utmost importance to recreate the main characteristics   and 

similarities among different scales for a given design. The process 

 
2.1. Model design and testing 

 
Model design and testing is a mandatory phase within any wave 

energy project development. WECs are complex systems that differ from 

conventional offshore structures, and this is also reflected in the model 

design and testing process. Some of the differences are associated with 

the working principle and their power take-off systems (PTOs), which 

may create inherent conflicts when dealing with similarity require- ments 

for a successful emulation of the system, especially at small- and 

medium-scale testing. 

The model design sub-process comprises the conception of the 

physical model for testing (see Fig. 4). It starts with the data associated 

with the full-scale technology and the conception of the idealised model, 

commonly performed with the aid of CAD tools. Afterwards, the idealised 

model is transformed into a realisable model, considering both model 

design properties and targets (see Fig. 5), and the characteristic and 

properties of real parts and components. Geometry, mass and volume 

are interlinked properties that should be handled iteratively to get the 

target variables as close as possible to the idealised model. The 

relationships between these target variables are complex. For example, 

the submerged volume affects the centre of buoyancy (CoB), but also 

the mass, the centre of mass (CoM), the moment of inertia and the 
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Fig. 4. Model design sub-processes for wave energy technologies. 
 

draught. The finalised model is then the actual model constructed and 

verified, including any remedial actions, if required. 

The model testing sub-process requires as inputs the data of the full-

scale and model-scale designs, as well as the physical model (see Fig. 

6). Model test planning is of utmost importance to avoid unnec- essary 

extra costs and delays on the testing campaign. It should be emphasised 

here that model test planning and model design should  be developed 

interactively. Experience is a requirement  to  identify and manage 

assertively potential risks. Infrastructure, materials and equipment 

involved are generally expensive and require sophisticated skills to 

manage, and they should be wisely selected. Data collection, post-

processing, analysis and comparison are, of course, important to 

evaluate the overall project feasibility. 

There is no clear consensus on what should be the different scales 

for testing. These depend, certainly, on the specific technology, costs, 

availability of test facilities/infrastructure, and other resources required 

to accomplish the purpose of the tests. Refs. [1,10,12] provide addi- 

tional information. Scales range from 1:100-1:40 in small-scale models, 

1:40-1:20 in medium-scale models, 1:20-1:4 in large-scale models, and 

1:4-1:1 in prototypes. 

 
2.2. Essential steps in experimental campaigns of wave energy converters 

 
Essential steps associated with the development of wave energy 

converter experimental tests are identified as: 
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Table 1 

Scaling factors for physical modelling of OWCs. 𝜆 is defined as the physical model scale. 

Physical parameter Unit Scaling factor Scaling criterion 

Length [m] 𝜆 Froude 

Time [s] 𝜆
0.5 Froude 

Mass [kg] 𝜆
3 (𝜆M∕𝜆F ) Froude 

Acceleration [m/s2 ] 1 Froude 

Force [N] 𝜆
3 (𝜆M∕𝜆F ) Froude 

Torque [Nm] 𝜆
4 (𝜆M∕𝜆F ) Froude 

Power [W] 𝜆
3.5 (𝜆M∕𝜆F ) Froude 

Pressure [Pa] 𝜆(𝜆M∕𝜆F) Froude 

Air  chamber  volume [m3 ] 𝜆
2 (𝜆M∕𝜆F )−1   (see  Ref.  [3]) Compressibility 

 
 
 

 
  

 
Fig. 5. Model design properties for wave energy technologies. 

 
 

• objective definition; 

• environmental conditions definition; 

• scale ratio and physical similarity definition; 

• testing infrastructure selection; 

• tests definition; 

• instrumentation plan definition and procurement; 

• model design, construction and verification of properties; 

• model testing; 

• data preservation/storage, processing and reporting; 

• learned lessons for future tests. 

Once again, it should be evident to the reader that most of the steps 

above are interlinked, and some of them should be considered simul- 

taneously at some point. For example, the definition of the scale ratio, 

testing infrastructure selection, tests definition and the instrumentation 

plan should be all considered together; however, they are at the same 

time different steps. Furthermore, in this work, it is considered that PTOs 

and moorings form part of the device design, and consequently, they are 

scaled or emulated within the model design and testing sub- process. 

For additional guidance, environmental conditions, and tests definition, 

see Refs. [11,12]. 

2.3. Common issues in physical modelling of oscillating-water-column WECs 

2.3.1. Physical model similarities 

Models and full-scale designs should be similar in terms of geom- 

etry, kinematics and dynamics, i.e. there must be a similitude of the 

shape for both the WEC and the surroundings (geometrical similarities), 

the velocities that imply both the flow and the model to have similar 

geometrical movements (kinematic similarity), and forces (dynamic 

similarity). If geometric and dynamic similarities are achieved, then the 

kinematic ones are also met. 

Dynamic similarity implies that the ratio of representative forces      is 

the same in both the model-scale and the full-scale. Most common 

dimensionless numbers associated with WEC devices, structures and 

their components, are the Froude number (Fr), the Reynolds number 

(Re), the Keulegan–Carpenter number (KC), and the Strouhal number 

(St) [41,42]. The Froude number represents the ratio between inertia and 

gravity forces. The Reynolds number is the ratio between the inertia and 

viscous forces. The Keulegan–Carpenter number expresses the ratio 

between the drag and the inertia forces and is used  to  identify if a 

phenomenon is more drag or inertia dominated, giving orientations on 

the suitability of the mathematical models used and the respective 

assumptions. The Strouhal number describes the ratio be- tween 

temporal inertial forces and convective inertial forces; it should be 

considered for oscillatory flows and moving structures with flow 

separation (vortex shedding). There are other effects on OWCs such as 

the spring-like air compressibility in the air chamber (not related to Mach 

number) [9,38,43]. 

Reynolds number effect correction 

Similarity conditions in physical model testing of WECs require 

the equality of both the Froude number and the Reynolds number. In 

practice, this is not possible if the tests are performed in water [3]. It 

is widely acknowledged that the Froude criterion should prevail [41]. 

If this is adopted, the Reynolds number is smaller in the model, and 

the viscous effects are over-simulated. A correction to that may be 

introduced through the use of the Morison’s equation [44]. 

PTOs and compressibility effects in physical modelling of OWCs: an impor- 

tant similarity challenge 

Scaling down an OWC WEC has a specific set of challenges. The 

coupling between the hydrodynamics of the wave energy absorption 

and the turbine-generator set is done through the air chamber, which 

itself introduces additional similarity issues. The correct simulation of the 

spring-like air compressibility effect requires the volume of the     air 

chamber to be scaled as the square, not the cube, of the length scale 

[3,38]. This may be done in practice by connecting the model air 

chamber to a rigid-walled reservoir of appropriate volume. In floating 

devices, this may raise problems if the dynamics of the structure is not 

to be affected. Failure to correctly scale the volume of the air chamber 

may introduce substantial errors in the capture width ratio [38,45]. 

Depending on the geometric model scale, it might be infeasible to 

build a small-scale air turbine that complies with the geometric and 

dynamic similarities [38]. Turbine simulators must be used for scales 

lower than 1:4 [3]. Wells turbines are simulated using porous media 

where the flow rate exhibits a linear relationship with the pressure (the 

flow is laminar). In the case of impulse turbines, an orifice is used to 

simulate a quadratic relationship between the pressure and the flow 

rate (the flow is a jet). 

Table 1 presents the scaling factors for some quantities in OWCs, 

where 𝜆 represents the ratio of characteristic lengths between the 

model-scale,  𝜆M,  and  the  full-scale,  𝜆F,  i.e.,  𝜆  =   𝜆M∕𝜆F.  The  wa- 

ter densities at model-scale and full-scale are denoted as 𝜆M and 𝜆F, 

respectively. 

2.3.2. Model verification 

Model verification is an iterative task for both model design and 

the model testing sub-processes. Once the ideal model is established 

from the real design, it becomes the reference to be achieved. Never- 

theless, most of the time to ensure complete similitude is not possible. 

Realisable models depend on the availability of the right materials, 

components, and also the facility where it will be tested. The latter 

needs special considerations due to possible limitations of the testing 

tank or site that may impose additional conflicts, requiring further 

remedial actions. 

This recursive task does not stop with the verification of the con- 

structed model’s properties, instead it continues into the testing period 

due to the possibility of variation in properties of the assembly. An 
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Fig. 6. Model testing sub-processes for wave energy technologies. 
 

example of the latter may be an infiltration of water to the WEC model 

that would change the draught, and consequently, depending on the 

magnitude of the issue, its dynamics. It is highlighted the need of 

continuous observation of the main characteristics of the experimental 

set-up, which can change from day to day with the potential of invali- 

dating results. Some indicators might help to control potential changes 

in designed conditions. 

 
2.3.3. Remedial actions 

Remedial actions are commonly required when dealing with phys- 

ical model testing of WECs. It is recommended to establish a set of 

maximum deviation limits in model design properties, according with 

the specific objectives of the testing campaign, which can serve as a ref- 

erence when making decisions on remedial actions. These actions vary 

from corrections in the centre of mass or buoyancy, mass distribution 

(due to imperfections in material/components, for example), draught 

(due to infiltrations or leakages, for example), and also measuring 

sensors/equipment (due to position/selection/replacement/weight of 

sensors/equipment). These are just examples of common actions that 

may be required to ensure a better similarity of the model and a better 

‘operational’ model testing deployment. 

 
2.3.4. Physical model testing costs 

Physical model testing costs are generally high. Careful selection  of 

infrastructure, planning, scheduling and control is necessary for a 

successful testing campaign. Infrastructure access is one of the high- 

est costs in model testing. These costs depend on the size and type   of 

infrastructure. The infrastructures can be classified as small- and 

medium-scale wave tanks/flumes, as well as medium- and large-scale 

test sites. The first two provide controlled environments that may recre- 

ate regular and irregular waves. Test sites offer realistic deployments, 

without control over the environmental conditions. 

Besides the infrastructure selection, testing duration and measure- 

ment equipment are crucial to estimate total costs associated with any 

campaign. Depending on the target facility, measurement equipment 

may be available for extra fees or even included in the service package 

price. Technical support and other services may be available, such as 

post-processing of data and analysis of results. The larger the tank, the 

higher the costs associated. Nevertheless, cost estimation is difficult and 

depends strongly on the needs, the facility, special requirements, and 

the contracting organisation. Testing costs may reach tens of thousands 

of euros per week. 

Costs such as model construction, transportation, measuring instru- 

ments, and travel expenses may be substantial, depending on the scale 

and size of the model, distance to infrastructure, testing campaign time, 

measurement and technical support needed. It is not an easy task to 

make proper cost estimations, and significant deviations in budget 

happen frequently. A critical recommendation to avoid unnecessary 

delays is to visit the tank or facility in advance and work together with 

the infrastructure manager to get realistic plans and ensure a smoother 

process. 

3. Coaxial-duct and spar-buoy OWCs physical model testing 

3.1. Objectives & methods 

The objective of the testing campaign at the COAST Laboratory of 

the University of Plymouth (UoP) was to characterise and study the 

performance and loads on mooring lines of two physical models at scale 

1:40: a coaxial-duct and a spar-buoy OWC WECs. Experiments were 

performed during three experimental campaigns: October 2015, 

December 2015–January 2016, and July 2017. 

The experimental work comprised regular and irregular wave test 

conditions, as well as extreme wave conditions. Regular-wave tests 

were used to examine devices’ capture width ratio at specific fre- 

quencies and the displacement RAOs, while irregular-wave tests were 

used to examine performance in terms of capture width ratio. Highly 

energetic sea states were used to  provide  data  on device motions 

and tensions in mooring lines under extreme conditions. These highly 

energetic sea states were based on the wave climate encountered at 

Leixões, Portugal, see Table 2. The survivability waves represented the 

10-, 50- and 100-year return periods based on the same spectral shape. 

Data were collected from four different types of instruments: wave 

resistive probes, pressure sensors, load cells and from a six degrees 

of freedom (6-DoF) motion tracking system, along with four digital 

video cameras positioned both above and below the water. For the 

experimental campaigns, data acquisition was synchronised between 

the various systems. 

The load cells were calibrated by the supply company, and the maxi- 

mum total error was within ±0.01% of full span. An uncertainty analysis 

on the measurements was performed. Wave gauges were calibrated 

daily, and gave error typically less than ±1.6% of total measurement 

span (0.6 m); while pressure sensors total error band was ±1% of the 

full-scale span based on data sheet of sensor. On what concerns the 6- 

DoF motion tracking system used to measure instantaneous positions, 

the measuring errors are given in the cameras output files per record. 

3.2. Testing infrastructure 

The choice of the physical modelling scale was linked to the size   of 

the wave basin. The Ocean Basin is a deep-water wave and current 

facility. It has nominal dimensions of 15.5 m wide  and  35 m  long  (Fig. 

7). The central floor section of the basin may be fixed at any position 

from the surface down to 3 m depth. The basin is equipped with 24 flap-

type paddles with a hinge depth of 2 m. The wave files   are created with 

the Njord Wave Synthesis program and are generated by a control 

software. Irregular waves followed a Pierson–Moskowitz spectrum. 

3.3. Physical models and configuration 

Two WEC devices were used to investigate the performance and 

survivability: the coaxial-duct OWC (CD-OWC) and the spar-buoy OWC 

[46,47]. The 1:40-scale models were designed based on a full-scale de- 

sign [48,49]. They were designed and manufactured at UoP, following 
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Fig. 7. View of the ocean basin at COAST Lab., University of Plymouth. 

 
Table 2 

Scatter plot of probabilities of occurrence for the most representative sea states off Leixões, Portugal.  

Source: Adapted from Ref. [46]. 

𝜆s  [m] 𝜆e [s]           P[𝜆s] 

4–5 5–6 6–7 7–8 8–9 9–10 10–11 11–12 12–13 13–14 (%) 

0.5–1 0.07 

1–1.5 0.03 

1.5–2 

2–2.5 

 
1.73 

0.23 

0.33 0.01 5.06 

0.38 0.05 0.01 23.11 

0.34 0.12 24.28 

1.77 0.41 0.05 16.98 

2.5–3 

3–3.5 

3.5–4 

4–4.5 

4.5–5 

5–6 

6–7 

 0.59 

0.03 

2.01 

0.99 

0.18 

0.01 

2.82 

1.74 

1.05 

0.53 

0.11 

2.52 

1.77 

1.43 

0.83 

0.60 

0.36 

1.88 

1.35 

1.12 

0.75 

0.70 

0.83 

0.17 

0.71 

0.52 

0.7 

0.51 

0.55 

0.61 

0.34 

0.13 

0.23 

0.16 

0.22 

0.29 

0.33 

0.18 

0.01 

0.05 

0.06 

0.08 

0.10 

0.07 

0.06 

10.74 

6.72 

4.73 

2.96 

2.38 

2.23 

0.80 

P[𝜆e]  (%) 0.10 8.92 22.61 20.35 18.00 13.99 9.01 4.59 1.80 0.64  

 

Table 3 

Physical properties of the full-scale, idealised 1:40-scale and constructed model of the CD-OWC. 𝜆 represents the total height, 𝜆D is the draught, 

and 𝜆o  the overlapping length of the coaxial tubes. 𝜆o  and 𝜆i  represent the external and internal diameters of the totally submerged  

tube,  respectively,  while  𝜆o  and  𝜆i  represent  the  external  and  internal  diameters  of  the  inner  tube.  

Parameter Full-scale Idealised 1:40-scale CAD model Physical test model 

𝜆 [m] 43.0 1.075 1.075 1.085 

𝜆D [m] 33.0 0.825 0.825 0.810–0.910 

𝜆o [m] 13.0 0.325 0.325  0.325 

𝜆o [m] 14.0 0.350 0.340 0.340 

𝜆i [m] 12.0 0.300 0.300 0.300 

𝜆o [m] 9.2 0.230 0.215 0.223 

𝜆i [m] 8.2 0.205 0.200  0.200 

𝜆 [kg] 1.818 × 106 28.4 28.4 28.8 

𝜆 [kg m2 ] 288.1 × 106 2.8 2.8 n.d. 

CoB  to MWL [m] 22.6 0.565 0.568 n.d. 

CoM  to MWL [m] 26.3 0.657 0.657 0.657 

the sub-process presented in Fig. 4. Several iterations of each design 

were used since the general properties were interlinked (see also Fig. 5). 

For example, the geometry determined the centre of buoyancy (CoB) 

and affected the volume, ultimately affecting the draught. 

The same 1:40-scale was applied to whole device. The spring-like 

air compressibility effects were not accounted for. The turbine damping 

was simulated by an orifice plate located at the top of each air chamber. 

At each stage of the model design sub-process, there was a compro- 

mise between accuracy and simplicity. For example, published values 

of properties of materials were assumed to be correct, and dimensions 

were assumed to be realisable in manufacturing. Furthermore, fixings 

were not all accounted for in the CAD model, although their mass was 

not negligible. This explained deviations that appeared in the final 

model. A changeable ballast was considered in the model design to 

account for those differences [46,47]. 

The main drivers for the model design were the relationship be- 

tween the mass, geometry and material density. These determined the 

draught and the mass distribution, as well as the moments of inertia. 

The mass specification of the device, i.e., CoM location and the moment 

of inertia, were given priority. 

The main problem of the preliminary design was the selection of the 

materials. The models could not be made of steel as full-scale device, as 

this would lead to excessively thin wall sections. With the constraint of 

a minimum wall thickness of 2 mm, based on available materials and 

welding considerations, the mass of the model would be too large if only 

made of aluminium. This led to a design that used both aluminium 
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Fig. 8. Main characteristics of the CD-OWC device: cross section view  without anti-

heave plate. 

 
 

and acrylic. The second design condition was the correct draught in 

fresh water. 

Model design should allow several configurations. This had to be 

considered at an early stage to avoid delays and extra costs. 

3.3.1. Coaxial-duct OWC 

The CD-OWC consists of two coaxial, partially overlapping cylin- 

drical tubes, forming an inner and an outer duct, see Fig. 8. The cross-

sectional area of the inner duct is equal to the annular area of the outer 

duct. The cylindrical walls are hollow for buoyancy reasons. The two 

shaded areas in Fig. 8 are filled to provide ballast and to lower the CoM. 

The outer cylindrical wall is fully submerged whereas the inner cylindrical 

wall extends above the free surface to provide connection to the air 

turbine. The two ducts are inter-connected at their bottom and form an 

axisymmetric OWC with an upward-facing connection to the water 

surrounding converter. The water plane area is equal to the cross 

sectional area of the inner tube. Since this area is relatively small, the 

floater behaves in waves as a semi-submersible structure, and so the 

resonance frequency of the heave oscillations may be designed to be 

smaller than the typical frequencies of the incident wave spectra. If this 

is the case, the heave oscillation amplitudes are expected to be small. 

Unlike the spar-buoy OWC, the energy absorption results essentially 

from the interaction between the waves and the OWC motion, rather 

than the waves and the floating structure. 

The connection between the two ducts has a smooth shape to reduce 

hydrodynamics losses, see Fig. 8. An anti-heave plate was attached to 

the device for the testing campaign, see Fig. 9. Comparisons between 

the full-scale and model-scale properties are shown in Table 3. 

Four catenary mooring lines were used to keep the device in station. 

These were placed orthogonally to each other, approximately coinci- 

dent with the CoM in the 𝜆-direction (vertical direction). The model  was 

moored such that the axis of symmetry of the device was coincident with 

the centre of the basin. Anchor points radiated 6 m from the basin centre. 

The mooring lines properties are summarised in Tables 4 and 

5. The turbine simulator was an orifice with a diameter of 30 mm on 

the top wall of the model’s air chamber. 

Fig. 9. The CD-OWC CAD and constructed models with a 0.375 m diameter anti -heave 

plate placed at 0.370 m from the model bottom through eight separation legs. 

 

 

 
Fig. 10. The spar-buoy OWC model representation with indication of the main 

characteristics. 

 

 
3.3.2. Spar-buoy OWC 

The full-scale WEC has 12 m diameter at free surface level and a 

draught of 36 m, see Fig. 10 [46,48]. The model was built at a scale of 

1:40. The properties of the full-scale and model-scale buoy are shown 

in Table 6. Fig. 11 presents a CAD drawing and a photograph of the 

finished model. The device was approximately 1.25 m high, with a mass 

of 19.0 kg. 
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Table 5 

Physical properties of the full-scale and idealised 1:40-scale model of mooring lines for the CD-OWC.   

Parameter Full-scale Idealised 1:40-scale 

Number of lines 4 4 

Number of vertical mooring line segments 1 1 

Water depth [m] 80 2 

Chain type Studlink Studlink 

Chain diameter [mm] 80 2 

Chain total dry  mass [kg] 31193 0.487 

Length  of chain [m] 255 6.375 

Mooring radius (from device axis to anchor) [m] 240 6 

Fairlead position for line 1 [m] (4.95, 4.95, −26.00) (0.12, 0.12, −0.65) 

Fairlead position for line 2 [m] (−4.95, 4.95, −26.00) (−0.12, 0.12, −0.65) 

Fairlead position for line 3 [m] (−4.95, −4.95, −26.00) (−0.12, −0.12, −0.65) 

Fairlead position for line 4 [m] (4.95, −4.95, −26.00) (0.12, −0.12, −0.65) 

Bottom anchor position for line 1 [m] (169.71, 169.71, −80.00) (4.24, 4.24, −2.00) 

Bottom anchor position for line 2 [m] (−169.71, 169.71, −80.00) (−4.24, 4.24, −2.00) 

Bottom anchor position for line 3 [m] (−169.71, −169.71, −80.00) (−4.24, −4.24, −2.00) 

Bottom anchor position for line 4 [m] (169.71, −169.71, −80.00) (4.24, −4.24, −2.00) 
 

 

 
of models, different joint and isolation methods were implemented, 

Properties of mooring lines for the idealised 1:40-scale and constructed models of the CD-

OWC.  

   Mooring line Target length [m] Measured length [m] Measured dry mass [kg]  

1 6.367 6.370 0.452 

2 6.367 6.374 0.452 

3 6.367 6.368 0.452 

   4 6.367 6.375 0.454  

 

 
Fig. 11. The spar-buoy OWC CAD and constructed models. 

 
 

The device had three mooring lines. The lines were connected to the 

basin floor, and were composed of chains, synthetic lines with floats and 

clump weights. Synthetic lines were tied to chains and to fairleads or 

load cells, where appropriate. Details of the lines, floats and clump 

weights are given in Tables 7 and 8. The PTO was implemented through 

an orifice plate of 17.5 mm diameter, which was placed at the top of the 

model air chamber. 

 
3.4. Verification and deviation from the design specification 

 
Verifications were done at different stages, after material reception, 

after fabrication of parts, when the models were assembled, and during 

tests execution. Besides internal factors, there were also important 

external factors to consider. For example, during the fabrication of the 

spar-buoy, some parts were fabricated in-house, and others through 

sub-contractors. Once parts were delivered, it was realised that the 

thickness of the plates were larger than specified. In the assembling 
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such as sealants, bolting, welding and bonding, which represented an 

addition of mass that was not accounted for. In these processes, the 

additional mass of bonding material and paint contributed to deviations 

from the designed models. 

Models were checked for mass, unmoored  draught,  location  of 

the CoM and mass moment of inertia. The difference in the mass of 

the idealised 1:40-scale model and the CAD model was due mainly    to 

the change in geometry necessary to achieve the desired draught with 

commercially available components. Each parameter was given an 

acceptable range of values as follows: 

• Mass: ±5% with respect to CAD model. 

• CoM location: ±5% with respect to base of idealised model. 

• 𝜆𝜆𝜆: ±20% with respect to idealised model. 

• Lengths of the device: ±5 mm was used for the remaining 

length scales of the device. 

• Mooring lengths: ±10 mm. 

 
3.4.1. Mass and unmoored draught 

The mass of the models was measured using laboratory scales 

without the instrumentation. To measure the unmoored draughts, the 

models were allowed to float in the University of Plymouth Ocean 

Basin with the floor at 3 m depth. The waterline of the free floating 

unmoored devices was marked on one side of the top floater section. 

This was difficult to achieve as any movement of the water caused    the 

model to move in several of its degrees of freedom. The estimated 

error associated with the measurement process was ±2 mm owing to 

the water (and model) movement and the accuracy of identifying the 

true waterline. Graduated scales on floaters and photographic records 

were used to reduce measurement errors. 

3.4.2. Centre of mass and inertial properties 

The spar-buoy CoM was determined suspending the device 

horizon- tally by two stiff vertical lines equipped with load cells to 

measure forces. The MWL-CoM distance was found to be 475 mm 

using the static equilibrium of moments. A similar procedure was 

followed for the CD-OWC, but in this case the device was not 

suspended, it was placed on a rack prepared with two load cells. The 

MWL-CoM distance was determined as 635 mm in this case. 

The methodology set out in Ref. [50] was adopted to measure the 

mass moment of inertia of the spar-buoy OWC model. The model was 

suspended from a pivot and allowed to oscillate as a gravitational 

pendulum. The angular displacement of the device was recorded 

using a 6-DoF motion tracking system to determine the average swing 

period. This period was later used to estimate the moment of inertia. 

The method is very sensitive to the vertical distance of the CoM. It was 

found that a small difference of 2% in the measurement of the CoM 
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Physical properties of the full-scale idealised 1:40-scale and constructed models of the spar-buoy OWC. 𝜆 represents the total length, 

𝜆D is the draught, while 𝜆o and 𝜆 i represent the outer  diameter  of  the  floater  and  the  internal  diameter  of  the  central  tube  and 

floater, respectively. 

𝜆D [m] 36.0 0.900 0.900 0.900 

𝜆o [m] 12.0 0.300 0.300 0.290 

𝜆i [m] 4.8 0.120 0.119 0.119 

𝜆 [kg] 1.217 × 106 19.0 18.9 18.9 

𝜆 [kg m2 ] 324.6 × 106 3.2 3.2 3.9 

CoB  to MWL [m] 18.0 0.451 0.451 n.d. 

CoM  to MWL [m] 19.3 0.482 0.482 0.470 

 

Table 7 

Physical properties of the full-scale and idealised 1:40-scale model of mooring lines for the spar-buoy OWC. 

Parameter Full-scale Idealised 1:40-scale 

Number of lines 3 3 

Number of mooring line segments 3 3 

Water depth [m] 80 2 

Mooring radius (from device axis to anchor) [m] 210 5.25 

Length of section 1  (Rope) [m] 51.56 1.29 

Length of section 2  (Rope) [m] 148.91 3.72 

Length of section 3  (Chain) [m] 46.20 1.16 

Section 1 type Spiral strand Spiral strand 

Section 2 type Spiral strand Spiral strand 

Section 3 type Chain studlink Chain studlink 

Rope diameter [mm] 65 1.625 

Chain diameter [mm] 180 4.5 

Chain total dry  mass [kg] 22605 0.353 

Number  of  floaters  in section 2 6 6 

Position of floaters (69.77,71.21,72.65, (1.74,1.78,1.82, 

along  line  (from fairlead) [m] 74.09,75.53,76.97) 1.85,1.89,1.92) 

Float  dry mass [kg] 326.8 5.11 × 10−3 

Float density [kg/m3 ] 150 150 

Fairlead position for line 1 [m] ( 6.00, 0.00, −0.03) ( 0.15, 0.000, −0.001) 

Fairlead position for line 2 [m] (−3.00,−5.20, −0.03) (−0.075,−0.130,  −0.001) 

Fairlead position for line 3 [m] (−3.00, 5.20, −0.03) (−0.075,  0.130, −0.001) 

Bottom anchor position for line 1 [m] (210.00, 0.00, −80.00) (5.25, 0.00, −2.00) 

Bottom anchor position for line 2 [m] (−201.45, −348.92, −80.00) (−5.04, −8.72, −2.00) 

Bottom anchor position for line 3 [m] (−201.45, 348.92, −80.00) (−5.04, 8.72, −2.00) 

 

Table 8 

Properties of mooring lines for the idealised 1:40-scale and constructed models of the spar-buoy OWC. 

Mooring 

line 

Chain 

length [m] 

Fairlead to 

Clump length [m] 

Total rope 

length [m] 

Total line 

length [m] 

Clump 

mass [kg] 

Floats 

mass [kg] 

Target 1.155 1.289 5.012 6.167 1.807 6.5 × 10−3 

1 1.126 1.256 4.955 6.081 1.806 6.5 × 10−3 

2 1.173 1.285 4.965 6.138 1.808 6.5 × 10−3 

3 1.173 1.310 4.980 6.153 1.807 6.5 × 10−3 

vertical distance may represent up to a 30% difference in the value of 

the moment of inertia, 𝜆𝜆𝜆. 

The moment of inertia of the CD-OWC model was estimated using 

the swinging carriage method described in [42]. The test rig comprised 

a carriage free to move around a pivot suspended from a rigid frame. 

A sequence of experiments was performed with the swinging carriage 

employing the model, a trim weight and the measurement of the tilt 

angles to calculate the moment of inertia. 

3.4.3. Centre of buoyancy 

CAD models of the buoys with uniform density were used to esti- 

mate the centre of buoyancy (CoB) considering the design draught. Any 

deviation of the draught should be checked to estimate the effect of the 

CoB change on the system’s performance. 

4. Results of physical model tests 

This section presents some of the results obtained from the experi- 

mental campaign. Results are focused on natural periods, capture width 

ratio (CWR), and displacements of the device. 

4.1. Natural periods 

Table 9 shows the mean values of the natural periods (𝜆n) obtained 

experimentally, based on the average of five tests, and the full-scale 

theoretical natural periods for the CD-OWC and the spar-buoy OWC. 

The decay tests showed very low standard deviation values, indicating 

good repeatability, despite the inherent difficulties in perturbing the 

device only along one axis. Presented results for surge, heave and pitch 

have a tolerance of 95% confidence interval to indicate the repeatability 

of testing in each degree of freedom. 

Due to the axisymmetric design of the device, the planar translations 

(surge and sway) and rotations (roll and pitch) were very similar. Small 

differences in the results were due to the orientation of the mooring 

restoring forces with respect to the motion axis. 

The natural frequency of the internal mass of water (water column) 

was not measured. Instead, theoretical full-scale natural periods were 

considered. In the case of the CD-OWC, the full-scale natural period   is 

11.69 s, with a corresponding frequency at the 1:40-scale model of 

0.541 Hz. In the spar-buoy OWC, the natural period is 11.33 s for the 

full-scale design, which is equivalent to 0.558 Hz at 1:40-scale. 

Parameter Full-scale Idealised 1:40-scale CAD model Physical test model 

𝜆 [m] 51.0 1.275 1.275 1.277 
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Table 9 

Natural periods for selected degrees of freedom (DoF) obtained theoretically and experimentally, through testing of the CD-OWC and spar-buoy 

OWC models.  

DoF CD-OWC    Spar-buoy OWC                                                  

Theoretical Experimental   Theoretical Experimental   

Full-scale Model-scale Full-scale Full-scale Model-scale Full-scale 

Heave period [s] 46.2 7.1 44.8 9.1 1.6 9.7 

Surge period [s] 149.6 27.5 174.0 71.7 16.2 102.6 

Pitch period [s] 22.8 3.0 18.7 29.8 5.6 35.2 

 
4.2. Capture width ratio 

Regular wave tests were performed to characterise the performance 

of the device in terms of capture width ratio (CWR) and response 

amplitude operators (RAOs) curves. The CWR shows the ratio be- 

tween the time-averaged pneumatic power (𝜆𝜆) and the time-averaged 

wave  power  per  unit  crest  length  (𝜆𝜆
w),  non-dimensionalised  by  the 

characteristic length of the device (𝜆), as follows, 

CWR = 
  𝜆𝜆    

, (1) 
𝜆 𝜆w    

𝜆 = 𝜆𝜆𝜆 = 𝜆𝜆𝜆 𝜆   
2𝜆𝜆 

, (2) 
𝜆air 

where 𝜆𝜆 is the measured pressure drop between the air-chamber and 

the atmosphere, with 𝜆air assumed as 1.225 kg/m3, 𝜆o represents the 

orifice area of the upper air chamber’s plate. In addition, 𝜆d represents 

the discharge coefficient, which has a value of 0.69, obtained through 

calibration of the orifice plates [46]. 

For regular waves, the incident wave power per unit crest length is 

computed as 

𝜆w =  
1 

𝜆w𝜆𝜆2 𝜆g, (3) 
 

 

Fig. 12. Capture width ratio for both coaxial-duct and spar-buoy OWCs for regular 

waves with 𝜆 = 0.05 m. 

2 w 

where 𝜆w is the density of water, 𝜆w is the wave amplitude, and 𝜆g is the 

group velocity [51]. 

The capture width for the CD-OWC was non-dimensionalised by the 

diameter of the outer tube 𝜆 = 0.34 m, while for the spar-buoy OWC the 

floater diameter 𝜆 = 0.30 m was used. The incident wave power, 

𝜆w, was computed for the incident regular wave conditions recorded 

during an extra set of tests performed without the devices. This was 

done with a water level gauge located where the devices would later be 

deployed. 

Fig. 12 shows the capture width ratio for both the coaxial-duct and 

the spar-buoy OWCs with a wave height 𝜆 = 0.05 m. For the spar-buoy, 

the curve of CWR versus frequency has a peak at 𝜆 = 0.620 Hz. Close to 

the right of the peak, at 𝜆 = 0.630 Hz there is efficiency drop that may 

be explained by the occurrence of cross-waves observed in the basin. 

Cross waves had already been observed in the basin as reported in 

Ref. [52]. They occurred when the basin width is a multiple of half 

wavelength, namely for frequencies 0.38, 0.44, 0.63 and 0.97 Hz [52]. 

Cross waves of frequency 0.63 Hz were visible in the basin free surface 

for several minutes after the wavemaker shutdown. Cross waves were 

also found to occur in irregular waves, but it is difficult to predict their 

effects on the converter performance [52]. The limited width of the 

wave tanks makes the occurrence of cross waves difficult to avoid. This 

effect was also studied experimentally at a smaller scale model of the 

spar-buoy OWC [23]. 

The power output of both devices was negligible outside the fre- 

quency range 0.450 < 𝜆 < 0.900 Hz. Close to the water column natural 

frequency 𝜆 = 0.550 Hz local peaks are seen to occur, see Fig. 12. The 

effect of the cross waves was detected in the RAOs. 

4.2.1. Capture width ratio as affected by the vertical position of the CD- 

OWC in water 

A very small crack was detected in the bottom part of the CD-OWC 

model, which caused some water intrusion and a gradual increase in the 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 13. Capture width ratios for the coaxial-duct OWC in regular waves with 𝜆 = 

0.05 m and different frequencies. Series are separated by experimental day with marker 

colour denoting MWL-CoM distance. 

 
 

draught during the experiments. This effect was used to investigate how 

the CWR was affected by changes in the draught. Since the CD-OWC 

behaves as a semi-submersible device, the draught is very sensitive to 

small changes in its mass. In the following subsections, this issue is 

discussed. 

Generally, there is a peak in the CWR between 𝜆 = 0.500 and 0.600 

Hz, and a drop in the CWR for 𝜆 = 0.630 and 0.640 Hz for two of the 

three experiments. Fig. 13 gives an indication of the performance in 

terms of the draught. When the MWL-CoM distance was about 730 mm, 

the CWR peaked at 𝜆 = 0.550 Hz and the curve is narrow. With a MWL-

CoM distance of around 630 mm, the peak of the capture width ratio 

was at 𝜆 = 0.575 Hz. The values of CWR at 𝜆 = 0.525 Hz are very 

different between the two curves. For the data with a MWL-CoM distance 

of around 630 mm, there are two data points at that frequency 
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Fig. 14. Capture width ratios for the coaxial-duct OWC for regular waves with 𝜆 = 

0.10 m and different frequencies. Series are separated by experimental day with marker 

colour denoting MWL-CoM distance. The markers’ diameter were set proportional to 

the distance MWL-CoM. 

 

Fig. 15. Capture width ratio for both coaxial-duct and spar-buoy OWCs for Pierson– 

Moskowitz spectra for various peak frequencies and significant wave height, 𝜆s = 

0.056 m. 

 

with the same value, and so it may be assumed that these represent the 

CWR values. Variations in the CWR peak frequency were expected since 

the OWC inertia increases with the draught, and therefore the natural 

frequency decreases. 

For the larger regular-wave-height tests (𝜆  =  0.1 m), there was  less 

variation in the MWL-CoM distance, and this resulted in a more 

consistent CWR curve as shown in Fig. 14. The capture width data was 

plotted against input frequency with the markers colour-coded based on 

the MWL-CoM value. The grey curve connects plotted points from the 

same day and is included to aid interpretation. 

As with the smaller wave height, three experiments were conducted 

for frequencies in the range of 𝜆 = 0.525 and 0.725 Hz. The repeatabil- 

ity of the experiments is good, but exceptions are apparent where there 

is a difference in the MWL-CoM value, such as between 𝜆 = 0.600 and 

0.650 Hz. At 𝜆 = 0.600 Hz, the drop in CWR is associated with a larger 

MWL-CoM value, and this is the result of an experiment run after the first 

survivability wave test; the increased motion and wave loading may 

have permitted more water to enter into the device, causing an increase 

in the MWL-CoM value and a drop in CWR. The latter is important to 

remark that sometimes the sequence of experiments is important. At 𝜆 

= 0.625 Hz, the higher marker represents data from  two experiments 

with the same value. Here, a larger MWL-CoM value 

 

 
Fig. 16. RAOs for heave, surge and pitch for CD-OWC and spar-buoy OWC  under 

regular waves. The CD-OWC was tested for two wave heights 𝜆 = 0.05 m and 

𝜆 = 0.10 m, while the spar-buoy OWC was tested only for 𝜆 = 0.05 m. 

 
 

resulted in a larger CWR. Subsequently, for frequencies up to 𝜆 = 

0.725 Hz, larger MWL-CoM values are associated with lower CWRs. 

 
4.2.2. Capture width ratio under irregular waves 

Irregular wave tests were performed on both devices for 10 min, 

which represents approximately one hour at full-scale under opera- 

tional conditions. Fig. 15 shows results of CWR for irregular waves. 

Presented values are the average of three tests data. The spar-buoy 

OWC presents a larger CWR than the CD-OWC, for all peak frequencies. 

This was already expected from the analysis of the regular-wave CWR 

values, where the spar-buoy OWC out-performed the CD-OWC for all 

frequencies (Fig. 12). 

In the case of the spar-buoy OWC, the highest CWR value is obtained 

at a peak frequency of 0.518 Hz, which corresponds to an energy 

frequency of around 0.610 Hz. This energy frequency is close to the 

natural frequency in heave of the spar-buoy, and it is within the 
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Fig. 17. The spar-buoy model during the survivability test with 𝜆s = 0.325 m and 𝜆p = 2.91 s. 

 

Fig. 18.  The CD-OWC model during the survivability test with 𝜆s = 0.325 m and 𝜆p =  2.91 s. 

 

region of highest CWR under regular waves, as presented in Fig. 12. 

Therefore, the most relevant frequency components of this spectrum 

(peak frequency of 0.518 Hz) are expected to induce a better irregular- 

wave performance, as seen in Fig. 15. For the CD-OWC, a flatter curve is 

observed with the highest CWR values at peak frequencies of 0.637 Hz 

and 0.518 Hz. 

4.3. Displacements 

The motion of the models in regular waves is commonly charac- 

terised through the RAOs. Displacement RAOs are defined as RAOi  = 

𝜆𝜆
i∕𝜆𝜆

𝜆,  for  𝜆  ∈   {1, 2, 3},  or  RAO𝜆  =   𝜆𝜆 𝜆 ∕𝜆𝜆
𝜆,  for  𝜆  ∈   {4, 5, 6},  where 

𝜆𝜆
i  represents the mean amplitude of mode 𝜆 (1 = surge, 2 = sway and 

3 = heave), 𝜆𝜆 𝜆  represents the mean rotation angle in degrees of mode 

𝜆 (4 = pitch, 5 = roll and 6 = yaw), and 𝜆𝜆
𝜆  the mean amplitude of the 

waves. The mean displacement amplitudes and rotation angles were 

obtained from a Fast Fourier Transform. 

The test result showed that the CD-OWC has lower displacement 

amplitudes than the spar-buoy OWC. This may represent an important 

competitive advantage for applications in sustainable multi-purpose 

platforms. Fig. 16 presents the RAOs for surge, heave and pitch for the 

two models tested under regular waves. Results for the RAOs of the CD-

OWC are presented for two wave heights (𝜆 = 0.05 and 0.10 m), and 

only one wave height (𝜆 = 0.05 m) for the spar-buoy. All results are 

within the limits of repeatability and the limits of the 6-DoF motion 

tracking system. 

It can be observed that the surge RAOs generally increase with the 

period up to 1.6, as should be expected due to the moorings presence. 

For the CD-OWC, the heave RAOs slowly increase with the frequency 

with a peak close to unity at 0.520 Hz, and then decreasing to zero. The 

spar-buoy has the highest values of RAOs in heave, attaining 

approximately 2.5 at 0.525 Hz. This is significantly larger compared with 

the CD-OWC. The pitch RAOs are very similar for both devices. It 

may be concluded that RAOs have larger amplitudes for the spar-buoy 

OWC than for the CD-OWC, specially in heave and surge, where CD- 

OWC heave/surge motion seem highly damped, as no clear resonance 

peak is visible. 

4.4. Survivability in extreme seas 

The survivability experiments subjected the devices to extreme 

irregular wave conditions by simulating a three-hour full-scale storm. 

Return periods of 10, 50 and 100 years were used to create the waves 

based on a Pierson–Moskovitz spectrum, defined by peak period 𝜆p and 

significant wave height 𝜆s. Wave overtopping on the devices was ex- 

pected and frequently occurred during the experiments, so performance 

data was not calculated. The large motions of the devices, coupled with 

the overtopping events, meant that the reflective markers on the models 

associated to the motion acquisition system were not always visible and 

some motion data had to be interpolated. 

The survivability tests performed for the spar-buoy OWC comprised 

a set of four cases: 

• 𝜆s = 0.300 m and 𝜆p =  2.72 s, 

• 𝜆s = 0.325 m and 𝜆p =  2.91 s, 

• 𝜆s = 0.350 m and 𝜆p =  3.06 s, 

• 𝜆s = 0.370 m and 𝜆p =  3.21 s. 

The survivability waves were run for around 30 min (at model-scale). The 

maximum tensions in the mooring lines were around  54.8 N (3422 kN 

at full-scale), measured in the lines facing the wave gener- ation system. 

Fig. 17 shows the spar-buoy OWC under extreme wave tests for 𝜆s = 

0.325 m and 𝜆p = 2.91 s. 

The survivability tests performed for the CD-OWC comprised a set 

of only two cases: 

• 𝜆s = 0.300 m and 𝜆p = 2.72 s, 
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• 𝜆s = 0.325 m and 𝜆p = 2.91 s. 

The survivability tests were abbreviated for this device due to time 

constraints in the availability of the basin. Tests were run for 30 min  (at 

model-scale). The maximum tensions were around 13 N at model- scale 

(812 kN at full-scale), measured in the lines facing the wavemaker for 𝜆s 

= 0.325 m and 𝜆p = 2.91 s. Fig. 18 shows the CD-OWC under extreme 

waves for the test where the maximum mooring tensions were 

registered. The results for the mooring line tensions show that the CD- 

OWC has lower peaks in comparison with the spar-buoy OWC, as a 

consequence of its smaller displacements. 

5. Conclusions 

This paper describes the steps and processes in the physical mod- 

elling of wave energy converters in general, with special focus on 

floating oscillating-water-columns (OWCs). The life cycle of wave en- 

ergy projects, the model design and the model testing sub-processes 

were firstly discussed for any wave energy project with a level of detail 

rarely found in the published literature. 

Model design and testing represent perhaps one of the most im- 

portant stages within the research and development of a wave energy 

converter. Decision-making needs are always present while testing in  a 

controlled facility/laboratory or offshore. A better knowledge of the 

processes involved reduces the risk of failures. Experienced gained   in 

the execution of past projects is valuable and may represent the 

difference between success and failure of an experimental campaign. 

There are several critical factors to be considered when planning   a 

test campaign. That includes not only the associated costs, but also the 

overall strategy, scope of tests, infrastructure selection, measuring 

instruments and acquisition equipment, plan of resources, risk man- 

agement, uncertainty analysis, and scheduling. People engaged in the 

experiments make decisions based on pre-established objectives of the 

tests. These decisions require specific skills and consciousness of the 

consequences of decisions before the laboratory or sea tests. 

Complementary guidance is obtained through the knowledge of: (i) 

the processes involved in wave energy projects, focusing on the sub- 

processes related to physical modelling; ii) the problems that may arise 

when designing physical models of wave energy converters; iii) the 

variables involved in the model design process; and (iv) the issues 

related to the model testing process. This guidance should prevent 

waste of time and money, and ensure that results are useful for the ob- 

jectives of internal and/or external stakeholders, such as the scientific 

community, academia, and investors/entrepreneurs. 

The main issues identified in the design and manufacture of the 

models, as well as in wave tank testing, were illustrated by two sets of 

tests at 1:40-scale physical models: a spar-buoy OWC and a coaxial-duct 

(CD) OWC. Results showed that the spar-buoy OWC has larger CWR 

for a wider range of frequencies under regular and irregular waves in 

comparison with the CD-OWC. The motion amplitudes of the CD-OWC 

are smaller than the spar-buoy OWC. This specific characteristic of the 

CD-OWC may be an advantage for certain offshore applications where 

large motion amplitudes are undesirable, such as offshore multi-use 

platforms. Survivability tests were also performed. The higher mooring 

loads were measured in the spar-buoy OWC model. 

Future work should address reductions in uncertainty, duration and 

costs of model-scale and full-scale testing. 
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