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Abstract 
 

Decentralised (or distributed) manufacturing that takes place close to the point of care has been a 
manufacturing paradigm of heightened interest within the cell therapy domain due to the product 
being living cell material and the need for highly monitored and temperature-controlled supply chain, 
which has the potential to benefit from the close proximity between manufacturing and application.    

To compare the operational feasibility and cost implications of manufacturing autologous CAR-T 
products between centralised and decentralised schemes, a discrete event simulation model was built 
using ExtendSIM 9 for simulating the patient-to-patient supply chain from the collection of patient 
cells to the final administration of the CAR-T therapy in hospitals. Simulations were carried out for 
hypothetical systems in the United Kingdom with three demand levels, low (100 patients per annum), 
anticipated (200 patients per annum) and high (500 patients per annum), in order to assess resource 
allocation, cost per treatment and system resilience to demand changes and to quantify the risks of 
mix-ups within the supply chain for the delivery of CAR-T treatments.  

The simulation results show that, whilst centralised manufacturing offers better economies of scale,  
individual facilities in a decentralised system can spread facility costs across a greater number of 
treatments and better utilise resources at high demand levels (annual demand of 500 patients), 
allowing an overall more comparable cost per treatment. In general, raw material and consumable 
costs have shown to be one of the greatest cost drivers, of which genetic modification associated costs 
have shown to account for over one-third of the raw material and consumable costs.  

Turnaround time per treatment for the decentralised scheme is shown to be consistently lower than 
its centralised counterpart, as there is no need for product freeze-thaw, packaging and transportation, 



although time savings is shown to be insignificant in the UK case study due to its rather compact 
geographical setting with well-established transportation networks. In both schemes, sterility testing 
lies on the critical path for treatment delivery and is shown to be critical for treatment turnaround 
time reduction.  

Considering both cost and treatment turnaround time, point-of-care manufacturing within the UK 
does not show great advantages over centralised manufacturing. However, further simulations using 
the model can be used to understand the feasibility of decentralised manufacturing in a larger 
geographical setting. 
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Introduction 
 
With the expanding catalogue of cell and gene therapy products such as the first autologous chimeric 
antigen receptor T (CAR-T) cell therapy (Kymriah) in August 2017 1 and Luxturna in November 2018 2, 
the cell and gene therapy industry is moving from bench to bedside. In this transition, post-approval 
challenges such as reimbursement, delivery and supply chain issues have proven to be a difficult 
hurdle for autologous therapies and were cited as one of the reasons for Dendreon’s commercial 
failure3.  
 
Traditionally, the biopharma industry has benefitted from the “Ford-ist” centralised manufacturing 
paradigm where the manufacturing is centralised, large-scale, highly efficient and standardised4. 
Through manufacture scale-up by moving from inefficient manual processes to automated large-scale 
bioreactors, manufacturers of biologics were able to bulk produce consistently complex biological 
products such as monoclonal antibodies and drive down the cost of goods, deliver effective 
treatments to patients 5, growing into an industry predicted to reach nearly $125 billion global annual 
sales in 20206,7. This manufacturing and distribution model has been shown to offer benefits such as 
more efficient resource planning, easier monitoring and reducing cost per treatment through 
spreading regulatory, equipment and capital costs over a large volume of products8. The 
manufacturing of autologous cell products such as those for CAR-T therapy, however, does not benefit 
from the same extent of economies of scale. Firstly, due to the autologous personalised nature, 
manufacturing has to be scaled out and not scaled up, i.e. by using multiple sets of equipment running 
in parallel instead of using single larger equipment to deliver more products 9–11. Secondly, autologous 
cell products are living cells that are very sensitive to environmental changes, have short shelf lives 
and are specific for patients. To enhance the flexibility of scheduling and manufacturing of these 
products, cryopreservation is usually performed12 and hence the products must be delivered in a 
highly regulated, temperature-controlled and time-efficient manner13. Thirdly, variability in donor-
specific raw material, manufacturing process, lot release testing and point-of-care handling and 
delivery techniques can all contribute to the product quality differences14.  
 
To tackle these challenges, the decentralised manufacturing model has been proposed as a potentially 
more attractive alternative to the centralised system 15,16. Decentralised or distributed manufacturing 
refers to a manufacturing paradigm with which manufacturing is smaller scale and distributed into a 



number of locations closer to end-users of the products17. This allows less transportation time and 
raw material/ product freeze-thaw cycles, hence reducing transportation-related costs and risks and 
preserving product quality. In other industries such as food18,19 and energy production20, decentralised 
manufacturing models have been evaluated with respect to economic costs, resource consumption 
and environmental impact [12], as well as supply chain reliability20. For the manufacturing of 
autologous cell therapies, Harrison et al. discussed the regulatory challenges and implications on the 
cost of goods 21,22. Using the United Kingdom (UK) as an example, Harrison et al. conducted a high-
level study on the hub-and-node model, where a ‘hub’ facility is responsible for support functions 
(administrative work, research and development, process development, etc.) and ‘node’ facilities are 
responsible for the manufacturing21. Their study looked into the cost disparity amongst different 
regions in the UK and compared different degrees of decentralisation of quality control (QC), with a 
hybrid QC model where part of the QC burden is centralised21. Referring to the European Union (EU) 
guidelines on Good Manufacturing Practices (GMP) of Advanced Therapy Medicinal Products (ATMP) 
issued in 2017, the “hub” site would need to hold the marketing authorisation and is responsible for 
the oversight of the “node” sites for batch certification, release and quality assurance audits. The 
Qualified Person (QP) can use data/information/batch record established in the “node” site to release 
the product, and all deviations and non-conformity in the process must be well-documented and 
reported back to the “hub” site23. 
While decentralised manufacturing has been studied for cell therapies, a comprehensive comparison 
with the centralised model with respect to not only costs but also other performance aspects is still 
lacking. For example, therapies such as CAR-T which are intended for patients in critical conditions, 
e.g. in late stages of cancer, the time for the overall needle-to-needle delivery (and the associated 
risks of manufacturing and logistic failure) is critical for the patient’s wellbeing. This was demonstrated 
in the ZUMA-1 trial, where out of 111 patients, 8% did not make the wait for treatment due to reasons 
including adverse events (3.6%), death from disease progression (0.9%) and non-measurable disease 
before conditioning chemotherapy (1.8%)24. Therefore, evaluation of distributed manufacturing in 
aspects associated with time criticality is important 25.  

This study aims to understand the operational performance of decentralised and centralised 
manufacturing with respect to the cost per treatment, resource utilisation, time required from 
collection to delivery, system performance under demand pressure and system resilience to risks such 
as mix-ups and equipment failure. In particular, the manufacturing of autologous CAR-T therapies in 
the UK is considered, with integrated and automated processing equipment, such as Miltenyi 
CliniMACS Prodigy (Miltenyi Biotec, Germany). Using closed and automated equipment reduces the 
hands-on time of highly skilled labour and manufacturing process variability26; the importance of using 
such equipment in decentralised manufacturing has previously been highlighted27,28. The quantitative 
assessment has been enabled by using a discrete-event simulation (DES) model built in this work. 

Discrete event simulation (DES) is a method of simulating the behaviour and performance of a real-
life process, facility or system. Modelling systems as a series of events over a time period, DES can be 
used to quantify risk of disruption on the supply chain and hence test strategies that can mitigate 
these risks and identify strategies for making the system more efficient in resource-use or cost29. It 
has been applied for complex systems in diverse fields including healthcare30–32, biofuels supply chain33 
and agriculture34–36. DES has also been used in biopharmaceutical companies such as Genentech for 
quantifying risks within their supply chain network and inform inventory decisions29. Autologous CAR-
T manufacturing and delivery is a process of a defined structure, but with uncertainty in process 
parameters and variable risks, for which we show in this work that DES can offer a realistic tool for the 
analysis of various decision alternatives, particularly for the comparison between centralised and 



decentralised paradigms. The learning from this work has the potential to inform the future decisions 
of relevant companies on the manufacturing paradigms for autologous cell therapies. 

Methods 
 
This section describes the process flow and performance indicators of a typical autologous CAR-T 
therapy from cell collection to final product delivery based on published literature. The data collection 
process, assumptions and parameters used for the UK case study and the method of cost calculations 
are also presented. The process flow and the associated parameters form the basis of a discrete event 
simulation model of the CAR-T therapy manufacturing and delivery, which has been used to support 
the evaluation of costs and other performance aspects of the centralised and decentralised systems.  
 
Process description 
A representative process flow of a CAR-T therapy delivery, as modelled in this work, is shown in Error! 
Reference source not found.37,38. A typical treatment process involves the patient first being treated 
at, or referred to, a designated approved treatment centre. Such centres have to be trained on 
processes for cell collection, cryopreservation, transport, chain of identity, safety management and 
logistics handling, and need to be FACT accredited39. If the CAR-T treatment is deemed suitable for the 
patient, the treatment centre will coordinate with a manufacturing centre to discuss whether there 
are available slots for processing. T cells will then be collected from the patient by leukapheresis at 
the treatment centre. These T cells will then be cryopreserved or frozen and packed for shipping via a 
qualified cold chain logistics provider which has to work closely with the treatment centre40. The 
shipping process for such temperature-sensitive patient live cells is monitored closely41. If at any point 
the process fails, on a case-by-case basis, the manufacturer decides whether to collect new samples 
from the patient or for the out-of-specification product to be administered through an expanded 
access protocol free of charge42. 
All starting materials, cells, consumables and reagents arriving at the manufacturing facility have to 
first be checked by the quality assurance team before entering the manufacturing process. Quality 
assurance (QA) plays an important role in autologous therapies to ensure all the processes conducted 
in parallel are produced in a consistent manner25. In the context of CAR-T manufacturing, it is to 
manage the batch record of each batch of product, visual inspection of materials and general 
production oversight. Quality Control (QC) tests to check for mycoplasma in the sample from donors 
are conducted upon receipt of sample. NAT-based mycoplasma testing is assumed to reduce the time 
required for testing43.  

The sample received is thawed and processed using an enclosed automated equipment where it is 
enriched and activated with CD3/CD28 conjugated beads before transduction with a lentiviral vector, 
which is then expanded, washed and formulated. The product is finally cryopreserved in vapor-phase 
liquid nitrogen for despatch. The expansion media used is prepared in an isolator in a Grade D 
environment or a biosafety cabinet in a Grade B cleanroom environment.  Throughout the 
manufacturing process, in-process control tests to check for viability, cell count and phenotype of the 
cells are conducted. The formulated product is subjected to QC release tests (Table 1) before getting 
released by the Quality Personnel (QP) 15,37. For the decentralised paradigm, the Qualified Person (QP) 
is shared across facilities in different geographical locations. In accordance with the Guidelines on 
Good Manufacturing Practice specific to Advanced Therapy Medicinal Products issued in 2017 by the 
commission of European Communities23, the QP can rely on data and information supplied by 
decentralised sites for batch release. 

Table	1	QC	testing	for	a	typical	autologous	CAR-T	product	39	



Test  Purpose 
Virology screening Ensure starting material is disease free 
Cell count and 
viability testing 

In-process: to ensure cell expansion process is as intended 
Product release: to check if cell count and viability meet specification 

Flow cytometry 
 

Determination of cell composition, viability and phenotypes (transduction, 
differentiation, proliferation capacity, exhaustion) 44  

Enzyme-linked 
immunosorbent 
assay (ELISA) 

Functional assay for gene expression levels 

Mycoplasma testing 
(PCR) 

Ensure raw material and product released are free of mycoplasma 
contamination 

Sterility testing Culture test to ensure product sterility 
Endotoxin testing Ensure product is free of endotoxins 

Throughout the manufacturing process, the treatment centre has to be updated with the progress in 
order to schedule pre-conditioning chemotherapy over 4 days for the patient 2 to 14 days before the 
infusion. Once the treatment centre is ready, the cryopreserved product is packaged into a liquid 
nitrogen dewar for despatch and sent to the treatment centre via a qualified cold chain logistics 
provider. The shipment is then received by the hospital, verified and prepared. The thawing of the 
product should be coordinated with the transfusion. The patient receives acetaminophen and an 
antihistamine 30-60 minutes before the CAR-T cells get administered through standard IV infusion 
which lasts less than 30 minutes. This procedure can be either in-patient or out-patient, but due to 
the risk of adverse reactions, emergency equipment and intensive care units should be available at 
the treatment centre41,45,46. 

The key performance indicators (KPIs) considered and the rationale for their consideration are shown 
in Table 2. Through simulation studies on systems with different configurations, this work predicts 
these KPIs and identifies the process bottlenecks for further optimisation. 

Table	2	Key	performance	indicators	and	rationale	for	choice	of	KPI	
Key performance indicator Rationale 
System throughput Maximise the total number of therapies delivered within the time 

horizon specified 
Cost of each therapy 
delivered 

Minimise the cost of each therapy 

Turnover of each therapy Minimise the time required for each therapy from needle-to-
needle: including cell collection, manufacturing, quality control and 
packaging and treatment delivery time  

Resource utilization:  
Personnel The higher the utilisation, the less wastage in the system 
Equipment The higher the utilisation, the less wastage in the system 



 
Figure	1	Typical	process	flow	of	a	CAR-T	therapy	delivery	(Green:	events	in	hospital/treatment	centre;	blue:	production	activities;	yellow:	QC	
activities



Data collection process 
 
The process flow, duration and material requirements were collected through review of literature (as 
cited in the process description section). 

One-on-one interview sessions were carried out with experts from four companies to supplement 
process data collected from literature. Process requirements and cost data for the manufacturing 
process and quality control panels were kindly provided by Miltenyi Biotec (Cologne, Germany). 
Logistics and supply chain related data were collected through discussion with a blockchain-based 
supply chain platform (Farmatrust, United Kingdom). Equipment cost data was provided by China 
Regenerative Medicine International (Hong Kong), a contract manufacturing facility based in Hong 
Kong. Environmental monitoring system design and cost assumptions were based on discussions with 
Pharmagraph (Wokingham, United Kingdom). 

Cost calculation 
Costs per treatment are calculated through the addition of all fixed and variable costs over a year 
divided by the total number of treatments delivered in the year. Cost assumptions are available in 
Appendix 2.  

Annual facility costs (F) 
The facility costs for hospitals (	"�#�) are calculated by multiplying the number of hours required 
for usage of an operating theatre (	#�$%�) by cost per hour (	ℎ�$%�) (Eq 1).  It is assumed that the 
preconditioning lymphodepleting therapy and the final transplant will be conducted in an operating 
theatre.  

Facility capital costs are proportional to the anticipated demand and manufacturing capacity. Facility 
costs for manufacturing (	"�'�) and QC facilities (	"�()�) are calculated by summation of capital 
costs and operating costs (Eq 2a-2c). Capital costs are based on floor space required by equipment 
multiplied by the number of each equipment (*) depreciation factor (+). One meter is allowed around 
width (,) and depth (-) of each equipment for exhaust. Extra working space for operation and 
cleaning and a GMP working space multiplier (g) is applied to account for indirect working space such 
as gowning activities (Eq 2a).  

Operational costs for manufacturing facilities are calculated based on the cleanroom classification and 
area (.) multiplied by the number of air changes required per hour for the cleanroom class, 	/�-� 
for Grade D and  	/�)0)� for CNC areas respectively, and the HVAC utility cost per square meter 
per hour (	c�HVAC�).  The Lang factor (Lf), a cost factor used for capital cost estimation, is applied to 
account for the installation and supporting costs of the equipment. (Eq 2d-e) 

The summation of all facility costs incurred in the hospital, manufacturing and QC gives the total 
facility cost (Eq 2f).  

 

	"�#� = 	#�$%� ∗ 	ℎ�$%� Eq	1	

	.�=,-� = 		��	(,�=,-�+ 1) ∗ (	-�=,-�+ 1)� ∗ 	*�=.-�� ∗ C Eq	2a	

	.�=,)0)� = 	��	(,�=,)0)�+ 1) ∗ (	-�=,)0)�+ 1) ∗ 	*�=,)0)�� Eq	2b	

	.�GH, )0)� = 	��	(,�GH, )0)�+ 1) ∗ (	-�GH, )0)�+ 1)� ∗ 	*�GH, )0)� Eq	2c	



	"�'� = 	.�=,-� ∗ I. ∗ 	)�-� ∗ + + 	.�=,)0)� ∗ I. ∗ 	)�)0)� ∗ + + J ∗
365 + 	.�=,-� ∗ 	ℎ�=� ∗ 	/�-� ∗ 	H�#N/)� ∗ 24 ∗
365 + 	.�=,)0)� ∗ 	ℎ�=� ∗ 	/�)0)� ∗ 	H�#N/)� ∗ 24 ∗ 365 

Eq	2d	

	"�()� = 	.�GH, )0)� ∗ I. ∗ 	)�)0)� ∗
+ + 	.�GH, )0)� ∗ 	ℎ�=� ∗ 	/�	)0�)�� ∗ 	H�#N/)� ∗ 24 ∗ 365	

Eq	2e	

	" = 	"�#�+ 	"�'�+ "�()� Eq	2f	

 

Annualised capital/equipment costs (E) 
All equipment is assumed to be depreciated over ten years, i.e. depreciation factor (+) assumed to be 
0.1. The total annualised equipment cost (R) is the summation of equipment used in the hospital 
(	R�ℎ�), manufacturing equipment in Grade D cleanrooms (	R�=,-�), manufacturing equipment in 
CNC cleanrooms (	R�=,)0)�), QC equipment in CNC cleanrooms (	R�GH, )0)�) and equipment for 
transportation (	R�S�) multiplied by the depreciation factor (+) (Eq 3). The list of equipment and their 
costs can be found in Appendix 2a. The number of integrated automated platforms (Prodigy, Miltenyi 
Biotec) available is pre-specified based on the anticipated demand level (Table 4). 

R = 	(R�ℎ�+ 	R�=,-�+ 	R�=,)0)�+ 	R�GH, )0)�+ 	R�S�) ∗ +	 Eq	3	

Annual maintenance and service contract costs (M) 
Maintenance and service contract costs per year (') are assumed to be 20% (=s) on the depreciated 
capital cost for both manufacturing equipment (	'�=�) (Eq 4a) and QC equipment (	'�GH�) (Eq 
4cError! Reference source not found.). The annual maintenance and service contract costs are given 
by the summation of both (Eq 4c) 
 
	'�=� = 		R�=,-�+ 	R�=,)0)�� ∗ =T 
 

Eq	4a	

	'�GH� = 	R�GH, )0)� ∗ =T Eq	4b	

	' = '�=�+ 	'�GH� Eq	4c	

Annual raw material/consumable costs (R)  
Raw material and consumables used throughout the supply chain including the hospital (	U�ℎ�), 
manufacturing (	U�=,-�, 	U�=,)0)�), QC (	U�GH, )0)�), transportation (	U�S�)  and personnel 
gowning (	U�CVW*�), are summed. The personnel gowning costs are given by the cost of each aseptic 
gown (	H�CVW*�) multiplied by the shifts of production staff (	T�X�) per day and the number of days 
in a year.  The costs are accumulated within the discrete event simulation over the course of a year, 
and is computed using Eq 5b. The list of raw materials and associated costs is provided in Appendix 
2a. 

	U�CVW*� = 	H�CVW*� ∗ 	T�X� ∗ 365 Eq	5a	

U = 	U�ℎ�+ 	U�=,-�+ 	U�=,)0)�+ 	U�GH, )0)�+ 	U�S�+ 	U�CVW*� Eq	5b	

 
To account for bulk material and equipment discounts, discounts are applied based on annual demand 
(Table 3).  

Annual demand Discount applied 



100 0% 
200 10% 
500 20% 

Table	3	Bulk	discounts	on	raw	material	and	equipment	

 

Annual labour costs 
Hospital based staff costs (	I�ℎ�) are calculated by the work hours (	ℎ�*ghTi�, 	ℎ�Xℎjh=jHkTST�, 
	ℎ�+VHSVh�, 	ℎ�TgXXVhS�) and the hourly costs of hospital staff including nurses (	I�ℎ, *ghTi�), 
pharmacists (	I�ℎ, Xℎjh=jHkTS�), doctors (	I�ℎ, +VHSVh�) and support staff (	I�ℎ, TgXXVhS�) (Eq 
6). Transportation-related labour costs (	I�S�) are calculated by logistics staff hourly rate (	I�lS�) 
multiplied by product transportation hours (	ℎ�S�) as shown in Eq 7. 

Manufacturing staff costs ( 	I�'� ) is given by the summation of the annual salaries of staff 
(production personnel (	I�m�), quality control personnel (	I�()�), quality assurance personnel 
(	I�(/�) and qualified person (	I�(m�)) multiplied by the number of shifts of the personnel per day 
(number of shifts of QC personnel per day ( 	T�m� ), number of shifts of QC personnel per day 
(	T�()�), number of shifts of QA personnel per day ( 	T�(/�), number of shifts of QP per day 
(	T�(m�)) as specified in Table 4. (Eq 8) 

	I�ℎ� = 	I�ℎ, *ghTi� ∗ 	ℎ�*ghTi�+ 	I�ℎ, Xℎjh=jHkTS� ∗ 	ℎ�Xℎjh=jHkTS�+ 	I�ℎ, +VHSVh� ∗ 	ℎ�+VHSVh�+ 	I�ℎ, TgXXVhS� ∗ 	ℎ�TgXXVhS� Eq	6 

	I�S� = 		I�lS� ∗ ℎ�S� 
 

Eq	7 

	I�=� = 		I�m� ∗ T�m�+ 		I�()� ∗ T�()�+ 		I�(m� ∗ T�(m�+ 		I�(/� ∗ T�(/� 
 

Eq	8 

 
Annual transportation costs 
Transportation costs (%U) are accounted for by the number of hours required (	ℎ�S�) and the cost 
per hour (	%U�S�) as the amount of fuel, cold chain maintenance is time dependent (Eq 9). While LN2 
shipping dewars are limited, limitations of lorry capacity are not considered.  
%U = 	%U�S� ∗ 	ℎ�S� 
 

Eq	9 

Total annual cost 
The total cost (%) ) is the summation of all aforementioned annual costs (Eq 10). The cost per 
treatment is the total cost per year divided by the total number of treatments delivered in the year 
(	%�ShijS=i*S�) (Eq 11).  
%) = 		"�#�+ "�'�+ 	"�()�+ R +' + U + 	I�ℎ�+ 	I�=�+ %U Eq	10 

	)�ShijS=i*S� = 	%)�	%�ShijS=i*S�� Eq	11 

 
Model implementation 
The discrete event simulation model was built with ExtendSim 9 (ImagineThat! Inc, San Jose, USA), 
which is a software platform purposefully built to model continuous, discrete event, discrete rate and 
agent-based systems47. The simulation was set up to run for 50 repeats. To look into a short-term 
operational decision, the time horizon of one year was selected for each of the studied scenarios. The 
adoption of the same random input variables between the centralised and decentralised schemes, for 



fair comparison, was ensured by using the same random seeds for a pair of demand scenarios. A first-
in-first-out approach is adopted for queues. On top of this, triangular distributions were applied on 
the patient interarrival times, unit operation process duration and risk of mix-ups to understand the 
risk and process robustness of these decision alternatives using Monte Carlo simulations. The 
assumptions and cost data used in this study can be found in Appendix 2. 
Results from the simulations were exported to Microsoft Excel 2016 (Microsoft Corporation, WA) for 
computing the cost of goods per treatment, treatment turnaround time and resource utilisation. 
 
Hypothetical case study 
The aim of the simulation case study is to develop a discrete event simulation to examine the 
needle-to-needle process of autologous CAR-T. A hypothetical case study with the United Kingdom 
as an exemplar is used and the results are compared with other published cost models. 

Case study set-up 

 
Figure	2	Distribution	of	advanced	treatment	centres	in	the	UK	

The UK has been chosen as a case study to demonstrate the application of the simulation model at 
several annual demand scenarios. In the UK, there are currently 10 advanced treatment centres. 
Figure 2 shows the distribution of these centres around the UK and the coordinates of these locations 
can be found in Appendix 1. The distance between the facility and treatment centre locations impacts 



the transportation time and hence related costs. For the centralised scheme, it is assumed that one 
facility will satisfy the demand from all the 10 advanced treatment centres while for the decentralised 
scheme, each treatment centre is assumed to have its own small-scale facility to meet its local demand 
(10 manufacturing facilities in total across the country) with a centralised QP for product release.  
 
The annual demand and the number of treatment centres are based on the draft interim specification 
for the delivery of CAR-T therapy for treatment of adult patients with relapsed or refractory large B-
cell lymphoma after two or more lines of systemic therapy, published by the NHS in 201748. The annual 
demand has been estimated to be around 200 cases per year. For this study, we have looked into 
three demand levels in terms of the number of patients per year: low demand (100), anticipated 
demand (200) and high demand (500). 
The assumed numbers of equipment and personnel shifts per day (8 hours per shift) for a total of 6 
scenarios are summarised in Table 4, defined by combining the centralised (“C”) and the decentralised 
“D” schemes with the three demand levels (100, 200, 500). To avoid mix-ups and potential of cross 
contamination, it is assumed that each production personnel can handle a maximum of two sets of 
integrated processing equipment at the same time during the core working hours from 08:00 to 24:00 
(personal communication, Miltenyi Biotec). A production personnel is tasked with handling emergency 
and alerts outside core working hours. To account for training hours, vacation and sick days, the 
maximum utilisation of personnel is set to be 80%. These values correspond to the minimal amount 
of resources needed to allow no system bottleneck and a reasonable level of equipment utilisation 
rates (80±2%) at the designated demand. 

Table	4	Resource	input	for	centralised	vs	decentralised	scenarios	for	different	demand	levels	

 C100 D100 C200 D200 C500 D500 
Production personnel (shifts per day) 5 30 5 50 21 50 
QC personnel (shifts per day) 5 30 5 30 5 30 
QA personnel (shifts per day) 1 10 1 10 1 10 
Qualified Person (QP)  1 1 1 1 1 1 
Integrated Processing equipment (#) 4 10 8 10 19 20 

 
Demand stress 
To investigate the impact of demand stress in case of poor estimation of demand at planning stage, 
we simulated  each scenario at its designated demand level, referred to as the base case (100, 200, or 
500 patients per year), and also at patient demand increased in 5%, 10%, 15%, 20%, 30% and 50%. As 
trained labour and equipment take time to become operationally ready, the availability of resources 
in each scenario is assumed unchanged with unexpected demand increase.  
 
Risk assumptions 
Quality risk points discussed by Trainor et al 25 are considered and risk probabilities are benchmarked 
and assigned based on published data. In this study, we simulated the risk of patient material mix up 
at two potential occurrences, hospital to facility and facility to hospital. The lower bound (0.02%) and 
higher bound (0.08%) of the risks were benchmarked against blood bag mix-ups documented by 
Bolton-Maggs et al49. Where mix-ups or failures occur, the batch will be reneged and discarded, as 
out-of-specification drugs cannot be sold42.  
 



Results 
This section will discuss the results of simulation and the observed trends in cost and resource 
utilisation, timeliness of delivery and response of the centralised and decentralised schemes under 
demand stress. 

Base case (under nominal demand levels): Cost and resource utilisation 
The costs per treatment for three demand levels, accounting for both hospital, manufacturing and 
transportation costs, are shown in Table 5. The per treatment costs range from around $70,336 in the 
high demand centralised manufacturing scenario to $166,750.3 in the low demand decentralised 
manufacturing scenario. The results are reasonably comparable with the previously estimated cost of 
around $95,780 per dose for autologous CAR-T [52], and are significantly higher than the costs 
estimated previously for allogeneic CAR-T cell therapy, e.g. around $7,000 to 8,000 ([51], not including 
hospital or transportation costs) and $4,460 [52] per dose.  Exact comparison of results from different 
studies can be difficult given their difference in the inclusion of various cost items. However, in general 
it is expected that autologous CAR-T is costlier than its allogeneic counterpart, as the latter allows 
better scale-up and production of off-the-shelf products. In both centralised and decentralised 
schemes, the per treatment cost is reduced as demand increases (Table 5Error! Reference source not 
found.). The required resources assumed for the decentralised scheme are greater than that for the 
centralised scheme to achieve the same production level (Table 4), hence the resource utilisation rates 
are lower except for production personnel at the high demand scenario (Figure 3A). 

As the demand increases, resources such as labour, equipment and facility can be better utilised and 
shared amongst more treatments (Figure 3A). This is particularly apparent for the decentralised cases, 
where smaller local facilities in hospitals can benefit from better utilisation of all resources, especially 
with the use of integrated process equipment (Prodigy).  

For decentralised manufacturing, there is a minimal number of equipment and personnel required at 
each facility and hence the utilisation rates of resources are low for demand levels of 100 and 200 
patients per year. The difference in utilisation rate of production personnel and equipment between 
decentralised and centralised schemes reduces as annual demand reduces, while the utilisation rate 
of QC and QA personnel for centralised manufacturing increases at a much faster rate than in the 
decentralised scheme (Figure 3B). It is noted at high demand level, production personnel and 
equipment are better utilised in the decentralised scheme. This is due to the constraint of maximum 
of 2 equipment handled per personnel to prevent cross-contamination and mix-ups. If the constraint 
is relaxed, it would be easier to utilise resources to a better extent. 

As the qualified person (QP) can sign off batches based on data sent from decentralised facilities, the 
utilisation rate of QP is based on the number of treatments delivered, hence there is no change in the 
utilisation rate of QP between centralised and decentralised facilities (Figure 3B). 

Table	5	Cost	breakdown	per	treatment	for	all	scenarios	

Scenario Centralised Decentralised 
Annual demand 100 200 500 100 200 500 
Raw material/Consumables 63,070.4 56,792.5 50,520.1 63,814.3 57,280.6 50,674.8 

Hospital 6,905.7 6,200.5 5,512.1 6,810.1 6,170.8 5,492.8 
Transportation - - - - - - 
Manufacturing 55,788.3 50,252.0 44,705.5 56,628.8 50,770.8 44,880.4 
QC 376.4 340.0 302.5 375.5 339.0 301.6 

Labour 6,024.6 3,807.8 3,486.0 26,818.6 16,138.8 7,918.1 



Hospital 960.6 956.2 956.3 986.4 987.3 988.6 
Transportation 288.9 30.4 331.0 - - - 
Manufacturing 1,797.1 1,291.9 1,576.6 10,720.8 7,365.3 3,754.4 
QC 2,978.0 1,529.2 622.1 15,111.3 7,786.2 3,175.1 

Capital/equipment cost 3,456.4 1,977.1 1,092.4 14,296.3 6,629.6 2,746.4 
Hospital 1,222.0 564.8 204.2 1,024.1 474.9 172.1 
Transportation 205.4 94.9 34.3 - - - 
Manufacturing 1,457.1 1,053.1 758.3 7,585.7 3,517.7 1,618.4 
QC 571.9 264.3 95.6 5,686.5 2,637.0 955.9 

Facility costs 39,691.9 29,962.1 15,036.4 59,166.7 36,164.9 22,686.6 
Hospital 11,715.2 11,715.2 11,715.2 11,715.2 11,715.2 11,715.2 
Transportation - - - - - - 
Manufacturing 26,654.1 17,567.7 3,044.9 46,252.3 23,831.8 10,719.4 
QC 1,322.6 679.1 276.3 1,199.2 617.9 252.0 

Transportation costs 30.3 64.1 30.5 - - - 
Hospital - - - - - - 
Transportation 30.3 64.1 30.5 - - - 
Manufacturing - - - - - - 
QC - - - - - - 

Others (Service and 
maintenance costs) 

405.8 263.5 170.8 2,654.4 1,230.9 514.8 

Hospital - - - - - - 
Transportation - - - - - - 
Manufacturing 291.4 210.6 151.7 1,517.1 703.5 323.7 
QC 114.4 52.9 19.1 1,137.3 527.4 191.2 

Total per treatment cost 112,679.5 92,867.0 70,336.2 166,750.3 117,444.9 84,540.8 

 



 

 

 

Figure	3	Resource	utilisation	in	centralised	and	decentralised	schemes.	A:	Resource	utilisation	
comparison	at	3	demand	levels;	B:	Difference	in	utilisation	rates	between	centralised	and	
decentralised	manufacturing	for	labour	and	manufacturing	equipment.	

 

System performance under demand stress 
As introduced earlier, demand stress is defined as unanticipated increase in demand which exceeds 
the planned capacity. This section considers the change in cost and resource utilisation as demand 
stress increases. 
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Cost per treatment 
The cost per treatment decreases initially as the system handles more treatments and hence the 
overall cost can be shared amongst more treatments (Figure 4

). As demand stress becomes greater, at 50% demand stress, in the centralised scheme, the per 
treatment cost increased by 1.8%, 2.6% and 11.5% for low, mid and high demand levels respectively; 
whereas for the decentralised scheme, the per treatment cost decreased for low and mid demand 
levels  by 11.6% and 8.3% and increased for high demand levels by 5.3%.  

It is shown that when subject to greater demand stress, the difference in the per-treatment cost for 
decentralised and centralised systems is reduced. This is due to the insufficient manufacturing 
capacity causing wait queues and resource occupation at the hospitals (Figure 5). The turning point 
corresponds with the resource utilisation and throughput to be discussed in the following section.   
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Figure	4	Cost	per	treatment	as	demand	stress	increases	for	centralised	(blue)	and	decentralised	
(orange)	manufacturing.	Triangle,	square	and	circle	markers	correspond	to	annual	demand	of	
100,	200	and	500	treatments,	respectively.	
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Figure	5	Cost	breakdown	for	annual	demand	200	patients	per	year.	(A)	Centralised;	(B)	
Decentralised	

 

Turnaround time per treatment 
With the proximity of patients and manufacturing facility, the need for cryopreservation and cold 
chain transportation in the decentralised setting can be reduced subject to risk assessment and quick 
detection strategies to assure sterility and hence the overall duration for decentralised manufacturing 
is generally shorter than that for centralised manufacturing (Figure 6). The duration of around 24-30 
days for the entire process from raw material collection to final delivery is consistent with the average 
time for Gilead’s Yescarta (26-29 days)50. 

At high demand stress, whilst the hospitals take a similar amount of time to process each patient, the 
manufacturing facility is unable to cope with the incoming material, which is predicted in the 
simulation to cause long queues and long waiting times. In reality, hospitals need to liaise with 
manufacturing facilities to ensure capacity before the cell collection process to ensure that the cells 
maintain good viability and the patients receive treatments in a timely manner. This also highlights 
the importance of patient scheduling. Cryopreservation of patient cells is done to allow more flexibility 
in the collection and delivery scheduling as implemented in this model.  

It is also noted, that the decentralised scheme has greater standard deviation values for the 
manufacturing turnaround time as demand stress increases (Figure 6). This is due to the assumption 
of different hospitals having different numbers of patients coming at various inter-arrival times. With 
greater demand fluctuations, the manufacturing equipment constraint can cause fluctuations of 
supply at individual facilities. 
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Figure	6	Duration	breakdown	for	centralised	vs	decentralised	manufacturing	at	various	annual	
demands.	(A)	100	treatments	per	year;	(B)	200	treatments	per	year;	(C)	500	treatments	per	
year.	

System Throughput and resource utilisation 
For centralised manufacturing, sharing of resources meant the overall manufacturing capacity 
(number of equipment and shift patterns) can be more tightly designed to meet the particular demand 
level. Consequently, as shown in Figure 7A-F, the centralised scheme can cope with less demand 
fluctuations. For lower nominal annual demand levels (Figure 7A, B), the drop-in system throughput 
is due to over-utilisation of equipment as demand stress increases from 20% to 30%. For higher 
nominal demand level (Figure 7C), the quality control facilities start to become a constraint and hence 
the drop in system throughput occurred at lower demand stress (between 10-20%).  

For the decentralised scheme, for low demand level (Figure 7D, E), the drop in system throughput only 
occurred between 30-40% while for high demand level (Figure 7F), the drop in system throughput 
occurred much earlier. This is due to the better utilisation of resources at higher demand decentralised 
scheme as shown in the previous section (Figure 3). 

0 10 20 30 40 50 60 70 80 90 100

Base case C
D

5% C
D

10% C
D

15% C
D

20% C
D

30% C
D

50% C
D

Duration (days)

De
m

an
d 

st
re

ss
Treatment turnaround time (Annual demand = 500 patients)

Cell collection Manufacturing QC and packaging Treatment delivery

C 

 



 

Figure	 7	 Resource	 utilisation	with	 demand	 stress.	 A-C:	 Centralised	manufacturing	 for	 annual	
demand	of	100,	200	and	500	treatments	per	year;	D-F:	Decentralised	manufacturing	for	annual	
demand	of	100,	200	and	500	treatments	per	year.	



 

Discussion 
 
Operational pain points for autologous cell therapy manufacturing 
  
One of the most critical steps in the production of CAR-T therapy is genetic modification and cell 
processing. In currently active clinical trials registered on clinicaltrials.gov that have reported their 
gene-editing method, 167 out of 179 trials employ a lentiviral or retroviral vector. The currently 
approved products Kymriah and Yescarta employ lentiviral and retroviral vectors respectively.  In Table 
5, it is shown that raw material and consumables costs are consistently significant costs, of which the 
reagents for lentiviral transduction costs account for over one-third of the raw material costs. 
Improvement in large-scale virus production processes 51,52 and cheaper CAR-gene insertion 
technologies such as electroporation and CRISPR/Cas systems can greatly lower the per unit treatment 
cost. 
 
Quality control has shown to be a bottleneck for the delivery time for CAR-T treatments53,54. The 
current pharmacopoeia requirement for sterility testing takes around 14 days for incubation55,56, 
although regulatory authorities such as US FDA and EMA allow use of sterility test results from 3 days 
pre-harvest, the QC process still take over 10 days to complete (Figure 6).  
Currently approved CAR-T products are cryopreserved for improved flexibility in scheduling, shipping 
delays12 and release testing. However, as CAR-T products consist of live cells, the quality of the product 
(viability of cells) may be compromised while being refrigerated or cryopreserved where the freeze-
thaw cycle have quality implications on the cells57. Whilst cryopreserved CAR-T cells have been shown 
to be comparable to fresh CAR-T cells and have demonstrated safety and efficacy58–60, studies have 
also shown that cryo-thawed CAR-Ts demonstrate elevated expression of apoptotic and cell cycle 
damage pathways compared with fresh CAR-Ts57. A point-of-care manufacturing approach allows 
better access to patients and less logistics delays and may allow fresh and better quality products to 
be used on patients60. Under circumstances where the benefits of providing a treatment that has not 
been fully tested outweighs the risks, it may be possible for the product to be used before completion 
of sterility testing. Under such circumstances, the rationale should be detailed in the risk assessment 
and strategies to assure sterility such as testing of media or intermediate products should be 
considered23. Non-culture, quick-detection methods such as gram staining61 or acridine orange 
staining in addition to sterility tests of in-process samples can be a possible solution subject to full 
validation62. Innovation in shortening the sterility testing turnaround time has shown promising 
results, reducing the length of test to 2 days63.   
Due to the autologous nature of CAR-T therapies, there are multiple handover points where mix-ups 
can occur. From the simulation results, due to the limited number of total treatments, the effect of 
mix-ups (estimated based on blood bag mix-up probabilities49) was shown to be minimal. In reality, 
regulatory authorities impose strict track-and-tracing requirements to ensure full proof of chain of 
identity23. On top of this, sensitive patient data is subject to HIPAA (US) or GDPR (EU) regulations64. 
Streamlining data management and proper handling of patient data have proven to be a challenge in 
CAR-T delivery65. 
The QC bottleneck has led to various discussions over the possibility of release by exception. Release 
by exception means to release a product automatically if the production process had no deviations 
from the characterised and documented manufacturing process66. This can potentially shorten the 
turnaround time of autologous cell therapies by over 50%. To facilitate release by exception, better 
in-process sensors by capturing the critical process parameters are required and other in-process 



testing methods such as Raman spectroscopy for monitoring molecular profiles and cell 
microenvironment will be of great importance67. 
 
Operational pain points for decentralised manufacturing 
This hypothetical case study serves to understand whether there is a case for point-of-care 
manufacturing of CAR-T products within the UK. 
Due to the niche indications and low demand levels, the general utilisation rates of facilities can be 
low as shown in the D100 scenario where resources were under-utilised and hence the per 
treatment cost was very high. Moreover, quality control testing equipment costs are shared 
amongst a very small number of treatments, making the system economically not viable. 

At higher demand levels, decentralised manufacturing proved more and more cost competitive as 
shown in Table 5. The difference in resource utilization between the centralised and decentralised 
scenario reduce as demand increases, allowing equipment and personnel to be better utilised at local 
facility levels (Figure 3).  As shown by the greater standard deviation in treatment turnaround time for 
the decentralised scenario (Figure 6), better scheduling of patient demand at hospitals and hence job 
dispatching can allow more efficient resource and equipment investment and utilisation within each 
decentralised facility. 
At lower demand levels for the decentralised manufacturing scheme, each hospital only has one 
integrated processing platform (Miltenyi Prodigy), hence equipment failure can have a greater impact 
on manufacturing. However, it is noted that the common practice for equipment maintenance in GMP 
setting for direct system impact equipment is to have a 24-hour service replacement contract in place. 
The replacement equipment will have to go through the installation and operational qualification 
(IQ/OQ) and a deviation report for equipment change should be raised. Subject to risk assessment of 
individual facilities, they may need additional performance validation prior to being used. 
In this case study, the end-to-end process is assumed to be completed in the United Kingdom. Harrison 
et al looked at the impact of offshore manufacturing, including the evaluation of resource cost 
discrepancies 68. It is also important to note that import and export processes across borders can add 
to the time required for the overall treatment. Extra personnel work hours may have to be allocated 
to preparing associated paperwork for Human Tissue Act compliance (for equivalent in other 
countries) 69. Such extensions could well alter the comparison between the centralised and 
decentralised schemes. In addition, extra costs incurred due to transhipment are not considered. 
 
Merits of decentralised manufacturing 
Within the UK, as transportation networks are well established, the effect of decentralisation has a 
relatively low impact on the overall turnaround time of treatments (Figure 6). However, when looking 
at regional centres where cell products may have to go through import and export procedures and 
airfreight, the impact of transportation, transhipment and associated costs with maintaining the ultra-
cold chain during transportation will be more apparent. 
If autologous CAR-T treatments are approved for less niche indications such as solid tumours70, the 
overall demand level for autologous treatments will be increased greatly. The effect of having greater 
flexibility and communication between the hospital and facility was not simulated in this study but 
was previously cited as one of the key merits of the decentralised paradigm71. As there is no need for 
freezing and thawing for products produced at the point-of-care, this can allow better quality product, 
better communication between patient’s medical team and the manufacturer and an overall more 
streamlined treatment experience. 
 



Using discrete event simulation for comparing centralised and decentralised manufacturing 
As shown in this study, discrete event simulation combined with scenario analysis allows the 
granularity of resource allocation to be studied. It could be particularly useful in planning parallel GMP 
production activities and understanding the production personnel requirement for optimisation.  
Scenario analysis allowed the study of various input variables for process optimisation for finding the 
process pain points and bottlenecks. 
 
Limitations 
 
This article provides insights on the operational pain points of centralised and decentralised 
manufacturing paradigms using closed, automated equipment to tightly control the manufacturing 
process and ensure comparability across facilities. Product quality impacts introduced in cell 
collection, freeze-thaw cycle of raw material and the reduced need of transportation are considered 
to a certain extent in the turnaround time attribute, which however is not able to capture all important 
aspects of production quality in this operation simulation model.  
The per treatment cost (	)�ShijS=i*S�) can be overestimated as cost of treatments that are still 
being processed at the cut-off time of one year are included in the total cost (Eq 11). The ramp-up 
period was considered relatively insignificant over the simulation duration of a year in this work and 
therefore not modelled specially. However, consideration of this period can become important for 
shorter simulations.   
As cost data for commercialised products are not publicly available, the model could not be validated 
with real world data. However, the results were benchmarked with other published models and have 
shown comparable results. 
 

Conclusions 
This article employed discrete event simulation to investigate and compare operational issues of 
centralised and decentralised manufacturing of autologous CAR-T therapies. As shown by the 
simulation, centralised manufacturing is a preferred option for lower demand levels (annual demand 
of 100-200 patients per year) due to better utilisation of resources which in turn provides cost savings. 
However, as the anticipated demand increases, the per-treatment cost between centralised and 
decentralised schemes converges, and the decentralised model becomes more comparable cost-wise. 
The decentralised model shows greater demand stress resilience and, as the demand level increases, 
resource utilisation improves within individual facilities and provides opportunity for economies of 
scale.  Quality control lies on the critical path for both centralised and decentralised schemes, more 
investigation in the potential of release by exception based on risk-benefit assessment should be 
conducted to shorten the time needed for testing. 

Considering both cost and treatment turnaround time, point-of-care manufacturing does not show 
great advantages over centralised manufacturing due to the relative short amount of time for product 
transportation required within the country. However, further studies on cross-border product 
manufacturing and treatment delivery may show greater promise for decentralised manufacturing. 

 

Acknowledgements 
The authors thank Dr Michael Schenk from Miltenyi Biotec (Germany), Miss Janice Wallace from 
Pharmagraph (United Kingdom) and Mr Najib Rehman from FarmaTrust (United Kingdom) and China 



Regenerative Medicine International (Hong Kong) for their expertise in equipment and supply chain 
workflow. 

 

Author contributions 
CL conceptualized and carried out the modelling work and wrote the manuscript. AY and ZFC provided 
supervision to model construction and simulation studies. EM, AY and ZFC provided comments to the 
manuscript for better relevance and clarity. All authors approved the final manuscript. 

 

Funding statement 
CL is funded by the CRMI-Oxford Technology Centre Studentship. The sponsor has no role in the study 
design, collection, analysis, interpretation of data and the decision in article submission. 

 

Declaration of Interests 
No relevant affiliations or financial involvement with any organization or entity with a financial interest 
in or financial conflict with the subject matter or materials discussed in the manuscript apart from 
those disclosed. 

 

References 
1.  Novartis. Novartis receives first ever FDA approval for a CAR-T cell therapy, Kymriah(TM) 

(CTL019), for children and young adults with B-cell ALL that is refractory or has relapsed at 
least twice | Novartis. https://www.novartis.com/news/media-releases/novartis-receives-
first-ever-fda-approval-car-t-cell-therapy-kymriahtm-ctl019. Published 2017. Accessed April 2, 
2018. 

2.  Spark Therapeutics. FDA Approves Spark Therapeutics’ LUXTURNATM (voretigene neparvovec-
rzyl), a One-time Gene Therapy for Patients with Confirmed Biallelic RPE65 Mutation-
associated Retinal Dystrophy | Spark Therapeutics Inc. – IR Site. http://ir.sparktx.com/news-
releases/news-release-details/fda-approves-spark-therapeutics-luxturnatm-voretigene-
neparvovec (Archived by WebCite® at http://www.webcitation.org/73nSoMzfQ). Accessed 
May 21, 2018. 

3.  Palmer E. Dendreon, done in by expensive, complex manufacturing, files for bankruptcy. 
FiercePharma. https://www.fiercepharma.com/supply-chain/dendreon-done-by-expensive-
complex-manufacturing-files-for-bankruptcy. Published 2014. Accessed July 14, 2019. 

4.  Krafcik JF. Triumph of the lean production system. Sloan Manage Rev. 1988;31(1):41-52. 
https://search.proquest.com/docview/224963951?pq-origsite=gscholar. Accessed July 15, 
2019. 

5.  Birch JR, Boraston R, Wood L. Bulk production of monoclonal antibodies in fermenters. 
Trends Biotechnol. 1985;3(7):162-166. doi:10.1016/0167-7799(85)90115-5 

6.  Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. 2015. 
doi:10.4161/19420862.2015.989042 

7.  Grilo AL, Mantalaris A. The Increasingly Human and Profitable Monoclonal Antibody Market. 
Trends Biotechnol. 2019;37(1):9-16. doi:10.1016/j.tibtech.2018.05.014 



8.  Vertès AA, Dowden NJ. History of monoclonal antibodies and lessons for the development of 
stem cell therapeutics. In: Stem Cells in Regenerative Medicine. Chichester, UK: John Wiley & 
Sons, Ltd; 2016:665-692. doi:10.1002/9781118846193.ch33 

9.  Eaker S, Armant M, Brandwein H, et al. Concise Review: Guidance in Developing 
Commercializable Autologous/Patient-Specific Cell Therapy Manufacturing. 
doi:10.5966/sctm.2013-0050 

10.  Hourd P, Ginty P, Chandra A, Williams DJ. Manufacturing models permitting roll out/scale out 
of clinically led autologous cell therapies: regulatory and scientific challenges for 
comparability. J Cytotherapy. 2014;16:1033-1047. doi:10.1016/j.jcyt.2014.03.005 

11.  Hourd P, Chandra A, Medcalf N, Williams DJ. Regulatory challenges for the manufacture and 
scale-out of autologous cell therapies | StemBook. StemBook. 2012:438-447. 
doi:10.3824/stembook.1.96.1.1 

12.  Tyagarajan S, Schmitt D, Acker C, Rutjens E. Autologous cryopreserved leukapheresis cellular 
material for chimeric antigen receptor–T cell manufacture. Cytotherapy. 2019;21(12):1198-
1205. doi:10.1016/j.jcyt.2019.10.005 

13.  O’Donnell DH. Commercially Successful Cell Therapies : Navigating the Ultra Cold Chain 
Distribution Minefield. http://blog.fisherbioservices.com/bid/304873/Commercially-
Successful-Cell-Therapies-Navigating-the-Ultra-Cold-Chain-Distribution-Minefield. Published 
2013. 

14.  Silverman LI, Flanagan F, Rodriguez-Granrose D, Simpson K, Saxon LH, Foley KT. Identifying 
and Managing Sources of Variability in Cell Therapy Manufacturing and Clinical Trials. Regen 
Eng Transl Med. 2019;5(4):354-361. doi:10.1007/s40883-019-00129-y 

15.  Kaiser AD, Assenmacher M, Schröder B, et al. Towards a commercial process for the 
manufacture of genetically modified T cells for therapy. Cancer Gene Ther. 2015;22(2):72-78. 
doi:10.1038/cgt.2014.78 

16.  Wei Teng C, Foley L, O’Neill P, Hicks C. An analysis of supply chain strategies in the 
regenerative medicine industry - Implications for future development. Int J Prod Econ. 
2014;149(March):211-225. doi:10.1016/j.ijpe.2013.06.006 

17.  Srai JS, Kumar M, Graham G, et al. Distributed manufacturing: scope, challenges and 
opportunities. Int J Prod Res. 2016;54(23):6917-6935. doi:10.1080/00207543.2016.1192302 

18.  De Silva PCP, De Silva PCA. Ipanera: An Industry 4.0 based architecture for distributed soil-less 
food production systems. 2016 Manuf Ind Eng Symp Innov Appl Ind MIES 2016. 
2016;(October):1-5. doi:10.1109/MIES.2016.7780266 

19.  López-Avilés A, Veldhuis AJ, Leach M, Yang A. Sustainable energy opportunities in localised 
food production and transportation: A case study of bread in the UK. Sustain Prod Consum. 
2019;20:98-116. doi:10.1016/j.spc.2019.05.004 

20.  Veldhuis AJ, Leach M, Yang A. The impact of increased decentralised generation on the 
reliability of an existing electricity network. Appl Energy. 2018;215:479-502. 
doi:10.1016/J.APENERGY.2018.02.009 

21.  Harrison RP, Rafiq QA, Medcalf N. Centralised versus decentralised manufacturing and the 
delivery of healthcare products: A United Kingdom exemplar. Cytotherapy. 2018;20(6):873-
890. doi:10.1016/j.jcyt.2018.05.003 

22.  Harrison RP, Ruck S, Medcalf N, Rafiq QA. Decentralized manufacturing of cell and gene 



therapies: Overcoming challenges and identifying opportunities. Cytotherapy. 
2017;19(10):1140-1151. doi:10.1016/j.jcyt.2017.07.005 

23.  The Commission Of the European Communities. Guidelines on Good Manufacturing Practice 
specific to Advanced Therapy Medicinal Products. EudraLex Rules Gov Med Prod Eur Union. 
2017;4(November 2017). https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-
4/2017_11_22_guidelines_gmp_for_atmps.pdf. Accessed April 2, 2019. 

24.  Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in 
Refractory Large B-Cell Lymphoma. N Engl J Med. 2017. doi:10.1056/NEJMoa1707447 

25.  Trainor N, Pietak A, Smith T. Rethinking clinical delivery of adult stem cell therapies. Nat 
Biotechnol. 2014;32(8):729-735. doi:10.1038/nbt.2970 

26.  Moutsatsou P, Ochs J, Schmitt RH, Hewitt CJ, Hanga MP. Automation in cell and gene therapy 
manufacturing: from past to future. Biotechnol Lett. 2019;41(11):1245-1253. 
doi:10.1007/s10529-019-02732-z 

27.  Harrison RP, Medcalf N, Rafiq QA. Cell therapy-processing economics: small-scale 
microfactories as a stepping stone toward large-scale macrofactories (Supplementaary 
tables). Regen Med. 2018;13(2):159-173. doi:10.2217/rme-2017-0103 

28.  Harrison RP, Rafiq QA, Medcalf N. Automating decentralized manufacturing of cell & gene 
therapy products. Cell Gene Ther Insights. 2016;2(1):115-120. doi:10.18609/cgti.2016.014 

29.  Schmitt AJ, Singh M. Quantifying supply chain disruption risk using Monte Carlo and discrete-
event simulation. Proc 2009 Winter Simul Conf. 2009:1237-1248. 
doi:10.1109/WSC.2009.5429561 

30.  Allen M, Spencer A, Gibson A, et al. HEALTH SERVICES AND DELIVERY RESEARCH Right cot, 
right place, right time: improving the design and organisation of neonatal care networks-a 
computer simulation study. 2015;3. doi:10.3310/hsdr03200 

31.  Duguay C, Chetouane F. Modeling and Improving Emergency Department Systems using 
Discrete Event Simulation. Simulation. 2007;83(4):311-320. doi:10.1177/0037549707083111 

32.  Günal MM, Pidd M, Gu M. Discrete event simulation for performance modelling in health 
care: a review of the literature. J Simul. 2010;4(1):42-51. doi:10.1057/jos.2009.25 

33.  Coperich K, Cudney E, Nembhard H. Simulation-based approach for the optimization of a 
biofuel supply chain. In: 2017 Industrial and Systems Engineering Conference. ; 2017. 
https://www.extendsim.com/images/downloads/academic/grants/chavez-paper.pdf. 
Accessed June 18, 2018. 

34.  Borodin V, Hnaien F, Labadie N, Bourtembourg J, Society AC. An Application of the Discrete 
Event Simulation for Efficient Crop Production Supply Chain Redesign.; 2014. 
https://hal.archives-ouvertes.fr/hal-01166598. Accessed August 3, 2018. 

35.  Rose DC, Sutherland WJ, Parker C, et al. Decision support tools for agriculture: Towards 
effective design and delivery. AGSY. 2016;149:165-174. doi:10.1016/j.agsy.2016.09.009 

36.  Arjona E, Bueno G, Salazar L. An Activity Simulation Model for the Analysis of the Harvesting 
and Transportation Systems of a Sugarcane Plantation. Vol 32.; 2001. 
www.elsevier.com/locate/compag. Accessed August 3, 2018. 

37.  Levine BL, Miskin J, Wonnacott K, Keir C. Global Manufacturing of CAR T Cell Therapy. Mol 
Ther - Methods Clin Dev. 2017;4(March):92-101. doi:10.1016/j.omtm.2016.12.006 



38.  Wang X, Rivière I. Clinical manufacturing of CAR T cells: Foundation of a promising therapy. 
Mol Ther - Oncolytics. 2016;3(February):1-7. doi:10.1038/mto.2016.15 

39.  FDA. CTL019 (Tisagenlecleucel) In Pediatric and Young Adult Patients with 
Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia CI-2.; 2017. 
https://www.fda.gov/downloads/advisorycommittees/committeesmeetingmaterials/drugs/o
ncologicdrugsadvisorycommittee/ucm567385.pdf. Accessed March 31, 2019. 

40.  Cryoport. Cryoport is the Complete Logistics Solution for Your Clinical Programs. 
https://www.cryoport.com/biological-shipping-blog/cryoport-practices-quality-by-design-
approache-when-developing-new-products-and-processes-0. Published 2017. Accessed 
March 5, 2019. 

41.  The KYMRIAH Experience. https://www.hcp.novartis.com/globalassets/products70/kymriah--
-full-site/ped-all/hcp-resources/kymriah-pall-manufacturing-brochure-digital.pdf. Accessed 
November 5, 2018. 

42.  Palmer E. Novartis, still struggling with Kymriah manufacturing, is providing some out-of-spec 
doses to patients who ask. FiercePharma. 2018. 
https://www.fiercepharma.com/manufacturing/novartis-still-struggling-kymriah-
manufacturing-providing-some-out-spec-doses-to. Accessed January 30, 2019. 

43.  Nübling CM, Baylis SA, Hanschmann K-M, et al. World Health Organization International 
Standard To Harmonize Assays for Detection of Mycoplasma DNA. 2015. 
doi:10.1128/AEM.01150-15 

44.  Jena B, Maiti S, Huls H, et al. Chimeric antigen receptor (CAR)-specific monoclonal antibody to 
detect CD19-specific T cells in clinical trials. PLoS One. 2013;8(3):e57838. 
doi:10.1371/journal.pone.0057838 

45.  Perica K, Curran KJ, Brentjens RJ, Giralt SA. Building a CAR Garage: Preparing for the Delivery 
of Commercial CAR T Products at Memorial Sloan Kettering Cancer Center. Biol Blood Marrow 
Transplant. 2018. doi:10.1016/j.bbmt.2018.02.018 

46.  FDA. Summary Basis for Regulatory Action for Kymriah.; 2017. 
https://www.fda.gov/downloads/BiologicsBloodVaccines/CellularGeneTherapyProducts/App
rovedProducts/UCM577221.pdf. Accessed January 30, 2019. 

47.  Diamond B, Krahl D, Nastasi A, Tag P. ExtendSim advanced techology: Integrated simulation 
database. In: Proceedings of the 2010 Winter Simulation Conference. IEEE; 2010:32-39. 
doi:10.1109/WSC.2010.5679178 

48.  NHS. (Draft Interim) Interim Specification for the Delivery of Axicabtagene Ciloleucel Chimeric 
Antigen Receptor T Cell (CAR T) Therapy for the Treatment of Adult Patients with Relapsed or 
Refractory Large B-Cell Lymphoma after Two or More Lines of Systemic Th.; 2017. 

49.  Bolton-Maggs PHB, Wood EM, Wiersum-Osselton JC. Wrong blood in tube - potential for 
serious outcomes: Can it be prevented? Br J Haematol. 2015;168(1):3-13. 
doi:10.1111/bjh.13137 

50.  Gilead produces 97% on-spec Yescarta. https://www.biopharma-
reporter.com/Article/2019/04/01/Gilead-produces-97-on-spec-Yescarta. Accessed May 25, 
2020. 

51.  Schweizer M, Merten O-W. Large-Scale Production Means for the Manufacturing of Lentiviral 
Vectors. Curr Gene Ther. 2010;10(6):474-486. doi:10.2174/156652310793797748 



52.  Sanber KS, Knight SB, Stephen SL, et al. Construction of stable packaging cell lines for clinical 
lentiviral vector production. Sci Rep. 2015;5(1):9021. doi:10.1038/srep09021 

53.  Malik N. Allogeneic Versus Autologous Stem-Cell Therapy A Comparison of Manufacturing 
Costs and Commercialization Challenges. BioPharm Int. 2012;(July). 

54.  Malik NN, Durdy MB. CAR T-cell therapies: formulation–product–proposition framework for 
commercialisation. Drug Discov Today. 2016;21(11). doi:10.1016/j.drudis.2016.09.008 

55.  Khuu HM, Patel N, Carter CS, Murray PR, Read EJ. Sterility testing of cell therapy products: 
Parallel comparison of automated methods with a CFR-compliant method. Transfusion. 
2006;46(12):2071-2082. doi:10.1111/j.1537-2995.2006.01041.x 

56.  Abou-El-Enein M, Römhild A, Kaiser D, et al. Good Manufacturing Practices (GMP) 
manufacturing of advanced therapy medicinal products: A novel tailored model for 
optimizing performance and estimating costs. Cytotherapy. 2013;15(3):362-383. 
doi:10.1016/j.jcyt.2012.09.006 

57.  Panch SR, Srivastava SK, Elavia N, et al. Effect of Cryopreservation on Autologous Chimeric 
Antigen Receptor T Cell Characteristics. Mol Ther. 2019;27:1275-1285. 

58.  Tyagarajan S, Schmitt D, Acker C, Rutjens E. Autologous cryopreserved leukapheresis cellular 
material for chimeric antigen receptor–T cell manufacture. Cytotherapy. 2019;21(12):1198-
1205. doi:10.1016/j.jcyt.2019.10.005 

59.  Kolkundkar U. Cell Therapy Manufacturing and Quality Control: Current Process and 
Regulatory Challenges. J Stem Cell Res Ther. 2014;04(09). doi:10.4172/2157-7633.1000230 

60.  Shah NN, Zhu F, Schneider D, et al. Fresh Versus Cryopreserved/Thawed Bispecific Anti-
CD19/CD20 CAR-T Cells for Relapsed, Refractory Non-Hodgkin Lymphoma. Blood. 
2019;134(Supplement_1):4465-4465. doi:10.1182/blood-2019-125328 

61.  Hollyman D, Stefanski J, Przybylowski M, et al. Manufacturing validation of biologically 
functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J 
Immunother. 2009;32(2):169-180. doi:10.1097/CJI.0b013e318194a6e8 

62.  Li Y, Huo Y, Yu L, Wang J. Quality Control and Nonclinical Research on CAR-T Cell Products: 
General Principles and Key Issues. Engineering. 2019;5(1):122-131. 
doi:10.1016/j.eng.2018.12.003 

63.  Lysák D, Holubová M, Bergerová T, et al. Validation of shortened 2-day sterility testing of 
mesenchymal stem cell-based therapeutic preparation on an automated culture system. Cell 
Tissue Bank. 2016;17(1):1-9. doi:10.1007/s10561-015-9522-9 

64.  Morrison M, Bell J, George C, Harmon S, Munsie M, Kaye J. The European General Data 
Protection Regulation: challenges and considerations for iPSC researchers and biobanks. 
Regen Med. 2017;12(6):693-703. doi:10.2217/rme-2017-0068 

65.  Bell J. CAR-T ups challenges in pharma supply chain. BioPharma Dive. 
https://www.biopharmadive.com/news/car-t-supply-chain-cell-therapy-challenges-
pharma/521560/. Published 2018. Accessed October 9, 2019. 

66.  Enabling Release by Exception Manufacturing - Emerson Automation Experts. 
https://www.emersonautomationexperts.com/2014/industry/life-sciences/enabling-release-
by-exception-manufacturing/. Accessed August 7, 2019. 

67.  Cialla-May D, Zheng XS, Weber K, Popp J. Recent progress in surface-enhanced Raman 
spectroscopy for biological and biomedical applications: From cells to clinics. Chem Soc Rev. 



2017;46(13):3945-3961. doi:10.1039/c7cs00172j 

68.  Harrison RP, Zylberberg E, Ellison S, Levine BL. Chimeric antigen receptor–T cell therapy 
manufacturing: modelling the effect of offshore production on aggregate cost of goods. 
Cytotherapy. 2019. doi:10.1016/j.jcyt.2019.01.003 

69.  Legislation.gov.uk. Human Tissue Act 2004. Vol 72.; 2004:148-150. 

70.  Martinez M, Moon EK. CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, 
and Surviving in the Tumor Microenvironment. Front Immunol. 2019;10:128. 
doi:10.3389/fimmu.2019.00128 

71.  Group S, Zareiyan B, Korjani M. Blockchain Technology for Global Decentralized 
Manufacturing: Challenges and Solutions for Supply Chain in Fourth Industrial Revolution. 
2018. doi:10.15226/2473-3032/3/1/00135 

72.  Tribe MA, Alpine RLW. Scale economies and the “0.6 rule.” Eng Costs Prod Econ. 
1986;10(4):271-278. doi:10.1016/S0167-188X(86)80025-8 

Appendix 1: Distribution of treatment centres in the United Kingdom 

Name Type Location 
x-coordinate y-coordinate 

Catapult Cell and Gene Therepy Manufacturing centre -0.200701298 51.8851217 
Great Ormond Street Hospital Treatment centre -0.1207462 51.5218626 

University College London Hospital Treatment centre -0.1229515 51.5219385 
King's College Hospital Treatment centre -0.0943969 51.4679288 

University Hospitals Bristol NHS 
Foundation Trust 

Treatment centre -2.5944794 51.4599695 

The Christie NHS Foundation Trust Treatment centre -2.2304081 53.4299659 
Royal Manchester Children's Hospital Treatment centre -2.2249666 53.4601835 

Manchester Royal Infirmary Treatment centre -2.2261188 53.462879 
Queen Elizabeth Hospital Treatment centre -1.944448 52.450565 

Great North Children's Hospital Treatment centre -1.6179465 54.979611 
Newcastle Freeman Hospital Treatment centre -1.5929456 55.0030284 

 

Appendix 2: Cost and production duration data 

2a. Cost data in USD 

)VTS	Xih	~ijh = )jXkSjl	HVTS ∗ +iXhiHkjSkV*	.jHSVh 

Resource 
type 

Resource Name Cost per 
year 

Cost per 
hour 

Cost per 
use 

Cost per 
day 

Cost per 
item 

Consumables Liquid nitrogen 
  

10 
  

Consumables Liquid nitrogen 
 

0.5 
   

Consumables Sepax consumables kit 
  

100 
  

Consumables Mycoplasma detection kit 
    

31.55 
Consumables Clinimacs reagent 

    
2156.76 

Consumables Leukapheresis kit 
    

2000 
Consumables Expansion media 

   
28 

 

Consumables Transduction kit 
    

627.9 
Consumables T-cell activation kit 

    
2156.76 

Consumables Prodigy kit 
    

3179 
Consumables Aseptic gowning  

    
7.5 

Equipment Shipping container 63.5 
    



Equipment Sepax 5000 
    

Equipment Clinimacs Prodigy 20000 
    

Equipment Barcode reader 120 
    

Equipment Peltier block 180 
    

Equipment Microscope 1100 
    

Equipment Vi-cell 6550 
    

Equipment Flow cytometer 6550 
    

Equipment PCR 5898 
    

Equipment ELISA plate reader 5000 
    

Equipment Isolator-2 glove 23834 
    

Equipment Incubator 2300 
    

Equipment Endosafe 1214.5 
    

Equipment BacT-alert 3250 
    

Equipment Refridgerator 720 
    

Equipment Barcode reader 120 
    

Equipment Freezer (-20) 720 
    

Equipment freezer (-80) 720 
    

Equipment Peltier block 180 
    

Equipment Isolator-2 glove 23834 
    

Equipment CRF (facility) 1600 
    

Equipment Cryogenic freezer 3000 
    

Equipment Autoclave 28000 
    

Facility Annual revalidation 25000 
    

Facility Utility cost (per m2) 
 

0.00588 
   

Facility EMS – handheld portable 
particle counter 

300     

Facility EMS – annual calibration 
and maintenance cost 

5000     

Hospital Operation theatre cost 
 

1562.03 
   

Hospital Emergency and intensive 
care 

 
125 

  
 

Hospital Lymphodepletion jabs 
  

1562.03 
  

Personnel Nurses 
 

30.24 
   

Personnel Chief surgeon 
 

167.92 
   

Personnel Pharmacist 
 

33.3 
   

Personnel Logistics technicians 
 

25 
   

Personnel Clinical support worker 
 

28.64 
   

Personnel QC personnel 35000 
    

Personnel Production personnel 35000 
    

Personnel QP 80000 
    

Personnel QA personnel 35000 
    

Transport Transportation cost 
 

20 
   

 

Facility EMS assumptions 

The cost of facility environmental monitoring system is dependent on the type of data monitored, 
number of equipment requiring temperature monitoring (e.g. incubator, fridges), humidity 
monitoring, pressure and particle monitoring.  

As the process modelled is a closed automated system, it is assumed that only temperature and 
pressure monitoring is required for the Grade D cleanroom. A portable particle sensor is used for 
monitoring particle count within the Grade D rooms. 



An example quote for an EMS system with software, validation documents and system commissioning 
for a Grade D room with room sensors (temperature and pressure) and temperature sensors for the 
following 11 equipment is £13,000/$16,000 (provided by Pharmagraph (United Kingdom)) and an 
installation cost of £2,000/$2,500: 

2 x incubators 

2 x Fridges 

2 x -20 Freezers 

2 x -80 Freezers 

1 x Controlled rate freezer 

2 x Cryofreezer 

Ongoing calibration and maintenance cost contract would be around £4,000/$5000 per year. 

As a rough guide, the “0.6 rule” usually used for production processes scale economies is applied for 
scaling up the EMS system72: 

R'�	)jXkSjl	HVTS = 18500 ∗ 	(	#	V.	iGgkX=i*S�11�)�0.6� 

2b. Process duration data 

Location Activity Value Unit 
Hospital Leukapheresis 30 minutes 
Hospital Documentation of collected cells Tr(20,30,45) minutes 
Hospital Controlled rate freezing of collected cells Tr(4,5,6) hours 
Hospital Lymphodepleting therapy (prep) 10 minutes 
Hospital Lymphodepleting therapy (Day 1) Tr(1,1.5,2) hours 
Hospital Lymphodepleting therapy (Day 2) Tr(1,1.5,2) hours 
Hospital Lymphodepleting therapy (Day 3) Tr(1,1.5,2) hours 
Hospital Lymphodepleting therapy (Day 4) Tr(1,1.5,2) hours 
Hospital Product preparation before transplant Tr(1,1.5,2) hours 
Hospital Transplant Tr(1,1.5,2) hours 

Transportation Transportation 
(dependent on 

location) hours 
Manufacturing Visual inspection Tr(0.1,0.2,0.5) hours 
Manufacturing Batch record creation Tr(0.1,0.2,0.5) hours 
Manufacturing Patient cell sample prep Tr(0.1,0.2,0.5) hours 
Manufacturing Patient cell thaw Tr(0.5,0.75,1) hours 

Prodigy Prodigy set up 30 minutes 
Prodigy Tubing set priming 30 minutes 
Prodigy Sample and reagent prep for Prodigy 30 minutes 
Prodigy T cell selection Tr(1.5,2,2.5) hours 
Prodigy Activation (program) 20 minutes 
Prodigy T cell activation Tr(0.5,0.75,1) days 
Prodigy Transduction (program) 10 minutes 
Prodigy Transduction Tr(0.9,1,1.1) days 



Prodigy Sampling post-transduction Tr(0.2,0.35,0.5) hours 
Prodigy Expansion check 10 minutes 
Prodigy Expansion 9 days 
Prodigy Sampling in expansion phase Tr(0.2,0.35,0.5) hours 
Prodigy Formulation (program) 15 minutes 
Prodigy Formulation 2 hours 
Prodigy Remove product 15 minutes 
Prodigy Remove kit 15 minutes 

Manufacturing Controlled rate freezing of product (prep) 10 minutes 
Manufacturing CRF of product Tr(4,5,6) hours 
Manufacturing Batch record check  Tr(1,2,3) hours 
Manufacturing QP sign off Tr(1,2,3) hours 

QC Virology screening (prep) Tr(1.5,2,2.5) hours 
QC Virology screening Tr(11,12,13) hours 
QC Virology report documentation Tr(0.25,0.4,0.5) hours 
QC Viability, cell count  0.18 hours 
QC Flow cytometry (phenotype) 0.18 hours 
QC Mycoplasma PCR (prep) Tr(0.4,0.5,0.6) hours 
QC Mycoplasma PCR Tr(2,2.5,3) hours 
QC Mycoplasma PCR (report) Tr(0.25,0.4,0.5) hours 
QC ELISA (surface protein testing) 2 hours 
QC Sterilty testing sample prep on agar Tr(0.3,0.5,0.7) hours 
QC Sterilty testing (incubator) Tr(13.9,14,14.1) days 
QC Sterility testing report Tr(0.15,0.2,0.25) hours 
QC Endosafe Tr(0.4,0.5,0.75) hours 

 

  



Appendix 3: Definitions of terms introduced in equations 

	A�CNC� Number of required air changes per hour for CNC cleanroom 
	/�-� Number of required air changes per hour for Grade D cleanroom 
	H�CVW*� Cost per aseptic gown ($) 
	H�#N/)� Air change cost per m3 per hour ($) 
	)�)0)� Capital cost per m2 of CNC clean rooms($) 
	)�-� Capital cost per m2 of Grade D clean rooms ($) 
	)�ShijS=i*S� Cost per treatment ($) 
+ Depreciation factor (over 10 years) 
	-�=,)0)� Depth of manufacturing equipment in CNC areas (m) 
	-�=,-� Depth of manufacturing equipment in Grade D areas (m) 
	-�GH, )0)� Depth of QC equipment in CNC areas (m) 
R Capital/equipment cost per year ($) 
	R�ℎ� Total hospital equipment cost ($) 
	R�=,-� Total manufacturing equipment in Grade D cleanroom cost ($) 
	R�=,)0)� Total manufacturing equipment in CNC cleanroom cost ($) 
	R�GH, )0)� Total QC equipment in CNC cleanroom cost ($) 
	R�S� Total transportation equipment cost ($) 
	"�#� Facility costs for hospitals per year ($) 
	"�'� Facility cost for manufacturing per year ($) 
	"�()� Facility cost for QC per year ($) 
	.�=,)0)� Manufacturing floor space Controlled not classified (CNC) 
	.�=,-� Manufacturing floor space (Grade D) (m2) 
	.�GH, )0)� QC floor space Controlled not classified (CNC) 
C GMP working space multiplier 
	ℎ�S� Transportation hours per year (h) 
	ℎ�=� Height of cleanroom (m) 
	ℎ�$%� Operating theatre cost per hour ($) 
	#�$%� Hours spent in an operating theatre (h) 
I. Lang factor for cell therapy facilities 
	I�ℎ� Hospital labour costs per year ($) 
	I�ℎ, *ghTi� Hours worked by nurses per year (h) 
	ℎ�*ghTi� Hourly rate of nurses ($) 
	I�ℎ, Xℎjh=jHkTST� Hours worked by pharmacists per year (h) 
	ℎ�Xℎjh=jHkTST� Hourly rate of pharmacists ($) 
	I�ℎ, +VHSVh� Hours worked by doctors per year (h) 
	ℎ�+VHSVh� Hourly rate of doctors ($) 
	I�ℎ, TgXXVhS� Hours worked by support staff per year (h) 
	ℎ�TgXXVhS� Hourly rate of support staff ($) 
	I�S� Transportation labour cost per year ($) 
	I�lS� Hours worked by logistics technician per year (h) 
	ℎ�lS� Hourly rate of logistics technician ($) 
	I�=� Manufacturing labour costs per year ($) 
	I�X� Annual salary of production personnel ($) 
	I�()� Annual salary of QC personnel ($) 
	I�(/� Annual salary of QA personnel ($) 



	I�(m� Annual salary of QP ($) 
' Maintenance costs per year ($) 
	'�=� Maintenance costs for manufacturing per year ($) 
	'�GH� Maintenance costs for QC ($) 
=T Maintenance and service rate 
	*�=,-� Number of equipment for manufacturing in Grade D areas 
	*�=,)0)� Number of equipment for manufacturing in CNC areas 
	*�GH, )0)� Number of equipment for quality control in CNC areas 
U Raw material costs per year ($) 
	U�ℎ� Raw material cost for processes in hospital per year ($) 
	U�=,-� Raw material cost for manufacturing processes in Grade D cleanroom per year ($) 
	U�=,)0)� Raw material cost for manufacturing processes in CNC cleanroom per year ($) 
	U�GH, )0)� Raw material cost for QC processes in CNC cleanroom per year ($) 
	U�S� Raw material cost for transportation per year ($) 
	T�X� Number of shifts of production personnel per day 
	T�()� Number of shifts of QC personnel per day 
	T�(/� Number of shifts of QA personnel per day 
	T�(m� Number of shifts of QP per day 
%U Transportation cost per year ($) 
	%U�S� Transportation cost per hour ($) 
%) Total cost ($) 
	%�ShijS=i*S� Total number of treatment 
J Annual revalidation cost (HEPA recertification) ($) 
	,�=,)0)� Width of manufacturing equipment in CNC areas (m) 
	,�=,-� Width of manufacturing equipment in Grade D areas (m) 
	,�GH, )0)� Width of QC equipment in CNC areas (m) 

  



Appendix 4: Patient arrival schedule Triangular distribution of number of days in between patient arrival. 

4a. Annual demand of 100 patients 

Hospital 1 2 3 4 5 
Triangular 

Distribution 
min max Most 

likely 
min max Most 

likely 
min max Most 

likely 
min max Most 

likely 
min max Most 

likely 
Base Case 20.0 48.0 32.0 30.0 50.0 44.0 24.0 40.0 36.0 20.0 40.0 30.0 30.0 80.0 48.0 

5% 19.0 45.6 30.4 28.5 47.5 41.8 22.8 38.0 34.2 19.0 38.0 28.5 28.5 76.0 45.6 
10% 18.0 43.2 28.8 27.0 45.0 39.6 21.6 36.0 32.4 18.0 36.0 27.0 27.0 72.0 43.2 
15% 17.0 41.0 27.2 25.5 42.5 37.4 20.4 34.0 30.6 17.0 34.0 25.5 25.5 68.0 40.8 
20% 16.0 38.4 25.6 24.0 40.0 35.2 19.2 32.0 28.8 16.0 32.0 24.0 24.0 64.0 38.4 
30% 14.0 33.6 22.4 21.0 35.0 30.8 16.8 28.0 25.2 14.0 28.0 21.0 21.0 56.0 33.6 
50% 10.0 24.0 16.0 15.0 25.0 22.0 12.0 20.0 18.0 10.0 20.0 15.0 15.0 40.0 24.0 

 

Hospital 6 7 8 9 10 
Triangular 

Distribution 
min max Most 

likely 
min max Most 

likely 
min max Most 

likely 
min max Most 

likely 
min max Most 

likely 
Base Case 30.0 46.0 38.0 30.0 48.0 40.0 24.0 54.0 42.0 20.0 50.0 26.0 20.0 52.0 40.0 

5% 28.5 43.7 36.1 28.5 45.6 38.0 22.8 51.3 39.9 19.0 47.5 24.7 19.0 49.4 38.0 
10% 27.0 41.4 34.2 27.0 43.2 36.0 21.6 48.6 37.8 18.0 45.0 23.4 18.0 46.8 36.0 
15% 25.5 39.1 32.3 25.5 40.8 34.0 20.4 45.9 35.7 17.0 42.5 22.1 17.0 44.2 34.0 
20% 24.0 36.8 30.4 24.0 38.4 32.0 19.2 43.2 33.6 16.0 40.0 20.8 16.0 41.6 32.0 
30% 21.0 32.2 26.6 21.0 33.6 28.0 16.8 37.8 29.4 14.0 35.0 18.2 14.0 36.4 28.0 
50% 15.0 23.0 19.0 15.0 24.0 20.0 12.0 27.0 21.0 10.0 25.0 13.0 10.0 26.0 20.0 

 

 

 

 

4b. Annual demand of 200 patients 

Hospital 1 2 3 4 5 



Triangular 
Distribution 

min max Most 
likely 

min max Most 
likely 

min max Most 
likely 

min max Most 
likely 

min max Most 
likely 

Base Case 10.0 24.0 16.0 15.0 25.0 22.0 12.0 20.0 18.0 10.0 20.0 15.0 15.0 40.0 24.0 
5% 9.5 22.8 15.2 14.3 23.8 20.9 11.4 19.0 17.1 9.5 19.0 14.3 14.3 38.0 22.8 

10% 9.0 21.6 14.4 13.5 22.5 19.8 10.8 18.0 16.2 9.0 18.0 13.5 13.5 36.0 21.6 
15% 8.5 20.4 13.6 12.8 21.3 18.7 10.2 17.0 15.3 8.5 17.0 12.8 12.8 34.0 20.4 
20% 8.0 19.2 12.8 12.0 20.0 17.6 9.6 16.0 14.4 8.0 16.0 12.0 12.0 32.0 19.2 
30% 7.0 16.8 11.2 10.5 17.5 15.4 8.4 14.0 12.6 7.0 14.0 10.5 10.5 28.0 16.8 
50% 5.0 12.0 8.0 7.5 12.5 11.0 6.0 10.0 9.0 5.0 10.0 7.5 7.5 20.0 12.0 

 

Hospital 6 7 8 9 10 
Triangular 

Distribution 
min max Most 

likely 
min max Most 

likely 
min max Most 

likely 
min max Most 

likely 
min max Most 

likely 
Base Case 15.0 23.0 19.0 15.0 24.0 20.0 12.0 27.0 21.0 10.0 25.0 13.0 10.0 26.0 20.0 

5% 14.3 21.9 18.1 14.3 22.8 19.0 11.4 25.7 20.0 9.5 23.8 12.4 9.5 24.7 19.0 
10% 13.5 20.7 17.1 13.5 21.6 18.0 10.8 24.3 18.9 9.0 22.5 11.7 9.0 23.4 18.0 
15% 12.8 19.6 16.2 12.8 20.4 17.0 10.2 23.0 17.9 8.5 21.3 11.1 8.5 22.1 17.0 
20% 12.0 18.4 15.2 12.0 19.2 16.0 9.6 21.6 16.8 8.0 20.0 10.4 8.0 20.8 16.0 
30% 10.5 16.1 13.3 10.5 16.8 14.0 8.4 18.9 14.7 7.0 17.5 9.1 7.0 18.2 14.0 
50% 7.5 11.5 9.5 7.5 12.0 10.0 6.0 13.5 10.5 5.0 12.5 6.5 5.0 13.0 10.0 

 



4c. Annual demand of 500 patients 

Hospital 1 2 3 4 5 
Triangular 

Distribution 
min max Most 

likely 
min max Most 

likely 
min max Most 

likely 
min max Most 

likely 
min max Most 

likely 
Base Case 4.0 9.6 6.4 6.0 10.0 8.8 4.8 8.0 7.2 4.0 8.0 6.0 6.0 16.0 9.6 

5% 3.8 9.1 6.1 5.7 9.5 8.4 4.6 7.6 6.8 3.8 7.6 5.7 5.7 15.2 9.1 
10% 3.6 8.6 5.8 5.4 9.0 7.9 4.3 7.2 6.5 3.6 7.2 5.4 5.4 14.4 8.6 
15% 3.4 8.2 5.4 5.1 8.5 7.5 4.1 6.8 6.1 3.4 6.8 5.1 5.1 13.6 8.2 
20% 3.2 7.7 5.1 4.8 8.0 7.0 3.8 6.4 5.8 3.2 6.4 4.8 4.8 12.8 7.7 
30% 2.8 6.7 4.5 4.2 7.0 6.2 3.4 5.6 5.0 2.8 5.6 4.2 4.2 11.2 6.7 
50% 2.0 4.8 3.2 3.0 5.0 4.4 2.4 4.0 3.6 2.0 4.0 3.0 3.0 8.0 4.8 

 

Hospital 6 7 8 9 10 
Triangular 

Distribution 
min max Most 

likely 
min max Most 

likely 
min max Most 

likely 
min max Most 

likely 
min max Most 

likely 
Base Case 6.0 9.2 7.6 6.0 9.6 8.0 4.8 10.8 8.4 4.0 10.0 5.2 4.0 10.4 8.0 

5% 5.7 8.7 7.2 5.7 9.1 7.6 4.6 10.3 8.0 3.8 9.5 4.9 3.8 9.9 7.6 
10% 5.4 8.3 6.8 5.4 8.6 7.2 4.3 9.7 7.6 3.6 9.0 4.7 3.6 9.4 7.2 
15% 5.1 7.8 6.5 5.1 8.2 6.8 4.1 9.2 7.1 3.4 8.5 4.4 3.4 8.8 6.8 
20% 4.8 7.4 6.1 4.8 7.7 6.4 3.8 8.6 6.7 3.2 8.0 4.2 3.2 8.3 6.4 
30% 4.2 6.4 5.3 4.2 6.7 5.6 3.4 7.6 5.9 2.8 7.0 3.6 2.8 7.3 5.6 
50% 3.0 4.6 3.8 3.0 4.8 4.0 2.4 5.4 4.2 2.0 5.0 2.6 2.0 5.2 4.0 

 


