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Performance of BCH codes with (1 + x)s

error detection

M. Ambroze and M. Tomlinson

The performance is investigated of a combined error correction and

detection decoder for BCH codes for which the generator polynomial

g(x) has been augmented by a (1 + x)s term in order to make the

informations bits an integral number of bytes. An ARQ retransmission

scheme on an AWGN channel is assumed and a comparison with a FEC

only BCH code is given in terms of probability of error against Eb/N0. It

is shown for a BCH(127,106,7) code that at high Eb/N0 the performance

improvement is of three orders of magnitude at the cost of a small rate

degradation. Goppa codes, whose length is an integral number of bytes,

have also been investigated producing similar results.

Introduction: There are practical situations in which the generator

polynomial of a cyclic code is multiplied by a (1 + x)s factor in order that

the number of information or parity bits is an integral number of bytes [1].

The resulting code is has a generator polynomial g′(x) = (1 + x)sg(x) and

a codeword of this code is given by c′(x) = g′(x)d(x). In [2] it was shown

that such a term can be used to detect failure of the BCH decoder to correct

transmission errors and that the detection process can be implemented as

a fast and efficient algorithm which does not add a significant overhead

to the decoder complexity. The paper did not study the improvement due

to this additional error detection capability. In this letter we compare

the performance of two communication systems using a BCH code with

generator polynomial g(x):

1 Error correction only. A scheme using a hard decision bounded distance

decoder correction up to t errors, where t is the design parameter for the

BCH code.

2 Error correction followed by detection and ARQ. A scheme using a

code based on the same BCH code with generator polynomial g′(x) =

g(x)(1 + x)s where s is a small integer. The decoder proceeds by

applying the hard decision bounded distance decoder for the BCH code.

If the decoding algorithm detects a number of errors larger than t (the

bounded distance decoder fails), a retransmission is triggered. If the

decoding algorithm succeeds, the resulting BCH codeword c′(x) is

checked for divisibility by (1 + x)s using the fast algorithm described

in [1]. If the divisibility test fails, a retransmission is triggered. If it

succeeds, the codeword is assumed error free.

Error correction only: We assume an AWGN channel with BPSK

modulation. The probability of bit error after hard decision is given by:

p=Q
(

√

2REb/N0

)

(1)

Where R= k/n is the code rate.

The probability of correct decoding is given by:

Pc =

t
∑

w=0

(n

w

)

pw(1− p)n−w (2)

Where t is the design number of errors that the BCH code can correct.

The probability of word error after decoding is Pe = 1− Pc.

Error correction followed by detection and ARQ: For a BCH code, denote

ew an error pattern of weight w and ew(x) its polynomial form. Denote the

set of undetectable error patterns of weight w as Uw,s and its cardinality

as |Uw,s|. An error pattern ew ∈Uw,s if:

1 It has the same syndrome as a weight w′ ∈ {0, 1, .., t} error pattern ew′ ,

∃ew′ such that H(eTw + eT
w′ ) = 0,

and

2 The polynomial ew(x) + ew′ (x) is divisible by (1 + x)s.

Also denote nd(w, s) =
(

n

w

)

− |Uw,s| the number of detectable error

patterns of weight w> t.

Detection probability: The probability of detecting an error pattern of

weight w> t is given by:

fp =

n
∑

w=t+1

nd(w, s)pw(1− p)n−w (3)

where p is the channel error probability. It is the probability of a detectable

(but not correctable) pattern. In practice, this sum is truncated to a

maximum weight less than n on the basis that high powers of p can be

neglected. The average number of retransmissions is given by:

r̃=

∞
∑

i=1

if i
p(1− fp) =

fp

1− fp
(4)

The average number of channel bits transmitted per block is:

n+ nr̃= n

(

1 +
fp

1− fp

)

=
n

1− fp
(5)

The (average) code rate taking into account retransmissions and the

additional s parity checks is given by:

Rr =
k − s

n+ nr̃
= (k − s)

1− fp

n
(6)

The probability of error after hard decision is:

p=Q
(

√

2RrEb/N0

)

(7)

By comparing equations 1 and 7 it can be seen that, for the same hard

decision error probability p, the ARQ scheme incurs an Eb/N0 penalty

due to the additional s parity bits and retransmissions:

∆Eb/N0 = 10 log10
R

Rr

(8)

= 10 log10
k

n

n

k − s

1

1− fp
(9)

= 10 log10
k

k − s
− 10 log10(1− fp) (10)

The probability of correct decoding is given by:

Pc =
(

1 + fp + f2
p + ...

)

t
∑

w=0

(n

w

)

pw(1− p)n−w (11)

=

∑t
w=0

(

n

w

)

pw(1− p)n−w

1− fp
(12)

The probability of error is Pe = 1− Pc.

Results: For the BCH(127,106,7) code the values of |Uw,s| are given in

Table 1. Note that there are no undetectable error patterns for w= 4, s > 0.

This is because the weight of ew(x) + ew′ (x) is always 7 (odd) for an

undetectable pattern ew of w= 4. If an error pattern of weight w= 4 has

the same syndrome as an error pattern of lower weight w′, this weight is

always w′ = 3. This is because dm = 7 for this code so HeTw +HeT
w′ = 0

only if w + w′ ≥ dm = 7. The corresponding values nd(w, s) =
(

n

w

)

−
|Uw,s| are also given in Table 1. The plotted results are given in Figure 1(a).

To investigate the impact of ARQ, we show the performance of three FEC

only schemes, BCH(127,106,7), BCH(127,99,9) and BCH(127,92,11) in

comparison with ARQ schemes based on BCH(127,106,7) only without

(1 + x) factors (s= 0) and with (1 + x)s factors (up to s= 4). The

graphs show improvement due to retransmissions at the cost of a rate

penalty which is expressed in terms of ∆Eb/N0 in Figure 1(b). This rate

penalty has a maximum at an Eb/N0 ≈ 2.5 dB due to retransmissions then

decreases asymptotically towards 10 log10
k

k−s
. This maximum actually

causes a performance degradation for Eb/N0 < 4 dB due to a large number

of retransmissions. However, at Eb/N0 > 4 dB there is a decrease in word

error probability which quickly reaches several orders of magnitude.

An interesting case in Figure 1(a) is that of s= 0. This corresponds

to the performance of the ARQ scheme without the additional (1 + x)s

term. As the BCH(127,106,7) is not a perfect code, we use a non-zero

syndrome combined with the failure of the decoder to produce a solution

if the number of errors is larger than t to detect errors. It can be seen

in Figure 1(a) that this detection in combination with ARQ produces an

improvement of one order of magnitude, similar to the improvement given
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by using a BCH(127,99,9) code. This shows the power of ARQ over FEC

alone and ties in with the well known result that, although feedback does

not improve capacity, it can simplify code design. Adding the detection

of non correctable syndromes using just the BCH(127,106,7) code with

ARQ has virtually the same performance as using the BCH(127,99,9)

code. Adding a single 1 + x factor with ARQ produces over one order of

magnitude improvement, better than FEC with BCH(127,92,11) code (also

shown in Figure 1(a)). Adding additional 1 + x factors produces smaller

additional improvements.

Table 1: The values of |Uw,s| and nd(w, s) for BCH(127,106,7).
|Uw,s|

w
s 4 5 6
0 1, 693, 545 41, 661, 207 835, 589, 769
1 0 40, 645, 800 20, 322, 540
2 0 20, 393, 688 10, 196, 844
3 0 10, 267, 992 5, 133, 996
4 0 5, 217, 688 2, 608, 844

nd(w, s) =
(

127

w

)

− |Uw,s|
w

s 4 5 6
0 8, 641, 080 212, 570, 568 4, 333, 789, 656
1 10, 334, 545 213, 586, 695 5, 149, 056, 885
2 10, 334, 545 233, 838, 087 5, 159, 182, 581
3 10, 334, 545 243, 963, 783 5, 164, 245, 429
4 10, 334, 545 249, 014, 087 5, 166, 770, 581
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Fig. 1 BCH(127,106,7): (a) Pe improvement due to retransmissions for

different values of s, (b) Eb/N0 penalty due to lower rate and/or

retransmissions.

Extension to Goppa codes: The investigation has been extended to cover

Goppa codes. As these are generally not cyclic codes, the s check bits

corresponding to the (1 + x)s factor are presented as data at the input

of the Goppa encoder, together with the k − s data bits. Written as a

polynomial, the data bits at the input of the Goppa code encoder are given

by d(x) = (1 + x)sd′(x) where d(x) has rank k − 1 and d′(s) has rank

k − s− 1. The decoding and detection proceeds in a similar manner as

for BCH codes, with the only difference that only the decoded data, d(x)
is checked for divisibilty by (1 + x)s as opposed to the whole decoded

codeword c(x) for the BCH codes. The results for the Goppa(256,232,7)

are shown in Figure 2. They show a similar behaviour as the results for the

BCH code, with around one order of magnitude improvement due to ARQ

(s= 0).

Conclusion: We have compared the performance of two communication

systems, one using a BCH code with hard decision bounded distance
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Fig. 2 Goppa(256,232,7): Pe improvement due to retransmissions for different

values of s.

decoding and one using a code obtained from the same BCH code by

appending a (1 + x)s factor to the generator polynomial. The latter scheme

is used in conjunction with retransmissions to exploit the improved error

detection due to the additional factor. The improvement in performance on

an AWGN channel and the error rate penalty due to the additional factor

and retransmissions were investigated. A similar performance is exhibited

by the scheme when the BCH code is replaced by a Goppa code, with

the (1 + x)s factor applied only to the data part of the codeword.The

arrangement with Goppa codes has the practical advantage that both the

code length and number of information bits is an integral multiple of bytes.
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