
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

1996

AN INVESTIGATION INTO ADAPTIVE

SEARCH TECHNIQUES FOR THE

AUTOMATIC GENERATION OF

SOFTWARE TEST DATA

LACHUT WATKINS, ALISON ELIZABETH

http://hdl.handle.net/10026.1/1618

http://dx.doi.org/10.24382/1526

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

AN INVESTIGATION INTO ADAPTIVE S E A R C H TECHNIQUES

FOR T H E AUTOMATIC GENERATION OF SOFTWARE T E S T

DATA

by

ALISON ELIZABETH LACHUT WATKINS

A thesis submitted to the University of Plymouth in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Computing

February 1996

90 0274599 7

"nMlviRSITY OF PLYftflOUtH

Item No.

Date

Class No.
Conli.No.

qoo27459

2 0 J U : ; 199B

UP-

REFERENCE ONLY

LIBRARY STORE

Abstract

The focus of this thesis is on the use of adaptive search techniques for the automatic

generation of software test data. Three adaptive search techniques are used, these are

genetic algorithms (GAs), Simulated Amiealing and Tabu search. In addition to

these, hybrid search methods have been developed and applied to the problem of test

data generation. The adaptive search techniques are compared to random generation

to ascertain the effectiveness of adaptive search. The results indicate that GAs and

Simulated Annealing outperform random generation in all test programs. Tabu

search outperformed random generation in most tests, but it lost its effectiveness as

the amount of input data increased. The hybrid techniques have given mixed results.

The two best methods, GAs and Simulated Annealing are then compared to random

generation on a program written to optimise capital budgeting, both perform better

than random generation and Simulated Annealing requires less test data than GAs.

Further research highlights a need for research into the control parameters of all the

adaptive search methods and attaining test data which covers border conditions.

Table of Contents

List of Figures vl

List of Tables xi

List of Appendices xvi

Chapter 1 - Introduction to Research 1

1.1 Introduction 1

1.2 What is Testing 3

1.3 Objectives of Research 4

1.4 Research Plan 5

1.5 Summary of Chapters 6

1.6 Conclusion 10

Chapter 2 - What is Software Testing? 11

2.1 jntroduction 11

2.2 Software Testing 14

2.2.1 Static Analysis 14

2.2.2 Dynamic Analysis 16

2.2.3 Functional Testing 17

2.2.4 StRJCtural Testing 19

2.3 Testing Techniques 22

2.3.1 Introduction 22

2.3.2 Symbolic Execution 22

2.3.3 Program Proving 23

2.3.4 Anomaly Analysis 24

2.3.5 Mutation Analysis 25

2.3.6 Random Testing 27

2.3.7 Computational and Donriain Testing 28

2.3.8 Partition Analysis 29

2.3.9 Cause-Effect Graphing 31

2.3.10 Adaptive Perturbation Testing 32

2.3.11 Automatic Path-Based Test Data Generation 34

2.4 Conclusion 36

Chapter 3 - A Tool for the Generation of Test Data 38

3.1 Introduction 38

3.2 Steps of the Technique 38

3.2.1 Analyse the Test Code 39

3.2.2 Parse the Function Under Test 40

3.2.3 Nearest Neighbours 43

3.2.4 Detemnine Potential Paths 43

3.2.5 Testing Metric to be Used 44

3.2.6 Manual Review of Results 48

3.2.7 The Handling of Loops in Code 48

3.3 Conclusion 52

Chapter 4 - What is Random Testing? 54

4.1 Introduction 54

4.2 A Random Number Generator 55

4.3 How is a Measurement Taken? 57

4.4 Conclusion 58

Chapter 5 - Genetic Algorithms - A Brief Introduction 59

5.1 Introduction to OAs 59

5.2 How do GAs Function? 61

5.2.1 Initial Population 62

5.2.2 Fitness Function 62

5.2.3 A New Population 63

5.2.4 Steady State Reproduction 65

5.2.5 Tournament Selection 66

5.2.6 Fitness Scaling 67

5.2.7 Additional Reproduction Strategies 68

5.2.8 Crossover 69

5.2.9 Mutation 71

5.2.10 Replace Best 72

5.3 Schema Theory 73

5.4 Conclusion 77

Chapter 6 - Automatic Test Data Generation Using Genetic 78
Algorithms

6.1 Introduction - Previous Research 78

6.2 The Fitness Function 81

6.3 An Illustrative Example of Determining Fitness 84

6.4 Remembering Unique Data Sets 85

6.5 The GAs Process 86

6.5.1 Random Population Generation 88

6.5.2 Calculate Fitness Using Submodule F ITNESS 88

6.5.3 The While Loop 90

6.5.4 Crossover and Mutation 92

6.5.5 LoopEnd 93

6.6 Comparison to Random Testing 94

6.7 Path Testing 96

6.8 Conclusion 99

Chapter 7 - Simulated Annealing 100

7.1 What is Simulated Annealing? 100

111

7.2 Annealing to Simulated Annealing 101

7.3 The Simulated Annealing Algorithm 103

7.4 Simulated Annealing for Test Data Generation 105

7.4.1 Test Data Generation for LCSAJs and Branches 106

7.4.2 Test Data Generation for Function Paths 108

7.5 A Comparison of Control Variables 109

7.6 A Hybridisation of GAs and Simulated Annealing 111

7.7 Conclusion 115

Chapter 8 - Tabu Search and Its Use for the Generation of Test 117
Data

8.1 Introduction 117

8.2 Tabu Search in Action 119

8.2.1 Hill-Climbing 120

8.2.2 Tabu Search for Global Optimum 122

8.3 Hill-Climbing for the Generation of Test Data 125

8.4 Using Tabu Search for the Automatic Generation of Test 126
Data
8.5'Tabu Search Assisting Other Adaptive Search 130
Techniques

8.5.1 Using GAs with Tabu Search 130

8.5.2 Simulated Annealing and Tabu Search 133

8.6 Conclusion 135

Chapter 9 - The Results of Test Data Generation Using 137
Adaptive Search Techniques for a Range of Test Functions

9.1 Introduction 137

9.2 The Trityp Problems 138

9.2.1 Trityp (Easy) 139

9.2.2 Trityp (Hard) 144

9.2.3 Summary for Trityp Examples 148

I V

9.3 The Find Program 148

9.4 Discussion of Test Program Results 152

9.5 A Larger Search Space 153

9.6 Conclusion 156

Chapter 10 - A Demonstration of Automatic Test Data 159

Generation of a Program which Optimises Capital Allowances
for Company Taxation

10.1 Introduction 159

10.2 A Description of the Program to be Tested 159

10.3 Testing the Program 161

10.4 The Comparison of Testing Techniques on the Test 162
Program

10.5 Conclusion 164

Chapter 11 - Discussion and Further Research 166

Chapter 12 - Conclusion 175

References 219

List of Figures

1. Method for Developing and Maintaining a System Lifecycie 1

2. Sample Directed Graph (Digraph) 13

3. General Form of Static Analysis 15

4. General Form of Dynamic Analysis Testing Tool 16

5. Sample Code 20

6. Flow Chart for Figure 5 (above) 20

7. Sample Code to Demonstrate Static Analysis 23

8. Mutation of Sample Code from Figure 5 (above) 25

9. Functionally Equivalent Program to Original Code 26

10. Program Specification 29

11. Symbolic Evaluation of the Specification 29

12. Symbolic Evaluation of Program Code 30

13. Domains Created by Symbolic Evaluation of Cost Program 30

Specification

14. Domains Created by Symbolic Evaluation of Cost Program 30

Implementation

15. Matching of Specification and Implementation of Cost Program 31

16. Domain Boundaries of Program Code 31

17. Flow Chart of Figure 5 34

18. Test Effectiveness Ratios 35

19. Algorithm for Testing Tool Using Test Data Generation 38

20. Flow Chart of Figure 21 39

21. Function Under Test 39

22. Demonstration Printout after Initial Analysis of Potential Code 40

23. Figure 21 with Added Brackets 41

24. Screen-Dump of Automatically Produced Flow Chart 42

25. Amended Code from Figure 21 for Statement Coverage 45

V I

26. Amended Code from Figure 21 for Branches and LCSAJs 46

27. Status Printout after Test 48

28. Testing for Activation of Loops 49

29. New Function Code Based on Figure 28 and Figure 21 50

30. Flow Chart of Figure 29 51

31. Sample Two Variable Input Function Used to Dlustrate the 55

Search Space

32. Graphical Representation of Search Space, the Area Covered by 56

Each of the Three Paths is Indicated

33. Graphical Representation of Position of Randomly Selected Test 56

Data Sets within the Specified Search Space

34. Surface Graph of Search Space 61

35. Each Population Member's Share of the Population Fitness 64

36. Fitness Scaling - Population Distribution of Total 67

37. Fitness of Each Member as a Share of Sum of Population 67

Fitness

38. Two-Point Crossover Demonstration 69

39. One-Point Crossover Demonstration 70

40. Uniform Crossover Example 71

41. The Fitness of an Exercised Path, as it is Accessed Subsequent 83

Times, This Demonstrates How the Fitness Declines

42. Declaration of Array 'Unique' and the Information Contained in 86

Array

43. Algorithm for GAs for Test Data Generation 87

44. Algorithm for Fitness Function to GAs, Figure 42, for Test Data 87

Generation

45. Roulette Wheel of Population Fitness 91

46. Frequency Distribution of GAs over 1000 Runs for LCSAJs and 94

Branch Testing

47. Frequency Distribution of Random Generation 1000 Runs for 95

LCSAJs and Branch Testing

V I I

48. A Comparison of Frequency between GAs and Random Test 96

Data Generation for Sample Function Under Test for LCS AJs

and Branch Testing

49. A Comparison of Frequency between GAs and Random 98

Generation for Sample Function Under Test for Path Testing

50. Simulated Annealing Algorithm 103

51. A Comparison of Frequency between GAs, Simulated 107

Annealing and random Generation for Sample Function Under

Test for LCSAJs and Branch Testing

52. A Comparison of Frequency between GAs, Simulated 109

Annealing and Random Generation for Sample Function Under

Test for Path Testing

53. A Comparison of Frequency for Acceptance Probability of 110

Function Under Test Using Simulates Annealing Over 1000

Runs for LCSAJs and Branch Testing

54. A Comparison of Frequency between GAs, Simulated 113

Annealing and the Hybrid GAs-SA (for all Three Probability

Rates) for the Sample Function Under Test for LCSAJs and

Branch Testing

55. A Comparison of Frequency between GAs, Simulated 114

Annealing and the Hybrid GAs-SA (for all Three Probability

Rates) for the Sample Function Under Test for Path Testing

56. Algorithm for Tabu Search including Submodule to Calculate 119

Fitness

57. Illustration of Search Space for Sample Function 120

58. Hill-Climbing Algorithm 121

59. Graphical Representation of Hill-Climbing Search Path from 122

Figure 58

60. Graphical Representation of Tabu Search Path until Global 124

Optimum is Reached
61. Frequency Chart Comparing Hill-Climbing to Other Search 126

V l l l

Techniques, GAs, Random Generation and Simulated Annealing

for LCSAJs and Branch Testing

62. Frequency Chart Comparing Tabu Search to GAs and Simulated 128

Annealing over 1000 Runs for Path Testing

63. Frequency Chart Comparing the Hybrid GAs-TS to the Other 129

Adaptive Search Techniques over 1000 Runs for LCSAJs and

Branch Testing

64. Frequency Chart Comparing the Hybrid GAs-TS to the Other 131

Adaptive Search Techniques over 1000 Runs for Path Testing

65. Comparison of Frequency Distribution for Simulated Annealing 132

Alone Compared to Simulated Annealing with a Tabu Rejection

List

66. Types of Triangles Distinguished by Trityp (Easy) and Trityp 138

(Hard)

67. Frequency Comparison of Adaptive Search Techniques Against 141

Random Test Data Generation for Trityp (Easy) Over Search

Space of 68921 for LCSAJs and Branch Testing

68. Frequency Comparison of Adaptive Search Techniques Against 143

Random Test Data Generation for Triiyp (Easy) Over Search

Space of 68921 for Path Testing

69. Frequency Distribution of Adaptive Search Techniques Against 145

Random Test Data Generation for Find Over Search Space of

78125 for Path Testing

70. A Frequency Comparison of three Adaptive Search Techniques, 147

GAs, Simulated Annealing and GAs-SA, for Path Testing for

the Sample Function Over Search Space of 1000000

71. Flow Chart of Capital Budgeting Program 150

72. A Comparison of Frequency between GAs, Simulated 151

Annealing and Random Generation for Capital Budgeting

Program for Path Testing

73. The Fitness of an Exercised Path, Branch or LCSAJ as it is 155

IX

Accessed Subsequent Times, This Demonstrates How the

Fitness Declines Each Successive Time it is Exercised

74. Flow Chan of Capital Budgeting Program 161

75. A Comparison of Frequency between GAs. Simulated 164

Annealing and Random Generation for Capital Budgeting

Program for Path Testing

76. The Fitness of an Exercised Path, Branch or LCSAJ as it is 169

Accessed Subsequent Times, This Demonstrates How the

Fitness declines Each Successive Time it is Exercised

List of Tables

1. Potential Paths (Feasible and Infeasible) through Code 21

2. Breakdown of Functional and Structural Techniques as Static or 22

Dynamic Testing

3. LCSAJs through Sample Program Listed in Figure 5 35

4. Conditional Statement Information 42

5. Nearest Neighbours of Each Statement 43

6. Paths Through Function Shown in Figure 21 44

7. List of LCSAJs Through Sample Code Shown in Figure 26 48

8. Additional LCSAJs for Figure 28 51

9. Branches and the Corresponding Percentage of Search Space 52

which Satisfies These Branches

10. Paths Through Program Listed in Figure 31 and their 56

Corresponding Share of Search Space shown Graphically in

Figure 32

11. The Paths through the Function and the Average Amount of test 58

Data Required before Coverage was Attained over 1000 Runs

12. Initial Population Selected Randomly 62

13. Integer Values with Associated Fitness from Population of 63

Chromosomes

14. Selection of Next Generation 65

15. Sample Next Generation Using Fitness Scaling 67

16. Mutation Process 72

17. New Population for the Next Generation 73

18. Random Binary Population 88

19. Integer Values of Binary Digits and Array Value 89

20. (a) and (b) Branches and LCSAJs to be Exercised in Test Code 89

and Number of Times Exercised Using First Generation

X I

(Random Population)

21. Fitness of Population 90

22. Portion of Population Fitness Assigned to Each Member 91

23. New Population (Generation 2) 91

24. New Population (Generation 2) after Crossover and Mutation 92

25. Integer Values of Binary Digits and Array Value (2nd 92

generation)

26. (a) and (b) Branches and LCSAJs to be Exercised in Test Code 93

and Numl>er of Times Exercised for Second Generation

27. Results of Function Under Test Using GAs Over 1000 Runs for 94

LCSAJs and Branch Testing

28. Results of Function Under Test Using Random Generation Over 95

1000 Runs for LCSAJs and Branch Testing

29. Feasible Paths through Function Under Test, Number of 97

Occurrences of Each Path within Search Space and Percentage

of Search Space

30. Comparison of 1000 Runs of GAs and Random Generation for 98

Path Testing of Sample Function Under Test

31. Results of Function Under Test Using Simulated Annealing 107

Over 1000 Runs for LCSAJs and Branch Testing Compared to

GAs and Random Generation

32. Results of Function Under Test Using Simulated Annealing 108

Over 1000 Runs for Path Testing Compared to GAs and

Random Generation

33. A Comparison of Acceptance Probability of Function Under 109

Test Using Simulated Annealing Over 1000 Runs for LCSAJs

and Branch Testing

34. Hybrid GAs-SA Comparison for a Range of Acceptance 111

Probabilities of Function Under Test Over 1000 Runs for

LCSAJs and Branch Testing

35. Results of Function Under Test Comparing GAs, Simulated 112

X I I

Annealing, and the Hybrid GAs-SA Over 1000 Runs for

LCSAJs and Branch Testing

36. Hybrid GAs-SA Comparison for a Range of Acceptance 113

Probabilities of Function Under Test Over 1000 Runs for Path

Testing

37. Results of Function Under Test Comparing GAs, Simulated 114

Annealing, and the Hybrid GAs-SA Over 1000 Runs for Path

Testing

38. Neighbourhood of Initial Start Point 121

39. Path Hill-Climbing Takes by Accepting Best Member of 121

Neighbourhood until Maximum Solution (Local Optimum) is

Reached

40. Ranking of Neighbourhood from Table 38 using Tabu List 124

Restrictions

41. The Results of Hill-Climbing on Sample Funcdon for LCSAJs 125

and Branches Over 1000 Runs

42. The Results of Tabu Search on Sample Function Under Test for 127

LCSAJs and Branches

43. The Results of Tabu Search on Sample Function Under Test for 129

Path Testing Compared to GAs, Simulated Annealing, the

Hybrid GAs-SA and Random Generation

44. The Results of the Hybrid GAs-TS compared to Tabu Search 131

and GAs on Sample Function Under Test for LCSAJs and

Branches

45. The Results of the Hybrid GAs-TS compared to Tabu Search 132

and GAs on Sample Function Under Test for Path Testing

46. Comparison of Results for Simulated Annealing Combined with 134

a Tabu List which Rejects a Variable Combination if it Matches

a Member of the List for LCSAJs and Branch Testing

47. Comparison of Results for Simulated Annealing Combined with 134

a Tabu List which Rejects a Variable Combination if it Matches

X l l l

a Member of the List for Path Testing

48. Comparison of Adaptive Search Techniques against Random 140

Test Data Generation for Trityp (Easy) Over Search Space of

68921 for LCSAJs and Branch Testing

49. Paths through Trityp (Easy) Program and their Respective 142

Amounts of Search Space

50. A Comparison of Techniques for Path Testing on Trityp (Easy) 142

Over Search Space of 68921

51. Comparison of Adaptive Search Techniques against Random 145

Test Data Generation for Trityp (Hard) Over Search Space of

68921 for LCSAJs and Branch Testing

52. Paths through Trityp (Hard) with the Percentage of Total 146

Population (68921) which Exercises the Path

53. A Comparison of Techniques for Path Testing on Trityp (Hard) 147

Over Search Space of 68921

54. A Comparison of Techniques for LCSAJs and Branch Testing 149

for Find over Search Space of 78125

55. A Comparison of Techniques for Path Testing for Find Program 151

over-Search Space of 78125

56. Overall Results of the Three Test Programs Each for LCSAJs 152

and Branch Testing (L) and Path Testing (P). The Average

Figure Given is the Average of Unique Test Data Required for

the Method for all Six Tests

57. Paths through Sample Function with the Amount of Test Data 154

within Search Space which Satisfies Each Path and its

Percentage of Total Search Space (1000000)

58. A Comparison of Techniques for Path Testing for the Sample 154

Function over Search over Search Space of 1000000

59. Time Comparison of Sample Function Using Both Small Search 156

Space and Large Search Space

60. Tax Rate Band on Profit 160

X I V

61. Company Financial Information which are the 31 Required 162

Input Variables

62. Results of Function Under Test Comparing GAs, Simulated 163

Annealing and Random Test Data Generation for Capital

Budgeting Program for Path Testing

X V

List of Appendices

Appendix A - Original Code for Trityp (Easy) 178

Appendix B - Flow Chart of Trityp(Easy) 179

Appendix C - List of LCSAJs and Branches Through Trityp (Easy) 180

Appendix D - List of LCS AJs and Branches Through Trityp (Hard) 181

Appendix E - Original Code for Trityp (Hard) 183

Appendix F - Flow Chart of Trityp(Hard) 184

Appendix G - Flow Chart of Find Program 185

Appendix H - Original Code for Find Progam 186

Appendix I - List of LCSAJs and Branches Through Find Program 187

Appendix J - List of Paths Through Find Program 189

Appendix K - Code for Capital Budgeting Program 192

Appendix L- 500 of over 1000 Paths through Capital Budgeting Program 202

X V I

ACKNOWLEDGEMENT

I wish to express my thanks and gratitude to:

my supervisors Professor Mike Denham and Professor Patricia Pearce for all

their guidance and assistance;

Dr. Charlie Ellis who offered me the original encouragement and enthusiasm to

pursue this research;

BPL for their provision of Cantata Software Verification Tools;

the'School of Computing and the Plymouth Business School for their support

and part-time lecturing;

and David for his patience, attention to detail and knowledge of commas.

AUTHOR'S DECLARATION

At no time during the registration for the degree of Doctor of Philosophy has the author

been registered for any other University award.

Presentations and Conferences Attended:

Watkins, A.L. (1995). A tool for the automatic generation of test data using genetic

algorithms. In Proceedings of Software Quality Conference, Dundee, Scotland.

Watkins, A.L. (1995). Genetic algorithms combined with Tabu search for the automatic

generation of test data. In Proceedings Polymodal 16, University of Sunderland, UK.

Signed.

Date n/f>..d<x^ /.m

Chapter One

Introduction to Research

requirements
analysis

design

module
specification

1.1. Introduction

Each day both amateur and professional programmers are at work producing software

to perform a variety of tasks. Some of these may be perceived as trivial while others

can carry universal implications. One application for a

piece of software is a payroll system. The development

of this should follow a prescribed course from the

requirements analysis through module unit testing to

maintenance, as illustrated in figure 1. On purchase of

the software the expectation of the user is that it will

work, that is it will make accurate payments by

performing calculations and taking appropriate

deductions. This would seem an important detail to

anyone who has ever been paid, as an incorrect

paycheque can cause great concern to the employer and

employee. Because of the level of accuracy required it is

Figure 1 - Method for therefore of great importance that the developers of
Developing and

Maintaining a System
Lifecycle

odule mo<
design

module
coding

module
unit test

system
lest

maintenance

Chapter I

payroll systems can assure their potential customers that their software will not only

work, but work correctly.

If the program contains errors, losses to the user could be significant and the

implications to the reputation of the developer could be severe. One such actual error

of significant financial ramifications was the NASA probe sent to Venus, which

veered off course due to an erroneous FORTRAN repetition statement. This was

interpreted as an assignment statement because in this language variables did not

have to be declared, had they been, the assignment statement would have raised an

error at the compilation stage (Bell et al, 1987).

Unfortunately even i f a program is thoroughly tested it is no guarantee that it is

without error. Bell at al (1987) describes a carefully controlled experiment which

was carried out in 1978 with fifty-nine people all of whom worked in the computer

industry with an average of eleven years experience. They were asked to test a sixty-

three line PL/1 program until they thought they had found all the errors (if any). The

mean number of errors found was 5.7. the most 9, the least 3. The actual number of

errors was 15 and of those, there were four which no one found. A further review of

the results indicated that people spent more time testing the normal conditions

instead of looking al special cases and invalid input situations.

These examples raise an important issue for software developers, what kind of

assurance can be given that a piece of developed software will work accurately?

Although most software developers would never admit to errors in their code, errors

are a fact of life in software development. Elimination of these errors is very

Chapter I

important, and the software testing process, and more specifically the generation of

lest data for testing, is the main focus of this thesis.

1,2. What is Testing?

According to Myers (1979) the definition of testing causes many of the problems. He

suggests some incorrect definitions of testing include ^Testing is the process of

demonstrating errors do not exist", *The purpose of testing is to show that a program

performs its intended functions correctly", and 'Testing is the process of establishing

confidence that a program does what it is supposed to do." A problem with these

definitions is that it is impossible to prove that a piece of software has no errors even

if a program performs the task for which it was designed. Myers (1979) feels that the

reverse of these definitions is what testing should be, and his definition is:

"Testing is the process of executing a program with the intent of finding errors."

For Myers (1979), testing should be a destructive process of trying to find errors in a

program. A successful test case is one that causes a program to fail and the eventual

goal of delivering a degree of confidence in the program can only be done by a

thorough exploration of errors.

The economies of testing limit how much testing will take place. Exhaustive testing

which looks at all possible combinations of test data, both valid inputs and possible

inputs, is extremely costly and the amount of test data required borders on infinity

(Myers, 1979). Therefore the objective is to minimise the testing investment while

maximising the number of errors found by a finite test set (Myers, 1979), but

maximising errors resolved and minimising investment on a software product can be

Chapter I 3

mutually exclusive goals. However as the total quality of a deliverable software

product is a key issue to software developers and their reputation, a great deal of

time, effort and research has to be placed into designing effective testing techniques.

There exist numerous developed testing techniques, several of which are discussed in

chapter 2.

1.3. Objectives of Research

Many developed testing techniques require test data and the generation of that test

data is the main focus of this thesis. The research develops work carried out by

Xanthakis et al (1992) in the use of genetic algorithms to generate test data for

program testing. Their research reports that genetic algorithms have the potential to

outperform random test data generation. Similar work has been done independently

at the University of Glamorgan and has been reported in Sthammer et a/ (1994). The

first objective of this research was to develop a tool which could automatically

prepare a function (module of a larger program) for testing by an analysis of the test

code, a generation of the flow graph which helps to determine the paths through the

code, and finally to measure the coverage level of a function accomplished by

running the program with test data.

The goal of this research was to determine the effectiveness of adaptive search

techniques for test data generation in comparison to random test data generation. An

adaptive search technique developed to work well in most search circumstances may

not perform as well when the search space is not normally structured such as with

regular peaks and valleys. Some techniques may improve performance and by

Chapter I

combining methodologies in a hybrid form even more satisfactory results could be

gained. Therefore^ presented in this thesis are some new forms of the standard

adaptive search techniques which are compared to their original form.

A final goal of this study was to lay a course for the examination of adaptive search

techniques and their use for software testing. As a great deal of lest data can take a

long time both to generate and run through a function under test, it would be

advantageous to reduce the time while increasing the test effectiveness. While as

Myers (1979) says it can not be proven that no error exists, to find most existing

errors in a shorter time period would be of benefit to the software development

iifecycle.

1.4. Research Plan

As slated, the goal of this research was to investigate adaptive search techniques for

software test data generation. In order to achieve this goal the following research

plan was used:

1. An ongoing literature search encompassing all forms of software testing (static

and dynamic) was conducted to ascertain methods used and progress on

strategies. This confirmed Xanthakis et al (1992) idea that using genetic

algorithms for test data generation was a viable yet unexplored method for

dynamic testing;

2. Research was conducted on the possibility of automating the process of testing

from choosing the function to be tested, establishing paths through the function,

Chapter I

the generation of test data, and finally to return anomalies to the user. This

resulted in the development of a tool which will perform these steps;

3. This tool was then used for the generation of test data using genetic algorithms.

Results gathered using genetic algorithms were favourable when compared to

those of random test generation. Research into other adaptive search techniques

was performed (Simulated Annealing and Tabu Search), their suiicture and

design is described and the results for these techniques given;

4. Results indicated that adaptive search techniques when combined to form hybrid

methods perform better in some circumstances than their predecessors GAs,

Simulated Annealing and Tabu search.

This research has developed a tool for the generation of test data and evaluated the

use of a number of adaptive search techniques in this role.

1.5. Summary of Chapters

As the purpose of this chapter is to introduce the subject matter, present the

objectives of the research and a research plan, what follows is a summary of

subsequent chapters in the thesis.

Chapter 2 - Software Testing

This chapter introduces software testing and divides testing into two categories, static

and dynamic testing. When further broken down these techniques can be divided

into structural or functional methods. A final section of the chapter introduces lest

effectiveness ratios and how these are used to measure the coverage level of a test.

Chapter I 6

This chapter builds upon techniques already available in the literature and does not

claim any original contribution to the knowledge of the area.

Chapter 3 - A Tool for the Generation of Test Data

The purpose of this chapter is to introduce a tool for software testing, which includes

a breakdown of the method used and the data required of a function, in order to

produce a flow graph which is a map of all paths through a piece of code. This

information is used to distinguish the information on the function, such as branches

and linear code sequences and jumps (LCSAJs), which are segments of code from

one point, a start or decision point, through to the next decision point in the code.

The test data will then attempt to exercise these branches and LCSAJs.

Chapter 4 - Random Testing

This chapter is an introduction on random testing, the most common form of test data

generation. The purpose of this chapter is to illustrate how the comparison between

random generation and adaptive search techniques will occur.

Chapter 5 - Genetic Algorithms - A Brief Introduction

For the benefit of readers not familiar with adaptive search, such as those involved in

software testing, each test technique will begin with an inu-oduction of the technique,

a short demonstration in a search environment, before being applied to the test data

generation. A chapter has been devoted to an explanation of the many methods and

the theory incorporated in Genetic Algorithms. While this chapter does not profess

to contribute to the knowledge of Genetic Algorithms it is hoped the reader will get a

Chapter I 7

focused view of Genetic Algorithms with the appropriate references for future

research.

Chapter 6 - Automatic Test Data Generation Using Genetic Algorithms

This chapter uses genetic algorithms to generate test data. Two types of testing are

attempted, the first looks al the LCSAJs and branches through a piece of code, while

the second exercises the paths though a function under test. This chapter represents

an original contribution of knowledge to the field of software testing using Genetic

Algorithms. While this method of test data generation has been applied before,

(Xanthakis, 1992: Sthamer, 1994) the method of data collection, search space

recording and the approach necessary to achieve *black-box' testing are all new.

Chapter 7 - Simulated Annealing

Simulated Annealing has been applied to the task of test data generation using the

same sample function under test as used in chapter 6. A comparison has been

performed of the acceptance probability rale to determine the most efficient settings.

A literature review has not revealed any previous use of Simulated Annealing for the

generation of test data, and the use of Simulated Annealing to lest data generation

constitutes an original contribution to knowledge. Finally, a hybrid GAs-SA is used

for the same test program.

Chapter 8 - Tabu Search

This chapter includes a discussion of two related search techniques. First to be

introduced is hill-climbing followed by Tabu search which builds on the simple

Chapter I

methods involved in hill-climbing. Using Tabu Search for the automatic generation

of test data is an original contribution to the field of test data generation. The results

of hill-climbing are not as promising as other search techniques, and even random

testing produces better results. While the results of hill-climbing were poor. Tabu

search performed almost as well as the other adaptive search methods. A hybrid

GAs-TS was developed to see i f it would improve ihe results and the philosophy of a

Tabu list was used in conjunction with Simulated Annealing, These techniques are

an original contribution to knowledge in the field of adaptive search techniques.

Chapter 9 - The Results of Adaptive Techniques on a Suite of Test Functions

After demonstrations of the techniques in the previous chapter a more complete suite

of test functions was used. This will determine whether adaptive search techniques

can outperform the results of random testing. A final aspect is the introduction of

time measurements to the testing procedure. Is lime a factor? As faster computers

are developed it will be interesting to compare these results on a time basis to

determine whether the extra effort involved in designing adaptive techniques is worth

the savings in run time. This comparison of techniques is an original contribution to

knowledge.

Chapter 10 - A Demonstration of Automatic Test Data Generation on a

Program which Optimises Capital Allowances for Company Taxation

The final demonstration in this thesis uses the adaptive search techniques described

here to derive test data for a program written to optimise the system of Capital

Allowances used in company taxation. This program was written with the intention

Chapter 1 9

to optimise the calculations using Genetic Algorithms and Simulated Annealing, but

it is good programming practice to test the functions prior to optimisation. As both

the size of the search space and the number of branches. LCSAJs and paths through

the code is large, this problem is ideal for comparing the test data generation

techniques in a *real-Iife' environment and is an original contribution to knowledge

in the field of adaptive search techniques.

Chapter 11 - Discussion and Future Research

The aim of this chapter is to review the results received and contains a discussion of

how robust these methods might be compared to random test data generation.

Included is a review of the strengths and weakness of this research and a

consideration of future research which needs to be performed.

Chapter 12 - Conclusion

The concluding chapter ties together the ideas presented throughout the thesis, and

offers some thoughts on practical implementation.

1.6. Conclusion

This chapter offers an introduction to the subject of this thesis and discusses why the

area of software testing and testing tools is important to the software development

community. A discussion of the objectives is given along with the research plan that

was followed in the comparison of test data generation techniques. In conclusion is

a breakdown of each chapter which aims to point out the contribution of knowledge

contained within.

Chapter 1 10

Chapter Two

What is Software Testing?

2.1. Introduction

The development of the very first piece of computer software was probably followed

by a complaint that it did not work as expected. Total Quality Management and

Zero-Defects are important benchmarks and should be applied to computer software

and the software development process. Therefore it is necessary to devise methods to

test software modules quickly, efficiently and completely, prior to the delivery date.

A critical system relies on the software that drives it and the users expect it to contain

no errors. Errors are classified by Goodenough and Gerhart, (1975) into two groups,

performance or logic. Performance errors are a failure to produce results within a

specified or desired time and space limitation, whereas logic errors deliver incorrect

results regardless of the time and space required. Erroneous implementation is the

most common fault in software according to Goodenough and Gerhart, (1975).

Some of these errors are summarised as follows:

• Missing Control Flow Paths: The cause, a failure to test conditions,
and the result, an incorrect execution (or non-execution). Failure to
test for a zero divisor before a division in Fortran is an example. A
program with this type of error will be able to execute all control
flow paths without detection.

• Inappropriate Path Selection: An incorrect condition may cause an
action to perform or not perform. If the code is written I F X,
instead of I F X and Y an action can occur when X is true and Y is

Chapter 2 11

false. It is possible to execute aJI branches and statements and not
delect this type of error.

• Inappropriate or Missing Action: This results from errors such as an
incorrect calculation (W*W instead of W+W), failing to assign a
value to a variable or calling a function with a wrong argument list.
If all statements are executed most of these errors will be caught,
but i f errors only exist under certain condition they may not be
found.

Goodenough and Gerhart (1975) were the first to establish a sound theoretical basis

for testing and their 'Fundamental Theorem of Testing' has been used as a model for

formalising testing concepts (White. 1987). Their theorem states that there always

exists a finite test set that reliably determines the correctness of a given program over

its entire input domain. They further define a *test selection criterion' which

specifies conditions that must be satisfied by a finite test set. For example, i f a

program specifies that all input variables be integers, it might be specified that all test

data sets contain both a positive and negative integer and a zero (White,. 1987).

Therefore, two potential test sets can be (-5,0,12) and {-1,0,8}.

It is known therefore that there exists a test data set. but building such a finite set is

undecidable as proved by Howden (1976). A problem is described as undecidable

or unsolvable i f no algorithm can find a solution (While, 1987). The 'halting

problem' was influential in defining what is undecidable. It asked whether any given

Turing machine will halt given an arbitrary input. To prove the undecidability of a

problem, it must be demonstrated that the decidability of the given problem implies

the decidability of the halting problem, which would be a contradiction.

Undecidability concludes that no computing machine can be designed which given an

arbitrary program and input, will always terminate. Of course this problem can be

Chapter 2 12

C Halt ^

avoided by a study of code loops lo determine if they terminate under all conditions

(White, 1987), and this will be discussed in later

sections.

To further illustrate the issue of decidability in the

structure of a computer program, the digraph in

figure 2 will be used. This digraph consists of an

entry node with no incoming nodes and a terminal

node with no arcs leaving it and should consist of a

sequence of arcs from the entry node to any specified

node through to the terminal node. This, referred to

as the directed path, should exist for every node

Figure 2 - Sample Directed
(White. 1987). Graph (Digraph)

A directed path from the entry node to the terminal node on the graph is called a

control path. Paths which traverse the same loop for different lengths of lime are

specified as distinct control paths. The result is that the number of control paths can

be infinite. However, not all control paths are executable. If there is input data to

satisfy a path condition then the path is executable. If no test data exists then the

path is considered infeasible, and not available for testing (White, 1987). Therefore

to determine in advance which paths are executable and which are infeasible is

undecidable as a test data set can not be built which will satisfy all paths.

Chapter 2 13

What is possible is to search for test data which will execute the feasible paths of a

program and while there can be no specific algorithm developed for this purpose,

many techniques have been developed using heuristic or ad hoc methodologies.

2.2. Software Testing

There are a number of strategies for designing testing processes which can be

combined in a *pick'n mix' fashion to develop a methodology. Very broadly these

strategies can be distinguished as static, dynamic, functional or structural. Coward

(1988) offers this distinction between the strategies:

'A functional strategy uses only the requirements defined in the
specification as the basis for testing, whereas a structural strategy is
based on the detailed design. A dynamic approach executes the
software and assesses the performance, while a static approach
analyses the software without recourse to its execution*.

A more detailed definition is given in the following subsections.

2.2.1. Static Analysis

In static analysis a program is not executed, the review is performed on the

requirements analysis and design documents. This is a manual or automatic process

which searches for errors in syntax or structural properties. Types of errors

discovered can be in language syntax, misspellings, punctuation, line sequencing or

specification elements (Andriole, 1986). The general form of a static analysis tool is

shown in figure 3. These techniques can be applied to all stages of product

development from the requirements statement to the user manual. Manual inspection

which can consist of desk checking, inspection and walkthroughs have advantages

over automatic techniques in that more than one perspective can be addressed while

Chapter 2 14

the program is being examined, such as a review of both high level and detailed

properties as well as allowing the analyst to apply various heuristics or subjective

judgements. Unfortunately this sort of inspection can be dull and time consuming

and as the size of a piece of software grows the inclination to compromise quality

increases (Andriole, 1986).

Standards, Guidelines.
Criteria

Product
Specification

Analysis of
Fonn and
Structure

Rqiorts
and

Diagnostics

Figure 3 - General Form of Static Analysis

Automated static analysis tools operate on both the source code and the requirements

and design specifications. There are two kinds of automated tool, the first gathers

and reports information about a program but does not usually search for a particular

type of error. The second tool detects specific classes of error or anomalies in a

program. Examples include parsers which determine the adherence of a program to

the language syntax; analysis techniques to test consistency of parameter interfaces;

consistency checking of variables to their declaration; and reviewing code for

incorrect sequencing such as trying to read from a file before it is opened (Andriole,

1986).

Static testing techniques include symbolic execution, program proving and anomaly

analysis.

Chapter 2 15

2.2.2. Dynamic Analysis

Dynamic analysis requires the software to be executed. While it is possible through

static analysis to determine i f a directed path exists between two nodes of the control

flow graph, it is not possible to tell if this path is executable. Analysis routines

inserted into a program will record the paths executed, thus keeping a record of

exercised portions of the code (Korel, 1990). The record lists execution of program

statements, branches or code jumps as well as identifying particular areas of code

which may be unreachable. Figure 4 is the general form of this analysis tool which

illustrates how the functional analysis of the code through path selection and testing

algorithm joins with the specification to compare and analyse the program.

Specification
of Fonctxon&l

Intent

Algorithm
SpeciTicatian

FathA'ariable
Selection

Fimcdonal
Analysis

Comparison
and

Analysis

Evaluation
and

Diagnostics

Figure 4 - General Form of Dynamic Analysis Testing Tool

Dynamic analysis can act as a link between functional and structural testing. A set of

test cases are generated through functional testing, the execution of which may be

monitored by dynamic analysis. The program can then be examined structurally to

determine test cases for areas which may not have been exercised. This results in the

knowledge that the whole program is being tested and aims to reduce unexpected or

redundant code.

Chapter 2 16

Dynamic testing techniques include random testing, domain testing, cause-effect

graphing, adaptive perturbation testing, compulation testing, domain testing,

mutation analysis and automatic path-based test data generation.

2.2.3. Functional Testing

Selection methods which attempt to derive test data to confirm that a function, as

determined by the specification, is correctly implemented, are known as functional

testing methods. Most are black-box methods, as there is no concern for the structure

of the program in contrast to white-box testing. White (1987) states that this method

has two problems, firstly a program can contain functions which were not in the

original specification which needed to be tested, and secondly there are no formally

identified methods for performing these tests, therefore the results of testing can only

be of limited use.

Howden (1980;1981a; 1981b;1985), however, has developed an underlying theory of

functional testing which attempts to overcome the problems described above.

Howden feels that in addition to testing the functions specified in the requirements,

an attempt should be made to mimic the development process of the program by

testing the simple functions and routines before the more complex procedures. His

theory consists of two elements, functional synthesis and testability. He suggests that

these four types of synthesis should be tested in addition to those functions defined in

the specification and requirements.

• Algebraic synthesis - Algebraic expressions in variable reference either
numerical or Boolean values;

• Conditional synthesis - IF-THEN-ELSE constructs, built from algebraic
expressions;

Chapter 2 17

• Iterative synthesis - Loop iteration such as FOR-NEXT or WHILE, the
predicate determines termination and the body of the loop makes an
additional function;

• Control synthesis - State transitions models are used to give descriptions
of states which can not be quantified such as "improper input data" or
"termination".

To test a program can be quite simple, but to be testable a test must be able to control

its input and observe its output. Unknown input produces untraceable output. The

following is a definition of testability from a US software engineering standard:

Testability. (1) The degree to which a system or component facilitates
the establishment of test criteria and the performance of tests to
determine whether those criteria have been met. (2) The degree to
which a requirement is stated in terms that permit establishment of
test criteria and performance of tests to determine whether those
criteria have been met.

IEEE 610.12

One definition of the testability of a program is its sensitivity to faults when inputs

are chosen at random from a specific set of input variables. Its sensitivity to faults

indicates testability, therefore an exceptionally sensitive program will be

exceptionally testable.

According to Howden (1980), a functional test is one which reviews both the

functional synthesis of the programmer and is testable. The functions to be tested

should be determined from the following sources:

• specifications - if the specification is casual or unofficial then the verbs
used will indicate functions to test, formal specifications will indicate the
functions in assertions, tables or formulas;

• programs - from elementary program statements, subroutines and
subpaths;

• design information and documents - useful to determine functions and to
map design functions to specific aspects of code.

Chapter 2 18

Identified functions should be reviewed for a variable range which covers the entire

scope of possible input and output, including both extreme values just outside the

permitted range and those just inside the range. Additional illegal values need to be

applied to review error-catching procedures, as well as tests on arrays or vectors.

Of the dynamic testing techniques listed in section 2.2.2. functional techniques

include random testing, domain testing, cause-effect graphing and adaptive

perturbation testing.

2.2.4. Structural TesUng

A structural test executes the program under test to attain a coverage level of the

code, and this coverage level consists of various tests of code which will suggest

reliability. Coverage tests can check whether all statements or branches in a program

are exercised, or that all linear code sequence and jumps (LCSAJs) have been

executed at least once. An LCSAJ is a segment of code beginning at a decision or

loop and concluding when a transfer of control has been made.

In an ideal worid the best case testing scenario would be an exhaustive search with

all possible paths through the code tested. Problems arise as the number of paths

increase. All combinations and conditions must be considered and ihis number

increases if iterations are not constant but rely on input data. This results in

combinatorial explosion, therefore limits are required for loops to restrict the size of

the search space.

A second obstacle to exhaustive testing is infeasible paths, as it is impossible to

ascertain in advance how many paths can be exercised. It is simple, under certain

Chapter 2 19

restrictions, to determine the number of paths through a program using the following

notations for the nodes of the digraph (Paige and Holthouse, 1977):

sequence operator

selection operator

iteration operator

Loops are restricted to activating zero and once.

To illustrate this procedure, the program shown

in figure 5. and its respective flow chart in figure

6, will be used.

Figure 6 - Flow Chart for Figure 5

read_in(im a, int b)
if (a>b) ihen

print a
else print b
while a < b

a = a+1
end

Figure 5 - Sample Code

The flowchart in figure 6 can be rewritten as the following,

l-2-(3+4)-5 (6-5)* -7,

where each number represents the statement number in the code. The indicates an

option, as in choosing either statement 3 *print a* or statement 4 *else print b\ these

statements are mutually exclusive.

The (x)*, which represents the loop, statements 5 and 6 in figure 5, is replaced with

(x+0). This new expression will accommodate the loop to be exercised twice. The

Chapter 2 20

first lime it will make sure the loop is not activated, that is *a>b\ and the second time

it is activated at least once, that is *a<b'. The new expression is as follows,

1-2 (3+4) -5 ((6-5)+0) -7.

The final stage is to replace all the statement labels in the above expression with a 1,

and then sum the equation, as shown below,

1-1(1+1)1((M)+1)1 =4.

The resulting value is the total number of paths through the code and these four paths

are listed in table 1.

Paths
I) 1-2-4-5-6-5-7
2) 1-2-3-5-6-5-7
3) 1-2-3-5-7
4) 1-2-4-5-7

Table 1 - Potential Paths (Feasible And Infeasible) through Code

Unfortunately one of these paths is infeasible, path 4 (if a>b is false in line 2-4 then

a<b has to be true in line 5-6), While it is easy to count the number of potential paths

through a piece of code it is impossible to determine in advance which paths are

feasible.

Testing methods which do not give as much coverage as exhaustive testing are

available, with the advantage of speed. Of the static testing techniques listed in

section 2.2.1, structural methods include symbolic execution, program proving and

anomaly analysis, and of the dynamic testing techniques listed in section 2.2.2,

structural methods include compulation testing, domain testing, mutation analysis

and automatic path-based lest data generation.

Chapter 2 21

2.3. Testing Techniques

2.3.1. Introduction

A complete breakdown of the techniques available for testing and their respective

categories is given in table 2. The individual techniques are then discussed in the

following sections.

Structural Functional
Static Symbolic Execution

Program Proving
Anomaly Analysis

Dynamic Computation Testing
Domain Testing
Mutation Analysis
Automatic Path-Based Test
Data Generation

Random Testing
Domain Testing
Cause-effect Graphing
Adaptive Perturbation
Testing

Table 2 - Breakdown of Functional and Structural Techniques as Static or
Dynamic Testing

2.3.2. Symbolic Execution

In symbolic execution, each input variable is replaced by symbolic values and the

output is displayed using these symbols (Clarke, 1976). This output is then examined

to determine whether the function tested has been used, hi the example in figure 7,

the price of the product decreases as the quantity purchased increases, provided a

certain margin of (cost-price) is met. While this program looks complicated. Price,

Quantity and TotalCost can be assigned the algebraic value of P, Q and TC. If the

execution of line one is the goal, the expected output is shown as a relationship

between the input variables so that the symbolic values P,Q and TC become

TC/0.90Q, Ta0.90P and 0.90PQ respectively.

Chapter 2 22

CaIculateCosi(Quantity, Pricc,Cost)
1 if (Quantity <, I and Price-Cost > 1.50)
1.1 ToiaJCosi = (Price- (Price '0.IO))*Quantity
1.2 else if (Quantity > I and Quantity < 4 and cost-price > 1.00)
1.3 ToialCost = (Price - (Price*O.I5)) • Quantity
1.4 else if (Quantity > 4 and cost-price > 0.50)
1.5 TotalCost = (Price - (Price*0.20))*Quantity
1.6 else
1.7 ToialCost = (^antiiy*Price
2 end

Figure 7 - Sample Code to Demonstrate Static Analysis

When there are a number of paths through the code as there are in figure 7, choices

must be made as to which path is to be tested. A selected control path will use its

path conditions as constraints expressed in terms of the symbolic input variables.

Path feasibility is determined i f there exists an input and an output point to the code.

Symbolic execution can illustrate problems effectively as long as the expressions are

not too complex. As with all methodologies there is a difficulty in the handling of

loops or iterations but the accepted method is for three executions, once when there is

no execution of the loop, again for a single execution of the loop, and finally for two

executions of the loop. It has been determined that symbolic evaluation can assist in

the testing of branches, statements or paths in a function. Clarke and Richardson

(1981) describe three types of symbolic evaluators; symbolic execution which is a

path analysis technique; dynamic symbolic evaluation which relies on data to

represenl the program; and global symbolic evaluation, a method of representing a

program symbolically.

2.3.3. Program Proving

Program proving also involves an examination of the source code without input data.

Floyd (1967) developed the most widely reported method called "inductive assertion

verification". This method involves placing assertions at the beginning and end of a

Chapter 2 23

selected procedure, each describing the function of the procedure mathematically. A

correct procedure will demonstrate that the output procedure is true given a true input

procedure. Program proving attempts to provide a proof that accounts for every

possible iteration of a loop. If the output is incorrect it must be assumed that errors

have occurred in either the program or the proof, and these must be rechecked.

DeMillo et al (1980) argue that procedures can not be thought of as 'correct' but as

'acceptable'. If a program was found to be 'acceptable' after being checked by a large

user group then there is confidence in the program, the larger the group the greater

the confidence.

2.3.4. Anomaly Analysis

Anomaly analysis begins with a review of the programming language syntax before

the code is searched for errors possible within the language. Anomaly analysis

systems such as Dave (1976), Faces (1974) and Toolpack (Osterweil, 1983)

determine the following irregularities:

• unexecuiable or island code

• exceeded array boundaries

• uninitialised variables

• redundant variables

• incorrect loop conclusion

Anomaly analysis is performed by producing a flow graph, a scan of this graph will

indicate any anomalies, such as no route leaving a particular node or a loop which is

never accessed. It will not however, show infeasible paths, as this is not part of its

structure.

Chapter 2 24

Data flow analysis is one type of anomaly analysis. The flow of data from input to

output is analysed and should indicate misspellings, confusion in variable names, or

incorrect parameter passing. Although it is possible for these errors to exist in an

otherwise 'correct* program it is good programming practice to ensure compliance

with the functional requirements.

2.3.5. Mutation Analysis

Mutation testing is an error based testing technique (Demillo et al, 1980; Budd,

1981; Howden, 1982; Geist, 1992; Holmes et aU 1993). Errors are added to copies

of the code by a mutation of the original code with the intent of exposing the errors

through testing. Given a program P which runs successfully under a data set. all

mutated versions of P, the incorrect programs, should fail on at least one aspect of the

test case. If a lest program which has failed is very similar in structure and design to

the original then either the program under test is error-free, or the error has not been

detected in the mutation process. In either case the test data set is very good.

The mutation of the sample code from figure 5 is shown in figure 8. In the correct

program. P is to be tested by some data D. a set of programs which vary from P by a

single error chosen from a list of potential errors called M(P).

Original Code P Muiated Code M(P),
1. read_in(int a, int b)
2. ifA>Bihen

1. readjn(int a, ini b) 1. read_in(int a, int b)
2. ifA>Bihen 2. i fA>Bthen
3. do A 3. do A
4. else do B 4. else do B
5. whilea<b 5. while a < b
6. a = a+l 6. a = a+l
7. end 7. end

Figure 8 - Mutation of Sample Code from Figure 5

Chapter 2 25

M(P),
1. read_in(int a, int b)
2. ifA>Bihen
3. do A
4. else do B
5. while a < b
6. a = a+l
7. return

Figure 9 - Functionally Equivalent Program to Original Code

Some of the mutant programs in M(P) will be functionally equivalent, such as shown

in figure 9. The error which replaces the end statement with a return, has no effect

on the logic of the subroutine and would be an equivalent mutant E(P) (DeMillo et

a/, 1987).

The programs in M(P) arc executed on the data sets, D. The results which are

different from the results from P on the same data, D, become the set of mutants

DM(P,D), the ones with the same results form E(P). A mutation score is the fraction

of the number of non-equivalent mutants of P which are determined by using the test

set D. I f m,e, and dm are the number of elements in M(P), E(P) and DM(P)

respectively then the mutation score of D and P is defined by DeMillo et al (1987) as

follows,

ms(P,D) = dm(m-e).

A high score indicates that D is very close to being adequate for P relative to the set

of mutants for P. A low score illustrates a weakness in the test set D so that P is not

distinguishable from F, the flawed program (DeMillo et al, 1987). Once a method

for establishing M(P) has been developed the test data results can be calculated

automatically, which substantially reduces the time required for this testing process.

According to Budd (1981), the most common criticism is that mutation analysis

requires a large number of altemative programs generated. In addition to this

Chapter 2 26

problem, some programs and their mutants may be Recursively unsolvable', that is

their mutation is difficult to detect and therefore are considered equivalent to the

original code. Fosdick and Osterweil (1976) argue however that 70% of the

equivalent mutants can be determined through basic automatic processes and that

most of the remaining 30% can be eliminated through human detection. It is felt that

less than 3% require a deep understanding of the program.

2.3.6. Random Testing

Random testing is the random selection of some subsets of all possible input values.

Myers (1979) argues that this is probably the poorest methodology for test case

design, although test results do "mdicate that random testing can be cost-effective for

many programs including real-time software (Ince, 1987). Xanthakis et al (1992)

claim that random testing should be considered as a minimum achievable by a

technique for the automatic generation of test data, and as such may be taken as a

baseline against which to compare and evaluate the efficacy of alternative techniques.

In random testing a program is executed for a subset of test data and errors are

detected by the failure of expected behaviour. Although only a subset, the amount of

test data required to execute a segment of code can be quite large, especially i f very

specific conditional statements exist in the program. I f in the sample code from figure

5, the variables a and b were restricted to the range [0..20] and coverage of the path

{1-2-3-5-6-5-7} was required, the number of variable combinations out of a total of

441 which satisfy this path would be 21 or 5% of the entire search space. As the

variable range increases the combinations which satisfy this path may reduce

proportionally.

Chapter 2 27

One problem associated with random testing is the amount of human input needed to

examine the test outcomes to determine if they are the expected outcome.

Fortunately, not all outcomes will need to be examined, those which finish due to

runtime errors will be self explanatory. One benefit of random testing, is that to

perform this sort of testing one only needs a random number generator and a means

of monitoring the structural program under test (Ince, 1987).

2.3.7. Computational and Domain Testing

Computational and domain testing are additional strategies for selecting test cases,

both of which use the structure of the program to select paths. When an error in the

flow of the program occurs it is a domain error, whereas when the test data follows

the correct path but an assignment error causes the flow of control to go to an

incorrect statement it is a computational error (White and Cohen, 1980). Domain

testing, as discussed by White and Cohen (1980) and While et al (1981), illustrates

that it is possible to construct test data for a set of programs which will detect a

specific type of error, and as a by-product, uncover computational errors. Test data is

selected on the basis of whether it is on or near the boundaries of each path domain,

as it is believed that those points close to the boundary but still satisfy the condition

are most sensitive to domain errors (Coward, 1988). Clarke et al (1982) argue

however that large domain errors may remain undetected by the White and Cohen

method and recommend additional strategies, V x V and N x N, which require more

test points on the boundary points.

The limitations which exist for all testing strategies affect domain and computational

testing. The first, coincidental correctness, can occur when a specific test point

Chapter 2 28

follows an incorrect path, but the output variables match those that would result from

following a correct path. The second limitation that can occur is its inability to

indicate that a path is missing, as no path oriented strategy can perform this

remarkable feat.

2.3,8. Partition Analysis

Partition analysis, related to domain testing, looks at both the specification and the

code. Its purpose is to reveal computational and domain errors. The first step is to

use the specification, figure 10, to perform a symbolic evaluation, figure 11, where D

represents the domains, C the associated computations and S the specification, and

then perform another symbolic evaluation of the code, P, as in figure 12 (Roper,

1994). The program code used to demonstrate this process was given in figure 7.

From each of these symbolic evaluations a domain graph is created, figure 13 and

figure 14, to illustrate the variable constraints,

1. The customer is allowed discounts on purchases if the product has a certain margin (price-cost).
2. If purchase 1 or less item margin must be 1.50, discount is 10%
3. If purchasing 2 or 3 items margin must be 1.00 and discount is 15%
4. If 4 or greater items margin must be 0.50 and discount is 20%
5. If none of the discounts apply the full price is charged

Figure 10 - Program Specification

D[Si) Quantity <, 1 and margin > 1.50
C[S,1 TotalCost = (Price-(Price*10%)) * Quantity
D[S?1 Quantity <1 and margin < 1.50
C[S?1 TotalCost = (Price * Quantity)

(Quantity > 1) and (Quantity < 4) and margin > 1.00
qs^i TotalCost = (Price - (Price* 15%)) * Quantity
DfS4) (Quantity >I) and (Quantity < 4) and margin < 1.00
C(S4l TotalCost = (Price* Quantity)
DfS<il Quantity > 4 and margin > 0.50
qssi TotalCost = (Price - (Price*20%)) * Quantity

Quantity > 4 and margin < 0.50
TotalCost = Price * Quantity

Figure 11 - Symbolic Evaluation of the Specification

Chapter 2 29

D[Pi] Quantity $ 1 and (Cost-Price) > 1.50
C[P|] TotalCost = (Price - (Price* 10%)) * Quantity
D[P9] ^ D[P1] and (juantiiy > I and Quantity < 4 and (cost-price) > 1.50
C[P-?1 TotalCost = (Price - (Pricc*15%)) * Quantity
DfP-^] ;feD[PI]and ?tD[P2] and Quantity > 3 and (Cost-Price) > 0.50
CfP-^l TotalC:ost = (Price - (Price*20%)) • Quantity
D[Piil ^D[PI1and ?ftDfP2] and?fcD[P31
C[P4] TotalCost = Price * Quantity
D[Ps] output TotalCost to customer

Figure 12 - Symbolic Evaluation of Program Code

I "

|D[S,1 \
D[S.]

Quantity

D[S.] \

Figure 13 - Domains Created by Symbolic Evaluation of Cost Program
Specification

r DIP,1

2 3 4

Quantity

Figure 14 - Domains Created by Symbolic Evaluation of Cost Program
Implementation

The two graphs are then matched to determine i f the specification and implemented

program agree. The implementation may trap some out of range data which is not

Chapter 2 30

defined in the specification. This matching is shown in figure 15, the numbers within

the brackets such as [23] indicate the corresponding line number from the symbolic

evaluation in the program code [2] and the specification [3].

Finally test data is established from the domain boundaries as in figure 16. These are

used to test the program. As will be discussed in chapter 4, Duran (1982;1984) used

the method in a comparison with random testing, but found no added benefit.

D[11] Quantity ^ 1 and (Cost-Price) > 1.50

Q u i TotalCost = (Price-(Price* 10%))*Quanuiy

D[23] * D[PI] and Quantity > 1 and Quantity < 4 and (cost-price) > 1.50

C(23] TotalCost = (Price - (Price* 15%)) * Quantity

0(35] 9iD[Pl]and 9iD[P2] and Quantity > 3 and (Cost-Price) > 0.50

C[35] TotalCost = (Price - (Price*20%)) * Quantity

D[46] '^DlPlJand *D[?2] and 5fiD[P3]

C(46] TotalCost = Price * Quantity

D[5Q] output TotalCost to customer

Figure 15 - Matching of Both Evaluations (Symbolic and Implementation)

Procedure Input Expected
Partition Output

cost - price Quantity
D l l 1.51 1 10% off

1.49 I no discount
1.51 0 10% off
1.49 0 no discount

D23 1.01 2 15% discount
0.99 2 no discount
1.01 3 15% discount
0.99 3 no discount

D35 0.51 4 20% discount
0.49 5 no discount

Figure 16 - Domain Boundaries

2.3.9. Cause-Effect Graphing

High-level specifications of system characteristics are used to develop test cases for

cause-effect graphing (Myers, 1979). Its strength is its ability to explore input

combinations. The graph is a combinatorial logic network, making use of only the

Chapter 2 31

Boolean operators *AND\ ^OR' and *NOT\ Myers (1979) suggests a number of

steps to determine cases using cause-effect graphing:

• Divide the specification into workable pieces - this might be a
specification for an individual transaction as a cause-effect graph for the
whole system would be too large;

• Identify cause and effects - a cause is an input, such as a command typed
at a terminal, an effect is an output;

• Construct a graph to link cause and effect lo represent semantics;

• Annotate graph to demonstrate impossible combinations of causes and
illogical effects;

• Convert graph to limited entry decision table, where conditions represent
the causes, actions represent the effects and rules represent test cases.

Cause-effect graphing is a systematic method of generating test cases representing

combinations of conditions. According to Myers (1979), since cause-effect graphing

requires the translation of a specification into a Boolean logic network, it gives a

different perspective on the specification and is a good way to uncover ambiguities

and incompleteness in specification. A further advantage is that as many aspects can

be automated, it is attractive for functional testing (Andriole, 1986).

2.3.10. Adaptive Perturbation Testing

Adaptive perturbation testing is the first to introduce heuristics lo the testing

methodology. Test data is selected automatically using a 'Parameter Perturbation

Algorithm' which could include a gradient, probabilistic or heuristic search. Variable

inputs are manipulated until the boundary of input variables is determined. Gradient

techniques work best for smooth, continuous unimodal search spaces while

probabilistic search is immune to plateaux, discontinuities and the highly granular

search spaces.

Chapter 2 32

According to Cooper (1976). heuristic search offers the best chance of success.

Heuristics are established by the test engineer, and one method is to relate the data

selection method to the system's performance. After application of a heuristic, a

check is performed to determine the adequacy of the test set, the heuristic is then

modified or a new heuristic chosen and run again. A good heuristic is added to the

heuristic set, which is re-ordered and reused to attempt more successful searches.

Holmes et al (1993) has used an adaptive test data generator which uses heuristics

applied to historical test information to predict new test data. The aim was to

produce test data which eliminated mutated versions of the code. Holmes et cl

(1993) describes five different heuristics tried, the direct assignment heuristic, the

alternating variable heuristic, the effectiveness of test data generated by the direct

assignment and the alternating variable heuristics, linear predictor heuristic and the

domain boundary heuristic. According to Holmes et al (1993), the domain boundary

follower heuristic has proved successful in devising test data which exercise

thoroughly a piece of software. This heuristic uses some of the principles of linear

predictor heuristic, which is a linear extrapolation on each of the input variables.

Once this is completed, points on the boundary are applied until searching is

completed (Holmes et al, 1993). The problem with this approach is the large amount

of computation lime required, partially solved by the direct selection of starting

points.

Chapter 2 33

2,3.11. Automatic Path-Based Test Data Generation

Automatic path-based test data generation is used when a program is to be executed

with the intention of achieving a particular

level of coverage. Coverage refers to the

amount of actual code which has been

executed by the test and there are four types of

coverage. Statement testing which requires

that all program statements be executed at

least once, is the simplest. In the sample code,

figure 5, and the resulting flowchart, figure 17,

the aim is to determine the- effect of all

executable code and to specify any code which

is unreachable. In this example the seven

statements must be exercised. This method Figure 17 - Flow Chart of figure 5

may at the outset appear efficient in determining the effects of all executable code

and to specify any code which is unreachable. However only existing code will be

tested, the else portion of an if statement will not be forced to execute unless it is

explicitly written into the code.

Branch testing rectifies this problem as test data is generated which will attempt to

access all outcomes of program decision points. Therefore any if statement must be

exercised for both true and false and any loop for looping zero, one or two times.

Another testing mechanism introduced by Hedley and Hennell (1984) takes the

measurement of branches and loops one step further by reviewing linear code

sequences and jumps (LCSAJs). One interpretation of LCSAJs is to review

Chapter 2 34

segments of code from one point, the start point or a decision point, through the next

sequence of code or decision point, activating the segment of code from starting

point to goal. The LCSAJs in the sample program are listed in table 3.

LCSAJs Notes
1-2-3-S True branch exercised
1-2-4-5 False branch exercised
3-5-7 loop NOT activated (True)
4-5-7 loop NOT activated (False)
3-5-6-5-7 Loop activated 1 time (True)
4-5-6-5-7 Loop activated I time (False)
3-5-6-5-6 Loop activated 2+ times (True)
4-5-6-5-6 Loop activated 2+ times (False)

Table 3 - LCSAJs through Sample Program listed in Figure 5

Woodward et al (1980) and Hedley and Hennell (1984) have developed test

effectiveness ratios for all three testing methodologies, shown in figure 18. Test data

is required which gives a value-closest to one, for all three Test Effectiveness Ratios

(TERs).

number - o f - statements - exercised -at- least - once
TERx

TERi

TERi

total - number - o f - executable - statements
number - o f - branches - exercised -at- least - once

total - number - o f - branches
number - o f - LCSAJs - exercised -at- least - once

total - number - o f - LCSAJs

Figure 18 - Test Effectiveness Ratios

In addition to these methods is also total path coverage, which as discussed in section

2.2.4, has the problem of infeasible paths. While the sample program only contains

one infeasible path out of the four potential paths, the simple Trityp program which is

described in chapter 9 contains only 10 feasible paths out of a possible 121. This

makes it very difficult to statistically confirm coverage.

The first step in path-based testing is to establish a program control flow graph as in

figure 17, from which the paths, both feasible and infeasible, through the program

Chapter 2 35

are then determined, and these were given in table 1. After the selection of a testing

criterion, such as the near minimal set of paths to exercise, the final step is test data

generation. Input data which will execute each test path is established, usually

through symbolic execution which generates path constraints consisting of a set of

equalities and inequalities for the input variables of the program, all of which need to

be satisfied in order for the path to be traversed.

Contrasting this symbolic approach, Korel (1990;1992) introduced a method of

dynamic test data generation. Test data is developed using actual values of input

variables. As the program is activated the flow of execution is monitored and the

input variables responsible for an undesirable flow are noted and used to correct the

program. Once the code is amended, it can be rerun on the input data to confirm the

flow of execution is now correct. Chapter 3 demonsu-ates a tool which will determine

the paths upon which coverage should be attempted.

2.4. Conclusion

This chapter has included a general discussion of software testing techniques in use

and the emphasis has been on the wide variety of testing tools, methods, and results

and their individual application to a specific aspect of software testing. This variety

of testing techniques itself indicates that there is a definite need and desire for

software testing tools and that no one method has been deemed perfect. This allows

more and more types of testing techniques. One thing each dynamic testing medium

requires though, is test data. Normal test data generation procedures have been

performed by random generation, or by looking al the minimum and maximum

border values in each variable range. Is there a better method?

Chapter 2 36

Test data once generated is applied to the function that is being tested. A

measurement of how the test data performs on the function needs to be taken, and

TERs are used to measure the coverage of test code and are applicable to branch,

statement, LCSAJs and path testing. What is introduced in future chapters, are

adaptive search techniques for the generation of test data to effectively attain the

specified TERs for a dynamic test. These adaptive search techniques aim to measure

the structural coverage of a function under test, while keeping the amount of

disturbance to it to a minimum. This means that only a small amount of recoding

should be performed on the function under test so the test is on the original code, not

what has been added as analysis routines. Therefore the testing will be performed as

black-box testing with slight structural modifications.

Chapter 2 37

Chapter Three

A Tool for the Generation of Test Data

3.1. Introduction

Xanthakis et al (1992) suggests that a tool for the automatic generation of test data

would be of inestimable value to the software development community, as it will

permit the almost total automation of the review process. In order to ascertain what

test data is required and what duty it is to perform, a thorough analysis of the code

under test needs to be accomplished. This testing tool begins with an analysis of the

code and concludes with a manual review of results of a test. The algorithm for this

technique is in figure 19.

Steps for Testing Tool
1 Analyse the test code and determine function to be tested
2 parse the function to determine the movement of conditional statements
3 determine the nearest neighbours for each step of the code
4 determine all potential paths using the nearest neighbour algorithm
5 establish the testing metric to satisfy
6 while desired coverage metric has not been attained
6.1 generate test data using test data generation methods (chapters 6 - 8)
7 the results are evaluated and exceptions are viewed manually

Figure 19 - Algorithm for Testing Tool using Test Data Generation

3.2. Steps of the Technique

In the following subsections each of the steps will be discussed with the exception of

steps 6 and 6.1 which will be featured in chapter 6 through 8. The demonstration of

Chapter 3 38

this method will be performed using the simple flowchart in figure 20 and program

listed in figure 21.

1 input (int x, int y, int z)
2 i f (x + y < z)

if(x<y)
X = z - y

else y = z - X
else X = z+y
i f (x < y)

x = z

3
4
5
6
7
8
9 end program

Figure 20 - Flow Chart of Figure 21 F"g"re 21 - Function Under Test

3.2.1. Analyse the Test Code

The first step is to analyse the code. A program which requires examination usually

consists of many individual functions. Each function should be tested separately, and

therefore an analysis of the code needs to be performed to determine how many

functions there are, their name, and corresponding input variables. The results of the

search are printed out to the user, and could appear as in figure 22.

Chapter 3 39

Functions available to test

1. input (requires 3 variables (x,y,z))
2. calculate (requires 3 variables (x,y,z))
3. output (requires 2 variables (x,y))

Figure 22 - Demonstration Printout after Initial Analysis of the Potential Code

The user selects the function to examine, each of which should be dealt with

individually. On completion of the individual test the entire program can be

scrutinised with the same data to determine the final status of the program under

examination.

3.2.2. Parse the Function Under Test

Once a function is chosen the user is then required to give the range of the variables,

or these values could be read from a file. In this sample program there exist three

input variables x,y. and z and the chosen range of each variable for this example will

be [0..20]. This function consists of two *if then/else' statements, one which is a

nested *if then/else', and one solo * i f statement. To illustrate the program design, as

in figure 21, knowledge is required of the level of each conditional statement, for

example line 2, in figure 21, is at the top level or level I , whereas line 3 is at level 2.

This can be done through a parsing of the code. The parser analyses each statement

and attempts to separate out each portion of code. A conditional statement in *C'

does not require brackets, but in order to determine the level of such statements these

brackets must be entered. To ascertain the level of each statement all that is required

is a counting of brackets. Figure 23 is a bracketed version of figure 21.

Chapter 3 40

1 void input (int x, int y. int z)
(CD

2 if(x+y <z)
{®

3 if(x<y)
(®

4 X = z-y;

5 f
else
{®

6 y = z-x;
1

1
7 else

(®
8 x=2+y;

I
9 if(x<y)

10 x=z;

1
}

Figure 23 - Figure 21 with Added Brackets (<D etc. is Uie number of opening brackets
used)

Therefore in this function there are six opening and closing brackets. If on reading

the code the (D is reached, and there have been no closing brackets for ©, this would

indicate to the parser that this conditional statement is nested within the previous

opening brackets. This division is necessary because it is possible to have a number

of nested Mfs' all on the same line, which would be difficult to count. The results of

this activity will help in building a numerical representation of the function which

can be used to determine the paths which need to be exercised.

The information in table 4 can be obtained using the parser. Column one is the line

number from figure 23, column two is the consecutive number of each line. Column

three is the conditional statement label, pairing inic and false when appropriate.

Column four is a value label derived from column 3. Column five is the conditional

statement level, a I is a lop level statement, a 2 is a single level statement, etc.

Column six indicates if a node is nested and which statement is it nested within from

Chapter 3 41

column two, number 2 and 3 are nested under 1. Finally column seven shows

whether the statement is an ' i f statement (1). an *else' statement (2) or an *else i f

(3). From this information it is possible to build a flowchart, figure 24, automatically,

similar to the type drawn manually in figure 20.

Column
1 2 3 4 5 6 7

Line number label value label level sub-node type of
number of: statement

line 2 1 IT 1 1 0 1
line 3 2 2T 2 2 I 1
line 5 3 2F 2 2 1 2
line 7 4 I F 1 1 0 2
line 9 5 3T 3 1 0 1

Table 4 - Conditional Statement Information

The input variables to the fiinction under test are specified and the range of these

variables is requested of the user, or read firom a file. This gives quick access to the

variable range which is used to determine the size of the search space.

Flowchai't for
input

Hunt>er o f u a r i a b l c s 3

P r e s s a n d h o l d L o f t n o u s c B u t t o n
o n c i r c l e f o r c o r r e s Q o n d I n g s t a t c n c n t
P r e s s r i g h t b u t t o n t o k e e n o n s c r e e n
o r L e t 0O o f l o f t t w i t t o n t o e l i n i n a t e
P r e s s n i d d l e b u t t o n t w i c e t o e x i t

Figure 24 - Screen-Dump of Automatically Produced Flow Chart

Chapter 3 42

3.2.3. Nearest Neighbours

With the information in table 5. using columns two, three, four, and five, it is

possible to determine which statements are accessible from a given statement, such

that IT can reach 2T and 2F. but not IF or 3T. Each statement's possible neighbours

are calculated, a 'Z ' indicates that the path could finish after this statement. Column

three determines whether a given statement can be the initial statement in a path, a

level 0 can start a path, but greater than 0 can not.

Column
1 2 3

Statement Nearest Neighbours Level of Start
IT 2T,2F 0
2T 3 T ^ 1
2F 3T,Z 1
I F 3T,Z 0
3T Z 1

Table 5 - Nearest Neighbours of Each Statement

3.2.4. Determine Potential Paths

It is now possible to determine the potential paths through the program. These are of

course not only the feasible paths but also the infeasible ones. Using the method

described in chapter 2 it is possible to determine how many paths there will be as

shown below

I -2 (3 (4+5)+6) -7-(8+9).

I f all the statements are substituted by I *s, the expression is as follows,

M (l (l + l) + l) l (l + l) = 6paths.

To determine the details of these paths, the data given in table 5 is combined to list

the 6 paths. Table 6 lists the resulting paths.

Chapter 3 43

Path Number Path
1 IT-2T-3T
2 1T-2T
3 1T-2F-3T
4 1T-2F
5 IF-3T
6 1F-3F

Table 6 - Paths through Function Shown in Figure 21

3.2.5. Testing Metric to be Used

There are a number of methods available for measuring coverage of a function, all of

which have been discussed in chapter 2. To reiterate they are path, branch, LCSAJs

and statement testing. Once the paths have been estabhshed in the previous section it

is possible to begin path testing, that is to run the program and check to see which

paths the test data can cover from the given Ust of paths. As an initial step this

procedure is fme. but most programs have a lot of paths, some of which will never be

covered. If this were to be the sole means of testing a great deal of manual review

would need to be performed to determine i f the remaining paths are infeasible, and

therefore additional coverage measures must be used.

In the function in figure 21 there are 9 statements, including the end statement, and

each statement should be coded as in figure 25 to indicate whether it has been

accessed or not. To perform statement testing, an accumulator line called *strcat' in

C code is inserted in the parsing stage after each statement to collect the statement

numbers as they are accessed. If the randomly selected input variables {1,3,5} were

used as variables x, y, and z respectively the resulting value of the suing ^slates'

would be

states = "sls2s3s4s7s8s9".

Chapter 3 44

From this information of the statements exercised, above, it can be determined that

the remaining statements which need to be exercised are "s5" and "s6". A random

selection of test data indicates that the following test data sets {6.3,5} and {3,1.5}

will exercise these remaining statements. All the statements have now been

exercised.

1 input (int x, int y, int z)
(

char states(20];

strcpy(states."sl");

2 if(x+y<z)
{

strcat(states. "s2");
3 if(x<y)

(
strcat(states, "s3");

4 X = z - y;
strcal(states. "s4");

1
5 else

strcat(states/'s5");
y = z - x;

}
6 else

{

strcat(staies, "s6");
x = z+y;

)
7 i f (x<y)

{
strcai(states, "s7");

8 X = z;
strcat(staies, "s8");

1
9 strcat(states. *'s9");

printfC*%s",states);
I

// establish string called slates which contains information on the
//statements covered in function
// add si to string states as statement 1 has been exercised by start of
// function.

// statement 2 if statement has been exercised

//statement 3 if statement has been exercised

// statement 4 with in statement 3 has been exercised

// statement 5 matching else to statement 3 has been exercised

// statement 6 matching else to statement 2 has been exercised

// statement 7 if statement has been exercised

// statement 8 within statement 7 has been exercised

// statement 9 - program end
// print out the statements which have been exercised

Figure 25 - Amended Code from Figure 21 for Statement Coverage

Chapter 3 45

input (intx, int y, int z)
{
char tested[20];

i f (x + y < 2)
{

strcai(iested, "IT*);
if(x<y)
I

scrcat(tested. ^IVy,
x= 2 - y ;

}

else
{

strcat(tcsted;*2F');
y = z -x ;

I
I
else
{

strcat(tested, "IF*);
X = z+y;

//establish string called tested which contains information on the
//branches covered in function

//Branch 1 has been activated for true

// Branch 2 has been activated for true

// Branch 2 has been activated for false

// Branch 1 has been activated for false

I
i f (x<y)
I

strcat(tested. ' ^ T ') ;
x = 2 :

// Branch 3 has been activated for true

)
else
{

)
strcat(tested, "3F*);

printf("%§",tested);
}

X = z+y;
I

7 i f (x<y)
{

strcat(siates, **s7");
8 x = z;

strcat(states, "s8");
I

9 strcat(states, "s9");
printf("%s",siates);
I

// Branch 3 has been activated for false

// print out the statements which have been exercised

//statement 7 if statement has been exercised

// statement 8 within statement 7 has been exercised

// statement 9 - program end
// print out the statements which have been exercised

Figure 26 - Amended Code of Figure 21 for Branches and LCSAJs

Branch testing and LCSAJs can be tested simultaneously by amending the original

code of figure 21 as shown in figure 26. Changes are the same as those for path

testing. Each path, as found by the nearest neighbour sequence can be broken down

Chapter 3 46

into individual branches or IXSAJs. Success will occur when all the branches have

been exercised. Using the test data| 1,3,5). the branches covered are below:

tested = "1T2T3T"

The remaining branches to be tested are IF. 2F, 3F which can be exercised with the

following randomly selected test data sets {6.3,5) and {3.1,5}.

LCSAJs. linear code sequence and jumps, are segments of code which follow from

the flow of one decision point through to the next decision point, such that 1T2T is

one sequence which should occur in exercising the code while 1F3T is another. Table

7 is a listing of all the possible LCSAJs in the function in figure 26, along with the

corresponding amount of search space which will satisfy the LCSAJ and the

corresponding percent of the total search space. A test data set may satisfy more than

one LCSAJ. therefore the total percentage of search space which satisfies each

LCSAJ is greater than 100%. The previous test data set {1,3,5} resulting in path

"IT2T3r' satisfies LCSAJs number 1 and 3. the test data set {6.3.5} satisfies

LCSAJs 8 and the test data set {3,1,5} satisfies the LCSAJs 2 and 6. To exercise the

remaining LCSAJs, 4.5, and 7, more test data sets are required. Set {1,2.10} will

satisfy LCSAJ 4 and set {1,1.3} will satisfy number 5. Finally there is no data set to

satisfy LCSAJ 7 and it is infeasible. Therefore the best TERs which can be achieved

is 88%, that is seven of the eight possible LCSAJs that can be exercised and all of the

feasible LCSAJs, listed in table 7. can be satisfied with the generation of a minimum

of five data sets.

Chapter 3 47

Number LCSAJs Amount which % of Search
SatisHes LCSAJs Space

1 1T2T 825 8.9%
2 1T2F 946 10.2%
3 2T3T 440 4.75%
4 2T3F 385 4.16%
5 2F3T 440- 4.75%
6 2F3F 506 5.46%
7 IF3T 0 0.0%
8 IF3F 7490 80.88%

Table 7 - List of LCSAJs through Sample Code Shown in Figure 26

This example illustrates that although statement and branch coverage may exercise

all portions of the code, testing these pieces of code together as LCSAJs determines

whether a sequence of statements is accessible. This offers a stricter test than branch

or statement testing, while avoiding the great volume of paths generated for path

testing.

3.2.6. Manual Review of Results

If, after completion of the testing procedure, there remains any statements, branches

or LCSAJs which are inaccessible, the system should print out a list such as in figure

27 which gives information regarding the status of the test.

Test Complete
All Statements exercised
All branches listed exercised
LCSAJs not exercised

Number of input variable: 3
range of variables:

x: [0..20]
y: [0»20]
z: [0..20]

Figure 27 - Status Printout after Test

3.2.7. The Handling of Loops in Code

Thus far the functions to be parsed have not included loops. When a loop is

activated its run-time can be infinite and many testing authorities, e.g. Roper (1994),

Chapter 3 48

suggest that the best plan is to activate each loop so it is only tested 0, I and 2 times.

Zero times indicates that the loop is not activated. Although a loop can last a long

time, the number of loops recorded will only be the first two, therefore a loop that

runs two times will register the same LCSAJs as one which activates 2+ times. The

code, from figure 21, is amended as in figure 28 to include a loop as well as measure

the level of path coverage.

loop = 0; // added to count how many limes loop is activates
while (y>2)
{

y= sqr(y) // actual loop activity in function (sqr = squareroot)
loop += I; // counting times of loop activation
if (loop = 1) //checking if loop has been activated I time

strcat(tested;Tl");
else if (loop = 2) // checking if loop has been activated twice

strcat(iested,"L2");
}
if (loop ==0) // if loop has not been activated

strcat(tested."U)");

Figure 28 - Testing for Activation of Loops

Loops can be tested as well, and figure 29 is the new code with the accompanying

flowchart of the code in figure 30. The number of LCSAJs has now increased from

eight to fourteen and the additional six are hsted in table 8 with corresponding test

data which satisfies these new LCSAJs. The number of data sets which satisfies each

of the LCSAJs add up to the total search space size, 9261, as each lest data set will

have to satisfy one of these LCSAJs which involve the activation or non-activation of

the loop. The minimum number of test data sets required to be generated before it is

possible for all the LCSAJs to be exercised, is now seven. The number of actual

paths through the function under test has now increased from 6 to 24, 15 of which are

feasible and 9 are infeasible.

Chapter 3 49

1 input (int x, int y, int z)
{
char tested[20];

2 if(x+y<z)
i

sircat(icsted. " I T ') ;
3 if(x<y)

// establish string called tested which contains information on the
//branches covered in function

// branch I has been exercised

strcai(iested. ' ^ T ') ; // branch 2 (true) has been exercised
x= z -y ;

else

strcat(tested,"2F');
y = z - x;

// branch 2 (false) has been exercised

)
6 else

(
su-cat(tested. " I F ') ;
X = z+y;

8

7 i f (x<y)
(

strcat(tesied. "3r');
X = z;

1
else strcat(tested,"3F');

loop = 0;
while (y>2)
{

y = sqr(y):
loop += I;
if (loop = I)

strcat(tested. " L I ") ;
else if

strcat(tesied. "L2");
1
if (loop = 0)

sircat(tested. "LO");
printf("%s",tested);

// branch 1 (false) has been exercised

// branch 3 (true) has been exercised

// branch 3 (false) has been exercised. Added code to show
// sequence of steps
//10 count how many times loop is activated
// original function code

// original function code
// increment loop each time activated
// loop activated I lime

// loop activated 2 times

// loop not activated

// print out the statements which have been exercised

Figure 29 - New Function Code Based on Figure 28 and Figure 21

Chapter 3 50

Ct3 &

Figure 30 - Flow Chart of Figure 29

Number LCSAJs A Data Set which Amount which % of search
Covers L C S A J Satisfles LCSAJs space

9 3TL0 f lJ ,31 8 .09%
10 3TL1 (1,3.51 232 2.5%
11 3 T L I L 2 (0,0.91 640 6.9%
12 3FLX) (1,2,101 855 9.2%
13 3FL1 (6,3.51 2520 27.2%
14 3FL1L2 (0.9.01 5006 54.11%

9261 100%

Table 8 - Additional LCSAJs from Figure 28

When a loop is to be activated and checked to see i f it only functions once, then the

path searches for an occurrence when L I is not followed by an L2. Al l loops can be

handled in this way, and while this will not detect if an error occurs after 2+ runs or

whether the loop will activate the required number of times, it is an effective way of

limiting the number of paths and hence LCSAJs though a piece of code. More

complicated loops will be demonstrated in chapter 9 and 10.

Finally listed in table 9 are all the branches in the function which need to be

exercised along with the amount of test data which will cover each of the branches

Chapter 3 51

and the coiresponding percentage of the search space. The size of the search space is

9261. which is three variables each of the range [0..20]. Ai l of the branches can be

exercised. The branch which is exercised by the smallest amount of test data is LO.

which is when the loop is not activated. Only 9.32% of the search space exercises

this branch, that is 863 test data sets. The branch which is exercised the most is L I

which is exercised by 90.68% of the search space, or 8398 test data sets. These

figures add up to more than 100% as most test data sets will satisfy more than one

branch. Al l branches can be satisfied with the generation of just three test data sets,

but to satisfy both branches and LCSAJs, a minimum of seven test data sets must be

generated. The maximum number of test data sets which could be generated prior to

complete coverage is 9254. This value represents the fact that only eight data sets

satisfy LCSAJ 9 {3TL0} and i t is possible for 9254 data sets of the total number

9261 to be generated before this LCSAJ is exercised.

Branch Amount which
Satisfies LCSAJs

Percentage of
Search Space

IT I77I 19.12%
I F 7490 80.88%
2T 825 89.08%
2F 946 10.21%
3T 880 9.50%
3F 8381 90.50%
LO 863 9.32%
LI 8398 90.68%
L2 5646 60.97%

Table 9 - Branches and the Corresponding Percentage of the Search Space
which Satisfies These Branches

3.3. Conclusion

This chapter illustrates a tool for analysing program code to determine their suiiciure

for use in the testing procedure. What has been left out of this procedure, is how test

data will be generated and this is discussed in chapter 6 through 8. With guidance

Chapter 3 52

from this chapter it is possible to determine a function to be tested, analyse that

function to find out the conditional statements, and produce a flow chart. From this

information it is possible to ascertain all paths through the code. As this may include

a lot of infeasible paths, its purpose is to test the statements, branches and LCSAJs

that have been established from the path data. The final coverage information is used

to manually review any areas of code which have been unobtainable. While loop

testing is more difficult and limited, it can be performed in a similar manner and this

method is demonstrated in this chapter.

It has been established that the complete test program, shown in figure 29, has 24

paths through the code, 15 of which are feasible. Additionally there are 14 LCSAJs

and 9 branches to be exercised, a successful test wil l achieve a coverage ratio of 95%

as LCSAJ 7 is infeasible. Data generation to cover the paths, branches and LCSAJs

will be performed for this test program using random generation and compared to the

results gained using OAs in chapter 6. These methods will then be compared to

additional adaptive search techniques. Simulated Annealing and Tabu search in

future chapters. The next chapter, however, gives an illustrative example of random

testing and test data generation.

Chapter 3 53

Chapter Four

What is Random Testing?

4.1. Introduction

Random testing is the most common and accessible method for software testing.

One procedure would be to randomly generate test data within the acceptable range

of the input variables and then apply it to the piece of code under test. I f the test

fails, i.e. a run-time error, there is an error in the code which needs to be corrected.

Once the error is corrected the same test data is used to confirm the 'correctness' of

the code by establishing i f another run-time error occurs. Other versions of random

testing include the use of randomly generated test data for statement, branch

coverage, LCSAJs or path testing.

Ince (1987) suggests that random code generation is both inexpensive and timely in

comparison to tools which attempt to derive test data from program code, design

specifications and functional specifications. Duran (1984) compared random testing

to partition testing, see chapter 2, and determined that for 100 simulated random tests

and 50 simulated partition test cases, random testing was superior and less expensive.

Ince (1984) compared random generation to adaptive techniques and determined little

difference in the coverage of the code. He did discover, though, that in measuring

the number of runs required before a satisfactory coverage percentage was attained.

Chapter 4 54

random generation was superior. Additionally Ince (1984) feels that restrictions

should be placed on the input domains, as he believes that a small subset of the

variable range will perform equally as well as a larger grouping.

4.2. A Random Number Generator

As Ince (1984) states, all that is required is a random number generator and some

way of measuring the level of coverage of the code. In chapter 3 a method for

determining coverage level has been developed. Random numbers can now be

generated. To illustrate the sort of search space in which the random number

generator will operate, the program used in chapter 2 to demonstrate testing

techniques will again be used, as shown in figure 31. The reason this function is

used is that there are only two input variables, which allows the actual search space

to be shown. The input variables x and y each will have the range (0..20}. For this

example the goal will be to exercise all the paths through the function. As discussed,

there are four paths through this function, shown in figure 32, and the search space

divided by the path coverage is given in figure 10. The size of the search space is 21^

or 441 unique combinations of input variables, and while calculations did determine

that there are a possible four paths through the code, the fourth one is infeasible.

1. read_in(int a, int b)
2. if(a>b)then
3. print a
4. else print b
5. while a < b
6. a = a+l
7. end

Figure 31 - Sample Two Variable Input Function used to Illustrate the Search
Space

Chapter 4 55

Path Number Path Number of
Data Sets

Share of
Search Space

Pathfl 1-2-3-5-6-5-7 21 4%
Path. 1-2-3-5-7 210 48%
Pathi 1-2-4-5-6-5-7 210 48%
Infeasible Path 1-2-4-5-7 0 0%

Table 10 - Paths through Program Listed in Figure 31 and Their Corresponding
Share of Search Space shown Graphically in Figure 32

m
H Path 1

n O <o <D

v a r i a b l e X

Figure 32 - Graphical Representation of Search Space, the Area Covered by
Each of the Three Paths is Indicated

h P a t h 1

^ ̂ —

I " ' ^ H l C i H

Test Data Set
{ M O }

o m (D •» ^ _

v a r i a b l e X

Figure 33 - Graphical Representation of Position of Randomly Selected Test
Data Sets within the Specified Search Space

Chapter 4 56

In this sample code, four percent of the search space satisfies patho, while the rest of

the search space is equally divided between pathi and path2. The random test data

was generated. An example of the location in the search space which was randomly

generated eight times is shown in figure 33. These eight randomly generated test data

sets exercise all three paths, and follow the same pattern as the complete search space

percentages, hence Pathi and Path2 had the most test data generated. The next step is

to measure the effectiveness of random generation.

4.3. How is a Measurement Taken?

There are two methods available to measure the abilities of random test data

generation. The first method is time. If random testing proved to be quicker in the

generation of test data that would be an asset. Actual time, however, might not be

the only method of measurement. I f a function is quite large it may take a great deal

of time before it is exercised and i f the same test data is generated again and again

this increases the run lime of a function. Therefore, to generate a small amount of

lest data which exercises all the required areas of the function would be beneficial.

For this reason the measurement for random testing will be performed on the amount

of unique test data which needs to be generated prior to coverage of the code.

Therefore the amount of data sets generated is a key factor in the comparison of

testing techniques.

In this sample program the search space consists of 441 possible combinations of

variables. The random generator was run 1000 times to give the average amount of

test data generated before all paths were exercised. The average amount of new test

Chapter 4 57

data generated per run was 20.269. Table 11 shows the average amount of test data

for each path which was required over 1000 runs.

Path Average Unique
Pairs Generated

Percentage of
Space Searched

patho 1.089 5%
path] 9.660 48%
pathz 9.520 47%
Total 20.269 100%

Table 11 • The Paths through the Function and the Average Amount of Test
Data Required before Coverage was Attained over 1000 Runs

The results of the random test data generation are very close to the percentages

generated from the exhaustive search with path© at 5%. pathi at 48% and path2 at

47%. Random searches, whilst effective, spend too much lime looking at areas

which have already been searched, by finding the same path, again and again.

4.4. Conclusion

This chapter describes how random test data is used to exercise a function under test.

The purpose of this chapter was to illustrate the type of search space that may be

encountered and how test data is generated to exercise the specified path, in later

chapters a more strenuous test function will be given and compared to other test data

generation methods. While random generation is simple and requires few resources,

will the amount of test data generated still make it a viable method?

Chapter 4 58

Chapter Five

Genetic Algorithms - A Brief Introduction

5.1. Introduction to GAs

For small search spaces, classical exhaustive methods usually suffice, but as the

search space grows search methods need to be devised which can minimise the size

of the search. Genetic Algorithms (GAs) are one such search technique. The first

influential work was produced by Holland in 1975 although he had worked in the

area since the 1960*s. GAs are based on the premise that computer algorithms can

mimic natural evolution, but what is natural evolution? In natural evolution there

exist chromosomes which consist of genes, these chromosomes determine such

things as sex, personal characteristics, or hair and eye colour. The chromosomes

from each parent are passed on to their children. Some of these chromosomes may

replicate a chromosome from one parent, they may be a cross of both parents or a

chromosome may mutate during the transfer phase. The resulting offspring is a

combination of characteristics and traits from both parents. While the battle of the

chromosomes takes place in the offspring, external environmental conditions

combine with the received chromosomes for the battle of survival. I f the offspring

has received particularly sturdy chromosomes to do battle against illness, famine and

strife that offspring will have a greater chance of surviving to the next generation, on

Chapter 5 59

the other hand if the chromosomes are poor the chance for survival lessens. Hence

future generations should consist of many more sturdy offspring with fewer and

fewer weaker members.

The established features of evolution are summarised as follows (Davis. 1991):

• Evolution occurs on chromosomes not the living beings encoded;

• Selection is the process in which certain chromosomes are chosen to
reproduce more often;

• Reproduction is when evolution takes place. Mutations may cause the
chromosomes of the offspring to differ from their parents. Recombination
may cause quite different chromosomes in die offspring by combining
material from the chromosomes of two parents;

• Evolution depends on the chromosomes of the parent and the structure of
the chromosome decoders.

Using the concept that evolution takes place on chromosomes, Holland (1975)

created an algorithm which manipulated strings of binary digits by carrying out

simulated evolution on populations of chromosomes. The only information available

to assist reproduction would be the fitness of each chromosome, a figure relating to

how *weir the chromosome performs on the function under test.

These simple algorithms, known collectively as genetic algorithms and using the

simple procedure of reproduction, crossover and mutation, have demonstrated

complicated behaviour and solved many problems deemed NP-complete. Areas of

research have included scheduling (Davis, 1987; Syswerda, 1989; 1991), game

playing (Chi et al, 1988), music compositions (Homer and Goldberg, 1991), and

transportation (Vignaux and Michalewicz, 1989).

Chapter 5 60

5.2. How do GAs Function?

To ilJustrale GAs. they will be used to optimise the simple function below,

f z = l + COS

The goal is to maximise . The variable range for x and y is the integer set [-5..5]

and the search space is illustrated in figure 34.

Uni-modal Function

2-f-

1.5-

re
su

lt

1-

0.5

• 1.5-2

• 1-1.5

• 0.5-1

O 0-0.5

X \'alue

Figure 34 - Surface Graph of Search Space

A chromosome of binary digits is used to represent the integers x and y. The length

of the vector is determined by the precision desired and the limitations of binary

digits. For this case each variable is represented by a four digit binary su-ing which

gives a chromosome length of eight as shown below,

23<10<24.

Therefore, a chromosome of length three would evaluate to the value of 8 or less,

Chapter 5 61

whereas chromosomes of length four can be evaJuaied to 16 or less. Using a four

digit binary string will thus satisfy the variable range requirement of [-5..5]. The

chromosomes (00000000) and (11111111) represent the boundaries of the range [-5,-

5] and [5,5], respectively. To illustrate, the chromosome (01010110) encodes the x,y

co-ordinates

x = ((binaryInt/15)*10)-5

y = ((binaryInt/15)*10)-5,

which translates to the actual co-ordinates as follows,

X , =(0101) = ((5/15)*10)-5= -2

y,= (0110) = ((14/15)*10)-5= 4.

5.2.1. Initial Population

An initial random population of ten chromosomes is created, each consists of 8 genes

which are composed of Is and Os. For this test the population in table 12 is

generated. ,

Number Chromosome
1 01101110
2 IIOOIIOI
3 OlOOIOlO
4 11011011
5 00111100
6 10010011
7 00111001
8 lOlOIOOO
9 00101010
10 11101101

Table 12 - Initial Population Selected Randomly

5.2.2. Fitness Function

The fitness is calculated for each member of the population. The results are given in

table 13. The values in the column entitled 'Share of Total Fitness' give the portion

Chapter 5 62

of the total fitness for each chromosome. For example, chromosome I with its

fitness of 0.7303 has a 0.087 or 8.7% share of the sum of the fitness for the entire

population which is 8.39. Chromosome 2 , with a fitness of 0.3827. has a 0.046 or

4.6% share of the sum of the population, this gives a unique position in the

population for the purposes of establishing the next population, as demonstrated in

section 5.2.3, which are all the randomly selected values between 0.087 and 0.133.

Chromosome
Number

X y f(x,y) Position of
Member in

Total Fitness
of Population

1 -1 4 0.7303 0.087
2 3 4 0.3827 0.133
3 -2 2 1.3011 0.288
4 4 2 0J939 0.359
5 -3 3 0.6792 0.440
6 1 -3 1.1559 0.578
7 -3 1 1.1559 0.716
8 2 0 1.6260 0.910
9 -4 2 0.5839 0.979
10 4 4 0.1814 1.000

Table 13 - Integer Values with Associated Fitness from Population of
Chromosomes

5.2.3. A New Population

As discussed in section 5.2.2, the fitness of each chromosome is calculated as the

percentage of the total fitness of the population. To represent this, figure 35 has been

created to illustrate each member's share of the total population fitness of 8.39.

Chapter 5 63

3.8%

15.6%

13.8%

8.1%

Figure 35 - Each Population Member's Share of the Population Fitness

Before generating the next population it must be noted that it is possible through the

process of reproduction, mutation and crossover that the best member of the

population could be eliminated. This could be acceptable, as it commonly occurs in

nature, however it could have a negative effect on the search population. To avoid

this the best member of the previous population is added to the new population, and

this can be done in a number of ways, as an additional population member i f it does

not exist in the new population, as an additional member regardless of whether it

exists in the population, or it can replace an existing population member to keep the

population size constant. The member of the population to replace can be chosen at

random or to replace the least fit member. The replacement style applied here is to

remove a random member of the population and replace with the *best' member,

regardless of whether that member already exists in the population. This replacement

procedure takes place after mutation and crossover. Therefore chromosome number

8 will be reserved a place in the next population.

Chapter 5 64

It is now time to randomly generate the next population. Ten times a random number

between 0 and 1 is generated. This number is then compared to column 5 of table 13.

If for example, the random number falls between 0.00 and 0.087 then member

number 1 proceeds to the next generation. Table 14 is a random drawing of ten new

population members with their corresponding chromosomes and fitness values.

The total fitness of the new population is now 11.909 an improvement of 3.519 over

the previous population. This new population is not complete, but before the two

operators crossover and mutation are described, a brief discussion of other

reproduction methods follows.

Number Random
Value

Original
Number

Chromosome Fitness

I 0.617 7 OOUIOOI 1.1559
2 0.104 2 11001101 0.3827
3 0.081 1 01101110 0.7303
4 0.580 7 00111001 M559
5 0.720 8 10101000 1.6260
6 0.733 8 10101000 1.6260
7 0.874 8 10101000 1.6260
8 0.222 3 01001010 1.3011
9 0.429 5 OOMHOO 0.6792
10 0.881 8 lOlOIOOO 1.6260

Table 14 - Selection of Next Generation

5.2.4. Steady State Reproduction

The previously discussed method of reproduction, proportional, has some drawbacks,

one of which is that many of the best individuals may not reproduce at all. I f they

have reproduced, some of their best characteristics may be destroyed by mutation or

crossover. One solution, known as steady state, is to replace one or two members of

the population at a time rather than the entire population. The replaced members can

be the worse members of the population or a random selection of members. The

Chapter 5 65

algorithm for steady state (Goldberg. 1989) is given below:

Steady State Algorithm
1. Create n children through reproduction
2. Delete n members of the population to make room for the children
3. Insert children into the population

Using Steady State reproduction, good members of a population are protected from

deletion while poor members are most likely to be deleted (Syswerda, 1989).

5.2.5. Tournament Selection

Another method which attempts to reduce problems associated with proportional

reproduction is to use a tournament methodology. Tournament selection, discussed

by Brindle (1981). involves choosing some number of population members at

random. The best member of this grouping will go through to the next generation. In

the example, i f chromosome 1 was to be compared to chromosome 3, member 1 with

a fitness of 1.1559 would be replicated in the next generation and at this stage

member 3 "would not. Should member 3 later be compared in a tournament with, for

instance member 9, it will then be placed in the next generation.

The average fitness of the next generation should be higher than the previous

population. Creating a population which consists of the best members of the original

population is referred to as 'selection pressure' (Miller and Goldberg, 1995). To

increase the selection pressure the size of the tournament is enlarged. Therefore, the

winners, which become the next generation, will have a higher average fitness than

the previous population. According to Miller and Goldberg (1995), tournament

selection is a good selection mechanism as it is simple to code, easy to implement.

Chapter 5 66

robust in the presence of noise and has an adjustable selection pressure.

5.2.6. Fitness Scaling

Fitness scaling is another method used to combat the problems associated with

proportional reproduction. One example is linear scaling, a ranking selection

described by Baker (1985). The population shown in table 13, is sorted from best to

worse as in table 15. This ranking indicates that chromosome 8 is ranked at number

one with a fitness of 1.6260, chromosomes 6 and 7 are both in second place with a

fitness of 1.1559 and in last place is chromosome 10. This ranking is used to

produce a roulette wheel, shown in figure 36, and can be compared with the roulette

wheel determined from proportional representation in figure 37.

Chromosome
Number

f(x,y) ranking

I 0.7303 4
2 0.3827 7
3 1.3011 3
4 0.5939 6
5 0.6792 5
6 1.1559 2
7 1.1559 2
8 1.6260 1
9 0.5839 6
10 0.1814 8

Table 15 - Sample Next Generation using Fitness Scaling

g 10 1
7.0% 2.2% 8.7% 2

4.6%

ia4%

1X8%

13.8%

9 10 1
6.5% 2 ^ ia9%2

4.3%

17.4%

13.0%

6 ^

1i2%
6

15.2%
a7%

Figure 36 - Fitness Scaling - Figure 37 - Fitness of Each Member as a
Population Distribution of Total Share of Sum of Population Fitness

Chapter 5 67

If a comparison is made of the share of the population each chromosome receives

using fitness scaling (figure 36) to that received using the proportional method

(figure 37). it is noticeable that chromosome 1 gained a 2.2% share of the population

as it had an 8.7% share of the sum of the fitness of the population, but when using

fitness scaling its rank of number 4 gave it a 10.9% share of the population. While

this method is criticised for disassociating the fitness function from the underiying

objective function, Goldberg (1989) feels that the required link is not based on

evolutionary theory and this method does provide a consistent method for offspring

selection.

5.2.7. Additional Reproduction Strategies

Additional reproduction strategies are suggested by Back et al (1992), these are

extinction and preservative. In extinctive selection some chromosomes are not

allowed to create offspring i f they have a zero selection probability, while in

preservative selection each population member is guaranteed a probability to produce

an offspring. While results of the extinction method are better than those using

preservative in a unimodal search space, no improvement is shown in multimodal

searches (Back et al, 1992). Fogarty (1993) has experimented with using a

chromosome's age and fitness to determine whether it should reproduce or not as

opposed to its rank and fitness. The results suggest in a noisy environment this

method outperforms the conventional selection methods.

Chapter 5 68

5.2.8. Crossover

In crossover, pairs of chromosomes exchange genes. From this procedure two new

members of the population are produced who replace their parents. It is possible that

some members of the population could be crossed more than once, resulting in a new

population member very different from its parent. To keep the change to a minimum

each member of the population should only be crossed once.

There are a number of ways to apply crossover including one-point, two-point and

uniform. In two-point crossover two positions are generated, these are two random

numbers between 1 and the length of the chromosome, in this example between one

and eight. The genes between these two points are exchanged creating new offspring.

In figure 38, chromosome 3 and 4 have been randomly selected to cross at points 3

and 7 and the fitness of the new chromosomes is displayed. The average fitness of

these two chromosomes has declined from 0.9331 to 0.9037 a difference of 0.0394,

however the fitness of chromosome 3 has improved from 0.7303 to 1.6260, an

improvement of 0.8957.

1 2 2
3 O i l
4 0 0 1

4 5 6
0 1 Ij
1 1 0

7 8
1 0 fitness = 0.7303
0 1 fitness = 1.1559

1 0 fitness'= 1.6260
0 1 fitness* = 0.1814

3* 0 1 1 1 1 01
4' 0 0 1 0 1 1

Figure 38 - Two-Point Crossover Demonstration

This process will continue until no more than 50% of the population has been

crossed. Therefore, with a population of ten, four members of the population will be

crossed. Schaffer et al (1989) find that two-point crossover gives slightly better

results than one-point crossover. If using one-point crossover, only one point is

Chapter 5 69

selected to cross, the end of the chromosome will be treated as the second point, so

there would be two exchanges between the chromosomes, as opposed to the three in

two-point crossover. The example in figure 39, demonstrates one-point crossover, a

single position has been selected on the chromosome, three, and the genes are

exchanged between that point and the end of the chromosome. In this case the

average fitness has increased from 0.9431 to 1.70275 an improvement of 0.7596.

1 2 3 4 5 6 7 8
3 0 1 1 0 1 1 1 0 fitness = 0.7303
4 0 0 1 1 1 0 0 1 fitness = 1.1559

3' 0 1 1 1 1 0 0 1 fitness' = 1.98007
4' 0 0 1 0 1 1 1 0 fitness' = 1.42542

Figure 39 - One-Point Crossover Demonstration

A greater distance between the cross points creates offspring that are dissimilar as

there has been more disturbance to the chromosome. However the disturbance to the

parents' chromosome is even greater when using uniform crossover. In this case, the

chromosomes to be crossed are chosen at random from the population but instead of

selecting points to cross between, a template is created and this template is a random

selection of Is and Os of the length of the chromosome. The first offspring is then

created using the template. If the template gene for position one is a 0. the gene in

that position on parent number 1 is selected for offspring number 1, offspring number

2 gets the gene from parent 2. If the template gene is a 1, the gene in that position on

parent number 2 is selected for offspring number 2, offspring number 1 gets the gene

from parent 1. This procedure is repeated for each of the remaining genes. Normally

the crossover method used remains constant through a GAs run, but to illustrate

uniform crossover the remaining cross of the demonstration population will be done

Chapter 5 70

using population members 1 and 7 and their offspring will be returned to the

population as in figure 40,

1 0 0 1 1 1 0 0 1 fitness = 1.559
7 1 0 1 0 1 0 0 0 fitness= 1.626

Template 1 1 1 0 1 1 0 1

1' 1 0 1 1 1 0 0 0 fitness'= 1.6260
T 0 0 1 0 1 0 0 1 fitness'= 0.7837

Figure 40 - Uniform Crossover Example

This sort of random replacement can create better or worse children and the results

are all in the *luck of the draw*.

Sywersda (1989) compared Uniform Crossover with Two and One Point Crossover.

The results indicated that Uniform Crossover usually worked best and has

empirically been shown as more effective on a number of functional optimisation

problems. One Max, Sparse One Max, Contiguous Bits or Lock and Tumbler

problem. Exponentially Decreasing Sine, Shekel's Foxholes and the Travelling

Salesperson.

5.2.9. Mutation

Mutation works on a single gene of the population and in the given population there

are 80 genes. While the rate of mutation applied can vary greatly, 10% will be used,

therefore 8 genes have the potential to be mutated. Once a gene is chosen to be

mutated it does not automatically switch from 0 to 1 or vice versa, rather a new bit is

generated randomly. This means that a mutation can take place without actually

altering the string.

Chapters 71

The eight randomly chosen genes are (2,11,15,24,45,66,68,75} and the process is

demonstrated in table 16.

Gene LocatiOD Original Change New
Chromosome

Fitness

2 chromosome t
gene 2

loinooo I 11111000 0.3827

11 chromosome 2
gene 3

11001101 1 11101101 0.1814

15 chromosome 2
gene?

11001101 0 11001101 0.3827

24 chromosome 3
gene 8

OIIUOIO 1 01111011 1.9017

45 chromosome 6
gene 5

looioon 1 10011011 1.5403

66 chromosome 9
gene 2

00101010 0 OOIOIOIO 0.257

6S chromosome 9
gene 4

OOIOIOIO 1 00111010 0.9584

75 chromosome 10
gene 3

11101101 0 11001101 0.3827

Table 16 - Mutation Process

Using both crossover and mutation as a strategy can increase the speed of evolution

when compared to using mutation alone (Schaffer and Eshelman. 1993). However

crossover will disrupt the schemata more than if mutation only was applied.

5.2.10. Replace Best

The last step is to add the *best' chromosome of the previous generation to the new

population. This is a matter of the users preference as there is always the possibility

that any of the previous operators may cause the best member of the previous

population to be eliminated. The best could be added to the population to increase

the population size, the worse member of the population could be replaced or a

randomly selected member could be chosen and replaced. In this example, a

randomly choosen chromosome is replaced by the 'best' of the previous generation.

The chromosome randomly chosen is chromosome number 5. The new population is

Chapter 5 72

shown in table 17.

The total fitness of the population is now 9.441, an improvement of 12.5%. The

process will continue generation after generation until the maximum fitness value is

reached, which in this case is 2.00.

Number Chromosome Fitness
1 11111000 0.3827
2 11001101 0.3827
3 01111011 1.9017
4 00101101 0.1814
5 lOlOlOOO 1.6260
6 lOOllOll 1.5403
7 00101000 0.7837
8 01001010 1.3011
9 00111010 0.9584
10 11001101 0.3827

Table 17 - New Population for the Next Generation

5-3. Schema Theory

Why do GAs do what they do? To explain this, a few theories have been established,

the best known is the Schema Theorem as discussed by Holland (1975) and Goldberg

(1989). The basis of this theorem is that the foundation of GAs relies on a binary

chromosome representation of solutions and on the concept of schema. Identical

segments of genes are evident in some of the chromosomes, and this is called a

schema. A schema is a template of genes of a chromosomes which match in all

positions other than those marked in the schema by *. For example, i f in the sample

problem the schema (00111***) is defined there exists two members of the

population which match:

5) (00111100)
7) (00111001).

If the schema to be matched is (**I01***) then there are four members of the

Chapter 5 73

population which match:

1) (01101110)
8) (10101000)
9) (00101010)
10) (11101101).

The schema (01101110) however represents only one chromosome and the schema

(********) represents all chromosomes of length 8 (that is all 2^ such strings).

Every schema matches exactly 2' possible chromosomes where r is the number of *

symbols in a schema. Finally any given chromosome of length x is matched by 2"

schemata. For strings of length x there are in total 3* possible schemata. In a

population of size n, between 2^ and n*2'' different schemata may be represented.

The schema theorem, attempts to illustrate that while the operators, mutation and

crossover can disrupt a chromosome, they are not as significant to short and low

order schema, and is stated as:

Theorem 1 (Schema Theorem) Short, low-order, above average schemata
receive exponentially increasing trials in subsequent generations of GAs
(Holland. 1975).

From this, the Building Block Hypothesis suggests that GAs explore their search

space by low-order schema which are exchanged during the crossover process.

Hypothesis 1 (Building Block Hypothesis) A Genetic Algorithm seeks
near-optimal performance through the juxtaposition of short, low-order, high-
performance schemata, called building blocks (Holland, 1975).

In the original population chromosome number 1 (01001010) had a fitness of 0.7373.

Through reproduction, this became chromosome 3 in the next generation. It was then

chosen for crossover with chromosome number 4 and the resulting offspring

Chapter 5 74

improved the fitness of chromosome 3 from 0.7373 to 1.626. The same chromosome

was then mutated at gene number 8 to give a final chromosome in the next generation

of (01111011) with a fitness of 1.9017, the highest fitness in its generation. Below

the original chromosome is compared to its offspring.

Chromosome 1 (Original population) (01001010)
Offspring of Chromosome 1 (01111011)

The results indicate that the building block is (01**101*) and this schema apparently

contributed towards the development of the best member of the population.

A great deal of research has been performed into aspects of schema theory and how

schemata interact and combine during evolution. Two approaches have been

discussed in White and Rockton (1995). The first is to develop problems which are

difficult for GAs to solve, these are called 'deceptive' as they violate the building

block hypothesis in that short low-order building blocks are designed to lead to sub-

optimal, longer, higher-order building blocks. A violation of the hypothesis means

that GAs will not be able to converge on the optimal solution. While a great deal of

effort has been expended to develop these deceptive problems GAs still succeed

while many non-deceptive problems can be difficult to solve.

The second approach was to develop problems where the GAs performed as expected

(Forrest and Mitchell, 1992; 1993). These, called Royal Road functions, add features

to the fitness landscape lo lead the GAs directly to the global optimum. According to

White and Flockion (1995) the Royal Road functions contain a number of building

blocks and intermediate 'stepping stones* that result from lower-order schemata. The

Chapter 5 75

Building Block Hypothesis might lead to the assumption that GAs would perform

better on functions where there is a clear path via crossover from low order schemata

to the optimum (Ibid.). Simulations, however, have indicated that GAs may perform

worse on these functions (Ibid), Forrest and Mitchell (1992) followed the

generational evolution of a Royal Road function and found what they termed, genetic

hitchhiking. This occurs when the intermediate ^stepping stones' are so much fitter

than the parents that premature convergence may occur, hence slowing down the

search (Ibid.).

The Walsh-Schema theory is another attempt to analyse schemata. This is a method

for describing the dynamics of GAs fitness function. This theory says that as the

fitness of F improved, it biased towards partitions with higher order schema as the

population evolves (White and Flockton, 1995). Walsh analysis has been used to

characterise functions which are either easy or hard for GAs to optimise, but as with

Royal Road function, the results weren't always those expected (Mitchell and

Forrest. 1992).

Priigel-Bennet et al (1994) have applied Statistical Mechanics Formulation to

analyse the behaviour of GAs. This method predicts the distribution of energies in

the population at each generation. The model developed by Priigel-Bennet et al

(1994) for a Boltzmann selection mechanism shows that the statistics generated

compare favourably with those from a GAs simulation. Unfortunately the probability

distribution needs to be recalculated after each crossover and mutation procedure

which makes a time consuming task (White and Flockton, 1995).

Chapter 5 76

Additional theoretical research has applied convergence analysis (Ankenbrandt,

1990; Louis and Rawlins, 1992; Qi and Palmieri, 1994), Breeder Genetic Algorithm

(MuhJenbein and Schlierkam-Voosen, 1993a; 1993b). and Nonuniform Walsh-

schema transform (Goldberg, 1989). Finally Markov Chain Analysis (Goldberg et al,

1987; Davis and Principe, 1993) claims that the dependence of each population on its

predecessors in the sequence is completely determined by its conditional dependence

upon its immediate predecessor population.

5.4. Conclusion

The previous sections discuss GAs. their history, the operators involved and the

philosophy of schema theory. Included is an illustrative example of the search

process of GAs.

The next chapter will discuss using GAs for the generation of test data. This method

of data generation will be compared to random test data generation as discussed in

chapter 3 and other adaptive search techniques. Simulated Annealing in chapter 7 and

Tabu search in chapter 8.

Chapter 5 77

Chapter Six

Automatic Test Data Generation Using Genetic
Algorithms

6.1. Introduction - Previous Research

The use of genetic algorithms to automatically generate test data is not unique.

Xanthakis et al (1992) used GAs in conjunction with a process entitled maturation to

develop a prototype software testing tool, TAGGER. The steps of TAGGER are first

to produce a qualitative data flow influence graph which represents the variable in

the program, then the generation of test data using GAs, and finally a relaxation

process is applied to the test data to access paths which have not been exercised. The

procedures involved in TAGGER require a great deal of structural amendment of the

code, as well as an element of symbolic execution in the establishment of the

elementary path functions required for the relaxation process (Xanthakis et al, 1992).

However the results of the research, a successful coverage metric of 100% on a small

sample PASCAL program, is encouraging for the use of GAs in lest data generation.

The automatic generation of lest data for ADA programs (Sthammer et al, 1992;

Jones et al, 1995) also used GAs. The emphasis of research was on coverage of the

branches in a program and on achieving coverage at the boundary of each subdomain.

It was discovered that using the Hamming distance as the fitness function was very

effective in attaining coverage. In comparison with random testing, GAs were more

Chapter 6 78

successful. GAs required 100 fewer generations. Jones et al (1995) used GAs to

produce lest data sets derived from the structure of the code and its formal

specification in Z. This application was applied to the triangle or Trityp problem

where GAs proved to be successful in deriving test data sets. According to Jones et

(3/(1995). one drawback to this method is the computational effort required.

Schultz et al (1995) used GAs to test and evaluate complex software controllers and

determined that GAs performed well and that the gain on speed was worth the

decline in quality over using an exhaustive testing procedure. Additional research

has been performed by Roper et al (1995) into using GAs for test data generation,

each test data set is accorded a fitness value which measures how many branches are

covered by a single test data set. Therefore a test data set which covers the most

branches is the goal, however as this alone will not achieve coverage of the code the

eventual goal is to achieve a population of chromosomes which together cover the

program. •

Finally. Chang et al (1992) used heuristic rules to create an intelligent test data

generator for branch coverage of a test function. The framework of their system

consists of a parser/scanner to instrument the input source code and produce

information on the program structure; a test case generator that produces test cases to

target specific branches from the code structure; a test case analyser runs the test

data sets and records coverage. These last two stages loop until a satisfactory

coverage level is attained, and finally a report generator which gives the user

statistics, coverage metrics and test data sets for the function under test.

Chapter 6 79

Chang et a/ (1992) used four heuristics were used for the generation of test data. The

first was fixed percentage modification, which changed each variable by a percentage

from the previous generation's best lest case. The second method was random

modification, which used a random percentage of change from the best test case. The

third method, is entitled 'modification based on condition constants used*, the

constants referred to are those which appeared in the conditional statement of the

code which is being covered. This method showed an improvement over random

modification (Chang et al, 1992). The remaining approach used was boundary

computation. An attempt was made to establish the boundary that separates the true

and false values of the condition. The best test data set was then modified to find test

data through symbolic evaluation which straddles the line of true and false. Of the

four methods the last heuristic, which uses symbolic evaluation, is the most

successful (Chang et al, 1992).

The research described in this chapter aims to generate lest data to satisfy the

coverage metrics for branch, statement. LCSAJs and path testing. The goal is to

measure the structural coverage of a function under test, while keeping the amount of

disturbance to it to a minimum. This means that only a small amount of receding

should be performed on the function under test so the test is on the original code, not

what has been added as analysis routines. Therefore the testing will be performed as

black-box testing with slight structural modifications and a fitness function is

required which will help to achieve this goal.

Chapter 6 80

6.2. The Fitness Function

There are a number of ways this can be done and a brief review of the literature

reveals methods which have been used for similar problems. Sthammer et al (1992)

took as a measurement the distance a test data set was from a conditional border and

rewarded these test data sets. looking at one branch at a time, however this requires

more reworking of the actual test code and moves away from black-box testing.

Roper et al (1995) used the length of the path achieved through the code and

rewarded those test data sets which covered more branches, this method however

encouraged finding longer paths and discouraged shorter and equally as important

paths. Schultz et al (1995) discusses four methods forjudging the fitness of test data

sets for software controllers, the first was border condition similar to that method

used by Sthamer et al (1992), dismissed for its high computational costs; the second

method was to measure the performance against actual performance, but this method

requires a detailed explanation of expected responses, the third method was based on

the likelihood and severity of the fault, this requires probability estimates of the fault

modes and many of the faults may be of the same probability but of equal

importance. The final method which was then applied to the test problem by Schultz

et ali\995) was to search for scenarios which were interesting, interesting referred to

test data sets which produced failures or faults which did not cause a failure, using

this method they fell that classes of weaknesses were discovered as opposed to single

weaknesses which would be patched specifically.

In an attempt to remain close to black-box testing the fitness function required in the

tests performed for this thesis needed to measure fitness of a test data sel while

Chapter 6 81

encouraging coverage of unexplored areas of the lest code. A visualisation of the

fitness landcape of the search space would indicate a flat plateau, as no one test data

sets has a greater fitness than any other as there is no global optimum. (Complete

coverage of the code is the global optimum). As a path is found it is rewarded for

achieving coverage, however subsequent test data sets which find the same path

should be penalised as once found there is no need for more test data which will

cover that path. Therefore a test data set which finds an already covered path should

receive a reduced fitness.

Using this idea, a visualisation of the search space might show large peaks rising out

of the plateau which then diminish in size over time, until very little plateau exist

between hills of varying sizes. When no plateau exist then the code has been covered

(global optimum has been reached). A numerical representation of this concept is to

count the number of times a path is accessed, using the inverse of this wi l l give a

greater fitness to new paths which will decrease over time as the path is found again.

FITNESS = — * 100000.00 (1)
Count + 1.0

This proportional reduction in fitness is shown in figure 41. The first time a path has

been found its fitness is 50000. however when it has been found 100 times its fitness

has reduced to 990. This process will continue, the fitness of the path and the test

data set which accesses that path, continues to decline until the end of the search.

Chapter 6 82

50000 1

4SOO0

40000 -

35000

30000
8

1
25000

20000

1S0D0

10000

5000

n a m b « i of t l m • • • r c l a a d
S a S

Figure 41 - The Fitness of an Exercised Path, as it is Accessed Subsequent
Times, This Demonstrates How the Fitness Declines

This same concept needs to be applied to the coverage of branches and LCSAJs. A

single path through the code returns m.any branches and another path may differ from

the first by only one branch. In this case the search will stop when each of the

individual branches and LCSAJs have been covered. Therefore when the test data is

generated to achieve coverage of branches or LCSAJs a different fitness strategy is

required. There are two options for measuring this fitness, the first is to add up the

number of j:imes each of the branches and LCSAJs have been exercised and then use

this value as Count as in (1); or to take the smallest value. SmallestjCount, for all the

counts (all the branches access times), as in (2).

FITNESS = ^— * 100000.00 (2)
Smallest _ Count + 1.0

Using method (2) a test data set is rewarded for finding at least one new branch or

LCSAJ. This method will be used for test data generation for coverage of branches

and LCSAJs, while (I) will be used for path testing.

Chapter 6 83

6,3. An Illustrative Example of Determining Fitness

In order to determine the fitness, the parsed function, as established from chapter 3.

will be attached as the code file to the GAs. This function is given a generic name,

TestCode, which can be applied to any function under test. One additional

adjustment to the parsed function is the retum from code under test of a string

containing the path exercised information (Le. IT2T3F). this is called 'tested'. This

is used by the fitness function, as established in section 6.2, to establish the coverage

and fitness value. Therefore the first line of the function under test will read as

follows:

TestCode(int x, int y, int z, char tested[20]).

The character array 'tested' wil l contain the string of paths exercised within the test

function. This string is returned to the fitness calculation function which analyses it

to determine which path/branches/LCSAJs have been exercised. In the case of branch

testing, one by one each available branch is compared as a substring to the path,

'tested', as follows:

if (strstr("lT",tested) == 0).

If the equation evaluates to zero then that substring exists in the exercised path. The

branch to be tested has a corresponding integer value (Count) which indicates how

many times that particular branch has been found. If Count is zero then this branch

has been exercised for the first time, i f it is greater than zero then that branch has

already been exercised. As each branch is tested against the string. Count of some

branches will be higher than others due to previous test sets. A low value of Count

shows that a particular test data set has exercised a new area of the function under

test and should be duly rewarded in its fitness as in (2).

Chapter 6 84

The value of SmallestjCount is the smallest value of the set of Count established

when checking the branches and LCSAJs exercised against the available branches

and LCSAJs in the string t̂ested*. Therefore, i f a test data set exercises five different

branches, the value of SmallestjCount will be the value of Count for the branch that

has been exercised the least. Therefore a lest data set which finds an untested branch

will have a fitness of 50000.0. while a test data set with values of Count ranging from

5 to 20 will have a fitness of 16666.67.

6.4. Remembering Unique Data Sets

In the sample code shown in chapter 3, the search space is of size 9,261, that is there

are 9,261 different combinations possible of the three variables x.y and z. These

three variables each are within the range [0..20].

To keep run-time to a minimum, a function should not be tested with the same test

data. Therefore a record needs to be kept of each test data set and the path it has

exercised. To save memory the three variable combination is converted to a single

integer, such that the variables {0,0,0} is position 0 in the array titled *unique*, and

{20.20,20) is in position 9.260. The information contained in the array is the path

string returned using that test data, which is then used to increment the branch

coverage levels. In figure 42 is an illustration of the type of array and the information

contained in the array. The path used in this example is the actual path exercised by

the corresponding test data.

Chapter 6 85

char unique[9261][20]

variable value data set
unique[0] "1T2F3FL0" 10.0.01
unique[740] *MF3FLIL2" (1.14.5}
unique[9260] "1F3FLIL2" {20.20.201

Figure 42 - Declaration of Array 'Unique' and the Information Contained in
Array

Therefore if a test data set {1,14.5) was generated the corresponding array position is

740.

'x' value is * r
y value is *14'
'z' value is '5'

I * 21
14* 21
5 * 1

441
294

5
740

As this is the first time this test data set has been generated the array position 740 is

blank and the test data needs, to be run on the test code and 'tested' (the path

exercised) will have to be determined. The value of 'tested' is the path "1F3FL1L2"

is placed in the array position 740 and also used to determine the fitness of the test

data set. I f this same test data set is again generated the array position will be

accessed and upon finding the string "1F3FLILT* it will not be necessary to run the

test code as the string contained in the array position is used as 'tested'. This reduces

the amount of run time as the test code is not required to be run on the same data

again and again, which is of great benefit when the lest code contains complicated

and time consuming calculations. To reduce the test lime while achieving a high test

effectiveness is what it is hoped will be attained.

6.5. The GAs Process

The algorithm shown in figure 43 and figure 44 is an addition to the algorithm shown

in chapter 3. This algorithm demonstrates the complete steps taken by GAs to

Chapter 6 86

generate test data for branch coverage. The submodule fitness illustrates the steps

taken following the discussion in sections 6.2 through 6.4. This shows the steps to be

taken i f the test data set has been generated previously or i f it is a fresh test data set.

Additionally it demonstrates the simple process involved in determining

Smallest jCount. This value of Smallest jCount is used in the fitness function (2) and

this value is used as the fitness of the test data set for the GA process.

The GAs Process
1 Generate a random population of binary digits
2 calculate population fitness using submodule FITNESS
3 while (branch coverage < total branches) or (generation < Some_VaIue) do
3.1 reproduce population
3.2 cross population members
3.3 mutate population members
3.4 calculate population fitness using submodule FITNESS
3.5 increment generation by 1
4 end loop

_5 record branch coverage for manual review

Figure 43 - Algorithm for GAs for Test Data Generation

submodule FITNESS
1 convert the binary strings to integers
2 convert test data set value to single integer
3 if unique[inieger] = empty string
3.1 send test data set to function under lest
3.2 gel path exercised 'lested'
3.3 set unique[integer] to 'tested'
3.4 else
3.5 get 'tested' in uniquefinteger]
3.6 end if
4 loop while comparing path exercised with branch data
4.1 if substring of path = branch/LCSAJ
4.1.1 update count
4.1.2 if count < Smallesi_Count
4.1.2.1 sei SmalIest_Count to count
4.1.3 end if
4.2 end if
5 end loop
6 return fitness as value of SmaUest_Couni using formula (2)

end module
Figure 44 - Algorithm for Fitness Function to GAs, Figure 43, for Test Data

Generation

The following sections will review the processes specified in figure 43 and figure 44

in detail.

Chapter 6 87

6.5.1. Random Population Generation

The first step is to generate a random population of ten members of length 15. such

that

2'<20<2*,

and these are listed in table 18. Each of the three input variable is represented by five

binary digits.

1 101011000010011
2 000111010000110
3 110011110010000
4 111000001011101
5 001100011010001
6 011110101001110
7 00100101 m o n o
8 001011100111110
9 . 011100010101 111
10 111000011011001

Table 18 - Random Binary Population

6.5.2. Calculate Fitness Using Submodule FITNESS

The first step is to convert these binary digits to their respective integer values as

follows in table 19. In turn each combination is converted to a single value, position,

as in column 5 of table 19. Each position in the array *unique* is then checked to see

whether it contains an empty string or the string containing the path exercised in its

test through the code. In this first generation unique[6396] will be an empty string,

the test data (14,10.12) is then applied to the test code and the associated path

exercised is entered in column 6 of table 19. Population member number 8, which is

a duplicate of number 7, activates the else portion (step 3.3) of the algorithm in figure

43 and the test data is not sent to the test code, but the path exercised is automatically

generated from the array position.

Chapter 6 88

X y z Array
Value

Path Exercised

1 14 10 12 6396 1F3FL1L2
2 2 13 4 1159 IF3FL1L2
3 16 18 10 7444 1F3FL1L2
4 18 2 19 7999 1F3FL0
5 4 4 11 1859 1T2F3TL1
6 10 6 8 4544 1F3FLI
7 3 15 14 1652 1F3FL1L2
8 3 15 14 1652 IF3FLIL2
9 9 3 10 4042 1F3FL1
10 18 4 16 8038 1F3FL1

Table 19 - Integer Values of Binary Digits and Array Value

Each path is then compared to the branches and LCSAJs specified for this test code

as determined in the parsing stage, described in chapter 3. These are listed in table

20 (a) and (b) respectively.

Branches times
exerdsed

I IT I
2 I F 9
3 2T
4 2F 1
5 3T 1
6 3F 9
7 LO

* 8 L I 9
9 L2 5

LCSAJs times
exercised

1 3TL0
2 3TL1 1
3 3TLIL2
4 3FL0 1
5 3FL1 3
6 3FL1L2 5
7 1T2T
8 1T2F 1
9 2T3T
10 2T3F
1! 2F3T 1
12 2F3F
13 IF3T
14 IF3F 9

(a) (b)

Table 20 - Branches and LCSAJs to be Exercised in Test Code and Number of
Times Exercised Using First Generation (Random Population)

As each path exercised is compared to the branches and LCSAJs requiring testing,

the number of times each has been found by a piece of test data is recorded in column

3 of each table, 20(a) and (b), such that for chromosome one with path exercised

(IF3FL1L2) each branch (IF , 3F, L I , L2} is incremented by 1 and LCSAJ 6 and 14

are incremented as well. Note that the LCSAJ 5 is not incremented, as this input

Chapter 6 89

exercises both L I and L2, not L I singularly. The fitness for chromosome 1 will be

the value of the lowest count of found times. As this is the first time testing the code

the value of each branch or LCSAJs found will be 1, therefore the returned fitness of

chromosome I is 50,000. The fitness for the entire population is shown in table 21.

Fitness Value
1 50000
2 33333
3 25000
4 50000
5 50000
6 50000
7 20000
8 16666
9 33333
10 25000

Table 21 - Fitness of Population

In this first generation it can be noted that there are four best members of population.

In successive generations the fitness of the best members shown above begins to

decline as more and more test data sets exercise these same areas of code.

6.5.3. The While Loop

The number of branches and LCSAJs successfully exercised by the initial population

is recorded (14) and compared to the total number to be exercised(23). It is possible

that some of the branches or LCSAJs are unobtainable and the GA search could

continue indefinitely. To avoid this the search will stop when either all LCSAJs and

branches have been exercised or when the generation number equals 1000. In this

example all possible LCSAJs can not be found, therefore the total number of LCSAJs

and branches to be exercised is 22. Once the search is activated the next generation

is generated by the process described in section 5.2.3. The roulette wheel for the

current population looks as in figure 45. The fitness of the population is 353332 and

Chapter 6 90

shown in table 22 is their portion of the total fitness of the population which is used

to calculate the next population.

Member Portion to
I 53000
2 83333
3 108333
4 158333
5 208333
6 258333
7 278333
8 294999
9 328332
10 353332

Figure 45 - Roulette Wheel of Population Fitness

Table 22- Portion of
Populations Fitness

Assigned to Each Member

The next population is determined by a random generation of 10 numbers between 0

and 353332 and these numbers are {157326, 128001, 16853. 232967, 214178,

129981,29186, 160070, 151688,59008). This gives the new population as shown in

table 23.

Population Generation
Two

1 i i ioooooionioi
2 lllOOOOOIOIIIOl
3 lOIOl1000010011
4 011110101001110
5 011110101001110
6 111000001011101
7 10101lOOOOlOOil
8 00110001lOIOOOl
9 111000001011101
10 000111010000110

Table 23 - New Population (Generation 2)

Chapter 6 91

6.5.4. Crossover and Mutation

At this stage 50% of this new population is crossed and 1% of the genes mutated on a

random basis. The resulting population is as follows in table 24.

I 111000001011001
2 110110111011101
3 101011100010011
4 010000001001110
5 011110111001110
6 111000100000110
7 101011000000011
8 000000001000001
9 111100001011101
10 001011011011101

Table 24 - New Population (Generation 2) after Crossover and Mutation

None of the new population, when converted to integers as shown in table 25. has

already been tested and the average fitness of the population is now 224683. The

coverage of all branches and LCSAJs has now increased to 18 leaving only 4 more to

be exercised as displayed in table 26 (a and b), as LCSAJ 7 is infeasible.

X Y Z A r r a y
Value

Path Exercised Fitness

I 14 1 16 6211 1T2F3FL0 50000
2 17 9 19 7705 1F3FL1L2 14286
3 14 15 12 6501 1 F 3 F L I L 2 12500
4 5 I 9 2235 IT2F3ET-1 33333
5 10 9 9 4608 1F3FL1L2 m i l
6 18 5 4 8047 I F 3 F L 1 16667
7 14 10 2 6386 I F 3 F L 1 L 2 10000
8 0 I 1 22 1T2F3TL0 50000
9 19 3 19 8461 1F3FLI 14286
10 3 14 19 1636 I T 2 F 3 T L I L 2 12500

Table 25 - Integer Values of Binary Digits and Array Value (2nd Generation)

Chapter 6 92

Branches times
exercised

I I T 5
2 I F 15
3 2T
4 2F 5
5 3T 3
6 3 F 17
7 LO 2
8 L I 17
9 12 11

L C S A J s times
exercised

I 3 T L 0 1
2 3TL1 I
3 3 T L I L 2 I
4 3 F L 0 2
5 3FL1 6
6 3 F L I L 2 9
7 I T 2 T
8 I T 2 F 5
9 2 T 3 T
10 2 T 3 F
11 2F3T 3
12 2F3F 2
13 1F3T
14 I F 3 F 15

(a) (b)

Table 26 - Branches And LCSAJs to be Exercised in Test Code and Number of
Times Exercised for Second Generation

6.5.5. LoopEnd

At the conclusion of the loop a listing is made of all the statements and LCSAJs

exercised for a manual review as specified in the algorithm in chapter 3, section I .

To calculate an average number for the amount of unique test data required, the

process was run 1000 times. The program stopped when a satisfactory TER of 95%

was attained. The average number of unique data sets which were generated by the

runs was 341.62 or 3.7% of the total search space, and these were generated over an

average number of generations. 685.20, an average of 0.50 new data sets each

generation. The minimum number of data sets required by a run was 14, the lowest

possible number of data sets generated prior to coverage is 7. The maximum number

of daia sets required by a run was 1595. the maximum possible number is 9254 as

discussed in chapter 3. Table 27 summarises the results.

Chapter 6 93

Avera2e unique data sets 1000 runs G A s 341.62
Standard deviation over 1000 runs 291.59
Average generations required 685.20
Minimum unique data sets required 14
Maximum unique data sets required 1595
Average % of search space searched 3.7%
Average new data sets/gene ration 0.50

Table 27 - Results of Function Under Test Using GAs Over 1000 Runs For
LCSAJs and Branch Testing

In figure 46 is a frequency distribution for the 1000 runs which shows the amount of

unique test data required for each run. The peak of the data is between 150-200

unique data sets with 123 runs completing within this range, while the average

number of data sets is 341. This graph will be used to compare search techniques

and to illustrate where the results for each search technique falls.

140

•GA

s s s s s s s s s
numbor ol unlquo data tet«

Figure 46 - Frequency Distribution of GAs over 1000 Runs For LCSAJs And
Branch Testing

6.6. Comparison to Random Testing

Test data was generated randomly for this same simple function under test. In

random testing, data is again generated until for all branches and LCSAJs a

satisfactory TER is reached. The same type of count was maintained of the number

Chapter 6 94

of unique data sets required and the results are in table 28. These results show that

an average of 994.58 unique data sets were required in comparison to the 341.62 by

GAs. There was an 89% chance that a newly generated test data set had not been

previously applied, compared to a 50% chance for GAs. The minimum amount of

test data generated before a successful completion of a run was 14, the same as with

GAs, but the maximum was 4958 as opposed to 1595 for GAs. A frequency

distribution is shown in figure 47, the highest concentration again fell between 100-

150 data sets with a total of 59 runs completing, compared to 123 runs completing in

this range for GAs.

Unique data sets 1000 runs Random generation 994.58
Standard deviation ' 881.13
Average generations required 1113.0
Minimum unique data sets required 14
Maximum unique data sets required 4958
Average % of search space searched 10.7%
Average data sets/generation 0.89

Table 28 - Results of Function Under Test Using Random Generation over 1000
Runs for LCSAJs and Branch Testing

g § §
n u n) b a r o f u n l

8 § § § i i e i i

Figure 47 - Frequency Distribution of Random Generation for LCSAJs and
Branch Testing

Chapter 6 95

Finally in figure 48 is a graph showing the frequency distribution for both GAs and

random generation. This graph show thai while many of the random runs satisfy the

TER quite early, there are more runs which take more test data than GAs. The GAs

however, have a very quick high peak with a gradual slope as there are fewer runs

with higher amounts of test data sets, until finally the line finishes at the highest run

amount of 1595.

140

Random g 60

-GA

• Random

o - * r o o } X k u i o i - ^ J 0 3 c o - » - * - ^ - * - * - * o o o o o o o o o o - » r o c j - f ^ u i o o o o o o o o o o o o o o o

number of unique data sets

Figure 48 - A Comparison of Frequency Between GAs and Random Test Data
Generation for Sample Function under Test for LCSAJs and Branch Testing

6.7. Path testing

It has been stated that path testing, where test data is used to attempt to exercise every

path in the function in its entirety, can be a very time consuming practice. It may

however, be interesting to note how GAs and random testing perform in testing all

the paths of this sample function. There are as stated in chapter 3, 15 feasible paths

through the function. Path testing aims to find all those which are listed in table 29

Chapter 6 96

with the corresponding number of combinations in the search space which exercise

the path, and its percentage of the total search space. For all 15 paths to be exercised

at least 15 test data sets must be generated. The maximum number of data sets

possible before coverage is 9258 as there are some paths which can only be exercised

by a very small pool of test data.

Patb Times %
IT2F3FL0 110 1.19%
IT2F3TL0 A 0.04%
IT2F3TLI 116 1.25%
IT2F3TLIL2 320 3.46%
IF3FL0 692 7.47%
IT2T3TL0 4 0.04%
1T2T3FL0 53 0.57%
1F3FLI 1870 20.19%
IT2T3TLI 116 1.25%
IT213FL1 295 3.19%
IF3FL1L2 , 4928 53.21%
1T2T3TLIL2 320 3.46%
IT2T3FLIL2 37 0.40%
IT2F3FLI 355 3.83%
IT2F3FLIL2 41 0.44%
Total 9261 100.00%

Table 29 - Feasible Paths through Function Under Test, Number of
Occurrences of Each Path within Search Space and Percentage of Search Space

In table 30 is the comparison of GAs to random test data generation for the

generation of test data for path testing. The results indicate that Random Testing

requires 2718.92 unique data sets, and examined, as with branch and LCSAJ testing,

27% of the search space and GAs require 529.18 and a search space viewed of 5.7%.

The minimum amount of test data generated by a run was 78 for GAs and 199 by

random generation. These amounts are above the minimum possible of 15. Random

testing however had one run which didn*t achieve coverage until it had generated

7135 new test data sets, very close to the figure 9258, which is the maximum which

could be generated prior to coverage. In comparison the run of GAs which required

the most test data required 1952 data sets or 21% of the possible amount. Figure 49

Chapter 6 97

is the frequency distribution for both random generation and GAs. The peak for GAs

is very pronounced and steep between 350-400 data sets with 94 runs completing at

this point. Random generation has a number of peaks of height 18, at 1400-1450.

1900-1950 and 2300-2350, the highest point, 19 runs is in the range 3350 to 3400.

This illustrates that GAs terminate with a small amount of unique test data required,

while the random generation amount required fluctuates over a larger area.

G A s Random
Average unique data sets 1000 runs . 529.18 2718.92
Standard deviation over 1000 runs 279.30 1471.34
Average generations required 1072.35 3501.47
Minimum unique data sets required 78 199
Maximum unique data sets required 1952 7135
Average % of search space searched 5.7% 29.36%
Average new data sets/generation 0.49 0.78

Table 30 - Comparison of 1000 Runs of GAs Vs. Random Generation for Path
Testing of Sample Function Under Test

Random

GA

Random

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

number of unique data sets

Figure 49 - A Comparison of Frequency between GAs and Random Generation
for Sample Function Under Test for Path Testing

Chapter 6 98

6.8. Conclusion

This chapter demonsyirates the use of OAs for the generation of lest data. Details are

given on the method used to both generate and apply the data to the module under

test. Included is an explanation of ho set unique(integer] to 'tested'w rerunning the test

code with identical test data can be avoided, which is necessary due to the potential

for long run-times. There is a demonstration of how GAs perform over 1000 runs in

comparison to random test data generation for the requirement of unique test data

sets. This illustrates that GAs on average require less new test data than random

generation for this small sample function. Results from GAs show a 66%

improvement over random generation for LCSAJs and branch testing. This chapter

concludes with a comparison of path testing for random generation and GAs, Even

though the sample function under test is a small program, results indicate that GAs

continue to outperform random generation by 81%.

In the chapters 7 though 10, GAs and random testing will be compared to other

adaptive search techniques. GAs will again be used to generate test data for a suite

of general test problems in chapter 9 and in chapter 10 a program which optimises

lax payable for companies is used to test the methods in a 'reaP environment. These

results will be compared to those obtained using Simulated Annealing discussed in

chapter 7, Tabu search, chapter 8, and random lest data generation.

Chapter 6 99

Chapter Seven

Simulated Annealing

7.1. What is Simulated Annealing?

Many local search algorithms terminate at local optimum and it is difficult to

determine how far these results may be from the global optimum (Johnson et al,

1985). The quality of the local optimum usually depends on the initial choice of the

starting point but there is no specification for choosing this. However, local search

algorithms are generally applicable and flexible, requiring only a search space, the

fitness of a given solution and a direction in which to search. There are a number of

methods which will alleviate problems associated with local optima, the first is to use

a large number of starting points and the second is to expand the local search space

by introducing a more complex neighbourhood structure. A third is to amend the

method used for allowing good neighbours, by accepting an increase or a limited

decrease in the fitness. Simulated Annealing uses this third alternative. It has also

been referred to as Monte Carlo annealing (Jepsen and Gelatt, 1983), probabilistic

hill climbing (Romeo and Sangiovanni-Vincentelli, 1985), statistical cooling (Aarts

and Van Laarhoven, 1985; Storer et al, 1985) and stochastic relaxation (German and

German, 1984).

Chapter? 100

In physical terms, annealing is the process of toughening (glass or metal) by heating

to high temperatures quickly and then cooHng slowly (Aarts and Korst, 1990). This

process consists of two steps, as described by Kirkpatrick, Gelatt and Vecchi

(I982;1983).

• Increase the temperature of the heat bath to a maximum value at which
the solid melts.

• Decrease carefully the temperature of the heat bath until the particles
arrange themselves in the ground state of the solid.

At the liquid phase the particles arrange themselves randomly, while at the ground

state the particles are arranged in a highly structured lattice. This ground state

however, is only reached i f the maximum temperature is suitably high and the

cooling is done at a regulated speed. Otherwise what results is a meta-stable state

(Aarts and Korst, 1990).

7.2. Annealing to Simulated Annealing

Simulated Annealing was independently introduced by Kirkpatrick, Gelatt and

Vecchi (1982:1983) and Cemy (1985) to mimic this thermal process for obtaining

low energy states of a solid in a heat bath. Aarts and Korst (1990) describe the states

of the particles as the solutions in the search space, and the energy required to

produce these particles as the cost of the solutions. The temperature to which the

particles are heated and to which they are cooled is defined as a control parameter.

These concepts, combined with a cooling schedule, are Simulated Annealing (Aarts

and Korst, 1990). A cooling schedule should identify the following information:

Chapter? 101

• a sequence of values of the control parameters

• an initial value of the control parameter Co

• a decrement function for decreasing the value of the
conu-ol parameter

• a final value of the control parameter specified by a stop
criterion

• a finite number of transitions, Lo. at each value of the control
parameter, Co

The aim of Simulated Annealing is to produce an optimum by changing the initial

starting point over a fixed period of time. Each new solution is then selected in turn

to be annealed based on its fitness. I f its fitness is better than the previous solution it

is automatically accepted, but i f it is worse it may be selected according to the

probability distribution:

f i S) - f i S)
new old

PJacc€pt(S^)}=eKp ^'

According to Dowsland (1993) the period of lime at the middle of the cooling

schedule produces the best results. At the beginning the temperature is so high that

most of the new solutions are accepted, which could give results no better than

random search. If the temperature were to be lower at the start little change would be

seen. Therefore, most of the results are determined in the middle range of the

cooling schedule. This high rate will allow acceptance of a large number of new

solutions, this figure will reduce over time by 5% this reduction figure is referred to

as the cooling schedule. The rate of Q would eventually coverage to zero, although

it is not necessary to reduce this figure to zero according to Dowsland (1993) as Co

lowers the probability of accepting any uphill move will be indistinguishable from

Chapter 7 102

zero. In section 7.5 there is a comparison of the probabihty acceptance rates to

determine how a higher or lower value of Co will affect the results.

The mechanics of Simulated Annealing can be modelled using Markov chains, as the

conditional dependence on the sequence history of each new solution in the sequence

is equal to its conditional dependence upon its immediate predecessor (Davis and

Principe. 1993).

7.3. The Simulated Annealing Algorithm

This section will discuss each step of Simulated Annealing in respect to the sample

search used in chapter 5, which demonstrated the use of a GA to maximise the fitness

function:

In figure 50, the algorithm for Simulated Annealing is given.

Simulated Annealing Algorithm
1 create initial solution (Soid)
2 initialise Co, Lo
3 while (not siop_criterion)
3.1 for (loop=0;loop<Lo; loop++)
3.1.1 Generate S^^ from Soid
3.1.2 if (ritness(S«^)> fitness(Soid))
3.1.2.1 then Sow = Sncw
3.1.3 else
3.1.3.1 . . . / ' V - w i v ^ >

" (c x p > random[0..\])

3.1.3.1.2 then Sold = S « ^
3.2 end for loop
3.3 Co = Co*0.95
3.4 U = L o + I
4 end while loop

Figure 50 - Simulated Annealing Algorithm

Chapter? 103

For this problem, the initial starting point Sold is a single binary suing of length 8. Lo

will therefore be the value 8, which is the length of the suing of binary digits which

represents the integers, x and y. The value of Co is the equation

t

The value of Co can be described as the drop in fitness (-d) acceptable over time (t)

using the logarithmic scale such that

- d -10
— = ^ = 14,427

/ ln(0.50)

This will give a sufficiently high temperature to begin, allowing a greater chance of

acceptance of those strings who are worse than Soia- This rate will decline over time

by 5% each cycle as discussed in the previous section.

Snew is created from Sow, from Sow by mutating a number of bits in the binary su-ing,

in this case mutation will be two bits each time. By mutating two bits of the original

string a new string is created as shown below.

10010010 10010100

Sold evaluates to the integer digits {1 .-4} and has a fitness of 1.68, Snew evaluates to

{4,-2} with a fitness of 1.62. In some search methods Snew would be rejected and the

process would continue with SQW- However in Simulated Annealing there is a chance

that Snew may still replace SQW using the calculation specified:

1.62-1.68

exp ^4^27 =0.996

Chapter 7 104

A real number between 0 and 1 is then generated, i f that number is less than 0.996

then Sold is replaced by Sncw . and the process continues until the loop is completed.

This means that there is a chance the optimum could be reached and then lost before

the loop is completed. At the end of the loop the value of Co (temperature) is reduced

by 5%, as discussed above, and the time value LQ is increased by 1, Lo stops

incrementing when a selected value, in this case 80. is reached. The reduction to Q

means that as the number of generations increase, there is less of a chance for an Sncw

with a fitness less than Soia to be accepted. The value of Sow is then checked against

the stopping_criterion which is a maximum fitness of 2.0. If Sow = 2.0 the process

stops, i f Sow is less than 2.00 the process continues.

7.4. Simulated Annealing for Test Data Generation

How will Simulated Annealing compare to using GAs for the generation of test data?

There has been no literature on the use of this technique for test data generation, but

there has been some work done on the comparison of GAs and Simulated Annealing.

Thornton (1994) compared the two adaptive search techniques in determining

feasible engineering designs. Four designs were attempted, these are an aero engine,

mobile arm support, a bearing and a spring. In three out of the four designs.

Simulated Annealing outperformed GAs and Thornton (1994) accredited this to the

ability to represent constraints in the annealing process. Park and Carter (1995)

compared the two techniques on MAX-CLIQUE, the problem of finding the size of a

maximum clique in a graph. MAX-CLIQUE is an NP-Complete problem which has

also been proved as NP-hard. Results indicated that there was no difference in time

taken between GAs and Simulated Annealing in a simple version of this problem.

Chapter? 105

The reason Simulated Annealing was attempted is the high computational costs of

maintaining a population in GAs and in the larger problem this indicates that the cost

per interaction is much less for Simulated Annealing.

Simulated Annealing is therefore compared to GAs and random testing for the

generation of test data. The starting point is one binary string with a length of 15.

For the function under test the same fitness formula is used and the procedure will

conclude when an acceptable TER has been reached. In the first example, the TER is

95% for branches and LCSAJs, and in the second example for path testing it is 58%.

7.4.1. Test Data Generation for LCSAJs and Branches

This is the same problem used in chapter 6. The goal is to achieve a satisfactory TER

for branches and LCSAJs with a small amount of unique lest data. The results are in

table 31. Simulated Annealing has achieved coverage after an average generation of

348.26 unique test data sets, this compares closely to the results from GAs, 341.62.

Simulated Annealing required 3.8% of the search space to be searched while GAs

required only 3.7%. a very small difference. In comparison to random test data

generation which was required to search 10.74% of the entire search space.

Simulated Annealing has offered an improvement. On average there is a 70% chance

that a new data set has not been previously found. The minimum amount of test data

required in a single run was 16. this figure is close to the lowest possible number 7.

only slightly worse than the lowest figure of both GAs and random generation. The

maximum number of new data sets required by a single run was 1694, approximately

100 data sets more than GAs where a run required 1595 data sets.

Chapter 7 106

G A s Random SA
Average unique data sets 1000 runs 341.62 994.58 348.26
Standard deviation over 1000 runs 291.59 881.13 294.56
Average generations required 685.20 1113.07 500.79
Minimum unique data sets required 14 14 16
Maximum unique data sets required 1595 4968 1694
Average % of search space searched 3.7% 10.74% 3.8%
Average new data sets/generation 0.50 0.89 0.70

Table 31 - Results of Function Under Test Using Simulated Annealing Over
1000 Runs for LCSAJs and Branch Testing Compared to GAs and Random

Generation

The graph in figure 51 is a frequency graph comparing Simulated Annealing to those

results ascertained in chapter 6 for GAs and random generation. The peak of

Simulated Annealing is between 150-200 widi 127 runs completing within this range,

as opposed to 123 runs in this range for GAs. The longest run required 1694 unique

data sets which is less than the maximum number required by random generation,

4958, but greater than that required by GAs. 1595. these results are outside the scope

of the graph.

140
130 +

110 +
100 +

See (nse

Random

Random

number of unique data s e t s

Figure 51 - A Comparison of Frequency between GAs, Simulated Annealing and
Random Generation for Sample Function Under Test for LCSAJs and Branch

Testing

Chapter 7 107

7.4.2. Test Data Generation for Function Paths

Having accomplished coverage for branches and LCSAJs, concentration will now be

placed on path testing. The results are in table 32. Simulated Annealing achieved an

average of 507.76 new data sets per run, this figure is just lower than the results of

GAs at 529.18 and much better than random generation at 2718.92. The lowest

amount of unique test data required was 89 which is more than required by the best

run of GAs but less than random generation, the lowest possible figure is 15 as there

are 15 paths. The number of generations required was 773.12. which means there

was a 66% chance that a newly generated data set was in fact unique. These results

indicate that Simulated Annealing required on average less unique data sets than GAs

by a small margin, and also reached the coverage ratio in fewer generations.

GAs Random SA
Average unique data sets 1000 runs 529.18 2718.92 507.76
Standard deviation over 1000 runs 279.30 1471.34 268.94
Average generations required 1072.35 3501.47 773.12
Minimum unique data sets required 78 199 89
Maximum unique data sets required 1952 7135 1694
Average % of search space searched 5.7% 29.36% 5.5%
Average new data sets/generation 0.50 0.78 0.66

Table 32 - Results of Function Under Test Using Simulated Annealing
Compared weith GAs and Random Generation over 1000 Runs for Path Testing

The graph in figure 52 is a frequency chart comparing Simulated Annealing to those

results ascertained in chapter 6 for GAs and random generation. The peak for

Simulated Annealing falls between 400-450 with 103 runs finishing within this

range. This compares with GAs with 94 runs completed between 350-400 data sets

and 3350-3400 for random generation with 19 runs completing in this range. In the

resulting graph, the style of the line created by Simulated Annealing is very similar to

Chapter 7 108

that achieved by GAs, albeit a bit delayed. There is more similarity between GAs

and Simulated Annealing results than with random generation.

120

100 +

80

I 60

40

See Inset

Random

Random
o o o o o o o o o o — ' r o c o 4 ^ t n < j) - v i c x) (D o
o

o o o o o o o o o o o

number of unique data sets

Figure 52 - A Comparison of Frequency between GAs, Simulated Annealing
And Random Generation For Sample Function Under Test for Path Testing

7.5. A Comparison of Control Variables

For the previous tests of Simulated Annealing a 50% probability of acceptance was

used. Table 33 shows the results when this acceptance rate is changed first to 25%

and then to 75% probability of acceptance.

Acceptance Prohahilitv
Simulated Annealing 25% 50% 75%

Average unique data sets 1000 runs 334.80 348.26 345.79
Standard deviation over 1000 runs 292.49 294.56 297.42
Average generations required 481 500.79 497.46
Minimum unique data sets required 11 16 16
Maximum unique data sets required 2034 1694 1790
Average % of search space searched 3.6% 3.8% 3.7%
Average new data sets/generation 0.70 0.70 0.70

Table 33 - A Comparison of Acceptance Probability of Function Under Test
Using Simulated Annealing Over 1000 Runs For LCSAJs and Branch Testing

Chapter 7 109

This indicates that for this sample function under test there is no great difference in

the results when the acceptance probability rate is changed. A probability rale of

25%, means that there is a 25% chance that a new solution with a poorer fitness will

be accepted. Using this rate, a lower average unique data set is required but this

difference is negligible, however this rate managed for one run to achieve coverage

with just 11 data sets, the closest to the minimum 7 so far. It also had one run which

required 2034 data sets, the most required for Simulated Annealing. The rate of 75%

also achieved better results than using 50%, but again the difference is too small to

be influential. Therefore, for this test, results indicate that the acceptance rate has

little effect on test data generation.

See I n s e t

75%

1
50%

— I

number of unique data sets

Figure 53 - A Comparison of Frequency for Acceptance Probability of Function
Under Test Using Simulated Annealing Over 1000 Runs for LCSAJs and

Branch Testing

Figure 53. is the frequency distribution of these three tests, 25%, 50% and 75%, the

peak for each probability falls between 100-150 unique data sets. The 25%

Chapter 7 110

probability had 146 runs fall within this range, 50% had 127 within this range and

there were 150 runs within the range for a probability of 75%.

7.6. A Hybridisation of GAs and Simulated Annealing

Dowsland (1993) suggests that the capabilities of Simulated Annealing can be

enhanced by combining them with other search methods. This can consist of either

pre or post processing before beginning the annealing process. GAs could perform as

a pre-processing method, to concentrate the search onto a good starting position from

which to begin the annealing process. According to Dowsland (ibid.) the starting

temperature must be lower than normal to avoid destroying the characteristics of that

*good' solution. With this in mind. GAs were combined with the Simulated

Annealing process. The global search will be performed by GAs before a localised

search is performed by Simulated Annealing on the best member of the final

population. The GA was run 50 generations before the best member was used as the

starting point for Simulated Annealing. A variety of cooling temperature were again

used to determine i f the temperature affected the results. The technique was first

attempted for LCSAJs and branch testing and the results follow in table 34.

Acce Dtance Probability
Simulated Annealing 25% 50% 75%

Average unique data sets 1000 runs 334.53 330.56 329.68
Standard deviation over 1000 runs 305.52 301.34 287.50
Average generations required 434.23 428-13 424.77
Minimum unique data sets required 17 14 13
Maximum unique data sets required 2368 1914 2159
Average % of search space searched 3.6 3.56% 3.56%
Average new data sets/generation 0.77 0.77 0.77

Table 34 - Hybrid GAs-SA Comparison for a Range of Acceptance
Probabilities of Function Under Test Over 1000 Runs For LCSAJs and Branch

Testing

Chapter 7 111

These results demonsu^te that using a higher acceptance probability does generate a

better average result, however as there is only one data set between the best and

second best the probability rate seems to have little effect on the amount of test data

generated. In table 35, is a comparison between the best of the hybrid method of

GAs-SA, and its predecessors. OAs and Simulated Annealing. The Simulated

Annealing results are those when using a probability acceptance rate of 50%.

While the hybrid GAs-SA achieves the best average result 329.68 when compared to

GAs 341.62, and Simulated Annealing of 348.26, the gap is not very large. The

GAs-SA did manage to complete a run with the smallest amount of test data. i3 , but

it also had a run with the most for these three techniques, 2159.

GAs SA GAs-SA
Average unique data sets 1000 nins 341.62 348.26 329.68
Standard deviation over 1000 runs 291.59 294.56 287.50
Averaee eenerations required 685.20 500.79 424.77
Minimum unique data sets required 14 16 13
Maximum unique data sets required 1595 1694 2159
Average % of search space searched 3.7% 3.8% 3.56%
Average new data sets/generation 0.50 0.70 0.77

Table 35 - Results of Function Under Test Comparing GAs, Simulated
Annealing, and the Hybrid GAs-SA Over 1000 Runs for LCSAJs and Branch

Testing

Figure 54 is a frequency chart for the GAs-SA (all three probability rates), GAs and

Simulated Annealing. More runs completed within the range 100-150 unique test

data sets with the hybrid technique, than with the conventional GAs and Simulated

Annealing runs. When a probability rate of 25% was used 152 runs completed, 50%

132 completed and 136 finished in this range for 75%. These figures compared to

123 for GAs and 127 for Simulated Annealing.

Chapter 7 12

1000

numbar of unlq

Figure 54 - A Comparison of Frequency between GAs, Simulated Annealing and

the Hybrid GAs-SA (for all Three Probability Rates) for the Sample Function

Under Test for LCSAJs and Branch Testing

The same experiment was attempted with path testing to ascertain the impact of GAs-

SA, again 50 generations were run for GAs before the best member of the population

was used as the starting point for Simulated Annealing, the results are in table 36.

Acce Dtance Probabilitv
Simulated Annealing 25% 50% 75%

Average unique data sets 1000 runs 501.05 484.81 468.58
Standard deviation over 1000 runs 254.17 253.97 234.90
Average generations required 721.50 694.74 666
Minimum unique data sets required 90 84 57
Maximum unique data sets required 1676 1819 1328
Average % or search space searched 5.41% 5.23% 5.06%
Average new data sets/generation 0.69 0.70 0.70

Table 36 - Hybrid GAs-SA Comparison for a range of Acceptance Probabilities
of Function Under Test Over 1000 Runs For Path Testing

These results again indicate that the 75% probability rate achieves the best average

amount of lest data, 468.58 or 5.06% of the search space, compared to 484.81,

5.23%, for 50% and 501.05, 5.41%, for 25%. The 75% probability also managed to

achieve coverage in one run with the smallest amount of test data so far of 57, and

also offered the smallest spread between minimum and maximum required. The

lowest possible number of unique lest data sets is 15, the smallest amount of test data

Chapter 7 113

by GAs was 78. and 89 by Simulated Annealing. The results of this comparison are

in table 37. The GAs-SA achieved coverage using only 5.06% of the search space

compared to 5.48% for Simulated Annealing and 5.71% for GAs.

GAs SA GAs-SA
Average unique data sets 1000 runs 529.18 507.76 468.58
Standard deviation over 1000 runs 279.30 268.94 234.90
Average generations required 1072.35 773.12 666
Minimum unique data sets required 78 89 57
Maximum unique data sets required 1952 1694 1328
Average % of search space searched 5.71% 5.48% 5.06%
Average new data sets/generation 0.50 0.66 0.70

Table 37 - Results of Function Under Test Comparing GAs, Simulated
Annealing, and the Hybrid GAs-SA over 1000 Runs for Path Testing

120

100

80

60

40

20

75%

S e e Inset

250 300 350 400 450 500 550

75%
50%
25% 400 600 800 1000

num b e r of unfquo data s e t s
1200 1400

Figure 55 - A Comparison of Frequency between GAs, Simulated Annealing and
the Hybrid GAs-SA (for ail Three Probability Rates) for the Sample Function

Under Test for Path Testing

Figure 55 shows the frequency chart for GAs. Simulated Annealing and GAs-SA.

The peak range for the 75% probability is between 400-450 unique data sets with 108

runs, the 50% probability has 102 runs within this range compared to Simulated

Annealing with 103 runs. The range 450-500 has the greatest number of runs

completing, 91 for 25% probability. Finally GAs have a maximum 94 completing in

the range of 350-400 unique data sets. In this case, the GAs-SA option offers the

Chapter 7 114

best average, an improvement of 11.45% over GAs and 7.7% over Simulated

Annealing.

7.7. Conclusion

This chapter describes Simulated Annealing and discusses the process involved in the

generation of lest data using Simulated Annealing. Included is the method with

which a new solution is selected over the old solution, even if that new solution has a

fitness worse than the original. The final part of this chapter is a comparison of

Simulated Annealing to the use of GAs and random test generation as applied in

chapter 6. This comparison reveals that while Simulated Annealing improves on

random generation for this sample function under test, the results are not as

successful as those from using GAs. The similarity of the results however agree with

those obtained by Thornton (1994) on a simple problem. More difficult test

functions will be introduced in Chapters 9 and 10.

The chapter concludes with results attained when the probability acceptance criteria

has been adjusted, using an initial value of 50% which was used for the previous

tests, this rate was adjusted by 25% in each direction. The results indicate that the

probability of acceptance has little effect for this sample function. The final section in

this chapter looks at a hybrid GAs-SA which applies the global searching capabilities

of GAs and then uses the Simulated Annealing to approximate a local search of the

best member of the population. This hybrid technique was attempted for a range of

acceptance probabilities. In testing for LCSAJs and branches there was little

difference in the results, 5.35% over Simulated Annealing and 3.50% over GAs.

Chapter 7 115

When path testing, the GAs-SA offers a 7.7% improvement over Simulated

Annealing and 11.45% over GAs. This greater improvement for path testing could

be due to the fact that for this test program, path testing is a more difficult problem as

there are two paths which each have only 4% of the search space, as opposed to the

smallest search space for one of the LCSAJ of 9%. The next chapter will introduce

Tabu search, another adaptive search technique.

Chapter 7 116

Chapter Eight

Tabu Search and Its Use for the Generation
of Test Data

8.1. Introduction

Tabu search is a heuristic algorithm that uses memory to find a good solution to a

search problem. The Tabu search as discussed here derives from the work of Glover

(1989; 1990; 1994) and Glover a al (1993). According to Glover (1990) Tabu search

is defined as

"...a higher level heuristic procedure for solving optimisation problems,
designed to guide other methods (or their component processes) to
escape the trap of local optimality"

Tabu search is a neighbourhood search and can be equated to hill-climbing.

Unfortunately hill-climbing is limited by local optimum as the search will conclude

at reaching the local optimum. Tabu search attempts to go beyond termination at the

local optimum by allowing moves to be made from one result to another even i f that

new result is not the best of the neighbourhood. This means that there is the

possibility of looping within the search (Nurmela, 1995). To avoid this, Tabu search

uses flexible memory to record a history of a search. This memory can structure the

history list by four dimensions, recency, frequency, aspiration and influence (Glover

andLaguna, 1993).

Chapter 8 117

By maintaining a selective history of all states encountered, a restricted area can be

created with 'no-go' sections which are the best results of previous searches. These

are areas of a neighbourhood which may have been previously searched or one that

may cycle a search back toward a previous result. While the search is not banned

from these *no-go' areas, it is strongly influenced against it by penalising the results.

Membership of the Tabu list expires and becomes *tabu-inactive' after a specified

amount of time which can be either static or dynamic. Glover and Laguna (1993)

suggest the type of list is problem specific. Occasionally it may be necessary to *bend

the rules' by either releasing a restriction placed on a result's attributes (attribute

aspiration) or a restriction placed on the move (move aspiration) by treating a result

as Uabu-inactive'. This may be necessary for the good of the search as a particular

move may have a 'sphere of influence' far greater than the restrictions placed upon it,

and i f this influence is considered greater than the restriction placed on it, the move

can be made. According to Glover and Laguna (1993), the objective is to stimulate

the discovery of new high quality solutions.

Tabu search is relatively new and most of the applications have only been attempted

since 1989 (Glover, 1993). They have however been successful in scheduling

(Laguna and Glover, 1992), which applied Tabu search to single machine scheduling

problems. Dammeyer and Voss (1993) used a Tabu search type method to solve the

knapsack problem, which determines the maximum number of items which can be

packed in a knapsack. Over a series of 57 problems, they compared the Tabu search

method to Simulated Annealing and determined they take comparable time, but that

Tabu search finds the optimal solution for 50% more problems. They also

Chapters 118

determined that Simulated Annealing had a greater dependence on the initial

selection of control parameters than Tabu.

One problem however with using Tabu search for the generation of test data is that a

lot of test data sets will be generated as the neighbourhood is searched, and the

results achieved may therefore not be satisfactory.

The algorithm for Tabu search, based on the description by Glover (1989), is as

follows in figure 56

Tabu Search Algorithm
1 select s e S //S = search space
2 initialise tabulist and set to empty list
3 iniualise TabuListSize = SIZE
4 initialise TabuCounter = 0
5 while fitness(s) < stopping criterion
5.1 generate neighbourhood(N) of s
5.2 calculate fitness of each member using submodute Fitness
5.3 select member(N) with best fitness and make it Snew
5.4 add s to tabulist and increment TabuCounter by 1
5.5 ifTabuCounter = SIZE
5.5.1 set TabuCounter = 0 //start at beginning of list to eliminate old members
5.6 ' S=Soew

_6 end while loop

SubModule Fitness
1 calculate fitness of member
2 if member is member(tabulist) by some_attribute
2.1 reduce fitness by some_amount

_3 return fitness

Figure 56 - Algorithm for Tabu Search including Submod.ule to Calculate
Fitness

8.2. Tabu Search in Action

The following is a demonstration of Tabu search using the maximisation problem

discussed in Chapter 5 for GAs and Chapter 6 for Simulated Annealing. The search

space used in the previous examples will be extended from the range of the variables

X and y of [-5..5] to a range of [-10.. 10] to demonstrate the effect of local optimum

Chapters 119

on the search. The graphical representation of the new search space is shown in

figure 57, the representation of the peak 2.0 is in the range 2.0-2.5 to illustrate that

this is the optimum peak in the search space. As there are similarities between hill-

climbing and Tabu search a short demonstration of hill climbing will begin this

example.

10

2 Variable 'y*

H 2-2.5

• 1.5-2

• 1-1.5

• 0.5-1

• 0-0.5

Variable 'x'

Figure 57 - Illustration of Search Space for Sample Function

8.2.1. Hill-Climbing

As Tabu search builds upon the ideas of hill-climbing, the algorithm for this from

Winston (1984) slightly amended, is summarised in figure 58.

Chapter 8 120

Hill-Climbing Algorithm
1 Establish a random iniiial start point called Initiai.Solution and determine

its fitness
2 while goal has not been reached or stop ̂ true
2.1 determine the neighbourhood of the Inltial_Solution
2.2 sort the neighbourhood by their fitness
2.3 establish Best.Member of neighbourhood
2.4 if (fitness(Best_Member) > fitness(InitiaI_Solution))
2.4.1 InitiaLSoIution = Best_Member
2.5 else
2.5.1 stop = true

_3 end while loop

Figure 58 - Hill-CIimbing Algorithm

Therefore using a random initial start point of [5,-5], its corresponding fitness is

0.002. At step 2.2 the neighbourhood of {5,-5) are sorted as follows in table 38.

Member Fitness
1 (4.61 0.0035
2 14,51 0.0384
3 14.4} 0.1814
4 .(5,61 0.0611
5 15,41 0.0384
6 16,6} 0.2058
7 16.51 0.0611
8 (6,41 0.0035

Table 38 - Neighbourhood of Initial Start Point

The member of the neighbourhood with the highest fitness is the move to position

{6,-6}. That solution then becomes the Best_Member of the queue and its

neighbourhood are sorted. This process continues and in table 39 the search path is

shown.

Loop Best Member of Fitness
Time Neighbourhood

1 (6.61 0.2058
2 (7,7} 0.7187
3 (8,8} 1.3403
4 {9,9} 1.8303
5 110.10} 1.9991

Table 39 - Path Hill-Climbing Takes by Accepting Best Member of
Neighbourhood until Maximum Solution (Local Optimum) is Reached

After loop number five the local optimum solution of {10.-10} has been found and

the boundary of the search space has been reached. The hill-climber stops and

Chapter 8 121

returns (10,-10} as the best solution in the search space. Figure 59 illustrates the

search path again the cenû e is the peak of 2.0, the range of the four comers in

actuality are in the range 1.75 to 1.9999. This range was again used to illustrate the

single global maximum.

Starting Point
{5.-5)

Local Optimum
{10,-10)

Bs^Gi^iiSH&r am^^i\,^ unm&ii

Variable 'x*

10

8

6

4
2

0

-2

-4
-6

-8

-10

• 2-25-2.5

• 2.-2.25

• 1.75-2.

< • 1.5-1.75
0)

• 1.25-1.5

Q • 1.-1.25
*<

• .75-1. • .75-1.

• .5-.75

• .25-.5

• .-.25

Figure 59 - Graphical Representation of Hill-Climbing Search Path

Hill-climbing therefore has not found the best solution but merely a local optimum.

What will be attempted now is to use the same example to illustrate how a Tabu

search may aid in finding the global optimum.

8.2.2. Tabu Search for Global Optimum

Tabu search uses the same initial starting point {5,-5}. Once its neighbourhood has

been searched this initial combination will become the first member of the Tabu List.

The Tabu list is to record the actual moves made at each stage. A solution from the

neighbourhood is penalised i f there is a chance that that solution will backtrack over

that pari of the search space which has already been searched. If it matches a previous

Chapter 8 122

move it will be penalised more harshly than if it matches only one variable of a

previous move. Therefore, if in this example move {5,-5} is a member of a new

neighbourhood its fitness will be (fitness*penalty), using a penalty figure for

matching both variables of 0.00001 the fitness of that combination is (0.0002

•0.00001). If a member of the new neighbourhood is {5,-6} and therefore matches

one variable then the fitness of that combination will be fitness*0.001. Using this

penalty routine a combination is penalised more severely for backtracking over the

same search space than for generating a new combination which matches only one of

the previous Best_Member combinations. Other penalty values and size of Tabu list

were attempted, but this combination achieved the best result, in some cases the

global optimum was not attained.

The fitness of the initial point {5,-5} is 0.002. Identical to hill-climbing {6,-6} is

chosen as the Best_Member of the neighbourhood and {5,-5} is added to the Tabu

List, the size of the tabu list is static at 200. half the search space. When the list

becomes full new additions to the list replace the oldest members of the list, and this

means that i f any of these combination are members of a new neighbourhood they

will no longer be penalised. Table 40 is the neighbourhood of {6,-6} with their

corresponding fitness which for some combinations includes their penalty.

Chapters 123

Penal̂ V Value
Variables Original Fitness Matching Two Matching One New Fitness

1 (5.7) 0.2387 0.001 0.000239
2 15,61 0.0611 0.001 0.0000611
3 15̂ 1 0.0002 0.0001 0.00000002
4 16.71 0.4442 0.001 0.4441
5 16,5} 0.0611 0.0000611
6 (7.7J 0.7187 0.7187
7 (7.61 0.4442 0.4442
8 (7.51 0.2387 0.001 0.000239

Table 40- Ranking of Neighbourhood from Table 38 using Tabu List
Restrictions

In this neighbourhood the combination {5,-5) is penalised the harshest as this

matches a member of the Tabu List, some of the other combinations only match one

variable {{5,-7}.{5.-6).{6.-5}.{7.-5}) and are penaUsed less harshly. The Tabu

search does find an answer after 263 moves, and the area of the search space which

has been looked at is shown in figure 60. The line shows the general search path

while the arcs and circles represent the areas of the search space where intensive

examination took place.

Optimum Solution
{0.0}

• 2.25-2.5

-4 • 2.-2.25

-2 E31 .75-2.

-0 < Ea 1.5-1.75

--2 m* • 1 .25-1.5

--4 a 1 .-1.25

-6 • .75-1.
@ .5-.75

-8
@ .5-.75
EI.25-.5

--10
EI.25-.5
• .-.25

Starting Point
{5,-5}

Figure 60 - Graphical Representation of Tabu Search Path until Global
Optimum is Reached

Chapter 8 124

8.3. Hill-Climbing for the Generation of Test Data

Even in the small example used, a great deal of the search space is being examined to

determine its fitness in relation to its neighbours. This can be a definite deterrent

from using hill-climbing to generate test data as a lot of test data sets will be required

in order to determine i f one has a better fitness than its neighbour. Additionally the

structure of the fitness function may restrict the search for global optimum, as there is

no one global optimum in this type of search as is expressed in the fitness function.

As a path is found it has a high fitness, but for every successive 'discovery' of this

path the fitness decreases. Every time the search gels caught in a local optimum it

will be necessary to begin the search again from another random initial solution. In

table 41 is a breakdown of unique data sets generated for 1000 runs of the hill-

climber before all LCSAJs and branches were found for the sample function under

test as described in 3. The hill-climber viewed on average 2379.41 unique test data

sets prior to complete coverage of the code, more that one-fourth of the search space.

Random generation required 994.58. The maximum amount of test data required by

a run was 7969, this number is close to the maximum amount required before

coverage of 9254. These results indicate that hill-climbing views a lot of test data in

its search.

Hill-Climbing
Averace unique data sets 1000 runs 2379.41
Standard deviation over 1000 runs 1766.75
Average number of generations 144.51
Minimum unique data sets required 52
Maximum unique data sets required 7969
Average % of search space searched 25.69%
Average new data sets/gene ration 16.46

Table 41 - The Results of Hill-Climbing on Sample Function for LCSAJs and
Branches Over 1000 runs

Chapter 8 125

Figure 61 is a comparison frequency chart between GAs, random generation.

Simulated Annealing and hill-climbing, 23 runs of the hill-climber completed in the

range of 750-800 unique test data sets.

140

120

100

SA and GA

Random

HillClimbing

GA
SA
Random
HC

num ber of unique data s e t s

Figure 61 - Frequency Chart Comparing Hill-Ciimbing to Other Search
Techniques, GAs, Random Generation, and Simulated Annealing for LCSAJs

and Branch Testing

As seen from these results hill-climbing produces very poor results for which there

are a number of reasons, the most obvious being that the entire neighbourhood must

be generated to choose the fittest, and this produces a lot of test data. By the very

nature of hill-climbing the search is up a slope, and while very good for some search

problems this particular space appears to benefit from a more varied search pattern.

Is it possible that Tabu search can improve on the results from hill-climbing?

8.4. Using Tabu Search for the Automatic Generation of Test Data

In Tabu search each test data set is compared to the Tabu list and is penalised for

matching a member of the list. This is a mininusaiion problem, as opposed to

Simulated Annealing and GAs which are performed as maximisation problems^ and

Chapter 8 126

use the inverse of the fitness. This makes it easier in GAs to establish the best of a

population and in Simulated Annealing make the spread between strings smaller.

This should have no bearing on the result. I f a test data set matches a set on the list

then it is penalised by having its fitness multiplied by 100, the size of the Tabu list is

also 100. This method is very similar to the penalty method used in the example in

section 7.2.2. One change has been made to the way a neighbourhood is searched.

Normally the process would always begin in the same comer or the neighbourhood.

I f however, all the members of the neighbouiiiood return the same path the first

member generated will be deemed the best, as the fitness value for that path has

worsened each subsequent time found. Therefore to avoid directing the search by

virtue of first in the neighbourhood, the starting position is changed every 20

generations. The initial member of the neighbourhood is derived from the south-west

comer as opposed to the north-east. The results follow in table 42.

Tabu GAs Simulated GAs- Random
Search Annealing SA Toting

Average unique data sets 1000 runs 366.19 341.62 348.26 329.68 994.58
Standard deviation over 1000 runs 136.24 291.59 294.56 287.50 881.13
Average generations required 97.31 685.20 500.79 424.77 1113.07
Minimum unique data sets required 44 14 16 13 14
Maximum unique data sets required 711 1595 1694 2159 4968
Average % of search space searched 3.95% 3.70% 3.80% 3.56% 10.74%
Average new data sets/generation 3.76 0.50 0.70 0.77 0.89

Table 42 - The Results of Tabu Search on Sample Function Under Test
for LCSAJs and Branches

The frequency distribution in figure 62 demonstrates that the structure of Tabu

search, while not as effective as GAs or Simulated Annealing, does give results

which are very close, as the average is 366.19 unique data sets. This is not too many

more than GAs with 341.62 and Simulated Annealing with 348.66, and a great

improvement over hill-climbing which required 2379.41. One note of contrast is the

Chapter 8 127

minimum new data sets required by a run which was 44 for Tabu search, which is

well above the 14 required by GAs and 10 by Simulated Annealing, but the

maximum required is 711 which gives a smaller range of unique data.

•GA

•SA

TS

number of unique data s e t s
g i g

Figure 62 - Frequency Chart Comparing Tabu Search to GAs and Simulated
Annealing over 1000 Runs for LCSAJs and Branch Testing

The Tabu search method was also used for path testing for this demonstration

function. The results for Tabu search are compared to those achieved by GAs,

Simulated Annealing, random generation and GAs-SA in table 43. Tabu Search

performs 68.5% better than random generation, however the results are worse than

those when using GAs. 80.5%, Simulated Annealing, 81.3%, and the hybrid GAs-

SA, 82.7%. The minimum run for Tabu search also required the most unique test

data, 249, higher than even random generation at 199, although the range between

minimum and maximum is again the smallest for any of the techniques used so far.

Chapter 8 128

Tabu
Search

GAs Simulated
Annealing

GAs-
SA

Random
Testing

Average unique data sets 1000 runs 855.19 529.18 507.76 468.58 2718.92
Standard deviation over 1000 runs 141.47 279.30 268.94 234.90 1471.34
Average generations required 307.05 1072.35 773.12 666 3501.47
Minimum unique data sets required 249 78 89 57 199
Maximum unique data sets required 1152 1952 1694 1328 7135
Average % of search space searched 9.23% 5.71% 5.48% 5.06% 29.36%
Average new data sets/generation 2.79 0.50 0.66 0.70 0.78
Table 43 - The Results of Tabu Search on Sample Function Under Test for Path

Testing Compared to GAs, Simulated Annealing, the hybrid GAs-SA and
Random Generations

Figure 63 is the frequency chart for all five methods. The peak for Tabu search is

between 1000-1050 unique data sets, 197 runs completed in this range. The most

runs, 94. completed for GAs between 350-400 data sets, for Simulated Annealing,

103 completed in the range 400-450 and for GAs-SA, 108 completed in this same

range.

2 0 0

GAs-SA

120 +

Random

o 8 S

GA
SA

GAs-SA
TS

Random

o o o o o o g o g o g

number of unique data sots

Figure 63 - Frequency Chart Comparing Tabu Search to GAs and Simulated
Annealing over 1000 Runs for Path Testing

Chapter 8 129

8.5. Tabu Search Assisting Other Adaptive Search Techniques

The results achieved by Tabu search were poorer than those achieved by GAs and

Simulated Annealing for this sample program. However Tabu search like Simulated

Annealing can be used as a local search mechanism when attached to GAs. Glover

(1994) suggests this idea. Ray ward-Smith and Debuse (1994) and Kido et al (1993)

suggest the combination of all three techniques, GAs for the global search and

Simulated Annealing and Tabu search for local search. Kido et al (1993) state that

for the TSP problem. GA+SA+TS achieve better results than GA+SA and GA+TS.

although GA+TS was a close second. In the following section GAs wil l perform the

global search while Tabu performs the local search.

8.5.1. Using GAs with Tabu Search

The GAs were mn for 50 generations before Tabu search took over using the best

member of the GAs as the initial value. Results for this technique, compared to

using Tabu search and GAs alone, are shown in table 44, The GAs-TS performed

much belter than its predecessors and required only 213.15 unique data sets as

opposed to 366.19 by Tabu search and 341.62 by GAs. The range between minimum

and maximum was also much smaller, 595, when compared to Tabu search 667, and

GAs 1581. Although the best run of GAs-TS was slightly worse by two data sets

than GAs it was a great improvement over the minimum run of 44 achieved by Tabu

search.

Chapters 130

GAs-TS Tabu Search GAs
Average unique data sets 1000 runs 213.15 366.19 341.62
Standard deviation over 1000 runs 94.67 136.24 291.59
Average generations required 22.25 97.31 685.20
Minimum unique data sets required 16 44 14
Maximum unique data sets required 595 711 1595
Average % of search space searched 2.3% 3.95% 3.7%
Average new data sets/generation 9.58 3-76 0.50

Table 44 - The Results of the Hybrid GAs-TS compared to Tabu Search and
GAs on Sample Function Under Test for LCSAJs and Branches

Figure 64 is the frequency distribution of GAs-TS compared to the other techniques

used so far. The peak for GAs-TS is in the range 250 data sets with 230 runs

completing. While this peak is in a higher range than the other methods it does still

have the best average performance of the adaptive search methods applied. The next

closest result is GAs-SA which averaged 329.68 unique test data sets but had a

minimum-maximum range of 2146 compared to 579 for GAs-TS. The overall

improvement of GAs-TS from the results attained from GAs was 38%, and 42%

improvement over Tabu search.

250

G A s - S A G A s - T S

GA

SA

GAs-SA

TS

G A T S

^ i s i g i g l s i g i g i s i
number of unique data s e t s

Figure 64 - Frequency Chart Comparing the Hybrid GAs-TS to the Other
Adaptive Search Techniques over 1000 Runs for LCSAJs and Branch Testing

Chapter 8 131

The hybrid GAs-TS was also used for path testing, the results are in table 45. While

GAs-TS with an average number of unique data sets of 770 offer an improvement

over Tabu search, 855.19, the average is less than that achieved when using GAs

alone, 529.18.

GAs-TS Tabu Search GAs
Average unique data sets 1000 runs 770 855.19 529.18
Standard deviation over 1000 runs 259 141.47 279.30
Average eenerations required 259 307.05 1072.35
Mimmum unique data sets required 132 249 78
Maximum unique data sets required 1332 1152 1951
Average % of search space searched 8.31% 9.23% 5.71%
Average new data sets/generation 2.97 2.79 0.50

Table 45 • The Results of the Hybrid GAs-TS compared to Tabu Search and
GAs on Sample Function Under Test for Path Testing

2 0 0 -r

180 •

160

140

>• 120
u c
o
3

100
CT
O . 8 0 -

6 0

4 0 •

2 0

0 • -

GAs-SA

GA-TS

GA

SA .

GAs-SA

TS

GATS

number of unique data sets

Figure 65 - Frequency Chart Comparing the Hybrid GAs-TS to the Results
from Other Adaptive Search Techniques over 1000 Runs for Path Testing

The frequency chart for all the adaptive search method attempted so far for path

testing is in figure 65. The frequency distribution for the hybrid GAs-TS method has

two peaks, the first is between 900-950 unique data sets with 125 runs completing in

this range, and the second is in the range 800-850 data sets with 123 runs completing.

Chapter 8 132

The results for path testing are not as convincing as those received when testing

LCSAJs and branches, as with the hybrid GAs-SA this could be due to the difficulty

of the path testing search space when compared to that of branch and LCSAJs

testing.

8.5.2. Simulated Annealing and Tabu Search

To attach the memory capabilities from Tabu search to Simulated Annealing may

encourage the Simulated Annealing search to concentrate on new areas of the search

space and to avoid backu^acking over previous positions. When a new solution is

generated it is checked against the Tabu list. If it is a member of the list the solution

is discarded, otherwise the process continues as normal (as described in chapter 7).

Two fixed sizes of Tabu list were tried, a size 10 and 100, as used in previous

examples in this chapter. If a new solution has proceeded to the Simulated Annealing

process and has been over the previous solution, it is the added to the Tabu list.

When the list reaches its maximum size new solutions are entered at the beginning of

the list replacing older members. The first stage was to discard any new solution

which matched a solution on the list. The second stage was to discard a solution i f it

matched just 2 members of the list. The process was attempted to determine the

effectiveness of this procedure for both LCSAJs and branch testing and path testing.

These results were compared to those received when using Simulated Annealing on

its own and are shown in table 46 for branch and LCSAJs. The new technique which

performed the best was a Tabu list of size 10 and a new solution was rejected i f it

matched a member of the list, this method gave a result of 343.0, very close to the

result given by Simulated Annealing alone of 348.26. The other techniques were

Chapters 133

very poor performers, especially when the list size grew lo 100. Therefore, it appears

that a Tabu list has little affect on the results for LCSAJs and branch testing.

Simulated
Annealing

Tabu List Size 100 Tabu List Size 10 Simulated
Annealing

match 2 match 3 match 2 match 3
Averaee unique data sets 1000 runs 348.26 1092.44 648.87 424.14 343.0
Standard deviation over 1000 runs 294.56 849.92 483.19 350.93 291.36
Average generations required 500.79 8241.10 1858.61 686.98 492.39
Minimum unique data sets required 16 16 17 17 13
Maximum unique data sets required 1694 4990 2998 3500 1873
Average % of search space searched 3.76% 11.80% 7.01% 4.58% 3.70%
Average new data sets/generation 0.70 0.13 0.35 0.62 0.70
Table 46 - Comparison Of Results For Simulated Annealing Combined with a

Tabu List which Rejects a Variable Combination if it Matches a Member of the
List for LCSAJs and Branch TesUng

The results for path testing are in table 47. Again the best performance is by a Tabu

list size of 10 when all three match a member of the list, this result 515.12 is not

however an improvement over Simulated Annealing which gave a result of 507.76.

The worse technique was using a Tabu list of 100 and two match the list, the result

was 2292.0. 3.5 times the result given when using Simulated Annealing alone.

While attaching a Tabu list to the Simulated Annealing process does not seem very

successful in this example it is possible with a different program this procedure may

have more success.

Simulated
Annealing

Tabu List Size 100 Tabu List Size 10 Simulated
Annealing

match 2 match 3 match 2 match 3
Average unique data sets 1000 runs 507.76 2292.0 1315.29 773.97 512.12
Standard deviation over 1000 runs 268.94 1407.32 702.19 417.96 268.12
Averace cenerations required 773.12 20405.73 4524.47 1427.55 786.92
Minimum unique data sets required 89 131 120 106 71
Maximum unique data sets required 1694 8151 4978 2483 2047
Average % of search space searched 5.48% 24.75% 14.20% 8.36% 5.56%
Average new data sets/generation 0.66 0.1 i 0.29 0.54 0.65
Table 47 - Comparison Of Results For Simulated Annealing Combined with a

Tabu List which Rejects a Variable Combination if it Matches a Member of the
List for Path Testing

Chapter 8 134

8.6. Conclusion

This chapter inu-oduced the adaptive search technique called Tabu search. Tabu

search, first discussed by Glover (1989), is based on hill<limbing with restrictions

placed on returning to previous search positions within a given period. 100 moves in

this example. Unfortunately hill-climbing did not prove successful in test data

generation, while Tabu search did much better than random test data generation and

the results were very similar to other adaptive search techniques for branch and

LCSAJs testing. When a hybrid GAs-TS was created the results for branch and

LCSAJs testing were the best of all the adaptive search techniques, a 37.6%

improvement over GAs used on their own and a 41.7% improvement over Tabu

search alone. The closest result to GAs-TS was by the hybrid GAs-SA which

achieved coverage with an average unique data set of 329.68. when compared to the

result from.GAs-TS, 213.15, a 35.3% improvement for GAs-TS. The results for the

hybrid GAs-TS were not as successful for path testing as those achieved by GAs,

Simulated Annealing and GAs-SA, although they did improve the results achieved by

Tabu search alone by 10%. If this is accredited to the difficulty of the search space,

then it would appear that Tabu search works well in easier, less specific, search

spaces. However more tests will need to be performed to validate these results.

The philosophy of Tabu search was then applied to Simulated Annealing which used

a Tabu list to assist in guiding the search, unfortunately this does not improve the

search, and in fact in all but one case the results were worse than those achieved by

Simulated Annealing alone. The next chapter will introduce a wider variety of test

Chapter 8 135

functions to assist in determining which method of test data generation performs the

best.

Chapters 136

Chapter Nine

The Results of Test Data Generation Using Adaptive
Search Techniques for a Range of Test Functions

9.1. Introduction

There exist many software functions more complicated than that which have been

used so far to illustrate test data generation, and DeMillo and Offut (1988) have

specified a number in their work with mutation analysis. Using these test functions

as a guideline for designing additional ones, this chapter introduces a collection of

difficult functions with which to test the capabilities of random test data generation

and adaptive search techniques.

These test functions include two versions of the classic Trityp problem and the Find

program, all of which will be described in their respective sections in this chapter,

and finally the sample function which has been used throughout this thesis with a

much expanded search space. The functions will be compared to random test data

generation for both path testing and the testing of LCSAJs and branches. The largest

problem with these tests is the measurement of unique test data. A great deal of the

tests were performed on an IBM386 compatible in the programming language, C.

The size of the search space created problems as it is almost impossible to measure

unique data sets when the search space exceeds 100,000 points. There have been

Chapter 9 137

adaptations, however, made to C to allow much larger arrays and the use of this

larger array will be demonstrated for a function.

9.2. The Trityp Problems

The Trityp problem is concemed with determining the type of uiangle created by

three given variables. In the first problem, Trityp (easy), the program is first required

to determine i f the three variables can form a triangle and i f so. is it an equilateral,

isosceles or scalene triangle. The second program, Trityp (hard), has the additional

task of determining whether it is a right-angled triangle. The types of triangle are

displayed in figure 66.

Equilateral Right-Angled

Scalene Isosceles

Figure 66 - Types of Triangles Distinguished by Trityp (Easy) and Trityp
(Hard)

Chapter 9 138

9.2.1. Trityp(Easy)

The Trityp easy program begins simply by determining i f the three variables (x,y,z)

involved will make a legal triangle, that is i f all sides are greater than 0. The three

variables are tested as follows

i f (x > O l l y > O l l z > 0) .

I f the triangle is legal, the next step is to test how many sides of the triangle are of the

same length. This is performed as follows:

typo = 0;
i f (X == y)
(

type += 1 ;
>

i f (X == z)
{

type += 2;
)
i f (y == z)
{

type += 3;
)

The value of type is then used to determine i f the triangle is equilateral, scalene, or

isosceles as follows:

i f (type t== 0)
{

i f ((x + y <= z I I (y + z) <= x | | (x + z) <= y >
(

type = 4 ; / / i l l e g a l t r i a n g l e
)
e l se
(

type = 1 ; / / s c a l e n e

>

f (type > 3)

type = 3 ; / / e q u i l a t e r a l

I s e i f (type == 1 && (x + y)> z)

type = 2 ; / / i so sce l e s

I s e i f (type == 2 && (x + z)> y)

type = 2 ; / / i s o s c e l e s

Chapter 9 139

i l s e i £ (answer == 3 && (y + z) > K)
{

)
e l s e
{
)

typo = 2 ;

typo = 4 ;

/ / i s o s c e l e s

/ / i l l e g a l t r i a n g l e

The original code is in appendix A and flow chart in appendix B. Through the code

there are a possible 121 paths but only 10 of these paths are feasible. The code can

be broken down to 17 LCSAJs and 13 branches as shown in Appendix C. The size

of the search space is 41'' or 68921 and each variable is of the range [-20..20]. The

results of the test runs for LCSAJs and branches are shown in table 48.

1000 Runs GAs SA Tabu GAs-
SA

CAS
TS

Random
Testing

Average unique data sets 320.34 349.37 676.6 643.28 476 3487.93
Standard deviation 202.19 183.35 171.1 492.19 274.01 2831.74
Average generations required 682.39 478.03 48.61 768.87 30 3647.48
Minimum unique data sets required 42 52 163 50 35 162
Maximum unique data sets required 1418 1560 1780 3064 1590 20341
Average % of search space searched 0.46% 0.51% 0.98% 0.93% 0.69% 5.06%
Average new data sets/generation 0.47 0.73 13.92 0.84 15.87 0.96

Table 48 - Comparison of Adaptive Search Techniques against Random Test
Data Generation for Trityp (Easy) Over Search Space of 68921 for LCSAJs and

Branch Testing

These results indicate that GAs in requiring on average 320.34 unique data sets per

run. performed the best for the Trityp(easy) program for LCSAJs and branch testing.

The method with the second best results was Simulated Annealing which achieved

coverage with an average 349.37 data sets. The hybrid GAs-SA did not perform as

well as its predecessors, requiring on average 643.28 unique data sets. Random

performed the worse, as it required 5.06% of the population to be viewed prior to

coverage as compared to 0.46% for GAs. The improvement of GAs over random

generation was 91%. and 90% for Simulated Annealing. All the adaptive search

Chapter 9 140

techniques achieved coverage through exploring less than 1% of the search space

while Tabu search required the most at 0,98% of the search space.

The frequency chart is in figure 67. The peak of the GAs is within the range 200-250

with 136 runs completing, for Simulated Annealing 143 runs completed in the range

300-350. The hybrid GAs-TS. 142 runs completed in the range 300-350 unique data

sets, the second smaller peak for GAs-TS is in the range 800-850 with 78 data sets.

The other hybrid technique, GAs-SA achieved 120 within the range 150-200, and

Tabu search achieved coverage for the most runs. 143 in the range 650-700. Finally

random generation, whose maximum range is the greatest at 20341 and outside the

scope of the graph, had a minor peak between 1100 and 1150 data sets of 19.

See Inset

Random

•
Random

GASA

GATS

number of unique data s e t s

Figure 67 - Frequency Comparison of Adaptive Search Techniques Against
Random Test Data Generation for Trityp (Easy) Over Search Space of 68921

for LCSAJs and Branch Testing

Chapter 9 141

In path testing for the Trityp (easy) program, a run should find all 10 paths, these

paths are listed in table 49 with their corresponding percentage of search space. Path

number two will be the most difficult path to cover as there are only 20 data sets

which lest this path. The results for path testing are in table 50.

Path % of Search
Space

I I T 88.39%
2 1F2T3T4T7T 0.03%
3 1F2T7F 0.14%
4 1F3T7F 0.14%
5 l R r 7 C 0.41%
6 IF5T6T7T 5.35%
7 1F4T7F 0.14%
8 IF3T7B 0.41%
9 IF2T7B 0.41%
10 1F5T6F7A 4,57%

Total 100%

Table 49 - Paths Through Trityp(Easy) Program and their Respective Amounts
of Search Space

1000 Runs GAs SA Tabu GAs-
SA

GAs-
TS

Random
Testing

Averaee unique data sets 230.04 337.38 721.0 663.95 456.75 3580.45
Standard deviation 187.05 191.68 318.3 624.50 261.57 2968.09
Average generations required 459.55 489.34 173.5 1236.78 29.08 3752.87
Minimum unique data sets 26 38 101 30 49 174
Maximum unique data sets 1381 1294 3309 4053 1501 21158
Average % of search space 0.33% 0.49% 1.05% 0.96% 0.66% 5.20%
Average new data sets/generation 0.50 0.69 4.16 0.53 15.71 0.95

Table 50 - A Comparison of Techniques for Path Testing on Trityp (Easy)
Over Search Space of 68921.

In path testing there is an improvement over random testing of 94% for GAs. 91% for

Simulated Annealing and 87% for the hybrid GAs-TS. While the results of Tabu

search and the hybrid GAs-SA are better than those with random generation, these

two search methods do not appear to be as effective as GAs and Simulated

Annealing. Of the minimum amount of test data possible before complete coverage

of 10, GAs was the closest as one run required only 26 unique data sets to be

generated, in second place was the hybrid GAs-SA which required only 30. Tabu

Chapter 9 42

search which performed the worse of the adaptive search techniques had a minimum

data set requirement of 101 which is nearly four times the amount for GAs.

G A S A G A T S
/ •

SA

Random

nurn ber of unique data s e t s

GA
SA

Random
TS

GASA
GATS

Figure 68 - Frequency Comparison of Adaptive Search Techniques against
Random Test Data Generation for Trityp (Easy) Over Search Space of 68921

for LCSAJs and Branch Testing

Figure 68 is a frequency chart for all the methods, the peak for GAs is in the range

100 to 150 with 215 runs completing, GAs-SA had 133 runs in the range 150-200,

Simulated Annealing had 130 runs finishing in the range 250-300. Additionally there

were 152 runs of GAs-TS in the 300 to 350 range. Tabu search finished 141 runs

between 550 and 600 and finally random generation had a peak of 15 runs in the

range 1050-1100. GAs have outperformed the other adaptive search techniques in

the Trityp(easy) problem. Surprisingly ihe hybrid GAs-SA gave average results

much worse than GAs and Simulated Annealing, in fact the results with GAs was

65% better than the hybrid method and Simulated Annealing was 49% better. This is

Chapter 9 143

quite a bit belter than the improvement of 11% over GAs and 8% over Simulated

Annealing demonstrated in the test program used in previous chapters.

9.2.2. Trityp (Hard)

The Trityp (hard) problem is more difficult than the Trityp (easy) in that the program

also determines whether a given triangle is a right-angled unangle. This is done by

solving Pythagorus's theorem by determining i f the square root of the two smaller

sides, squared, are equal to the third side. i.e.

This function uses the same search space as in Trityp (easy) and within the space

there are 42 variable combinations which solve this equation, that is 14 for each

form. This makes the search much more restrictive. There are 18 LCSAJs and 23

branches to be exercised, listed in appendix D. The results are shown in table 51,

these indicate that the best performer is the hybrid GAs-TS which required 1006.60.

the second best is Tabu search which required 1381.23 and the third is the other

hybrid method. GAs-SA. These offered a 90%, 86% and 61% improvement,

respectively over random generation. Simulated Annealing and GAs offer a 44% and

42% improvement over random generation. The frequency chart is in figure 69.

Chapter 9 144

1000 Runs GAs SA Tabu GAs-SA GAs-
TS

Random
Testing

Averaee unique data sets 5640.34 5436.94 1381.23 3723.42 1006.6 9655.66
Standard deviation 2929.41 3057.76 571.08 1992.88 373.17 5405.47
Averaee generations required 15359.0 10008.0 102.75 3960.97 46.11 10719.5
Minimum unique data sets 430 343 205 311 309 883
Maximum unique data sets 2I50I 26808 3832 12151 3296 37335
Averace % of search space 8.18% 7.89% 2.00% 5.40% 1.46% 14.01%
Averaee new data sets/generation 0.36 0.54 13.44 0.94 21.83 0.90

Table 51 - Comparison of Adaptive Search Techniques
Data Generation for Trityp (Hard) Over Search Space

and Branch Testing

against Random Test
of 68921 for LCSAJs

300

250

200

100

50

.GASA
GA

Random

See Inset
GA
7S
Random
SA
GASA
GATS

number of unique data sets

Figure 69 - Frequency Distribution of Adaptive Search Techniques against
Random Test Data Generation for Trityp (Hard) Over Search Space of 68921

for LCSAJs and Branch Testing

The peak for GAs-TS is between 1000 and 1250 data sets with 297 runs completing

in this range, Tabu search had two major peaks, one in the range 750 to 1000 with

152 data sets and the other between 1750 and 2000 with 153 data sets. The other

search methods were not as effective, the GAs-SA had a mild peak between 3750 and

4000 of 59, GAs completed the most runs in the range 4500 - 4750 with 49 and

Simulated Annealing in the range 3500 and 3750 had 47. Random generation

completed 31 runs in the range 6250 to 6500.

Chapter 9 145

The hybrid GAs-TS performed better than GAs alone by 82% and Tabu search alone

by 27% for LCSAJs and branch testing. Is this success limited to this problem or wil l

path testing give such impressive results? There exists 14 paths through the Trityp

(hard) program which need lo be exercised. Each path and its percentage of the

population is shown in table 52, these paths correspond with the function code given

in appendix E and the flow chart in appendix F. The most difficult paths to cover

are numbers 12, 13 and 14, each of which is only exercised by 14 test data sets. Path

number 1 is exercised by more than half the data sets, this path determines i f the

input contains a negative number as a triangle can not have a side of length less than

zero.

PATH % of Search
Space

1 IT 51.2%
2 lA 25.00%
3 IB 12.19%
4 2F3F4F5T6T 0.03%
5 2F3F4T 1.93%
6 2F3T 1.93%
7 2F3F4F5F7F8T 0.41%
8 2T 1.93%
9 2F3F4F5RT 0.41%
10 2F3F4F5T6F 0.41%
11 2F3F4F5RF8F9F10F11F 4.5%
12 2F3F4F5F7F8F9T 0.02%
13 2F3F4F5RF8F9F10FIIT 0.02%
14 2F3F4F5F7F8F9FI0T 0.02%

Total 100%

Population (68921) which Exercises the Path

The amount of unique test data required to satisfy these paths is shown in table 53 for

each test data generation technique. Again the hybrid GAs-TS with an average of

1011.97 unique data sets outperformed all other adaptive search techniques as well as

random generation, the next best technique was again Tabu search which required

1377.60 data sets. GAs-TS showed an improvement over random generation of 89%

Chapter 9 146

and over Tabu search of 27%. Simulated Annealing and GAs did do better than

random generation but required 4.21 and 4.28 times more data sets than the hybrid

GAs-TS.

1000 Runs GAs SA Tabu GAs-
SA

GAs-TS Random
Testing

Average unique data sets 4333.52 4266.9 1377.6 3498.31 1011.97 9468.09
Standard deviation 2842.14 2431.8 748.25 2131.34 379.38 5096.93
Average eenerations required 12454.6 9169.6 215.60 4126.18 45.1 10461.47
Minimum unique data sets 210 294 192 304 423 1332
Maximum unique data sets 17023 15421 7524 11761 3208 34872
Average % of search space 6.29% 6.19% 2.00% 5.08% 1.47% 13.74%
Average new data sets/generation 0.35 0.47 6.39 0.85 22.44 0.91

Table 53 - A Comparison of Techniques for Path Testing on Trityp (Hard)
Over Search Space of 68921.

300

250

200

150

100

50

Random

GASA

GATS

8750

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

number of unique data sets

Random
GASA
GATS

Figure 70 - Frequency Distribution of Adaptive Search Techniques against
Random Test Data Generation for Trityp (Hard) Over Search Space of 68921

for Path Testing

The frequency chart in figure 70, the peak for GAs-TS is in the range of 1000 to 1250

data sets with 296 or 30% of the 1000 runs completing, for Tabu search the range is

750 to 1000 with 168 runs, the second peak is between 1500 and 1750 data sets with

Chapter 9 147

163 runs. Simulated Annealing produced 45 runs in the range 2500 to 2750. GAs-

SA had 62 runs in the range 1750 to 2000 and GAs had 44 runs in the range 3250 to

3500.

9.2.3. Summary for Trityp Examples

When attempting the Trityp (easy) program the GAs performed the best with

Simulated Annealing in second place, however for the Trityp(hard) program the

results from using the hybrid GAs-TS are very impressive when compared to the

other adaptive search technique. These Trityp problems do not contain loops

however, and the next program. Find, will introduce quite complicated loops. Wil l

the hybrid technique perform well here or will GAs or Simulated Annealing?

9.3. The Find Program

The Find program is more complicated than the Trityp in that it involves loops,

indeed more loops than were used for the sample function. The purpose of the

program is to sort an array of integers. The function consists of an array of values (A)

of length N. and index F, so that all values below A(F) in the array are less than or

equal to A(F) and all those above are greater than A(F). The Find program consist of

7 input variables, the integer array A which contains 5 variables between 1 and 5. F

(the index) which is an integer between 0 and 5, and N. which is the length of A to be

used for the sort, an integer between 1 and 5. The total search space is therefore 5"̂ or

78,125 possible combinations. The input variables are encoded into a bit string of

length 21.3 bits to each variable. The procedure consists of four loops all of which

need to be exercised 0. 1 and 2 times and seven conditional statements (see appendix

Chapter 9 148

G for the flow chart and appendix H for the program code). Therefore there are 19

branches and 39 LCSAJs to test, appendix I . The aim is for 89% coverage for

branches and 100% for LCSAJs with a total coverage metric of 95% as some of the

branches and LCSAJs are unobtainable. Normally this would not be known in

advance, but coverage of 95% is still a very high figure. The comparison of the

methods follows in table 54. In this program the best performance is by Simulated

Annealing which required on average 466.41 unique data sets, the hybrid GAs-SA

was second with 541.99 and GAs was third with 609.53. Tabu search and GAs-TS

have actually performed worse than random generation which required only 898.51

data sets compared to 3389.41 for Tabu search and 3335.80 for GAs-TS. Simulated

Annealing required on 0.78% of the search space to be generated whereas the worse

performer Tabu search required 4.34%.

1000 Runs GAs SA Tabu GAs-
SA

GAs-TS Random
Testing

Average unique data sets 609.53 466.41 3389.41 541.99 3335.80 898.51
Standard deviation 365.69 303.17 1591.85 313.56 1916.73 613.50
Averace generations required 903 599.07 88.39 587.03 8.13 1188.47
Minimum unique data sets 88 61 720 58 73 112
Maximum unique data sets 3512 2710 10600 2647 10451 4029
Averace % of search space 0.78% 0.59% 4.34% 0.69% 4.27% 1.15%
Average new data sets/generation 0.67 0.78 38.34 0.92 410.31 0.76

Table 54- A Comparison of Techniques For LCSAJs And Branch Testing For
Find Over Search Space Of 78125

The frequency chart is in figure 71, the peak for Simulated Anneahng is in the range

500 to 750 with 405 data sets, GAs-SA with 398, GAs with 354, and random testing

with 243 are in this range as well. GAs-TS peak in the range 2500 to 2750 with 90

data sets, and Tabu search has a small peak between 2750 and 3000 data sets with

125 runs completing in this range.

Chapter 9 149

See Insei

SA i
—GASA

• / /
GA ^

1000

500 1000 1S00 2000 2500

numbar of untqua data a a u

3000 3500

Figure 71 - Frequency Distribution of Adaptive Search Techniques against
Random Test Data Generation for Find Over Search Space of 78125 for

LCSAJs and Branch Testing

There are many more paths in the Find problem than the test programs used thus far.

There are 80 paths which must be covered, listed in appendix J. To test each of these

paths is a very time consuming task and the results are given in table 55. The best

performance was again by Simulated Annealing which required 1743.58 or 2.23% of

the search space before complete coverage, GAs were very close and needed on

average 1794.84 unique data sets or 2.30% of the search space. Random testing was

once again better at covering all the paths than Tabu search and the hybrid GAs-TS.

Random generation required 9.58% of the search space while Tabu search and GAs-

TS needed 20.95% and 10.83% respectively. The large amount of test data required

by Tabu search and the hybrid technique is probably due to the large size of the

neighbourhood, as each neighbourhood consists of 342 members.

Chapter 9 150

1000 Runs GAs SA Tabu GAs-
SA

GAs-TS Random
Testing

Average unique data sets 1794.84 1743.5 16364 1913.87 8461.46 7485.34
Standard deviation 780.74 754.33 5749.3 885.90 4161.89 3072.07
Average generations required 2362.79 2335.3 63.90 2484.10 25.79 7946.08
Minimum unique data sets 597 671 4029 751 2595 2552
Maximum unique data sets 6667 6989 35563 10040 23777 25243
Average % of search space 2.30% 2.23% 20.95% 2.45% 10.83% 9.58%
Average new data sets/generation 0.76 0.75 256.09 0.77 328.09 0.94

Table 55 - A Comparison of Techniques for Path Testing for Find Program
Over Search Space of 78125.

2000 4000 6000 8000 10000

numbor of unique data s e t s

12000 14000

•GA

•SA

•Random

TS

-GASA

•GATS

Figure 72 - Frequency Distribution Comparing Adaptive Search Techniques to
Random Test Data Generation for Find Over Search Space of 78125 for Path

Testing

The frequency chart in figure 72, the peak for Simulated Annealing, GAs and GAs-

SA are all in the range 1500 to 1750 unique data sets with 200, 206 and 171

respectively. Random generation and GAs-TS both peaked in the range 5250 lo 5500

with 49 and 52 respectively. Finally Tabu search has a small peak in the range 12250

to 12500 with 27 data sets, the longest run for Tabu search looked at 35563 data sets,

almost half of the entire search space, whereas the longest run for random generation

completed at 25243 data sets, less than a third of the search space. This compares to

Chapter 9 151

Simulated Annealing which only needed to generate a maximum 6989 data sets,

approximately one-eleventh of the search space and GAs which need approximately

one-twelfth of the search space to be generated.

9.4. Discussion of Test Program Results

Technique GAs Simulated
AnncnlinP

Tabu
Spnrrh

GAs-SA GAs-TS Random
Testinp

Trityp
{L)(easy)

320.34® 349.37 676.64 643.28 476 3487.93

Trityp
(P)(easy)

230.04® 337.38 721.07 663.95 456.75 3580.45

Trityp
(L)(hard)

5640.34 5436.94 1381.23 3723.42 1006.6® 9655.66

Trityp
(P)(hard)

4333.52 4266.99 1377.6 3498.31 1011.97® 9468.09

Find (L) 609.53 466.41® 3389.41 541.99 3335.8 898.51

Find(P) 1794.84 1743:58® 16364 1913.87 8461.46 7485.34

Average 2154.77 2100.11 3984.99 1830.80® 2458.10 5762.66

Table 56- Overall Results of the Three Test Programs Each for LCSAJs and
Branch Testing (L) and Path Testing (P). The Average Figure Given is the

Average Amount of Unique Test Data Required for the Method for all Six Tests.
(The ® indicates the best result for each test)

The average amount of test data required for each of the techniques is shown in table

56 over all of the six tests. The average amount of test data is calculated for the

techniques to give an overall picture of how they fare. Although GAs-SA did not get

the least amount of test data in any of the programs it has on average the least amount

with Simulated Annealing second and GAs third. Simulated Annealing did perform

better than GAs on 4 of the six test programs, but each achieved two first places

while the winner of the other two programs, Trityp (hard), was the hybrid. GAs-TS.

While Tabu and GAs-TS gave good results for the Trityp(hard) program it did very

poorly in the other tests, but on average all the adaptive search techniques did

Chapter 9 152

perform better than random test data generation, hi the next section, the three best

performing techniques GAs, Simulated Annealing and GAs-SA, are applied to a

larger search space.

9.5. A Larger Search Space

The generation of unique test data for small search space was originally limited to

the capacity of allowable arrays in the programming language C. Fortunately it is

now possible to expand this search space through a specially written module which

accepts arrays of greater than 100000 points. Therefore it is possible to determine the

average unique data sets in a larger search space. Additionally the average time it

takes to cover the program will be registered to compare the adaptive techniques and

to determine the time difference between the small and large search. The sample

function under test which was used in chapters 6,7 and 8 is tested for paths in an

enlarged search space of one million. The range size for the three variables is now

[-50..50] which is attained using a string of size 21, each seven bit string represents

one input variable. There are 15 paths to be exercised, each one and its percentage of

search space is shown in table 57. Paths number 2 and 6 should be the most difficult

to cover as there are only 4 data sets out of 1,000,000 which exercise these. Most

runs should have no trouble covering path 11 as more than 78% of the search space

exercises it.

Chapter 9 153

PATH Number of Test
Data Sets

% ofsearch
space

1 1T2F3FL0 584 0.0584%
2 1T2F3TL0 4 0.0004%
3 1T2F3TL1 116 0.0116%
4 1T2F3TL1L2 42805 4.2805%
5 1F3FL0 15149 15149%
6 1T2T3TL0 4 0.0004%
7 1T2T3ET-0 290 0.0290%
8 1F3FL1 32917 3.2917%
8 1T2T3TL1 116 0.0116%
9 1T2T3FL1 2902 0.2902%
10 1F3FL1L2 780234 78.0234%
11 1T2T3TL1L2 42805 4.2805%
12 1T2T3FL1L2 38458 3.8458%
13 1T2F3FL1 3436 0.3436%
14 1T2F3FL1L2 40180 4.0180%

Total 1000000 100%

Table 57 - Paths through Sample Function with the Amount of Test Data
within Search Space which SatisHes Each Path and Its Percentage of Total

Search Space

Sample Function - Path Testing
100 runs GAs Simulated

Annealing
GAs-SA Random

Testing
Average unique data sets 2012.62 2665.70 2961.12 294338.80
Standard deviation 1272.47 1989.80 4966.81 209038.90
Average generations required 2283.09 3188.88 3470.08 388867.40
Minimum unique data sets required 176 535 353 6379
Maximum unique data sets required 6274 12767 49294 • 732600
Average % of search space searched 0.20% 0.27% 0.30% 29.43%
Average new data sets/generation 0.88 0.83 0.85 0.76
Average Run Time (seconds) 1.21 1.07 1.12 117.88

Table 58 - A Comparison of Techniques for Path Testing for the Sample
Function Over Search Space of 1000000

Table 58 is the comparison of the three best testing methods, GAs, Simulated

Annealing and GAs-SA for the generation of test data for path testing. Included in

these details is the average time required for each run, GAs produced the best results

for this large search space and required 2012.62 or 0.20% of the search space before

coverage. Simulated Annealing with an average of 2665.70 unique data sets, and

GAs-SA with 2961.12, are very close behind. These results show an improvement

over random generation of approximately 99% for all three of the methods.

Chapter 9 154

Figure 73 shows the frequency distribution for the three adaptive search methods, the

peak for GAs is in the range 1250 to 1500 unique data sets with 16 of the 100 runs

completing in this range, for Simulated Annealing the range 1500-1750 has 18 runs

completing and for GAs-SA, 9 runs finish in the range 2000-2250.

GA-SA

2000 4000

number of unique data s e t s

6000

Figure 73 - A Frequency Comparison of Three Adaptive Search Techniques,
GAs, Simulated Annealing and GAs-SA, for Path Testing for the Sample

Function Over Search Space of 1000000

Shown in table 59 is a time comparison between the same function as in table 58 for

the small search space, 9261, and the large search space, 1000000. These results

indicate that as the search space size increases, GAs, Simulated Annealing and GAs-

SA, continue to perform quickly, while random test data generation's ability to

compete deteriorates greatly. Random generation took nearly two minutes per run,

while GAs, Simulated Annealing and GAs-SA all took little more than a second.

This is most likely due lo the fact GAs, Simulated Annealing and GAs-SA, only

Chapter 9 155

needed lo search between 0.20% and 0.30% of the search space as opposed to

random generation which required 29.43%.

Average Number of Seconds Before All Paths Were Exercised
Search Space GAs Simulated

Annealing
GAs-SA Random

Generation
SmaU (9261) 0.35 0.27 0.29 0.78
Large (1000000) 1.21 1.07 1.12 117.88

Table 59 - Average Time Comparison (in seconds) of Sample Function Using
Both Small Search Space and Large Search Space

9.6. Conclusion

This chapter demonstrates the capabilities of adaptive test data generation against

that of random testing. The chapter begins v̂ îth a fairly simple but commonly used

test program and then advances to a more complicated version of the same test. The

next test program. Find, includes more variables, a slightly larger search space, and

complicated loops to be searched. The results of all these tests indicated that

adaptive search techniques usually perform better within the search space than

random test data generation. This is usually the case except in the final program,

Find, where the results of Tabu search and the hybrid GAs-TS were actually worse

than those of random generation. This can be explained by the large size of a

neighbourhood which needs to be generated at each stage. This is contrasted to the

Trityp(hard) program where in path testing. Tabu search and GAs-TS did extremely

well, in fact Tabu search showed an improvement over GAs of 75% while GAs-TS

had an improvement of 82%.

GAs performed the best on the Trityp(easy) program although only 8% better than

Simulated Annealing for LCSAJs and Branch testing, but 32% better in path testing.

Simulated Annealing performed the best of the adaptive search techniques on the

Chapter 9 156

Find program, where it averaged the minimum amount of unique test data, 14%

better than the nearest result GAs-SA for LCSAJs and branch testing and 2.9% better

than GAs in path testing. Although GAs-SA never succeeded in achieving the lowest

amount of unique test data for any of the programs, it did have on average the

smallest average amount overall. Using the example of path testing for instance,

GAs (4333.52) and Simulated Annealing (4266.99), were not as successful as Tabu

search (1377.60) and GAs-TS (1011.97). but GAs-SA achieved a figure of 3498.31,

improving its overall average performance.

The search space was never very large for these example programs, therefore the

three overall best techniques were compared against random generation for a larger

search space. In this example, GAs outperformed both Simulated Annealing and

GAs-SA in contrast to the results achieved on the same program when using a small

search space where GAs-SA performed the best. However, the difference between

the techniques is quite small and these adaptive techniques perform much better than

random generation. The time comparison also indicated a great saving in time for the

adaptive techniques in comparison to random test data generation. The most savings

are in Simulated Annealing, which does not have lo endure the same memory

requirements of GAs which go through the procedure of reproduction, crossover and

mutation. The hybrid technique, GAs-SA, only performs the GA process for a short

time, 50 generations, and therefore ranks second in time.

The purpose of this chapter was to widen the test suite of programs to which adaptive

techniques had been applied. The next chapter will apply the adaptive search

Chapter 9 157

techniques of GAs and Simulated Annealing to a test program written for the purpose

of optimising capital budgeting.

Chapter 9 158

Chapter Ten

A Demonstration of Automatic Test Data
Generation on a Program wtiicti Optimises
Capital Allowances for Company Taxation

10.1. Introduction

The coverage of program code has thus far been shown on demonstration problems.

While all these programs perform routines which are necessary they could still be

referred to as notional problems. This chapter introduces coverage testing for a

program written not for the purpose of demonstrating testing techniques, but to

optimise tax benefits. The program will be used to compare the two more effective

methods of adaptive search, GAs and Simulated Annealing, to random test data

generation.

10.2. A Description of the Program to be Tested

The purpose of this program is to optimise the net present value of cash flows. The

effect of the UK taxation system is to create financial opportunities by the prudent

selection of projects which a company can undertake at the most beneficial time and

the application of an efficient rule for loss handling. A project is defined as an

outgoing capital expenditure, such as on plant and equipment, made by the company

with the aim of receiving income. This capital expenditure can be offset against

profit at a rate of 25% a year. A reduction in profit will decrease the amount of tax to

be paid, see table 60, and therefore increasing the funds available for dividends.

Chapter 10 159

Therefore the objective is to pay less tax, but there are other opportunities available

for reducing the tax bill and increasing dividends, these are the rules which govern

losses in any given year. I f in year one there was a profit of £350.000, tax would be

paid at 25% for the portion to £300.000 and at 35% for the remaining £50.000, that is

a tax bill of £92.500. In year two there is a loss of £55,000. and there are two options

for writing off this loss. Option A is called "carry backward", where the amount of

the loss is deducted from previous years* profits, going backward a limit of three

years before preceding to the second option, option B. "cany forward" where the loss

reduces the profit over the next years. Option B can be undertaken without having

exhausted option A. Therefore, i f option A was chosen the £55.000 is reduced from

the profit and there is a tax rebate of £18.750. The benefit of option A over option B

is that the NPV is higher if the tax rebate is realised early on in the calculations.

Tnv Bnnrf of Prnfit
less than £300.000 25%

300.000 to 1.500.000.00
0 - 300,000 25%

300- 1,500,000 35%
i.sno.ooo + 33%

Table 60 - Tax Rate Bands on Profit

The final decision to be made is when or if a project should begin, this can be in any

year during the current budgeting lifecycle, a six year period^ and can be stopped and

restarted at any time. Should the project be stopped, all assets will be sold and must

be repurchased before it can be restarted.

Chapter 10 160

('start ^

C Stop ^

Figure 74 - Flow Chart of Capital Budgeting Program

10.3. Testing the Program

This very complicated capital budgeting problem is itself a candidate for optimisation

using GAs (Berry and Smith, I993;Farrar, 1995), but the program also illustrates the

need for testing. If, using the assumption that there are three projects from which to

choose, then there are 24 different choices to be made. These, 6 for each project,

determine if a project should begin or finish in any given year. The remaining six

determine whether a loss should be carried forward or backward in a given year. A

listing of the code is in appendix K. The flowchart for the program is in figure 74.

Chapter 10 161

This establishes that there are eight decisional points, seven of which register true

and false, and one (5) which includes an if/elseif/else statement. There are over

1000 feasible paths through the program, 500 are listed in appendix L.

In addition to the decisional input variables which guide the program, there is also

the current financial situation of the company to consider, and any predictions of

profit on selected projects. These consist of 31 input variables, each between the

range [0..8,000.000.00] for every 1000 positions. A list of the input variables

representing the potential financial situation of the company are listed in table 61.

Financ ia l I n fonna t i on Ttane Period
1-3 t-2 l>1 1 t«1 t*4

bioonie 1.500j000
Capital AHowancea ijxwpoo
Taxable ProfUa 3 ^ 60000 1 0 0 ^
Forecast Operations Inoome 1.000JOOO 3.500jOOO S jOOO 89:000 odojooo

Protects

Project 1 ntOalOuSay I ZPOOJOOO
Csamaiad Cash hikw • 1OJ0OO 20.000 3OJ0O0 40j000 50.000 I O O j O O O

PntoctZ KOalOuSay | lOOOOO
BfimatodC&shhftowe 5.000 8j000 9J0O0 12.000 20.000 25.000

Rofocis KSalOuOay | %J0O0J0Oa
EsDmatBd Cash hlbw • 1 0 0 ^ 200.000 300.000 400.000 550:000 650,000

Table 61- Company Financial Information which are the 31 Required Input
Variables.

10.4. The Comparison of Testing Techniques on the Test Program

The binary string which represents the input variables consists of the 24 decisions (24

bits) and the 31 input variables each represented by a 13 bit combination giving a

total string length of 427.

As has previously been determined there are over 1000 feasible paths through the

program, 500 of these are listed in appendix L. To save run-time a run will conclude

when it has exercised 500 paths, a TER of approximately 50%. The results are given

in table 62 for 500 runs of each of the three methods.

Chapter 10 162

500 Runs Random
Testing

Simulated
Annealing

GAs

Average unique test data sets 117361.40 12746.1 18398.06
Minimum required 76864 7327 10270
Maximum required 151829 43612 29236
Range (inim*mum..maximum) 74965 36285 18966
Average number of generations 123530.83 12746.38 2065.99
Estimated time/run (seconds) 675.48 84.72 199.85

Table 62 - Results of Function Under Test Comparing GAs, Simulated
Annealing and Random Test Data Generation for Capital Budgeting Program

for Path Testing

GAs again performed much better than random test data generation, however

Simulated Annealing gave the best results for this program needing on average only

12746 new data sets before coverage of the 500 paths compared to 18398 by GAs.

The minimum amount of test data required for a run was 500 as there are 500 paths, a

mn of the GA managed to find all the paths using a minimum 10270 data sets, while

a run of Simulated Anneahng succeeded in only 7327. The range between minimum

and maximum was much smaller for GAs at 18966 than Simulated Annealing at

36285, and the maximum amount of test data sets required by a run of Simulated

Annealing was much higher at 43612 compared to GAs at 29236. The random

generator however required an average of 117361.40 new data sets before coverage,

the minimum for a single run was 76864. Simulated Annealing showed an

improvement over the result achieved by random generation of 89% and GAs

showed an improvement of 84%.

Chapter 10 163

Capital Budgeting Program

90 -r

80

70 •

60
>• u c 50
o 3 o-o 40 -•

30 ••

20

10

0 -

SA

GA

Random

number of unique data sets

sa
rt

Figure 75 - A Comparison of Frequency between GAs, Simulated Annealing
and Random Generation for Capital Budgeting Program for Path Testing

The frequency graph in figure 75 shows the peak for Simulated Annealing between

12000 and 13000 data sets with a maximum number of runs, 81 completing in this

range, the peak of the GAs was between 20000 and 21000 data sets with 67 runs.

Random generation completed the most runs within the range 113000 and 114000

with 35. The graph does not show the complete distribution for random generation

as it exceeds the range, however this graph indicates the results of random testing are

much worse than those achieved with Simulated Annealing or GAs.

10.5. Conclusion

In chapter 9, the sample function was run for a large search space, 1000000 and in

this chapter the capital budgeting program also had a very large search space. Are

the results comparable? In the sample function Simulated Annealing and GAs

Chapter 10 164

showed an improvement over random of 99%, however GAs performed 25% better

than Simulated Annealing. While the results are similar for the capital budgeting

program used in this chapter. Simulated Annealing has achieved belter results than

GAs.

Simulated Annealing and GAs improved over the result of random generation by

89% and 84%, respectively. However Simulated Annealing showed an improvement

over GAs of 31%. Therefore Simulated Aimealing was the much better performer in

this example. One item of note is the estimated time for each run, GAs taking on

average more than twice as long as Simulated Annealing. This is similar to the

results achieved in the sample function with a large search space where GAs took

longer than Simulated Annealing to achieve a result. The test used in this chapter

expected to cover only 500 of the over 1000 paths through the code, a TER of

approximately 50%, a further test would need to determine the effectiveness of the

methods when complete coverage is expected.

Chapter 10 165

Chapter Eleven

Discussion and Further Research

How do adaptive search techniques perform in the generation of test data? The

results shown in this thesis indicate that while not all adaptive techniques will always

perform better than randomly generated test data, they usually require fewer amounts

of unique test data to be generated. However it might not be cost effective to create

a one-off Simulated Annealing tool to generate test data, this could be extremely time

consuming and the development phase error prone in itself. What needs to be done is

to incorporate an adaptive search technique into a testing tool which will both

determine what sort of test data is required and then generate that test data requiring

only limited input from the user. This model of a testing tool incorporating adaptive

search techniques is what is described in this thesis. The merit of the techniques used

and the method in which they are applied and measured are discussed in this section

along with suggested future research that might be performed in this area.

This research project began with an attempt to determine how GAs might perform in

the generation of test data to follow work performed by Xanthakis et al (1992). That

research involved the test data generation for a Pascal program, but also included

specifications for delving further into the specifications of a test function by

Chapter 11 166

investigating the test function by adjusting the code and using GAs and a relaxation

method to find suitable test data. The research performed here was an attempt to

generate test data with as little knowledge of the test function (black-box testing) as

possible, while using white-box testing techniques to determine paths which need to

be exercised within the test code. This meant the performance of test data within the

function under test was measured only by returning a listing of paths exercised by the

test data, therefore keeping the disturbance of the function under test to a minimum.

The fitness function received no additional information to assist in its search other

than what path had been exercised. The responsibility of this fitness function was to

determine whether a path, branch or LCSAJs had been previously exercised and to

reduce its fitness each time it had. A path which is newly discovered only retums a

good fitness for a short while, as each time it is subsequently exercised its fitness is

reduced. This is seen as an original contribution to knowledge.

Of primary concern to any user who requires test data is the amount of time required

to generate this test data. Unfortunately time was an issue which could not be

addressed until later stages of the research for this thesis due to the availability of

facilities to perform the required tests at a speed and size which could illustrate the

capabilities of adaptive techniques. However, it was determined that not only the

time involved in the generation of lest data should be an issue in measuring the

effectiveness of a technique. A further issue was the amount of test data which was

generated before a required coverage metric was reached. A great deal of test data

can be generated randomly, but a lot of this test data duplicates previous paths,

branches or LCSAJs. What would be considered beneficial is to reduce the amount

Chapter 11 167

of new test data which needs to be generated, this in turn will reduce the amount of

time a function under test needs to be run. Requiring the function under test to be

run fewer times offers savings, in that while generating lest data can be a time

consuming task the actual running of a function with complex and time consuming

calculations, can be even more expensive.

In later tests however, it was possible to measure the time taken for the generation of

the testing techniques for the sample function used in this thesis. The results

indicate that for a smaller search space random generation takes twice as long as both

GAs and Simulated Annealing. Unfortunately, this difference is a comparison of an

average rate of one-third of a second to two-thirds of a second, not a very large

difference. However, when the size of the search space is enlarged the adaptive

search techniques take little more than a second, while random generation increases

to nearly two minutes on a Pentium PC. GAs therefore are 98.97% faster while

Simulated Annealing are even quicker by 99.1 %.

When one looks at the amount of new test data which had to be generated for

coverage on the small search space, adaptive searches require only approximately

50% of that required by random generation. When the size of the search space

increases, adaptive techniques require the generation of approximately 0.25% of the

entire search space while random generation requires 30%. These results are for a

fairly simple function under test, results for a more complex search space would need

to be examined before confirmation could be given as to the effectiveness in

comparison of time.

Chapter I I 168

An inherent weakness lo using adaptive search techniques for the generation of test

data is that the search space for a function does not look like a normal search area,

there are no hills, peaks or valleys. In fact the search space is non-existent until the

testing process begins, and can only be described as a flat plateau of branches, paths

or LCSAJs all waiting to be exercised. As each is exercised its fitness rises sharply

out of the plateau, however as subsequent test data sets exercise that same area the

fitness of that path lowers and all test data which satisfies that area will continue to

reduce the fitness of the path. Figure 76 illustrates the fitness of an exercised area as

it is exercised more and more.

50000 -r

45000

40000

35000

30000
n
o c 25000 -

20000

15000

10000 •

5000

0 •

number of times exercised

Figure 76 - The Fitness of an Exercised Path, Branch or LCSAJs as it is
Accessed Subsequent Times, This Demonstrates How the Fitness Declines Each

Successive Time it is Exercised

While the fitness of this exercised path is declining other areas are being exercised as

well, and are rising quickly and then declining at different rates. Therefore a test data

set which exercises a new area is rewarded, but there is only limited benefit from this

Chapter 11 169

reward to encourage searching a new direction. I f this fitness were to be set to zero as

a path was exercised, there would be no mechanism to compare one data set to

another. One data set may be slightly fitter than another as one path had been

exercised less times, and usually a reduction in fitness means good portions of the

data sets can be maintained for reproduction, crossover and mutation in GAs. for the

annealing process in Simulated Annealing, or for a neighbourhood search in Tabu.

The information maintained by the fitness function, the list of exercised paths,

branches or LCSAJs could be thought of as a Tabu list which restricts and penalises

test data which has been used before or that has exercised the same area of the test

code.

It is difficult to determine how a test data set can be rewarded for being close to a

new area which has yet to be exercised. This would be advantageous as a

combination which is close to attaining a new path can be encouraged to move in that

direction. This would require more manipulation of the function under test to

ascertain how close a test data set is to this boundary. However future research

should address these two issues. First, how should the fitness function be structured

to accommodate ^closeness* to an unexercised area? Secondly, how can ^closeness*

be determined while keeping disturbance to the original function to a minimum?

Work has been done in this area by Slhamer et al (1994) which rewards a test data set

that tests the boundaries of the conditional statements by taking the hamming

distance between the test data and the conditional statement requirements. This is a

very good idea but it would appear that the function would have to undergo some

detailed change to determine the input data and its relationship to the conditional

Chapter 11 170

statements would require an additional function added to the original code which

moves from a mostly black-box procedure to a white-box procedure of software

testing.

The hybrid techniques incorporating GAs and SA and GAs and Tabu search to the

problem of software test data generation is an original contribution to knowledge.

Unfortunately these techniques have not proved as successful as their predecessors in

all tests, but in some examples they were more successful. In the demonstration

function under test, GAs-SA outperformed GAs by 3.50% and Simulated Annealing

by 5.35% for LCSAJs and branch testing, and for path testing showed an

improvement of 11.45% and 7.7% for GAs and Simulated Annealing, respectively.

While for the hybrid GAs-TS the results were only slightly different, for LCSAJs and

branch testing GAs-TS improved on GAs results by 38% and Tabu search by 42%,

but for path testing while GAs-TS improved over Tabu search by 9.95%, the results

were not as good as those achieved using GAs alone. In the lest programs the results

were more varied, the hybrid GAs-TS were the best on the Trityp (hard) program,

much better than GAs or Simulated Annealing, but on the Find program the results

were dismal, worse than those achieved with random generation. The hybrid GAs-

SA performed best on average for the six tests, although it never achieved the best

results for any given test. In these hybrid techniques the GA was run for

approximately one fourth of its average required generation before the local search

began. Tests with this figure need to be performed to determine i f this is indeed the

optimum.

Chapter I I 171

Tabu search performed extremely well on the Trityp (hard) program, 75,5% better

than GAs and 74.5% better than Simulated Annealing for LCSAJs and branch

testing. This was surprising as it performed worse, requiring twice as much lest data

than GAs and Simulated Amiealing for the Trityp (easy) program. The only

explanation can be the nature of the search space and when a test data set finds one of

the more difficult branches, it has a good chance of finding the others, and more

research should be performed on this result. Tabu search unfortunately does generate

a lot of test data as the number of input variable increase, such as the Find program.

This fact discounted it from use in the larger programs, especially for the capital

budgeting program where the number of input variables was great. A larger list size

or penalty function may help in restricting the search and there is scope for future

research.

The discussion over which is the best technique, GAs or Simulated Annealing

continues. These two adaptive search methods always performed better than random

test data generation from the lowest improvement of 32% for GAs in the find

program when testing for LCSAJs and branch testing to 99% for the large

demonstration function. In the smaller program the results for GAs and Simulated

Annealing were never far apart, in some GAs performed better (Trityp (Easy)) in

others Simulated Annealing did better (Find). In the demonstration function GAs

performed better at LCSAJs and branch testing while Simulated Annealing did better

on path testing. In the larger program there was again the slight contrast in the results

as GAs performed 25% better than Simulated Annealing but in the capital budgeting

program Simulated Annealing was 31% better than GAs. Simulated Annealing does

Chapter 11 172

have the benefit of being quicker in time trials, this can most likely be explained in

that GAs work with a population, while the Simulated Annealing algorithm is using a

single string which is then mutated producing one new suing at a time. Future

research into the GAs would help in determining whether reproduction of the

population using the roulette wheel is in fact the best method for this type of

problem. Perhaps what is required is a method of reproduction which allows for a

greater disparity in new population members. The percentage of mutation and

crossover remained static for this research and changes to these, as well as to the rate

of change to the string in Simulated Annealing, should be investigated.

With the exception of the capital budgeting program in chapter 10, most of the test

functions used in this research have been very limited, and while this is a weakness

of the research the test functions used have been applied by many researchers into

software testing. Applying these test data generation techniques to an actual piece of

code written by another programmer would be the next stage of research. This would

demonstrate the abilities of this test data generation tool to adapt to the coding style

of other programmers, and illustrate the capabilities of the lest data generator when

the amount of feasible paths through the program is not known in advance. A further

benefit would be to generate test data from outside a user defined range to determine

whether the code contains error-handling routines that will determine if a received

piece of test data falls within the specified acceptable guidelines.

A program which does not reject incorrect data can be corrected prior to general

release. What, however, defines incorrect data? Poor data could exceed a specified

Chapter I I 173

range of acceptable values but it could also include such things as a real number

instead of an integer (Miller and Spooner, 1976), a character instead of a string, an

unacceptable string or an array instead of a pointer. A thorough lest must address all

these potential problems and must produce test data which examines all constraints

within, and external to, their boundaries.

Finally, research should be performed into objected-oriented programming. This is

completely removed from the type of functions which have been tested in this

research. In testing structured programs it is possible to test function by function, but

in object-oriented programming the program must be tested in its entirely, and as

objects have no links with one another, so it is not as easy to pre-determine paths

which might exist within the code. Therefore the entire program needs to be run and

each object be recorded as accessed (Poston, 1994; Jorgensen and Erickson, 1994).

This can be a very time consuming process which could possibly be shortened by the

quick generation of lest data.

This chapter discusses the research performed in this thesis and aims to point out any

shortcomings which may exist as well as to suggest further research which could be

performed to alleviate these. The chapter concludes with a discussion of the

direction which the research may take in the future, such as additional programs or

the testing of functions which require test data which is of the type real, characters or

strings. The final area of future research is to use this method of lest data generation

for object-oriented programming.

Chapter 11 174

Chapter Twelve

Conclusion

When this research began very little had been performed into the use of adaptive

search techniques for test data generation. In fact the research has covered a period

of three years, during which time there have been parallel developments. To keep as

up to date as possible, this has necessitated a refocussing of original objectives and

consequent conclusions. What existed, in 1992, was a collection of techniques for

testing programs which ranged from static to dynamic methods. Since that time, the

use of adaptive search techniques for the generation of test data (Xanthakis et al

(1992); Sthamer et al 1994; Roper, 1995) has been attempted. These techniques have

been compared to a method which has been used for test data generation and

performs quite adequately for small search space. This method is random testing.

Determining how random testing compares to adaptive search techniques for

coverage of a function under lest, has been the focus of this thesis.

The primary goals of the research were as follows:

o develop a tool for the automatic generation of test data;

o measure the effectiveness of adaptive search technique for the generation of test

data in comparison with random test data generation;

Chapter 12 175

• develop hybrid adaptive search techniques and compare these with the original

methods used;

• lay a course for further examination of test data generation and adaptive search

techniques.

The objectives of this research have been met in the following manner:

• a tool for the automatic generation of test data has been developed and described;

• a comparison of adaptive search techniques, GAs, Simulated Annealing and Tabu

search to random test data generation has shown that in almost all tests these

techniques perform better, and that GAs and Simulated Annealing always perform

better than random generation;

• hybrid techniques have been developed which combine the adaptive search

techniques GAs and Simulated Annealing and GAs and Tabu search. Results

indicate these techniques occasionally perform belter than their predecessors;

• these adaptive search techniques have been applied to test programs to illustrate

their capabilities. These techniques have also been applied to a larger search

problem not written specifically as a demonstration of test data generation.

Areas of future research have been identified, these fall in two categories, adaptive

search techniques and test data generation. Future research in adaptive search can

concentrate on the following areas:

• adjustment of operators on current techniques (e.g. inclusion of hyper-mutation or

random immigrants for changing fitness environment in GAs);

• inu^oduction of gray coding as opposed to binary interpretation of strings in both

GAs and Simulated Annealing;

• fine-tuning of hybrid techniques;

• other adaptive search techniques (evolutionary programming, guided local search,

population-oriented Simulated Annealing, etc.).

Chapter 12 176

Further research should also be performed to improve the test data which has been

generated, and two suggested areas of research are;

• boundary testing - the attempt to attain test data which not only exercises a given

path but also identifies i f it is close to the boundary of a condition. This must be

performed while attempting to remain black-box testing. A relaxation algorithm

may help with this problem;

• mutation analysis - using mutation analysis to verify the quality of the generated

test data to determine i f it will kill mutant versions of the code under test.

Finally, additional future research as discussed in chapter eleven, would be into a

more complex function written by external sources. This will give the opportunity to

determine how adaptive techniques perform when the goals are unknown. It is hoped

that these adaptive search techniques, with refinements, wi l l continue to produce the

high quality results as shown in this thesis.

Chapter 12 177

Appendix A

Original Code for Trityp (Easy)
v o i d T r i t y p E a s y (i n t x , i n t y, i n t z)
{
i n t type ;
i f (X <= 0 I I y <= 0 I I z <= 0)
{

type = 4 ; / / i l l e g a l t r i a n g l e
}
e l s e
{

type = 0 ;
i f { X == y)

type += 1

f (X == z)

type +- 2

f (y == z)

type += 3

i f (type == 0)

i f (x + y < = z | | y + z < = x || x + z < = y)
{

type = 4 ; / / i l l e g a l t r i a n g l e
}
e l s e
{

type = 1 ; / / s c a l e n e

f (type > 3)

type = 3 ; / / e c f u i l a t e r a l

I s e i f (type == 1 && x + y > z)

type = 2 ; / / i s o s c e l e s

I s e i f (type == 2 && x + z > y)

type = 2 ; / / i s o s c e l e s

e l s e i f (type == 3 && y + z > x)

type = 2 ; / / i s o s c e l e s

I s e

type = 4 ; / / i l l e g a l t r i a n g l e

Appendices 178

Appendix B

Flow Chart of Trityp(Easy)

Appendices 179

1)
2)

IT
IF

3) 2T
4) 3T
5) 4T
6) 5T
7) 6T
8) 6F
9) 7T
10) 7F
11) 7A
12) 7B
13) 7C

Appendix C

List of LCSAJs and Branches Through Trityp (Easy)

Branches of Trityp(Easy) Program

LCSAJs of Trityp(Easy) Program

1)
2)
3)
4)
5)
6)
7)
8)
9)

1F2T
1F3T
1F4T
1F5T-
2T3T
2T7A
2T7F
3T4T
3T7B

10) 3T7F
11) 4T7C
12) 4T7F
13) 4T7T
14) 5T6F
15) 5T6T
16) 6F7A
17) 6T7T

Appendices 180

1) IT
2) lA
3) IB
4) 2T
5) 2F
6) 3T
7) 3F
8) 4T
9) 4F
10) 5T
11) 5F
12) 6T
13) 6F
14) 7T
15) 7F
16) 8T
17) 8F
18) 9T
19) 9F
20) lOT
21) lOF
22) I I T
23) I IF

Appendix D

List of LCSAJs and Branches Through Trityp (Hard)
Branches of Trityp(Hard) Program

Appendices 181

LCSAJs of Trityp(Hard) Program

1) 2F3F
2) 2F3T
3) 3F4F
4) 3F4T
5) 4F5F
6) 4F5T
7) 5F7F
8) 5F7T
9) 5T6F
10) 5T6T
11) 7F8F
12) 7F8T
13) 8F9F
14) 8F9T
15) 9F10F
16) 9F10T
17) lOFl lF
18) lOFl lT

Appendices 182

Appendix E

Original Code for Trityp (Hard)
i n t T r i t y p H a r d (i n t x, i n t y, i n t z)
{
Tot = x+y+z;
i f (x<= 0)

r e t u r n (' i l l e g a l t r i a n g l e ') ;

e l s e i f (y<=0)

r e t u r n (' i l l e g a l t r i a n g l e ') ;

e l s e i f (z<=0)

r e t u r n (' i l l e g a l t r i a n g l e ') ;

f ((x*2)>= Tot)

r e t u r n (• i l l e g a l t r i a n g l e ') ;

f ((y * 2) >= Tot)

r e t u r n { ' i l l e g a l t r i a n g l e *) ;

f ((z * 2) >= Tot)

r e t u r n (• i l l e g a l t r i a n g l e ') ;

f (X == y)

i f (y==z)
{

r e t u r n (' e q u i l a t e r a l ') ;
)

r e t u r n (' i s o s c e l e s ') ;

f (X == z)

r e t u r n (' i s o s c e l e s ') ;

f (y == z)

r e t u r n (' i s o s c e l e s ') ;

f (x*x + y*y = z*z)

r e t u r n (' r i g h t - a n g l e d ') ;

f (y*y+z*z=x*x)

r e t u r n { ' r i g h t - a n g l e d ') ;

f (x*x + z*z== y*y)

r e t u r n (' r i g h t - a n g l e d ') ;

Appendices 183

Appendix F

Flow Chart of Trityp(Hard)

Appendices 184

Appendix G

Flow Chart of Find Program

Appendices 185

Appendix H

Original Code for Find Progam

v o i d f i n d (i n t a l 5 l , i n t n , i n t f)
{
i n t m,ns,r,i,j,w;
i f {f>0 && f< n)
{

m = 0;
ns = n;
w h i l e (m<ns)
{

r = a f f l ;
i = m;
j = ns-1;
w h i l e (i < = j)
{

w h i l e (a [i] < r)
(

i = i+1;
)
w h i l e (r < a (j])
{

j . =
)
i f (i < = j)
{

w = a (i] ;
a [i] = a[D)
a [j] = w;
i = i+1;
j = 3-1;

)
}
i f (f<=j)
{

n s = j + l ;
)
e l s e i f (i<=f)
{

m = i ;
}

Appendices 186

1) rr
2) IF
3) 2T
4) 2F
5) 3T
6) 3A
7) 3F
8) AO
9) A l
10) A2
11) B l
12) B2
13) B3
14) CI
15) C2
16) C3

Appendix I

List of LCSAJs and Branches Through Find Program
Branches of Find Program

Appendices 187

LCSAJs in Find Program

1) IFAl
2) IFA1A2
3) 2F3A
4) 2F3F
5) 2F3T
6) 2T3A
7) 2T3T
8) 2TB2
9) 3AA2
10) 3AB1
11) 3ABIB2
12) 3TA2
13) 3TB1
14) 3TB1B2
15) A l B l
16) A1B1B2
17) A2B1
18) A2B1B2
19) BICO
20) B l C l
21) B1C1C2
22) B2C0
23) B2C1
24) B2C1C2
25) CODO
26) COOr
27) C0D1D2
28) CI DO
29) C I D I
30) C1D1D2
31) C2D0
32) C2D1
33) C2D1D2
34) D02F
35) D02T
36) D12F
37) D12T
38) D22F
39) D22T

Appendices 188

Appendix J

List of Paths (80) Through Find Program

1) 1 FA 1BIC0D02T3 AA2B1C0D02T3F

2) 1 FA 1B1C0D02TB2C0D02T3 AA2B1C0D02T3 ABICODO

3) 1 FA 1B1C0D02TB2C0D02T3 AA2BIC0D02T3F

4) 1 FA 1B1C0D02TB2C0D02T3 AA2B1C0D02T3TB1 CODO

5) 1FA1B1C0D02TB2C0D02T3AA2B1C0D12T3F

6) 1FA1B1C0D02TB2C0D02T3AA2B1C1D02T3F

7) 1 FA 1B1C0D02TB2C0D02T3F

8) 1FA1B1C0D02TB2C0DO2T3TA2B1C0D02T3AB1C0D0

9) 1 FA 1B1 C0D02ra2C0D02T3T A2B1C1D02T3F

10) 1FA1B1C0D02TB2C0D12F3AA2B1C0D02T3AB1C0D0

11) 1 FA IB1C0D02TB2C0D12F3 AA2B1C1D02T3F

12) 1 FA 1B1C0D02TB2C0D12T3 AA2B1C0D02T3 AB 1 CODO

13) 1FA1B1C0D02TB2C0D12T3AA2B1CID02T3F

14) 1FA1B1C0D02TB2C0D12T3F

15) IFAIB1C0D02TB2C0DID22F3AA2B1C0D02TB2C0D02T3ABICODO

16) 1FA1B1C0D02TB2C0D1D22F3AA2B1C0D02TB2C0D12F3AB1C0D0B1C0

DO

17) 1 FA 1B1C0D02TB2C0D1D22F3 AA2B1C0D02TB2C0D12F3 AB 1C1 DO

18) 1 FA 1B1C0D02TB2C0D1D22F3 A A2BIC0D02TB2C1D02F3 AB I CODO

19) 1 FA 1B1C0D02TB2C0D1D22F3 AA2BIC1C2D02T3F

20) 1 FA 1BIC0D02TB2C0D1D22F3 A A2B1C1D02T3 AB 1 CODO

21) 1 FA 1B1C0D02TB2C1C2D02F3 A A2B1COD02T3F

22) I FA 1B1C0D02TB2C1D02F3 A A2B1C0D02T3F

23) 1 FA IBIC0D02TB2C1D02T3 A A2B1COD02T3F

24) I FA 1BIC0D02TB2C1D02T3F

25) I FA 1B1C0D02TB2C1D12F3 AA2BICOD02T3 AB 1 CODO

26) 1 FA 1BIC0D02TB2C1D12F3 AA2BIC i D02T3F

27) 1 FA IB1 COD 12T3 A A2B1C0D02T3TB1 CODO

Appendices 189

28) 1 FA 1BI COD 12T3 AA2B1 COD 12T3F

29) 1 FA 1B1 COD 12TB2C0D02T3 AA2B1C0D02T3TBICODO

30) 1 FA IB1 COD 12TB2C0D02T3AA2B1 COD 12T3F

31) 1 FA 1B1 COD 12TB2C0D02T3F

32) I FA 1B1 COD 12TB2C0D12F3 AA2BIC0D02TB2C0D02T3F

33) 1FA1B1C0D12TB2C0D12F3AA2B1C0D12T3AB1C0D0B1C0D0

34) 1 FA 1B1 COD 12TB2C0D12F3 AA2B1 COD 12T3 AB1 COD 1

35) IFA1B1C0D12TB2C0D12F3AA2B1C1D02T3TB1C0D0B1C0D0

36) 1FA1B1C0D12TB2C0D12F3AA2B1C1D02T3TB1C1D0

37) 1FAIB1C0D12TB2C0D12F3AA2B1C1D12T3F

38) 1 FA 1B1 COD 12TB2C1D02F3 AA2B1C0D02T3TB1 CODO

39) 1FA1B1C0D12TB2C1D02F3AA2BIC0DI2T3F

40) IFAIB1C0D1D22T3AA2BIC0D02TB2C0D02T3TB1C0D0

41) 1FA1B1C0D1D22T3AA2B1C0D02TB2C0D12F3TB1C0D0

42) 1FA1B1C0D1D22T3AA2B1C0D02TB2C1D02F3TB1C0D0B1C0D0

43) 1 FA 1B1 COD 1D22T3 AA2B1C0D02TB2C1D02F3TB1 COD 1

44) 1FA1B1C0D1D22T3AA2B1C0D12T3TB1C0D0

45) 1 FA 1B1 COD 1D22T3 AA2B1 COD 1D22T3F

46) 1 FA 1BIC1C2D02T3 AA2B1C0D02T3F

47) 1FA1BIC1C2D02T3F

48) 1FA1B1C1C2D02T3TA2B1C0D02TB2C0D02T3AB1C0D0

49) I FA 1B1C1C2D02T3TA2B1C0D02TB2C0D12F3 AB 1CODOBI CODO

50) 1 FA 1BIC1C2D02T3TA2B1C0D02TB2C0D12F3 AB 1C1 DO

51) 1 FA IB1CIC2D02T3TA2B1C0D02TB2C1D02F3 AB 1 CODO

52) I FA 1B1C1C2D02T3TA2BIC1C2D02T3F

53) I FA IBICIC2D02T3TA2B1C1D02T3 AB I CODO

54) IFA1B1CIC2DI2T3F

55) 1 FA 1BIC1D02T3 A A2B1C0D02T3F

56) IFA1B1CID02T3F

57) 1 FA 1B1C1D02T3TA2BIC0D02T3 AB I CODO

58) 1 FA IB1CID02T3TA2B1C1D02T3F

Appendices 190

59) 1 FA 1B1CID02TB2C0D02T3 A A2B1C0D02T3F

60) I FA 1B1C1D02TB2C0D02T3F

61) 1 FA 1B1C1D02TB2C0D02T3TA2B1C0D02T3 AB1CODO

62) 1 FA 1B1C1D02TB2C0D02T3TA2B1CID02T3F

63) 1FA1B1CID02TB2C0D12F3AA2B1C0D02T3AB1C0D0

64) I FA 1BIC1D02TB2C0D12F3 AA2B1C1D02T3F

65) 1FA1B1C1D02TB2C0D12F3TA2B1C0D02T3AB1C0D0

66) 1FA1B1C1D02TB2C0D12F3TA2B1C1D02T3F

67) 1 FA 1B1C1D02TB2C1D02F3 AA2B1C0D02T3F

68) 1 FA IB1C1D02TB2C1D02F3TA2B1C0D02TB2C0D02T3F

69) 1 FA 1B1C1D02TB2C1D02F3TA2B1 COD 12T3 AB 1CODOB1 CODO

70) IFA1B1C1D02TB2C1D02F3TA2B1C0D12T3AB1C0D1

71) 1 FA 1B1CID02TB2C1D02F3TA2B1C1D02T3TB1 CODOB I CODO

72) 1 FA 1B1C1D02TB2C1D02F3TA2B1CID02T3TB1C1 DO

73) 1FA1B1C1D02TB2C1D02F3TA2B1C1D12T3F

74) I FA 1B1C1D12T3 AA2B1C0D02T3TB1 CODO

75) 1FA1B1C1D12T3AA2BIC0D12T3F

76) 1FAIB1CID12T3F

77) I FA 1B1C1D12T3TA2B1C0D02T3 AB 1 CODO

78) 1 FA 1BIC1D12T3TA2B1CID02T3F

79) IFA1B1C1D1D22T3F

80) IT

Appendices 191

Appendix K

Code for Capital Budgeting Program

#define LENGTH 427

i n t chrom[21[LENGTH); / / b i n a r y s t r i n g
i n t OnOff [101 ; // p r o j e c t on or o f f i n any y e a r
i n t swtch [1 0 1 ; // p r o j e c t o f f swtch for deducting c a p i t a l

//allowances
i n t TPr = 0; //number of p r o j e c t s t o t a l p o s s i b l e
i n t jump = 1 3 ; // b i n a r y range of each input v a r i a b l e
i n t p r o j s ; // number of p r o j e c t s p o s s i b l e to be done
i n t x; //counter
f l o a t t [6 1 ; //income
f l o a t tlm [3 1 ; //past p r o f i t
f l o a t ca [6 1 ; / / c a p i t a l allowances a l r e a d y
f l o a t inOut;
f l o a t p r o j [1 0] [6 1 ; / / p r o j e c t s
f l o a t c a p [1 0 n 6 1 ; // c a p i a t l allowances of p r o j e c t s
f l o a t atlm [9 1 [2 1 ; //new p r o f i t (t a k i n g away l o s s)
f l o a t divA [7 1 ; // c a l c u l a t e d i v i d e n d
f l o a t p r o f i t [6 1 ; // p r o f i t
f l o a t cForward; // amount c a r r i e d forward from y e a r to year
f l o a t , taxDue [1 0 1 ; // tax due f o r each year

f l o a t taxRebate [1 0 1; / / t a x r e t u r n e d f o r each y e a r i f any

//The r u l e s of t a x a t i o n s

//determine capital allowances of input financial information

v o i d I n p u t s (v o i d)
{

for (xa=l;xa<6;xa++)
c a { x a l = c a [x a - l] - (c a [x a - l] * . 2 5) ;

f o r (xa= 0 ;xa<projs;xa++)
{

c a p [x a] t y a) = c a p [x a] [y a - l] - (c a p [x a] [y a - l] * . 2 5) ;

}
)

Appendices 192

// co n f i n n no starting balance in these variables

v o i d emptyBalance(void)
{
i n t n;
for (n=0;n<3;n++)

a t l m [n] [0] = t l m (n] ;
for (n=0;n<3;n++)
{

t a x d u e i n (n) ;
swtch[n] = 0;

}
for (n=0;n<10;n++)
{

taxRebateln] = 0;
OnOff(n] = 0;

>
)

// c r e a t e single binary string from population member

v o i d p u t i n (i n t member[LENGTH])
{
i n t y l ;
for {yl=0;yl<LENGTH;yl++)

c h r o m [0] [y l] = member[yl];
}

Appendices 193

// runs program to determine dividend of given inputs
f l o a t P r o f i t d n t member [LENGTH])
{
i n t n,m,x;
f l o a t f i t n e s s = 0;
X = 0

putin(member)
cForward = 0;
maJceMoney (x) ;

I n p u t s () ;

emptyBalance();
ma)ceProfit (x) ;
fo r (n=l;n<7;n++)
{

DoYears(n,x,n+17);
c a r r y
backward

}
doDividend(x);
f o r (n=0;n<7;n++)

f i t n e s s += divA[n]
for(n=0;n<TPr *6;n=n+3)

f i n i s h e d {
for (m=0;m<TPr;m++

// s t a r t i n g balance of c a r r y forward i s zero
// c o n v e r t b i n a r y s t r i n g t o f i n a n c i a l

// i n f o r m a t i o n
// c r e a t e C a p i p t a l Allowance f o r Each Year

// Based on F i n a n c i a l Information
// s e t a l l a d d i t i o n a l v a r i a b l e s t o xero
// c a l c u l a t e p r o f i t f o r each y e a r

// c a l c u l a t e tax due i n and
// forward/carry

/ / c a l c u l a t e d i v i d e n d

// f i t n e s s = l a r g e s t d i v i d e n d
//deduct f or any p r o j e c t

/ / i n g i v e n y e a r

i f (chromtxl[m+n] == 1&& swtch(m] == 0)
{

f i t n e s s -= cap[m] 10]/pow(l.06, (n / 3)) ;
swtchtm] = 1;

}

e l s e i f (chromtx][m+n] == 0)
swtch(m) = 0;

r e t u r n (f i t n e s s)

Appendices 194

//calculate profit for 6 years

v o i d m a k e P r o f i t (i n t x)
{

i n t n;
for (n=0;n<6;n++)
{

p r o f { n + l , x) ;
}
}

// calculate profit based on whether project is running in given

year //(deduct capital allowance from profit

v o i d p r o f (i n t y e a r , i n t x)
{
i n t n.ProOn;
p r o f i t t y e a r - 1 1 = t (y e a r - l l - (c a l y e a r - 1 1 * 0 . 2 5) ; //time t
ProOn = 0;
for (n=(year-l)*TPr;n<<(year-1)*TPr)+TPr;n++)
{

i f (chrom[x][n] == 1)
{

p r o f i t [y e a r - l] += p r o j [P r o O n] [y e a r - 1] ;
prof i t l y e a r - 1] -= caplProOnHOnOf f [ProOnl] * .25;
OnOff[ProOn]++;
ProOn++;

)
e l s e
{

p r o f i t [y e a r - 1 1 -= cap[ProOn](OnOff[ProOn]+1];
OnOff[ProOn] = 0;
ProOn++;

Appendices 195

// Determine if loss should be carried forward (deducted from next

years //profit) of carried backward (deducted from past 3 years

profit before //carried forward). If Profit calculate tax due in.

v o i d D o Y e a r s (i n t year, i n t x. i n t c)
(
i f (p r o f i t (y e a r - l] < 0)
{

i f (c h r o m f x] [c l == 1)
(

f o r w a r d (y e a r) ;
)
e l s e
{

backward(year);

)
e l s e
{

t a k e P r o f i t (y e a r) ;
atlm(year+21[0] = p r o f i t [y e a r - l l
t a x d u e i n (y e a r + 2) ;

// c a i c u i a t e J o s s to be carried forward

v o i d f o r w a r d (i n t y e a r)
{

cForward += p r o f i t [y e a r - 1] ;
p r o f i t [y e a r - 1 1 = 0;

}

Appendices 196

// deduct l o s s from l a s t three y e a r s p r o f i t . I f not enough c a r r y
//forward
v o i d bacJcward(i n t y e a r)
{

f l o a t taxTemp;
i n t j = (year+1);
t a x R e b a t e (y e a r - l] = 0;
i f (p r o f i t [y e a r - l] < 0)
(

w h i l e (p r o f i t [y e a r - l] < 0 && j > (y e a r + l) - 3)
{

taxTemp = a t l m [j] [0] ;
i f (p r o f i t [y e a r - l] * - l < a t l m [j] [0])
{

a t l m [j] [0 3 = a t l m [j] [0] ..+ prof i t [y e a r - l) ;
p r o f i t (y e a r - l J = 0,-

}
e l s e
(

p r o f i t [y e a r - l] = p r o f i t [y e a r - l] + a t l m [j] [0]
a t l m [j] [0] = 0;

}
i f ((a t l m [j] [1] == 1))
{

t a x R e b a t e [y e a r - l J += (taxTemp -
a t l m [j] [0]) * 0 . 2 5 ;

)
e l s e i f (a t l m [j] [1] ==2)
(

i f (a t l m (j] [0] >300000.0)
(

t a x R e b a t e [y e a r - l] += (taxTemp-
atlm[j] [0]) *0.35,-

)
e l s e
{

t a x R e b a t e [y e a r - l 1 += (taxTemp -
300000.00)*0.35;

taxRebatetyear-1] += (300000.00-
a t l m [j] [0]) * 0 . 2 5 ;

Appendices 197

e l s e
{

t a x R e b a t e [y e a r - l l += (taxTerap - atlm [j n 0 1)

*0.33;
}

j - - ;
}

}
i f (profit[year - 1 1 < 0)

{
f o r w a r d (y e a r) ;

)

// reduce p r o f i t by balance of carry forward

v o i d t a k e P r o f i t (i n t y e a r)
{

i f (p r o f i t [y e a r - 1] > cForward*-l)
{

p r o f i t [y e a r - 1] = p r o f i t [y e a r - 1] + cForwardj
cForward = 0;

}

e l s e
{ .

cForward = cForward + p r o f i t [y e a r - 1 1

p r o f i t [y e a r - l] = 0;

Appendices 198

// c a l c u l a t e divedend due
voi d d o D i v i d e n d (i n t c)
{
i n t n , p l;

for ('n=0;n<6;n++)
{

divA[n] = t [n] ;
for (pl=n*3;pl<(TPr*n)+3;pl++)
{

i f (c h r o m [c] [p i] == 1)
divA[n] += p r o j [p i - (n * 3)] [n] ;

)
divA[n] += (-taxDue[n+2]+taxRebate[n]);
divA[n] = di v A [n] / p o w (l . 0 6 , n + l) ;

)
divA[n] = -taxDue(n+2];
divA[n] = divA[n]/pow(1.06,n+l);
}

// c a l c u l a t e tax due
v o i d t a x d u e i n (i n t n)
{

i f (a t l m [n] [0] <= 300000.00)
(

taxDue[n] = a t l m [n] [0] * 0 . 2 5 ;
a t l m [n] [1] = 1;

)
e l s e i f (a t l m [n] [0] < 1500000.00)
(

taxDuetn] = 300000.0*0.25;
taxDue[n] += (atlm[n][0]-300000.0)*0.35
a t l m [n] [1] = 2;

)
e l s e
{

taxDue[n] = atlm[n] [0]*0 . 33 ;
a t l m (n] [1] = 3;

)
}

Appendices 199

// determine i n i t i a l financial information from Binary String
v o i d makeMoney{int f)
{

i n t x l , y l ;
i n t b i n ; // p o s i t i o n i n b i n a r y string
t [0] = f i n d l t (2 4 , f , 0) ;
ca(01 = f i n d l t (3 7 , f , l) ;
tlm[0] = f i n d l t (5 0 , f , 2)
t l r a [l) = f i n d l t (6 3 , f , 3)
tlm(21 = f i n d l t (7 6 , f , 4)
t [l j = f i n d l t (8 9 , f , 5) ;
t [2] = f i n d l t (1 0 2 , f , 6)
t [3] = f i n d l t (1 1 5 . f , 7)
t [4] = f i n d l t (1 2 8 , f ,8)
t [5] = f i n d l t (1 4 1 , f . 9)
b i n = 154;
for (xl=0;xl<3;xl++)
(

c a p (x l] [0] = f i n d l t (b i n , f , 1 0 + (7 * x l)) ;
bin+=jump;
p r o j [x l] [0] = f i n d l t (b i n , f a i + (7 * x l)) ;
bin+=juinp;
p r o j [x l] [l] = f i n d l t (b i n , f , 1 2 + (7 * x l)) ;
bin+=jump;
p r o j [x l] [2 1 = f i n d i t (b i n , f . 1 3 + (7 * x l)) ;
bin+=jump;
p r o j [x l] [3] = f i n d I t (b i n . f . l 4 + (7 - x l)) ;
bin+=jump;
p r o j [x l] [4] = f i n d l t (b i n , f , 1 5 + (7 * x l)) ;
bin+=jump;
p r o j [x l] [5] = f i n d l t (b i n , f , 1 6 + (7 * x l)) ;
bin+=jump;

}
)

Appendices 200

// determine i n t e g e r value
f l o a t f i n d l t (i n t ml, i n t f , i n t dig)
{
long b i n l ;
b i n l = 0;
fo r (x=ml;x<(ml)+jump;x++)
{

i f (c h r o m [f] [x] == 1)
{

binl«=l;
b i n l += 1;

}
e l s e

binl«=l;
)
r e t u r n ((f l o a t) b i n l * 1 0 0 0) ;
)

Appendices 201

Appendix L

500 of over 1000 Paths through Capital Budgeting Program

1) 1F8T1F8T

2) 1F8TIT2F3T4F5 A6F4F5 A6F4F5 A6F7TA1

3) 1F8T1T2F3T4F5 A6F4F5 A6F4F5F7TA1

4) 1F8T1T2F3T4F5A6F4F5A6F4F5T7TA1

5) 1F8TIT2F3T4F5 A6F4F5 A6F4T5F7F

6) 1F8T1T2F3T4F5A6F4F5A6F4T5T7F

7) 1F8T1T2F3T4F5A6F4F5F4F5A6F7TA1

8) 1F8T1T2F3T4F5A6F4F5F4F5F7TA1

9) i F8T1T2F3T4F5 A6F4F5F4F5T7TA1

10) 1F8T1T2F3T4F5 A6F4F5F4T5 A6F7F

11) 1F8T1T2F3T4F5A6F4F5F4T5A6T7F

12) 1F8T1T2F3T4F5A6F4F5F4T5F7F

13) 1F8TIT2F3T4F5 A6F4F5T4F5 A6F7TA1

14) 1F8T1T2F3T4F5 A6F4F5T4F5F7T A1

15) 1F8TIT2F3T4F5 A6F4F5T4F5T7TA1

16) 1F8T1T2F3T4F5 A6F4F5T4T5F7F

17) IF8T1T2F3T4F5A6F4T5A6F7F

18) 1F8T1T2F3T4F5A6F4T5A6T7F

19) 1F8TIT2F3T4F5A6F4T5F7F

20) 1F8T1T2F3T4F5 A6F4T5T7F

21) 1F8TIT2F3T4F5 A 6 R F

22) 1F8TIT2F3T4F5F4F5 A6F4F5 A6F7TAI

23) 1F8T1T2F3T4F5F4F5 A6F4F5F7TA1

24) 1F8T \ T2F3T4F5F4F5 A6F4F5T7T A1

25) 1F8T1T2F3T4F5F4F5A6F4T5RF

26) 1F8T1T2F3T4F5F4F5A6F4T5T7F

27) 1F8TIT2F3T4F5F4F5F4F5 A6F7TA1

28) 1F8T1T2F3T4F5F4F5F4F5F7TA1

Appendices 202

29) 1F8T1T2F3T4F5F4F5F4F5T7TA1

30) 1F8T1T2F3T4F5F4F5F4T5A6F7F

31) 1F8T1T2F3T4F5F4F5F4T5A6T7F

32) 1F8TIT2F3T4F5F4F5F4T5F7F

33) 1F8T1T2F3T4F5F4F5T4F5A6F7TA1

34) 1F8T1T2F3T4F5F4F5T4F5F7T A1

35) 1F8T1T2F3T4F5F4F5T4F5T7TA1

36) 1F8T1T2F3T4F5F4F5T4T5 A6F7F

37) 1F8T1T2F3T4F5F4F5T4T5A6T7F

38) 1F8T1T2F3T4F5F4F5T4T5F7F

39) 1F8T1T2F3T4F5F4T5A6F7F

40) 1F8T1T2F3T4F5F4T5A6T7F

41) 1F8T1T2F3T4F5F4T5F7F

42) 1F8T1T2F3T4F5T4F5 A6F4F5 A6F7TA1

43) IF8T1T2F3T4F5T4F5A6F4F5F7TA1

44) 1F8T1T2F3T4F5T4F5 A6F4F5T7T A1

45) 1F8TIT2F3T4F5T4F5 A6F4T5F7F

46) 1F8T1T2F3T4F5T4F5F4F5A6F7TA1

47) 1F8T1T2F3T4F5T4F5F4F5F7TA1

48) IF8T1T2F3T4F5T4F5F4F5T7TA1

49) 1F8T1T2F3T4F5T4F5F4T5F7F

50) 1F8T1T2F3T4F5T4F5T4F5F7TAI

51) 1F8T1T2F3T4F5T4F5T4F5T7TA1

52) 1F8TIT2F3T4F5T4F5T4T5F7F

53) 1F8T1T2F3T4F5T4T5 A6T7F

54) 1F8T1T2F3T4F5T4T5F7F

55) 1F8TIT2F3T4F5T4T5T7F

56) IF8T1T2F3T4T5 A 6 R F

57) IF8TIT2F3T4T5A6T7F

58) 1F8T1T2F3T4T5F7F

59) 1F8T1T2F3T4T5T7F

Appendices 203

60) 1F8T1T2TA1

61) 1T2F3T4F5A6F4F5A6F4F5A6F7TAI1F8F

62) 1T2F3T4F5A6F4F5A6F4F5A6F7TA11F8T

63) IT2F3T4F5A6F4F5A6F4F5A6F7TA1IT2F3T4F5A6F4F5A6F4F5A6F7TAI

64) 1T2F3T4F5A6F4F5A6F4F5A6F7TA11T2F3T4F5F4F5 A6F4F5A6F7TA1

65) 1T2F3T4F5A6F4F5A6F4F5A6F7TA1IT2F3T4T5A6T7F

66) 1T2F3T4F5A6F4F5A6F4F5A6F7TA11T2F3T4T5F7F

67) 1T2F3T4F5A6F4F5A6F4F5A6F7TA11T2TA1

68) 1T2F3T4F5A6F4F5A6F4F5F7TA11F8F

69) 1T2F3T4F5A6F4F5A6F4F5F7TA11F8T

70) 1T2F3T4F5A6F4F5A6F4F5F7TA11T2F3T4F5A6F4F5A6F4F5A6F7TA1

71) 1T2F3T4F5A6F4F5A6F4F5F7TA11T2F3T4F5F4F5A6F4F5A6F7TA1

72) 1T2F3T4F5A6F4F5A6F4F5F7TA11T2TA1

73) 1T2F3T4F5A6F4F5A6F4F5T7TA11F8F

74) 1T2F3T4F5A6F4F5A6F4F5T7TA11F8T

75) 1T2F3T4F5A6F4F5A6F4F5T7TA11T2F3T4F5T4F5 A6F4F5 A6F7TA1

76) 1T2F3T4F5A6F4F5A6F4F5T7TA11T2TA1

77) 1T2F3T4F5A6F4F5A6F4T5A6F7F1F8T

78) 1T2F3T4F5 A6F4F5 A6F4T5 A6T7F1F8T

79) 1T2F3T4F5A6F4F5A6F4T5A6T7F1T2TA1

80) 1T2F3T4F5A6F4F5A6F4T5F7F1F8T

81) 1T2F3T4F5A6F4F5A6F4T5F7F1T2F3T4F5A6F4F5 A6F4F5A6F7TA1

82) 1T2F3T4F5A6F4F5A6F4T5F7F1T2F3T4F5F4F5A6F4F5A6F7TA1

83) 1T2F3T4F5A6F4F5A6F4T5F7F1T2F3T4F5T4F5A6F4F5A6F7TA1

84) 1T2F3T4F5A6F4F5A6F4T5F7FIT2TA1

85) 1T2F3T4F5A6F4F5A6F4T5T7F1F8T

86) 1T2F3T4F5A6F4F5F4F5A6F7TAI1F8F

87) 1T2F3T4F5A6F4F5F4F5A6F7TAI1F8T

88) 1T2F3T4F5A6F4F5F4F5A6F7TAIIT2F3T4F5A6F4F5A6F4F5F7TA1

89) 1T2F3T4F5A6F4F5F4F5A6F7TA11T2F3T4F5F4F5A6F4F5RTA1

90) 1T2F3T4F5A6F4F5F4F5A6F7TA1IT2F3T4F5T4F5A6F4F5F7TA1

Appendices 204

91) IT2F3T4F5A6F4F5F4F5A6F7TA1IT2TA1

92) IT2F3T4F5A6F4F5F4F5F7TAIIF8F

93) 1T2F3T4F5 A6F4F5F4F5F7TA11F8T

94) 1T2F3T4F5 A6F4F5F4F5F7TA11T2F3T4F5 A6F4F5 A6F4F5F7TA1

95) 1T2F3T4F5 A6F4F5F4F5F7TA11T2F3T4F5F4F5 A6F4F5F7TAI

96) 1T2F3T4F5 A6F4F5F4F5F7TA11T2F3T4F5T4F5 A6F4F5F7TA1

97) 1T2F3T4F5A6F4F5F4F5F7TAI1T2F3T4T5F7F

98) 1T2F3T4F5A6F4F5F4F5F7TA11T2TA1

99) 1T2F3T4F5A6F4F5F4F5T7TA11F8F

100) IT2F3T4F5A6F4F5F4F5T7TA11F8T

101) 1T2F3T4F5A6F4F5F4F5T7TA11T2F3T4F5A6F4F5A6F4F5F7TA1

102) 1T2F3T4F5A6F4F5F4F5T7TA11T2F3T4F5F4F5A6F4F5F7TA1

103) 1T2F3T4F5A6F4F5F4F5T7TA11T2F3T4F5T4F5A6F4F5F7TA1

104) 1T2F3T4F5A6F4F5F4F5T7TA11T2TA1

105) 1T2F3T4F5A6F4F5F4T5A6F7F1F8T

106) 1T2F3T4F5 A6F4F5F4T5 A6F7F1T2F3T4F5 A6F4F5 A6F4F5F7TA1

107) 1T2F3T4F5A6F4F5F4T5A6F7F1T2F3T4F5F4F5A6F4F5F7TA1

108) 1T2F3T4F5 A6F4F5F4T5 A6F7F1T2F3T4F5T4F5 A6F4F5F7T A1

109) IT2F3T4F5A6F4F5F4T5A6F7F1T2TA1

110) 1T2F3T4F5A6F4F5F4T5A6T7F1F8T

111) 1T2F3T4F5A6F4F5F4T5A6T7FIT2F3T4F5A6F4F5A6F4F5F7TAI

112) 1T2F3T4F5A6F4F5F4T5A6T7F1T2F3T4F5F4F5A6F4F5F7TA1

113) IT2F3T4F5A6F4F5F4T5A6T7F1T2F3T4F5T4F5A6F4F5F7TA1

114) 1T2F3T4F5A6F4F5F4T5A6T7F1T2TAI

115) 1T2F3T4F5A6F4F5F4T5F7F1F8T

116) 1T2F3T4F5A6F4F5F4T5F7F1T2F3T4F5A6F4F5A6F4F5F7TA1

117) 1T2F3T4F5A6F4F5F4T5RF1T2F3T4F5F4F5A6F4F5F7TAI

118) 1T2F3T4F5A6F4F5F4T5F7F1T2F3T4F5T4F5A6F4F5F7TA1

119) IT2F3T4F5A6F4F5F4T5F7F1T2F3T4T5F7F

120) 1T2F3T4F5A6F4F5F4T5F7F1T2TA1

121) lT2F3T4F5A6F4F5F4T5T7FiF8T

Appendices 205

122) 1T2F3T4F5A6F4F5T4F5A6F7TAI1F8F

123) 1T2F3T4F5A6F4F5T4F5A6F7TA11F8T

124) IT2F3T4F5A6F4F5T4F5A6F7TA1 iT2F3T4F5A6F4F5A6F4F5T7TAl

125) 1T2F3T4F5A6F4F5T4F5A6F7TA11T2F3T4F5F4F5 A6F4F5T7TA1

126) 1T2F3T4F5A6F4F5T4F5A6F7TA11T2F3T4F5T4F5A6F4F5T7TA1

127) 1T2F3T4F5A6F4F5T4F5A6F7TA11T2TA1

128) 1T2F3T4F5A6F4F5T4F5F7TA11F8F

129) 1T2F3T4F5A6F4F5T4F5F7TA11F8T

130) 1T2F3T4F5A6F4F5T4F5F7TA11T2F3T4F5A6F4F5A6F4F5T7TA1

131) 1T2F3T4F5A6F4F5T4F5F7TA11T2F3T4F5F4F5A6F4F5T7TA1

132) 1T2F3T4F5A6F4F5T4F5F7TA11T2F3T4F5T4F5A6F4F5T7TA1

133) 1T2F3T4F5A6F4F5T4F5F7TA11T2TA1

134) 1T2F3T4F5A6F4F5T4F5T7TA11F8T

135) 1T2F3T4F5A6F4F5T4F5T7TA11T2F3T4F5F4F5A6F4F5T7TA1

136) 1T2F3T4F5A6F4F5T4F5T7TA11T2TA1

137) 1T2F3T4F5A6F4F5T4T5A6F7F1F8T

138) 1T2F3T4F5A6F4F5T4T5 A6F7F1T2F3T4F5F4F5A6F4F5T7TA1

139) 1T2F3T4F5A6F4F5T4T5A6F7F1T2TA1

140) 1T2F3T4F5A6F4F5T4T5A6T7F1F8T

141) 1T2F3T4F5A6F4F5T4T5A6T7F1T2TA1

142) 1T2F3T4F5A6F4F5T4T5F7F1F8T

143) IT2F3T4F5A6F4F5T4T5F7F1T2F3T4F5A6F4F5A6F4F5T7TA1

144) 1T2F3T4F5A6F4F5T4T5F7F1T2F3T4F5F4F5A6F4F5T7TA1

145) IT2F3T4F5A6F4F5T4T5F7F1T2F3T4F5T4F5A6F4F5T7TA1

146) 1T2F3T4F5A6F4F5T4T5F7F1T2TA1

147) 1T2F3T4F5A6F4T5A6F7F1F8T

148) 1T2F3T4F5A6F4T5A6F7FIT2F3T4F5A6F4F5A6F4F5A6F7TAI

149) 1T2F3T4F5A6F4T5A6F7F1T2F3T4F5F4F5A6F4F5A6F7TA1

150) IT2F3T4F5A6F4T5A6F7F1T2TA1

151) 1T2F3T4F5A6F4T5A6T7F1F8T

152) 1T2F3T4F5A6F4T5A6T7F1T2F3T4F5A6F4F5A6F4F5A6F7TA1

Appendices 206

153) 1T2F3T4F5A6F4T5A6T7F1T2F3T4F5F4F5A6F4F5A6F7TAI

154) 1T2F3T4F5A6F4T5A6T7F1T2F3T4F5T4F5A6F4F5A6F7TA1

155) 1T2F3T4F5A6F4T5A6T7F1T2TA1

156) IT2F3T4F5A6F4T5F7F1F8T

157) 1T2F3T4F5A6F4T5F7F1T2F3T4F5A6F4F5A6F4F5F7TA1

158) 1T2F3T4F5A6F4T5F7F1T2F3T4F5A6F4F5A6F4T5F7F

159) 1T2F3T4F5A6F4T5F7F1T2F3T4F5F4F5A6F4F5F7TA1

160) 1T2F3T4F5A6F4T5F7F1T2F3T4F5F4F5A6F4T5F7F

161) 1 T2F3T4F5 A6F4T5F7F1T2F3T4F5T4F5 A6F4F5F7TA1

162) 1T2F3T4F5A6F4T5F7FIT2F3T4F5T4F5A6F4T5F7F

163) 1T2F3T4F5A6F4T5F7F1T2F3T4T5F7F

164) 1T2F3T4F5A6F4T5F7F1T2TA1

165) IT2F3T4F5A6F4T5T7F1T2TA1

166) IT2F3T4F5F4F5A6F4F5A6F7TAIIF8F

167) 1T2F3T4F5F4F5A6F4F5A6F7TA11F8T

168) 1T2F3T4F5F4F5 A6F4F5A6F7TA11T2F3T4F5A6F4F5F4F5A6F7TA1

169) 1T2F3T4F5F4F5A6F4F5A6F7TA11T2F3T4F5F4F5F4F5A6F7TA1

170) 1T2F3T4F5F4F5A6F4F5A6F7TA11T2TA1

171) 1T2F3T4F5F4F5A6F4F5F7TA11F8F

172) 1T2F3T4F5F4F5A6F4F5F7TA11F8T

173) 1T2F3T4F5F4F5A6F4F5F7TA1IT2F3T4F5A6F4F5F4F5A6F7TA1

174) 1T2F3T4F5F4F5A6F4F5F7TA11T2F3T4F5F4F5F4F5A6RTA1

175) 1T2F3T4F5F4F5A6F4F5F7TAIIT2TA1

176) 1T2F3T4F5F4F5A6F4F5T7TA11F8F

177) 1T2F3T4F5F4F5A6F4F5T7TA1IF8T

178) 1T2F3T4F5F4F5A6F4F5T7TA11T2F3T4F5F4F5F4F5A6F7TAI

179) 1T2F3T4F5F4F5A6F4F5T7TA11T2F3T4F5T4F5F4F5A6F7TA1

180) IT2F3T4F5F4F5A6F4F5T7TAIIT2TA1

181) IT2F3T4F5F4F5A6F4T5A6F7FIF8T

182) IT2F3T4F5F4F5A6F4T5A6F7FIT2F3T4F5A6F4F5F4F5A6F7TA1

183) IT2F3T4F5F4F5A6F4T5A6F7F1T2F3T4F5F4F5F4F5A6RTA1

Appendices 207

184) 1T2F3T4F5F4F5A6F4T5A6F7F1T2F3T4T5F7F

185) IT2F3T4F5F4F5A6F4T5A6F7F1T2TA1

186) 1T2F3T4F5F4F5A6F4T5A6T7F1F8T

187) 1T2F3T4F5F4F5A6F4T5A6T7F1T2F3T4F5A6F4F5F4F5A6F7TA1

188) 1T2F3T4F5F4F5 A6F4T5 A6T7F1T2F3T4F5F4F5F4F5 A6F7TA1

189) 1T2F3T4F5F4F5A6F4T5 A6T7F1T2F3T4T5F7F

190) 1T2F3T4F5F4F5A6F4T5A6T7F1T2TA1

191) 1T2F3T4F5F4F5A6F4T5F7F1F8T

192) 1T2F3T4F5F4F5A6F4T5F7F1T2F3T4F5A6F4F5F4F5A6F7TA1

193) 1T2F3T4F5F4F5A6F4T5F7F1T2F3T4F5F4F5F4F5A6F7TAI

194) 1T2F3T4F5F4F5A6F4T5F7F1T2TA1

195) 1T2F3T4F5F4F5A6F4T5T7F1F8T

196) 1T2F3T4F5F4F5A6F4T5T7F1T2TA1

197) 1T2F3T4F5F4F5F4F5A6F7TA11F8F

198) 1T2F3T4F5F4F5F4F5A6F7TA11F8T

199) 1T2F3T4F5F4F5F4F5A6F7TA11T2F3T4F5A6F4F5F4F5F7TA1

200) 1T2F3T4F5F4F5F4F5A6F7TA11T2F3T4F5F4F5F4F5F7TA!

201) 1T2F3T4F5F4F5F4F5A6F7TA1IT2TA1

202) 1T2F3T4F5F4F5F4F5F7TA11F8F

203) 1T2F3T4F5F4F5F4F5F7TA11F8T

204) 1T2F3T4F5F4F5F4F5F7TA11T2F3T4F5A6F4F5F4F5F7TA1

205) IT2F3T4F5F4F5F4F5F7TA11T2F3T4F5F4F5F4F5F7TA1

206) 1T2F3T4F5F4F5F4F5F7TA11T2F3T4F5T4F5F4F5F7TAI

207) 1T2F3T4F5F4F5F4F5F7TA11T2F3T4T5F7F

208) 1T2F3T4F5F4F5F4F5F7TA11T2TA1

209) 1T2F3T4F5F4F5F4F5T7TA11F8F

210) 1T2F3T4F5F4F5F4F5T7TA1IF8T

211) 1T2F3T4F5F4F5F4F5T7TA1IT2F3T4F5A6F4F5F4F5F7TA1

212) lT2F3T4F5F4F5F4F5T7TAnT2TAl

213) IT2F3T4F5F4F5F4T5A6F7FIF8T

214) 1T2F3T4F5F4F5F4T5A6F7F1T2F3T4F5A6F4F5F4F5F7TAI

Appendices 208

215) 1T2F3T4F5F4F5F4T5A6T7F1F8T

216) IT2F3T4F5F4F5F4T5A6T7FIT2F3T4F5A6F4F5F4F5F7TA1

217) 1T2F3T4F5F4F5F4T5A6T7F1T2F3T4F5F4F5F4F5F7TA1

218) 1T2F3T4F5F4F5F4T5A6T7F1T2TA1

219) 1T2F3T4F5F4F5F4T5F7F1F8T

220) 1T2F3T4F5F4F5F4T5F7F1T2F3T4F5A6RF5F4F5F7TA1

221) 1T2F3T4F5F4F5F4T5F7F1T2F3T4F5F4F5F4F5F7TA1

222) 1T2F3T4F5F4F5F4T5F7F1T2F3T4F5T4F5F4F5F7TA1

223) 1T2F3T4F5F4F5F4T5F7F1T2F3T4T5F7F

224) 1T2F3T4F5F4F5F4T5F7F1T2TA1

225) 1T2F3T4F5F4F5T4F5A6F7TA11F8F

226) 1T2F3T4F5F4F5T4F5A6F7TA11F8T

227) 1T2F3T4F5F4F5T4F5A6F7TA11T2F3T4F5A6F4F5F4F5T7TA1

228) 1T2F3T4F5F4F5T4F5A6F7TA11T2F3T4F5F4F5F4F5T7TA1

229) 1T2F3T4F5F4F5T4F5 A6F7TA11T2F3T4F5T4F5F4F5T7TA1

230) 1T2F3T4F5F4F5T4F5A6F7TA11T2TA1

231) 1T2F3T4F5F4F5T4F5F7TA11F8F

232) iT2F3T4F5F4F5T4F5F7TAllF8T

233) 1T2F3T4F5F4F5T4F5F7TA11T2F3T4F5A6F4F5F4F5T7TA1

234) 1T2F3T4F5F4F5T4F5F7TA11T2F3T4F5T4F5F4F5T7TA1

235) 1T2F3T4F5F4F5T4F5F7TA11T2TA1

236) 1T2F3T4F5F4F5T4F5T7TA11F8F

237) 1T2F3T4F5F4F5T4F5T7TA11F8T

238) 1T2F3T4F5F4F5T4F5T7TA11T2F3T4F5A6F4F5F4F5T7TA1

239) 1T2F3T4F5F4F5T4F5T7TA11T2F3T4F5F4F5F4F5T7TAI

240) 1T2F3T4F5F4F5T4F5T7TA11T2F3T4F5T4F5F4F5T7TA1

241) 1T2F3T4F5F4F5T4F5T7TA11T2F3T4T5F7F

242) 1T2F3T4F5F4F5T4F5T7TA1IT2TA1

243) 1T2F3T4F5F4F5T4T5A6RF1F8T

244) 1T2F3T4F5F4F5T4T5A6RF1T2TAI

245) IT2F3T4F5F4F5T4T5A6T7F1F8T

Appendices 209

246) 1T2F3T4F5F4F5T4T5A6T7F1T2F3T4F5A6F4F5F4F5T7TA1

247) lT2F3T4F5F4F5T4T5A6r7FlT2TAl

248) 1T2F3T4F5F4F5T4T5F7F1F8T

249) 1T2F3T4F5F4F5T4T5F7F1T2F3T4F5 A6F4F5F4F5T7TA1

250) 1T2F3T4F5F4F5T4T5F7F1T2F3T4F5F4F5F4F5T7TA1

251) 1T2F3T4F5F4F5T4T5F7F1T2TA1

252) 1T2F3T4F5F4F5T4T5T7F1F8T

253) 1T2F3T4F5F4F5T4T5T7F1T2TA1

254) 1T2F3T4F5F4T5A6F7F1F8T

255) 1T2F3T4F5F4T5A6F7F1T2F3T4F5A6F4F5F4F5A6F7TA1

256) 1T2F3T4F5F4T5 A6F7F1T2F3T4F5F4F5F4F5 A6F7TA1

257) 1T2F3T4F5F4T5A6F7F1T2TA1

258) 1T2F3T4F5F4T5A6T7F1F8T

259) IT2F3T4F5F4T5A6T7F1T2F3T4F5A6F4F5F4F5A6F7TA1

260) 1T2F3T4F5F4T5A6T7F1T2F3T4F5F4F5F4F5A6F7TA1

261) 1T2F3T4F5F4T5A6T7F1T2F3T4F5F4F5F4T5A6T7F

262) 1T2F3T4F5F4T5A6T7F1T2F3T4T5F7F

263) 1T2F3T4F5F4T5A6T7F1T2TA1

264) IT2F3T4F5F4T5F7F1F8T

265) 1T2F3T4F5F4T5F7F1T2F3T4F5A6F4F5F4F5F7TA1

266) 1T2F3T4F5F4T5F7F1T2F3T4F5A6F4F5F4T5F7F

267) 1T2F3T4F5F4T5F7F1T2F3T4F5F4F5F4F5F7TA1

268) 1T2F3T4F5F4T5F7F1T2F3T4F5F4F5F4T5F7F

269) 1T2F3T4F5F4T5F7F1T2F3T4F5T4F5F4F5F7TA1

270) IT2F3T4F5F4T5F7F1T2F3T4F5T4F5F4T5F7F

271) 1T2F3T4F5F4T5F7F1T2F3T4T5F7F

272) 1T2F3T4F5F4T5F7F1T2TA1

273) 1T2F3T4F5F4T5T7FIF8T

274) IT2F3T4F5F4T5T7FIT2F3T4F5F4F5F4T5T7F

275) 1T2F3T4F5F4T5T7F1T2TA1

276) 1T2F3T4F5T4F5A6F4F5A6F7TAI1F8F

Appendices 210

277) IT2F3T4F5T4F5A6F4F5A6F7TA11F8T

278) 1T2F3T4F5T4F5A6F4F5A6F7TA11T2F3T4F5A6F4F5T4F5A6F7TA1

279) 1T2F3T4F5T4F5A6F4F5A6F7TA11T2F3T4F5F4F5T4F5A6F7TA1

280) 1T2F3T4F5T4F5A6F4F5A6F7TA11T2F3T4F5T4F5T4F5A6F7TA1

281) 1T2F3T4F5T4F5A6F4F5A6F7TA1IT2F3T4T5F7F

282) 1T2F3T4F5T4F5A6F4F5A6F7TAI1T2TA1

283) 1T2F3T4F5T4F5A6F4F5F7TA11F8F

284) 1T2F3T4F5T4F5A6F4F5F7TA11F8T

285) 1T2F3T4F5T4F5A6F4F5F7TA11T2F3T4F5A6F4F5T4F5A6F7TA1

286) 1T2F3T4F5T4F5A6F4F5F7TA11T2F3T4F5F4F5T4F5A6F7TA1

287) 1T2F3T4F5T4F5A6F4F5F7TA11T2F3T4F5T4F5T4F5A6F7TA1

288) 1T2F3T4F5T4F5A6F4F5F7TA11T2TA1

289) 1T2F3T4F5T4F5A6F4F5T7TA11F8T

290) 1T2F3T4F5T4F5A6F4F5T7TA11T2TA1

291) 1T2F3T4F5T4F5A6F4T5A6F7F1F8T

292) 1T2F3T4F5T4F5A6F4T5A6F7F1T2F3T4F5A6F4F5T4F5A6F7TA1

293) 1T2F3T4F5T4F5A6F4T5A6F7F1T2F3T4F5T4F5T4F5A6F7TA1

294) 1T2F3T4F5T4F5A6F4T5A6T7F1F8T

295) 1T2F3T4F5T4F5A6F4T5A6T7F1T2TA1

296) 1T2F3T4F5T4F5A6F4T5F7F1F8T

297) 1T2F3T4F5T4F5A6F4T5F7F1T2F3T4F5A6F4F5T4F5A6F7TA1

298) 1T2F3T4F5T4F5A6F4T5F7FIT2F3T4F5F4F5T4F5A6F7TA1

299) 1T2F3T4F5T4F5A6F4T5F7F1T2F3T4F5T4F5T4F5A6F7TA1

300) 1T2F3T4F5T4F5A6F4T5F7F1T2TA1

301) 1T2F3T4F5T4F5F4F5A6F7TA11F8F

302) 1T2F3T4F5T4F5F4F5A6F7TA11F8T

303) 1T2F3T4F5T4F5F4F5A6F7TA11T2F3T4F5A6F4F5T4F5F7TA1

304) IT2F3T4F5T4F5F4F5A6F7TAI1T2F3T4F5F4F5T4F5F7TA1

305) 1T2F3T4F5T4F5F4F5 A6RTA11T2F3T4F5T4F5T4F5F7TA1

306) 1T2F3T4F5T4F5F4F5A6F7TAI1T2F3T4T5RF

307) IT2F3T4F5T4F5F4F5A6RTA11T2TAI

Appendices 211

308) 1T2F3T4F5T4F5F4F5F7TA11F8F

309) 1T2F3T4F5T4F5F4F5F7TA11F8T

310) 1T2F3T4F5T4F5F4F5F7TA11T2F3T4F5A6F4F5T4F5F7TA1

311) 1T2F3T4F5T4F5F4F5F7TA1IT2F3T4F5F4F5T4F5F7TA1

312) 1T2F3T4F5T4F5F4F5F7TA11T2F3T4F5T4F5T4F5F7TA1

313) 1T2F3T4F5T4F5F4F5F7TA11T2TA1

314) 1T2F3T4F5T4F5F4F5T7TA11F8F

315) 1T2F3T4F5T4F5F4F5T7TA11F8T

316) 1T2F3T4F5T4F5F4F5T7TA11T2F3T4F5A6F4F5T4F5F7TA1

317) 1T2F3T4F5T4F5F4F5T7TA1IT2F3T4F5T4F5T4F5F7TA1

318) 1T2F3T4F5T4F5F4T5A6F7F1F8T

319) 1T2F3T4F5T4F5F4T5A6F7F1T2F3T4F5T4F5T4F5F7TA1

320) 1T2F3T4F5T4F5F4T5A6F7F1T2TA1

321) 1T2F3T4F5T4F5F4T5A6T7F1F8T

322) 1T2F3T4F5T4F5F4T5A6T7F1T2F3T4F5A6F4F5T4F5F7TA1

323) 1T2F3T4F5T4F5F4T5A6T7F1T2F3T4F5F4F5T4F5F7TA1

324) 1T2F3T4F5T4F5F4T5A6T7F1T2TA1

325) 1T2F3T4F5T4F5F4T5F7F1F8T

326) 1T2F3T4F5T4F5F4T5F7F1T2F3T4F5 A6F4F5T4F5F7TA1

327) 1T2F3T4F5T4F5F4T5F7F1T2F3T4F5F4F5T4F5F7TA1

328) 1T2F3T4F5T4F5F4T5F7F1T2F3T4F5T4F5T4F5F7TA1

329) 1T2F3T4F5T4F5F4T5F7F1T2F3T4T5A6F7F

330) 1T2F3T4F5T4F5F4T5F7F1T2TA1

331) 1T2F3T4F5T4F5F4T5T7F1F8T

332) 1T2F3T4F5T4F5F4T5T7F1T2F3T4F5A6F4F5T4F5RTA1

333) 1T2F3T4F5T4F5F4T5T7FIT2F3T4F5T4F5T4F5F7TA1

334) 1T2F3T4F5T4F5T4F5A6F7TA11F8F

335) 1T2F3T4F5T4F5T4F5A6F7TA11F8T

336) 1T2F3T4F5T4F5T4F5A6F7TAI1T2F3T4F5A6F4F5T4F5T7TA1

337) 1T2F3T4F5T4F5T4F5A6F7TA11T2F3T4F5F4F5T4F5T7TA1

338) 1T2F3T4F5T4F5T4F5A6F7TA1IT2F3T4F5T4F5T4F5T7TA1

Appendices 212

339) 1T2F3T4F5T4F5T4F5A6RTA11T2TA1

340) 1T2F3T4F5T4F5T4F5F7TA11F8F

341) 1T2F3T4F5T4F5T4F5F7TA11F8T

342) 1T2F3T4F5T4F5T4F5F7TA11T2F3T4F5A6F4F5T4F5T7TA1

343) 1T2F3T4F5T4F5T4F5F7TA11T2F3T4F5F4F5T4F5T7TA1

344) 1T2F3T4F5T4F5T4F5F7TA11T2F3T4F5T4F5T4F5T7TA1

345) 1T2F3T4F5T4F5T4F5F7TA11T2TA1

346) 1T2F3T4F5T4F5T4F5T7TA11F8T

347) 1T2F3T4F5T4F5T4F5T7TA11T2F3T4F5A6F4F5T4F5T7TA1

348) 1T2F3T4F5T4F5T4F5T7TA11T2F3T4F5F4F5T4F5T7TA1

349) 1T2F3T4F5T4F5T4F5T7TA11T2F3T4F5T4F5T4F5T7TA1

350) 1T2F3T4F5T4F5T4F5T7TA11T2TA1

351) 1T2F3T4F5T4F5T4T5A6F7F1F8T

352) IT2F3T4F5T4F5T4T5A6F7F1T2F3T4F5F4F5T4F5T7TA1

353) 1T2F3T4F5T4F5T4T5A6F7F1T2TA1

354) 1T2F3T4F5T4F5T4T5A6T7F1F8T

355) 1 T2F3T4F5T4F5T4T5 A6T7F1T2F3T4F5 A6F4F5T4F5T7TA1

356) 1T2F3T4F5T4F5T4T5A6T7F1T2F3T4F5T4F5T4F5T7TA1

357) 1T2F3T4F5T4F5T4T5A6T7F1T2TA1

358) 1T2F3T4F5T4F5T4T5F7F1F8T

359) 1T2F3T4F5T4F5T4T5F7F1T2F3T4F5A6F4F5T4F5T7TA1

360) 1T2F3T4F5T4F5T4T5F7F1T2F3T4F5F4F5T4F5T7TA1

361) 1T2F3T4F5T4F5T4T5F7FIT2F3T4F5T4F5T4F5T7TA1

362) 1T2F3T4F5T4F5T4T5RF1T2TA1

363) 1T2F3T4F5T4T5A6F7F1F8T

364) 1T2F3T4F5T4T5A6F7F1T2TA1

365) 1T2F3T4F5T4T5A6T7F1F8T

366) 1T2F3T4F5T4T5A6T7F1T2F3T4F5F4F5T4F5A6F7TA1

367) 1T2F3T4F5T4T5A6T7FIT2TA1

368) 1T2F3T4F5T4T5F7FIF8T

369) IT2F3T4F5T4T5F7FIT2F3T4F5A6F4F5T4F5F7TA1

Appendices 213

370) IT2F3T4F5T4T5F7F1T2F3T4F5A6F4F5T4T5F7F

371) IT2F3T4F5T4T5F7F1T2F3T4F5F4F5T4F5F7TA1

372) 1T2F3T4F5T4T5F7F1T2F3T4F5F4F5T4T5F7F

373) 1T2F3T4F5T4T5F7F1T2F3T4F5T4F5T4F5F7TA1

374) 1T2F3T4F5T4T5F7F1T2F3T4F5T4F5T4T5F7F

375) 1T2F3T4F5T4T5F7F1T2F3T4T5F7F

376) 1T2F3T4F5T4T5F7F1T2TA1

377) 1T2F3T4F5T4T5T7F1F8T

378) 1T2F3T4F5T4T5T7F1T2F3T4F5A6F4F5T4F5T7TA1

379) 1T2F3T4T5A6F7F1F8T

380) 1T2F3T4T5A6F7F1T2F3T4F5A6F4F5A6F4F5A6F7TA1

381) 1T2F3T4T5 A6F7F1T2F3T4F5A6F4F5A6F4F5T7TAI

382) 1T2F3T4T5A6F7F1T2F3T4F5A6F4F5A6F4T5F7F

383) 1T2F3T4T5A6F7F1T2F3T4F5F4F5A6F4F5A6F7TA1

384) 1T2F3T4T5A6F7F1T2F3'T4F5F4F5A6F4F5F7TA1

385) 1T2F3T4T5A6F7F1T2F3T4F5F4F5A6F4F5T7TAI

386) IT2F3T4T5A6F7F1T2F3T4F5F4F5A6F4T5F7F

387) 1T2F3T4T5A6F7F1T2F3T4F5T4F5A6F4F5F7TA1

388) 1T2F3T4T5A6F7F1T2F3T4F5T4F5A6F4F5T7TA1

389) 1T2F3T4T5A6F7F1T2TA1

390) IT2F3T4T5A6T7F1F8T

391) 1T2F3T4T5A6T7F1T2F3T4F5A6F4F5A6F4F5A6F7TA1

392) IT2F3T4T5A6T7F1T2F3T4F5A6F4F5A6F4F5F7TA1

393) 1T2F3T4T5A6T7F1T2F3T4F5A6F4F5A6F4F5T7TA1

394) 1T2F3T4T5A6T7F1T2F3T4F5A6F4F5A6F4T5F7F

395) IT2F3T4T5A6T7F1T2F3T4F5A6F4T5A6T7F

396) 1T2F3T4T5A6T7F1T2F3T4F5F4F5A6F4F5A6F7TAI

397) 1T2F3T4T5A6T7F1T2F3T4F5F4F5A6F4F5F7TAI

398) 1T2F3T4T5 A6T7F1T2F3T4F5F4F5 A6F4F5T7TA1

399) IT2F3T4T5A6T7F1T2F3T4F5F4F5A6F4T5F7F

400) IT2F3T4T5A6T7F1T2F3T4F5F4T5A6T7F

Appendices 214

401) IT2F3T4T5A6T7F1T2F3T4F5T4F5A6F4F5A6RTA1

402) lT2F3T4T5A6T7FiT2F3T4F5T4F5A6F4F5RTAl

403) 1T2F3T4T5A6T7F1T2F3T4F5T4F5A6F4F5T7TAI

404) 1T2F3T4T5A6T7F1T2F3T4F5T4F5A6F4T5RF

405) 1T2F3T4T5A6T7F1T2F3T4T5RF

406) 1T2F3T4T5A6T7F1T2TA1

407) 1T2F3T4T5RF1F8T

408) 1T2F3T4T5RF1T2F3T4F5A6F4F5F4F5A6RTA1

409) 1T2F3T4T5RF1T2F3T4F5A6F4F5F4F5F7TA1

410) lT2F3T4T5RFiT2F3T4F5A6F4F5F4F5T7TAl

411) 1T2F3T4T5RF1T2F3T4F5A6F4F5F4T5A6RF

412) 1T2F3T4T5RF1T2F3T4F5A6F4F5F4T5A6T7F

413) 1T2F3T4T5RF1T2F3T4F5A6F4F5F4T5RF

414) 1T2F3T4T5RF1T2F3T4F5A6F4T5RF

415) 1T2F3T4T5RF1T2F3T4'F5F4F5F4F5A6F7TA1

416) 1T2F3T4T5RF1T2F3T4F5F4F5F4F5RTA1

417) 1T2F3T4T5RF1T2F3T4F5F4F5F4F5T7TA1

418) 1T2F3T4T5RF1T2F3T4F5F4F5F4T5A6RF

419) 1T2F3T4T5RF1T2F3T4F5F4F5F4T5A6T7F

420) 1T2F3T4T5RF1T2F3T4F5F4F5F4T5RF

421) 1T2F3T4T5RF1T2F3T4F5F4T5RF

422) 1T2F3T4T5RF1T2F3T4F5T4F5F4F5A6RTA1

423) 1T2F3T4T5RF1T2F3T4F5T4F5F4F5RTA1

424) 1T2F3T4T5RF1T2F3T4F5T4F5F4F5T7TA1

425) 1T2F3T4T5RF1T2F3T4F5T4F5F4T5A6RF

426) 1T2F3T4T5RFIT2F3T4F5T4F5F4T5A6T7F

427) 1T2F3T4T5RF1T2F3T4F5T4F5F4T5RF

428) 1T2F3T4T5RF1T2F3T4F5T4T5RF

429) 1T2F3T4T5RF1T2F3T4T5RF

430) 1T2F3T4T5RFIT2TA1

431) 1T2F3T4T5T7FIF8T

Appendices 215

432) 1T2F3T4T5T7F1T2F3T4F5A6F4F5T4F5A6F7TA1

433) 1T2F3T4T5T7F1T2F3T4F5A6F4F5T4F5T7TA1

434) 1T2F3T4T5T7F1T2F3T4F5F4F5T4T5F7F

435) 1T2F3T4T5T7F1T2F3T4F5T4F5T4T5F7F

436) 1T2F3T4T5T7F1T2F3T4T5F7F

437) 1T2F3T4T5T7FIT2TA1

438) m X A l l F S F

439) 1T2TA11F8T

440) 1T2TA11T2F3T4F5A6F4F5A6F4F5A6F7TA1

441) 1T2TA11T2F3T4F5A6F4F5A6F4F5F7TA1

442) 1T2TA11T2F3T4F5A6F4F5A6F4F5T7TA1

443) 1T2TA11T2F3T4F5A6F4F5A6F4T5A6F7F

444) 1T2TA11T2F3T4F5A6F4F5A6F4T5F7F

445) 1T2TA11T2F3T4F5A6F4F5A6F4T5T7F

446) 1T2TA11T2F3T4F5A6F4F5F4F5A6F7TA1

447) 1T2TA11T2F3T4F5A6F4F5F4F5F7TA1

448) 1T2TA11T2F3T4F5A6F4F5F4F5T7TA1

449) 1T2TA11T2F3T4F5A6F4F5F4T5A6F7F

450) IT2TA11T2F3T4F5A6F4F5F4T5F7F

451) 1T2TA11T2F3T4F5A6F4F5T4F5A6F7TA1

452) 1T2TA11T2F3T4F5A6F4F5T4F5F7TA1

453) 1T2TA11T2F3T4F5A6F4F5T4F5T7TA1

454) 1T2TA11T2F3T4F5A6F4F5T4T5A6F7F

455) IT2TA11T2F3T4F5A6F4F5T4T5F7F

456) 1T2TA11T2F3T4F5A6F4T5A6F7F

457) 1T2TA1IT2F3T4F5A6F4T5A6T7F

458) IT2TA11T2F3T4F5A6F4T5F7F

459) 1T2TA11T2F3T4F5A6F4T5T7F

460) 1T2TA11T2F3T4F5F4F5A6F4F5A6F7TA1

461) 1T2TAI1T2F3T4F5F4F5A6F4F5F7TA1

462) 1T2TA11T2F3T4F5F4F5A6F4F5T7TA1

Appendices 216

463) 1T2TA11T2F3T4F5F4F5A6F4T5A6RF

464) 1T2TA11T2F3T4F5F4F5A6F4T5A6T7F

465) 1T2TAI1T2F3T4F5F4F5A6F4T5F7F

466) 1T2TA11T2F3T4F5F4F5A6F4T5T7F

467) 1T2TA11T2F3T4F5F4F5F4F5A6F7TA1

468) 1T2TA11T2F3T4F5F4F5F4F5F7TA1

469) 1T2TA11T2F3T4F5F4F5F4F5T7TA1

470) IT2TA11T2F3T4F5F4F5F4T5A6T7F

471) 1T2TA11T2F3T4F5F4F5F4T5F7F

472) 1T2TA11T2F3T4F5F4F5T4F5A6F7TA1

473) 1T2TA11T2F3T4F5F4F5T4F5F7TA1

474) 1T2TA11T2F3T4F5F4F5T4F5T7TA1

475) 1T2TA11T2F3T4F5F4F5T4T5F7F

476) 1T2TA11T2F3T4F5F4T5A6F7F

477) 1T2TA11T2F3T4F5F4T5A6T7F

478) 1T2TA11T2F3T4F5F4T5F7F

479) 1T2TA11T2F3T4F5F4T5T7F

480) 1T2TA11T2F3T4F5T4F5A6F4F5A6F7TA1

481) 1T2TA11T2F3T4F5T4F5A6F4F5F7TA1

482) 1T2TA11T2F3T4F5T4F5A6F4F5T7TA1

483) 1T2TA11T2F3T4F5T4F5A6F4T5A6T7F

484) 1T2TA11T2F3T4F5T4F5A6F4T5F7F

485) 1T2TA11T2F3T4F5T4F5A6F4T5T7F

486) IT2TA11T2F3T4F5T4F5F4F5A6F7TA1

487) 1T2TA11T2F3T4F5T4F5F4F5F7TA1

488) 1T2TA11T2F3T4F5T4F5F4F5T7TA1

489) 1T2TA11T2F3T4F5T4F5F4T5RF

490) 1T2TA11T2F3T4F5T4F5T4F5A6F7TA1

491) IT2TA11T2F3T4F5T4F5T4F5RTA1

492) 1T2TA11T2F3T4F5T4F5T4F5T7TA1

493) 1T2TAI1T2F3T4F5T4F5T4T5F7F

Appendices 217

494) IT2TAI1T2F3T4F5T4T5A6RF

495) 1T2TA11T2F3T4F5T4T5A6T7F

496) 1T2TA11T2F3T4F5T4T5RF

497) 1T2TAI1T2F3T4T5A6RF

498) 1T2TA11T2F3T4T5A6T7F

499) 1T2TA11T2F3T4T5RF

500) 1T2TA11T2TA1

Appendices 218

References

Aarls E. and Van Laarhoven P.J.M. (1985). Statistical Cooling; a general approach

to combinatorial optimization problems. Philips Journal of Research, 40, pp. 193-

226.

Aarts, E. and Korst, J. (1989). Simulated Annealing and Boltzman Machines. John

Wiley & Sons, Chichester.

Andriole, S.J. (1986). Software Validation, Verification. Testing and Documentation,

Petrocelli Books.

Ankenbrandt, C.A. (1990). An extension to the theory of convergence and a proof of

the time complexity of genetic algorithms. In GJE Rawlins (Ed.), Foundations of

Genetic Algorithms. Morgan Kaufmann San Mateo, CA, pp. 53-68.

Back, T,, Hoffmeister, F., Schwefel H-P. (1991). Extended selection mechanisms in

genetic algorithms. In RK Belew and LB Booker (Eds.), Proceedings of the Fourth

International Conference on Genetic Algorithms, pp. 92 - 99.

Baker, J.E. (1985). Adaptive selection methods for genetic algorithms. In J J

Grefensieiie (Ed.), Proceedings of an International Conference on Genetic

Algorithms and their Application, (1985) pp. 100-111.

References 219

Bell, D., Morrey, I . , and Pugh J. (I987J. Software Engineering: A Programming

Approach, Prenlice Hall, International (UK).

Berry. R.H. and Smith, G.D. (1993). Using a genetic algorithm to inestigate taxation

induced interactions in capital budgeting. In R.F. Albrecht, C.R. Reeves and N.C.

Steele. Artificial Neural Nets and Genetic Algortihms, Springer-Verlag Wim. New

York.

Brindle, A. (1981). Genetic Algorithms for Function Optimization (Technical Report

TR81-2) Department of Computer Science, University of Alberta. Edmonton.

Budd, T.A. (1981). Mutation Analysis: ideas, examples, problems and prospects. In

B. Chandrasekaran and Radicchi S. (Eds), Computer Program Testing. North-

Holland Publishing Company, pp. 129- 148.

Cemy. V. (1985). A thermodynamical approach to the traveling salesman problem:

an efficient simulation algorithm. Journal of Optimization Theory and Applications,

45. pp. 41-55.

Chang, K-H., Cross, J.H. n. Carlisle. W.H.. Brown. D.B. (1992). A framework for

intelligent test data generation. Journal of Intelligent and Robotic Systems 5, pp.

147-165.

Chi, P.C. and Nau, D.S. (1988) Improving game board evalualor with genetic

algorithms. In Proceedings - 1988 Spring Symposium Series: Computer Gatne

Playing, pp. 29-30, Stanford, CA.

References 220

Clarke, L.A. (1976). A system to generate test data and symbolically execute

programs. IEEE Transactions on Software Engineering, vol se-2 no 3 (September)

pp. 215 -222.

Clarke» L.A. and Richardson, D.J. (1981). Symbolic evaluation methods. In B.

Chandrasekaran and Radicchi S. (Eds). Computer Program Testing. North-Holland

Publishing Company, pp. 65 - 102.

Clarke. L.A.. Hassell, J.. Richardson D.J. (1982). A close look at domain testing.

IEEE Transactions on Software Engineering, vol se-8 no 4, pp. 380 - 390.

Coward, P.D. (1988). A review of software testing. Information and Software

Technology, vol 30. no 3 (April) pp. 189-198.

Cooper, D.W. (1976). Adaptive Testing. In Proceedings of the 2nd International

Conference on Software Engineering, pp. 102 - 105.

Dammeyer, F. and Voss S. (1993). Dynamic tabu list management using the reverse

elimination method. Annals of Operations Research.

Davis. L. (1985). Job shop scheduling with genetic algorithms. In Grefenstette, JJ

(Ed.), Proceedings of the First International Conference on Genetic Algorithms.

Lawrence Erlbaum Associates, Hilldale, NJ, 1985.

Davis, L. (Ed.) (1987). Genetic Algorithms and Simulated Annealing. Morgan

Kaufmann Publishers, Inc. Los Altos, CA.

References 221

Davis, L. (1991). Handbook of the Genetic Algorithms, Van Nosirand Reinhold,

New York.

Davis, T.E. and Principe, J.C. (1993). A simulated annealing like convergence

theory for the simple genetic algorithm. In Proceedings of the Fifth International

Conference on Genetic Algorithms^ pp. 174 - 181.

Davis, T.E. and Principe, J.C. (1993). A Markov chain frameworic for the simple

genetic algorithm. Evolutionary Computing 1(3), pp. 269-288.

DeMillo, R. and Systems Research Laboratories, Waukesha. Wisconsin, (1980).

Mutation analysis as a tool for software quality assurance. In Proceedings of

Compsac, pp. 390 - 393.

DeMillo, R.A., McCracken, W.M., Martin R.J., Passafiume J.F. (1987). Software

Testing and Evaluation, The Benjamin/Cummings Publishing Company. Inc.

DeMillo, R. and Offutt A.J. (1988). Experimental results of automatically generated

adequate test sets. In Proceedings 6th Annual Pacific Northwest Software Quality

Conference, September. Portland. Oregon, USA pp. 209-232.

Dowsland, K.A. (1993). Simulated Annealing, In Modem Heuristic Techniques for

Combinatorial Problems, Reeves. CR ed. Blackwell Scientific Publications. Oxford.

Duran, J.W. and Ntafos, S.C. (1982). A report on random testing. In Proceeds of the

5th International Conference on Software Engineering, pp. 349 - 356.

References 222

Duran. J.W. and Ntafos, S.C. (1984). An evaluation of random testing. !EEE

Transactions on Software Engineering, vol se-10 no 4 (July) pp. 438 - 444.

Farrar, S.V. (1995). Optimisation models for corporate taxation in capital budgeting.

PhD Thesis, University of Plymouth.

Floyd, R.W. (1967). Assigning meanings to programs. In Proceedings of the

Symposium on Applied Mathematics. Vol 19, Providence RI: American

Mathematical Society, pp. 19-32.

Fogarty, T.C. (1993). Reproduction, ranking, replacement and noisy evaluations:

experimental results. Proceedings of the Fifth International Conference on Genetic

Algorithms, pp. 634.

Forrest, S. and Mitchell, M . (1993). Relative building-block fitness and the building

block hypothesis. Advances in Neural Information Processing Systems 6. San

Mateo, CA. Morgan Kaufmann. pp. 109- 126.

Forrest, S. and Mitchell, M . (1992). What makes a problem hard for a genetic

algorithm? Some anomalous results and their explanation. Machine Learning 13,

pp. 285 -319.

Fosdick, L.D. and Osterweil, L.J. (1976). Data flow analysis in software reliability.

ACM Computer Surveys 8(3):305-330. September.

References 223

Geist R., Offutt, A.J.. Harris, F.C. (1992). Estimation and enhancement of real-time

software reliability through mutation analysis. IEEE Transactions on Computers, vol

41 no 5 (May) pp. 550-558.

German S. and German D. (1984). Stochastic relaxation, Gibbs distributions, and

the Bayesian restoration of images. IEEE Trans, on Pattern Analysis and Machine

Intelligence, PAMI-6. pp. 721-741.

Glover. F. (1989). Tabu Search - Part I . ORSA Journal on Computing. Vol 1, No 3.

pp. 190-206.

Glover, F. (1990). Tabu Search - Part H. ORSA Journal on Computing. Vol 2. No

3, pp. 4-32.

Glover, F., Taillard, E., de Werra, D. (1993). A user's guide to tabu search. Annals

of Operations Research 41, pp. 3-28,

Glover. F. and Laguna M . (1993), Tabu Search. In Reeves, CR (Ed.), Modem

Heuristic Techniques for Combinatorial Problems, Blackwell Scientific Publications.

Oxford.

Glover, F. (1994). Tabu search for nonlinear and parametric optimization (with links

to genetic algorithms). Discreet Applied Mathematics, ^9. pp.231 -235.

Goldberg, D.E. and Segrest. P. (1987). Finite Markov chain analysis of genetic

algorithms. In: Genetic Algorithms and their Application: proceedings of the

References 224

Second International Conference on Genetic Algorithms. Lawrence Earlbaum

Associates, Hillsdale, NJ.

Goldberg, D.E. (1989| Genetic Algorithms in Search, Optimization and Machine

Learning, Addison Wesley, Reading, MA.

Goodenough, J.B. and Gerhart. S.L. (1975). Toward a theory of test data selection.

IEEE Transactions on Software Engineering, vol se-1 no 2 (June) pp. 156 - 173.

Hedley, S. and Hennell, P. (1984). The cause and effect of infeasible paths in

computer programs. In Proceedings of the 8th International Conference on Software

Engineering, lEEE.(August), pp. 259 - 266.

Holland, J. (1975). Adaptation in Natural and Artificial Systefns, University of

Michigan Press, Ann Arbor, ML

Holmes, S.T., Jones, B.F., Eyres, D.E. (1993). An improved strategy for the

automatic generation of test data. Software Quality Management.

Horner, A. and Goldberg, D. (1991). Genetic algorithms and computer-assisted

music composition. In RK Belew and LB Booker (Eds), Proceedings of the Fourth

International Conference on Genetic Algorithms, pp. 437 - 441.

Howden, W.E. (1976). Reliabihty of the path analysis testing strategy. IEEE

Transactions on Software Engineering, vol se-2 no 3 (September) pp. 208 - 215.

References 225

Howden. W.E. (1980). Functional program testing. IEEE Transactions on Software

Engineering vol se-6 no 2 (March) pp. 162 - 169.

Howden. W.E. (1981). Errors, design properties and functional program tests. In B.

Chandrasekaran and Radicchi S. (Eds). Computer Program Testing North-Holland

F*ublishing Company, pp. 104- 127.

Howden. W.E, (1981). Completeness criteria for testing elementary program

functions. In Proceedings of the 5th conference of Software Engineering, pp, 235 -

243.

Howden, W.E. (1982). Weak mutation testing and completeness of test sets. IEEE

Transactions on Software Engineering, vol se-8 no 4 (July) pp. 371 - 379.

Howden, W.E. (1985). The theory and practice of functional testing. IEEE Software

(September) pp. 6-17,

Ince, D. and Hekmatpour. S. (1984), An evaluation of some black-box testing

methods. Technical report no 84/7 Computer Discipline, Faculty of Mathematics

Open University 1984.

Ince. D. (1987). The automatic generation of test data. The Computer Journal, vol

30 no 1, February, pp. 63 - 69.

Jepson, D.W. and Gelait, C D . Jr. (1983). Macro placement by Monte Carlo

Annealing. In Proceedings IEEE Conference on Computer Design, Port Chester, pp

495-498.

References 226

Johnson. D.S., Papadimitriou. C.H.. Yannakakis. M. (1985). How easy is local

search? In Proceedings Annual Symposium on Foundations of Computer Science,

Los Angeles, pp 39-42.

Jones, B.F.. Sthamer. H.H.. Eyres, D.E. (1995). Generating test data for ADA

procedures using genetic algorithms. Genetic Algorithms in Engineering Systems:

Innovations and Applications. 12-14 September, pp. 65 - 70.

Jones, B.F., Sthamer. H., Yang. X.. Eyres. D.E. (1995). The automatic generation of

software test data sets using adaptive search techniques. In Proceedings of Third

International Conference on Software Quality Management, Vol 2. pp. 435-444.

Jorgensen, P.C. and Erickson, C. (1994) Object-Oriented integration testing.

Communications of the ACM. September p 30 - 38..

Kido, T., Kitano, H., Nakanishi, M (1993). A hybrid search for genetic algorithms:

combined genetic algorithms, tabu search, and simulated annealing. Proceedings of

the Fifth International Conference on Genetic Algorithms, pp. 641.

Kirkpatrick, S., Gellat, CD. . Vecchi M.P. (1983). Optimization by simulated

annealing. Science, 220 pp. 671 - 680.

Korel, B. (1990). Automated software test data generation. IEEE Transactions on

Software Engineering, Vol 16 No 8 (August) pp. 870-879.

References 227

Korel, B., Wedde,H.. Ferguson,R. (1992). Dynamic method of test data generation

for distributed software. Information arul Software Technology, Vol 34 No 8

(August) pp. 523-531.

Louis. S. and Rawlins G.J.E. (1992;. Predicting Convergence Time for Genetic

Algorithms. Technical Report TR 370. Indiana University, Department of Computer

Michalewicz. Z. (1992)., Genetic Algorithms + Data Structures = Evolution

Programs, Springer-Verlag. Berlin.

Miller, W. and Spooner D.L. (1976). Automatic generation of floating-point lest data.

IEEE Transactions on Software Engineering, vol se-2 no 3 (September) pp. 223 -

226.

Miller, B.L. and Goldberg, D.E. (1995). Genetic Algorithms, Tournament Selection

and the Effects of Noise. I l l iGAL Report No. 95006.

Muhlenbein, H. and Schlierkamp-Voosen. D. (1993). Predictive models for the

breeder genetic algorithm in continuous parameter optimization. Evolutionary

Computation 1(1), pp. 25 - 49.

Myers. Glenford J.(I979). The Art of Software Testing, John Wiley and Sons.

Nurmela, K.J. (1995) Constructing Spherical Codes by Global Optimization

Methods. Technical Research Report no 32. Helsinki University of technology

Digital Systems Laboratory.

References 228

Osterweil, L.J. (1983). Toolpack - an experimental software development

environment research project. IEEE Transactions on Software Engineering, vol se-9

no 6 (November) pp. 673 - 685.

Paige, M.R. and Holthouse, M..A. (1977). On sizing software testing for structured

programs. In Proceedings of 7th Annual International Conference on Fault-Tolerant

CompuUng, IEEE 28-30 July, Los Angeles, CA pp 217.

Park, K. and Carter, B. (1994). On the effectiveness of genetic search in

combinatorial optimization. Boston University Technical Report BU-CS-94-010.

Poston, Robert M . (1994). Automated testing from object models. Communication of

the ACM, September, pp. 48 - 59.

Priigel-Bennet, A, and Shapiro. J.L. (1994). Analysis of genetic algorithms using

statistical mechanics. Physical Review Letters 12{9), 1305 - 1309.

Qi, X. and Palmieri, F. (1994). Theoretical analysis of evolutionary algorithms with

a infinite population size in continuous space. Part 1: Basic properties of selection

and mutation. IEEE Transactions on Neural Networks: Special Edition on

Evolutionary Computation, 5(1), pp. 102-119.

Rayward-Smith, V.J. and Debuse, J.C.W. (1994). Generalised adaptive search

techniques. In Proceeding of AC EDC 94. Plymouth, England.

References 229

Romeo, F. and Sangiovanni-Vincentelli, A.L. (1985). Probablistic hill climbing

algorithms: properties and applications. In Proceedings Chapel Hill Conference on

VLSI, Chapel Hil l , NC pp 393-417.

Roper. M . (1994). Software Testing, McGraw-Hill. Inc.

Roper, M, , Maclean. I . , Brooks, A.. Miller, J., Wood. M . (1995). Genetic Algorithms

and the Automatic Generation of Test Data. Technical Report, University of

Strathclyde, Department of Computer Science Technical Reports.

Schaffer, J,D., Carvara, R,A,, Eshelman, L,J. and Das. K. (1989), A study of control

parameters affecting online performance of genetic algorithms for function

optimization. In J.D. Schaffer (Ed.), of the Proceedings of the Third International

Conference on Genetic Algorithms, Morgan Kaufmann Publishers. Los Altos. CA,

pp. 51-60.

Schaffer J.D. and Eshelman. L,J. (1993). On crossover as an evolutionary viable

strategy. Proceedings of the Fifth International Conference on Genetic Algorithms,

pp. 61-68.

Sthamer, H.H., Jones B.F.. Eyres. D.E. (1994) Generating test data for ADA generic

procedures using genetic algorithms. In Proceedings of the ACEDC 1994, University

of Plymouth, UK pp. 134- 140.

Storer, J.A., Becker. J,, Nicas. A.J. (1985). Uniform circuit placement. In P.

Bertolazzi and F. Luccio (Eds.J Proceeding International Workshop on Parallel

References 230

Computing and VLSI, Amalfi. Elsevier Science Publishers, Amsterdam, pp 255 -

273.

Syswerda. G. (1989). Scheduling optimization using genetic algorithms, In Schaffer.

J (Ed). Proceedings of the Third International Conference on Genetic Algorithms,

Morgan Kaufmann Publishers, Los Altos. CA. pp. 332-349.

Syswerda. G. (1989). Uniform crossover in genetic algorithms. In Schaffer, J (Ed),

Proceedings of the Third International Conference on Genetic Algorithms, pp. 2 - 9

Sysv/erda. G. and Palmucci. J. (1991). The application of genetic algorithms to

resource scheduling. In Belew. R, and Booker L.. (Eds). Proceedings of the Fourth

International Conference on Genetic Algorithms, Morgan Kaufmann Publishers. Los

Altos. CA. 1991. pp. 502 - 508.

Thornton. A.C. (1994). Genetic Algorithms Versus Simulated Annealing:

Satisfaction of large sets of algebraic mechanical design constraints. Artificial

Intelligence in Design '94. pp. 381-398.

Vignaux. G.A. and Michalewicz Z. (1989). Genetic Algorithms for the

transportation problem. Methodologies for Intelligent Systenu, 5, pp. 252-259.

White L.J. and Cohen E.I. (1980). A domain strategy for computer program testing.

IEEE Transactions on Software Engineering, vol se-6 no 3 (May) pp. 247 - 257.

References 231

White, L.J., Cohen, E.I.. Zeil, S.J. (1981). A domain strategy for computer program

testing. In B. Chandrasekaran and Radicchi S. (Eds), Computer Program Testing.

North-Holland Publishing Company , pp. 103 - 113.

White L.J. (1987). Software tesdng and verification. Advances in Computers, vol

26. pp. 335-394.

White, M.S. and Flockton, S.J. (1995). Modeling the behaviour of the genetic

algorithm. Genetic Algorithms in Engineering Systems: Innovations and

Applications. 12-14 September, pp. 349 - 356.

Wiston, P.H. (1984). Artificial Intelligence. Adison-Wesley Publishing Company.

Woodward, M.R., Hedley, D., Hennell, M.A. (1980). Experience with path analysis

and testing of programs. IEEE Transactions on Software Engineering, vol se-6 no 3

(May) pp. 278 - 287.

Xanthakis.S., Ellis,C., Skourlas.C, LeGall, A., Katsikas,S. (1992). Application of

genetic algorithms to software testing. In Proceedings 5th International Conference

on Software Engineering, Toulouse, France, December.

References 232

