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Abstract 

The focus of this thesis is on the use of adaptive search techniques for the automatic 

generation of software test data. Three adaptive search techniques are used, these are 

genetic algorithms (GAs), Simulated Amiealing and Tabu search. In addition to 

these, hybrid search methods have been developed and applied to the problem of test 

data generation. The adaptive search techniques are compared to random generation 

to ascertain the effectiveness of adaptive search. The results indicate that GAs and 

Simulated Annealing outperform random generation in all test programs. Tabu 

search outperformed random generation in most tests, but it lost its effectiveness as 

the amount of input data increased. The hybrid techniques have given mixed results. 

The two best methods, GAs and Simulated Annealing are then compared to random 

generation on a program written to optimise capital budgeting, both perform better 

than random generation and Simulated Annealing requires less test data than GAs. 

Further research highlights a need for research into the control parameters of all the 

adaptive search methods and attaining test data which covers border conditions. 
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Chapter One 

Introduction to Research 

requirements 
analysis 

design 

module 
specification 

1.1. Introduction 

Each day both amateur and professional programmers are at work producing software 

to perform a variety of tasks. Some of these may be perceived as trivial while others 

can carry universal implications. One application for a 

piece of software is a payroll system. The development 

of this should follow a prescribed course from the 

requirements analysis through module unit testing to 

maintenance, as illustrated in figure 1. On purchase of 

the software the expectation of the user is that it will 

work, that is it will make accurate payments by 

performing calculations and taking appropriate 

deductions. This would seem an important detail to 

anyone who has ever been paid, as an incorrect 

paycheque can cause great concern to the employer and 

employee. Because of the level of accuracy required it is 

Figure 1 - Method for therefore of great importance that the developers of 
Developing and 

Maintaining a System 
Lifecycle 

odule mo< 
design 

module 
coding 

module 
unit test 

system 
lest 

maintenance 
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payroll systems can assure their potential customers that their software will not only 

work, but work correctly. 

If the program contains errors, losses to the user could be significant and the 

implications to the reputation of the developer could be severe. One such actual error 

of significant financial ramifications was the NASA probe sent to Venus, which 

veered off course due to an erroneous FORTRAN repetition statement. This was 

interpreted as an assignment statement because in this language variables did not 

have to be declared, had they been, the assignment statement would have raised an 

error at the compilation stage (Bell et al, 1987). 

Unfortunately even i f a program is thoroughly tested it is no guarantee that it is 

without error. Bell at al (1987) describes a carefully controlled experiment which 

was carried out in 1978 with fifty-nine people all of whom worked in the computer 

industry with an average of eleven years experience. They were asked to test a sixty-

three line PL/1 program until they thought they had found all the errors (if any). The 

mean number of errors found was 5.7. the most 9, the least 3. The actual number of 

errors was 15 and of those, there were four which no one found. A further review of 

the results indicated that people spent more time testing the normal conditions 

instead of looking al special cases and invalid input situations. 

These examples raise an important issue for software developers, what kind of 

assurance can be given that a piece of developed software will work accurately? 

Although most software developers would never admit to errors in their code, errors 

are a fact of life in software development. Elimination of these errors is very 
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important, and the software testing process, and more specifically the generation of 

lest data for testing, is the main focus of this thesis. 

1,2. What is Testing? 

According to Myers (1979) the definition of testing causes many of the problems. He 

suggests some incorrect definitions of testing include ^Testing is the process of 

demonstrating errors do not exist", *The purpose of testing is to show that a program 

performs its intended functions correctly", and 'Testing is the process of establishing 

confidence that a program does what it is supposed to do." A problem with these 

definitions is that it is impossible to prove that a piece of software has no errors even 

if a program performs the task for which it was designed. Myers (1979) feels that the 

reverse of these definitions is what testing should be, and his definition is: 

"Testing is the process of executing a program with the intent of finding errors." 

For Myers (1979), testing should be a destructive process of trying to find errors in a 

program. A successful test case is one that causes a program to fail and the eventual 

goal of delivering a degree of confidence in the program can only be done by a 

thorough exploration of errors. 

The economies of testing limit how much testing will take place. Exhaustive testing 

which looks at all possible combinations of test data, both valid inputs and possible 

inputs, is extremely costly and the amount of test data required borders on infinity 

(Myers, 1979). Therefore the objective is to minimise the testing investment while 

maximising the number of errors found by a finite test set (Myers, 1979), but 

maximising errors resolved and minimising investment on a software product can be 
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mutually exclusive goals. However as the total quality of a deliverable software 

product is a key issue to software developers and their reputation, a great deal of 

time, effort and research has to be placed into designing effective testing techniques. 

There exist numerous developed testing techniques, several of which are discussed in 

chapter 2. 

1.3. Objectives of Research 

Many developed testing techniques require test data and the generation of that test 

data is the main focus of this thesis. The research develops work carried out by 

Xanthakis et al (1992) in the use of genetic algorithms to generate test data for 

program testing. Their research reports that genetic algorithms have the potential to 

outperform random test data generation. Similar work has been done independently 

at the University of Glamorgan and has been reported in Sthammer et a/ (1994). The 

first objective of this research was to develop a tool which could automatically 

prepare a function (module of a larger program) for testing by an analysis of the test 

code, a generation of the flow graph which helps to determine the paths through the 

code, and finally to measure the coverage level of a function accomplished by 

running the program with test data. 

The goal of this research was to determine the effectiveness of adaptive search 

techniques for test data generation in comparison to random test data generation. An 

adaptive search technique developed to work well in most search circumstances may 

not perform as well when the search space is not normally structured such as with 

regular peaks and valleys. Some techniques may improve performance and by 
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combining methodologies in a hybrid form even more satisfactory results could be 

gained. Therefore^ presented in this thesis are some new forms of the standard 

adaptive search techniques which are compared to their original form. 

A final goal of this study was to lay a course for the examination of adaptive search 

techniques and their use for software testing. As a great deal of lest data can take a 

long time both to generate and run through a function under test, it would be 

advantageous to reduce the time while increasing the test effectiveness. While as 

Myers (1979) says it can not be proven that no error exists, to find most existing 

errors in a shorter time period would be of benefit to the software development 

iifecycle. 

1.4. Research Plan 

As slated, the goal of this research was to investigate adaptive search techniques for 

software test data generation. In order to achieve this goal the following research 

plan was used: 

1. An ongoing literature search encompassing all forms of software testing (static 

and dynamic) was conducted to ascertain methods used and progress on 

strategies. This confirmed Xanthakis et al (1992) idea that using genetic 

algorithms for test data generation was a viable yet unexplored method for 

dynamic testing; 

2. Research was conducted on the possibility of automating the process of testing 

from choosing the function to be tested, establishing paths through the function, 
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the generation of test data, and finally to return anomalies to the user. This 

resulted in the development of a tool which will perform these steps; 

3. This tool was then used for the generation of test data using genetic algorithms. 

Results gathered using genetic algorithms were favourable when compared to 

those of random test generation. Research into other adaptive search techniques 

was performed (Simulated Annealing and Tabu Search), their suiicture and 

design is described and the results for these techniques given; 

4. Results indicated that adaptive search techniques when combined to form hybrid 

methods perform better in some circumstances than their predecessors GAs, 

Simulated Annealing and Tabu search. 

This research has developed a tool for the generation of test data and evaluated the 

use of a number of adaptive search techniques in this role. 

1.5. Summary of Chapters 

As the purpose of this chapter is to introduce the subject matter, present the 

objectives of the research and a research plan, what follows is a summary of 

subsequent chapters in the thesis. 

Chapter 2 - Software Testing 

This chapter introduces software testing and divides testing into two categories, static 

and dynamic testing. When further broken down these techniques can be divided 

into structural or functional methods. A final section of the chapter introduces lest 

effectiveness ratios and how these are used to measure the coverage level of a test. 
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This chapter builds upon techniques already available in the literature and does not 

claim any original contribution to the knowledge of the area. 

Chapter 3 - A Tool for the Generation of Test Data 

The purpose of this chapter is to introduce a tool for software testing, which includes 

a breakdown of the method used and the data required of a function, in order to 

produce a flow graph which is a map of all paths through a piece of code. This 

information is used to distinguish the information on the function, such as branches 

and linear code sequences and jumps (LCSAJs), which are segments of code from 

one point, a start or decision point, through to the next decision point in the code. 

The test data will then attempt to exercise these branches and LCSAJs. 

Chapter 4 - Random Testing 

This chapter is an introduction on random testing, the most common form of test data 

generation. The purpose of this chapter is to illustrate how the comparison between 

random generation and adaptive search techniques will occur. 

Chapter 5 - Genetic Algorithms - A Brief Introduction 

For the benefit of readers not familiar with adaptive search, such as those involved in 

software testing, each test technique will begin with an inu-oduction of the technique, 

a short demonstration in a search environment, before being applied to the test data 

generation. A chapter has been devoted to an explanation of the many methods and 

the theory incorporated in Genetic Algorithms. While this chapter does not profess 

to contribute to the knowledge of Genetic Algorithms it is hoped the reader will get a 
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focused view of Genetic Algorithms with the appropriate references for future 

research. 

Chapter 6 - Automatic Test Data Generation Using Genetic Algorithms 

This chapter uses genetic algorithms to generate test data. Two types of testing are 

attempted, the first looks al the LCSAJs and branches through a piece of code, while 

the second exercises the paths though a function under test. This chapter represents 

an original contribution of knowledge to the field of software testing using Genetic 

Algorithms. While this method of test data generation has been applied before, 

(Xanthakis, 1992: Sthamer, 1994) the method of data collection, search space 

recording and the approach necessary to achieve *black-box' testing are all new. 

Chapter 7 - Simulated Annealing 

Simulated Annealing has been applied to the task of test data generation using the 

same sample function under test as used in chapter 6. A comparison has been 

performed of the acceptance probability rale to determine the most efficient settings. 

A literature review has not revealed any previous use of Simulated Annealing for the 

generation of test data, and the use of Simulated Annealing to lest data generation 

constitutes an original contribution to knowledge. Finally, a hybrid GAs-SA is used 

for the same test program. 

Chapter 8 - Tabu Search 

This chapter includes a discussion of two related search techniques. First to be 

introduced is hill-climbing followed by Tabu search which builds on the simple 
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methods involved in hill-climbing. Using Tabu Search for the automatic generation 

of test data is an original contribution to the field of test data generation. The results 

of hill-climbing are not as promising as other search techniques, and even random 

testing produces better results. While the results of hill-climbing were poor. Tabu 

search performed almost as well as the other adaptive search methods. A hybrid 

GAs-TS was developed to see i f it would improve ihe results and the philosophy of a 

Tabu list was used in conjunction with Simulated Annealing, These techniques are 

an original contribution to knowledge in the field of adaptive search techniques. 

Chapter 9 - The Results of Adaptive Techniques on a Suite of Test Functions 

After demonstrations of the techniques in the previous chapter a more complete suite 

of test functions was used. This will determine whether adaptive search techniques 

can outperform the results of random testing. A final aspect is the introduction of 

time measurements to the testing procedure. Is lime a factor? As faster computers 

are developed it will be interesting to compare these results on a time basis to 

determine whether the extra effort involved in designing adaptive techniques is worth 

the savings in run time. This comparison of techniques is an original contribution to 

knowledge. 

Chapter 10 - A Demonstration of Automatic Test Data Generation on a 

Program which Optimises Capital Allowances for Company Taxation 

The final demonstration in this thesis uses the adaptive search techniques described 

here to derive test data for a program written to optimise the system of Capital 

Allowances used in company taxation. This program was written with the intention 

Chapter 1 9 



to optimise the calculations using Genetic Algorithms and Simulated Annealing, but 

it is good programming practice to test the functions prior to optimisation. As both 

the size of the search space and the number of branches. LCSAJs and paths through 

the code is large, this problem is ideal for comparing the test data generation 

techniques in a *real-Iife' environment and is an original contribution to knowledge 

in the field of adaptive search techniques. 

Chapter 11 - Discussion and Future Research 

The aim of this chapter is to review the results received and contains a discussion of 

how robust these methods might be compared to random test data generation. 

Included is a review of the strengths and weakness of this research and a 

consideration of future research which needs to be performed. 

Chapter 12 - Conclusion 

The concluding chapter ties together the ideas presented throughout the thesis, and 

offers some thoughts on practical implementation. 

1.6. Conclusion 

This chapter offers an introduction to the subject of this thesis and discusses why the 

area of software testing and testing tools is important to the software development 

community. A discussion of the objectives is given along with the research plan that 

was followed in the comparison of test data generation techniques. In conclusion is 

a breakdown of each chapter which aims to point out the contribution of knowledge 

contained within. 
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Chapter Two 

What is Software Testing? 

2.1. Introduction 

The development of the very first piece of computer software was probably followed 

by a complaint that it did not work as expected. Total Quality Management and 

Zero-Defects are important benchmarks and should be applied to computer software 

and the software development process. Therefore it is necessary to devise methods to 

test software modules quickly, efficiently and completely, prior to the delivery date. 

A critical system relies on the software that drives it and the users expect it to contain 

no errors. Errors are classified by Goodenough and Gerhart, (1975) into two groups, 

performance or logic. Performance errors are a failure to produce results within a 

specified or desired time and space limitation, whereas logic errors deliver incorrect 

results regardless of the time and space required. Erroneous implementation is the 

most common fault in software according to Goodenough and Gerhart, (1975). 

Some of these errors are summarised as follows: 

• Missing Control Flow Paths: The cause, a failure to test conditions, 
and the result, an incorrect execution (or non-execution). Failure to 
test for a zero divisor before a division in Fortran is an example. A 
program with this type of error will be able to execute all control 
flow paths without detection. 

• Inappropriate Path Selection: An incorrect condition may cause an 
action to perform or not perform. If the code is written I F X, 
instead of I F X and Y an action can occur when X is true and Y is 
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false. It is possible to execute aJI branches and statements and not 
delect this type of error. 

• Inappropriate or Missing Action: This results from errors such as an 
incorrect calculation (W*W instead of W+W), failing to assign a 
value to a variable or calling a function with a wrong argument list. 
If all statements are executed most of these errors will be caught, 
but i f errors only exist under certain condition they may not be 
found. 

Goodenough and Gerhart (1975) were the first to establish a sound theoretical basis 

for testing and their 'Fundamental Theorem of Testing' has been used as a model for 

formalising testing concepts (White. 1987). Their theorem states that there always 

exists a finite test set that reliably determines the correctness of a given program over 

its entire input domain. They further define a *test selection criterion' which 

specifies conditions that must be satisfied by a finite test set. For example, i f a 

program specifies that all input variables be integers, it might be specified that all test 

data sets contain both a positive and negative integer and a zero (White,. 1987). 

Therefore, two potential test sets can be (-5,0,12) and {-1,0,8}. 

It is known therefore that there exists a test data set. but building such a finite set is 

*undecidable* as proved by Howden (1976). A problem is described as undecidable 

or unsolvable i f no algorithm can find a solution (While, 1987). The 'halting 

problem' was influential in defining what is undecidable. It asked whether any given 

Turing machine will halt given an arbitrary input. To prove the undecidability of a 

problem, it must be demonstrated that the decidability of the given problem implies 

the decidability of the halting problem, which would be a contradiction. 

Undecidability concludes that no computing machine can be designed which given an 

arbitrary program and input, will always terminate. Of course this problem can be 
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avoided by a study of code loops lo determine if they terminate under all conditions 

(White, 1987), and this will be discussed in later 

sections. 

To further illustrate the issue of decidability in the 

structure of a computer program, the digraph in 

figure 2 will be used. This digraph consists of an 

entry node with no incoming nodes and a terminal 

node with no arcs leaving it and should consist of a 

sequence of arcs from the entry node to any specified 

node through to the terminal node. This, referred to 

as the directed path, should exist for every node 

Figure 2 - Sample Directed 
(White. 1987). Graph (Digraph) 

A directed path from the entry node to the terminal node on the graph is called a 

control path. Paths which traverse the same loop for different lengths of lime are 

specified as distinct control paths. The result is that the number of control paths can 

be infinite. However, not all control paths are executable. If there is input data to 

satisfy a path condition then the path is executable. If no test data exists then the 

path is considered infeasible, and not available for testing (White, 1987). Therefore 

to determine in advance which paths are executable and which are infeasible is 

undecidable as a test data set can not be built which will satisfy all paths. 
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What is possible is to search for test data which will execute the feasible paths of a 

program and while there can be no specific algorithm developed for this purpose, 

many techniques have been developed using heuristic or ad hoc methodologies. 

2.2. Software Testing 

There are a number of strategies for designing testing processes which can be 

combined in a *pick'n mix' fashion to develop a methodology. Very broadly these 

strategies can be distinguished as static, dynamic, functional or structural. Coward 

(1988) offers this distinction between the strategies: 

'A functional strategy uses only the requirements defined in the 
specification as the basis for testing, whereas a structural strategy is 
based on the detailed design. A dynamic approach executes the 
software and assesses the performance, while a static approach 
analyses the software without recourse to its execution*. 

A more detailed definition is given in the following subsections. 

2.2.1. Static Analysis 

In static analysis a program is not executed, the review is performed on the 

requirements analysis and design documents. This is a manual or automatic process 

which searches for errors in syntax or structural properties. Types of errors 

discovered can be in language syntax, misspellings, punctuation, line sequencing or 

specification elements (Andriole, 1986). The general form of a static analysis tool is 

shown in figure 3. These techniques can be applied to all stages of product 

development from the requirements statement to the user manual. Manual inspection 

which can consist of desk checking, inspection and walkthroughs have advantages 

over automatic techniques in that more than one perspective can be addressed while 
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the program is being examined, such as a review of both high level and detailed 

properties as well as allowing the analyst to apply various heuristics or subjective 

judgements. Unfortunately this sort of inspection can be dull and time consuming 

and as the size of a piece of software grows the inclination to compromise quality 

increases (Andriole, 1986). 

Standards, Guidelines. 
Criteria 

Product 
Specification 

Analysis of 
Fonn and 
Structure 

Rqiorts 
and 

Diagnostics 

Figure 3 - General Form of Static Analysis 

Automated static analysis tools operate on both the source code and the requirements 

and design specifications. There are two kinds of automated tool, the first gathers 

and reports information about a program but does not usually search for a particular 

type of error. The second tool detects specific classes of error or anomalies in a 

program. Examples include parsers which determine the adherence of a program to 

the language syntax; analysis techniques to test consistency of parameter interfaces; 

consistency checking of variables to their declaration; and reviewing code for 

incorrect sequencing such as trying to read from a file before it is opened (Andriole, 

1986). 

Static testing techniques include symbolic execution, program proving and anomaly 

analysis. 
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2.2.2. Dynamic Analysis 

Dynamic analysis requires the software to be executed. While it is possible through 

static analysis to determine i f a directed path exists between two nodes of the control 

flow graph, it is not possible to tell if this path is executable. Analysis routines 

inserted into a program will record the paths executed, thus keeping a record of 

exercised portions of the code (Korel, 1990). The record lists execution of program 

statements, branches or code jumps as well as identifying particular areas of code 

which may be unreachable. Figure 4 is the general form of this analysis tool which 

illustrates how the functional analysis of the code through path selection and testing 

algorithm joins with the specification to compare and analyse the program. 

Specification 
of Fonctxon&l 

Intent 

Algorithm 
SpeciTicatian 

FathA'ariable 
Selection 

Fimcdonal 
Analysis 

Comparison 
and 

Analysis 

Evaluation 
and 

Diagnostics 

Figure 4 - General Form of Dynamic Analysis Testing Tool 

Dynamic analysis can act as a link between functional and structural testing. A set of 

test cases are generated through functional testing, the execution of which may be 

monitored by dynamic analysis. The program can then be examined structurally to 

determine test cases for areas which may not have been exercised. This results in the 

knowledge that the whole program is being tested and aims to reduce unexpected or 

redundant code. 
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Dynamic testing techniques include random testing, domain testing, cause-effect 

graphing, adaptive perturbation testing, compulation testing, domain testing, 

mutation analysis and automatic path-based test data generation. 

2.2.3. Functional Testing 

Selection methods which attempt to derive test data to confirm that a function, as 

determined by the specification, is correctly implemented, are known as functional 

testing methods. Most are black-box methods, as there is no concern for the structure 

of the program in contrast to white-box testing. White (1987) states that this method 

has two problems, firstly a program can contain functions which were not in the 

original specification which needed to be tested, and secondly there are no formally 

identified methods for performing these tests, therefore the results of testing can only 

be of limited use. 

Howden (1980;1981a; 1981b;1985), however, has developed an underlying theory of 

functional testing which attempts to overcome the problems described above. 

Howden feels that in addition to testing the functions specified in the requirements, 

an attempt should be made to mimic the development process of the program by 

testing the simple functions and routines before the more complex procedures. His 

theory consists of two elements, functional synthesis and testability. He suggests that 

these four types of synthesis should be tested in addition to those functions defined in 

the specification and requirements. 

• Algebraic synthesis - Algebraic expressions in variable reference either 
numerical or Boolean values; 

• Conditional synthesis - IF-THEN-ELSE constructs, built from algebraic 
expressions; 
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• Iterative synthesis - Loop iteration such as FOR-NEXT or WHILE, the 
predicate determines termination and the body of the loop makes an 
additional function; 

• Control synthesis - State transitions models are used to give descriptions 
of states which can not be quantified such as "improper input data" or 
"termination". 

To test a program can be quite simple, but to be testable a test must be able to control 

its input and observe its output. Unknown input produces untraceable output. The 

following is a definition of testability from a US software engineering standard: 

Testability. (1) The degree to which a system or component facilitates 
the establishment of test criteria and the performance of tests to 
determine whether those criteria have been met. (2) The degree to 
which a requirement is stated in terms that permit establishment of 
test criteria and performance of tests to determine whether those 
criteria have been met. 

IEEE 610.12 

One definition of the testability of a program is its sensitivity to faults when inputs 

are chosen at random from a specific set of input variables. Its sensitivity to faults 

indicates testability, therefore an exceptionally sensitive program will be 

exceptionally testable. 

According to Howden (1980), a functional test is one which reviews both the 

functional synthesis of the programmer and is testable. The functions to be tested 

should be determined from the following sources: 

• specifications - if the specification is casual or unofficial then the verbs 
used will indicate functions to test, formal specifications will indicate the 
functions in assertions, tables or formulas; 

• programs - from elementary program statements, subroutines and 
subpaths; 

• design information and documents - useful to determine functions and to 
map design functions to specific aspects of code. 
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Identified functions should be reviewed for a variable range which covers the entire 

scope of possible input and output, including both extreme values just outside the 

permitted range and those just inside the range. Additional illegal values need to be 

applied to review error-catching procedures, as well as tests on arrays or vectors. 

Of the dynamic testing techniques listed in section 2.2.2. functional techniques 

include random testing, domain testing, cause-effect graphing and adaptive 

perturbation testing. 

2.2.4. Structural TesUng 

A structural test executes the program under test to attain a coverage level of the 

code, and this coverage level consists of various tests of code which will suggest 

reliability. Coverage tests can check whether all statements or branches in a program 

are exercised, or that all linear code sequence and jumps (LCSAJs) have been 

executed at least once. An LCSAJ is a segment of code beginning at a decision or 

loop and concluding when a transfer of control has been made. 

In an ideal worid the best case testing scenario would be an exhaustive search with 

all possible paths through the code tested. Problems arise as the number of paths 

increase. All combinations and conditions must be considered and ihis number 

increases if iterations are not constant but rely on input data. This results in 

combinatorial explosion, therefore limits are required for loops to restrict the size of 

the search space. 

A second obstacle to exhaustive testing is infeasible paths, as it is impossible to 

ascertain in advance how many paths can be exercised. It is simple, under certain 
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restrictions, to determine the number of paths through a program using the following 

notations for the nodes of the digraph (Paige and Holthouse, 1977): 

sequence operator 

selection operator 

iteration operator 

Loops are restricted to activating zero and once. 

To illustrate this procedure, the program shown 

in figure 5. and its respective flow chart in figure 

6, will be used. 

Figure 6 - Flow Chart for Figure 5 

read_in(im a, int b) 
if (a>b) ihen 

print a 
else print b 
while a < b 

a = a+1 
end 

Figure 5 - Sample Code 

The flowchart in figure 6 can be rewritten as the following, 

l-2-(3+4)-5 (6-5)* -7, 

where each number represents the statement number in the code. The indicates an 

option, as in choosing either statement 3 *print a* or statement 4 *else print b\ these 

statements are mutually exclusive. 

The (x)*, which represents the loop, statements 5 and 6 in figure 5, is replaced with 

(x+0). This new expression will accommodate the loop to be exercised twice. The 
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first lime it will make sure the loop is not activated, that is *a>b\ and the second time 

it is activated at least once, that is *a<b'. The new expression is as follows, 

1-2 (3+4) -5 ((6-5)+0) -7. 

The final stage is to replace all the statement labels in the above expression with a 1, 

and then sum the equation, as shown below, 

1-1(1+1)1((M)+1)1 =4. 

The resulting value is the total number of paths through the code and these four paths 

are listed in table 1. 

Paths 
I) 1-2-4-5-6-5-7 
2) 1-2-3-5-6-5-7 
3) 1-2-3-5-7 
4) 1-2-4-5-7 

Table 1 - Potential Paths (Feasible And Infeasible) through Code 

Unfortunately one of these paths is infeasible, path 4 (if a>b is false in line 2-4 then 

a<b has to be true in line 5-6), While it is easy to count the number of potential paths 

through a piece of code it is impossible to determine in advance which paths are 

feasible. 

Testing methods which do not give as much coverage as exhaustive testing are 

available, with the advantage of speed. Of the static testing techniques listed in 

section 2.2.1, structural methods include symbolic execution, program proving and 

anomaly analysis, and of the dynamic testing techniques listed in section 2.2.2, 

structural methods include compulation testing, domain testing, mutation analysis 

and automatic path-based lest data generation. 
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2.3. Testing Techniques 

2.3.1. Introduction 

A complete breakdown of the techniques available for testing and their respective 

categories is given in table 2. The individual techniques are then discussed in the 

following sections. 

Structural Functional 
Static Symbolic Execution 

Program Proving 
Anomaly Analysis 

Dynamic Computation Testing 
Domain Testing 
Mutation Analysis 
Automatic Path-Based Test 
Data Generation 

Random Testing 
Domain Testing 
Cause-effect Graphing 
Adaptive Perturbation 
Testing 

Table 2 - Breakdown of Functional and Structural Techniques as Static or 
Dynamic Testing 

2.3.2. Symbolic Execution 

In symbolic execution, each input variable is replaced by symbolic values and the 

output is displayed using these symbols (Clarke, 1976). This output is then examined 

to determine whether the function tested has been used, hi the example in figure 7, 

the price of the product decreases as the quantity purchased increases, provided a 

certain margin of (cost-price) is met. While this program looks complicated. Price, 

Quantity and TotalCost can be assigned the algebraic value of P, Q and TC. If the 

execution of line one is the goal, the expected output is shown as a relationship 

between the input variables so that the symbolic values P,Q and TC become 

TC/0.90Q, Ta0.90P and 0.90PQ respectively. 
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CaIculateCosi(Quantity, Pricc,Cost) 
1 if (Quantity <, I and Price-Cost > 1.50) 
1.1 ToiaJCosi = (Price- (Price '0.IO))*Quantity 
1.2 else if (Quantity > I and Quantity < 4 and cost-price > 1.00) 
1.3 ToialCost = (Price - (Price*O.I5)) • Quantity 
1.4 else if (Quantity > 4 and cost-price > 0.50) 
1.5 TotalCost = (Price - (Price*0.20))*Quantity 
1.6 else 
1.7 ToialCost = (^antiiy*Price 
2 end 

Figure 7 - Sample Code to Demonstrate Static Analysis 

When there are a number of paths through the code as there are in figure 7, choices 

must be made as to which path is to be tested. A selected control path will use its 

path conditions as constraints expressed in terms of the symbolic input variables. 

Path feasibility is determined i f there exists an input and an output point to the code. 

Symbolic execution can illustrate problems effectively as long as the expressions are 

not too complex. As with all methodologies there is a difficulty in the handling of 

loops or iterations but the accepted method is for three executions, once when there is 

no execution of the loop, again for a single execution of the loop, and finally for two 

executions of the loop. It has been determined that symbolic evaluation can assist in 

the testing of branches, statements or paths in a function. Clarke and Richardson 

(1981) describe three types of symbolic evaluators; symbolic execution which is a 

path analysis technique; dynamic symbolic evaluation which relies on data to 

represenl the program; and global symbolic evaluation, a method of representing a 

program symbolically. 

2.3.3. Program Proving 

Program proving also involves an examination of the source code without input data. 

Floyd (1967) developed the most widely reported method called "inductive assertion 

verification". This method involves placing assertions at the beginning and end of a 
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selected procedure, each describing the function of the procedure mathematically. A 

correct procedure will demonstrate that the output procedure is true given a true input 

procedure. Program proving attempts to provide a proof that accounts for every 

possible iteration of a loop. If the output is incorrect it must be assumed that errors 

have occurred in either the program or the proof, and these must be rechecked. 

DeMillo et al (1980) argue that procedures can not be thought of as 'correct' but as 

'acceptable'. If a program was found to be 'acceptable' after being checked by a large 

user group then there is confidence in the program, the larger the group the greater 

the confidence. 

2.3.4. Anomaly Analysis 

Anomaly analysis begins with a review of the programming language syntax before 

the code is searched for errors possible within the language. Anomaly analysis 

systems such as Dave (1976), Faces (1974) and Toolpack (Osterweil, 1983) 

determine the following irregularities: 

• unexecuiable or island code 

• exceeded array boundaries 

• uninitialised variables 

• redundant variables 

• incorrect loop conclusion 

Anomaly analysis is performed by producing a flow graph, a scan of this graph will 

indicate any anomalies, such as no route leaving a particular node or a loop which is 

never accessed. It will not however, show infeasible paths, as this is not part of its 

structure. 
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Data flow analysis is one type of anomaly analysis. The flow of data from input to 

output is analysed and should indicate misspellings, confusion in variable names, or 

incorrect parameter passing. Although it is possible for these errors to exist in an 

otherwise 'correct* program it is good programming practice to ensure compliance 

with the functional requirements. 

2.3.5. Mutation Analysis 

Mutation testing is an error based testing technique (Demillo et al, 1980; Budd, 

1981; Howden, 1982; Geist, 1992; Holmes et aU 1993). Errors are added to copies 

of the code by a mutation of the original code with the intent of exposing the errors 

through testing. Given a program P which runs successfully under a data set. all 

mutated versions of P, the incorrect programs, should fail on at least one aspect of the 

test case. If a lest program which has failed is very similar in structure and design to 

the original then either the program under test is error-free, or the error has not been 

detected in the mutation process. In either case the test data set is very good. 

The mutation of the sample code from figure 5 is shown in figure 8. In the correct 

program. P is to be tested by some data D. a set of programs which vary from P by a 

single error chosen from a list of potential errors called M(P). 

Original Code P Muiated Code M(P), 
1. read_in(int a, int b) 
2. ifA>Bihen 

1. readjn(int a, ini b) 1. read_in(int a, int b) 
2. ifA>Bihen 2. i fA>Bthen 
3. do A 3. do A 
4. else do B 4. else do B 
5. whilea<b 5. while a < b 
6. a = a+l 6. a = a+l 
7. end 7. end 

Figure 8 - Mutation of Sample Code from Figure 5 
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M(P), 
1. read_in(int a, int b) 
2. ifA>Bihen 
3. do A 
4. else do B 
5. while a < b 
6. a = a+l 
7. return 

Figure 9 - Functionally Equivalent Program to Original Code 

Some of the mutant programs in M(P) will be functionally equivalent, such as shown 

in figure 9. The error which replaces the end statement with a return, has no effect 

on the logic of the subroutine and would be an equivalent mutant E(P) (DeMillo et 

a/, 1987). 

The programs in M(P) arc executed on the data sets, D. The results which are 

different from the results from P on the same data, D, become the set of mutants 

DM(P,D), the ones with the same results form E(P). A mutation score is the fraction 

of the number of non-equivalent mutants of P which are determined by using the test 

set D. I f m,e, and dm are the number of elements in M(P), E(P) and DM(P) 

respectively then the mutation score of D and P is defined by DeMillo et al (1987) as 

follows, 

ms(P,D) = dm(m-e). 

A high score indicates that D is very close to being adequate for P relative to the set 

of mutants for P. A low score illustrates a weakness in the test set D so that P is not 

distinguishable from F, the flawed program (DeMillo et al, 1987). Once a method 

for establishing M(P) has been developed the test data results can be calculated 

automatically, which substantially reduces the time required for this testing process. 

According to Budd (1981), the most common criticism is that mutation analysis 

requires a large number of altemative programs generated. In addition to this 
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problem, some programs and their mutants may be Recursively unsolvable', that is 

their mutation is difficult to detect and therefore are considered equivalent to the 

original code. Fosdick and Osterweil (1976) argue however that 70% of the 

equivalent mutants can be determined through basic automatic processes and that 

most of the remaining 30% can be eliminated through human detection. It is felt that 

less than 3% require a deep understanding of the program. 

2.3.6. Random Testing 

Random testing is the random selection of some subsets of all possible input values. 

Myers (1979) argues that this is probably the poorest methodology for test case 

design, although test results do "mdicate that random testing can be cost-effective for 

many programs including real-time software (Ince, 1987). Xanthakis et al (1992) 

claim that random testing should be considered as a minimum achievable by a 

technique for the automatic generation of test data, and as such may be taken as a 

baseline against which to compare and evaluate the efficacy of alternative techniques. 

In random testing a program is executed for a subset of test data and errors are 

detected by the failure of expected behaviour. Although only a subset, the amount of 

test data required to execute a segment of code can be quite large, especially i f very 

specific conditional statements exist in the program. I f in the sample code from figure 

5, the variables a and b were restricted to the range [0..20] and coverage of the path 

{1-2-3-5-6-5-7} was required, the number of variable combinations out of a total of 

441 which satisfy this path would be 21 or 5% of the entire search space. As the 

variable range increases the combinations which satisfy this path may reduce 

proportionally. 

Chapter 2 27 



One problem associated with random testing is the amount of human input needed to 

examine the test outcomes to determine if they are the expected outcome. 

Fortunately, not all outcomes will need to be examined, those which finish due to 

runtime errors will be self explanatory. One benefit of random testing, is that to 

perform this sort of testing one only needs a random number generator and a means 

of monitoring the structural program under test (Ince, 1987). 

2.3.7. Computational and Domain Testing 

Computational and domain testing are additional strategies for selecting test cases, 

both of which use the structure of the program to select paths. When an error in the 

flow of the program occurs it is a domain error, whereas when the test data follows 

the correct path but an assignment error causes the flow of control to go to an 

incorrect statement it is a computational error (White and Cohen, 1980). Domain 

testing, as discussed by White and Cohen (1980) and While et al (1981), illustrates 

that it is possible to construct test data for a set of programs which will detect a 

specific type of error, and as a by-product, uncover computational errors. Test data is 

selected on the basis of whether it is on or near the boundaries of each path domain, 

as it is believed that those points close to the boundary but still satisfy the condition 

are most sensitive to domain errors (Coward, 1988). Clarke et al (1982) argue 

however that large domain errors may remain undetected by the White and Cohen 

method and recommend additional strategies, V x V and N x N, which require more 

test points on the boundary points. 

The limitations which exist for all testing strategies affect domain and computational 

testing. The first, coincidental correctness, can occur when a specific test point 
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follows an incorrect path, but the output variables match those that would result from 

following a correct path. The second limitation that can occur is its inability to 

indicate that a path is missing, as no path oriented strategy can perform this 

remarkable feat. 

2.3,8. Partition Analysis 

Partition analysis, related to domain testing, looks at both the specification and the 

code. Its purpose is to reveal computational and domain errors. The first step is to 

use the specification, figure 10, to perform a symbolic evaluation, figure 11, where D 

represents the domains, C the associated computations and S the specification, and 

then perform another symbolic evaluation of the code, P, as in figure 12 (Roper, 

1994). The program code used to demonstrate this process was given in figure 7. 

From each of these symbolic evaluations a domain graph is created, figure 13 and 

figure 14, to illustrate the variable constraints, 

1. The customer is allowed discounts on purchases if the product has a certain margin (price-cost). 
2. If purchase 1 or less item margin must be 1.50, discount is 10% 
3. If purchasing 2 or 3 items margin must be 1.00 and discount is 15% 
4. If 4 or greater items margin must be 0.50 and discount is 20% 
5. If none of the discounts apply the full price is charged 

Figure 10 - Program Specification 

D[Si) Quantity <, 1 and margin > 1.50 
C[S,1 TotalCost = (Price-(Price*10%)) * Quantity 
D[S?1 Quantity <1 and margin < 1.50 
C[S?1 TotalCost = (Price * Quantity) 

(Quantity > 1) and (Quantity < 4) and margin > 1.00 
qs^i TotalCost = (Price - (Price* 15%)) * Quantity 
DfS4) (Quantity >I) and (Quantity < 4) and margin < 1.00 
C(S4l TotalCost = (Price* Quantity) 
DfS<il Quantity > 4 and margin > 0.50 
qssi TotalCost = (Price - (Price*20%)) * Quantity 

Quantity > 4 and margin < 0.50 
TotalCost = Price * Quantity 

Figure 11 - Symbolic Evaluation of the Specification 
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D[Pi ] Quantity $ 1 and (Cost-Price) > 1.50 
C[P|] TotalCost = (Price - (Price* 10%)) * Quantity 
D[P9] ^ D[P1] and (juantiiy > I and Quantity < 4 and (cost-price) > 1.50 
C[P-?1 TotalCost = (Price - (Pricc*15%)) * Quantity 
DfP-^] ;feD[PI]and ?tD[P2] and Quantity > 3 and (Cost-Price) > 0.50 
CfP-^l TotalC:ost = (Price - (Price*20%)) • Quantity 
D[Piil ^D[PI1and ?ftDfP2] and?fcD[P31 
C[P4] TotalCost = Price * Quantity 
D[Ps] output TotalCost to customer 

Figure 12 - Symbolic Evaluation of Program Code 

I " 

|D[S,1 \ 
D[S.] 

Quantity 

D[S.] \ 

Figure 13 - Domains Created by Symbolic Evaluation of Cost Program 
Specification 

r DIP,1 

2 3 4 

Quantity 

Figure 14 - Domains Created by Symbolic Evaluation of Cost Program 
Implementation 

The two graphs are then matched to determine i f the specification and implemented 

program agree. The implementation may trap some out of range data which is not 
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defined in the specification. This matching is shown in figure 15, the numbers within 

the brackets such as [23] indicate the corresponding line number from the symbolic 

evaluation in the program code [2] and the specification [3]. 

Finally test data is established from the domain boundaries as in figure 16. These are 

used to test the program. As will be discussed in chapter 4, Duran (1982;1984) used 

the method in a comparison with random testing, but found no added benefit. 

D[ 11 ] Quantity ^ 1 and (Cost-Price) > 1.50 

Q u i TotalCost = (Price-(Price* 10%))*Quanuiy 

D[23] * D[PI] and Quantity > 1 and Quantity < 4 and (cost-price) > 1.50 

C(23] TotalCost = (Price - (Price* 15%)) * Quantity 

0(35] 9iD[Pl]and 9iD[P2] and Quantity > 3 and (Cost-Price) > 0.50 

C[35] TotalCost = (Price - (Price*20%)) * Quantity 

D[46] '^DlPlJand *D[?2] and 5fiD[P3] 

C(46] TotalCost = Price * Quantity 

D[5Q] output TotalCost to customer 

Figure 15 - Matching of Both Evaluations (Symbolic and Implementation) 

Procedure Input Expected 
Partition Output 

cost - price Quantity 
D l l 1.51 1 10% off 

1.49 I no discount 
1.51 0 10% off 
1.49 0 no discount 

D23 1.01 2 15% discount 
0.99 2 no discount 
1.01 3 15% discount 
0.99 3 no discount 

D35 0.51 4 20% discount 
0.49 5 no discount 

Figure 16 - Domain Boundaries 

2.3.9. Cause-Effect Graphing 

High-level specifications of system characteristics are used to develop test cases for 

cause-effect graphing (Myers, 1979). Its strength is its ability to explore input 

combinations. The graph is a combinatorial logic network, making use of only the 
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Boolean operators *AND\ ^OR' and *NOT\ Myers (1979) suggests a number of 

steps to determine cases using cause-effect graphing: 

• Divide the specification into workable pieces - this might be a 
specification for an individual transaction as a cause-effect graph for the 
whole system would be too large; 

• Identify cause and effects - a cause is an input, such as a command typed 
at a terminal, an effect is an output; 

• Construct a graph to link cause and effect lo represent semantics; 

• Annotate graph to demonstrate impossible combinations of causes and 
illogical effects; 

• Convert graph to limited entry decision table, where conditions represent 
the causes, actions represent the effects and rules represent test cases. 

Cause-effect graphing is a systematic method of generating test cases representing 

combinations of conditions. According to Myers (1979), since cause-effect graphing 

requires the translation of a specification into a Boolean logic network, it gives a 

different perspective on the specification and is a good way to uncover ambiguities 

and incompleteness in specification. A further advantage is that as many aspects can 

be automated, it is attractive for functional testing (Andriole, 1986). 

2.3.10. Adaptive Perturbation Testing 

Adaptive perturbation testing is the first to introduce heuristics lo the testing 

methodology. Test data is selected automatically using a 'Parameter Perturbation 

Algorithm' which could include a gradient, probabilistic or heuristic search. Variable 

inputs are manipulated until the boundary of input variables is determined. Gradient 

techniques work best for smooth, continuous unimodal search spaces while 

probabilistic search is immune to plateaux, discontinuities and the highly granular 

search spaces. 
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According to Cooper (1976). heuristic search offers the best chance of success. 

Heuristics are established by the test engineer, and one method is to relate the data 

selection method to the system's performance. After application of a heuristic, a 

check is performed to determine the adequacy of the test set, the heuristic is then 

modified or a new heuristic chosen and run again. A good heuristic is added to the 

heuristic set, which is re-ordered and reused to attempt more successful searches. 

Holmes et al (1993) has used an adaptive test data generator which uses heuristics 

applied to historical test information to predict new test data. The aim was to 

produce test data which eliminated mutated versions of the code. Holmes et cl 

(1993) describes five different heuristics tried, the direct assignment heuristic, the 

alternating variable heuristic, the effectiveness of test data generated by the direct 

assignment and the alternating variable heuristics, linear predictor heuristic and the 

domain boundary heuristic. According to Holmes et al (1993), the domain boundary 

follower heuristic has proved successful in devising test data which exercise 

thoroughly a piece of software. This heuristic uses some of the principles of linear 

predictor heuristic, which is a linear extrapolation on each of the input variables. 

Once this is completed, points on the boundary are applied until searching is 

completed (Holmes et al, 1993). The problem with this approach is the large amount 

of computation lime required, partially solved by the direct selection of starting 

points. 
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2,3.11. Automatic Path-Based Test Data Generation 

Automatic path-based test data generation is used when a program is to be executed 

with the intention of achieving a particular 

level of coverage. Coverage refers to the 

amount of actual code which has been 

executed by the test and there are four types of 

coverage. Statement testing which requires 

that all program statements be executed at 

least once, is the simplest. In the sample code, 

figure 5, and the resulting flowchart, figure 17, 

the aim is to determine the- effect of all 

executable code and to specify any code which 

is unreachable. In this example the seven 

statements must be exercised. This method Figure 17 - Flow Chart of figure 5 

may at the outset appear efficient in determining the effects of all executable code 

and to specify any code which is unreachable. However only existing code will be 

tested, the else portion of an if statement will not be forced to execute unless it is 

explicitly written into the code. 

Branch testing rectifies this problem as test data is generated which will attempt to 

access all outcomes of program decision points. Therefore any if statement must be 

exercised for both true and false and any loop for looping zero, one or two times. 

Another testing mechanism introduced by Hedley and Hennell (1984) takes the 

measurement of branches and loops one step further by reviewing linear code 

sequences and jumps (LCSAJs). One interpretation of LCSAJs is to review 
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segments of code from one point, the start point or a decision point, through the next 

sequence of code or decision point, activating the segment of code from starting 

point to goal. The LCSAJs in the sample program are listed in table 3. 

LCSAJs Notes 
1-2-3-S True branch exercised 
1-2-4-5 False branch exercised 
3-5-7 loop NOT activated (True) 
4-5-7 loop NOT activated (False) 
3-5-6-5-7 Loop activated 1 time (True) 
4-5-6-5-7 Loop activated I time (False) 
3-5-6-5-6 Loop activated 2+ times (True) 
4-5-6-5-6 Loop activated 2+ times (False) 

Table 3 - LCSAJs through Sample Program listed in Figure 5 

Woodward et al (1980) and Hedley and Hennell (1984) have developed test 

effectiveness ratios for all three testing methodologies, shown in figure 18. Test data 

is required which gives a value-closest to one, for all three Test Effectiveness Ratios 

(TERs). 

number - o f - statements - exercised -at- least - once 
TERx 

TERi 

TERi 

total - number - o f - executable - statements 
number - o f - branches - exercised -at- least - once 

total - number - o f - branches 
number - o f - LCSAJs - exercised -at- least - once 

total - number - o f - LCSAJs 

Figure 18 - Test Effectiveness Ratios 

In addition to these methods is also total path coverage, which as discussed in section 

2.2.4, has the problem of infeasible paths. While the sample program only contains 

one infeasible path out of the four potential paths, the simple Trityp program which is 

described in chapter 9 contains only 10 feasible paths out of a possible 121. This 

makes it very difficult to statistically confirm coverage. 

The first step in path-based testing is to establish a program control flow graph as in 

figure 17, from which the paths, both feasible and infeasible, through the program 
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are then determined, and these were given in table 1. After the selection of a testing 

criterion, such as the near minimal set of paths to exercise, the final step is test data 

generation. Input data which will execute each test path is established, usually 

through symbolic execution which generates path constraints consisting of a set of 

equalities and inequalities for the input variables of the program, all of which need to 

be satisfied in order for the path to be traversed. 

Contrasting this symbolic approach, Korel (1990;1992) introduced a method of 

dynamic test data generation. Test data is developed using actual values of input 

variables. As the program is activated the flow of execution is monitored and the 

input variables responsible for an undesirable flow are noted and used to correct the 

program. Once the code is amended, it can be rerun on the input data to confirm the 

flow of execution is now correct. Chapter 3 demonsu-ates a tool which will determine 

the paths upon which coverage should be attempted. 

2.4. Conclusion 

This chapter has included a general discussion of software testing techniques in use 

and the emphasis has been on the wide variety of testing tools, methods, and results 

and their individual application to a specific aspect of software testing. This variety 

of testing techniques itself indicates that there is a definite need and desire for 

software testing tools and that no one method has been deemed perfect. This allows 

more and more types of testing techniques. One thing each dynamic testing medium 

requires though, is test data. Normal test data generation procedures have been 

performed by random generation, or by looking al the minimum and maximum 

border values in each variable range. Is there a better method? 
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Test data once generated is applied to the function that is being tested. A 

measurement of how the test data performs on the function needs to be taken, and 

TERs are used to measure the coverage of test code and are applicable to branch, 

statement, LCSAJs and path testing. What is introduced in future chapters, are 

adaptive search techniques for the generation of test data to effectively attain the 

specified TERs for a dynamic test. These adaptive search techniques aim to measure 

the structural coverage of a function under test, while keeping the amount of 

disturbance to it to a minimum. This means that only a small amount of recoding 

should be performed on the function under test so the test is on the original code, not 

what has been added as analysis routines. Therefore the testing will be performed as 

black-box testing with slight structural modifications. 
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Chapter Three 

A Tool for the Generation of Test Data 

3.1. Introduction 

Xanthakis et al (1992) suggests that a tool for the automatic generation of test data 

would be of inestimable value to the software development community, as it will 

permit the almost total automation of the review process. In order to ascertain what 

test data is required and what duty it is to perform, a thorough analysis of the code 

under test needs to be accomplished. This testing tool begins with an analysis of the 

code and concludes with a manual review of results of a test. The algorithm for this 

technique is in figure 19. 

Steps for Testing Tool 
1 Analyse the test code and determine function to be tested 
2 parse the function to determine the movement of conditional statements 
3 determine the nearest neighbours for each step of the code 
4 determine all potential paths using the nearest neighbour algorithm 
5 establish the testing metric to satisfy 
6 while desired coverage metric has not been attained 
6.1 generate test data using test data generation methods (chapters 6 - 8) 
7 the results are evaluated and exceptions are viewed manually 

Figure 19 - Algorithm for Testing Tool using Test Data Generation 

3.2. Steps of the Technique 

In the following subsections each of the steps will be discussed with the exception of 

steps 6 and 6.1 which will be featured in chapter 6 through 8. The demonstration of 
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this method will be performed using the simple flowchart in figure 20 and program 

listed in figure 21. 

1 input (int x, int y, int z) 
2 i f ( x + y < z ) 

if(x<y) 
X = z - y 

else y = z - X 
else X = z+y 
i f ( x < y ) 

x = z 

3 
4 
5 
6 
7 
8 
9 end program 

Figure 20 - Flow Chart of Figure 21 F"g"re 21 - Function Under Test 

3.2.1. Analyse the Test Code 

The first step is to analyse the code. A program which requires examination usually 

consists of many individual functions. Each function should be tested separately, and 

therefore an analysis of the code needs to be performed to determine how many 

functions there are, their name, and corresponding input variables. The results of the 

search are printed out to the user, and could appear as in figure 22. 
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Functions available to test 

1. input (requires 3 variables (x,y,z)) 
2. calculate (requires 3 variables (x,y,z)) 
3. output (requires 2 variables (x,y)) 

Figure 22 - Demonstration Printout after Initial Analysis of the Potential Code 

The user selects the function to examine, each of which should be dealt with 

individually. On completion of the individual test the entire program can be 

scrutinised with the same data to determine the final status of the program under 

examination. 

3.2.2. Parse the Function Under Test 

Once a function is chosen the user is then required to give the range of the variables, 

or these values could be read from a file. In this sample program there exist three 

input variables x,y. and z and the chosen range of each variable for this example will 

be [0..20]. This function consists of two *if then/else' statements, one which is a 

nested *if then/else', and one solo * i f statement. To illustrate the program design, as 

in figure 21, knowledge is required of the level of each conditional statement, for 

example line 2, in figure 21, is at the top level or level I , whereas line 3 is at level 2. 

This can be done through a parsing of the code. The parser analyses each statement 

and attempts to separate out each portion of code. A conditional statement in *C' 

does not require brackets, but in order to determine the level of such statements these 

brackets must be entered. To ascertain the level of each statement all that is required 

is a counting of brackets. Figure 23 is a bracketed version of figure 21. 
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1 void input (int x, int y. int z) 
(CD 

2 if(x+y <z) 
{® 

3 if(x<y) 
(® 

4 X = z-y; 

5 f 
else 
{® 

6 y = z-x; 
1 

1 
7 else 

(® 
8 x=2+y; 

I 
9 if(x<y) 

10 x=z; 

1 
} 

Figure 23 - Figure 21 with Added Brackets (<D etc. is Uie number of opening brackets 
used) 

Therefore in this function there are six opening and closing brackets. If on reading 

the code the (D is reached, and there have been no closing brackets for ©, this would 

indicate to the parser that this conditional statement is nested within the previous 

opening brackets. This division is necessary because it is possible to have a number 

of nested Mfs' all on the same line, which would be difficult to count. The results of 

this activity will help in building a numerical representation of the function which 

can be used to determine the paths which need to be exercised. 

The information in table 4 can be obtained using the parser. Column one is the line 

number from figure 23, column two is the consecutive number of each line. Column 

three is the conditional statement label, pairing inic and false when appropriate. 

Column four is a value label derived from column 3. Column five is the conditional 

statement level, a I is a lop level statement, a 2 is a single level statement, etc. 

Column six indicates if a node is nested and which statement is it nested within from 
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column two, number 2 and 3 are nested under 1. Finally column seven shows 

whether the statement is an ' i f statement (1). an *else' statement (2) or an *else i f 

(3). From this information it is possible to build a flowchart, figure 24, automatically, 

similar to the type drawn manually in figure 20. 

Column 
1 2 3 4 5 6 7 

Line number label value label level sub-node type of 
number of: statement 

line 2 1 IT 1 1 0 1 
line 3 2 2T 2 2 I 1 
line 5 3 2F 2 2 1 2 
line 7 4 I F 1 1 0 2 
line 9 5 3T 3 1 0 1 

Table 4 - Conditional Statement Information 

The input variables to the fiinction under test are specified and the range of these 

variables is requested of the user, or read firom a file. This gives quick access to the 

variable range which is used to determine the size of the search space. 

Flowchai't for 
input 

Hunt>er o f u a r i a b l c s 3 

P r e s s a n d h o l d L o f t n o u s c B u t t o n 
o n c i r c l e f o r c o r r e s Q o n d I n g s t a t c n c n t 
P r e s s r i g h t b u t t o n t o k e e n o n s c r e e n 
o r L e t 0O o f l o f t t w i t t o n t o e l i n i n a t e 
P r e s s n i d d l e b u t t o n t w i c e t o e x i t 

Figure 24 - Screen-Dump of Automatically Produced Flow Chart 
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3.2.3. Nearest Neighbours 

With the information in table 5. using columns two, three, four, and five, it is 

possible to determine which statements are accessible from a given statement, such 

that IT can reach 2T and 2F. but not IF or 3T. Each statement's possible neighbours 

are calculated, a 'Z ' indicates that the path could finish after this statement. Column 

three determines whether a given statement can be the initial statement in a path, a 

level 0 can start a path, but greater than 0 can not. 

Column 
1 2 3 

Statement Nearest Neighbours Level of Start 
IT 2T,2F 0 
2T 3 T ^ 1 
2F 3T,Z 1 
I F 3T,Z 0 
3T Z 1 

Table 5 - Nearest Neighbours of Each Statement 

3.2.4. Determine Potential Paths 

It is now possible to determine the potential paths through the program. These are of 

course not only the feasible paths but also the infeasible ones. Using the method 

described in chapter 2 it is possible to determine how many paths there will be as 

shown below 

I -2 (3 (4+5)+6) -7-(8+9). 

I f all the statements are substituted by I *s, the expression is as follows, 

M ( l ( l + l ) + l ) l ( l + l ) = 6paths. 

To determine the details of these paths, the data given in table 5 is combined to list 

the 6 paths. Table 6 lists the resulting paths. 
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Path Number Path 
1 IT-2T-3T 
2 1T-2T 
3 1T-2F-3T 
4 1T-2F 
5 IF-3T 
6 1F-3F 

Table 6 - Paths through Function Shown in Figure 21 

3.2.5. Testing Metric to be Used 

There are a number of methods available for measuring coverage of a function, all of 

which have been discussed in chapter 2. To reiterate they are path, branch, LCSAJs 

and statement testing. Once the paths have been estabhshed in the previous section it 

is possible to begin path testing, that is to run the program and check to see which 

paths the test data can cover from the given Ust of paths. As an initial step this 

procedure is fme. but most programs have a lot of paths, some of which will never be 

covered. If this were to be the sole means of testing a great deal of manual review 

would need to be performed to determine i f the remaining paths are infeasible, and 

therefore additional coverage measures must be used. 

In the function in figure 21 there are 9 statements, including the end statement, and 

each statement should be coded as in figure 25 to indicate whether it has been 

accessed or not. To perform statement testing, an accumulator line called *strcat' in 

C code is inserted in the parsing stage after each statement to collect the statement 

numbers as they are accessed. If the randomly selected input variables {1,3,5} were 

used as variables x, y, and z respectively the resulting value of the suing ^slates' 

would be 

states = "sls2s3s4s7s8s9". 
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From this information of the statements exercised, above, it can be determined that 

the remaining statements which need to be exercised are "s5" and "s6". A random 

selection of test data indicates that the following test data sets {6.3,5} and {3,1.5} 

will exercise these remaining statements. All the statements have now been 

exercised. 

1 input (int x, int y, int z) 
( 

char states(20]; 

strcpy(states."sl"); 

2 if(x+y<z) 
{ 

strcat(states. "s2"); 
3 if(x<y) 

( 
strcat(states, "s3"); 

4 X = z - y; 
strcal(states. "s4"); 

1 
5 else 

strcat(states/'s5"); 
y = z - x; 

} 
6 else 

{ 

strcat(staies, "s6"); 
x = z+y; 

) 
7 i f (x<y) 

{ 
strcai(states, "s7"); 

8 X = z; 
strcat(staies, "s8"); 

1 
9 strcat(states. *'s9"); 

printfC*%s",states); 
I 

// establish string called slates which contains information on the 
//statements covered in function 
// add si to string states as statement 1 has been exercised by start of 
// function. 

// statement 2 if statement has been exercised 

//statement 3 if statement has been exercised 

// statement 4 with in statement 3 has been exercised 

// statement 5 matching else to statement 3 has been exercised 

// statement 6 matching else to statement 2 has been exercised 

// statement 7 if statement has been exercised 

// statement 8 within statement 7 has been exercised 

// statement 9 - program end 
// print out the statements which have been exercised 

Figure 25 - Amended Code from Figure 21 for Statement Coverage 
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input (intx, int y, int z) 
{ 
char tested[20]; 

i f ( x + y < 2 ) 
{ 

strcai(iested, "IT*); 
if(x<y) 
I 

scrcat(tested. ^IVy, 
x= 2 - y ; 

} 

else 
{ 

strcat(tcsted;*2F'); 
y = z -x ; 

I 
I 
else 
{ 

strcat(tested, "IF*); 
X = z+y; 

//establish string called tested which contains information on the 
//branches covered in function 

//Branch 1 has been activated for true 

// Branch 2 has been activated for true 

// Branch 2 has been activated for false 

// Branch 1 has been activated for false 

I 
i f (x<y) 
I 

strcat(tested. ' ^ T ' ) ; 
x = 2 : 

// Branch 3 has been activated for true 

) 
else 
{ 

) 
strcat(tested, "3F*); 

printf("%§",tested); 
} 

X = z+y; 
I 

7 i f (x<y) 
{ 

strcat(siates, **s7"); 
8 x = z; 

strcat(states, "s8"); 
I 

9 strcat(states, "s9"); 
printf("%s",siates); 
I 

// Branch 3 has been activated for false 

// print out the statements which have been exercised 

//statement 7 if statement has been exercised 

// statement 8 within statement 7 has been exercised 

// statement 9 - program end 
// print out the statements which have been exercised 

Figure 26 - Amended Code of Figure 21 for Branches and LCSAJs 

Branch testing and LCSAJs can be tested simultaneously by amending the original 

code of figure 21 as shown in figure 26. Changes are the same as those for path 

testing. Each path, as found by the nearest neighbour sequence can be broken down 
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into individual branches or IXSAJs. Success will occur when all the branches have 

been exercised. Using the test data| 1,3,5). the branches covered are below: 

tested = "1T2T3T" 

The remaining branches to be tested are IF. 2F, 3F which can be exercised with the 

following randomly selected test data sets {6.3,5) and {3.1,5}. 

LCSAJs. linear code sequence and jumps, are segments of code which follow from 

the flow of one decision point through to the next decision point, such that 1T2T is 

one sequence which should occur in exercising the code while 1F3T is another. Table 

7 is a listing of all the possible LCSAJs in the function in figure 26, along with the 

corresponding amount of search space which will satisfy the LCSAJ and the 

corresponding percent of the total search space. A test data set may satisfy more than 

one LCSAJ. therefore the total percentage of search space which satisfies each 

LCSAJ is greater than 100%. The previous test data set {1,3,5} resulting in path 

"IT2T3r' satisfies LCSAJs number 1 and 3. the test data set {6.3.5} satisfies 

LCSAJs 8 and the test data set {3,1,5} satisfies the LCSAJs 2 and 6. To exercise the 

remaining LCSAJs, 4.5, and 7, more test data sets are required. Set {1,2.10} will 

satisfy LCSAJ 4 and set {1,1.3} will satisfy number 5. Finally there is no data set to 

satisfy LCSAJ 7 and it is infeasible. Therefore the best TERs which can be achieved 

is 88%, that is seven of the eight possible LCSAJs that can be exercised and all of the 

feasible LCSAJs, listed in table 7. can be satisfied with the generation of a minimum 

of five data sets. 
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Number LCSAJs Amount which % of Search 
SatisHes LCSAJs Space 

1 1T2T 825 8.9% 
2 1T2F 946 10.2% 
3 2T3T 440 4.75% 
4 2T3F 385 4.16% 
5 2F3T 440- 4.75% 
6 2F3F 506 5.46% 
7 IF3T 0 0.0% 
8 IF3F 7490 80.88% 

Table 7 - List of LCSAJs through Sample Code Shown in Figure 26 

This example illustrates that although statement and branch coverage may exercise 

all portions of the code, testing these pieces of code together as LCSAJs determines 

whether a sequence of statements is accessible. This offers a stricter test than branch 

or statement testing, while avoiding the great volume of paths generated for path 

testing. 

3.2.6. Manual Review of Results 

If, after completion of the testing procedure, there remains any statements, branches 

or LCSAJs which are inaccessible, the system should print out a list such as in figure 

27 which gives information regarding the status of the test. 

Test Complete 
All Statements exercised 
All branches listed exercised 
LCSAJs not exercised 

Number of input variable: 3 
range of variables: 

x: [0..20] 
y: [0»20] 
z: [0..20] 

Figure 27 - Status Printout after Test 

3.2.7. The Handling of Loops in Code 

Thus far the functions to be parsed have not included loops. When a loop is 

activated its run-time can be infinite and many testing authorities, e.g. Roper (1994), 

Chapter 3 48 



suggest that the best plan is to activate each loop so it is only tested 0, I and 2 times. 

Zero times indicates that the loop is not activated. Although a loop can last a long 

time, the number of loops recorded will only be the first two, therefore a loop that 

runs two times will register the same LCSAJs as one which activates 2+ times. The 

code, from figure 21, is amended as in figure 28 to include a loop as well as measure 

the level of path coverage. 

loop = 0; // added to count how many limes loop is activates 
while (y>2) 
{ 

y= sqr(y) // actual loop activity in function (sqr = squareroot) 
loop += I; // counting times of loop activation 
if (loop = 1) //checking if loop has been activated I time 

strcat(tested;Tl"); 
else if (loop = 2) // checking if loop has been activated twice 

strcat(iested,"L2"); 
} 
if (loop ==0) // if loop has not been activated 

strcat(tested."U)"); 

Figure 28 - Testing for Activation of Loops 

Loops can be tested as well, and figure 29 is the new code with the accompanying 

flowchart of the code in figure 30. The number of LCSAJs has now increased from 

eight to fourteen and the additional six are hsted in table 8 with corresponding test 

data which satisfies these new LCSAJs. The number of data sets which satisfies each 

of the LCSAJs add up to the total search space size, 9261, as each lest data set will 

have to satisfy one of these LCSAJs which involve the activation or non-activation of 

the loop. The minimum number of test data sets required to be generated before it is 

possible for all the LCSAJs to be exercised, is now seven. The number of actual 

paths through the function under test has now increased from 6 to 24, 15 of which are 

feasible and 9 are infeasible. 
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1 input (int x, int y, int z) 
{ 
char tested[20]; 

2 if(x+y<z) 
i 

sircat(icsted. " I T ' ) ; 
3 if(x<y) 

// establish string called tested which contains information on the 
//branches covered in function 

// branch I has been exercised 

strcai(iested. ' ^ T ' ) ; // branch 2 (true) has been exercised 
x= z -y ; 

else 

strcat(tested,"2F'); 
y = z - x; 

// branch 2 (false) has been exercised 

) 
6 else 

( 
su-cat(tested. " I F ' ) ; 
X = z+y; 

8 

7 i f (x<y) 
( 

strcat(tesied. "3r'); 
X = z; 

1 
else strcat(tested,"3F'); 

loop = 0; 
while (y>2) 
{ 

y = sqr(y): 
loop += I; 
if (loop = I) 

strcat(tested. " L I " ) ; 
else if 

strcat(tesied. "L2"); 
1 
if (loop = 0) 

sircat(tested. "LO"); 
printf("%s",tested); 

// branch 1 (false) has been exercised 

// branch 3 (true) has been exercised 

// branch 3 (false) has been exercised. Added code to show 
// sequence of steps 
//10 count how many times loop is activated 
// original function code 

// original function code 
// increment loop each time activated 
// loop activated I lime 

// loop activated 2 times 

// loop not activated 

// print out the statements which have been exercised 

Figure 29 - New Function Code Based on Figure 28 and Figure 21 
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Figure 30 - Flow Chart of Figure 29 

Number LCSAJs A Data Set which Amount which % of search 
Covers L C S A J Satisfles LCSAJs space 

9 3TL0 f lJ ,31 8 .09% 
10 3TL1 (1,3.51 232 2.5% 
11 3 T L I L 2 (0,0.91 640 6.9% 
12 3FLX) (1,2,101 855 9.2% 
13 3FL1 (6,3.51 2520 27.2% 
14 3FL1L2 (0.9.01 5006 54.11% 

9261 100% 

Table 8 - Additional LCSAJs from Figure 28 

When a loop is to be activated and checked to see i f it only functions once, then the 

path searches for an occurrence when L I is not followed by an L2. Al l loops can be 

handled in this way, and while this will not detect if an error occurs after 2+ runs or 

whether the loop will activate the required number of times, it is an effective way of 

limiting the number of paths and hence LCSAJs though a piece of code. More 

complicated loops will be demonstrated in chapter 9 and 10. 

Finally listed in table 9 are all the branches in the function which need to be 

exercised along with the amount of test data which will cover each of the branches 
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and the coiresponding percentage of the search space. The size of the search space is 

9261. which is three variables each of the range [0..20]. Ai l of the branches can be 

exercised. The branch which is exercised by the smallest amount of test data is LO. 

which is when the loop is not activated. Only 9.32% of the search space exercises 

this branch, that is 863 test data sets. The branch which is exercised the most is L I 

which is exercised by 90.68% of the search space, or 8398 test data sets. These 

figures add up to more than 100% as most test data sets will satisfy more than one 

branch. Al l branches can be satisfied with the generation of just three test data sets, 

but to satisfy both branches and LCSAJs, a minimum of seven test data sets must be 

generated. The maximum number of test data sets which could be generated prior to 

complete coverage is 9254. This value represents the fact that only eight data sets 

satisfy LCSAJ 9 {3TL0} and i t is possible for 9254 data sets of the total number 

9261 to be generated before this LCSAJ is exercised. 

Branch Amount which 
Satisfies LCSAJs 

Percentage of 
Search Space 

IT I77I 19.12% 
I F 7490 80.88% 
2T 825 89.08% 
2F 946 10.21% 
3T 880 9.50% 
3F 8381 90.50% 
LO 863 9.32% 
LI 8398 90.68% 
L2 5646 60.97% 

Table 9 - Branches and the Corresponding Percentage of the Search Space 
which Satisfies These Branches 

3.3. Conclusion 

This chapter illustrates a tool for analysing program code to determine their suiiciure 

for use in the testing procedure. What has been left out of this procedure, is how test 

data will be generated and this is discussed in chapter 6 through 8. With guidance 
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from this chapter it is possible to determine a function to be tested, analyse that 

function to find out the conditional statements, and produce a flow chart. From this 

information it is possible to ascertain all paths through the code. As this may include 

a lot of infeasible paths, its purpose is to test the statements, branches and LCSAJs 

that have been established from the path data. The final coverage information is used 

to manually review any areas of code which have been unobtainable. While loop 

testing is more difficult and limited, it can be performed in a similar manner and this 

method is demonstrated in this chapter. 

It has been established that the complete test program, shown in figure 29, has 24 

paths through the code, 15 of which are feasible. Additionally there are 14 LCSAJs 

and 9 branches to be exercised, a successful test wil l achieve a coverage ratio of 95% 

as LCSAJ 7 is infeasible. Data generation to cover the paths, branches and LCSAJs 

will be performed for this test program using random generation and compared to the 

results gained using OAs in chapter 6. These methods will then be compared to 

additional adaptive search techniques. Simulated Annealing and Tabu search in 

future chapters. The next chapter, however, gives an illustrative example of random 

testing and test data generation. 

Chapter 3 53 



Chapter Four 

What is Random Testing? 

4.1. Introduction 

Random testing is the most common and accessible method for software testing. 

One procedure would be to randomly generate test data within the acceptable range 

of the input variables and then apply it to the piece of code under test. I f the test 

fails, i.e. a run-time error, there is an error in the code which needs to be corrected. 

Once the error is corrected the same test data is used to confirm the 'correctness' of 

the code by establishing i f another run-time error occurs. Other versions of random 

testing include the use of randomly generated test data for statement, branch 

coverage, LCSAJs or path testing. 

Ince (1987) suggests that random code generation is both inexpensive and timely in 

comparison to tools which attempt to derive test data from program code, design 

specifications and functional specifications. Duran (1984) compared random testing 

to partition testing, see chapter 2, and determined that for 100 simulated random tests 

and 50 simulated partition test cases, random testing was superior and less expensive. 

Ince (1984) compared random generation to adaptive techniques and determined little 

difference in the coverage of the code. He did discover, though, that in measuring 

the number of runs required before a satisfactory coverage percentage was attained. 
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random generation was superior. Additionally Ince (1984) feels that restrictions 

should be placed on the input domains, as he believes that a small subset of the 

variable range will perform equally as well as a larger grouping. 

4.2. A Random Number Generator 

As Ince (1984) states, all that is required is a random number generator and some 

way of measuring the level of coverage of the code. In chapter 3 a method for 

determining coverage level has been developed. Random numbers can now be 

generated. To illustrate the sort of search space in which the random number 

generator will operate, the program used in chapter 2 to demonstrate testing 

techniques will again be used, as shown in figure 31. The reason this function is 

used is that there are only two input variables, which allows the actual search space 

to be shown. The input variables x and y each will have the range (0..20}. For this 

example the goal will be to exercise all the paths through the function. As discussed, 

there are four paths through this function, shown in figure 32, and the search space 

divided by the path coverage is given in figure 10. The size of the search space is 21^ 

or 441 unique combinations of input variables, and while calculations did determine 

that there are a possible four paths through the code, the fourth one is infeasible. 

1. read_in(int a, int b) 
2. if(a>b)then 
3. print a 
4. else print b 
5. while a < b 
6. a = a+l 
7. end 

Figure 31 - Sample Two Variable Input Function used to Illustrate the Search 
Space 
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Path Number Path Number of 
Data Sets 

Share of 
Search Space 

Pathfl 1-2-3-5-6-5-7 21 4% 
Path. 1-2-3-5-7 210 48% 
Pathi 1-2-4-5-6-5-7 210 48% 
Infeasible Path 1-2-4-5-7 0 0% 

Table 10 - Paths through Program Listed in Figure 31 and Their Corresponding 
Share of Search Space shown Graphically in Figure 32 

m 
H Path 1 

n O <o <D 

v a r i a b l e X 

Figure 32 - Graphical Representation of Search Space, the Area Covered by 
Each of the Three Paths is Indicated 

h P a t h 1 

^ ̂ — 

I " ' ^ H l C i H 

Test Data Set 
{ M O } 

o m (D •» ^ _ 

v a r i a b l e X 

Figure 33 - Graphical Representation of Position of Randomly Selected Test 
Data Sets within the Specified Search Space 
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In this sample code, four percent of the search space satisfies patho, while the rest of 

the search space is equally divided between pathi and path2. The random test data 

was generated. An example of the location in the search space which was randomly 

generated eight times is shown in figure 33. These eight randomly generated test data 

sets exercise all three paths, and follow the same pattern as the complete search space 

percentages, hence Pathi and Path2 had the most test data generated. The next step is 

to measure the effectiveness of random generation. 

4.3. How is a Measurement Taken? 

There are two methods available to measure the abilities of random test data 

generation. The first method is time. If random testing proved to be quicker in the 

generation of test data that would be an asset. Actual time, however, might not be 

the only method of measurement. I f a function is quite large it may take a great deal 

of time before it is exercised and i f the same test data is generated again and again 

this increases the run lime of a function. Therefore, to generate a small amount of 

lest data which exercises all the required areas of the function would be beneficial. 

For this reason the measurement for random testing will be performed on the amount 

of unique test data which needs to be generated prior to coverage of the code. 

Therefore the amount of data sets generated is a key factor in the comparison of 

testing techniques. 

In this sample program the search space consists of 441 possible combinations of 

variables. The random generator was run 1000 times to give the average amount of 

test data generated before all paths were exercised. The average amount of new test 
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data generated per run was 20.269. Table 11 shows the average amount of test data 

for each path which was required over 1000 runs. 

Path Average Unique 
Pairs Generated 

Percentage of 
Space Searched 

patho 1.089 5% 
path] 9.660 48% 
pathz 9.520 47% 
Total 20.269 100% 

Table 11 • The Paths through the Function and the Average Amount of Test 
Data Required before Coverage was Attained over 1000 Runs 

The results of the random test data generation are very close to the percentages 

generated from the exhaustive search with path© at 5%. pathi at 48% and path2 at 

47%. Random searches, whilst effective, spend too much lime looking at areas 

which have already been searched, by finding the same path, again and again. 

4.4. Conclusion 

This chapter describes how random test data is used to exercise a function under test. 

The purpose of this chapter was to illustrate the type of search space that may be 

encountered and how test data is generated to exercise the specified path, in later 

chapters a more strenuous test function will be given and compared to other test data 

generation methods. While random generation is simple and requires few resources, 

will the amount of test data generated still make it a viable method? 
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Chapter Five 

Genetic Algorithms - A Brief Introduction 

5.1. Introduction to GAs 

For small search spaces, classical exhaustive methods usually suffice, but as the 

search space grows search methods need to be devised which can minimise the size 

of the search. Genetic Algorithms (GAs) are one such search technique. The first 

influential work was produced by Holland in 1975 although he had worked in the 

area since the 1960*s. GAs are based on the premise that computer algorithms can 

mimic natural evolution, but what is natural evolution? In natural evolution there 

exist chromosomes which consist of genes, these chromosomes determine such 

things as sex, personal characteristics, or hair and eye colour. The chromosomes 

from each parent are passed on to their children. Some of these chromosomes may 

replicate a chromosome from one parent, they may be a cross of both parents or a 

chromosome may mutate during the transfer phase. The resulting offspring is a 

combination of characteristics and traits from both parents. While the battle of the 

chromosomes takes place in the offspring, external environmental conditions 

combine with the received chromosomes for the battle of survival. I f the offspring 

has received particularly sturdy chromosomes to do battle against illness, famine and 

strife that offspring will have a greater chance of surviving to the next generation, on 
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the other hand if the chromosomes are poor the chance for survival lessens. Hence 

future generations should consist of many more sturdy offspring with fewer and 

fewer weaker members. 

The established features of evolution are summarised as follows (Davis. 1991): 

• Evolution occurs on chromosomes not the living beings encoded; 

• Selection is the process in which certain chromosomes are chosen to 
reproduce more often; 

• Reproduction is when evolution takes place. Mutations may cause the 
chromosomes of the offspring to differ from their parents. Recombination 
may cause quite different chromosomes in die offspring by combining 
material from the chromosomes of two parents; 

• Evolution depends on the chromosomes of the parent and the structure of 
the chromosome decoders. 

Using the concept that evolution takes place on chromosomes, Holland (1975) 

created an algorithm which manipulated strings of binary digits by carrying out 

simulated evolution on populations of chromosomes. The only information available 

to assist reproduction would be the fitness of each chromosome, a figure relating to 

how *weir the chromosome performs on the function under test. 

These simple algorithms, known collectively as genetic algorithms and using the 

simple procedure of reproduction, crossover and mutation, have demonstrated 

complicated behaviour and solved many problems deemed NP-complete. Areas of 

research have included scheduling (Davis, 1987; Syswerda, 1989; 1991), game 

playing (Chi et al, 1988), music compositions (Homer and Goldberg, 1991), and 

transportation (Vignaux and Michalewicz, 1989). 
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5.2. How do GAs Function? 

To ilJustrale GAs. they will be used to optimise the simple function below, 

f z = l + COS 

The goal is to maximise . The variable range for x and y is the integer set [-5..5] 

and the search space is illustrated in figure 34. 

Uni-modal Function 

2-f-

1.5-

re
su

lt 

1-

0.5 

• 1.5-2 

• 1-1.5 

• 0.5-1 

O 0-0.5 

X \'alue 

Figure 34 - Surface Graph of Search Space 

A chromosome of binary digits is used to represent the integers x and y. The length 

of the vector is determined by the precision desired and the limitations of binary 

digits. For this case each variable is represented by a four digit binary su-ing which 

gives a chromosome length of eight as shown below, 

23<10<24. 

Therefore, a chromosome of length three would evaluate to the value of 8 or less, 
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whereas chromosomes of length four can be evaJuaied to 16 or less. Using a four 

digit binary string will thus satisfy the variable range requirement of [-5..5]. The 

chromosomes (00000000) and (11111111) represent the boundaries of the range [-5,-

5] and [5,5], respectively. To illustrate, the chromosome (01010110) encodes the x,y 

co-ordinates 

x = ((binaryInt/15)*10)-5 

y = ((binaryInt/15)*10)-5, 

which translates to the actual co-ordinates as follows, 

X , =(0101) = ((5/15)*10)-5= -2 

y,= (0110) = ((14/15)*10)-5= 4. 

5.2.1. Initial Population 

An initial random population of ten chromosomes is created, each consists of 8 genes 

which are composed of Is and Os. For this test the population in table 12 is 

generated. , 

Number Chromosome 
1 01101110 
2 IIOOIIOI 
3 OlOOIOlO 
4 11011011 
5 00111100 
6 10010011 
7 00111001 
8 lOlOIOOO 
9 00101010 
10 11101101 

Table 12 - Initial Population Selected Randomly 

5.2.2. Fitness Function 

The fitness is calculated for each member of the population. The results are given in 

table 13. The values in the column entitled 'Share of Total Fitness' give the portion 
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of the total fitness for each chromosome. For example, chromosome I with its 

fitness of 0.7303 has a 0.087 or 8.7% share of the sum of the fitness for the entire 

population which is 8.39. Chromosome 2 , with a fitness of 0.3827. has a 0.046 or 

4.6% share of the sum of the population, this gives a unique position in the 

population for the purposes of establishing the next population, as demonstrated in 

section 5.2.3, which are all the randomly selected values between 0.087 and 0.133. 

Chromosome 
Number 

X y f(x,y) Position of 
Member in 

Total Fitness 
of Population 

1 -1 4 0.7303 0.087 
2 3 4 0.3827 0.133 
3 -2 2 1.3011 0.288 
4 4 2 0J939 0.359 
5 -3 3 0.6792 0.440 
6 1 -3 1.1559 0.578 
7 -3 1 1.1559 0.716 
8 2 0 1.6260 0.910 
9 -4 2 0.5839 0.979 
10 4 4 0.1814 1.000 

Table 13 - Integer Values with Associated Fitness from Population of 
Chromosomes 

5.2.3. A New Population 

As discussed in section 5.2.2, the fitness of each chromosome is calculated as the 

percentage of the total fitness of the population. To represent this, figure 35 has been 

created to illustrate each member's share of the total population fitness of 8.39. 
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3.8% 

15.6% 

13.8% 

8.1% 

Figure 35 - Each Population Member's Share of the Population Fitness 

Before generating the next population it must be noted that it is possible through the 

process of reproduction, mutation and crossover that the best member of the 

population could be eliminated. This could be acceptable, as it commonly occurs in 

nature, however it could have a negative effect on the search population. To avoid 

this the best member of the previous population is added to the new population, and 

this can be done in a number of ways, as an additional population member i f it does 

not exist in the new population, as an additional member regardless of whether it 

exists in the population, or it can replace an existing population member to keep the 

population size constant. The member of the population to replace can be chosen at 

random or to replace the least fit member. The replacement style applied here is to 

remove a random member of the population and replace with the *best' member, 

regardless of whether that member already exists in the population. This replacement 

procedure takes place after mutation and crossover. Therefore chromosome number 

8 will be reserved a place in the next population. 
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It is now time to randomly generate the next population. Ten times a random number 

between 0 and 1 is generated. This number is then compared to column 5 of table 13. 

If for example, the random number falls between 0.00 and 0.087 then member 

number 1 proceeds to the next generation. Table 14 is a random drawing of ten new 

population members with their corresponding chromosomes and fitness values. 

The total fitness of the new population is now 11.909 an improvement of 3.519 over 

the previous population. This new population is not complete, but before the two 

operators crossover and mutation are described, a brief discussion of other 

reproduction methods follows. 

Number Random 
Value 

Original 
Number 

Chromosome Fitness 

I 0.617 7 OOUIOOI 1.1559 
2 0.104 2 11001101 0.3827 
3 0.081 1 01101110 0.7303 
4 0.580 7 00111001 M559 
5 0.720 8 10101000 1.6260 
6 0.733 8 10101000 1.6260 
7 0.874 8 10101000 1.6260 
8 0.222 3 01001010 1.3011 
9 0.429 5 OOMHOO 0.6792 
10 0.881 8 lOlOIOOO 1.6260 

Table 14 - Selection of Next Generation 

5.2.4. Steady State Reproduction 

The previously discussed method of reproduction, proportional, has some drawbacks, 

one of which is that many of the best individuals may not reproduce at all. I f they 

have reproduced, some of their best characteristics may be destroyed by mutation or 

crossover. One solution, known as steady state, is to replace one or two members of 

the population at a time rather than the entire population. The replaced members can 

be the worse members of the population or a random selection of members. The 
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algorithm for steady state (Goldberg. 1989) is given below: 

Steady State Algorithm 
1. Create n children through reproduction 
2. Delete n members of the population to make room for the children 
3. Insert children into the population 

Using Steady State reproduction, good members of a population are protected from 

deletion while poor members are most likely to be deleted (Syswerda, 1989). 

5.2.5. Tournament Selection 

Another method which attempts to reduce problems associated with proportional 

reproduction is to use a tournament methodology. Tournament selection, discussed 

by Brindle (1981). involves choosing some number of population members at 

random. The best member of this grouping will go through to the next generation. In 

the example, i f chromosome 1 was to be compared to chromosome 3, member 1 with 

a fitness of 1.1559 would be replicated in the next generation and at this stage 

member 3 "would not. Should member 3 later be compared in a tournament with, for 

instance member 9, it will then be placed in the next generation. 

The average fitness of the next generation should be higher than the previous 

population. Creating a population which consists of the best members of the original 

population is referred to as 'selection pressure' (Miller and Goldberg, 1995). To 

increase the selection pressure the size of the tournament is enlarged. Therefore, the 

winners, which become the next generation, will have a higher average fitness than 

the previous population. According to Miller and Goldberg (1995), tournament 

selection is a good selection mechanism as it is simple to code, easy to implement. 
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robust in the presence of noise and has an adjustable selection pressure. 

5.2.6. Fitness Scaling 

Fitness scaling is another method used to combat the problems associated with 

proportional reproduction. One example is linear scaling, a ranking selection 

described by Baker (1985). The population shown in table 13, is sorted from best to 

worse as in table 15. This ranking indicates that chromosome 8 is ranked at number 

one with a fitness of 1.6260, chromosomes 6 and 7 are both in second place with a 

fitness of 1.1559 and in last place is chromosome 10. This ranking is used to 

produce a roulette wheel, shown in figure 36, and can be compared with the roulette 

wheel determined from proportional representation in figure 37. 

Chromosome 
Number 

f(x,y) ranking 

I 0.7303 4 
2 0.3827 7 
3 1.3011 3 
4 0.5939 6 
5 0.6792 5 
6 1.1559 2 
7 1.1559 2 
8 1.6260 1 
9 0.5839 6 
10 0.1814 8 

Table 15 - Sample Next Generation using Fitness Scaling 

g 10 1 
7.0% 2.2% 8.7% 2 

4.6% 
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9 10 1 
6.5% 2 ^ ia9%2 

4.3% 

17.4% 

13.0% 

6 ^ 

1i2% 
6 

15.2% 
a7% 

Figure 36 - Fitness Scaling - Figure 37 - Fitness of Each Member as a 
Population Distribution of Total Share of Sum of Population Fitness 
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If a comparison is made of the share of the population each chromosome receives 

using fitness scaling (figure 36) to that received using the proportional method 

(figure 37). it is noticeable that chromosome 1 gained a 2.2% share of the population 

as it had an 8.7% share of the sum of the fitness of the population, but when using 

fitness scaling its rank of number 4 gave it a 10.9% share of the population. While 

this method is criticised for disassociating the fitness function from the underiying 

objective function, Goldberg (1989) feels that the required link is not based on 

evolutionary theory and this method does provide a consistent method for offspring 

selection. 

5.2.7. Additional Reproduction Strategies 

Additional reproduction strategies are suggested by Back et al (1992), these are 

extinction and preservative. In extinctive selection some chromosomes are not 

allowed to create offspring i f they have a zero selection probability, while in 

preservative selection each population member is guaranteed a probability to produce 

an offspring. While results of the extinction method are better than those using 

preservative in a unimodal search space, no improvement is shown in multimodal 

searches (Back et al, 1992). Fogarty (1993) has experimented with using a 

chromosome's age and fitness to determine whether it should reproduce or not as 

opposed to its rank and fitness. The results suggest in a noisy environment this 

method outperforms the conventional selection methods. 
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5.2.8. Crossover 

In crossover, pairs of chromosomes exchange genes. From this procedure two new 

members of the population are produced who replace their parents. It is possible that 

some members of the population could be crossed more than once, resulting in a new 

population member very different from its parent. To keep the change to a minimum 

each member of the population should only be crossed once. 

There are a number of ways to apply crossover including one-point, two-point and 

uniform. In two-point crossover two positions are generated, these are two random 

numbers between 1 and the length of the chromosome, in this example between one 

and eight. The genes between these two points are exchanged creating new offspring. 

In figure 38, chromosome 3 and 4 have been randomly selected to cross at points 3 

and 7 and the fitness of the new chromosomes is displayed. The average fitness of 

these two chromosomes has declined from 0.9331 to 0.9037 a difference of 0.0394, 

however the fitness of chromosome 3 has improved from 0.7303 to 1.6260, an 

improvement of 0.8957. 

1 2 2 
3 O i l 
4 0 0 1 

4 5 6 
0 1 Ij 
1 1 0 

7 8 
1 0 fitness = 0.7303 
0 1 fitness = 1.1559 

1 0 fitness'= 1.6260 
0 1 fitness* = 0.1814 

3* 0 1 1 1 1 01 
4' 0 0 1 0 1 1 

Figure 38 - Two-Point Crossover Demonstration 

This process will continue until no more than 50% of the population has been 

crossed. Therefore, with a population of ten, four members of the population will be 

crossed. Schaffer et al (1989) find that two-point crossover gives slightly better 

results than one-point crossover. If using one-point crossover, only one point is 
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selected to cross, the end of the chromosome will be treated as the second point, so 

there would be two exchanges between the chromosomes, as opposed to the three in 

two-point crossover. The example in figure 39, demonstrates one-point crossover, a 

single position has been selected on the chromosome, three, and the genes are 

exchanged between that point and the end of the chromosome. In this case the 

average fitness has increased from 0.9431 to 1.70275 an improvement of 0.7596. 

1 2 3 4 5 6 7 8 
3 0 1 1 0 1 1 1 0 fitness = 0.7303 
4 0 0 1 1 1 0 0 1 fitness = 1.1559 

3' 0 1 1 1 1 0 0 1 fitness' = 1.98007 
4' 0 0 1 0 1 1 1 0 fitness' = 1.42542 

Figure 39 - One-Point Crossover Demonstration 

A greater distance between the cross points creates offspring that are dissimilar as 

there has been more disturbance to the chromosome. However the disturbance to the 

parents' chromosome is even greater when using uniform crossover. In this case, the 

chromosomes to be crossed are chosen at random from the population but instead of 

selecting points to cross between, a template is created and this template is a random 

selection of Is and Os of the length of the chromosome. The first offspring is then 

created using the template. If the template gene for position one is a 0. the gene in 

that position on parent number 1 is selected for offspring number 1, offspring number 

2 gets the gene from parent 2. If the template gene is a 1, the gene in that position on 

parent number 2 is selected for offspring number 2, offspring number 1 gets the gene 

from parent 1. This procedure is repeated for each of the remaining genes. Normally 

the crossover method used remains constant through a GAs run, but to illustrate 

uniform crossover the remaining cross of the demonstration population will be done 
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using population members 1 and 7 and their offspring will be returned to the 

population as in figure 40, 

1 0 0 1 1 1 0 0 1 fitness = 1.559 
7 1 0 1 0 1 0 0 0 fitness= 1.626 

Template 1 1 1 0 1 1 0 1 

1' 1 0 1 1 1 0 0 0 fitness'= 1.6260 
T 0 0 1 0 1 0 0 1 fitness'= 0.7837 

Figure 40 - Uniform Crossover Example 

This sort of random replacement can create better or worse children and the results 

are all in the *luck of the draw*. 

Sywersda (1989) compared Uniform Crossover with Two and One Point Crossover. 

The results indicated that Uniform Crossover usually worked best and has 

empirically been shown as more effective on a number of functional optimisation 

problems. One Max, Sparse One Max, Contiguous Bits or Lock and Tumbler 

problem. Exponentially Decreasing Sine, Shekel's Foxholes and the Travelling 

Salesperson. 

5.2.9. Mutation 

Mutation works on a single gene of the population and in the given population there 

are 80 genes. While the rate of mutation applied can vary greatly, 10% will be used, 

therefore 8 genes have the potential to be mutated. Once a gene is chosen to be 

mutated it does not automatically switch from 0 to 1 or vice versa, rather a new bit is 

generated randomly. This means that a mutation can take place without actually 

altering the string. 
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The eight randomly chosen genes are (2,11,15,24,45,66,68,75} and the process is 

demonstrated in table 16. 

Gene LocatiOD Original Change New 
Chromosome 

Fitness 

2 chromosome t 
gene 2 

loinooo I 11111000 0.3827 

11 chromosome 2 
gene 3 

11001101 1 11101101 0.1814 

15 chromosome 2 
gene? 

11001101 0 11001101 0.3827 

24 chromosome 3 
gene 8 

OIIUOIO 1 01111011 1.9017 

45 chromosome 6 
gene 5 

looioon 1 10011011 1.5403 

66 chromosome 9 
gene 2 

00101010 0 OOIOIOIO 0.257 

6S chromosome 9 
gene 4 

OOIOIOIO 1 00111010 0.9584 

75 chromosome 10 
gene 3 

11101101 0 11001101 0.3827 

Table 16 - Mutation Process 

Using both crossover and mutation as a strategy can increase the speed of evolution 

when compared to using mutation alone (Schaffer and Eshelman. 1993). However 

crossover will disrupt the schemata more than if mutation only was applied. 

5.2.10. Replace Best 

The last step is to add the *best' chromosome of the previous generation to the new 

population. This is a matter of the users preference as there is always the possibility 

that any of the previous operators may cause the best member of the previous 

population to be eliminated. The best could be added to the population to increase 

the population size, the worse member of the population could be replaced or a 

randomly selected member could be chosen and replaced. In this example, a 

randomly choosen chromosome is replaced by the 'best' of the previous generation. 

The chromosome randomly chosen is chromosome number 5. The new population is 
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shown in table 17. 

The total fitness of the population is now 9.441, an improvement of 12.5%. The 

process will continue generation after generation until the maximum fitness value is 

reached, which in this case is 2.00. 

Number Chromosome Fitness 
1 11111000 0.3827 
2 11001101 0.3827 
3 01111011 1.9017 
4 00101101 0.1814 
5 lOlOlOOO 1.6260 
6 lOOllOll 1.5403 
7 00101000 0.7837 
8 01001010 1.3011 
9 00111010 0.9584 
10 11001101 0.3827 

Table 17 - New Population for the Next Generation 

5-3. Schema Theory 

Why do GAs do what they do? To explain this, a few theories have been established, 

the best known is the Schema Theorem as discussed by Holland (1975) and Goldberg 

(1989). The basis of this theorem is that the foundation of GAs relies on a binary 

chromosome representation of solutions and on the concept of schema. Identical 

segments of genes are evident in some of the chromosomes, and this is called a 

schema. A schema is a template of genes of a chromosomes which match in all 

positions other than those marked in the schema by *. For example, i f in the sample 

problem the schema (00111***) is defined there exists two members of the 

population which match: 

5) (00111100) 
7) (00111001). 

If the schema to be matched is (**I01***) then there are four members of the 
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population which match: 

1) (01101110) 
8) (10101000) 
9) (00101010) 
10) (11101101). 

The schema (01101110) however represents only one chromosome and the schema 

(********) represents all chromosomes of length 8 (that is all 2^ such strings). 

Every schema matches exactly 2' possible chromosomes where r is the number of * 

symbols in a schema. Finally any given chromosome of length x is matched by 2" 

schemata. For strings of length x there are in total 3* possible schemata. In a 

population of size n, between 2^ and n*2'' different schemata may be represented. 

The schema theorem, attempts to illustrate that while the operators, mutation and 

crossover can disrupt a chromosome, they are not as significant to short and low 

order schema, and is stated as: 

Theorem 1 (Schema Theorem) Short, low-order, above average schemata 
receive exponentially increasing trials in subsequent generations of GAs 
(Holland. 1975). 

From this, the Building Block Hypothesis suggests that GAs explore their search 

space by low-order schema which are exchanged during the crossover process. 

Hypothesis 1 (Building Block Hypothesis) A Genetic Algorithm seeks 
near-optimal performance through the juxtaposition of short, low-order, high-
performance schemata, called building blocks (Holland, 1975). 

In the original population chromosome number 1 (01001010) had a fitness of 0.7373. 

Through reproduction, this became chromosome 3 in the next generation. It was then 

chosen for crossover with chromosome number 4 and the resulting offspring 
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improved the fitness of chromosome 3 from 0.7373 to 1.626. The same chromosome 

was then mutated at gene number 8 to give a final chromosome in the next generation 

of (01111011) with a fitness of 1.9017, the highest fitness in its generation. Below 

the original chromosome is compared to its offspring. 

Chromosome 1 (Original population) (01001010) 
Offspring of Chromosome 1 (01111011) 

The results indicate that the building block is (01**101*) and this schema apparently 

contributed towards the development of the best member of the population. 

A great deal of research has been performed into aspects of schema theory and how 

schemata interact and combine during evolution. Two approaches have been 

discussed in White and Rockton (1995). The first is to develop problems which are 

difficult for GAs to solve, these are called 'deceptive' as they violate the building 

block hypothesis in that short low-order building blocks are designed to lead to sub-

optimal, longer, higher-order building blocks. A violation of the hypothesis means 

that GAs will not be able to converge on the optimal solution. While a great deal of 

effort has been expended to develop these deceptive problems GAs still succeed 

while many non-deceptive problems can be difficult to solve. 

The second approach was to develop problems where the GAs performed as expected 

(Forrest and Mitchell, 1992; 1993). These, called Royal Road functions, add features 

to the fitness landscape lo lead the GAs directly to the global optimum. According to 

White and Flockion (1995) the Royal Road functions contain a number of building 

blocks and intermediate 'stepping stones* that result from lower-order schemata. The 
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Building Block Hypothesis might lead to the assumption that GAs would perform 

better on functions where there is a clear path via crossover from low order schemata 

to the optimum (Ibid.). Simulations, however, have indicated that GAs may perform 

worse on these functions (Ibid), Forrest and Mitchell (1992) followed the 

generational evolution of a Royal Road function and found what they termed, genetic 

hitchhiking. This occurs when the intermediate ^stepping stones' are so much fitter 

than the parents that premature convergence may occur, hence slowing down the 

search (Ibid.). 

The Walsh-Schema theory is another attempt to analyse schemata. This is a method 

for describing the dynamics of GAs fitness function. This theory says that as the 

fitness of F improved, it biased towards partitions with higher order schema as the 

population evolves (White and Flockton, 1995). Walsh analysis has been used to 

characterise functions which are either easy or hard for GAs to optimise, but as with 

Royal Road function, the results weren't always those expected (Mitchell and 

Forrest. 1992). 

Priigel-Bennet et al (1994) have applied Statistical Mechanics Formulation to 

analyse the behaviour of GAs. This method predicts the distribution of energies in 

the population at each generation. The model developed by Priigel-Bennet et al 

(1994) for a Boltzmann selection mechanism shows that the statistics generated 

compare favourably with those from a GAs simulation. Unfortunately the probability 

distribution needs to be recalculated after each crossover and mutation procedure 

which makes a time consuming task (White and Flockton, 1995). 
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Additional theoretical research has applied convergence analysis (Ankenbrandt, 

1990; Louis and Rawlins, 1992; Qi and Palmieri, 1994), Breeder Genetic Algorithm 

(MuhJenbein and Schlierkam-Voosen, 1993a; 1993b). and Nonuniform Walsh-

schema transform (Goldberg, 1989). Finally Markov Chain Analysis (Goldberg et al, 

1987; Davis and Principe, 1993) claims that the dependence of each population on its 

predecessors in the sequence is completely determined by its conditional dependence 

upon its immediate predecessor population. 

5.4. Conclusion 

The previous sections discuss GAs. their history, the operators involved and the 

philosophy of schema theory. Included is an illustrative example of the search 

process of GAs. 

The next chapter will discuss using GAs for the generation of test data. This method 

of data generation will be compared to random test data generation as discussed in 

chapter 3 and other adaptive search techniques. Simulated Annealing in chapter 7 and 

Tabu search in chapter 8. 
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Chapter Six 

Automatic Test Data Generation Using Genetic 
Algorithms 

6.1. Introduction - Previous Research 

The use of genetic algorithms to automatically generate test data is not unique. 

Xanthakis et al (1992) used GAs in conjunction with a process entitled maturation to 

develop a prototype software testing tool, TAGGER. The steps of TAGGER are first 

to produce a qualitative data flow influence graph which represents the variable in 

the program, then the generation of test data using GAs, and finally a relaxation 

process is applied to the test data to access paths which have not been exercised. The 

procedures involved in TAGGER require a great deal of structural amendment of the 

code, as well as an element of symbolic execution in the establishment of the 

elementary path functions required for the relaxation process (Xanthakis et al, 1992). 

However the results of the research, a successful coverage metric of 100% on a small 

sample PASCAL program, is encouraging for the use of GAs in lest data generation. 

The automatic generation of lest data for ADA programs (Sthammer et al, 1992; 

Jones et al, 1995) also used GAs. The emphasis of research was on coverage of the 

branches in a program and on achieving coverage at the boundary of each subdomain. 

It was discovered that using the Hamming distance as the fitness function was very 

effective in attaining coverage. In comparison with random testing, GAs were more 
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successful. GAs required 100 fewer generations. Jones et al (1995) used GAs to 

produce lest data sets derived from the structure of the code and its formal 

specification in Z. This application was applied to the triangle or Trityp problem 

where GAs proved to be successful in deriving test data sets. According to Jones et 

(3/(1995). one drawback to this method is the computational effort required. 

Schultz et al (1995) used GAs to test and evaluate complex software controllers and 

determined that GAs performed well and that the gain on speed was worth the 

decline in quality over using an exhaustive testing procedure. Additional research 

has been performed by Roper et al (1995) into using GAs for test data generation, 

each test data set is accorded a fitness value which measures how many branches are 

covered by a single test data set. Therefore a test data set which covers the most 

branches is the goal, however as this alone will not achieve coverage of the code the 

eventual goal is to achieve a population of chromosomes which together cover the 

program. • 

Finally. Chang et al (1992) used heuristic rules to create an intelligent test data 

generator for branch coverage of a test function. The framework of their system 

consists of a parser/scanner to instrument the input source code and produce 

information on the program structure; a test case generator that produces test cases to 

target specific branches from the code structure; a test case analyser runs the test 

data sets and records coverage. These last two stages loop until a satisfactory 

coverage level is attained, and finally a report generator which gives the user 

statistics, coverage metrics and test data sets for the function under test. 
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Chang et a/ (1992) used four heuristics were used for the generation of test data. The 

first was fixed percentage modification, which changed each variable by a percentage 

from the previous generation's best lest case. The second method was random 

modification, which used a random percentage of change from the best test case. The 

third method, is entitled 'modification based on condition constants used*, the 

constants referred to are those which appeared in the conditional statement of the 

code which is being covered. This method showed an improvement over random 

modification (Chang et al, 1992). The remaining approach used was boundary 

computation. An attempt was made to establish the boundary that separates the true 

and false values of the condition. The best test data set was then modified to find test 

data through symbolic evaluation which straddles the line of true and false. Of the 

four methods the last heuristic, which uses symbolic evaluation, is the most 

successful (Chang et al, 1992). 

The research described in this chapter aims to generate lest data to satisfy the 

coverage metrics for branch, statement. LCSAJs and path testing. The goal is to 

measure the structural coverage of a function under test, while keeping the amount of 

disturbance to it to a minimum. This means that only a small amount of receding 

should be performed on the function under test so the test is on the original code, not 

what has been added as analysis routines. Therefore the testing will be performed as 

black-box testing with slight structural modifications and a fitness function is 

required which will help to achieve this goal. 
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6.2. The Fitness Function 

There are a number of ways this can be done and a brief review of the literature 

reveals methods which have been used for similar problems. Sthammer et al (1992) 

took as a measurement the distance a test data set was from a conditional border and 

rewarded these test data sets. looking at one branch at a time, however this requires 

more reworking of the actual test code and moves away from black-box testing. 

Roper et al (1995) used the length of the path achieved through the code and 

rewarded those test data sets which covered more branches, this method however 

encouraged finding longer paths and discouraged shorter and equally as important 

paths. Schultz et al (1995) discusses four methods forjudging the fitness of test data 

sets for software controllers, the first was border condition similar to that method 

used by Sthamer et al (1992), dismissed for its high computational costs; the second 

method was to measure the performance against actual performance, but this method 

requires a detailed explanation of expected responses, the third method was based on 

the likelihood and severity of the fault, this requires probability estimates of the fault 

modes and many of the faults may be of the same probability but of equal 

importance. The final method which was then applied to the test problem by Schultz 

et ali\995) was to search for scenarios which were interesting, interesting referred to 

test data sets which produced failures or faults which did not cause a failure, using 

this method they fell that classes of weaknesses were discovered as opposed to single 

weaknesses which would be patched specifically. 

In an attempt to remain close to black-box testing the fitness function required in the 

tests performed for this thesis needed to measure fitness of a test data sel while 
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encouraging coverage of unexplored areas of the lest code. A visualisation of the 

fitness landcape of the search space would indicate a flat plateau, as no one test data 

sets has a greater fitness than any other as there is no global optimum. (Complete 

coverage of the code is the global optimum). As a path is found it is rewarded for 

achieving coverage, however subsequent test data sets which find the same path 

should be penalised as once found there is no need for more test data which will 

cover that path. Therefore a test data set which finds an already covered path should 

receive a reduced fitness. 

Using this idea, a visualisation of the search space might show large peaks rising out 

of the plateau which then diminish in size over time, until very little plateau exist 

between hills of varying sizes. When no plateau exist then the code has been covered 

(global optimum has been reached). A numerical representation of this concept is to 

count the number of times a path is accessed, using the inverse of this wi l l give a 

greater fitness to new paths which will decrease over time as the path is found again. 

FITNESS = — * 100000.00 (1) 
Count + 1.0 

This proportional reduction in fitness is shown in figure 41. The first time a path has 

been found its fitness is 50000. however when it has been found 100 times its fitness 

has reduced to 990. This process will continue, the fitness of the path and the test 

data set which accesses that path, continues to decline until the end of the search. 
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Figure 41 - The Fitness of an Exercised Path, as it is Accessed Subsequent 
Times, This Demonstrates How the Fitness Declines 

This same concept needs to be applied to the coverage of branches and LCSAJs. A 

single path through the code returns m.any branches and another path may differ from 

the first by only one branch. In this case the search will stop when each of the 

individual branches and LCSAJs have been covered. Therefore when the test data is 

generated to achieve coverage of branches or LCSAJs a different fitness strategy is 

required. There are two options for measuring this fitness, the first is to add up the 

number of j:imes each of the branches and LCSAJs have been exercised and then use 

this value as Count as in (1); or to take the smallest value. SmallestjCount, for all the 

counts (all the branches access times), as in (2). 

FITNESS = ^— * 100000.00 (2) 
Smallest _ Count + 1.0 

Using method (2) a test data set is rewarded for finding at least one new branch or 

LCSAJ. This method will be used for test data generation for coverage of branches 

and LCSAJs, while ( I ) will be used for path testing. 
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6,3. An Illustrative Example of Determining Fitness 

In order to determine the fitness, the parsed function, as established from chapter 3. 

will be attached as the code file to the GAs. This function is given a generic name, 

TestCode, which can be applied to any function under test. One additional 

adjustment to the parsed function is the retum from code under test of a string 

containing the path exercised information (Le. IT2T3F). this is called 'tested'. This 

is used by the fitness function, as established in section 6.2, to establish the coverage 

and fitness value. Therefore the first line of the function under test will read as 

follows: 

TestCode(int x, int y, int z, char tested[20]). 

The character array 'tested' wil l contain the string of paths exercised within the test 

function. This string is returned to the fitness calculation function which analyses it 

to determine which path/branches/LCSAJs have been exercised. In the case of branch 

testing, one by one each available branch is compared as a substring to the path, 

'tested', as follows: 

if (strstr("lT",tested) == 0). 

If the equation evaluates to zero then that substring exists in the exercised path. The 

branch to be tested has a corresponding integer value (Count) which indicates how 

many times that particular branch has been found. If Count is zero then this branch 

has been exercised for the first time, i f it is greater than zero then that branch has 

already been exercised. As each branch is tested against the string. Count of some 

branches will be higher than others due to previous test sets. A low value of Count 

shows that a particular test data set has exercised a new area of the function under 

test and should be duly rewarded in its fitness as in (2). 
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The value of SmallestjCount is the smallest value of the set of Count established 

when checking the branches and LCSAJs exercised against the available branches 

and LCSAJs in the string t̂ested*. Therefore, i f a test data set exercises five different 

branches, the value of SmallestjCount will be the value of Count for the branch that 

has been exercised the least. Therefore a lest data set which finds an untested branch 

will have a fitness of 50000.0. while a test data set with values of Count ranging from 

5 to 20 will have a fitness of 16666.67. 

6.4. Remembering Unique Data Sets 

In the sample code shown in chapter 3, the search space is of size 9,261, that is there 

are 9,261 different combinations possible of the three variables x.y and z. These 

three variables each are within the range [0..20]. 

To keep run-time to a minimum, a function should not be tested with the same test 

data. Therefore a record needs to be kept of each test data set and the path it has 

exercised. To save memory the three variable combination is converted to a single 

integer, such that the variables {0,0,0} is position 0 in the array titled *unique*, and 

{20.20,20) is in position 9.260. The information contained in the array is the path 

string returned using that test data, which is then used to increment the branch 

coverage levels. In figure 42 is an illustration of the type of array and the information 

contained in the array. The path used in this example is the actual path exercised by 

the corresponding test data. 
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char unique[9261][20] 

variable value data set 
unique[0] "1T2F3FL0" 10.0.01 
unique[740] *MF3FLIL2" (1.14.5} 
unique[9260] "1F3FLIL2" {20.20.201 

Figure 42 - Declaration of Array 'Unique' and the Information Contained in 
Array 

Therefore if a test data set {1,14.5) was generated the corresponding array position is 

740. 

'x' value is * r 
y value is *14' 
'z' value is '5' 

I * 21 
14* 21 
5 * 1 

441 
294 

5 
740 

As this is the first time this test data set has been generated the array position 740 is 

blank and the test data needs, to be run on the test code and 'tested' (the path 

exercised) will have to be determined. The value of 'tested' is the path "1F3FL1L2" 

is placed in the array position 740 and also used to determine the fitness of the test 

data set. I f this same test data set is again generated the array position will be 

accessed and upon finding the string "1F3FLILT* it will not be necessary to run the 

test code as the string contained in the array position is used as 'tested'. This reduces 

the amount of run time as the test code is not required to be run on the same data 

again and again, which is of great benefit when the lest code contains complicated 

and time consuming calculations. To reduce the test lime while achieving a high test 

effectiveness is what it is hoped will be attained. 

6.5. The GAs Process 

The algorithm shown in figure 43 and figure 44 is an addition to the algorithm shown 

in chapter 3. This algorithm demonstrates the complete steps taken by GAs to 

Chapter 6 86 



generate test data for branch coverage. The submodule fitness illustrates the steps 

taken following the discussion in sections 6.2 through 6.4. This shows the steps to be 

taken i f the test data set has been generated previously or i f it is a fresh test data set. 

Additionally it demonstrates the simple process involved in determining 

Smallest jCount. This value of Smallest jCount is used in the fitness function (2) and 

this value is used as the fitness of the test data set for the GA process. 

The GAs Process 
1 Generate a random population of binary digits 
2 calculate population fitness using submodule FITNESS 
3 while (branch coverage < total branches) or (generation < Some_VaIue) do 
3.1 reproduce population 
3.2 cross population members 
3.3 mutate population members 
3.4 calculate population fitness using submodule FITNESS 
3.5 increment generation by 1 
4 end loop 

_5 record branch coverage for manual review 

Figure 43 - Algorithm for GAs for Test Data Generation 

submodule FITNESS 
1 convert the binary strings to integers 
2 convert test data set value to single integer 
3 if unique[inieger] = empty string 
3.1 send test data set to function under lest 
3.2 gel path exercised 'lested' 
3.3 set unique[integer] to 'tested' 
3.4 else 
3.5 get 'tested' in uniquefinteger] 
3.6 end if 
4 loop while comparing path exercised with branch data 
4.1 if substring of path = branch/LCSAJ 
4.1.1 update count 
4.1.2 if count < Smallesi_Count 
4.1.2.1 sei SmalIest_Count to count 
4.1.3 end if 
4.2 end if 
5 end loop 
6 return fitness as value of SmaUest_Couni using formula (2) 

end module 
Figure 44 - Algorithm for Fitness Function to GAs, Figure 43, for Test Data 

Generation 

The following sections will review the processes specified in figure 43 and figure 44 

in detail. 
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6.5.1. Random Population Generation 

The first step is to generate a random population of ten members of length 15. such 

that 

2'<20<2*, 

and these are listed in table 18. Each of the three input variable is represented by five 

binary digits. 

1 101011000010011 
2 000111010000110 
3 110011110010000 
4 111000001011101 
5 001100011010001 
6 011110101001110 
7 00100101 m o n o 
8 001011100111110 
9 . 011100010101 111 
10 111000011011001 

Table 18 - Random Binary Population 

6.5.2. Calculate Fitness Using Submodule FITNESS 

The first step is to convert these binary digits to their respective integer values as 

follows in table 19. In turn each combination is converted to a single value, position, 

as in column 5 of table 19. Each position in the array *unique* is then checked to see 

whether it contains an empty string or the string containing the path exercised in its 

test through the code. In this first generation unique[6396] will be an empty string, 

the test data (14,10.12) is then applied to the test code and the associated path 

exercised is entered in column 6 of table 19. Population member number 8, which is 

a duplicate of number 7, activates the else portion (step 3.3) of the algorithm in figure 

43 and the test data is not sent to the test code, but the path exercised is automatically 

generated from the array position. 
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X y z Array 
Value 

Path Exercised 

1 14 10 12 6396 1F3FL1L2 
2 2 13 4 1159 IF3FL1L2 
3 16 18 10 7444 1F3FL1L2 
4 18 2 19 7999 1F3FL0 
5 4 4 11 1859 1T2F3TL1 
6 10 6 8 4544 1F3FLI 
7 3 15 14 1652 1F3FL1L2 
8 3 15 14 1652 IF3FLIL2 
9 9 3 10 4042 1F3FL1 
10 18 4 16 8038 1F3FL1 

Table 19 - Integer Values of Binary Digits and Array Value 

Each path is then compared to the branches and LCSAJs specified for this test code 

as determined in the parsing stage, described in chapter 3. These are listed in table 

20 (a) and (b) respectively. 

Branches times 
exerdsed 

I IT I 
2 I F 9 
3 2T 
4 2F 1 
5 3T 1 
6 3F 9 
7 LO 

* 8 L I 9 
9 L2 5 

LCSAJs times 
exercised 

1 3TL0 
2 3TL1 1 
3 3TLIL2 
4 3FL0 1 
5 3FL1 3 
6 3FL1L2 5 
7 1T2T 
8 1T2F 1 
9 2T3T 
10 2T3F 
1! 2F3T 1 
12 2F3F 
13 IF3T 
14 IF3F 9 

(a) (b) 

Table 20 - Branches and LCSAJs to be Exercised in Test Code and Number of 
Times Exercised Using First Generation (Random Population) 

As each path exercised is compared to the branches and LCSAJs requiring testing, 

the number of times each has been found by a piece of test data is recorded in column 

3 of each table, 20(a) and (b), such that for chromosome one with path exercised 

(IF3FL1L2) each branch ( IF , 3F, L I , L2} is incremented by 1 and LCSAJ 6 and 14 

are incremented as well. Note that the LCSAJ 5 is not incremented, as this input 
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exercises both L I and L2, not L I singularly. The fitness for chromosome 1 will be 

the value of the lowest count of found times. As this is the first time testing the code 

the value of each branch or LCSAJs found will be 1, therefore the returned fitness of 

chromosome I is 50,000. The fitness for the entire population is shown in table 21. 

Fitness Value 
1 50000 
2 33333 
3 25000 
4 50000 
5 50000 
6 50000 
7 20000 
8 16666 
9 33333 
10 25000 

Table 21 - Fitness of Population 

In this first generation it can be noted that there are four best members of population. 

In successive generations the fitness of the best members shown above begins to 

decline as more and more test data sets exercise these same areas of code. 

6.5.3. The While Loop 

The number of branches and LCSAJs successfully exercised by the initial population 

is recorded (14) and compared to the total number to be exercised(23). It is possible 

that some of the branches or LCSAJs are unobtainable and the GA search could 

continue indefinitely. To avoid this the search will stop when either all LCSAJs and 

branches have been exercised or when the generation number equals 1000. In this 

example all possible LCSAJs can not be found, therefore the total number of LCSAJs 

and branches to be exercised is 22. Once the search is activated the next generation 

is generated by the process described in section 5.2.3. The roulette wheel for the 

current population looks as in figure 45. The fitness of the population is 353332 and 
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shown in table 22 is their portion of the total fitness of the population which is used 

to calculate the next population. 

Member Portion to 
I 53000 
2 83333 
3 108333 
4 158333 
5 208333 
6 258333 
7 278333 
8 294999 
9 328332 
10 353332 

Figure 45 - Roulette Wheel of Population Fitness 

Table 22- Portion of 
Populations Fitness 

Assigned to Each Member 

The next population is determined by a random generation of 10 numbers between 0 

and 353332 and these numbers are {157326, 128001, 16853. 232967, 214178, 

129981,29186, 160070, 151688,59008). This gives the new population as shown in 

table 23. 

Population Generation 
Two 

1 i i ioooooionioi 
2 lllOOOOOIOIIIOl 
3 lOIOl1000010011 
4 011110101001110 
5 011110101001110 
6 111000001011101 
7 10101lOOOOlOOil 
8 00110001lOIOOOl 
9 111000001011101 
10 000111010000110 

Table 23 - New Population (Generation 2) 
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6.5.4. Crossover and Mutation 

At this stage 50% of this new population is crossed and 1% of the genes mutated on a 

random basis. The resulting population is as follows in table 24. 

I 111000001011001 
2 110110111011101 
3 101011100010011 
4 010000001001110 
5 011110111001110 
6 111000100000110 
7 101011000000011 
8 000000001000001 
9 111100001011101 
10 001011011011101 

Table 24 - New Population (Generation 2) after Crossover and Mutation 

None of the new population, when converted to integers as shown in table 25. has 

already been tested and the average fitness of the population is now 224683. The 

coverage of all branches and LCSAJs has now increased to 18 leaving only 4 more to 

be exercised as displayed in table 26 (a and b), as LCSAJ 7 is infeasible. 

X Y Z A r r a y 
Value 

Path Exercised Fitness 

I 14 1 16 6211 1T2F3FL0 50000 
2 17 9 19 7705 1F3FL1L2 14286 
3 14 15 12 6501 1 F 3 F L I L 2 12500 
4 5 I 9 2235 IT2F3ET-1 33333 
5 10 9 9 4608 1F3FL1L2 m i l 
6 18 5 4 8047 I F 3 F L 1 16667 
7 14 10 2 6386 I F 3 F L 1 L 2 10000 
8 0 I 1 22 1T2F3TL0 50000 
9 19 3 19 8461 1F3FLI 14286 
10 3 14 19 1636 I T 2 F 3 T L I L 2 12500 

Table 25 - Integer Values of Binary Digits and Array Value (2nd Generation) 
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Branches times 
exercised 

I I T 5 
2 I F 15 
3 2T 
4 2F 5 
5 3T 3 
6 3 F 17 
7 LO 2 
8 L I 17 
9 12 11 

L C S A J s times 
exercised 

I 3 T L 0 1 
2 3TL1 I 
3 3 T L I L 2 I 
4 3 F L 0 2 
5 3FL1 6 
6 3 F L I L 2 9 
7 I T 2 T 
8 I T 2 F 5 
9 2 T 3 T 
10 2 T 3 F 
11 2F3T 3 
12 2F3F 2 
13 1F3T 
14 I F 3 F 15 

(a) (b) 

Table 26 - Branches And LCSAJs to be Exercised in Test Code and Number of 
Times Exercised for Second Generation 

6.5.5. LoopEnd 

At the conclusion of the loop a listing is made of all the statements and LCSAJs 

exercised for a manual review as specified in the algorithm in chapter 3, section I . 

To calculate an average number for the amount of unique test data required, the 

process was run 1000 times. The program stopped when a satisfactory TER of 95% 

was attained. The average number of unique data sets which were generated by the 

runs was 341.62 or 3.7% of the total search space, and these were generated over an 

average number of generations. 685.20, an average of 0.50 new data sets each 

generation. The minimum number of data sets required by a run was 14, the lowest 

possible number of data sets generated prior to coverage is 7. The maximum number 

of daia sets required by a run was 1595. the maximum possible number is 9254 as 

discussed in chapter 3. Table 27 summarises the results. 
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Avera2e unique data sets 1000 runs G A s 341.62 
Standard deviation over 1000 runs 291.59 
Average generations required 685.20 
Minimum unique data sets required 14 
Maximum unique data sets required 1595 
Average % of search space searched 3.7% 
Average new data sets/gene ration 0.50 

Table 27 - Results of Function Under Test Using GAs Over 1000 Runs For 
LCSAJs and Branch Testing 

In figure 46 is a frequency distribution for the 1000 runs which shows the amount of 

unique test data required for each run. The peak of the data is between 150-200 

unique data sets with 123 runs completing within this range, while the average 

number of data sets is 341. This graph will be used to compare search techniques 

and to illustrate where the results for each search technique falls. 
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Figure 46 - Frequency Distribution of GAs over 1000 Runs For LCSAJs And 
Branch Testing 

6.6. Comparison to Random Testing 

Test data was generated randomly for this same simple function under test. In 

random testing, data is again generated until for all branches and LCSAJs a 

satisfactory TER is reached. The same type of count was maintained of the number 

Chapter 6 94 



of unique data sets required and the results are in table 28. These results show that 

an average of 994.58 unique data sets were required in comparison to the 341.62 by 

GAs. There was an 89% chance that a newly generated test data set had not been 

previously applied, compared to a 50% chance for GAs. The minimum amount of 

test data generated before a successful completion of a run was 14, the same as with 

GAs, but the maximum was 4958 as opposed to 1595 for GAs. A frequency 

distribution is shown in figure 47, the highest concentration again fell between 100-

150 data sets with a total of 59 runs completing, compared to 123 runs completing in 

this range for GAs. 

Unique data sets 1000 runs Random generation 994.58 
Standard deviation ' 881.13 
Average generations required 1113.0 
Minimum unique data sets required 14 
Maximum unique data sets required 4958 
Average % of search space searched 10.7% 
Average data sets/generation 0.89 

Table 28 - Results of Function Under Test Using Random Generation over 1000 
Runs for LCSAJs and Branch Testing 
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Figure 47 - Frequency Distribution of Random Generation for LCSAJs and 
Branch Testing 
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Finally in figure 48 is a graph showing the frequency distribution for both GAs and 

random generation. This graph show thai while many of the random runs satisfy the 

TER quite early, there are more runs which take more test data than GAs. The GAs 

however, have a very quick high peak with a gradual slope as there are fewer runs 

with higher amounts of test data sets, until finally the line finishes at the highest run 

amount of 1595. 

140 

Random g 60 

-GA 

• Random 

o - * r o o } X k u i o i - ^ J 0 3 c o - » - * - ^ - * - * - * o o o o o o o o o o - » r o c j - f ^ u i o o o o o o o o o o o o o o o 

number of unique data sets 

Figure 48 - A Comparison of Frequency Between GAs and Random Test Data 
Generation for Sample Function under Test for LCSAJs and Branch Testing 

6.7. Path testing 

It has been stated that path testing, where test data is used to attempt to exercise every 

path in the function in its entirety, can be a very time consuming practice. It may 

however, be interesting to note how GAs and random testing perform in testing all 

the paths of this sample function. There are as stated in chapter 3, 15 feasible paths 

through the function. Path testing aims to find all those which are listed in table 29 
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with the corresponding number of combinations in the search space which exercise 

the path, and its percentage of the total search space. For all 15 paths to be exercised 

at least 15 test data sets must be generated. The maximum number of data sets 

possible before coverage is 9258 as there are some paths which can only be exercised 

by a very small pool of test data. 

Patb Times % 
IT2F3FL0 110 1.19% 
IT2F3TL0 A 0.04% 
IT2F3TLI 116 1.25% 
IT2F3TLIL2 320 3.46% 
IF3FL0 692 7.47% 
IT2T3TL0 4 0.04% 
1T2T3FL0 53 0.57% 
1F3FLI 1870 20.19% 
IT2T3TLI 116 1.25% 
IT213FL1 295 3.19% 
IF3FL1L2 , 4928 53.21% 
1T2T3TLIL2 320 3.46% 
IT2T3FLIL2 37 0.40% 
IT2F3FLI 355 3.83% 
IT2F3FLIL2 41 0.44% 
Total 9261 100.00% 

Table 29 - Feasible Paths through Function Under Test, Number of 
Occurrences of Each Path within Search Space and Percentage of Search Space 

In table 30 is the comparison of GAs to random test data generation for the 

generation of test data for path testing. The results indicate that Random Testing 

requires 2718.92 unique data sets, and examined, as with branch and LCSAJ testing, 

27% of the search space and GAs require 529.18 and a search space viewed of 5.7%. 

The minimum amount of test data generated by a run was 78 for GAs and 199 by 

random generation. These amounts are above the minimum possible of 15. Random 

testing however had one run which didn*t achieve coverage until it had generated 

7135 new test data sets, very close to the figure 9258, which is the maximum which 

could be generated prior to coverage. In comparison the run of GAs which required 

the most test data required 1952 data sets or 21% of the possible amount. Figure 49 
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is the frequency distribution for both random generation and GAs. The peak for GAs 

is very pronounced and steep between 350-400 data sets with 94 runs completing at 

this point. Random generation has a number of peaks of height 18, at 1400-1450. 

1900-1950 and 2300-2350, the highest point, 19 runs is in the range 3350 to 3400. 

This illustrates that GAs terminate with a small amount of unique test data required, 

while the random generation amount required fluctuates over a larger area. 

G A s Random 
Average unique data sets 1000 runs . 529.18 2718.92 
Standard deviation over 1000 runs 279.30 1471.34 
Average generations required 1072.35 3501.47 
Minimum unique data sets required 78 199 
Maximum unique data sets required 1952 7135 
Average % of search space searched 5.7% 29.36% 
Average new data sets/generation 0.49 0.78 

Table 30 - Comparison of 1000 Runs of GAs Vs. Random Generation for Path 
Testing of Sample Function Under Test 

Random 

GA 

Random 

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

number of unique data sets 

Figure 49 - A Comparison of Frequency between GAs and Random Generation 
for Sample Function Under Test for Path Testing 
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6.8. Conclusion 

This chapter demonsyirates the use of OAs for the generation of lest data. Details are 

given on the method used to both generate and apply the data to the module under 

test. Included is an explanation of ho set unique(integer] to 'tested'w rerunning the test 

code with identical test data can be avoided, which is necessary due to the potential 

for long run-times. There is a demonstration of how GAs perform over 1000 runs in 

comparison to random test data generation for the requirement of unique test data 

sets. This illustrates that GAs on average require less new test data than random 

generation for this small sample function. Results from GAs show a 66% 

improvement over random generation for LCSAJs and branch testing. This chapter 

concludes with a comparison of path testing for random generation and GAs, Even 

though the sample function under test is a small program, results indicate that GAs 

continue to outperform random generation by 81%. 

In the chapters 7 though 10, GAs and random testing will be compared to other 

adaptive search techniques. GAs will again be used to generate test data for a suite 

of general test problems in chapter 9 and in chapter 10 a program which optimises 

lax payable for companies is used to test the methods in a 'reaP environment. These 

results will be compared to those obtained using Simulated Annealing discussed in 

chapter 7, Tabu search, chapter 8, and random lest data generation. 

Chapter 6 99 



Chapter Seven 

Simulated Annealing 

7.1. What is Simulated Annealing? 

Many local search algorithms terminate at local optimum and it is difficult to 

determine how far these results may be from the global optimum (Johnson et al, 

1985). The quality of the local optimum usually depends on the initial choice of the 

starting point but there is no specification for choosing this. However, local search 

algorithms are generally applicable and flexible, requiring only a search space, the 

fitness of a given solution and a direction in which to search. There are a number of 

methods which will alleviate problems associated with local optima, the first is to use 

a large number of starting points and the second is to expand the local search space 

by introducing a more complex neighbourhood structure. A third is to amend the 

method used for allowing good neighbours, by accepting an increase or a limited 

decrease in the fitness. Simulated Annealing uses this third alternative. It has also 

been referred to as Monte Carlo annealing (Jepsen and Gelatt, 1983), probabilistic 

hill climbing (Romeo and Sangiovanni-Vincentelli, 1985), statistical cooling (Aarts 

and Van Laarhoven, 1985; Storer et al, 1985) and stochastic relaxation (German and 

German, 1984). 
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In physical terms, annealing is the process of toughening (glass or metal) by heating 

to high temperatures quickly and then cooHng slowly (Aarts and Korst, 1990). This 

process consists of two steps, as described by Kirkpatrick, Gelatt and Vecchi 

(I982;1983). 

• Increase the temperature of the heat bath to a maximum value at which 
the solid melts. 

• Decrease carefully the temperature of the heat bath until the particles 
arrange themselves in the ground state of the solid. 

At the liquid phase the particles arrange themselves randomly, while at the ground 

state the particles are arranged in a highly structured lattice. This ground state 

however, is only reached i f the maximum temperature is suitably high and the 

cooling is done at a regulated speed. Otherwise what results is a meta-stable state 

(Aarts and Korst, 1990). 

7.2. Annealing to Simulated Annealing 

Simulated Annealing was independently introduced by Kirkpatrick, Gelatt and 

Vecchi (1982:1983) and Cemy (1985) to mimic this thermal process for obtaining 

low energy states of a solid in a heat bath. Aarts and Korst (1990) describe the states 

of the particles as the solutions in the search space, and the energy required to 

produce these particles as the cost of the solutions. The temperature to which the 

particles are heated and to which they are cooled is defined as a control parameter. 

These concepts, combined with a cooling schedule, are Simulated Annealing (Aarts 

and Korst, 1990). A cooling schedule should identify the following information: 
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• a sequence of values of the control parameters 

• an initial value of the control parameter Co 

• a decrement function for decreasing the value of the 
conu-ol parameter 

• a final value of the control parameter specified by a stop 
criterion 

• a finite number of transitions, Lo. at each value of the control 
parameter, Co 

The aim of Simulated Annealing is to produce an optimum by changing the initial 

starting point over a fixed period of time. Each new solution is then selected in turn 

to be annealed based on its fitness. I f its fitness is better than the previous solution it 

is automatically accepted, but i f it is worse it may be selected according to the 

probability distribution: 

f i S ) - f i S ) 
new old 

PJacc€pt(S^)}=eKp ^' 

According to Dowsland (1993) the period of lime at the middle of the cooling 

schedule produces the best results. At the beginning the temperature is so high that 

most of the new solutions are accepted, which could give results no better than 

random search. If the temperature were to be lower at the start little change would be 

seen. Therefore, most of the results are determined in the middle range of the 

cooling schedule. This high rate will allow acceptance of a large number of new 

solutions, this figure will reduce over time by 5% this reduction figure is referred to 

as the cooling schedule. The rate of Q would eventually coverage to zero, although 

it is not necessary to reduce this figure to zero according to Dowsland (1993) as Co 

lowers the probability of accepting any uphill move will be indistinguishable from 
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zero. In section 7.5 there is a comparison of the probabihty acceptance rates to 

determine how a higher or lower value of Co will affect the results. 

The mechanics of Simulated Annealing can be modelled using Markov chains, as the 

conditional dependence on the sequence history of each new solution in the sequence 

is equal to its conditional dependence upon its immediate predecessor (Davis and 

Principe. 1993). 

7.3. The Simulated Annealing Algorithm 

This section will discuss each step of Simulated Annealing in respect to the sample 

search used in chapter 5, which demonstrated the use of a GA to maximise the fitness 

function: 

In figure 50, the algorithm for Simulated Annealing is given. 

Simulated Annealing Algorithm 
1 create initial solution (Soid) 
2 initialise Co, Lo 
3 while (not siop_criterion) 
3.1 for (loop=0;loop<Lo; loop++) 
3.1.1 Generate S^^ from Soid 
3.1.2 if (ritness(S«^)> fitness(Soid)) 
3.1.2.1 then Sow = Sncw 
3.1.3 else 
3.1.3.1 . . . / ' V - w i v ^ > 

" ( c x p > random[0..\] ) 

3.1.3.1.2 then Sold = S « ^ 
3.2 end for loop 
3.3 Co = Co*0.95 
3.4 U = L o + I 
4 end while loop 

Figure 50 - Simulated Annealing Algorithm 
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For this problem, the initial starting point Sold is a single binary suing of length 8. Lo 

will therefore be the value 8, which is the length of the suing of binary digits which 

represents the integers, x and y. The value of Co is the equation 

t 

The value of Co can be described as the drop in fitness (-d) acceptable over time (t) 

using the logarithmic scale such that 

- d -10 
— = ^ = 14,427 

/ ln(0.50) 

This will give a sufficiently high temperature to begin, allowing a greater chance of 

acceptance of those strings who are worse than Soia- This rate will decline over time 

by 5% each cycle as discussed in the previous section. 

Snew is created from Sow, from Sow by mutating a number of bits in the binary su-ing, 

in this case mutation will be two bits each time. By mutating two bits of the original 

string a new string is created as shown below. 

10010010 10010100 

Sold evaluates to the integer digits {1 .-4} and has a fitness of 1.68, Snew evaluates to 

{4,-2} with a fitness of 1.62. In some search methods Snew would be rejected and the 

process would continue with SQW- However in Simulated Annealing there is a chance 

that Snew may still replace SQW using the calculation specified: 

1.62-1.68 

exp ^4^27 =0.996 
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A real number between 0 and 1 is then generated, i f that number is less than 0.996 

then Sold is replaced by Sncw . and the process continues until the loop is completed. 

This means that there is a chance the optimum could be reached and then lost before 

the loop is completed. At the end of the loop the value of Co (temperature) is reduced 

by 5%, as discussed above, and the time value LQ is increased by 1, Lo stops 

incrementing when a selected value, in this case 80. is reached. The reduction to Q 

means that as the number of generations increase, there is less of a chance for an Sncw 

with a fitness less than Soia to be accepted. The value of Sow is then checked against 

the stopping_criterion which is a maximum fitness of 2.0. If Sow = 2.0 the process 

stops, i f Sow is less than 2.00 the process continues. 

7.4. Simulated Annealing for Test Data Generation 

How will Simulated Annealing compare to using GAs for the generation of test data? 

There has been no literature on the use of this technique for test data generation, but 

there has been some work done on the comparison of GAs and Simulated Annealing. 

Thornton (1994) compared the two adaptive search techniques in determining 

feasible engineering designs. Four designs were attempted, these are an aero engine, 

mobile arm support, a bearing and a spring. In three out of the four designs. 

Simulated Annealing outperformed GAs and Thornton (1994) accredited this to the 

ability to represent constraints in the annealing process. Park and Carter (1995) 

compared the two techniques on MAX-CLIQUE, the problem of finding the size of a 

maximum clique in a graph. MAX-CLIQUE is an NP-Complete problem which has 

also been proved as NP-hard. Results indicated that there was no difference in time 

taken between GAs and Simulated Annealing in a simple version of this problem. 
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The reason Simulated Annealing was attempted is the high computational costs of 

maintaining a population in GAs and in the larger problem this indicates that the cost 

per interaction is much less for Simulated Annealing. 

Simulated Annealing is therefore compared to GAs and random testing for the 

generation of test data. The starting point is one binary string with a length of 15. 

For the function under test the same fitness formula is used and the procedure will 

conclude when an acceptable TER has been reached. In the first example, the TER is 

95% for branches and LCSAJs, and in the second example for path testing it is 58%. 

7.4.1. Test Data Generation for LCSAJs and Branches 

This is the same problem used in chapter 6. The goal is to achieve a satisfactory TER 

for branches and LCSAJs with a small amount of unique lest data. The results are in 

table 31. Simulated Annealing has achieved coverage after an average generation of 

348.26 unique test data sets, this compares closely to the results from GAs, 341.62. 

Simulated Annealing required 3.8% of the search space to be searched while GAs 

required only 3.7%. a very small difference. In comparison to random test data 

generation which was required to search 10.74% of the entire search space. 

Simulated Annealing has offered an improvement. On average there is a 70% chance 

that a new data set has not been previously found. The minimum amount of test data 

required in a single run was 16. this figure is close to the lowest possible number 7. 

only slightly worse than the lowest figure of both GAs and random generation. The 

maximum number of new data sets required by a single run was 1694, approximately 

100 data sets more than GAs where a run required 1595 data sets. 
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G A s Random SA 
Average unique data sets 1000 runs 341.62 994.58 348.26 
Standard deviation over 1000 runs 291.59 881.13 294.56 
Average generations required 685.20 1113.07 500.79 
Minimum unique data sets required 14 14 16 
Maximum unique data sets required 1595 4968 1694 
Average % of search space searched 3.7% 10.74% 3.8% 
Average new data sets/generation 0.50 0.89 0.70 

Table 31 - Results of Function Under Test Using Simulated Annealing Over 
1000 Runs for LCSAJs and Branch Testing Compared to GAs and Random 

Generation 

The graph in figure 51 is a frequency graph comparing Simulated Annealing to those 

results ascertained in chapter 6 for GAs and random generation. The peak of 

Simulated Annealing is between 150-200 widi 127 runs completing within this range, 

as opposed to 123 runs in this range for GAs. The longest run required 1694 unique 

data sets which is less than the maximum number required by random generation, 

4958, but greater than that required by GAs. 1595. these results are outside the scope 

of the graph. 
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Figure 51 - A Comparison of Frequency between GAs, Simulated Annealing and 
Random Generation for Sample Function Under Test for LCSAJs and Branch 

Testing 
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7.4.2. Test Data Generation for Function Paths 

Having accomplished coverage for branches and LCSAJs, concentration will now be 

placed on path testing. The results are in table 32. Simulated Annealing achieved an 

average of 507.76 new data sets per run, this figure is just lower than the results of 

GAs at 529.18 and much better than random generation at 2718.92. The lowest 

amount of unique test data required was 89 which is more than required by the best 

run of GAs but less than random generation, the lowest possible figure is 15 as there 

are 15 paths. The number of generations required was 773.12. which means there 

was a 66% chance that a newly generated data set was in fact unique. These results 

indicate that Simulated Annealing required on average less unique data sets than GAs 

by a small margin, and also reached the coverage ratio in fewer generations. 

GAs Random SA 
Average unique data sets 1000 runs 529.18 2718.92 507.76 
Standard deviation over 1000 runs 279.30 1471.34 268.94 
Average generations required 1072.35 3501.47 773.12 
Minimum unique data sets required 78 199 89 
Maximum unique data sets required 1952 7135 1694 
Average % of search space searched 5.7% 29.36% 5.5% 
Average new data sets/generation 0.50 0.78 0.66 

Table 32 - Results of Function Under Test Using Simulated Annealing 
Compared weith GAs and Random Generation over 1000 Runs for Path Testing 

The graph in figure 52 is a frequency chart comparing Simulated Annealing to those 

results ascertained in chapter 6 for GAs and random generation. The peak for 

Simulated Annealing falls between 400-450 with 103 runs finishing within this 

range. This compares with GAs with 94 runs completed between 350-400 data sets 

and 3350-3400 for random generation with 19 runs completing in this range. In the 

resulting graph, the style of the line created by Simulated Annealing is very similar to 
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that achieved by GAs, albeit a bit delayed. There is more similarity between GAs 

and Simulated Annealing results than with random generation. 
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Figure 52 - A Comparison of Frequency between GAs, Simulated Annealing 
And Random Generation For Sample Function Under Test for Path Testing 

7.5. A Comparison of Control Variables 

For the previous tests of Simulated Annealing a 50% probability of acceptance was 

used. Table 33 shows the results when this acceptance rate is changed first to 25% 

and then to 75% probability of acceptance. 

Acceptance Prohahilitv 
Simulated Annealing 25% 50% 75% 

Average unique data sets 1000 runs 334.80 348.26 345.79 
Standard deviation over 1000 runs 292.49 294.56 297.42 
Average generations required 481 500.79 497.46 
Minimum unique data sets required 11 16 16 
Maximum unique data sets required 2034 1694 1790 
Average % of search space searched 3.6% 3.8% 3.7% 
Average new data sets/generation 0.70 0.70 0.70 

Table 33 - A Comparison of Acceptance Probability of Function Under Test 
Using Simulated Annealing Over 1000 Runs For LCSAJs and Branch Testing 
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This indicates that for this sample function under test there is no great difference in 

the results when the acceptance probability rate is changed. A probability rale of 

25%, means that there is a 25% chance that a new solution with a poorer fitness will 

be accepted. Using this rate, a lower average unique data set is required but this 

difference is negligible, however this rate managed for one run to achieve coverage 

with just 11 data sets, the closest to the minimum 7 so far. It also had one run which 

required 2034 data sets, the most required for Simulated Annealing. The rate of 75% 

also achieved better results than using 50%, but again the difference is too small to 

be influential. Therefore, for this test, results indicate that the acceptance rate has 

little effect on test data generation. 

See I n s e t 
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Figure 53 - A Comparison of Frequency for Acceptance Probability of Function 
Under Test Using Simulated Annealing Over 1000 Runs for LCSAJs and 

Branch Testing 

Figure 53. is the frequency distribution of these three tests, 25%, 50% and 75%, the 

peak for each probability falls between 100-150 unique data sets. The 25% 
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probability had 146 runs fall within this range, 50% had 127 within this range and 

there were 150 runs within the range for a probability of 75%. 

7.6. A Hybridisation of GAs and Simulated Annealing 

Dowsland (1993) suggests that the capabilities of Simulated Annealing can be 

enhanced by combining them with other search methods. This can consist of either 

pre or post processing before beginning the annealing process. GAs could perform as 

a pre-processing method, to concentrate the search onto a good starting position from 

which to begin the annealing process. According to Dowsland (ibid.) the starting 

temperature must be lower than normal to avoid destroying the characteristics of that 

*good' solution. With this in mind. GAs were combined with the Simulated 

Annealing process. The global search will be performed by GAs before a localised 

search is performed by Simulated Annealing on the best member of the final 

population. The GA was run 50 generations before the best member was used as the 

starting point for Simulated Annealing. A variety of cooling temperature were again 

used to determine i f the temperature affected the results. The technique was first 

attempted for LCSAJs and branch testing and the results follow in table 34. 

Acce Dtance Probability 
Simulated Annealing 25% 50% 75% 

Average unique data sets 1000 runs 334.53 330.56 329.68 
Standard deviation over 1000 runs 305.52 301.34 287.50 
Average generations required 434.23 428-13 424.77 
Minimum unique data sets required 17 14 13 
Maximum unique data sets required 2368 1914 2159 
Average % of search space searched 3.6 3.56% 3.56% 
Average new data sets/generation 0.77 0.77 0.77 

Table 34 - Hybrid GAs-SA Comparison for a Range of Acceptance 
Probabilities of Function Under Test Over 1000 Runs For LCSAJs and Branch 

Testing 
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These results demonsu^te that using a higher acceptance probability does generate a 

better average result, however as there is only one data set between the best and 

second best the probability rate seems to have little effect on the amount of test data 

generated. In table 35, is a comparison between the best of the hybrid method of 

GAs-SA, and its predecessors. OAs and Simulated Annealing. The Simulated 

Annealing results are those when using a probability acceptance rate of 50%. 

While the hybrid GAs-SA achieves the best average result 329.68 when compared to 

GAs 341.62, and Simulated Annealing of 348.26, the gap is not very large. The 

GAs-SA did manage to complete a run with the smallest amount of test data. i3 , but 

it also had a run with the most for these three techniques, 2159. 

GAs SA GAs-SA 
Average unique data sets 1000 nins 341.62 348.26 329.68 
Standard deviation over 1000 runs 291.59 294.56 287.50 
Averaee eenerations required 685.20 500.79 424.77 
Minimum unique data sets required 14 16 13 
Maximum unique data sets required 1595 1694 2159 
Average % of search space searched 3.7% 3.8% 3.56% 
Average new data sets/generation 0.50 0.70 0.77 

Table 35 - Results of Function Under Test Comparing GAs, Simulated 
Annealing, and the Hybrid GAs-SA Over 1000 Runs for LCSAJs and Branch 

Testing 

Figure 54 is a frequency chart for the GAs-SA (all three probability rates), GAs and 

Simulated Annealing. More runs completed within the range 100-150 unique test 

data sets with the hybrid technique, than with the conventional GAs and Simulated 

Annealing runs. When a probability rate of 25% was used 152 runs completed, 50% 

132 completed and 136 finished in this range for 75%. These figures compared to 

123 for GAs and 127 for Simulated Annealing. 
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Figure 54 - A Comparison of Frequency between GAs, Simulated Annealing and 

the Hybrid GAs-SA (for all Three Probability Rates) for the Sample Function 

Under Test for LCSAJs and Branch Testing 

The same experiment was attempted with path testing to ascertain the impact of GAs-

SA, again 50 generations were run for GAs before the best member of the population 

was used as the starting point for Simulated Annealing, the results are in table 36. 

Acce Dtance Probabilitv 
Simulated Annealing 25% 50% 75% 

Average unique data sets 1000 runs 501.05 484.81 468.58 
Standard deviation over 1000 runs 254.17 253.97 234.90 
Average generations required 721.50 694.74 666 
Minimum unique data sets required 90 84 57 
Maximum unique data sets required 1676 1819 1328 
Average % or search space searched 5.41% 5.23% 5.06% 
Average new data sets/generation 0.69 0.70 0.70 

Table 36 - Hybrid GAs-SA Comparison for a range of Acceptance Probabilities 
of Function Under Test Over 1000 Runs For Path Testing 

These results again indicate that the 75% probability rate achieves the best average 

amount of lest data, 468.58 or 5.06% of the search space, compared to 484.81, 

5.23%, for 50% and 501.05, 5.41%, for 25%. The 75% probability also managed to 

achieve coverage in one run with the smallest amount of test data so far of 57, and 

also offered the smallest spread between minimum and maximum required. The 

lowest possible number of unique lest data sets is 15, the smallest amount of test data 

Chapter 7 113 



by GAs was 78. and 89 by Simulated Annealing. The results of this comparison are 

in table 37. The GAs-SA achieved coverage using only 5.06% of the search space 

compared to 5.48% for Simulated Annealing and 5.71% for GAs. 

GAs SA GAs-SA 
Average unique data sets 1000 runs 529.18 507.76 468.58 
Standard deviation over 1000 runs 279.30 268.94 234.90 
Average generations required 1072.35 773.12 666 
Minimum unique data sets required 78 89 57 
Maximum unique data sets required 1952 1694 1328 
Average % of search space searched 5.71% 5.48% 5.06% 
Average new data sets/generation 0.50 0.66 0.70 

Table 37 - Results of Function Under Test Comparing GAs, Simulated 
Annealing, and the Hybrid GAs-SA over 1000 Runs for Path Testing 
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Figure 55 - A Comparison of Frequency between GAs, Simulated Annealing and 
the Hybrid GAs-SA (for ail Three Probability Rates) for the Sample Function 

Under Test for Path Testing 

Figure 55 shows the frequency chart for GAs. Simulated Annealing and GAs-SA. 

The peak range for the 75% probability is between 400-450 unique data sets with 108 

runs, the 50% probability has 102 runs within this range compared to Simulated 

Annealing with 103 runs. The range 450-500 has the greatest number of runs 

completing, 91 for 25% probability. Finally GAs have a maximum 94 completing in 

the range of 350-400 unique data sets. In this case, the GAs-SA option offers the 
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best average, an improvement of 11.45% over GAs and 7.7% over Simulated 

Annealing. 

7.7. Conclusion 

This chapter describes Simulated Annealing and discusses the process involved in the 

generation of lest data using Simulated Annealing. Included is the method with 

which a new solution is selected over the old solution, even if that new solution has a 

fitness worse than the original. The final part of this chapter is a comparison of 

Simulated Annealing to the use of GAs and random test generation as applied in 

chapter 6. This comparison reveals that while Simulated Annealing improves on 

random generation for this sample function under test, the results are not as 

successful as those from using GAs. The similarity of the results however agree with 

those obtained by Thornton (1994) on a simple problem. More difficult test 

functions will be introduced in Chapters 9 and 10. 

The chapter concludes with results attained when the probability acceptance criteria 

has been adjusted, using an initial value of 50% which was used for the previous 

tests, this rate was adjusted by 25% in each direction. The results indicate that the 

probability of acceptance has little effect for this sample function. The final section in 

this chapter looks at a hybrid GAs-SA which applies the global searching capabilities 

of GAs and then uses the Simulated Annealing to approximate a local search of the 

best member of the population. This hybrid technique was attempted for a range of 

acceptance probabilities. In testing for LCSAJs and branches there was little 

difference in the results, 5.35% over Simulated Annealing and 3.50% over GAs. 
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When path testing, the GAs-SA offers a 7.7% improvement over Simulated 

Annealing and 11.45% over GAs. This greater improvement for path testing could 

be due to the fact that for this test program, path testing is a more difficult problem as 

there are two paths which each have only 4% of the search space, as opposed to the 

smallest search space for one of the LCSAJ of 9%. The next chapter will introduce 

Tabu search, another adaptive search technique. 

Chapter 7 116 



Chapter Eight 

Tabu Search and Its Use for the Generation 
of Test Data 

8.1. Introduction 

Tabu search is a heuristic algorithm that uses memory to find a good solution to a 

search problem. The Tabu search as discussed here derives from the work of Glover 

(1989; 1990; 1994) and Glover a al (1993). According to Glover (1990) Tabu search 

is defined as 

"...a higher level heuristic procedure for solving optimisation problems, 
designed to guide other methods (or their component processes) to 
escape the trap of local optimality" 

Tabu search is a neighbourhood search and can be equated to hill-climbing. 

Unfortunately hill-climbing is limited by local optimum as the search will conclude 

at reaching the local optimum. Tabu search attempts to go beyond termination at the 

local optimum by allowing moves to be made from one result to another even i f that 

new result is not the best of the neighbourhood. This means that there is the 

possibility of looping within the search (Nurmela, 1995). To avoid this, Tabu search 

uses flexible memory to record a history of a search. This memory can structure the 

history list by four dimensions, recency, frequency, aspiration and influence (Glover 

andLaguna, 1993). 
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By maintaining a selective history of all states encountered, a restricted area can be 

created with 'no-go' sections which are the best results of previous searches. These 

are areas of a neighbourhood which may have been previously searched or one that 

may cycle a search back toward a previous result. While the search is not banned 

from these *no-go' areas, it is strongly influenced against it by penalising the results. 

Membership of the Tabu list expires and becomes *tabu-inactive' after a specified 

amount of time which can be either static or dynamic. Glover and Laguna (1993) 

suggest the type of list is problem specific. Occasionally it may be necessary to *bend 

the rules' by either releasing a restriction placed on a result's attributes (attribute 

aspiration) or a restriction placed on the move (move aspiration) by treating a result 

as Uabu-inactive'. This may be necessary for the good of the search as a particular 

move may have a 'sphere of influence' far greater than the restrictions placed upon it, 

and i f this influence is considered greater than the restriction placed on it, the move 

can be made. According to Glover and Laguna (1993), the objective is to stimulate 

the discovery of new high quality solutions. 

Tabu search is relatively new and most of the applications have only been attempted 

since 1989 (Glover, 1993). They have however been successful in scheduling 

(Laguna and Glover, 1992), which applied Tabu search to single machine scheduling 

problems. Dammeyer and Voss (1993) used a Tabu search type method to solve the 

knapsack problem, which determines the maximum number of items which can be 

packed in a knapsack. Over a series of 57 problems, they compared the Tabu search 

method to Simulated Annealing and determined they take comparable time, but that 

Tabu search finds the optimal solution for 50% more problems. They also 
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determined that Simulated Annealing had a greater dependence on the initial 

selection of control parameters than Tabu. 

One problem however with using Tabu search for the generation of test data is that a 

lot of test data sets will be generated as the neighbourhood is searched, and the 

results achieved may therefore not be satisfactory. 

The algorithm for Tabu search, based on the description by Glover (1989), is as 

follows in figure 56 

Tabu Search Algorithm 
1 select s e S //S = search space 
2 initialise tabulist and set to empty list 
3 iniualise TabuListSize = SIZE 
4 initialise TabuCounter = 0 
5 while fitness(s) < stopping criterion 
5.1 generate neighbourhood(N) of s 
5.2 calculate fitness of each member using submodute Fitness 
5.3 select member(N) with best fitness and make it Snew 
5.4 add s to tabulist and increment TabuCounter by 1 
5.5 ifTabuCounter = SIZE 
5.5.1 set TabuCounter = 0 //start at beginning of list to eliminate old members 
5.6 ' S=Soew 

_6 end while loop 

SubModule Fitness 
1 calculate fitness of member 
2 if member is member(tabulist) by some_attribute 
2.1 reduce fitness by some_amount 

_3 return fitness 

Figure 56 - Algorithm for Tabu Search including Submod.ule to Calculate 
Fitness 

8.2. Tabu Search in Action 

The following is a demonstration of Tabu search using the maximisation problem 

discussed in Chapter 5 for GAs and Chapter 6 for Simulated Annealing. The search 

space used in the previous examples will be extended from the range of the variables 

X and y of [-5..5] to a range of [-10.. 10] to demonstrate the effect of local optimum 
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on the search. The graphical representation of the new search space is shown in 

figure 57, the representation of the peak 2.0 is in the range 2.0-2.5 to illustrate that 

this is the optimum peak in the search space. As there are similarities between hill-

climbing and Tabu search a short demonstration of hill climbing will begin this 

example. 

10 

2 Variable 'y* 

H 2-2.5 

• 1.5-2 

• 1-1.5 

• 0.5-1 

• 0-0.5 

Variable 'x' 

Figure 57 - Illustration of Search Space for Sample Function 

8.2.1. Hill-Climbing 

As Tabu search builds upon the ideas of hill-climbing, the algorithm for this from 

Winston (1984) slightly amended, is summarised in figure 58. 
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Hill-Climbing Algorithm 
1 Establish a random iniiial start point called Initiai.Solution and determine 

its fitness 
2 while goal has not been reached or stop ̂  true 
2.1 determine the neighbourhood of the Inltial_Solution 
2.2 sort the neighbourhood by their fitness 
2.3 establish Best.Member of neighbourhood 
2.4 if (fitness(Best_Member) > fitness(InitiaI_Solution)) 
2.4.1 InitiaLSoIution = Best_Member 
2.5 else 
2.5.1 stop = true 

_3 end while loop 

Figure 58 - Hill-CIimbing Algorithm 

Therefore using a random initial start point of [5,-5], its corresponding fitness is 

0.002. At step 2.2 the neighbourhood of {5,-5) are sorted as follows in table 38. 

Member Fitness 
1 (4.61 0.0035 
2 14,51 0.0384 
3 14.4} 0.1814 
4 .(5,61 0.0611 
5 15,41 0.0384 
6 16,6} 0.2058 
7 16.51 0.0611 
8 (6,41 0.0035 

Table 38 - Neighbourhood of Initial Start Point 

The member of the neighbourhood with the highest fitness is the move to position 

{6,-6}. That solution then becomes the Best_Member of the queue and its 

neighbourhood are sorted. This process continues and in table 39 the search path is 

shown. 

Loop Best Member of Fitness 
Time Neighbourhood 

1 (6.61 0.2058 
2 (7,7} 0.7187 
3 (8,8} 1.3403 
4 {9,9} 1.8303 
5 110.10} 1.9991 

Table 39 - Path Hill-Climbing Takes by Accepting Best Member of 
Neighbourhood until Maximum Solution (Local Optimum) is Reached 

After loop number five the local optimum solution of {10.-10} has been found and 

the boundary of the search space has been reached. The hill-climber stops and 
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returns (10,-10} as the best solution in the search space. Figure 59 illustrates the 

search path again the cenû e is the peak of 2.0, the range of the four comers in 

actuality are in the range 1.75 to 1.9999. This range was again used to illustrate the 

single global maximum. 

Starting Point 
{5.-5) 

Local Optimum 
{10,-10) 
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• .-.25 

Figure 59 - Graphical Representation of Hill-Climbing Search Path 

Hill-climbing therefore has not found the best solution but merely a local optimum. 

What will be attempted now is to use the same example to illustrate how a Tabu 

search may aid in finding the global optimum. 

8.2.2. Tabu Search for Global Optimum 

Tabu search uses the same initial starting point {5,-5}. Once its neighbourhood has 

been searched this initial combination will become the first member of the Tabu List. 

The Tabu list is to record the actual moves made at each stage. A solution from the 

neighbourhood is penalised i f there is a chance that that solution will backtrack over 

that pari of the search space which has already been searched. If it matches a previous 
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move it will be penalised more harshly than if it matches only one variable of a 

previous move. Therefore, if in this example move {5,-5} is a member of a new 

neighbourhood its fitness will be (fitness*penalty), using a penalty figure for 

matching both variables of 0.00001 the fitness of that combination is (0.0002 

•0.00001). If a member of the new neighbourhood is {5,-6} and therefore matches 

one variable then the fitness of that combination will be fitness*0.001. Using this 

penalty routine a combination is penalised more severely for backtracking over the 

same search space than for generating a new combination which matches only one of 

the previous Best_Member combinations. Other penalty values and size of Tabu list 

were attempted, but this combination achieved the best result, in some cases the 

global optimum was not attained. 

The fitness of the initial point {5,-5} is 0.002. Identical to hill-climbing {6,-6} is 

chosen as the Best_Member of the neighbourhood and {5,-5} is added to the Tabu 

List, the size of the tabu list is static at 200. half the search space. When the list 

becomes full new additions to the list replace the oldest members of the list, and this 

means that i f any of these combination are members of a new neighbourhood they 

will no longer be penalised. Table 40 is the neighbourhood of {6,-6} with their 

corresponding fitness which for some combinations includes their penalty. 
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Penal̂  V Value 
Variables Original Fitness Matching Two Matching One New Fitness 

1 (5.7) 0.2387 0.001 0.000239 
2 15,61 0.0611 0.001 0.0000611 
3 15̂ 1 0.0002 0.0001 0.00000002 
4 16.71 0.4442 0.001 0.4441 
5 16,5} 0.0611 0.0000611 
6 (7.7J 0.7187 0.7187 
7 (7.61 0.4442 0.4442 
8 (7.51 0.2387 0.001 0.000239 

Table 40- Ranking of Neighbourhood from Table 38 using Tabu List 
Restrictions 

In this neighbourhood the combination {5,-5) is penalised the harshest as this 

matches a member of the Tabu List, some of the other combinations only match one 

variable {{5,-7}.{5.-6).{6.-5}.{7.-5}) and are penaUsed less harshly. The Tabu 

search does find an answer after 263 moves, and the area of the search space which 

has been looked at is shown in figure 60. The line shows the general search path 

while the arcs and circles represent the areas of the search space where intensive 

examination took place. 
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Figure 60 - Graphical Representation of Tabu Search Path until Global 
Optimum is Reached 
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8.3. Hill-Climbing for the Generation of Test Data 

Even in the small example used, a great deal of the search space is being examined to 

determine its fitness in relation to its neighbours. This can be a definite deterrent 

from using hill-climbing to generate test data as a lot of test data sets will be required 

in order to determine i f one has a better fitness than its neighbour. Additionally the 

structure of the fitness function may restrict the search for global optimum, as there is 

no one global optimum in this type of search as is expressed in the fitness function. 

As a path is found it has a high fitness, but for every successive 'discovery' of this 

path the fitness decreases. Every time the search gels caught in a local optimum it 

will be necessary to begin the search again from another random initial solution. In 

table 41 is a breakdown of unique data sets generated for 1000 runs of the hill-

climber before all LCSAJs and branches were found for the sample function under 

test as described in 3. The hill-climber viewed on average 2379.41 unique test data 

sets prior to complete coverage of the code, more that one-fourth of the search space. 

Random generation required 994.58. The maximum amount of test data required by 

a run was 7969, this number is close to the maximum amount required before 

coverage of 9254. These results indicate that hill-climbing views a lot of test data in 

its search. 

Hill-Climbing 
Averace unique data sets 1000 runs 2379.41 
Standard deviation over 1000 runs 1766.75 
Average number of generations 144.51 
Minimum unique data sets required 52 
Maximum unique data sets required 7969 
Average % of search space searched 25.69% 
Average new data sets/gene ration 16.46 

Table 41 - The Results of Hill-Climbing on Sample Function for LCSAJs and 
Branches Over 1000 runs 
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Figure 61 is a comparison frequency chart between GAs, random generation. 

Simulated Annealing and hill-climbing, 23 runs of the hill-climber completed in the 

range of 750-800 unique test data sets. 
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SA and GA 

Random 

HillClimbing 
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SA 
Random 
HC 

num ber of unique data s e t s 

Figure 61 - Frequency Chart Comparing Hill-Ciimbing to Other Search 
Techniques, GAs, Random Generation, and Simulated Annealing for LCSAJs 

and Branch Testing 

As seen from these results hill-climbing produces very poor results for which there 

are a number of reasons, the most obvious being that the entire neighbourhood must 

be generated to choose the fittest, and this produces a lot of test data. By the very 

nature of hill-climbing the search is up a slope, and while very good for some search 

problems this particular space appears to benefit from a more varied search pattern. 

Is it possible that Tabu search can improve on the results from hill-climbing? 

8.4. Using Tabu Search for the Automatic Generation of Test Data 

In Tabu search each test data set is compared to the Tabu list and is penalised for 

matching a member of the list. This is a mininusaiion problem, as opposed to 

Simulated Annealing and GAs which are performed as maximisation problems^ and 
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use the inverse of the fitness. This makes it easier in GAs to establish the best of a 

population and in Simulated Annealing make the spread between strings smaller. 

This should have no bearing on the result. I f a test data set matches a set on the list 

then it is penalised by having its fitness multiplied by 100, the size of the Tabu list is 

also 100. This method is very similar to the penalty method used in the example in 

section 7.2.2. One change has been made to the way a neighbourhood is searched. 

Normally the process would always begin in the same comer or the neighbourhood. 

I f however, all the members of the neighbouiiiood return the same path the first 

member generated will be deemed the best, as the fitness value for that path has 

worsened each subsequent time found. Therefore to avoid directing the search by 

virtue of first in the neighbourhood, the starting position is changed every 20 

generations. The initial member of the neighbourhood is derived from the south-west 

comer as opposed to the north-east. The results follow in table 42. 

Tabu GAs Simulated GAs- Random 
Search Annealing SA Toting 

Average unique data sets 1000 runs 366.19 341.62 348.26 329.68 994.58 
Standard deviation over 1000 runs 136.24 291.59 294.56 287.50 881.13 
Average generations required 97.31 685.20 500.79 424.77 1113.07 
Minimum unique data sets required 44 14 16 13 14 
Maximum unique data sets required 711 1595 1694 2159 4968 
Average % of search space searched 3.95% 3.70% 3.80% 3.56% 10.74% 
Average new data sets/generation 3.76 0.50 0.70 0.77 0.89 

Table 42 - The Results of Tabu Search on Sample Function Under Test 
for LCSAJs and Branches 

The frequency distribution in figure 62 demonstrates that the structure of Tabu 

search, while not as effective as GAs or Simulated Annealing, does give results 

which are very close, as the average is 366.19 unique data sets. This is not too many 

more than GAs with 341.62 and Simulated Annealing with 348.66, and a great 

improvement over hill-climbing which required 2379.41. One note of contrast is the 

Chapter 8 127 



minimum new data sets required by a run which was 44 for Tabu search, which is 

well above the 14 required by GAs and 10 by Simulated Annealing, but the 

maximum required is 711 which gives a smaller range of unique data. 

•GA 

•SA 

TS 

number of unique data s e t s 
g i g 

Figure 62 - Frequency Chart Comparing Tabu Search to GAs and Simulated 
Annealing over 1000 Runs for LCSAJs and Branch Testing 

The Tabu search method was also used for path testing for this demonstration 

function. The results for Tabu search are compared to those achieved by GAs, 

Simulated Annealing, random generation and GAs-SA in table 43. Tabu Search 

performs 68.5% better than random generation, however the results are worse than 

those when using GAs. 80.5%, Simulated Annealing, 81.3%, and the hybrid GAs-

SA, 82.7%. The minimum run for Tabu search also required the most unique test 

data, 249, higher than even random generation at 199, although the range between 

minimum and maximum is again the smallest for any of the techniques used so far. 
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Tabu 
Search 

GAs Simulated 
Annealing 

GAs-
SA 

Random 
Testing 

Average unique data sets 1000 runs 855.19 529.18 507.76 468.58 2718.92 
Standard deviation over 1000 runs 141.47 279.30 268.94 234.90 1471.34 
Average generations required 307.05 1072.35 773.12 666 3501.47 
Minimum unique data sets required 249 78 89 57 199 
Maximum unique data sets required 1152 1952 1694 1328 7135 
Average % of search space searched 9.23% 5.71% 5.48% 5.06% 29.36% 
Average new data sets/generation 2.79 0.50 0.66 0.70 0.78 
Table 43 - The Results of Tabu Search on Sample Function Under Test for Path 

Testing Compared to GAs, Simulated Annealing, the hybrid GAs-SA and 
Random Generations 

Figure 63 is the frequency chart for all five methods. The peak for Tabu search is 

between 1000-1050 unique data sets, 197 runs completed in this range. The most 

runs, 94. completed for GAs between 350-400 data sets, for Simulated Annealing, 

103 completed in the range 400-450 and for GAs-SA, 108 completed in this same 

range. 
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Figure 63 - Frequency Chart Comparing Tabu Search to GAs and Simulated 
Annealing over 1000 Runs for Path Testing 
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8.5. Tabu Search Assisting Other Adaptive Search Techniques 

The results achieved by Tabu search were poorer than those achieved by GAs and 

Simulated Annealing for this sample program. However Tabu search like Simulated 

Annealing can be used as a local search mechanism when attached to GAs. Glover 

(1994) suggests this idea. Ray ward-Smith and Debuse (1994) and Kido et al (1993) 

suggest the combination of all three techniques, GAs for the global search and 

Simulated Annealing and Tabu search for local search. Kido et al (1993) state that 

for the TSP problem. GA+SA+TS achieve better results than GA+SA and GA+TS. 

although GA+TS was a close second. In the following section GAs wil l perform the 

global search while Tabu performs the local search. 

8.5.1. Using GAs with Tabu Search 

The GAs were mn for 50 generations before Tabu search took over using the best 

member of the GAs as the initial value. Results for this technique, compared to 

using Tabu search and GAs alone, are shown in table 44, The GAs-TS performed 

much belter than its predecessors and required only 213.15 unique data sets as 

opposed to 366.19 by Tabu search and 341.62 by GAs. The range between minimum 

and maximum was also much smaller, 595, when compared to Tabu search 667, and 

GAs 1581. Although the best run of GAs-TS was slightly worse by two data sets 

than GAs it was a great improvement over the minimum run of 44 achieved by Tabu 

search. 
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GAs-TS Tabu Search GAs 
Average unique data sets 1000 runs 213.15 366.19 341.62 
Standard deviation over 1000 runs 94.67 136.24 291.59 
Average generations required 22.25 97.31 685.20 
Minimum unique data sets required 16 44 14 
Maximum unique data sets required 595 711 1595 
Average % of search space searched 2.3% 3.95% 3.7% 
Average new data sets/generation 9.58 3-76 0.50 

Table 44 - The Results of the Hybrid GAs-TS compared to Tabu Search and 
GAs on Sample Function Under Test for LCSAJs and Branches 

Figure 64 is the frequency distribution of GAs-TS compared to the other techniques 

used so far. The peak for GAs-TS is in the range 250 data sets with 230 runs 

completing. While this peak is in a higher range than the other methods it does still 

have the best average performance of the adaptive search methods applied. The next 

closest result is GAs-SA which averaged 329.68 unique test data sets but had a 

minimum-maximum range of 2146 compared to 579 for GAs-TS. The overall 

improvement of GAs-TS from the results attained from GAs was 38%, and 42% 

improvement over Tabu search. 
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number of unique data s e t s 

Figure 64 - Frequency Chart Comparing the Hybrid GAs-TS to the Other 
Adaptive Search Techniques over 1000 Runs for LCSAJs and Branch Testing 
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The hybrid GAs-TS was also used for path testing, the results are in table 45. While 

GAs-TS with an average number of unique data sets of 770 offer an improvement 

over Tabu search, 855.19, the average is less than that achieved when using GAs 

alone, 529.18. 

GAs-TS Tabu Search GAs 
Average unique data sets 1000 runs 770 855.19 529.18 
Standard deviation over 1000 runs 259 141.47 279.30 
Average eenerations required 259 307.05 1072.35 
Mimmum unique data sets required 132 249 78 
Maximum unique data sets required 1332 1152 1951 
Average % of search space searched 8.31% 9.23% 5.71% 
Average new data sets/generation 2.97 2.79 0.50 

Table 45 • The Results of the Hybrid GAs-TS compared to Tabu Search and 
GAs on Sample Function Under Test for Path Testing 
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Figure 65 - Frequency Chart Comparing the Hybrid GAs-TS to the Results 
from Other Adaptive Search Techniques over 1000 Runs for Path Testing 

The frequency chart for all the adaptive search method attempted so far for path 

testing is in figure 65. The frequency distribution for the hybrid GAs-TS method has 

two peaks, the first is between 900-950 unique data sets with 125 runs completing in 

this range, and the second is in the range 800-850 data sets with 123 runs completing. 
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The results for path testing are not as convincing as those received when testing 

LCSAJs and branches, as with the hybrid GAs-SA this could be due to the difficulty 

of the path testing search space when compared to that of branch and LCSAJs 

testing. 

8.5.2. Simulated Annealing and Tabu Search 

To attach the memory capabilities from Tabu search to Simulated Annealing may 

encourage the Simulated Annealing search to concentrate on new areas of the search 

space and to avoid backu^acking over previous positions. When a new solution is 

generated it is checked against the Tabu list. If it is a member of the list the solution 

is discarded, otherwise the process continues as normal (as described in chapter 7). 

Two fixed sizes of Tabu list were tried, a size 10 and 100, as used in previous 

examples in this chapter. If a new solution has proceeded to the Simulated Annealing 

process and has been over the previous solution, it is the added to the Tabu list. 

When the list reaches its maximum size new solutions are entered at the beginning of 

the list replacing older members. The first stage was to discard any new solution 

which matched a solution on the list. The second stage was to discard a solution i f it 

matched just 2 members of the list. The process was attempted to determine the 

effectiveness of this procedure for both LCSAJs and branch testing and path testing. 

These results were compared to those received when using Simulated Annealing on 

its own and are shown in table 46 for branch and LCSAJs. The new technique which 

performed the best was a Tabu list of size 10 and a new solution was rejected i f it 

matched a member of the list, this method gave a result of 343.0, very close to the 

result given by Simulated Annealing alone of 348.26. The other techniques were 
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very poor performers, especially when the list size grew lo 100. Therefore, it appears 

that a Tabu list has little affect on the results for LCSAJs and branch testing. 

Simulated 
Annealing 

Tabu List Size 100 Tabu List Size 10 Simulated 
Annealing 

match 2 match 3 match 2 match 3 
Averaee unique data sets 1000 runs 348.26 1092.44 648.87 424.14 343.0 
Standard deviation over 1000 runs 294.56 849.92 483.19 350.93 291.36 
Average generations required 500.79 8241.10 1858.61 686.98 492.39 
Minimum unique data sets required 16 16 17 17 13 
Maximum unique data sets required 1694 4990 2998 3500 1873 
Average % of search space searched 3.76% 11.80% 7.01% 4.58% 3.70% 
Average new data sets/generation 0.70 0.13 0.35 0.62 0.70 
Table 46 - Comparison Of Results For Simulated Annealing Combined with a 

Tabu List which Rejects a Variable Combination if it Matches a Member of the 
List for LCSAJs and Branch TesUng 

The results for path testing are in table 47. Again the best performance is by a Tabu 

list size of 10 when all three match a member of the list, this result 515.12 is not 

however an improvement over Simulated Annealing which gave a result of 507.76. 

The worse technique was using a Tabu list of 100 and two match the list, the result 

was 2292.0. 3.5 times the result given when using Simulated Annealing alone. 

While attaching a Tabu list to the Simulated Annealing process does not seem very 

successful in this example it is possible with a different program this procedure may 

have more success. 

Simulated 
Annealing 

Tabu List Size 100 Tabu List Size 10 Simulated 
Annealing 

match 2 match 3 match 2 match 3 
Average unique data sets 1000 runs 507.76 2292.0 1315.29 773.97 512.12 
Standard deviation over 1000 runs 268.94 1407.32 702.19 417.96 268.12 
Averace cenerations required 773.12 20405.73 4524.47 1427.55 786.92 
Minimum unique data sets required 89 131 120 106 71 
Maximum unique data sets required 1694 8151 4978 2483 2047 
Average % of search space searched 5.48% 24.75% 14.20% 8.36% 5.56% 
Average new data sets/generation 0.66 0.1 i 0.29 0.54 0.65 
Table 47 - Comparison Of Results For Simulated Annealing Combined with a 

Tabu List which Rejects a Variable Combination if it Matches a Member of the 
List for Path Testing 
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8.6. Conclusion 

This chapter inu-oduced the adaptive search technique called Tabu search. Tabu 

search, first discussed by Glover (1989), is based on hill<limbing with restrictions 

placed on returning to previous search positions within a given period. 100 moves in 

this example. Unfortunately hill-climbing did not prove successful in test data 

generation, while Tabu search did much better than random test data generation and 

the results were very similar to other adaptive search techniques for branch and 

LCSAJs testing. When a hybrid GAs-TS was created the results for branch and 

LCSAJs testing were the best of all the adaptive search techniques, a 37.6% 

improvement over GAs used on their own and a 41.7% improvement over Tabu 

search alone. The closest result to GAs-TS was by the hybrid GAs-SA which 

achieved coverage with an average unique data set of 329.68. when compared to the 

result from.GAs-TS, 213.15, a 35.3% improvement for GAs-TS. The results for the 

hybrid GAs-TS were not as successful for path testing as those achieved by GAs, 

Simulated Annealing and GAs-SA, although they did improve the results achieved by 

Tabu search alone by 10%. If this is accredited to the difficulty of the search space, 

then it would appear that Tabu search works well in easier, less specific, search 

spaces. However more tests will need to be performed to validate these results. 

The philosophy of Tabu search was then applied to Simulated Annealing which used 

a Tabu list to assist in guiding the search, unfortunately this does not improve the 

search, and in fact in all but one case the results were worse than those achieved by 

Simulated Annealing alone. The next chapter will introduce a wider variety of test 
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functions to assist in determining which method of test data generation performs the 

best. 
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Chapter Nine 

The Results of Test Data Generation Using Adaptive 
Search Techniques for a Range of Test Functions 

9.1. Introduction 

There exist many software functions more complicated than that which have been 

used so far to illustrate test data generation, and DeMillo and Offut (1988) have 

specified a number in their work with mutation analysis. Using these test functions 

as a guideline for designing additional ones, this chapter introduces a collection of 

difficult functions with which to test the capabilities of random test data generation 

and adaptive search techniques. 

These test functions include two versions of the classic Trityp problem and the Find 

program, all of which will be described in their respective sections in this chapter, 

and finally the sample function which has been used throughout this thesis with a 

much expanded search space. The functions will be compared to random test data 

generation for both path testing and the testing of LCSAJs and branches. The largest 

problem with these tests is the measurement of unique test data. A great deal of the 

tests were performed on an IBM386 compatible in the programming language, C. 

The size of the search space created problems as it is almost impossible to measure 

unique data sets when the search space exceeds 100,000 points. There have been 
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adaptations, however, made to C to allow much larger arrays and the use of this 

larger array will be demonstrated for a function. 

9.2. The Trityp Problems 

The Trityp problem is concemed with determining the type of uiangle created by 

three given variables. In the first problem, Trityp (easy), the program is first required 

to determine i f the three variables can form a triangle and i f so. is it an equilateral, 

isosceles or scalene triangle. The second program, Trityp (hard), has the additional 

task of determining whether it is a right-angled triangle. The types of triangle are 

displayed in figure 66. 

Equilateral Right-Angled 

Scalene Isosceles 

Figure 66 - Types of Triangles Distinguished by Trityp (Easy) and Trityp 
(Hard) 
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9.2.1. Trityp(Easy) 

The Trityp easy program begins simply by determining i f the three variables (x,y,z) 

involved will make a legal triangle, that is i f all sides are greater than 0. The three 

variables are tested as follows 

i f ( x > O l l y > O l l z > 0 ) . 

I f the triangle is legal, the next step is to test how many sides of the triangle are of the 

same length. This is performed as follows: 

typo = 0; 
i f ( X == y ) 
( 

type += 1 ; 
> 

i f ( X == z) 
{ 

type += 2; 
) 
i f ( y == z) 
{ 

type += 3; 
) 

The value of type is then used to determine i f the triangle is equilateral, scalene, or 

isosceles as follows: 

i f ( type t== 0 ) 
{ 

i f ( (x + y <= z I I (y + z ) <= x | | (x + z) <= y > 
( 

type = 4 ; / / i l l e g a l t r i a n g l e 
) 
e l se 
( 

type = 1 ; / / s c a l e n e 

> 

f ( type > 3 ) 

type = 3 ; / / e q u i l a t e r a l 

I s e i f ( type == 1 && (x + y)> z ) 

type = 2 ; / / i so sce l e s 

I s e i f ( type == 2 && (x + z)> y) 

type = 2 ; / / i s o s c e l e s 
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i l s e i £ ( answer == 3 && (y + z ) > K ) 
{ 

) 
e l s e 
{ 
) 

typo = 2 ; 

typo = 4 ; 

/ / i s o s c e l e s 

/ / i l l e g a l t r i a n g l e 

The original code is in appendix A and flow chart in appendix B. Through the code 

there are a possible 121 paths but only 10 of these paths are feasible. The code can 

be broken down to 17 LCSAJs and 13 branches as shown in Appendix C. The size 

of the search space is 41'' or 68921 and each variable is of the range [-20..20]. The 

results of the test runs for LCSAJs and branches are shown in table 48. 

1000 Runs GAs SA Tabu GAs-
SA 

CAS­
TS 

Random 
Testing 

Average unique data sets 320.34 349.37 676.6 643.28 476 3487.93 
Standard deviation 202.19 183.35 171.1 492.19 274.01 2831.74 
Average generations required 682.39 478.03 48.61 768.87 30 3647.48 
Minimum unique data sets required 42 52 163 50 35 162 
Maximum unique data sets required 1418 1560 1780 3064 1590 20341 
Average % of search space searched 0.46% 0.51% 0.98% 0.93% 0.69% 5.06% 
Average new data sets/generation 0.47 0.73 13.92 0.84 15.87 0.96 

Table 48 - Comparison of Adaptive Search Techniques against Random Test 
Data Generation for Trityp (Easy) Over Search Space of 68921 for LCSAJs and 

Branch Testing 

These results indicate that GAs in requiring on average 320.34 unique data sets per 

run. performed the best for the Trityp(easy) program for LCSAJs and branch testing. 

The method with the second best results was Simulated Annealing which achieved 

coverage with an average 349.37 data sets. The hybrid GAs-SA did not perform as 

well as its predecessors, requiring on average 643.28 unique data sets. Random 

performed the worse, as it required 5.06% of the population to be viewed prior to 

coverage as compared to 0.46% for GAs. The improvement of GAs over random 

generation was 91%. and 90% for Simulated Annealing. All the adaptive search 
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techniques achieved coverage through exploring less than 1% of the search space 

while Tabu search required the most at 0,98% of the search space. 

The frequency chart is in figure 67. The peak of the GAs is within the range 200-250 

with 136 runs completing, for Simulated Annealing 143 runs completed in the range 

300-350. The hybrid GAs-TS. 142 runs completed in the range 300-350 unique data 

sets, the second smaller peak for GAs-TS is in the range 800-850 with 78 data sets. 

The other hybrid technique, GAs-SA achieved 120 within the range 150-200, and 

Tabu search achieved coverage for the most runs. 143 in the range 650-700. Finally 

random generation, whose maximum range is the greatest at 20341 and outside the 

scope of the graph, had a minor peak between 1100 and 1150 data sets of 19. 

See Inset 

Random 

• 
Random 

GASA 

GATS 

number of unique data s e t s 

Figure 67 - Frequency Comparison of Adaptive Search Techniques Against 
Random Test Data Generation for Trityp (Easy) Over Search Space of 68921 

for LCSAJs and Branch Testing 
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In path testing for the Trityp (easy) program, a run should find all 10 paths, these 

paths are listed in table 49 with their corresponding percentage of search space. Path 

number two will be the most difficult path to cover as there are only 20 data sets 

which lest this path. The results for path testing are in table 50. 

Path % of Search 
Space 

I I T 88.39% 
2 1F2T3T4T7T 0.03% 
3 1F2T7F 0.14% 
4 1F3T7F 0.14% 
5 l R r 7 C 0.41% 
6 IF5T6T7T 5.35% 
7 1F4T7F 0.14% 
8 IF3T7B 0.41% 
9 IF2T7B 0.41% 
10 1F5T6F7A 4,57% 

Total 100% 

Table 49 - Paths Through Trityp(Easy) Program and their Respective Amounts 
of Search Space 

1000 Runs GAs SA Tabu GAs-
SA 

GAs-
TS 

Random 
Testing 

Averaee unique data sets 230.04 337.38 721.0 663.95 456.75 3580.45 
Standard deviation 187.05 191.68 318.3 624.50 261.57 2968.09 
Average generations required 459.55 489.34 173.5 1236.78 29.08 3752.87 
Minimum unique data sets 26 38 101 30 49 174 
Maximum unique data sets 1381 1294 3309 4053 1501 21158 
Average % of search space 0.33% 0.49% 1.05% 0.96% 0.66% 5.20% 
Average new data sets/generation 0.50 0.69 4.16 0.53 15.71 0.95 

Table 50 - A Comparison of Techniques for Path Testing on Trityp (Easy) 
Over Search Space of 68921. 

In path testing there is an improvement over random testing of 94% for GAs. 91% for 

Simulated Annealing and 87% for the hybrid GAs-TS. While the results of Tabu 

search and the hybrid GAs-SA are better than those with random generation, these 

two search methods do not appear to be as effective as GAs and Simulated 

Annealing. Of the minimum amount of test data possible before complete coverage 

of 10, GAs was the closest as one run required only 26 unique data sets to be 

generated, in second place was the hybrid GAs-SA which required only 30. Tabu 
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search which performed the worse of the adaptive search techniques had a minimum 

data set requirement of 101 which is nearly four times the amount for GAs. 

G A S A G A T S 
/ • 

SA 

Random 

nurn ber of unique data s e t s 

GA 
SA 

Random 
TS 

GASA 
GATS 

Figure 68 - Frequency Comparison of Adaptive Search Techniques against 
Random Test Data Generation for Trityp (Easy) Over Search Space of 68921 

for LCSAJs and Branch Testing 

Figure 68 is a frequency chart for all the methods, the peak for GAs is in the range 

100 to 150 with 215 runs completing, GAs-SA had 133 runs in the range 150-200, 

Simulated Annealing had 130 runs finishing in the range 250-300. Additionally there 

were 152 runs of GAs-TS in the 300 to 350 range. Tabu search finished 141 runs 

between 550 and 600 and finally random generation had a peak of 15 runs in the 

range 1050-1100. GAs have outperformed the other adaptive search techniques in 

the Trityp(easy) problem. Surprisingly ihe hybrid GAs-SA gave average results 

much worse than GAs and Simulated Annealing, in fact the results with GAs was 

65% better than the hybrid method and Simulated Annealing was 49% better. This is 
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quite a bit belter than the improvement of 11% over GAs and 8% over Simulated 

Annealing demonstrated in the test program used in previous chapters. 

9.2.2. Trityp (Hard) 

The Trityp (hard) problem is more difficult than the Trityp (easy) in that the program 

also determines whether a given triangle is a right-angled unangle. This is done by 

solving Pythagorus's theorem by determining i f the square root of the two smaller 

sides, squared, are equal to the third side. i.e. 

This function uses the same search space as in Trityp (easy) and within the space 

there are 42 variable combinations which solve this equation, that is 14 for each 

form. This makes the search much more restrictive. There are 18 LCSAJs and 23 

branches to be exercised, listed in appendix D. The results are shown in table 51, 

these indicate that the best performer is the hybrid GAs-TS which required 1006.60. 

the second best is Tabu search which required 1381.23 and the third is the other 

hybrid method. GAs-SA. These offered a 90%, 86% and 61% improvement, 

respectively over random generation. Simulated Annealing and GAs offer a 44% and 

42% improvement over random generation. The frequency chart is in figure 69. 
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1000 Runs GAs SA Tabu GAs-SA GAs-
TS 

Random 
Testing 

Averaee unique data sets 5640.34 5436.94 1381.23 3723.42 1006.6 9655.66 
Standard deviation 2929.41 3057.76 571.08 1992.88 373.17 5405.47 
Averaee generations required 15359.0 10008.0 102.75 3960.97 46.11 10719.5 
Minimum unique data sets 430 343 205 311 309 883 
Maximum unique data sets 2I50I 26808 3832 12151 3296 37335 
Averace % of search space 8.18% 7.89% 2.00% 5.40% 1.46% 14.01% 
Averaee new data sets/generation 0.36 0.54 13.44 0.94 21.83 0.90 

Table 51 - Comparison of Adaptive Search Techniques 
Data Generation for Trityp (Hard) Over Search Space 

and Branch Testing 

against Random Test 
of 68921 for LCSAJs 

300 
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Figure 69 - Frequency Distribution of Adaptive Search Techniques against 
Random Test Data Generation for Trityp (Hard) Over Search Space of 68921 

for LCSAJs and Branch Testing 

The peak for GAs-TS is between 1000 and 1250 data sets with 297 runs completing 

in this range, Tabu search had two major peaks, one in the range 750 to 1000 with 

152 data sets and the other between 1750 and 2000 with 153 data sets. The other 

search methods were not as effective, the GAs-SA had a mild peak between 3750 and 

4000 of 59, GAs completed the most runs in the range 4500 - 4750 with 49 and 

Simulated Annealing in the range 3500 and 3750 had 47. Random generation 

completed 31 runs in the range 6250 to 6500. 
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The hybrid GAs-TS performed better than GAs alone by 82% and Tabu search alone 

by 27% for LCSAJs and branch testing. Is this success limited to this problem or wil l 

path testing give such impressive results? There exists 14 paths through the Trityp 

(hard) program which need lo be exercised. Each path and its percentage of the 

population is shown in table 52, these paths correspond with the function code given 

in appendix E and the flow chart in appendix F. The most difficult paths to cover 

are numbers 12, 13 and 14, each of which is only exercised by 14 test data sets. Path 

number 1 is exercised by more than half the data sets, this path determines i f the 

input contains a negative number as a triangle can not have a side of length less than 

zero. 

PATH % of Search 
Space 

1 IT 51.2% 
2 lA 25.00% 
3 IB 12.19% 
4 2F3F4F5T6T 0.03% 
5 2F3F4T 1.93% 
6 2F3T 1.93% 
7 2F3F4F5F7F8T 0.41% 
8 2T 1.93% 
9 2F3F4F5RT 0.41% 
10 2F3F4F5T6F 0.41% 
11 2F3F4F5RF8F9F10F11F 4.5% 
12 2F3F4F5F7F8F9T 0.02% 
13 2F3F4F5RF8F9F10FIIT 0.02% 
14 2F3F4F5F7F8F9FI0T 0.02% 

Total 100% 

Population (68921) which Exercises the Path 

The amount of unique test data required to satisfy these paths is shown in table 53 for 

each test data generation technique. Again the hybrid GAs-TS with an average of 

1011.97 unique data sets outperformed all other adaptive search techniques as well as 

random generation, the next best technique was again Tabu search which required 

1377.60 data sets. GAs-TS showed an improvement over random generation of 89% 
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and over Tabu search of 27%. Simulated Annealing and GAs did do better than 

random generation but required 4.21 and 4.28 times more data sets than the hybrid 

GAs-TS. 

1000 Runs GAs SA Tabu GAs-
SA 

GAs-TS Random 
Testing 

Average unique data sets 4333.52 4266.9 1377.6 3498.31 1011.97 9468.09 
Standard deviation 2842.14 2431.8 748.25 2131.34 379.38 5096.93 
Average eenerations required 12454.6 9169.6 215.60 4126.18 45.1 10461.47 
Minimum unique data sets 210 294 192 304 423 1332 
Maximum unique data sets 17023 15421 7524 11761 3208 34872 
Average % of search space 6.29% 6.19% 2.00% 5.08% 1.47% 13.74% 
Average new data sets/generation 0.35 0.47 6.39 0.85 22.44 0.91 

Table 53 - A Comparison of Techniques for Path Testing on Trityp (Hard) 
Over Search Space of 68921. 
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Figure 70 - Frequency Distribution of Adaptive Search Techniques against 
Random Test Data Generation for Trityp (Hard) Over Search Space of 68921 

for Path Testing 

The frequency chart in figure 70, the peak for GAs-TS is in the range of 1000 to 1250 

data sets with 296 or 30% of the 1000 runs completing, for Tabu search the range is 

750 to 1000 with 168 runs, the second peak is between 1500 and 1750 data sets with 
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163 runs. Simulated Annealing produced 45 runs in the range 2500 to 2750. GAs-

SA had 62 runs in the range 1750 to 2000 and GAs had 44 runs in the range 3250 to 

3500. 

9.2.3. Summary for Trityp Examples 

When attempting the Trityp (easy) program the GAs performed the best with 

Simulated Annealing in second place, however for the Trityp(hard) program the 

results from using the hybrid GAs-TS are very impressive when compared to the 

other adaptive search technique. These Trityp problems do not contain loops 

however, and the next program. Find, will introduce quite complicated loops. Wil l 

the hybrid technique perform well here or will GAs or Simulated Annealing? 

9.3. The Find Program 

The Find program is more complicated than the Trityp in that it involves loops, 

indeed more loops than were used for the sample function. The purpose of the 

program is to sort an array of integers. The function consists of an array of values (A) 

of length N. and index F, so that all values below A(F) in the array are less than or 

equal to A(F) and all those above are greater than A(F). The Find program consist of 

7 input variables, the integer array A which contains 5 variables between 1 and 5. F 

(the index) which is an integer between 0 and 5, and N. which is the length of A to be 

used for the sort, an integer between 1 and 5. The total search space is therefore 5"̂  or 

78,125 possible combinations. The input variables are encoded into a bit string of 

length 21.3 bits to each variable. The procedure consists of four loops all of which 

need to be exercised 0. 1 and 2 times and seven conditional statements (see appendix 
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G for the flow chart and appendix H for the program code). Therefore there are 19 

branches and 39 LCSAJs to test, appendix I . The aim is for 89% coverage for 

branches and 100% for LCSAJs with a total coverage metric of 95% as some of the 

branches and LCSAJs are unobtainable. Normally this would not be known in 

advance, but coverage of 95% is still a very high figure. The comparison of the 

methods follows in table 54. In this program the best performance is by Simulated 

Annealing which required on average 466.41 unique data sets, the hybrid GAs-SA 

was second with 541.99 and GAs was third with 609.53. Tabu search and GAs-TS 

have actually performed worse than random generation which required only 898.51 

data sets compared to 3389.41 for Tabu search and 3335.80 for GAs-TS. Simulated 

Annealing required on 0.78% of the search space to be generated whereas the worse 

performer Tabu search required 4.34%. 

1000 Runs GAs SA Tabu GAs-
SA 

GAs-TS Random 
Testing 

Average unique data sets 609.53 466.41 3389.41 541.99 3335.80 898.51 
Standard deviation 365.69 303.17 1591.85 313.56 1916.73 613.50 
Averace generations required 903 599.07 88.39 587.03 8.13 1188.47 
Minimum unique data sets 88 61 720 58 73 112 
Maximum unique data sets 3512 2710 10600 2647 10451 4029 
Averace % of search space 0.78% 0.59% 4.34% 0.69% 4.27% 1.15% 
Average new data sets/generation 0.67 0.78 38.34 0.92 410.31 0.76 

Table 54- A Comparison of Techniques For LCSAJs And Branch Testing For 
Find Over Search Space Of 78125 

The frequency chart is in figure 71, the peak for Simulated Anneahng is in the range 

500 to 750 with 405 data sets, GAs-SA with 398, GAs with 354, and random testing 

with 243 are in this range as well. GAs-TS peak in the range 2500 to 2750 with 90 

data sets, and Tabu search has a small peak between 2750 and 3000 data sets with 

125 runs completing in this range. 
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Figure 71 - Frequency Distribution of Adaptive Search Techniques against 
Random Test Data Generation for Find Over Search Space of 78125 for 

LCSAJs and Branch Testing 

There are many more paths in the Find problem than the test programs used thus far. 

There are 80 paths which must be covered, listed in appendix J. To test each of these 

paths is a very time consuming task and the results are given in table 55. The best 

performance was again by Simulated Annealing which required 1743.58 or 2.23% of 

the search space before complete coverage, GAs were very close and needed on 

average 1794.84 unique data sets or 2.30% of the search space. Random testing was 

once again better at covering all the paths than Tabu search and the hybrid GAs-TS. 

Random generation required 9.58% of the search space while Tabu search and GAs-

TS needed 20.95% and 10.83% respectively. The large amount of test data required 

by Tabu search and the hybrid technique is probably due to the large size of the 

neighbourhood, as each neighbourhood consists of 342 members. 
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1000 Runs GAs SA Tabu GAs-
SA 

GAs-TS Random 
Testing 

Average unique data sets 1794.84 1743.5 16364 1913.87 8461.46 7485.34 
Standard deviation 780.74 754.33 5749.3 885.90 4161.89 3072.07 
Average generations required 2362.79 2335.3 63.90 2484.10 25.79 7946.08 
Minimum unique data sets 597 671 4029 751 2595 2552 
Maximum unique data sets 6667 6989 35563 10040 23777 25243 
Average % of search space 2.30% 2.23% 20.95% 2.45% 10.83% 9.58% 
Average new data sets/generation 0.76 0.75 256.09 0.77 328.09 0.94 

Table 55 - A Comparison of Techniques for Path Testing for Find Program 
Over Search Space of 78125. 
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Figure 72 - Frequency Distribution Comparing Adaptive Search Techniques to 
Random Test Data Generation for Find Over Search Space of 78125 for Path 

Testing 

The frequency chart in figure 72, the peak for Simulated Annealing, GAs and GAs-

SA are all in the range 1500 to 1750 unique data sets with 200, 206 and 171 

respectively. Random generation and GAs-TS both peaked in the range 5250 lo 5500 

with 49 and 52 respectively. Finally Tabu search has a small peak in the range 12250 

to 12500 with 27 data sets, the longest run for Tabu search looked at 35563 data sets, 

almost half of the entire search space, whereas the longest run for random generation 

completed at 25243 data sets, less than a third of the search space. This compares to 
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Simulated Annealing which only needed to generate a maximum 6989 data sets, 

approximately one-eleventh of the search space and GAs which need approximately 

one-twelfth of the search space to be generated. 

9.4. Discussion of Test Program Results 

Technique GAs Simulated 
AnncnlinP 

Tabu 
Spnrrh 

GAs-SA GAs-TS Random 
Testinp 

Trityp 
{L)(easy) 

320.34® 349.37 676.64 643.28 476 3487.93 

Trityp 
(P)(easy) 

230.04® 337.38 721.07 663.95 456.75 3580.45 

Trityp 
(L)(hard) 

5640.34 5436.94 1381.23 3723.42 1006.6® 9655.66 

Trityp 
(P)(hard) 

4333.52 4266.99 1377.6 3498.31 1011.97® 9468.09 

Find (L) 609.53 466.41® 3389.41 541.99 3335.8 898.51 

Find(P) 1794.84 1743:58® 16364 1913.87 8461.46 7485.34 

Average 2154.77 2100.11 3984.99 1830.80® 2458.10 5762.66 

Table 56- Overall Results of the Three Test Programs Each for LCSAJs and 
Branch Testing (L) and Path Testing (P). The Average Figure Given is the 

Average Amount of Unique Test Data Required for the Method for all Six Tests. 
(The ® indicates the best result for each test) 

The average amount of test data required for each of the techniques is shown in table 

56 over all of the six tests. The average amount of test data is calculated for the 

techniques to give an overall picture of how they fare. Although GAs-SA did not get 

the least amount of test data in any of the programs it has on average the least amount 

with Simulated Annealing second and GAs third. Simulated Annealing did perform 

better than GAs on 4 of the six test programs, but each achieved two first places 

while the winner of the other two programs, Trityp (hard), was the hybrid. GAs-TS. 

While Tabu and GAs-TS gave good results for the Trityp(hard) program it did very 

poorly in the other tests, but on average all the adaptive search techniques did 
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perform better than random test data generation, hi the next section, the three best 

performing techniques GAs, Simulated Annealing and GAs-SA, are applied to a 

larger search space. 

9.5. A Larger Search Space 

The generation of unique test data for small search space was originally limited to 

the capacity of allowable arrays in the programming language C. Fortunately it is 

now possible to expand this search space through a specially written module which 

accepts arrays of greater than 100000 points. Therefore it is possible to determine the 

average unique data sets in a larger search space. Additionally the average time it 

takes to cover the program will be registered to compare the adaptive techniques and 

to determine the time difference between the small and large search. The sample 

function under test which was used in chapters 6,7 and 8 is tested for paths in an 

enlarged search space of one million. The range size for the three variables is now 

[-50..50] which is attained using a string of size 21, each seven bit string represents 

one input variable. There are 15 paths to be exercised, each one and its percentage of 

search space is shown in table 57. Paths number 2 and 6 should be the most difficult 

to cover as there are only 4 data sets out of 1,000,000 which exercise these. Most 

runs should have no trouble covering path 11 as more than 78% of the search space 

exercises it. 
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PATH Number of Test 
Data Sets 

% ofsearch 
space 

1 1T2F3FL0 584 0.0584% 
2 1T2F3TL0 4 0.0004% 
3 1T2F3TL1 116 0.0116% 
4 1T2F3TL1L2 42805 4.2805% 
5 1F3FL0 15149 15149% 
6 1T2T3TL0 4 0.0004% 
7 1T2T3ET-0 290 0.0290% 
8 1F3FL1 32917 3.2917% 
8 1T2T3TL1 116 0.0116% 
9 1T2T3FL1 2902 0.2902% 
10 1F3FL1L2 780234 78.0234% 
11 1T2T3TL1L2 42805 4.2805% 
12 1T2T3FL1L2 38458 3.8458% 
13 1T2F3FL1 3436 0.3436% 
14 1T2F3FL1L2 40180 4.0180% 

Total 1000000 100% 

Table 57 - Paths through Sample Function with the Amount of Test Data 
within Search Space which SatisHes Each Path and Its Percentage of Total 

Search Space 

Sample Function - Path Testing 
100 runs GAs Simulated 

Annealing 
GAs-SA Random 

Testing 
Average unique data sets 2012.62 2665.70 2961.12 294338.80 
Standard deviation 1272.47 1989.80 4966.81 209038.90 
Average generations required 2283.09 3188.88 3470.08 388867.40 
Minimum unique data sets required 176 535 353 6379 
Maximum unique data sets required 6274 12767 49294 • 732600 
Average % of search space searched 0.20% 0.27% 0.30% 29.43% 
Average new data sets/generation 0.88 0.83 0.85 0.76 
Average Run Time (seconds) 1.21 1.07 1.12 117.88 

Table 58 - A Comparison of Techniques for Path Testing for the Sample 
Function Over Search Space of 1000000 

Table 58 is the comparison of the three best testing methods, GAs, Simulated 

Annealing and GAs-SA for the generation of test data for path testing. Included in 

these details is the average time required for each run, GAs produced the best results 

for this large search space and required 2012.62 or 0.20% of the search space before 

coverage. Simulated Annealing with an average of 2665.70 unique data sets, and 

GAs-SA with 2961.12, are very close behind. These results show an improvement 

over random generation of approximately 99% for all three of the methods. 
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Figure 73 shows the frequency distribution for the three adaptive search methods, the 

peak for GAs is in the range 1250 to 1500 unique data sets with 16 of the 100 runs 

completing in this range, for Simulated Annealing the range 1500-1750 has 18 runs 

completing and for GAs-SA, 9 runs finish in the range 2000-2250. 

GA-SA 

2000 4000 

number of unique data s e t s 

6000 

Figure 73 - A Frequency Comparison of Three Adaptive Search Techniques, 
GAs, Simulated Annealing and GAs-SA, for Path Testing for the Sample 

Function Over Search Space of 1000000 

Shown in table 59 is a time comparison between the same function as in table 58 for 

the small search space, 9261, and the large search space, 1000000. These results 

indicate that as the search space size increases, GAs, Simulated Annealing and GAs-

SA, continue to perform quickly, while random test data generation's ability to 

compete deteriorates greatly. Random generation took nearly two minutes per run, 

while GAs, Simulated Annealing and GAs-SA all took little more than a second. 

This is most likely due lo the fact GAs, Simulated Annealing and GAs-SA, only 
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needed lo search between 0.20% and 0.30% of the search space as opposed to 

random generation which required 29.43%. 

Average Number of Seconds Before All Paths Were Exercised 
Search Space GAs Simulated 

Annealing 
GAs-SA Random 

Generation 
SmaU (9261) 0.35 0.27 0.29 0.78 
Large (1000000) 1.21 1.07 1.12 117.88 

Table 59 - Average Time Comparison (in seconds) of Sample Function Using 
Both Small Search Space and Large Search Space 

9.6. Conclusion 

This chapter demonstrates the capabilities of adaptive test data generation against 

that of random testing. The chapter begins v̂ îth a fairly simple but commonly used 

test program and then advances to a more complicated version of the same test. The 

next test program. Find, includes more variables, a slightly larger search space, and 

complicated loops to be searched. The results of all these tests indicated that 

adaptive search techniques usually perform better within the search space than 

random test data generation. This is usually the case except in the final program, 

Find, where the results of Tabu search and the hybrid GAs-TS were actually worse 

than those of random generation. This can be explained by the large size of a 

neighbourhood which needs to be generated at each stage. This is contrasted to the 

Trityp(hard) program where in path testing. Tabu search and GAs-TS did extremely 

well, in fact Tabu search showed an improvement over GAs of 75% while GAs-TS 

had an improvement of 82%. 

GAs performed the best on the Trityp(easy) program although only 8% better than 

Simulated Annealing for LCSAJs and Branch testing, but 32% better in path testing. 

Simulated Annealing performed the best of the adaptive search techniques on the 
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Find program, where it averaged the minimum amount of unique test data, 14% 

better than the nearest result GAs-SA for LCSAJs and branch testing and 2.9% better 

than GAs in path testing. Although GAs-SA never succeeded in achieving the lowest 

amount of unique test data for any of the programs, it did have on average the 

smallest average amount overall. Using the example of path testing for instance, 

GAs (4333.52) and Simulated Annealing (4266.99), were not as successful as Tabu 

search (1377.60) and GAs-TS (1011.97). but GAs-SA achieved a figure of 3498.31, 

improving its overall average performance. 

The search space was never very large for these example programs, therefore the 

three overall best techniques were compared against random generation for a larger 

search space. In this example, GAs outperformed both Simulated Annealing and 

GAs-SA in contrast to the results achieved on the same program when using a small 

search space where GAs-SA performed the best. However, the difference between 

the techniques is quite small and these adaptive techniques perform much better than 

random generation. The time comparison also indicated a great saving in time for the 

adaptive techniques in comparison to random test data generation. The most savings 

are in Simulated Annealing, which does not have lo endure the same memory 

requirements of GAs which go through the procedure of reproduction, crossover and 

mutation. The hybrid technique, GAs-SA, only performs the GA process for a short 

time, 50 generations, and therefore ranks second in time. 

The purpose of this chapter was to widen the test suite of programs to which adaptive 

techniques had been applied. The next chapter will apply the adaptive search 
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techniques of GAs and Simulated Annealing to a test program written for the purpose 

of optimising capital budgeting. 
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Chapter Ten 

A Demonstration of Automatic Test Data 
Generation on a Program wtiicti Optimises 
Capital Allowances for Company Taxation 

10.1. Introduction 

The coverage of program code has thus far been shown on demonstration problems. 

While all these programs perform routines which are necessary they could still be 

referred to as notional problems. This chapter introduces coverage testing for a 

program written not for the purpose of demonstrating testing techniques, but to 

optimise tax benefits. The program will be used to compare the two more effective 

methods of adaptive search, GAs and Simulated Annealing, to random test data 

generation. 

10.2. A Description of the Program to be Tested 

The purpose of this program is to optimise the net present value of cash flows. The 

effect of the UK taxation system is to create financial opportunities by the prudent 

selection of projects which a company can undertake at the most beneficial time and 

the application of an efficient rule for loss handling. A project is defined as an 

outgoing capital expenditure, such as on plant and equipment, made by the company 

with the aim of receiving income. This capital expenditure can be offset against 

profit at a rate of 25% a year. A reduction in profit will decrease the amount of tax to 

be paid, see table 60, and therefore increasing the funds available for dividends. 
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Therefore the objective is to pay less tax, but there are other opportunities available 

for reducing the tax bill and increasing dividends, these are the rules which govern 

losses in any given year. I f in year one there was a profit of £350.000, tax would be 

paid at 25% for the portion to £300.000 and at 35% for the remaining £50.000, that is 

a tax bill of £92.500. In year two there is a loss of £55,000. and there are two options 

for writing off this loss. Option A is called "carry backward", where the amount of 

the loss is deducted from previous years* profits, going backward a limit of three 

years before preceding to the second option, option B. "cany forward" where the loss 

reduces the profit over the next years. Option B can be undertaken without having 

exhausted option A. Therefore, i f option A was chosen the £55.000 is reduced from 

the profit and there is a tax rebate of £18.750. The benefit of option A over option B 

is that the NPV is higher if the tax rebate is realised early on in the calculations. 

Tnv Bnnrf of Prnfit 
less than £300.000 25% 

300.000 to 1.500.000.00 
0 - 300,000 25% 

300- 1,500,000 35% 
i.sno.ooo + 33% 

Table 60 - Tax Rate Bands on Profit 

The final decision to be made is when or if a project should begin, this can be in any 

year during the current budgeting lifecycle, a six year period^ and can be stopped and 

restarted at any time. Should the project be stopped, all assets will be sold and must 

be repurchased before it can be restarted. 
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('start ^ 

C Stop ^ 

Figure 74 - Flow Chart of Capital Budgeting Program 

10.3. Testing the Program 

This very complicated capital budgeting problem is itself a candidate for optimisation 

using GAs (Berry and Smith, I993;Farrar, 1995), but the program also illustrates the 

need for testing. If, using the assumption that there are three projects from which to 

choose, then there are 24 different choices to be made. These, 6 for each project, 

determine if a project should begin or finish in any given year. The remaining six 

determine whether a loss should be carried forward or backward in a given year. A 

listing of the code is in appendix K. The flowchart for the program is in figure 74. 
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This establishes that there are eight decisional points, seven of which register true 

and false, and one (5) which includes an if/elseif/else statement. There are over 

1000 feasible paths through the program, 500 are listed in appendix L. 

In addition to the decisional input variables which guide the program, there is also 

the current financial situation of the company to consider, and any predictions of 

profit on selected projects. These consist of 31 input variables, each between the 

range [0..8,000.000.00] for every 1000 positions. A list of the input variables 

representing the potential financial situation of the company are listed in table 61. 

Financ ia l I n fonna t i on Ttane Period 
1-3 t-2 l>1 1 t«1 t*4 

bioonie 1.500j000 
Capital AHowancea ijxwpoo 
Taxable ProfUa 3 ^ 60000 1 0 0 ^ 
Forecast Operations Inoome 1.000JOOO 3.500jOOO S jOOO 89:000 odojooo 

Protects 

Project 1 ntOalOuSay I ZPOOJOOO 
Csamaiad Cash hikw • 1OJ0OO 20.000 3OJ0O0 40j000 50.000 I O O j O O O 

PntoctZ KOalOuSay | lOOOOO 
BfimatodC&shhftowe 5.000 8j000 9J0O0 12.000 20.000 25.000 

Rofocis KSalOuOay | %J0O0J0Oa 
EsDmatBd Cash hlbw • 1 0 0 ^ 200.000 300.000 400.000 550:000 650,000 

Table 61- Company Financial Information which are the 31 Required Input 
Variables. 

10.4. The Comparison of Testing Techniques on the Test Program 

The binary string which represents the input variables consists of the 24 decisions (24 

bits) and the 31 input variables each represented by a 13 bit combination giving a 

total string length of 427. 

As has previously been determined there are over 1000 feasible paths through the 

program, 500 of these are listed in appendix L. To save run-time a run will conclude 

when it has exercised 500 paths, a TER of approximately 50%. The results are given 

in table 62 for 500 runs of each of the three methods. 
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500 Runs Random 
Testing 

Simulated 
Annealing 

GAs 

Average unique test data sets 117361.40 12746.1 18398.06 
Minimum required 76864 7327 10270 
Maximum required 151829 43612 29236 
Range (inim*mum..maximum) 74965 36285 18966 
Average number of generations 123530.83 12746.38 2065.99 
Estimated time/run (seconds) 675.48 84.72 199.85 

Table 62 - Results of Function Under Test Comparing GAs, Simulated 
Annealing and Random Test Data Generation for Capital Budgeting Program 

for Path Testing 

GAs again performed much better than random test data generation, however 

Simulated Annealing gave the best results for this program needing on average only 

12746 new data sets before coverage of the 500 paths compared to 18398 by GAs. 

The minimum amount of test data required for a run was 500 as there are 500 paths, a 

mn of the GA managed to find all the paths using a minimum 10270 data sets, while 

a run of Simulated Anneahng succeeded in only 7327. The range between minimum 

and maximum was much smaller for GAs at 18966 than Simulated Annealing at 

36285, and the maximum amount of test data sets required by a run of Simulated 

Annealing was much higher at 43612 compared to GAs at 29236. The random 

generator however required an average of 117361.40 new data sets before coverage, 

the minimum for a single run was 76864. Simulated Annealing showed an 

improvement over the result achieved by random generation of 89% and GAs 

showed an improvement of 84%. 
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Figure 75 - A Comparison of Frequency between GAs, Simulated Annealing 
and Random Generation for Capital Budgeting Program for Path Testing 

The frequency graph in figure 75 shows the peak for Simulated Annealing between 

12000 and 13000 data sets with a maximum number of runs, 81 completing in this 

range, the peak of the GAs was between 20000 and 21000 data sets with 67 runs. 

Random generation completed the most runs within the range 113000 and 114000 

with 35. The graph does not show the complete distribution for random generation 

as it exceeds the range, however this graph indicates the results of random testing are 

much worse than those achieved with Simulated Annealing or GAs. 

10.5. Conclusion 

In chapter 9, the sample function was run for a large search space, 1000000 and in 

this chapter the capital budgeting program also had a very large search space. Are 

the results comparable? In the sample function Simulated Annealing and GAs 
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showed an improvement over random of 99%, however GAs performed 25% better 

than Simulated Annealing. While the results are similar for the capital budgeting 

program used in this chapter. Simulated Annealing has achieved belter results than 

GAs. 

Simulated Annealing and GAs improved over the result of random generation by 

89% and 84%, respectively. However Simulated Annealing showed an improvement 

over GAs of 31%. Therefore Simulated Aimealing was the much better performer in 

this example. One item of note is the estimated time for each run, GAs taking on 

average more than twice as long as Simulated Annealing. This is similar to the 

results achieved in the sample function with a large search space where GAs took 

longer than Simulated Annealing to achieve a result. The test used in this chapter 

expected to cover only 500 of the over 1000 paths through the code, a TER of 

approximately 50%, a further test would need to determine the effectiveness of the 

methods when complete coverage is expected. 
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Chapter Eleven 

Discussion and Further Research 

How do adaptive search techniques perform in the generation of test data? The 

results shown in this thesis indicate that while not all adaptive techniques will always 

perform better than randomly generated test data, they usually require fewer amounts 

of unique test data to be generated. However it might not be cost effective to create 

a one-off Simulated Annealing tool to generate test data, this could be extremely time 

consuming and the development phase error prone in itself. What needs to be done is 

to incorporate an adaptive search technique into a testing tool which will both 

determine what sort of test data is required and then generate that test data requiring 

only limited input from the user. This model of a testing tool incorporating adaptive 

search techniques is what is described in this thesis. The merit of the techniques used 

and the method in which they are applied and measured are discussed in this section 

along with suggested future research that might be performed in this area. 

This research project began with an attempt to determine how GAs might perform in 

the generation of test data to follow work performed by Xanthakis et al (1992). That 

research involved the test data generation for a Pascal program, but also included 

specifications for delving further into the specifications of a test function by 
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investigating the test function by adjusting the code and using GAs and a relaxation 

method to find suitable test data. The research performed here was an attempt to 

generate test data with as little knowledge of the test function (black-box testing) as 

possible, while using white-box testing techniques to determine paths which need to 

be exercised within the test code. This meant the performance of test data within the 

function under test was measured only by returning a listing of paths exercised by the 

test data, therefore keeping the disturbance of the function under test to a minimum. 

The fitness function received no additional information to assist in its search other 

than what path had been exercised. The responsibility of this fitness function was to 

determine whether a path, branch or LCSAJs had been previously exercised and to 

reduce its fitness each time it had. A path which is newly discovered only retums a 

good fitness for a short while, as each time it is subsequently exercised its fitness is 

reduced. This is seen as an original contribution to knowledge. 

Of primary concern to any user who requires test data is the amount of time required 

to generate this test data. Unfortunately time was an issue which could not be 

addressed until later stages of the research for this thesis due to the availability of 

facilities to perform the required tests at a speed and size which could illustrate the 

capabilities of adaptive techniques. However, it was determined that not only the 

time involved in the generation of lest data should be an issue in measuring the 

effectiveness of a technique. A further issue was the amount of test data which was 

generated before a required coverage metric was reached. A great deal of test data 

can be generated randomly, but a lot of this test data duplicates previous paths, 

branches or LCSAJs. What would be considered beneficial is to reduce the amount 
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of new test data which needs to be generated, this in turn will reduce the amount of 

time a function under test needs to be run. Requiring the function under test to be 

run fewer times offers savings, in that while generating lest data can be a time 

consuming task the actual running of a function with complex and time consuming 

calculations, can be even more expensive. 

In later tests however, it was possible to measure the time taken for the generation of 

the testing techniques for the sample function used in this thesis. The results 

indicate that for a smaller search space random generation takes twice as long as both 

GAs and Simulated Annealing. Unfortunately, this difference is a comparison of an 

average rate of one-third of a second to two-thirds of a second, not a very large 

difference. However, when the size of the search space is enlarged the adaptive 

search techniques take little more than a second, while random generation increases 

to nearly two minutes on a Pentium PC. GAs therefore are 98.97% faster while 

Simulated Annealing are even quicker by 99.1 %. 

When one looks at the amount of new test data which had to be generated for 

coverage on the small search space, adaptive searches require only approximately 

50% of that required by random generation. When the size of the search space 

increases, adaptive techniques require the generation of approximately 0.25% of the 

entire search space while random generation requires 30%. These results are for a 

fairly simple function under test, results for a more complex search space would need 

to be examined before confirmation could be given as to the effectiveness in 

comparison of time. 
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An inherent weakness lo using adaptive search techniques for the generation of test 

data is that the search space for a function does not look like a normal search area, 

there are no hills, peaks or valleys. In fact the search space is non-existent until the 

testing process begins, and can only be described as a flat plateau of branches, paths 

or LCSAJs all waiting to be exercised. As each is exercised its fitness rises sharply 

out of the plateau, however as subsequent test data sets exercise that same area the 

fitness of that path lowers and all test data which satisfies that area will continue to 

reduce the fitness of the path. Figure 76 illustrates the fitness of an exercised area as 

it is exercised more and more. 

50000 -r 

45000 

40000 

35000 

30000 
n 
o c 25000 -

20000 

15000 

10000 • 

5000 

0 • 

number of times exercised 

Figure 76 - The Fitness of an Exercised Path, Branch or LCSAJs as it is 
Accessed Subsequent Times, This Demonstrates How the Fitness Declines Each 

Successive Time it is Exercised 

While the fitness of this exercised path is declining other areas are being exercised as 

well, and are rising quickly and then declining at different rates. Therefore a test data 

set which exercises a new area is rewarded, but there is only limited benefit from this 
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reward to encourage searching a new direction. I f this fitness were to be set to zero as 

a path was exercised, there would be no mechanism to compare one data set to 

another. One data set may be slightly fitter than another as one path had been 

exercised less times, and usually a reduction in fitness means good portions of the 

data sets can be maintained for reproduction, crossover and mutation in GAs. for the 

annealing process in Simulated Annealing, or for a neighbourhood search in Tabu. 

The information maintained by the fitness function, the list of exercised paths, 

branches or LCSAJs could be thought of as a Tabu list which restricts and penalises 

test data which has been used before or that has exercised the same area of the test 

code. 

It is difficult to determine how a test data set can be rewarded for being close to a 

new area which has yet to be exercised. This would be advantageous as a 

combination which is close to attaining a new path can be encouraged to move in that 

direction. This would require more manipulation of the function under test to 

ascertain how close a test data set is to this boundary. However future research 

should address these two issues. First, how should the fitness function be structured 

to accommodate ^closeness* to an unexercised area? Secondly, how can ^closeness* 

be determined while keeping disturbance to the original function to a minimum? 

Work has been done in this area by Slhamer et al (1994) which rewards a test data set 

that tests the boundaries of the conditional statements by taking the hamming 

distance between the test data and the conditional statement requirements. This is a 

very good idea but it would appear that the function would have to undergo some 

detailed change to determine the input data and its relationship to the conditional 
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statements would require an additional function added to the original code which 

moves from a mostly black-box procedure to a white-box procedure of software 

testing. 

The hybrid techniques incorporating GAs and SA and GAs and Tabu search to the 

problem of software test data generation is an original contribution to knowledge. 

Unfortunately these techniques have not proved as successful as their predecessors in 

all tests, but in some examples they were more successful. In the demonstration 

function under test, GAs-SA outperformed GAs by 3.50% and Simulated Annealing 

by 5.35% for LCSAJs and branch testing, and for path testing showed an 

improvement of 11.45% and 7.7% for GAs and Simulated Annealing, respectively. 

While for the hybrid GAs-TS the results were only slightly different, for LCSAJs and 

branch testing GAs-TS improved on GAs results by 38% and Tabu search by 42%, 

but for path testing while GAs-TS improved over Tabu search by 9.95%, the results 

were not as good as those achieved using GAs alone. In the lest programs the results 

were more varied, the hybrid GAs-TS were the best on the Trityp (hard) program, 

much better than GAs or Simulated Annealing, but on the Find program the results 

were dismal, worse than those achieved with random generation. The hybrid GAs-

SA performed best on average for the six tests, although it never achieved the best 

results for any given test. In these hybrid techniques the GA was run for 

approximately one fourth of its average required generation before the local search 

began. Tests with this figure need to be performed to determine i f this is indeed the 

optimum. 
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Tabu search performed extremely well on the Trityp (hard) program, 75,5% better 

than GAs and 74.5% better than Simulated Annealing for LCSAJs and branch 

testing. This was surprising as it performed worse, requiring twice as much lest data 

than GAs and Simulated Amiealing for the Trityp (easy) program. The only 

explanation can be the nature of the search space and when a test data set finds one of 

the more difficult branches, it has a good chance of finding the others, and more 

research should be performed on this result. Tabu search unfortunately does generate 

a lot of test data as the number of input variable increase, such as the Find program. 

This fact discounted it from use in the larger programs, especially for the capital 

budgeting program where the number of input variables was great. A larger list size 

or penalty function may help in restricting the search and there is scope for future 

research. 

The discussion over which is the best technique, GAs or Simulated Annealing 

continues. These two adaptive search methods always performed better than random 

test data generation from the lowest improvement of 32% for GAs in the find 

program when testing for LCSAJs and branch testing to 99% for the large 

demonstration function. In the smaller program the results for GAs and Simulated 

Annealing were never far apart, in some GAs performed better (Trityp (Easy)) in 

others Simulated Annealing did better (Find). In the demonstration function GAs 

performed better at LCSAJs and branch testing while Simulated Annealing did better 

on path testing. In the larger program there was again the slight contrast in the results 

as GAs performed 25% better than Simulated Annealing but in the capital budgeting 

program Simulated Annealing was 31% better than GAs. Simulated Annealing does 
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have the benefit of being quicker in time trials, this can most likely be explained in 

that GAs work with a population, while the Simulated Annealing algorithm is using a 

single string which is then mutated producing one new suing at a time. Future 

research into the GAs would help in determining whether reproduction of the 

population using the roulette wheel is in fact the best method for this type of 

problem. Perhaps what is required is a method of reproduction which allows for a 

greater disparity in new population members. The percentage of mutation and 

crossover remained static for this research and changes to these, as well as to the rate 

of change to the string in Simulated Annealing, should be investigated. 

With the exception of the capital budgeting program in chapter 10, most of the test 

functions used in this research have been very limited, and while this is a weakness 

of the research the test functions used have been applied by many researchers into 

software testing. Applying these test data generation techniques to an actual piece of 

code written by another programmer would be the next stage of research. This would 

demonstrate the abilities of this test data generation tool to adapt to the coding style 

of other programmers, and illustrate the capabilities of the lest data generator when 

the amount of feasible paths through the program is not known in advance. A further 

benefit would be to generate test data from outside a user defined range to determine 

whether the code contains error-handling routines that will determine if a received 

piece of test data falls within the specified acceptable guidelines. 

A program which does not reject incorrect data can be corrected prior to general 

release. What, however, defines incorrect data? Poor data could exceed a specified 
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range of acceptable values but it could also include such things as a real number 

instead of an integer (Miller and Spooner, 1976), a character instead of a string, an 

unacceptable string or an array instead of a pointer. A thorough lest must address all 

these potential problems and must produce test data which examines all constraints 

within, and external to, their boundaries. 

Finally, research should be performed into objected-oriented programming. This is 

completely removed from the type of functions which have been tested in this 

research. In testing structured programs it is possible to test function by function, but 

in object-oriented programming the program must be tested in its entirely, and as 

objects have no links with one another, so it is not as easy to pre-determine paths 

which might exist within the code. Therefore the entire program needs to be run and 

each object be recorded as accessed (Poston, 1994; Jorgensen and Erickson, 1994). 

This can be a very time consuming process which could possibly be shortened by the 

quick generation of lest data. 

This chapter discusses the research performed in this thesis and aims to point out any 

shortcomings which may exist as well as to suggest further research which could be 

performed to alleviate these. The chapter concludes with a discussion of the 

direction which the research may take in the future, such as additional programs or 

the testing of functions which require test data which is of the type real, characters or 

strings. The final area of future research is to use this method of lest data generation 

for object-oriented programming. 
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Chapter Twelve 

Conclusion 

When this research began very little had been performed into the use of adaptive 

search techniques for test data generation. In fact the research has covered a period 

of three years, during which time there have been parallel developments. To keep as 

up to date as possible, this has necessitated a refocussing of original objectives and 

consequent conclusions. What existed, in 1992, was a collection of techniques for 

testing programs which ranged from static to dynamic methods. Since that time, the 

use of adaptive search techniques for the generation of test data (Xanthakis et al 

(1992); Sthamer et al 1994; Roper, 1995) has been attempted. These techniques have 

been compared to a method which has been used for test data generation and 

performs quite adequately for small search space. This method is random testing. 

Determining how random testing compares to adaptive search techniques for 

coverage of a function under lest, has been the focus of this thesis. 

The primary goals of the research were as follows: 

o develop a tool for the automatic generation of test data; 

o measure the effectiveness of adaptive search technique for the generation of test 

data in comparison with random test data generation; 
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• develop hybrid adaptive search techniques and compare these with the original 

methods used; 

• lay a course for further examination of test data generation and adaptive search 

techniques. 

The objectives of this research have been met in the following manner: 

• a tool for the automatic generation of test data has been developed and described; 

• a comparison of adaptive search techniques, GAs, Simulated Annealing and Tabu 

search to random test data generation has shown that in almost all tests these 

techniques perform better, and that GAs and Simulated Annealing always perform 

better than random generation; 

• hybrid techniques have been developed which combine the adaptive search 

techniques GAs and Simulated Annealing and GAs and Tabu search. Results 

indicate these techniques occasionally perform belter than their predecessors; 

• these adaptive search techniques have been applied to test programs to illustrate 

their capabilities. These techniques have also been applied to a larger search 

problem not written specifically as a demonstration of test data generation. 

Areas of future research have been identified, these fall in two categories, adaptive 

search techniques and test data generation. Future research in adaptive search can 

concentrate on the following areas: 

• adjustment of operators on current techniques (e.g. inclusion of hyper-mutation or 

random immigrants for changing fitness environment in GAs); 

• inu^oduction of gray coding as opposed to binary interpretation of strings in both 

GAs and Simulated Annealing; 

• fine-tuning of hybrid techniques; 

• other adaptive search techniques (evolutionary programming, guided local search, 

population-oriented Simulated Annealing, etc.). 
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Further research should also be performed to improve the test data which has been 

generated, and two suggested areas of research are; 

• boundary testing - the attempt to attain test data which not only exercises a given 

path but also identifies i f it is close to the boundary of a condition. This must be 

performed while attempting to remain black-box testing. A relaxation algorithm 

may help with this problem; 

• mutation analysis - using mutation analysis to verify the quality of the generated 

test data to determine i f it will kill mutant versions of the code under test. 

Finally, additional future research as discussed in chapter eleven, would be into a 

more complex function written by external sources. This will give the opportunity to 

determine how adaptive techniques perform when the goals are unknown. It is hoped 

that these adaptive search techniques, with refinements, wi l l continue to produce the 

high quality results as shown in this thesis. 

Chapter 12 177 



Appendix A 

Original Code for Trityp (Easy) 
v o i d T r i t y p E a s y ( i n t x , i n t y, i n t z) 
{ 
i n t type ; 
i f ( X <= 0 I I y <= 0 I I z <= 0 ) 
{ 

type = 4 ; / / i l l e g a l t r i a n g l e 
} 
e l s e 
{ 

type = 0 ; 
i f { X == y ) 

type += 1 

f ( X == z ) 

type +- 2 

f ( y == z ) 

type += 3 

i f ( type == 0 ) 

i f ( x + y < = z | | y + z < = x || x + z < = y ) 
{ 

type = 4 ; / / i l l e g a l t r i a n g l e 
} 
e l s e 
{ 

type = 1 ; / / s c a l e n e 

f ( type > 3 ) 

type = 3 ; / / e c f u i l a t e r a l 

I s e i f ( type == 1 && x + y > z ) 

type = 2 ; / / i s o s c e l e s 

I s e i f ( type == 2 && x + z > y ) 

type = 2 ; / / i s o s c e l e s 

e l s e i f ( type == 3 && y + z > x ) 

type = 2 ; / / i s o s c e l e s 

I s e 

type = 4 ; / / i l l e g a l t r i a n g l e 
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Appendix B 

Flow Chart of Trityp(Easy) 
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1) 
2) 

IT 
IF 

3) 2T 
4) 3T 
5) 4T 
6) 5T 
7) 6T 
8) 6F 
9) 7T 
10) 7F 
11) 7A 
12) 7B 
13) 7C 

Appendix C 

List of LCSAJs and Branches Through Trityp (Easy) 

Branches of Trityp(Easy) Program 

LCSAJs of Trityp(Easy) Program 

1) 
2) 
3) 
4) 
5) 
6) 
7) 
8) 
9) 

1F2T 
1F3T 
1F4T 
1F5T-
2T3T 
2T7A 
2T7F 
3T4T 
3T7B 

10) 3T7F 
11) 4T7C 
12) 4T7F 
13) 4T7T 
14) 5T6F 
15) 5T6T 
16) 6F7A 
17) 6T7T 
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1) IT 
2) lA 
3) IB 
4) 2T 
5) 2F 
6) 3T 
7) 3F 
8) 4T 
9) 4F 
10) 5T 
11) 5F 
12) 6T 
13) 6F 
14) 7T 
15) 7F 
16) 8T 
17) 8F 
18) 9T 
19) 9F 
20) lOT 
21) lOF 
22) I I T 
23) I IF 

Appendix D 

List of LCSAJs and Branches Through Trityp (Hard) 
Branches of Trityp(Hard) Program 

Appendices 181 



LCSAJs of Trityp(Hard) Program 

1) 2F3F 
2) 2F3T 
3) 3F4F 
4) 3F4T 
5) 4F5F 
6) 4F5T 
7) 5F7F 
8) 5F7T 
9) 5T6F 
10) 5T6T 
11) 7F8F 
12) 7F8T 
13) 8F9F 
14) 8F9T 
15) 9F10F 
16) 9F10T 
17) lOFl lF 
18) lOFl lT 
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Appendix E 

Original Code for Trityp (Hard) 
i n t T r i t y p H a r d ( i n t x, i n t y, i n t z) 
{ 
Tot = x+y+z; 
i f (x<= 0) 

r e t u r n ( ' i l l e g a l t r i a n g l e ' ) ; 

e l s e i f (y<=0) 

r e t u r n ( ' i l l e g a l t r i a n g l e ' ) ; 

e l s e i f (z<=0) 

r e t u r n ( ' i l l e g a l t r i a n g l e ' ) ; 

f ((x*2)>= Tot) 

r e t u r n ( • i l l e g a l t r i a n g l e ' ) ; 

f ( ( y * 2 ) >= Tot) 

r e t u r n { ' i l l e g a l t r i a n g l e * ) ; 

f ( ( z * 2 ) >= Tot) 

r e t u r n ( • i l l e g a l t r i a n g l e ' ) ; 

f ( X == y) 

i f (y==z) 
{ 

r e t u r n ( ' e q u i l a t e r a l ' ) ; 
) 

r e t u r n ( ' i s o s c e l e s ' ) ; 

f ( X == z) 

r e t u r n ( ' i s o s c e l e s ' ) ; 

f (y == z) 

r e t u r n ( ' i s o s c e l e s ' ) ; 

f (x*x + y*y = z*z) 

r e t u r n ( ' r i g h t - a n g l e d ' ) ; 

f (y*y+z*z=x*x) 

r e t u r n { ' r i g h t - a n g l e d ' ) ; 

f (x*x + z*z== y*y) 

r e t u r n ( ' r i g h t - a n g l e d ' ) ; 
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Appendix F 

Flow Chart of Trityp(Hard) 
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Appendix G 

Flow Chart of Find Program 
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Appendix H 

Original Code for Find Progam 

v o i d f i n d ( i n t a l 5 l , i n t n , i n t f ) 
{ 
i n t m,ns,r,i,j,w; 
i f {f>0 && f< n) 
{ 

m = 0; 
ns = n; 
w h i l e (m<ns) 
{ 

r = a f f l ; 
i = m; 
j = ns-1; 
w h i l e (i < = j ) 
{ 

w h i l e ( a [ i ] < r ) 
( 

i = i+1; 
) 
w h i l e ( r < a ( j ] ) 
{ 

j . = 
) 
i f ( i < = j ) 
{ 

w = a ( i ] ; 
a [ i ] = a[D) 
a [ j ] = w; 
i = i+1; 
j = 3-1; 

) 
} 
i f (f<=j) 
{ 

n s = j + l ; 
) 
e l s e i f (i<=f) 
{ 

m = i ; 
} 
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1) rr 
2) IF 
3) 2T 
4) 2F 
5) 3T 
6) 3A 
7) 3F 
8) AO 
9) A l 
10) A2 
11) B l 
12) B2 
13) B3 
14) CI 
15) C2 
16) C3 

Appendix I 

List of LCSAJs and Branches Through Find Program 
Branches of Find Program 

Appendices 187 



LCSAJs in Find Program 

1) IFAl 
2) IFA1A2 
3) 2F3A 
4) 2F3F 
5) 2F3T 
6) 2T3A 
7) 2T3T 
8) 2TB2 
9) 3AA2 
10) 3AB1 
11) 3ABIB2 
12) 3TA2 
13) 3TB1 
14) 3TB1B2 
15) A l B l 
16) A1B1B2 
17) A2B1 
18) A2B1B2 
19) BICO 
20) B l C l 
21) B1C1C2 
22) B2C0 
23) B2C1 
24) B2C1C2 
25) CODO 
26) COOr 
27) C0D1D2 
28) CI DO 
29) C I D I 
30) C1D1D2 
31) C2D0 
32) C2D1 
33) C2D1D2 
34) D02F 
35) D02T 
36) D12F 
37) D12T 
38) D22F 
39) D22T 
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Appendix J 

List of Paths (80) Through Find Program 

1) 1 FA 1BIC0D02T3 AA2B1C0D02T3F 

2) 1 FA 1B1C0D02TB2C0D02T3 AA2B1C0D02T3 ABICODO 

3) 1 FA 1B1C0D02TB2C0D02T3 AA2BIC0D02T3F 

4) 1 FA 1B1C0D02TB2C0D02T3 AA2B1C0D02T3TB1 CODO 

5) 1FA1B1C0D02TB2C0D02T3AA2B1C0D12T3F 

6) 1FA1B1C0D02TB2C0D02T3AA2B1C1D02T3F 

7) 1 FA 1B1C0D02TB2C0D02T3F 

8) 1FA1B1C0D02TB2C0DO2T3TA2B1C0D02T3AB1C0D0 

9) 1 FA 1B1 C0D02ra2C0D02T3T A2B1C1D02T3F 

10) 1FA1B1C0D02TB2C0D12F3AA2B1C0D02T3AB1C0D0 

11) 1 FA IB1C0D02TB2C0D12F3 AA2B1C1D02T3F 

12) 1 FA 1B1C0D02TB2C0D12T3 AA2B1C0D02T3 AB 1 CODO 

13) 1FA1B1C0D02TB2C0D12T3AA2B1CID02T3F 

14) 1FA1B1C0D02TB2C0D12T3F 

15) IFAIB1C0D02TB2C0DID22F3AA2B1C0D02TB2C0D02T3ABICODO 

16) 1FA1B1C0D02TB2C0D1D22F3AA2B1C0D02TB2C0D12F3AB1C0D0B1C0 

DO 

17) 1 FA 1B1C0D02TB2C0D1D22F3 AA2B1C0D02TB2C0D12F3 AB 1C1 DO 

18) 1 FA 1B1C0D02TB2C0D1D22F3 A A2BIC0D02TB2C1D02F3 AB I CODO 

19) 1 FA 1B1C0D02TB2C0D1D22F3 AA2BIC1C2D02T3F 

20) 1 FA 1BIC0D02TB2C0D1D22F3 A A2B1C1D02T3 AB 1 CODO 

21) 1 FA 1B1C0D02TB2C1C2D02F3 A A2B1COD02T3F 

22) I FA 1B1C0D02TB2C1D02F3 A A2B1C0D02T3F 

23) 1 FA IBIC0D02TB2C1D02T3 A A2B1COD02T3F 

24) I FA 1BIC0D02TB2C1D02T3F 

25) I FA 1B1C0D02TB2C1D12F3 AA2BICOD02T3 AB 1 CODO 

26) 1 FA 1BIC0D02TB2C1D12F3 AA2BIC i D02T3F 

27) 1 FA IB1 COD 12T3 A A2B1C0D02T3TB1 CODO 
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28) 1 FA 1BI COD 12T3 AA2B1 COD 12T3F 

29) 1 FA 1B1 COD 12TB2C0D02T3 AA2B1C0D02T3TBICODO 

30) 1 FA IB1 COD 12TB2C0D02T3AA2B1 COD 12T3F 

31) 1 FA 1B1 COD 12TB2C0D02T3F 

32) I FA 1B1 COD 12TB2C0D12F3 AA2BIC0D02TB2C0D02T3F 

33) 1FA1B1C0D12TB2C0D12F3AA2B1C0D12T3AB1C0D0B1C0D0 

34) 1 FA 1B1 COD 12TB2C0D12F3 AA2B1 COD 12T3 AB1 COD 1 

35) IFA1B1C0D12TB2C0D12F3AA2B1C1D02T3TB1C0D0B1C0D0 

36) 1FA1B1C0D12TB2C0D12F3AA2B1C1D02T3TB1C1D0 

37) 1FAIB1C0D12TB2C0D12F3AA2B1C1D12T3F 

38) 1 FA 1B1 COD 12TB2C1D02F3 AA2B1C0D02T3TB1 CODO 

39) 1FA1B1C0D12TB2C1D02F3AA2BIC0DI2T3F 

40) IFAIB1C0D1D22T3AA2BIC0D02TB2C0D02T3TB1C0D0 

41) 1FA1B1C0D1D22T3AA2B1C0D02TB2C0D12F3TB1C0D0 

42) 1FA1B1C0D1D22T3AA2B1C0D02TB2C1D02F3TB1C0D0B1C0D0 

43) 1 FA 1B1 COD 1D22T3 AA2B1C0D02TB2C1D02F3TB1 COD 1 

44) 1FA1B1C0D1D22T3AA2B1C0D12T3TB1C0D0 

45) 1 FA 1B1 COD 1D22T3 AA2B1 COD 1D22T3F 

46) 1 FA 1BIC1C2D02T3 AA2B1C0D02T3F 

47) 1FA1BIC1C2D02T3F 

48) 1FA1B1C1C2D02T3TA2B1C0D02TB2C0D02T3AB1C0D0 

49) I FA 1B1C1C2D02T3TA2B1C0D02TB2C0D12F3 AB 1CODOBI CODO 

50) 1 FA 1BIC1C2D02T3TA2B1C0D02TB2C0D12F3 AB 1C1 DO 

51) 1 FA IB1CIC2D02T3TA2B1C0D02TB2C1D02F3 AB 1 CODO 

52) I FA 1B1C1C2D02T3TA2BIC1C2D02T3F 

53) I FA IBICIC2D02T3TA2B1C1D02T3 AB I CODO 

54) IFA1B1CIC2DI2T3F 

55) 1 FA 1BIC1D02T3 A A2B1C0D02T3F 

56) IFA1B1CID02T3F 

57) 1 FA 1B1C1D02T3TA2BIC0D02T3 AB I CODO 

58) 1 FA IB1CID02T3TA2B1C1D02T3F 
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59) 1 FA 1B1CID02TB2C0D02T3 A A2B1C0D02T3F 

60) I FA 1B1C1D02TB2C0D02T3F 

61) 1 FA 1B1C1D02TB2C0D02T3TA2B1C0D02T3 AB1CODO 

62) 1 FA 1B1C1D02TB2C0D02T3TA2B1CID02T3F 

63) 1FA1B1CID02TB2C0D12F3AA2B1C0D02T3AB1C0D0 

64) I FA 1BIC1D02TB2C0D12F3 AA2B1C1D02T3F 

65) 1FA1B1C1D02TB2C0D12F3TA2B1C0D02T3AB1C0D0 

66) 1FA1B1C1D02TB2C0D12F3TA2B1C1D02T3F 

67) 1 FA 1B1C1D02TB2C1D02F3 AA2B1C0D02T3F 

68) 1 FA IB1C1D02TB2C1D02F3TA2B1C0D02TB2C0D02T3F 

69) 1 FA 1B1C1D02TB2C1D02F3TA2B1 COD 12T3 AB 1CODOB1 CODO 

70) IFA1B1C1D02TB2C1D02F3TA2B1C0D12T3AB1C0D1 

71) 1 FA 1B1CID02TB2C1D02F3TA2B1C1D02T3TB1 CODOB I CODO 

72) 1 FA 1B1C1D02TB2C1D02F3TA2B1CID02T3TB1C1 DO 

73) 1FA1B1C1D02TB2C1D02F3TA2B1C1D12T3F 

74) I FA 1B1C1D12T3 AA2B1C0D02T3TB1 CODO 

75) 1FA1B1C1D12T3AA2BIC0D12T3F 

76) 1FAIB1CID12T3F 

77) I FA 1B1C1D12T3TA2B1C0D02T3 AB 1 CODO 

78) 1 FA 1BIC1D12T3TA2B1CID02T3F 

79) IFA1B1C1D1D22T3F 

80) IT 
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Appendix K 

Code for Capital Budgeting Program 

#define LENGTH 427 

i n t chrom[21[LENGTH); / / b i n a r y s t r i n g 
i n t OnOff [101 ; // p r o j e c t on or o f f i n any y e a r 
i n t swtch [ 1 0 1 ; // p r o j e c t o f f swtch for deducting c a p i t a l 

//allowances 
i n t TPr = 0; //number of p r o j e c t s t o t a l p o s s i b l e 
i n t jump = 1 3 ; // b i n a r y range of each input v a r i a b l e 
i n t p r o j s ; // number of p r o j e c t s p o s s i b l e to be done 
i n t x; //counter 
f l o a t t [ 6 1 ; //income 
f l o a t tlm [ 3 1 ; //past p r o f i t 
f l o a t ca [ 6 1 ; / / c a p i t a l allowances a l r e a d y 
f l o a t inOut; 
f l o a t p r o j [ 1 0 ] [ 6 1 ; / / p r o j e c t s 
f l o a t c a p [ 1 0 n 6 1 ; // c a p i a t l allowances of p r o j e c t s 
f l o a t atlm [ 9 1 [ 2 1 ; //new p r o f i t ( t a k i n g away l o s s ) 
f l o a t divA [ 7 1 ; // c a l c u l a t e d i v i d e n d 
f l o a t p r o f i t [ 6 1 ; // p r o f i t 
f l o a t cForward; // amount c a r r i e d forward from y e a r to year 
f l o a t , taxDue [ 1 0 1 ; // tax due f o r each year 

f l o a t taxRebate [ 1 0 1; / / t a x r e t u r n e d f o r each y e a r i f any 

//The r u l e s of t a x a t i o n s 

//determine capital allowances of input financial information 

v o i d I n p u t s ( v o i d ) 
{ 

for (xa=l;xa<6;xa++) 
c a { x a l = c a [ x a - l ] - ( c a [ x a - l ] * . 2 5 ) ; 

f o r (xa= 0 ;xa<projs;xa++) 
{ 

c a p [ x a ] t y a ) = c a p [ x a ] [ y a - l ] - ( c a p [ x a ] [ y a - l ] * . 2 5 ) ; 

} 
) 
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// co n f i n n no starting balance in these variables 

v o i d emptyBalance(void) 
{ 
i n t n; 
for (n=0;n<3;n++) 

a t l m [ n ] [ 0 ] = t l m ( n ] ; 
for (n=0;n<3;n++) 
{ 

t a x d u e i n ( n ) ; 
swtch[n] = 0; 

} 
for (n=0;n<10;n++) 
{ 

taxRebateln] = 0; 
OnOff(n] = 0; 

> 
) 

// c r e a t e single binary string from population member 

v o i d p u t i n ( i n t member[LENGTH]) 
{ 
i n t y l ; 
for {yl=0;yl<LENGTH;yl++) 

c h r o m [ 0 ] [ y l ] = member[yl]; 
} 
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// runs program to determine dividend of given inputs 
f l o a t P r o f i t d n t member [LENGTH]) 
{ 
i n t n,m,x; 
f l o a t f i t n e s s = 0; 
X = 0 

putin(member) 
cForward = 0; 
maJceMoney (x) ; 

I n p u t s ( ) ; 

emptyBalance(); 
ma)ceProfit (x) ; 
fo r (n=l;n<7;n++) 
{ 

DoYears(n,x,n+17); 
c a r r y 
backward 

} 
doDividend(x); 
f o r (n=0;n<7;n++) 

f i t n e s s += divA[n] 
for(n=0;n<TPr *6;n=n+3) 

f i n i s h e d { 
for (m=0;m<TPr;m++ 

// s t a r t i n g balance of c a r r y forward i s zero 
// c o n v e r t b i n a r y s t r i n g t o f i n a n c i a l 

// i n f o r m a t i o n 
// c r e a t e C a p i p t a l Allowance f o r Each Year 

// Based on F i n a n c i a l Information 
// s e t a l l a d d i t i o n a l v a r i a b l e s t o xero 
// c a l c u l a t e p r o f i t f o r each y e a r 

// c a l c u l a t e tax due i n and 
// forward/carry 

/ / c a l c u l a t e d i v i d e n d 

// f i t n e s s = l a r g e s t d i v i d e n d 
//deduct f or any p r o j e c t 

/ / i n g i v e n y e a r 

i f (chromtxl[m+n] == 1&& swtch(m] == 0) 
{ 

f i t n e s s -= cap[m] 10]/pow(l.06, ( n / 3 ) ) ; 
swtchtm] = 1; 

} 

e l s e i f (chromtx][m+n] == 0) 
swtch(m) = 0; 

r e t u r n ( f i t n e s s ) 
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//calculate profit for 6 years 

v o i d m a k e P r o f i t ( i n t x) 
{ 

i n t n; 
for (n=0;n<6;n++) 
{ 

p r o f { n + l , x ) ; 
} 
} 

// calculate profit based on whether project is running in given 

year //(deduct capital allowance from profit 

v o i d p r o f ( i n t y e a r , i n t x) 
{ 
i n t n.ProOn; 
p r o f i t t y e a r - 1 1 = t ( y e a r - l l - ( c a l y e a r - 1 1 * 0 . 2 5 ) ; //time t 
ProOn = 0; 
for (n=(year-l)*TPr;n<<(year-1)*TPr)+TPr;n++) 
{ 

i f (chrom[x][n] == 1) 
{ 

p r o f i t [ y e a r - l ] += p r o j [ P r o O n ] [ y e a r - 1 ] ; 
prof i t l y e a r - 1 ] -= caplProOnHOnOf f [ProOnl] * .25; 
OnOff[ProOn]++; 
ProOn++; 

) 
e l s e 
{ 

p r o f i t [ y e a r - 1 1 -= cap[ProOn](OnOff[ProOn]+1]; 
OnOff[ProOn] = 0; 
ProOn++; 
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// Determine if loss should be carried forward (deducted from next 

years //profit) of carried backward (deducted from past 3 years 

profit before //carried forward). If Profit calculate tax due in. 

v o i d D o Y e a r s ( i n t year, i n t x. i n t c) 
( 
i f ( p r o f i t ( y e a r - l ] < 0) 
{ 

i f ( c h r o m f x ] [ c l == 1) 
( 

f o r w a r d ( y e a r ) ; 
) 
e l s e 
{ 

backward(year); 

) 
e l s e 
{ 

t a k e P r o f i t ( y e a r ) ; 
atlm(year+21[0] = p r o f i t [ y e a r - l l 
t a x d u e i n ( y e a r + 2 ) ; 

// c a i c u i a t e J o s s to be carried forward 

v o i d f o r w a r d ( i n t y e a r ) 
{ 

cForward += p r o f i t [ y e a r - 1 ] ; 
p r o f i t [ y e a r - 1 1 = 0; 

} 
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// deduct l o s s from l a s t three y e a r s p r o f i t . I f not enough c a r r y 
//forward 
v o i d bacJcward( i n t y e a r ) 
{ 

f l o a t taxTemp; 
i n t j = (year+1); 
t a x R e b a t e ( y e a r - l ] = 0; 
i f ( p r o f i t [ y e a r - l ] < 0) 
( 

w h i l e ( p r o f i t [ y e a r - l ] < 0 && j > ( y e a r + l ) - 3 ) 
{ 

taxTemp = a t l m [ j ] [ 0 ] ; 
i f ( p r o f i t [ y e a r - l ] * - l < a t l m [ j ] [ 0 ] ) 
{ 

a t l m [ j ] [ 0 3 = a t l m [ j ] [0] ..+ prof i t [ y e a r - l ) ; 
p r o f i t ( y e a r - l J = 0,-

} 
e l s e 
( 

p r o f i t [ y e a r - l ] = p r o f i t [ y e a r - l ] + a t l m [ j ] [ 0 ] 
a t l m [ j ] [ 0 ] = 0; 

} 
i f ( ( a t l m [ j ] [ 1 ] == 1)) 
{ 

t a x R e b a t e [ y e a r - l J += (taxTemp -
a t l m [ j ] [ 0 ] ) * 0 . 2 5 ; 

) 
e l s e i f ( a t l m [ j ] [ 1 ] ==2) 
( 

i f ( a t l m ( j ] [ 0 ] >300000.0) 
( 

t a x R e b a t e [ y e a r - l ] += (taxTemp-
atlm[ j ] [0] ) *0.35,-

) 
e l s e 
{ 

t a x R e b a t e [ y e a r - l 1 += (taxTemp -
300000.00)*0.35; 

taxRebatetyear-1] += (300000.00-
a t l m [ j ] [ 0 ] ) * 0 . 2 5 ; 
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e l s e 
{ 

t a x R e b a t e [ y e a r - l l += (taxTerap - atlm [ j n 0 1 ) 

*0.33; 
} 

j - - ; 
} 

} 
i f (profit[year - 1 1 < 0 ) 

{ 
f o r w a r d ( y e a r ) ; 

) 

// reduce p r o f i t by balance of carry forward 

v o i d t a k e P r o f i t ( i n t y e a r ) 
{ 

i f ( p r o f i t [ y e a r - 1 ] > cForward*-l) 
{ 

p r o f i t [ y e a r - 1 ] = p r o f i t [ y e a r - 1 ] + cForwardj 
cForward = 0; 

} 

e l s e 
{ . 

cForward = cForward + p r o f i t [ y e a r - 1 1 

p r o f i t [ y e a r - l ] = 0; 

Appendices 198 



// c a l c u l a t e divedend due 
voi d d o D i v i d e n d ( i n t c) 
{ 
i n t n , p l; 

for ('n=0;n<6;n++) 
{ 

divA[n] = t [ n ] ; 
for (pl=n*3;pl<(TPr*n)+3;pl++) 
{ 

i f ( c h r o m [ c ] [ p i ] == 1) 
divA[n] += p r o j [ p i - ( n * 3 ) ] [ n ] ; 

) 
divA[n] += (-taxDue[n+2]+taxRebate[n]); 
divA[n] = di v A [ n ] / p o w ( l . 0 6 , n + l ) ; 

) 
divA[n] = -taxDue(n+2]; 
divA[n] = divA[n]/pow(1.06,n+l); 
} 

// c a l c u l a t e tax due 
v o i d t a x d u e i n ( i n t n) 
{ 

i f ( a t l m [ n ] [ 0 ] <= 300000.00) 
( 

taxDue[n] = a t l m [ n ] [ 0 ] * 0 . 2 5 ; 
a t l m [ n ] [ 1 ] = 1; 

) 
e l s e i f ( a t l m [ n ] [ 0 ] < 1500000.00) 
( 

taxDuetn] = 300000.0*0.25; 
taxDue[n] += (atlm[n][0]-300000.0)*0.35 
a t l m [ n ] [ 1 ] = 2; 

) 
e l s e 
{ 

taxDue[n] = atlm[n] [0]*0 . 33 ; 
a t l m ( n ] [ 1 ] = 3; 

) 
} 
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// determine i n i t i a l financial information from Binary String 
v o i d makeMoney{int f ) 
{ 

i n t x l , y l ; 
i n t b i n ; // p o s i t i o n i n b i n a r y string 
t [ 0 ] = f i n d l t ( 2 4 , f , 0 ) ; 
ca(01 = f i n d l t ( 3 7 , f , l ) ; 
tlm[0] = f i n d l t ( 5 0 , f , 2 ) 
t l r a [ l ) = f i n d l t ( 6 3 , f , 3 ) 
tlm(21 = f i n d l t ( 7 6 , f , 4 ) 
t [ l j = f i n d l t ( 8 9 , f , 5 ) ; 
t [ 2 ] = f i n d l t ( 1 0 2 , f , 6) 
t [ 3 ] = f i n d l t ( 1 1 5 . f , 7 ) 
t [ 4 ] = f i n d l t ( 1 2 8 , f ,8) 
t [ 5 ] = f i n d l t ( 1 4 1 , f . 9 ) 
b i n = 154; 
for (xl=0;xl<3;xl++) 
( 

c a p ( x l ] [ 0 ] = f i n d l t ( b i n , f , 1 0 + ( 7 * x l ) ) ; 
bin+=jump; 
p r o j [ x l ] [ 0 ] = f i n d l t ( b i n , f a i + ( 7 * x l ) ) ; 
bin+=juinp; 
p r o j [ x l ] [ l ] = f i n d l t ( b i n , f , 1 2 + ( 7 * x l ) ) ; 
bin+=jump; 
p r o j [ x l ] [ 2 1 = f i n d i t ( b i n , f . 1 3 + ( 7 * x l ) ) ; 
bin+=jump; 
p r o j [ x l ] [ 3 ] = f i n d I t ( b i n . f . l 4 + ( 7 - x l ) ) ; 
bin+=jump; 
p r o j [ x l ] [ 4 ] = f i n d l t ( b i n , f , 1 5 + ( 7 * x l ) ) ; 
bin+=jump; 
p r o j [ x l ] [ 5 ] = f i n d l t ( b i n , f , 1 6 + ( 7 * x l ) ) ; 
bin+=jump; 

} 
) 
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// determine i n t e g e r value 
f l o a t f i n d l t ( i n t ml, i n t f , i n t dig) 
{ 
long b i n l ; 
b i n l = 0; 
fo r (x=ml;x<(ml)+jump;x++) 
{ 

i f ( c h r o m [ f ] [ x ] == 1) 
{ 

binl«=l; 
b i n l += 1; 

} 
e l s e 

binl«=l; 
) 
r e t u r n ( ( f l o a t ) b i n l * 1 0 0 0 ) ; 
) 

Appendices 201 



Appendix L 

500 of over 1000 Paths through Capital Budgeting Program 

1) 1F8T1F8T 

2) 1F8TIT2F3T4F5 A6F4F5 A6F4F5 A6F7TA1 

3) 1F8T1T2F3T4F5 A6F4F5 A6F4F5F7TA1 

4) 1F8T1T2F3T4F5A6F4F5A6F4F5T7TA1 

5) 1F8TIT2F3T4F5 A6F4F5 A6F4T5F7F 

6) 1F8T1T2F3T4F5A6F4F5A6F4T5T7F 

7) 1F8T1T2F3T4F5A6F4F5F4F5A6F7TA1 

8) 1F8T1T2F3T4F5A6F4F5F4F5F7TA1 

9) i F8T1T2F3T4F5 A6F4F5F4F5T7TA1 

10) 1F8T1T2F3T4F5 A6F4F5F4T5 A6F7F 

11) 1F8T1T2F3T4F5A6F4F5F4T5A6T7F 

12) 1F8T1T2F3T4F5A6F4F5F4T5F7F 

13) 1F8TIT2F3T4F5 A6F4F5T4F5 A6F7TA1 

14) 1F8T1T2F3T4F5 A6F4F5T4F5F7T A1 

15) 1F8TIT2F3T4F5 A6F4F5T4F5T7TA1 

16) 1F8T1T2F3T4F5 A6F4F5T4T5F7F 

17) IF8T1T2F3T4F5A6F4T5A6F7F 

18) 1F8T1T2F3T4F5A6F4T5A6T7F 

19) 1F8TIT2F3T4F5A6F4T5F7F 

20) 1F8T1T2F3T4F5 A6F4T5T7F 

21) 1F8TIT2F3T4F5 A 6 R F 

22) 1F8TIT2F3T4F5F4F5 A6F4F5 A6F7TAI 

23) 1F8T1T2F3T4F5F4F5 A6F4F5F7TA1 

24) 1F8T \ T2F3T4F5F4F5 A6F4F5T7T A1 

25) 1F8T1T2F3T4F5F4F5A6F4T5RF 

26) 1F8T1T2F3T4F5F4F5A6F4T5T7F 

27) 1F8TIT2F3T4F5F4F5F4F5 A6F7TA1 

28) 1F8T1T2F3T4F5F4F5F4F5F7TA1 
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29) 1F8T1T2F3T4F5F4F5F4F5T7TA1 

30) 1F8T1T2F3T4F5F4F5F4T5A6F7F 

31) 1F8T1T2F3T4F5F4F5F4T5A6T7F 

32) 1F8TIT2F3T4F5F4F5F4T5F7F 

33) 1F8T1T2F3T4F5F4F5T4F5A6F7TA1 

34) 1F8T1T2F3T4F5F4F5T4F5F7T A1 

35) 1F8T1T2F3T4F5F4F5T4F5T7TA1 

36) 1F8T1T2F3T4F5F4F5T4T5 A6F7F 

37) 1F8T1T2F3T4F5F4F5T4T5A6T7F 

38) 1F8T1T2F3T4F5F4F5T4T5F7F 

39) 1F8T1T2F3T4F5F4T5A6F7F 

40) 1F8T1T2F3T4F5F4T5A6T7F 

41) 1F8T1T2F3T4F5F4T5F7F 

42) 1F8T1T2F3T4F5T4F5 A6F4F5 A6F7TA1 

43) IF8T1T2F3T4F5T4F5A6F4F5F7TA1 

44) 1F8T1T2F3T4F5T4F5 A6F4F5T7T A1 

45) 1F8TIT2F3T4F5T4F5 A6F4T5F7F 

46) 1F8T1T2F3T4F5T4F5F4F5A6F7TA1 

47) 1F8T1T2F3T4F5T4F5F4F5F7TA1 

48) IF8T1T2F3T4F5T4F5F4F5T7TA1 

49) 1F8T1T2F3T4F5T4F5F4T5F7F 

50) 1F8T1T2F3T4F5T4F5T4F5F7TAI 

51) 1F8T1T2F3T4F5T4F5T4F5T7TA1 

52) 1F8TIT2F3T4F5T4F5T4T5F7F 

53) 1F8T1T2F3T4F5T4T5 A6T7F 

54) 1F8T1T2F3T4F5T4T5F7F 

55) 1F8TIT2F3T4F5T4T5T7F 

56) IF8T1T2F3T4T5 A 6 R F 

57) IF8TIT2F3T4T5A6T7F 

58) 1F8T1T2F3T4T5F7F 

59) 1F8T1T2F3T4T5T7F 
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60) 1F8T1T2TA1 

61) 1T2F3T4F5A6F4F5A6F4F5A6F7TAI1F8F 

62) 1T2F3T4F5A6F4F5A6F4F5A6F7TA11F8T 

63) IT2F3T4F5A6F4F5A6F4F5A6F7TA1IT2F3T4F5A6F4F5A6F4F5A6F7TAI 

64) 1T2F3T4F5A6F4F5A6F4F5A6F7TA11T2F3T4F5F4F5 A6F4F5A6F7TA1 

65) 1T2F3T4F5A6F4F5A6F4F5A6F7TA1IT2F3T4T5A6T7F 

66) 1T2F3T4F5A6F4F5A6F4F5A6F7TA11T2F3T4T5F7F 

67) 1T2F3T4F5A6F4F5A6F4F5A6F7TA11T2TA1 

68) 1T2F3T4F5A6F4F5A6F4F5F7TA11F8F 

69) 1T2F3T4F5A6F4F5A6F4F5F7TA11F8T 

70) 1T2F3T4F5A6F4F5A6F4F5F7TA11T2F3T4F5A6F4F5A6F4F5A6F7TA1 

71) 1T2F3T4F5A6F4F5A6F4F5F7TA11T2F3T4F5F4F5A6F4F5A6F7TA1 

72) 1T2F3T4F5A6F4F5A6F4F5F7TA11T2TA1 

73) 1T2F3T4F5A6F4F5A6F4F5T7TA11F8F 

74) 1T2F3T4F5A6F4F5A6F4F5T7TA11F8T 

75) 1T2F3T4F5A6F4F5A6F4F5T7TA11T2F3T4F5T4F5 A6F4F5 A6F7TA1 

76) 1T2F3T4F5A6F4F5A6F4F5T7TA11T2TA1 

77) 1T2F3T4F5A6F4F5A6F4T5A6F7F1F8T 

78) 1T2F3T4F5 A6F4F5 A6F4T5 A6T7F1F8T 

79) 1T2F3T4F5A6F4F5A6F4T5A6T7F1T2TA1 

80) 1T2F3T4F5A6F4F5A6F4T5F7F1F8T 

81) 1T2F3T4F5A6F4F5A6F4T5F7F1T2F3T4F5A6F4F5 A6F4F5A6F7TA1 

82) 1T2F3T4F5A6F4F5A6F4T5F7F1T2F3T4F5F4F5A6F4F5A6F7TA1 

83) 1T2F3T4F5A6F4F5A6F4T5F7F1T2F3T4F5T4F5A6F4F5A6F7TA1 

84) 1T2F3T4F5A6F4F5A6F4T5F7FIT2TA1 

85) 1T2F3T4F5A6F4F5A6F4T5T7F1F8T 

86) 1T2F3T4F5A6F4F5F4F5A6F7TAI1F8F 

87) 1T2F3T4F5A6F4F5F4F5A6F7TAI1F8T 

88) 1T2F3T4F5A6F4F5F4F5A6F7TAIIT2F3T4F5A6F4F5A6F4F5F7TA1 

89) 1T2F3T4F5A6F4F5F4F5A6F7TA11T2F3T4F5F4F5A6F4F5RTA1 

90) 1T2F3T4F5A6F4F5F4F5A6F7TA1IT2F3T4F5T4F5A6F4F5F7TA1 
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91) IT2F3T4F5A6F4F5F4F5A6F7TA1IT2TA1 

92) IT2F3T4F5A6F4F5F4F5F7TAIIF8F 

93) 1T2F3T4F5 A6F4F5F4F5F7TA11F8T 

94) 1T2F3T4F5 A6F4F5F4F5F7TA11T2F3T4F5 A6F4F5 A6F4F5F7TA1 

95) 1T2F3T4F5 A6F4F5F4F5F7TA11T2F3T4F5F4F5 A6F4F5F7TAI 

96) 1T2F3T4F5 A6F4F5F4F5F7TA11T2F3T4F5T4F5 A6F4F5F7TA1 

97) 1T2F3T4F5A6F4F5F4F5F7TAI1T2F3T4T5F7F 

98) 1T2F3T4F5A6F4F5F4F5F7TA11T2TA1 

99) 1T2F3T4F5A6F4F5F4F5T7TA11F8F 

100) IT2F3T4F5A6F4F5F4F5T7TA11F8T 

101) 1T2F3T4F5A6F4F5F4F5T7TA11T2F3T4F5A6F4F5A6F4F5F7TA1 

102) 1T2F3T4F5A6F4F5F4F5T7TA11T2F3T4F5F4F5A6F4F5F7TA1 

103) 1T2F3T4F5A6F4F5F4F5T7TA11T2F3T4F5T4F5A6F4F5F7TA1 

104) 1T2F3T4F5A6F4F5F4F5T7TA11T2TA1 

105) 1T2F3T4F5A6F4F5F4T5A6F7F1F8T 

106) 1T2F3T4F5 A6F4F5F4T5 A6F7F1T2F3T4F5 A6F4F5 A6F4F5F7TA1 

107) 1T2F3T4F5A6F4F5F4T5A6F7F1T2F3T4F5F4F5A6F4F5F7TA1 

108) 1T2F3T4F5 A6F4F5F4T5 A6F7F1T2F3T4F5T4F5 A6F4F5F7T A1 

109) IT2F3T4F5A6F4F5F4T5A6F7F1T2TA1 

110) 1T2F3T4F5A6F4F5F4T5A6T7F1F8T 

111) 1T2F3T4F5A6F4F5F4T5A6T7FIT2F3T4F5A6F4F5A6F4F5F7TAI 

112) 1T2F3T4F5A6F4F5F4T5A6T7F1T2F3T4F5F4F5A6F4F5F7TA1 

113) IT2F3T4F5A6F4F5F4T5A6T7F1T2F3T4F5T4F5A6F4F5F7TA1 

114) 1T2F3T4F5A6F4F5F4T5A6T7F1T2TAI 

115) 1T2F3T4F5A6F4F5F4T5F7F1F8T 

116) 1T2F3T4F5A6F4F5F4T5F7F1T2F3T4F5A6F4F5A6F4F5F7TA1 

117) 1T2F3T4F5A6F4F5F4T5RF1T2F3T4F5F4F5A6F4F5F7TAI 

118) 1T2F3T4F5A6F4F5F4T5F7F1T2F3T4F5T4F5A6F4F5F7TA1 

119) IT2F3T4F5A6F4F5F4T5F7F1T2F3T4T5F7F 

120) 1T2F3T4F5A6F4F5F4T5F7F1T2TA1 

121) lT2F3T4F5A6F4F5F4T5T7FiF8T 
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122) 1T2F3T4F5A6F4F5T4F5A6F7TAI1F8F 

123) 1T2F3T4F5A6F4F5T4F5A6F7TA11F8T 

124) IT2F3T4F5A6F4F5T4F5A6F7TA1 iT2F3T4F5A6F4F5A6F4F5T7TAl 

125) 1T2F3T4F5A6F4F5T4F5A6F7TA11T2F3T4F5F4F5 A6F4F5T7TA1 

126) 1T2F3T4F5A6F4F5T4F5A6F7TA11T2F3T4F5T4F5A6F4F5T7TA1 

127) 1T2F3T4F5A6F4F5T4F5A6F7TA11T2TA1 

128) 1T2F3T4F5A6F4F5T4F5F7TA11F8F 

129) 1T2F3T4F5A6F4F5T4F5F7TA11F8T 

130) 1T2F3T4F5A6F4F5T4F5F7TA11T2F3T4F5A6F4F5A6F4F5T7TA1 

131) 1T2F3T4F5A6F4F5T4F5F7TA11T2F3T4F5F4F5A6F4F5T7TA1 

132) 1T2F3T4F5A6F4F5T4F5F7TA11T2F3T4F5T4F5A6F4F5T7TA1 

133) 1T2F3T4F5A6F4F5T4F5F7TA11T2TA1 

134) 1T2F3T4F5A6F4F5T4F5T7TA11F8T 

135) 1T2F3T4F5A6F4F5T4F5T7TA11T2F3T4F5F4F5A6F4F5T7TA1 

136) 1T2F3T4F5A6F4F5T4F5T7TA11T2TA1 

137) 1T2F3T4F5A6F4F5T4T5A6F7F1F8T 

138) 1T2F3T4F5A6F4F5T4T5 A6F7F1T2F3T4F5F4F5A6F4F5T7TA1 

139) 1T2F3T4F5A6F4F5T4T5A6F7F1T2TA1 

140) 1T2F3T4F5A6F4F5T4T5A6T7F1F8T 

141) 1T2F3T4F5A6F4F5T4T5A6T7F1T2TA1 

142) 1T2F3T4F5A6F4F5T4T5F7F1F8T 

143) IT2F3T4F5A6F4F5T4T5F7F1T2F3T4F5A6F4F5A6F4F5T7TA1 

144) 1T2F3T4F5A6F4F5T4T5F7F1T2F3T4F5F4F5A6F4F5T7TA1 

145) IT2F3T4F5A6F4F5T4T5F7F1T2F3T4F5T4F5A6F4F5T7TA1 

146) 1T2F3T4F5A6F4F5T4T5F7F1T2TA1 

147) 1T2F3T4F5A6F4T5A6F7F1F8T 

148) 1T2F3T4F5A6F4T5A6F7FIT2F3T4F5A6F4F5A6F4F5A6F7TAI 

149) 1T2F3T4F5A6F4T5A6F7F1T2F3T4F5F4F5A6F4F5A6F7TA1 

150) IT2F3T4F5A6F4T5A6F7F1T2TA1 

151) 1T2F3T4F5A6F4T5A6T7F1F8T 

152) 1T2F3T4F5A6F4T5A6T7F1T2F3T4F5A6F4F5A6F4F5A6F7TA1 

Appendices 206 



153) 1T2F3T4F5A6F4T5A6T7F1T2F3T4F5F4F5A6F4F5A6F7TAI 

154) 1T2F3T4F5A6F4T5A6T7F1T2F3T4F5T4F5A6F4F5A6F7TA1 

155) 1T2F3T4F5A6F4T5A6T7F1T2TA1 

156) IT2F3T4F5A6F4T5F7F1F8T 

157) 1T2F3T4F5A6F4T5F7F1T2F3T4F5A6F4F5A6F4F5F7TA1 

158) 1T2F3T4F5A6F4T5F7F1T2F3T4F5A6F4F5A6F4T5F7F 

159) 1T2F3T4F5A6F4T5F7F1T2F3T4F5F4F5A6F4F5F7TA1 

160) 1T2F3T4F5A6F4T5F7F1T2F3T4F5F4F5A6F4T5F7F 

161) 1 T2F3T4F5 A6F4T5F7F1T2F3T4F5T4F5 A6F4F5F7TA1 

162) 1T2F3T4F5A6F4T5F7FIT2F3T4F5T4F5A6F4T5F7F 

163) 1T2F3T4F5A6F4T5F7F1T2F3T4T5F7F 

164) 1T2F3T4F5A6F4T5F7F1T2TA1 

165) IT2F3T4F5A6F4T5T7F1T2TA1 

166) IT2F3T4F5F4F5A6F4F5A6F7TAIIF8F 

167) 1T2F3T4F5F4F5A6F4F5A6F7TA11F8T 

168) 1T2F3T4F5F4F5 A6F4F5A6F7TA11T2F3T4F5A6F4F5F4F5A6F7TA1 

169) 1T2F3T4F5F4F5A6F4F5A6F7TA11T2F3T4F5F4F5F4F5A6F7TA1 

170) 1T2F3T4F5F4F5A6F4F5A6F7TA11T2TA1 

171) 1T2F3T4F5F4F5A6F4F5F7TA11F8F 

172) 1T2F3T4F5F4F5A6F4F5F7TA11F8T 

173) 1T2F3T4F5F4F5A6F4F5F7TA1IT2F3T4F5A6F4F5F4F5A6F7TA1 

174) 1T2F3T4F5F4F5A6F4F5F7TA11T2F3T4F5F4F5F4F5A6RTA1 

175) 1T2F3T4F5F4F5A6F4F5F7TAIIT2TA1 

176) 1T2F3T4F5F4F5A6F4F5T7TA11F8F 

177) 1T2F3T4F5F4F5A6F4F5T7TA1IF8T 

178) 1T2F3T4F5F4F5A6F4F5T7TA11T2F3T4F5F4F5F4F5A6F7TAI 

179) 1T2F3T4F5F4F5A6F4F5T7TA11T2F3T4F5T4F5F4F5A6F7TA1 

180) IT2F3T4F5F4F5A6F4F5T7TAIIT2TA1 

181) IT2F3T4F5F4F5A6F4T5A6F7FIF8T 

182) IT2F3T4F5F4F5A6F4T5A6F7FIT2F3T4F5A6F4F5F4F5A6F7TA1 

183) IT2F3T4F5F4F5A6F4T5A6F7F1T2F3T4F5F4F5F4F5A6RTA1 
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184) 1T2F3T4F5F4F5A6F4T5A6F7F1T2F3T4T5F7F 

185) IT2F3T4F5F4F5A6F4T5A6F7F1T2TA1 

186) 1T2F3T4F5F4F5A6F4T5A6T7F1F8T 

187) 1T2F3T4F5F4F5A6F4T5A6T7F1T2F3T4F5A6F4F5F4F5A6F7TA1 

188) 1T2F3T4F5F4F5 A6F4T5 A6T7F1T2F3T4F5F4F5F4F5 A6F7TA1 

189) 1T2F3T4F5F4F5A6F4T5 A6T7F1T2F3T4T5F7F 

190) 1T2F3T4F5F4F5A6F4T5A6T7F1T2TA1 

191) 1T2F3T4F5F4F5A6F4T5F7F1F8T 

192) 1T2F3T4F5F4F5A6F4T5F7F1T2F3T4F5A6F4F5F4F5A6F7TA1 

193) 1T2F3T4F5F4F5A6F4T5F7F1T2F3T4F5F4F5F4F5A6F7TAI 

194) 1T2F3T4F5F4F5A6F4T5F7F1T2TA1 

195) 1T2F3T4F5F4F5A6F4T5T7F1F8T 

196) 1T2F3T4F5F4F5A6F4T5T7F1T2TA1 

197) 1T2F3T4F5F4F5F4F5A6F7TA11F8F 

198) 1T2F3T4F5F4F5F4F5A6F7TA11F8T 

199) 1T2F3T4F5F4F5F4F5A6F7TA11T2F3T4F5A6F4F5F4F5F7TA1 

200) 1T2F3T4F5F4F5F4F5A6F7TA11T2F3T4F5F4F5F4F5F7TA! 

201) 1T2F3T4F5F4F5F4F5A6F7TA1IT2TA1 

202) 1T2F3T4F5F4F5F4F5F7TA11F8F 

203) 1T2F3T4F5F4F5F4F5F7TA11F8T 

204) 1T2F3T4F5F4F5F4F5F7TA11T2F3T4F5A6F4F5F4F5F7TA1 

205) IT2F3T4F5F4F5F4F5F7TA11T2F3T4F5F4F5F4F5F7TA1 

206) 1T2F3T4F5F4F5F4F5F7TA11T2F3T4F5T4F5F4F5F7TAI 

207) 1T2F3T4F5F4F5F4F5F7TA11T2F3T4T5F7F 

208) 1T2F3T4F5F4F5F4F5F7TA11T2TA1 

209) 1T2F3T4F5F4F5F4F5T7TA11F8F 

210) 1T2F3T4F5F4F5F4F5T7TA1IF8T 

211) 1T2F3T4F5F4F5F4F5T7TA1IT2F3T4F5A6F4F5F4F5F7TA1 

212) lT2F3T4F5F4F5F4F5T7TAnT2TAl 

213) IT2F3T4F5F4F5F4T5A6F7FIF8T 

214) 1T2F3T4F5F4F5F4T5A6F7F1T2F3T4F5A6F4F5F4F5F7TAI 
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215) 1T2F3T4F5F4F5F4T5A6T7F1F8T 

216) IT2F3T4F5F4F5F4T5A6T7FIT2F3T4F5A6F4F5F4F5F7TA1 

217) 1T2F3T4F5F4F5F4T5A6T7F1T2F3T4F5F4F5F4F5F7TA1 

218) 1T2F3T4F5F4F5F4T5A6T7F1T2TA1 

219) 1T2F3T4F5F4F5F4T5F7F1F8T 

220) 1T2F3T4F5F4F5F4T5F7F1T2F3T4F5A6RF5F4F5F7TA1 

221) 1T2F3T4F5F4F5F4T5F7F1T2F3T4F5F4F5F4F5F7TA1 

222) 1T2F3T4F5F4F5F4T5F7F1T2F3T4F5T4F5F4F5F7TA1 

223) 1T2F3T4F5F4F5F4T5F7F1T2F3T4T5F7F 

224) 1T2F3T4F5F4F5F4T5F7F1T2TA1 

225) 1T2F3T4F5F4F5T4F5A6F7TA11F8F 

226) 1T2F3T4F5F4F5T4F5A6F7TA11F8T 

227) 1T2F3T4F5F4F5T4F5A6F7TA11T2F3T4F5A6F4F5F4F5T7TA1 

228) 1T2F3T4F5F4F5T4F5A6F7TA11T2F3T4F5F4F5F4F5T7TA1 

229) 1T2F3T4F5F4F5T4F5 A6F7TA11T2F3T4F5T4F5F4F5T7TA1 

230) 1T2F3T4F5F4F5T4F5A6F7TA11T2TA1 

231) 1T2F3T4F5F4F5T4F5F7TA11F8F 

232) iT2F3T4F5F4F5T4F5F7TAllF8T 

233) 1T2F3T4F5F4F5T4F5F7TA11T2F3T4F5A6F4F5F4F5T7TA1 

234) 1T2F3T4F5F4F5T4F5F7TA11T2F3T4F5T4F5F4F5T7TA1 

235) 1T2F3T4F5F4F5T4F5F7TA11T2TA1 

236) 1T2F3T4F5F4F5T4F5T7TA11F8F 

237) 1T2F3T4F5F4F5T4F5T7TA11F8T 

238) 1T2F3T4F5F4F5T4F5T7TA11T2F3T4F5A6F4F5F4F5T7TA1 

239) 1T2F3T4F5F4F5T4F5T7TA11T2F3T4F5F4F5F4F5T7TAI 

240) 1T2F3T4F5F4F5T4F5T7TA11T2F3T4F5T4F5F4F5T7TA1 

241) 1T2F3T4F5F4F5T4F5T7TA11T2F3T4T5F7F 

242) 1T2F3T4F5F4F5T4F5T7TA1IT2TA1 

243) 1T2F3T4F5F4F5T4T5A6RF1F8T 

244) 1T2F3T4F5F4F5T4T5A6RF1T2TAI 

245) IT2F3T4F5F4F5T4T5A6T7F1F8T 
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246) 1T2F3T4F5F4F5T4T5A6T7F1T2F3T4F5A6F4F5F4F5T7TA1 

247) lT2F3T4F5F4F5T4T5A6r7FlT2TAl 

248) 1T2F3T4F5F4F5T4T5F7F1F8T 

249) 1T2F3T4F5F4F5T4T5F7F1T2F3T4F5 A6F4F5F4F5T7TA1 

250) 1T2F3T4F5F4F5T4T5F7F1T2F3T4F5F4F5F4F5T7TA1 

251) 1T2F3T4F5F4F5T4T5F7F1T2TA1 

252) 1T2F3T4F5F4F5T4T5T7F1F8T 

253) 1T2F3T4F5F4F5T4T5T7F1T2TA1 

254) 1T2F3T4F5F4T5A6F7F1F8T 

255) 1T2F3T4F5F4T5A6F7F1T2F3T4F5A6F4F5F4F5A6F7TA1 

256) 1T2F3T4F5F4T5 A6F7F1T2F3T4F5F4F5F4F5 A6F7TA1 

257) 1T2F3T4F5F4T5A6F7F1T2TA1 

258) 1T2F3T4F5F4T5A6T7F1F8T 

259) IT2F3T4F5F4T5A6T7F1T2F3T4F5A6F4F5F4F5A6F7TA1 

260) 1T2F3T4F5F4T5A6T7F1T2F3T4F5F4F5F4F5A6F7TA1 

261) 1T2F3T4F5F4T5A6T7F1T2F3T4F5F4F5F4T5A6T7F 

262) 1T2F3T4F5F4T5A6T7F1T2F3T4T5F7F 

263) 1T2F3T4F5F4T5A6T7F1T2TA1 

264) IT2F3T4F5F4T5F7F1F8T 

265) 1T2F3T4F5F4T5F7F1T2F3T4F5A6F4F5F4F5F7TA1 

266) 1T2F3T4F5F4T5F7F1T2F3T4F5A6F4F5F4T5F7F 

267) 1T2F3T4F5F4T5F7F1T2F3T4F5F4F5F4F5F7TA1 

268) 1T2F3T4F5F4T5F7F1T2F3T4F5F4F5F4T5F7F 

269) 1T2F3T4F5F4T5F7F1T2F3T4F5T4F5F4F5F7TA1 

270) IT2F3T4F5F4T5F7F1T2F3T4F5T4F5F4T5F7F 

271) 1T2F3T4F5F4T5F7F1T2F3T4T5F7F 

272) 1T2F3T4F5F4T5F7F1T2TA1 

273) 1T2F3T4F5F4T5T7FIF8T 

274) IT2F3T4F5F4T5T7FIT2F3T4F5F4F5F4T5T7F 

275) 1T2F3T4F5F4T5T7F1T2TA1 

276) 1T2F3T4F5T4F5A6F4F5A6F7TAI1F8F 
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277) IT2F3T4F5T4F5A6F4F5A6F7TA11F8T 

278) 1T2F3T4F5T4F5A6F4F5A6F7TA11T2F3T4F5A6F4F5T4F5A6F7TA1 

279) 1T2F3T4F5T4F5A6F4F5A6F7TA11T2F3T4F5F4F5T4F5A6F7TA1 

280) 1T2F3T4F5T4F5A6F4F5A6F7TA11T2F3T4F5T4F5T4F5A6F7TA1 

281) 1T2F3T4F5T4F5A6F4F5A6F7TA1IT2F3T4T5F7F 

282) 1T2F3T4F5T4F5A6F4F5A6F7TAI1T2TA1 

283) 1T2F3T4F5T4F5A6F4F5F7TA11F8F 

284) 1T2F3T4F5T4F5A6F4F5F7TA11F8T 

285) 1T2F3T4F5T4F5A6F4F5F7TA11T2F3T4F5A6F4F5T4F5A6F7TA1 

286) 1T2F3T4F5T4F5A6F4F5F7TA11T2F3T4F5F4F5T4F5A6F7TA1 

287) 1T2F3T4F5T4F5A6F4F5F7TA11T2F3T4F5T4F5T4F5A6F7TA1 

288) 1T2F3T4F5T4F5A6F4F5F7TA11T2TA1 

289) 1T2F3T4F5T4F5A6F4F5T7TA11F8T 

290) 1T2F3T4F5T4F5A6F4F5T7TA11T2TA1 

291) 1T2F3T4F5T4F5A6F4T5A6F7F1F8T 

292) 1T2F3T4F5T4F5A6F4T5A6F7F1T2F3T4F5A6F4F5T4F5A6F7TA1 

293) 1T2F3T4F5T4F5A6F4T5A6F7F1T2F3T4F5T4F5T4F5A6F7TA1 

294) 1T2F3T4F5T4F5A6F4T5A6T7F1F8T 

295) 1T2F3T4F5T4F5A6F4T5A6T7F1T2TA1 

296) 1T2F3T4F5T4F5A6F4T5F7F1F8T 

297) 1T2F3T4F5T4F5A6F4T5F7F1T2F3T4F5A6F4F5T4F5A6F7TA1 

298) 1T2F3T4F5T4F5A6F4T5F7FIT2F3T4F5F4F5T4F5A6F7TA1 

299) 1T2F3T4F5T4F5A6F4T5F7F1T2F3T4F5T4F5T4F5A6F7TA1 

300) 1T2F3T4F5T4F5A6F4T5F7F1T2TA1 

301) 1T2F3T4F5T4F5F4F5A6F7TA11F8F 

302) 1T2F3T4F5T4F5F4F5A6F7TA11F8T 

303) 1T2F3T4F5T4F5F4F5A6F7TA11T2F3T4F5A6F4F5T4F5F7TA1 

304) IT2F3T4F5T4F5F4F5A6F7TAI1T2F3T4F5F4F5T4F5F7TA1 

305) 1T2F3T4F5T4F5F4F5 A6RTA11T2F3T4F5T4F5T4F5F7TA1 

306) 1T2F3T4F5T4F5F4F5A6F7TAI1T2F3T4T5RF 

307) IT2F3T4F5T4F5F4F5A6RTA11T2TAI 
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308) 1T2F3T4F5T4F5F4F5F7TA11F8F 

309) 1T2F3T4F5T4F5F4F5F7TA11F8T 

310) 1T2F3T4F5T4F5F4F5F7TA11T2F3T4F5A6F4F5T4F5F7TA1 

311) 1T2F3T4F5T4F5F4F5F7TA1IT2F3T4F5F4F5T4F5F7TA1 

312) 1T2F3T4F5T4F5F4F5F7TA11T2F3T4F5T4F5T4F5F7TA1 

313) 1T2F3T4F5T4F5F4F5F7TA11T2TA1 

314) 1T2F3T4F5T4F5F4F5T7TA11F8F 

315) 1T2F3T4F5T4F5F4F5T7TA11F8T 

316) 1T2F3T4F5T4F5F4F5T7TA11T2F3T4F5A6F4F5T4F5F7TA1 

317) 1T2F3T4F5T4F5F4F5T7TA1IT2F3T4F5T4F5T4F5F7TA1 

318) 1T2F3T4F5T4F5F4T5A6F7F1F8T 

319) 1T2F3T4F5T4F5F4T5A6F7F1T2F3T4F5T4F5T4F5F7TA1 

320) 1T2F3T4F5T4F5F4T5A6F7F1T2TA1 

321) 1T2F3T4F5T4F5F4T5A6T7F1F8T 

322) 1T2F3T4F5T4F5F4T5A6T7F1T2F3T4F5A6F4F5T4F5F7TA1 

323) 1T2F3T4F5T4F5F4T5A6T7F1T2F3T4F5F4F5T4F5F7TA1 

324) 1T2F3T4F5T4F5F4T5A6T7F1T2TA1 

325) 1T2F3T4F5T4F5F4T5F7F1F8T 

326) 1T2F3T4F5T4F5F4T5F7F1T2F3T4F5 A6F4F5T4F5F7TA1 

327) 1T2F3T4F5T4F5F4T5F7F1T2F3T4F5F4F5T4F5F7TA1 

328) 1T2F3T4F5T4F5F4T5F7F1T2F3T4F5T4F5T4F5F7TA1 

329) 1T2F3T4F5T4F5F4T5F7F1T2F3T4T5A6F7F 

330) 1T2F3T4F5T4F5F4T5F7F1T2TA1 

331) 1T2F3T4F5T4F5F4T5T7F1F8T 

332) 1T2F3T4F5T4F5F4T5T7F1T2F3T4F5A6F4F5T4F5RTA1 

333) 1T2F3T4F5T4F5F4T5T7FIT2F3T4F5T4F5T4F5F7TA1 

334) 1T2F3T4F5T4F5T4F5A6F7TA11F8F 

335) 1T2F3T4F5T4F5T4F5A6F7TA11F8T 

336) 1T2F3T4F5T4F5T4F5A6F7TAI1T2F3T4F5A6F4F5T4F5T7TA1 

337) 1T2F3T4F5T4F5T4F5A6F7TA11T2F3T4F5F4F5T4F5T7TA1 

338) 1T2F3T4F5T4F5T4F5A6F7TA1IT2F3T4F5T4F5T4F5T7TA1 
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339) 1T2F3T4F5T4F5T4F5A6RTA11T2TA1 

340) 1T2F3T4F5T4F5T4F5F7TA11F8F 

341) 1T2F3T4F5T4F5T4F5F7TA11F8T 

342) 1T2F3T4F5T4F5T4F5F7TA11T2F3T4F5A6F4F5T4F5T7TA1 

343) 1T2F3T4F5T4F5T4F5F7TA11T2F3T4F5F4F5T4F5T7TA1 

344) 1T2F3T4F5T4F5T4F5F7TA11T2F3T4F5T4F5T4F5T7TA1 

345) 1T2F3T4F5T4F5T4F5F7TA11T2TA1 

346) 1T2F3T4F5T4F5T4F5T7TA11F8T 

347) 1T2F3T4F5T4F5T4F5T7TA11T2F3T4F5A6F4F5T4F5T7TA1 

348) 1T2F3T4F5T4F5T4F5T7TA11T2F3T4F5F4F5T4F5T7TA1 

349) 1T2F3T4F5T4F5T4F5T7TA11T2F3T4F5T4F5T4F5T7TA1 

350) 1T2F3T4F5T4F5T4F5T7TA11T2TA1 

351) 1T2F3T4F5T4F5T4T5A6F7F1F8T 

352) IT2F3T4F5T4F5T4T5A6F7F1T2F3T4F5F4F5T4F5T7TA1 

353) 1T2F3T4F5T4F5T4T5A6F7F1T2TA1 

354) 1T2F3T4F5T4F5T4T5A6T7F1F8T 

355) 1 T2F3T4F5T4F5T4T5 A6T7F1T2F3T4F5 A6F4F5T4F5T7TA1 

356) 1T2F3T4F5T4F5T4T5A6T7F1T2F3T4F5T4F5T4F5T7TA1 

357) 1T2F3T4F5T4F5T4T5A6T7F1T2TA1 

358) 1T2F3T4F5T4F5T4T5F7F1F8T 

359) 1T2F3T4F5T4F5T4T5F7F1T2F3T4F5A6F4F5T4F5T7TA1 

360) 1T2F3T4F5T4F5T4T5F7F1T2F3T4F5F4F5T4F5T7TA1 

361) 1T2F3T4F5T4F5T4T5F7FIT2F3T4F5T4F5T4F5T7TA1 

362) 1T2F3T4F5T4F5T4T5RF1T2TA1 

363) 1T2F3T4F5T4T5A6F7F1F8T 

364) 1T2F3T4F5T4T5A6F7F1T2TA1 

365) 1T2F3T4F5T4T5A6T7F1F8T 

366) 1T2F3T4F5T4T5A6T7F1T2F3T4F5F4F5T4F5A6F7TA1 

367) 1T2F3T4F5T4T5A6T7FIT2TA1 

368) 1T2F3T4F5T4T5F7FIF8T 

369) IT2F3T4F5T4T5F7FIT2F3T4F5A6F4F5T4F5F7TA1 
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370) IT2F3T4F5T4T5F7F1T2F3T4F5A6F4F5T4T5F7F 

371) IT2F3T4F5T4T5F7F1T2F3T4F5F4F5T4F5F7TA1 

372) 1T2F3T4F5T4T5F7F1T2F3T4F5F4F5T4T5F7F 

373) 1T2F3T4F5T4T5F7F1T2F3T4F5T4F5T4F5F7TA1 

374) 1T2F3T4F5T4T5F7F1T2F3T4F5T4F5T4T5F7F 

375) 1T2F3T4F5T4T5F7F1T2F3T4T5F7F 

376) 1T2F3T4F5T4T5F7F1T2TA1 

377) 1T2F3T4F5T4T5T7F1F8T 

378) 1T2F3T4F5T4T5T7F1T2F3T4F5A6F4F5T4F5T7TA1 

379) 1T2F3T4T5A6F7F1F8T 

380) 1T2F3T4T5A6F7F1T2F3T4F5A6F4F5A6F4F5A6F7TA1 

381) 1T2F3T4T5 A6F7F1T2F3T4F5A6F4F5A6F4F5T7TAI 

382) 1T2F3T4T5A6F7F1T2F3T4F5A6F4F5A6F4T5F7F 

383) 1T2F3T4T5A6F7F1T2F3T4F5F4F5A6F4F5A6F7TA1 

384) 1T2F3T4T5A6F7F1T2F3'T4F5F4F5A6F4F5F7TA1 

385) 1T2F3T4T5A6F7F1T2F3T4F5F4F5A6F4F5T7TAI 

386) IT2F3T4T5A6F7F1T2F3T4F5F4F5A6F4T5F7F 

387) 1T2F3T4T5A6F7F1T2F3T4F5T4F5A6F4F5F7TA1 

388) 1T2F3T4T5A6F7F1T2F3T4F5T4F5A6F4F5T7TA1 

389) 1T2F3T4T5A6F7F1T2TA1 

390) IT2F3T4T5A6T7F1F8T 

391) 1T2F3T4T5A6T7F1T2F3T4F5A6F4F5A6F4F5A6F7TA1 

392) IT2F3T4T5A6T7F1T2F3T4F5A6F4F5A6F4F5F7TA1 

393) 1T2F3T4T5A6T7F1T2F3T4F5A6F4F5A6F4F5T7TA1 

394) 1T2F3T4T5A6T7F1T2F3T4F5A6F4F5A6F4T5F7F 

395) IT2F3T4T5A6T7F1T2F3T4F5A6F4T5A6T7F 

396) 1T2F3T4T5A6T7F1T2F3T4F5F4F5A6F4F5A6F7TAI 

397) 1T2F3T4T5A6T7F1T2F3T4F5F4F5A6F4F5F7TAI 

398) 1T2F3T4T5 A6T7F1T2F3T4F5F4F5 A6F4F5T7TA1 

399) IT2F3T4T5A6T7F1T2F3T4F5F4F5A6F4T5F7F 

400) IT2F3T4T5A6T7F1T2F3T4F5F4T5A6T7F 
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401) IT2F3T4T5A6T7F1T2F3T4F5T4F5A6F4F5A6RTA1 

402) lT2F3T4T5A6T7FiT2F3T4F5T4F5A6F4F5RTAl 

403) 1T2F3T4T5A6T7F1T2F3T4F5T4F5A6F4F5T7TAI 

404) 1T2F3T4T5A6T7F1T2F3T4F5T4F5A6F4T5RF 

405) 1T2F3T4T5A6T7F1T2F3T4T5RF 

406) 1T2F3T4T5A6T7F1T2TA1 

407) 1T2F3T4T5RF1F8T 

408) 1T2F3T4T5RF1T2F3T4F5A6F4F5F4F5A6RTA1 

409) 1T2F3T4T5RF1T2F3T4F5A6F4F5F4F5F7TA1 

410) lT2F3T4T5RFiT2F3T4F5A6F4F5F4F5T7TAl 

411) 1T2F3T4T5RF1T2F3T4F5A6F4F5F4T5A6RF 

412) 1T2F3T4T5RF1T2F3T4F5A6F4F5F4T5A6T7F 

413) 1T2F3T4T5RF1T2F3T4F5A6F4F5F4T5RF 

414) 1T2F3T4T5RF1T2F3T4F5A6F4T5RF 

415) 1T2F3T4T5RF1T2F3T4'F5F4F5F4F5A6F7TA1 

416) 1T2F3T4T5RF1T2F3T4F5F4F5F4F5RTA1 

417) 1T2F3T4T5RF1T2F3T4F5F4F5F4F5T7TA1 

418) 1T2F3T4T5RF1T2F3T4F5F4F5F4T5A6RF 

419) 1T2F3T4T5RF1T2F3T4F5F4F5F4T5A6T7F 

420) 1T2F3T4T5RF1T2F3T4F5F4F5F4T5RF 

421) 1T2F3T4T5RF1T2F3T4F5F4T5RF 

422) 1T2F3T4T5RF1T2F3T4F5T4F5F4F5A6RTA1 

423) 1T2F3T4T5RF1T2F3T4F5T4F5F4F5RTA1 

424) 1T2F3T4T5RF1T2F3T4F5T4F5F4F5T7TA1 

425) 1T2F3T4T5RF1T2F3T4F5T4F5F4T5A6RF 

426) 1T2F3T4T5RFIT2F3T4F5T4F5F4T5A6T7F 

427) 1T2F3T4T5RF1T2F3T4F5T4F5F4T5RF 

428) 1T2F3T4T5RF1T2F3T4F5T4T5RF 

429) 1T2F3T4T5RF1T2F3T4T5RF 

430) 1T2F3T4T5RFIT2TA1 

431) 1T2F3T4T5T7FIF8T 
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432) 1T2F3T4T5T7F1T2F3T4F5A6F4F5T4F5A6F7TA1 

433) 1T2F3T4T5T7F1T2F3T4F5A6F4F5T4F5T7TA1 

434) 1T2F3T4T5T7F1T2F3T4F5F4F5T4T5F7F 

435) 1T2F3T4T5T7F1T2F3T4F5T4F5T4T5F7F 

436) 1T2F3T4T5T7F1T2F3T4T5F7F 

437) 1T2F3T4T5T7FIT2TA1 

438) m X A l l F S F 

439) 1T2TA11F8T 

440) 1T2TA11T2F3T4F5A6F4F5A6F4F5A6F7TA1 

441) 1T2TA11T2F3T4F5A6F4F5A6F4F5F7TA1 

442) 1T2TA11T2F3T4F5A6F4F5A6F4F5T7TA1 

443) 1T2TA11T2F3T4F5A6F4F5A6F4T5A6F7F 

444) 1T2TA11T2F3T4F5A6F4F5A6F4T5F7F 

445) 1T2TA11T2F3T4F5A6F4F5A6F4T5T7F 

446) 1T2TA11T2F3T4F5A6F4F5F4F5A6F7TA1 

447) 1T2TA11T2F3T4F5A6F4F5F4F5F7TA1 

448) 1T2TA11T2F3T4F5A6F4F5F4F5T7TA1 

449) 1T2TA11T2F3T4F5A6F4F5F4T5A6F7F 

450) IT2TA11T2F3T4F5A6F4F5F4T5F7F 

451) 1T2TA11T2F3T4F5A6F4F5T4F5A6F7TA1 

452) 1T2TA11T2F3T4F5A6F4F5T4F5F7TA1 

453) 1T2TA11T2F3T4F5A6F4F5T4F5T7TA1 

454) 1T2TA11T2F3T4F5A6F4F5T4T5A6F7F 

455) IT2TA11T2F3T4F5A6F4F5T4T5F7F 

456) 1T2TA11T2F3T4F5A6F4T5A6F7F 

457) 1T2TA1IT2F3T4F5A6F4T5A6T7F 

458) IT2TA11T2F3T4F5A6F4T5F7F 

459) 1T2TA11T2F3T4F5A6F4T5T7F 

460) 1T2TA11T2F3T4F5F4F5A6F4F5A6F7TA1 

461) 1T2TAI1T2F3T4F5F4F5A6F4F5F7TA1 

462) 1T2TA11T2F3T4F5F4F5A6F4F5T7TA1 
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463) 1T2TA11T2F3T4F5F4F5A6F4T5A6RF 

464) 1T2TA11T2F3T4F5F4F5A6F4T5A6T7F 

465) 1T2TAI1T2F3T4F5F4F5A6F4T5F7F 

466) 1T2TA11T2F3T4F5F4F5A6F4T5T7F 

467) 1T2TA11T2F3T4F5F4F5F4F5A6F7TA1 

468) 1T2TA11T2F3T4F5F4F5F4F5F7TA1 

469) 1T2TA11T2F3T4F5F4F5F4F5T7TA1 

470) IT2TA11T2F3T4F5F4F5F4T5A6T7F 

471) 1T2TA11T2F3T4F5F4F5F4T5F7F 

472) 1T2TA11T2F3T4F5F4F5T4F5A6F7TA1 

473) 1T2TA11T2F3T4F5F4F5T4F5F7TA1 

474) 1T2TA11T2F3T4F5F4F5T4F5T7TA1 

475) 1T2TA11T2F3T4F5F4F5T4T5F7F 

476) 1T2TA11T2F3T4F5F4T5A6F7F 

477) 1T2TA11T2F3T4F5F4T5A6T7F 

478) 1T2TA11T2F3T4F5F4T5F7F 

479) 1T2TA11T2F3T4F5F4T5T7F 

480) 1T2TA11T2F3T4F5T4F5A6F4F5A6F7TA1 

481) 1T2TA11T2F3T4F5T4F5A6F4F5F7TA1 

482) 1T2TA11T2F3T4F5T4F5A6F4F5T7TA1 

483) 1T2TA11T2F3T4F5T4F5A6F4T5A6T7F 

484) 1T2TA11T2F3T4F5T4F5A6F4T5F7F 

485) 1T2TA11T2F3T4F5T4F5A6F4T5T7F 

486) IT2TA11T2F3T4F5T4F5F4F5A6F7TA1 

487) 1T2TA11T2F3T4F5T4F5F4F5F7TA1 

488) 1T2TA11T2F3T4F5T4F5F4F5T7TA1 

489) 1T2TA11T2F3T4F5T4F5F4T5RF 

490) 1T2TA11T2F3T4F5T4F5T4F5A6F7TA1 

491) IT2TA11T2F3T4F5T4F5T4F5RTA1 

492) 1T2TA11T2F3T4F5T4F5T4F5T7TA1 

493) 1T2TAI1T2F3T4F5T4F5T4T5F7F 
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494) IT2TAI1T2F3T4F5T4T5A6RF 

495) 1T2TA11T2F3T4F5T4T5A6T7F 

496) 1T2TA11T2F3T4F5T4T5RF 

497) 1T2TAI1T2F3T4T5A6RF 

498) 1T2TA11T2F3T4T5A6T7F 

499) 1T2TA11T2F3T4T5RF 

500) 1T2TA11T2TA1 
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