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ABSTRACT 13 

This paper presents the mathematical models describing the diffusion of carbon-dioxide in 14 

concrete with considering the effect of concrete carbonation. The effect of concrete carbonation 15 

on carbon-dioxide diffusion is modelled by using a sink term added in the diffusion equation. 16 

It is shown that, when the carbonation reaction is much faster than the diffusion process, the 17 

diffusion of carbon-dioxide in carbonated concrete can be treated as the diffusion problem with 18 

a moving boundary, representing the diffusion front or the carbonation depth. An analytical 19 

solution is also derived for the diffusion problem with moving boundary. 20 

Keywords: Modelling; carbon-dioxide; diffusion; concrete carbonation; moving boundary. 21 
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 23 

1. Introduction 24 

The corrosion of steel in reinforced concrete structures is the major concern of 25 

infrastructure owners and operators. Two major causes that are connected to corrosion of 26 

reinforcing steel in concrete structures are the carbonation and chloride attack. Carbonation is 27 

a set of reactions between atmospheric carbon-dioxide and alkaline components of concrete, 28 

producing a carbonated surface layer in which the pore solution pH value is depressed to near-29 

neutral levels [1,2,3]. A secondary effect of carbonation, also significant in terms of its 30 

influence on reinforcing steel corrosion, is that it can cause the release of bound chloride ions 31 

into the pore solution phase of concrete that contains a modest level of chloride salts as a 32 

contaminant, thus exacerbating the corrosive nature of the electrolyte [4,5]. The carbon-dioxide 33 

diffusion has been investigated in capillaries and in a cavity with N2-CO2 mixture [6,7]. A 34 

variable–density single-phase incompressible model has been developed for numerical 35 

simulation of the DDC (dissolution–diffusion–convection) process of carbon-dioxide [8]. In 36 

addition, carbonation can also influence the diffusion of chloride ions in concrete as it can alter 37 

the pore volume and pore structure and thus the transport properties of concrete [9,10,11]. In 38 

certain cases the permeability of carbonated concrete may increase, as in the case of concrete 39 

made with blended cements such as blast furnace slag and fly ash concrete [9,10]; in others, it 40 

may decrease as in ordinary Portland cement concrete [4,11]. In urban and industrial areas, 41 
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where environmental pollution results in a significant concentration of carbon-dioxide, 42 

carbonation-initiated reinforcement corrosion prevails [12]. While in highways and marine or 43 

coastal structures, chloride ions, originating from deicing salts or seawater, are transported 44 

through the concrete pore network and micro-cracks and depassivate the oxide film covering 45 

the reinforcing steel and thus induce the corrosion of reinforcing steel [13]. The worst situation 46 

is when a concrete structure is subjected to both carbonation and chloride attack [14]. A recent 47 

study [15] reported that the probability of the corrosion initiation for the combined action of 48 

carbonation and chloride attack is almost two times higher than the case in which the two 49 

attacks are considered separately. This illustrates the difficulty that arises when the presence of 50 

more than one corrosion-inducing agent contributes to aggressiveness of the exposure 51 

conditions for a particular structure. 52 

Extensive research work has been carried to understand how carbon-dioxide transports in 53 

concrete pore medium and how it reacts with cement products in concrete. Saetta et al. [16] 54 

presented a two-dimensional finite element model for the illustration of concrete carbonation 55 

mechanism. The model was used to analyse the effects of multi-dimensional moisture, heat and 56 

carbon-dioxide transport through concrete on the corrosion of a reinforcing bar placed at the 57 

corner of a concrete structure. Steffens et al. [17] developed a theoretical model to predict the 58 

carbonation of concrete structures. The model described the movement and retention of heat, 59 

moisture and carbon-dioxide by means of balance equations and diffusion laws. The governing 60 

equations of the model were solved numerically using finite element techniques. Liang and Lin 61 

[18] presented a mathematical model with a set of one-dimensional linear diffusion equations 62 

to simulate the transport problems of carbon-dioxide, chloride and sulphate ions in concrete. 63 
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Isgor and Razaqpur [19] proposed a nonlinear finite element approach for modelling coupled 64 

heat transfer, moisture transport and carbonation processes in concrete for tracing the spatial 65 

and temporal advancement of the carbonation front in concrete structures with and without 66 

cracks. The numerical results were compared with available experimental data. Kumazaki [20] 67 

presented a mathematical model of carbon-dioxide transport in concrete carbonation process. 68 

The model was described by using a parabolic type equation with a nonlinear perturbation such 69 

that a coefficient of the time derivative contains a non-local term depending on the unknown 70 

function itself. Zhang [21] developed a mathematical model of carbonation process in porous 71 

concrete materials. The model was solved numerically using uncoupled finite volume method. 72 

Numerical simulations under normal and accelerated carbonation conditions were presented. 73 

Zhu et al. [22] proposed a comprehensive model to simulate the transports of carbon-dioxide, 74 

chloride ions, heat and moisture in concrete. The model was validated using several sets of 75 

experimental data. 76 

The above survey of literature shows that many mathematical models have been 77 

developed to describe the carbonation phenomena in concrete. However, most of existing 78 

models are difficult to use either because they require too many input data or because they were 79 

developed for some specific application cases. In this paper a mathematical model describing 80 

the diffusion of carbon-dioxide in concrete with considering the effect of concrete carbonation 81 

is developed. The diffusion model is established using Fick’s first law, whereas the effect of 82 

concrete carbonation on carbon-dioxide diffusion is modelled by using a sink term added in 83 

the diffusion equation. The present diffusion model is simplified to the diffusion problem with 84 

a moving boundary representing the diffusion front or the carbonation depth when the 85 
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carbonation reaction is much faster than the diffusion process. An analytical solution is also 86 

derived from the diffusion problem of moving boundary for calculating corresponding 87 

carbonation depth.  88 

 89 

2. Modelling of carbon-dioxide diffusion in concrete with general carbonation reaction 90 

Concrete carbonation commonly takes place after the atmospheric carbon-dioxide, CO2, 91 

diffuses into concrete from the air through concrete gaseous phase. The chemical reactions 92 

occurring during concrete carbonation can be broken down into two stages. One is the 93 

dissolving of CO2 in pore solution and the other is the reaction of the dissolved CO2 with the 94 

hydration products (mainly calcium ions) within the cement phase of concrete. The detailed 95 

description of the reactions for concrete carbonation can be found in the work of Bary and 96 

Sellier [23]. Nevertheless, the following represents the main reaction taking place during the 97 

concrete carbonation [24],  98 

𝐶𝑎(𝑂𝐻)2(s → aq) + 𝐶𝑂2(g → aq) → 𝐶𝑎𝐶𝑂3(aq → s) + 𝐻2𝑂 (aq)                    (1) 99 

where the dissolved Ca(OH)2 in pore solution will quickly decompose into calcium and 100 

hydroxide ions. Thus, Eq.(1) can be also expressed as follows, 101 

𝐶𝑎2+(aq) + 2𝑂𝐻−(aq) + 𝐶𝑂2(aq) → 𝐶𝑎𝐶𝑂3(s) + 𝐻2𝑂(aq)  (2) 102 

where “g”, “aq” and “s” are the abbreviation of gaseous, aqueous and solid phase, respectively.  103 

The transport of CO2 in concrete gaseous phase can be described by using Fick laws with 104 

considering the consumption of CO2 due to carbonation as follows [25,26,27], 105 

𝜕𝐶

𝜕𝑡
= ∇(𝐷∇𝐶) − 𝑄𝐶𝑂2        (3) 106 
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where C in kg/m3 is the content of CO2 freely diffusing in concrete gaseous phase, t in s is the 107 

time, D in m2/s is the diffusion coefficient of CO2 in concrete gaseous phase, and QCO2 in kg/(s-108 

m3) is the sink term representing the consumption rate of CO2 due to carbonation, which can 109 

be approximated as follows [21,28], 110 

𝑄𝐶𝑂2 =
𝜕𝑆

𝜕𝑡
= 𝑘𝑡(𝑆𝑎 − 𝑆)       (4) 111 

where S in kg/m3 is the content of CO2 consumed due to carbonation, kt in s-1 is the reaction 112 

rate constant, and Sa in kg/m3 is the available content of CO2 that can be consumed at a given 113 

condition.  114 

Assume that the calcium ions in the pore solution are initially uniformly distributed and 115 

the process of their transport in the pore solution is much slower than that of their reaction 116 

taking place during carbonation. In this case the carbonation rate will be mainly controlled by 117 

calcium ions and Sa can be assumed to have the following expression, 118 

𝑆𝑎 = 𝑆𝑚𝑎𝑥 [1 − exp⁡ (−
𝑘𝑎𝐶

𝐶𝑠
)]                                                                         (5) 119 

where Smax in kg/m3 is the maximum content of CO2 that can be consumed in carbonation, Cs 120 

in kg/m3 is the content of CO2 on the exposed surface (i.e. the content of CO2 in environment 121 

where the concrete is exposed), and ka is a dimensionless constant, which is used to reflect the 122 

effect of CO2 concentration in gaseous phase on the relationship between Sa and Smax. The 123 

reaction rate constant kt and dimensionless constant ka can be determined using experimental 124 

data obtained from concrete carbonation tests. In general, they would be dependent on the 125 

temperature and relative humidity of the environment surrounding the concrete and the 126 

properties of concrete raw materials. Fig.1 graphically shows the relationship between Sa and 127 

C. It can be seen from the figure that when ka→∞, Sa=Smax; indicating that Sa is a constant 128 
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except at the point of C=0. Substituting Eq.(5) into (3) and (4), it yields, 129 

𝜕𝐶

𝜕𝑡
= ∇(𝐷∇𝐶) − 𝑘𝑡𝑆𝑚𝑎𝑥 [1 − exp (−

𝑘𝑎𝐶

𝐶𝑠
) −

𝑆

𝑆𝑚𝑎𝑥
]    (6) 130 

𝜕𝑆

𝜕𝑡
= 𝑘𝑡𝑆𝑚𝑎𝑥 [1 − exp (−

𝑘𝑎𝐶

𝐶𝑠
) −

𝑆

𝑆𝑚𝑎𝑥
]                                                          (7) 131 

 132 

Fig. 1. Relationship between Sa and C.  133 

Eqs.(6) and (7) are the governing equations which can be used to determine the content 134 

of CO2 diffusing in concrete gaseous phase and the content of CO2 consumed during concrete 135 

carbonation. The corresponding initial and boundary conditions of C(t,x) and S(t,x) can be 136 

expressed as follows,  137 

Initial conditions: 138 

𝐶(0, 𝑥) = 0         (8) 139 

𝑆(0, 𝑥) = 0         (9) 140 

Boundary conditions: 141 

𝐶(𝑡, 0) = 𝐶𝑠,  𝐶(𝑡,∞) = 0                 (10) 142 
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𝑆(𝑡, 0) = 𝑆𝑚𝑎𝑥,   𝑆(𝑡,∞) = 0                 (11) 143 

Eqs.(6)-(11) completely describe the transport problem of carbon-dioxide in concrete with 144 

taking into account the effect of concrete carbonation. Eqs.(6)-(11) can be solved using 145 

numerical methods such as the finite difference method [26,27]. Fig.2 shows the distribution 146 

profiles of C(t,x) and S(t,x) at a given time for various different values of ka and kt, obtained 147 

from the numerical solutions. It can be seen from the figure that the distribution pattern of the 148 

concentration profile of CO2 is more sensitive to the profile constant ka describing Sa than to 149 

the reaction rate constant kt. An important feature that can be observed is the idealized situation 150 

of ka→∞ and kt/D→∞ (red line shown in Fig.2) in which the diffusion of CO2 accompanied by 151 

the instantaneous and irreversible consumption of a limited amount of the diffusing CO2, 152 

leading to a sharp front of the consumed CO2. In front of the advancing boundary the content 153 

of the freely diffusing CO2 is zero, while behind it the content of the consumed CO2 is complete. 154 

This problem is similar to the heat flow in a medium which undergoes a phase change at some 155 

fixed temperature, accompanied by the absorption or liberation of latent heat.  156 

 157 
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 158 

(a)                                                        (b) 159 

Fig. 2. Effects of kt and ka on the distribution profiles of (a) CO2 in gaseous phase and (b) 160 

consumed CO2 due to carbonation (kt=10-6 s-1, ka=500, D=1.5x10-11 m2/s, Smax/Cs=2, 161 

√(Dt)=15.3 mm). 162 

 163 

It is also observed from Fig.2 that when kt or ka is small the front of the consumed CO2 164 

profile is not steeply straight but slowly decreases with increased distance, indicating that the 165 

carbonation reactions still take place in part of the carbonated zone. The transport of CO2 in 166 

the carbonated zone thus can be divided into two sub-zones. One is the fully carbonated zone 167 

in which the transport of CO2 is governed by diffusion only; the other is the partially carbonated 168 

zone in which the transport of CO2 is governed not only by diffusion but also by carbonation. 169 

As an example, Fig.3a shows the profiles of the consumed CO2 at various different times 170 

obtained from the present model. It is obvious from the figure that the carbonation reactions 171 

still take place in the zone behind the carbonation front. The carbonation depth for a given time 172 
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can be obtained from the carbonation front. By identifying the carbonation fronts from the 173 

profiles of consumed CO2 obtained at various different times we can find the relationship 174 

between the carbonation depth and exposure time, which is plotted in Fig.3b. To demonstrate 175 

the present model, experimental data [1] obtained from accelerated carbonation tests are also 176 

superimposed in the figure. The experimental work was carried out inside a test chamber with 177 

CO2 concentration about 50 percent. The specimens tested were mortars with high water-to-178 

cement ratio 0.8. The parametric values used in the simulation are chosen to match the 179 

experimental data. The results shown herein illustrate that the relationship between the 180 

carbonation depth and exposure time may not necessarily follow the time square root relation 181 

when the carbonation reactions are not faster than the diffusion speed of CO2 in the gaseous 182 

phase. Note that, in many carbonation tests of concrete the carbonation depth is determined by 183 

using the phenolphthalein indicator solution [25,28], which is a colourless acid/base indicator 184 

and can turn purple when its pH value exceeds 9. However, this test does not give the depth of 185 

maximum ingress of CO2 (i.e., the front point of partially carbonated zone) since the CO2 in 186 

the partially carbonated zone may cause a decrease in the pH-value beyond the carbonation 187 

depth indicated by the phenolphtalein spray test, but their pH value may still be over 9. 188 

 189 
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 190 

(a)                                                       (b) 191 

Fig. 3. (a) Profiles of consumed CO2 at various different times. (b) Variation of carbonation 192 

depth with exposure time (kt=4.25x10-7 s-1, ka=5000, D=6.0x10-11 m2/s). 193 

 194 

In most cases, however, the chemical reaction between the carbonate ions and the calcium 195 

ions in pore solution is much quicker than the diffusion of the CO2 in the gaseous phase. Hence, 196 

the reaction can be assumed to take place only at the diffusion front, whereas the transport of 197 

CO2 can be assumed to take place only in the gaseous phase of the carbonated concrete. The 198 

consumption of CO2 in the diffusion front can be assumed to be controlled by the availability 199 

of the Ca(OH)2 or calcium ions in the pore solution. Under these assumptions, both ka and kt/D 200 

can be assumed to be infinitely large and the corresponding diffusion model described above 201 

requires only three constants D, Cs and Smax; each has a clearly physical meaning. Physically, 202 

this may represent the natural carbonation case where CO2 ingress is relatively slow, whereas 203 
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the carbonation reaction is relatively fast. 204 

Note that there is some numerical difficulty for solving Eqs.(6)-(11) when ka→∞ and 205 

kt/D→∞. Nevertheless, numerically, one can employ any large numbers for ka and kt/D to 206 

achieve the approximate solutions of the idealised case of ka→∞ and kt/D→∞. As a numerical 207 

example, Fig.4 shows the distribution profiles of C(t,x) and S(t,x) obtained at three different 208 

times that correspond to the parametric values √𝐷𝑡  =8.82 mm, 12.5 mm and 15.3 mm, 209 

respectively, when ka=500 and kt=1.0x10-6 s-1 (√𝑘𝑡/𝐷=211 m-1) are employed. It is clear from 210 

the figure that the distribution profiles of S(t,x) terminate nearly abruptly in all of the three 211 

times. The infinite gradient at the diffusion front leads to some oscillations in the start point of 212 

the profiles. This implies that if care was not taken in the selection of spatial and time intervals, 213 

the numerical solution may become inaccurate.  214 

 215 

 216 

(a)                                                  (b) 217 

Fig. 4. Concentration profiles of (a) CO2 in gaseous phase and (b) consumed CO2 at different 218 
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times (kt=10-6 s-1, ka=500, D=1.5x10-11 m2/s, Smax/Cs=2). 219 

 220 

3. Modelling of carbon-dioxide diffusion in concrete with fast carbonation reaction 221 

For the case where the carbonation reactions are fast while the carbon-dioxide diffusion 222 

is slow the transport model described in Section 2 can be simplified by assuming ka→∞ and 223 

kt/D→∞. To avoid the numerical difficulty when solving the idealised case of ka→∞ and 224 

kt/D→∞, the transport problem of carbon-dioxide in concrete with taking into account the 225 

effect of concrete carbonation described in Section 2 is now treated as the diffusion problem of 226 

particles in which part of particles are trapped in stationary holes. By considering the mass 227 

change of the total CO2 in a unit volume of concrete in a time interval dt, the following mass 228 

conservation equation can be established, 229 

𝜕𝐶𝑇

𝜕𝑡
= ∇(𝐷∇𝐶)                  (12) 230 

where CT=C+S in kg/m3 is the total content of CO2 in concrete. The right-hand-side of Eq.(12) 231 

is the flux gradient based on the Fick’s first law, in which C in kg/m3 is the content of CO2 232 

freely diffusing in the gaseous phase of carbonated concrete. The initial and boundary 233 

conditions of CT(t,x) can be expressed as follows,  234 

𝐶𝑇(0, 𝑥) = 0                   (13) 235 

𝐶𝑇(𝑡, 0) = 𝐶𝑠 + 𝑆𝑚𝑎𝑥,   𝐶𝑇(𝑡,∞) = 0                     (14) 236 

When solving Eqs.(12)-(14) for CT one has to know the content of CO2 in concrete gaseous 237 

phase, which is the function of CT and Smax and can be expressed as follows, 238 

𝐶(𝑡, 𝑥) = {
𝐶𝑇(𝑡, 𝑥) − 𝑆𝑚𝑎𝑥

0

𝐶𝑇(𝑡, 𝑥) > 𝑆𝑚𝑎𝑥

𝐶𝑇(𝑡, 𝑥) ≤ 𝑆𝑚𝑎𝑥
                                             (15) 239 
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Note that, in the region of CT(t,x)>Smax all holes are completely filled, whereas in the 240 

region of CT(t,x)<Smax the holes are not completely filled and therefore C(t,x)=0.  241 

Eqs.(12)-(15) can be used for solving for CT(t,x) and thus C(t,x) can be obtained. 242 

Compared to the model described in Section 2, the model presented herein by Eqs.(12)-(15) is 243 

much simple, clear, concise and easy to solve. As a numerical example, Fig.5 shows the 244 

distribution profiles of C(t,x) and S(t,x) at three different times obtained from the present model. 245 

For the purpose of comparison, the results obtained from the model described in Section 2 are 246 

also superimposed in the figure. It can be observed from the figure that there is almost no 247 

difference in the results of C(t,x) obtained from the two models. There is only a small difference 248 

in the results of S(t,x) at the diffusion front obtained from the two models. To examine the 249 

spatial-time relationship, Fig.6 replots the three profiles of CT(t,x) shown in Fig.5 but using a 250 

combined spatial and time coordinate, x/√(Dt). It can be seen from the plot that when the 251 

combined coordinate is used the profiles at three different times are merged together, indicating 252 

that the diffusion depth of CO2 is proportional to the square root of the diffusing time.  253 

 254 
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 255 

(a)                                                       (b) 256 

Fig. 5. Comparisons of (a) CO2 profiles and (b) consumed CO2 profiles between general and 257 

fast carbonation reaction models (thin and thick lines represent the results of general and fast 258 

reaction models, respectively, D=1.5x10-11 m2/s). 259 

 260 

Fig. 6. Concentration profiles of total CO2 at three different times plotted against combined 261 
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spatial and time coordinate (D=1.5x10-11 m2/s). 262 

 263 

4. Modelling of carbon-dioxide diffusion in concrete with moving boundary 264 

The mass conservation equation (12) can be applied to any point in the domain (0<x<∞). 265 

However, if it is applied only to the domain (0<x<) where  is the diffusion front, then 
𝜕𝐶𝑇

𝜕𝑡
=266 

𝜕𝐶

𝜕𝑡
  since S=Smax is a constant in the domain (0<x<). Thus, Eq.(12) can be further simplified 267 

to Eq.(16), 268 

𝜕𝐶

𝜕𝑡
= ∇(𝐷∇𝐶)    0 < x <               (16) 269 

The initial and boundary conditions of C(t,x) can be expressed as follows,  270 

𝐶(0, 𝑥) = 0                   (17) 271 

𝐶(𝑡, 0) = 𝐶𝑠, 𝐶(𝑡, 𝜉) = 0                       (18) 272 

Note that  is the function of time, which moves forward when time increases. Thus 273 

Eqs.(16)-(18) represents the diffusion problem with moving boundary. As it is demonstrated in 274 

Section 3, the depth of the diffusion front is proportional to square root of the diffusing time. 275 

Thus, the following expression can be assumed for (t),  276 

𝜉(𝑡) = 𝑘𝜉√𝐷𝑡                   (19) 277 

where k is a constant to be determined. The solution of Eq.(16) with the initial and boundary 278 

conditions defined by Eqs.(17) and (18) can be expressed as follows, 279 

𝐶(𝑡, 𝑥) = 𝐶𝑠 (1 −
𝑒𝑟𝑓(

𝑥

2√𝐷𝑡
)

𝑒𝑟𝑓(
𝑘𝜉

2
)
)   0 ≤ x ≤                    (20) 280 

where erf(∙) is the error function. It is obvious from Eq.(20) that if k is known then the solution 281 

(20) for C(t,x) is completely defined. In order to determine k an additional mass conservation 282 
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equation need to be established at the point of the diffusion front, which can be expressed as 283 

follows, 284 

−𝐷
𝜕𝐶

𝜕𝑥
= 𝑆𝑚𝑎𝑥

𝑑𝜉

𝑑𝑡
    for x =              (21) 285 

Physically, the left-hand-side of Eq.(21) represents the diffusion flux from the diffusion 286 

zone into the zone ahead of the diffusion front; whereas the right-hand-side of Eq.(21) 287 

represents the flux required in order that the diffusion front can advance by a distance of d in 288 

the time interval of dt. Substituting Eqs.(19) and (20) into (21), it yields, 289 

𝑘𝜉

2
𝑒𝑟𝑓 (

𝑘𝜉

2
) 𝑒𝑥𝑝 (

𝑘𝜉
2

4
) =

𝐶𝑠

√𝜋𝑆𝑚𝑎𝑥
                (22) 290 

Eq.(22) is a nonlinear algebraic equation about k, which can be used to determine k for 291 

a given  ratio of Cs/Smax. After k is determined it can be substituted into Eq.(19) for calculating 292 

the depth of diffusion front (t) and Eq.(20) for calculating the profile C(t,x) of CO2. Fig.7 293 

graphically shows the relationship between k and Cs/Smax. It can be seen from the figure that 294 

k increases with Cs/Smax; initially very quick but it becomes slow afterwards. It is clear from 295 

Eq.(19) that the influence of Cs/Smax on (t) is the same as that it does on k. To demonstrate 296 

the analytical solutions presented by Eqs.(19) and (20), Fig.8 provides a comparison between 297 

the analytical solution given by Eqs.(19)-(20) and the numerical solutions given by Eqs.(12)-298 

(15) for the concentration distribution profile of freely diffusing CO2. As it is to be expected, 299 

there is no difference between the analytical and numerical solutions.  300 

Of a particular interest is the case where Cs/Smax<<1 and/or k <<1, for which case the 301 

following approximation can be taken mathematically, 302 

𝑘𝜉

2
𝑒𝑟𝑓 (

𝑘𝜉

2
) 𝑒𝑥𝑝 (

𝑘𝜉
2

4
) ≈

𝑘𝜉
2

2√𝜋
                 (23) 303 

Hence, Eq.(22) can be simplified as follows, 304 
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 305 

Fig. 7. Variation of k with Cs/Smax. 306 

 307 

Fig. 8. Effect of Cs/Smax on CO2 profiles at time √(Dt)=15.3 mm (lines are analytical solution 308 

given by Eqs.(19)-(20) and symbol points are numerical solutions given by Eqs.(12)-(15)). 309 

𝑘𝜉 = √
2𝐶𝑠

𝑆𝑚𝑎𝑥
                          (24) 310 

The corresponding diffusion front (t) can be simplified as follows,  311 
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𝜉(𝑡) = √
2𝐶𝑠𝐷𝑡

𝑆𝑚𝑎𝑥
                   (25) 312 

Eq.(25) is identical to that proposed by Papadakis et al. [1], Houst and Wittmann [29], 313 

Hyvert et al. [30], and Klopfer [31]. Experimental validation of Eq.(25) has been reported in 314 

literature, for example, [1,29,30,31,32], and thus is not provided herein. However, it is obvious 315 

from the above derivation that Eq.(25) is only limited to the case where the surface content of 316 

CO2 is much lower than the consumed content of CO2 in carbonation; otherwise one has to use 317 

more accurate equation, Eq.(22), instead of its simplified form, Eq.(24), to calculate the 318 

carbonation depth. Fig.7 shows the difference between k calculated from Eq.(22) and that 319 

calculated from Eq.(24), from which one can clearly see the difference between them can be 320 

ignored for Cs/Smax<0.5. Compared with existing work, not only can the present analytical 321 

solution be used to predict the carbonation depth but also to estimate the profile of CO2 in the 322 

carbonated concrete. 323 

CO2 level in the atmosphere is normally expressed as parts per million or ppm. It was 324 

reported that the CO2 level increases in recent years and was at 391 ppm in March of 2011, 325 

which is 0.0391% of the atmosphere. The air density can be approximately taken as 1.225 326 

kg/m3. This gives the content of CO2 in air is about 0.479 g/m3. The maximum amount of CO2 327 

that can be consumed in concrete carbonation can be estimated as follows [33], 328 

𝑆𝑚𝑎𝑥 = 0.75𝐶𝑎𝑂𝐶𝑒𝑚
𝑀𝐶𝑂2

𝑀𝐶𝑎𝑂
= 0.377𝐶𝑒𝑚               (26) 329 

where CaO (≈0.64) is the amount of calcium oxide per weight of cement, Cem is the content 330 

of cement used in concrete, MCO2=44 g/mol and MCaO=56 g/mol are the molar weight of CO2 331 

and CaO, respectively. For normal Portland cement concrete Cem is about 350 kg/m3. This 332 

gives Smax=132 kg/m3 and thus Cs/Smax=0.36x10-5, which indicates that Eq.(24) can be safely 333 
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used for most natural carbonation cases unless for specific laboratory tests where the 334 

concentration of CO2 used is much higher and the tested concrete is with supplementary 335 

cementitious materials (SCMs) which may reduce the content of the cement used in concrete.  336 

 337 

5. Conclusions 338 

In this paper we have presented the mathematical models to describe the diffusion of 339 

carbon-dioxide in concrete with considering the effect of concrete carbonation. Three models 340 

have been discussed, namely the diffusion model with general carbonation reaction, the 341 

diffusion model with fast carbonation reaction, and the diffusion model with moving boundary. 342 

Numerical solutions have been provided for the first two models, whereas analytical solution 343 

has been derived for the third model. Comparisons between the three models have been also 344 

provided, which illustrates their advantages and disadvantages. From the present study the 345 

following conclusions can be drawn: 346 

• In the diffusion model with general carbonation reaction the distribution pattern of the 347 

concentration profile of CO2 is more sensitive to the profile constant ka describing Sa than 348 

to the reaction rate constant kt. 349 

• It is more convenient to use the total concentration of CO2 to model the diffusion of CO2 350 

in concrete with fast carbonation reaction, which avoids the difficulty of moving boundary. 351 

The diffusion front obtained from the  numerical model for the diffusion model with fast 352 

carbonation reaction represents the carbonation depth.  353 

• The analytical solution presented for the diffusion model with moving boundary can be 354 
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directly used to examine the effects of diffusion coefficient of CO2 in carbonated concrete, 355 

diffusing time, and the ratio of Cs-to-Smax on the depth of concrete carbonation.  356 

• It is demonstrated from the present analytical solution that the square root dependence of 357 

carbonation depth on Cs/Smax provided in many existing studies is appropriate only for the 358 

case where Cs/Smax is very small; otherwise more accurate nonlinear equation, Eq.(22), 359 

instead of its simplified form, Eq.(24), should be used for calculating the carbonation depth. 360 
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