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Abstract  

Age-related degenerative changes in the lumbar spine frequently result in nerve root compression 

causing severe pain and disability. Given the increasing incidence of lumbar spinal disorders in the 

aging population and the discrepancies between the use of current diagnostic imaging tools and 

clinical symptoms, novel methods of nerve root assessment are needed. We investigated elderly 

patients with stenosis at L4-L5 or L5-S1 levels. Diffusion tensor imaging (DTI) was used to quantify 

microstructure in compressed L5 nerve roots and investigate relationships to clinical symptoms and 

motor neurophysiology. DTI metrics (i.e. FA, MD, AD and RD) were measured at proximal, mid and 

distal segments along compressed (i.e. L5) and intact (i.e. L4 or S1) nerve roots.  FA was significantly 

reduced in compressed nerve roots and MD, AD and RD were significantly elevated in the most 

proximal segment of the nerve root studied. FA was significantly correlated with electrophysiological 

measures of root function: minimum F-wave latency and peripheral motor conduction time (PMCT). 

In addition, FA along the compressed root also correlated with leg pain and depression score. There 

was also a relationship between RD and anxiety, leg pain and disability score and AD correlated with 

depression score. Taken together, these data show that DTI metrics are sensitive to nerve root 

compression in patients with stenosis as a result of age-related lumbar degeneration. Critically, they 

show that the changes in microstructural integrity along compressed L5 nerve roots are closely related 

to a number of clinical symptoms associated with the development of chronic pain as well as 

neurophysiological assessments of motor function. These inherent relationships between nerve root 

damage and phenotype suggest that the use DTI is a promising method as a way to stratify treatment 

selection and predict outcomes.   
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1. Introduction  

Up to 40% of people will experience radicular low-back pain symptoms at some point during their 

lifetime and it is most prevalent in the aging population, occurring in approximately 50% of 60-69 year 

olds (Kalichman et al., 2009, NICE, 2016). Progressive, age-related spinal degeneration including a 

reduced intervertebral disk height, ligamentum flavum hypertrophy and facet joint hypertrophy can 

cause stenosis within the lateral recess and intervertebral foramen (Melancia et al., 2014). This can 

result in neuropathic pain radiating along the sciatic nerve (radiculopathy) as a consequence of 

compression, irritation and/or inflammation of exiting spinal nerves.  

Up to 75% of cases of stenosis cause entrapment of the transiting or exiting L5 nerve root in the lateral 

recess or foramen (Orita et al., 2016). Radiculopathy often produces pain that radiates over the L5 

dermatome and weakness of the tibialis anterior (TA) muscle associated with severe functional 

impairment. Currently, the primary diagnostic indicators include magnetic resonance imaging  (MRI) 

and nerve conduction velocity (NCV) studies (Verwoerd et al., 2013). MRI provides key information 

regarding the extent of the stenosis. However current approaches to MRI reporting do not provide 

quantitative information regarding the extent of nerve root compression and discrepancies between 

symptoms, MRI features and NCV tests are common (El Barzouhi et al., 2016).  

Diffusion tensor imaging (DTI) has found wide clinical utility in neurological disorders (Hellyer et al., 

2013, Sharp et al., 2014). It is potentially very informative in patients with spinal nerve root 

compression as it provides a means by which to quantify the degree of nerve damage (Balbi et al., 

2011, Kitamura et al., 2012, Kanamoto et al., 2016, Eguchi et al., 2016b, Eguchi et al., 2016a, Oikawa 

et al., 2015, Eguchi et al., 2011). Through the use of the diffusion tensor applied to diffusion weighted 

images, quantitative values such as fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity 

(RD) and mean diffusivity (MD) may be determined. These diffusion measures are sensitive to changes 

in the microstructural integrity of compressed nerve roots; including degree of axonal loss, 

demyelination and oedema (Takahashi et al., 2003, Rydevik et al., 1991, Rydevik et al., 1984). Recent 

studies have reported reduced FA and elevated MD values along damaged spinal nerves associated 

with the diagnosis of lumbar disc herniation or foraminal stenosis. Hence the method has the potential 

to increase the diagnostic sensitivity of MRI for radiculopathy caused by lateral recess or foraminal 

narrowing  (Kitamura et al., 2012, Kanamoto et al., 2016, Eguchi et al., 2016b, Eguchi et al., 2016a). 

However, given the discrepancies between conventional imaging and patient reported symptoms, it 

is surprising that the inherent relationships between DTI values derived along compressed nerve roots 

and phenotypes associated with chronic pain have yet to be investigated.  
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In our previous work, we have validated the use of DTI for studying spinal nerve structure in healthy 

subjects. Critically, we have demonstrated that microstructural integrity assessed by DTI is strongly 

associated with related neurophysiological measures such as F-wave latency and M-wave amplitude 

(Chiou et al., 2017). However, a factor not examined in any detail thus far is how the structural 

integrity or damage to nerve roots relate to neurophysiological measurements and clinical symptoms 

in elderly patients with nerve root compression in the exit foramina. Therefore, in this work we apply 

the novel imaging and data processing methods developed in our previous work to elderly patients in 

order to quantify the degree of compression along compressed L5 nerve roots as they traverse the 

intervertebral foramina. We then explore relationships between these discreet measures of 

microstructural integrity and clinical and functional phenotypes. Specifically, we assess the differences 

in microstructural integrity along affected (i.e. L5) and unaffected (i.e. L4 or S1) nerve roots in elderly 

patients with foraminal stenosis and determine the relationship between the diffusion data and 

neurophysiological responses from the TA muscle as well as clinical symptoms associated with the 

development of chronic pain. Our hypotheses were that there would be pathological changes in 

diffusion values measured along compressed nerve roots when compared to an unaffected level and 

that these changes in microstructural integrity would be associated with the presence of chronic pain 

symptoms, motor impairment and electrophysiological abnormalities.  

 

2. Materials and Methods 

2.1 Participants  

25 elderly patients with lateral recess and/or foraminal stenosis (11 female; mean ± SD age 65.1 ± 8.4 

years) were recruited from Imperial College London and University College London NHS Trusts. 

Patients were included if they had 1) radiological evidence of either unilateral or bilateral L5 nerve 

root compression as result of spinal degeneration at the L4-L5 or L5-S1 levels (i.e. reduced disc height, 

ligamentum flavum hypertrophy, facet joint hypertrophy), diagnosed by a consultant radiologist 

(author MP), 2) symptoms of radiculopathy following the dermatomal pattern of L5 and 3) at least one 

unaffected nerve root at either L4 or S1. Patients were excluded from the study if they had previously 

received spinal decompression surgery or if they met any of the exclusion criteria for MRI (i.e. metal 

implants, cardiac pacemaker, previous brain injury, history of epilepsy or fits, neurosurgery, 

neurological disorders, psychological disorders (Rossi et al., 2011). Following screening, 20 patients 

with unilateral or bilateral L5 nerve root compression with intact L4 or S1 nerve roots were used in 

the analysis. All procedures were approved by the local research ethics committee. All subjects gave 

informed written consent in accordance with the principles of the declaration of Helsinki. 
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2.2 MRI data acquisition  

All MRI data were collected using a 3T Siemens Verio clinical MRI scanner (Siemens Healthcare, 

Erlangen Germany). Subjects were imaged supine using an 11cm local loop coil centred over the 

intervertebral disc between L5 and S1 in combination with 2 elements of the phased-array spine coil 

to maximise the signal-to-noise ratio in the lumbar roots. Coil positioning was verified by initial 

localizer scans. Structural imaging for the radiological review by a consultant radiologist to confirm 

evidence of lumbar nerve compression included sagittal T1-weighted (T1w) and T2-weighted (T2w) 

turbo spin echo (TSE), coronal T2w TSE, as well as a multislab T2w TSE angled axial to L3-L4, L4-L5 and 

L5-S1 vertebral discs. Diffusion weighted images (DWI) were acquired with b=800 s/mm2 using a twice-

refocused diffusion preparation, an inverted slice select gradient on the refocusing pulses for 

improved fat saturation (Nagy and Weiskopf, 2008), and a 2D EPI readout. Forty 2.5 mm thick adjacent 

slices of a 100 x 256 mm field of view (FOV) were collected with TE=92 ms, TR=9 s, 50 x 128 resolution 

with readout bandwidth of 1562 Hz per pixel, giving a resolution of 2.0 x 2.0 x 2.5 mm. Saturation 

bands were placed superiorly and inferiorly to imaging slab to reduce flow and off-resonance 

excitation artefacts. 64 non-collinear directions interspersed with a b=0 measurement after every 16 

directions were collected resulting in 68 acquisitions in 10m:21s (Chiou et al., 2017).  

2.3 Neurophysiological measurements  

2.3.1 Recording 

Electromyographic (EMG) recordings were obtained bilaterally from the target muscles predominantly 

innervated by the affected nerve root in the patients; tibialis anterior (TA) for the L5 and soleus for 

the S1. Pairs of Ag/AgCl electrodes (self-adhesive, 2 cm diameter, CareFusion, UK) were positioned 

parallel to the muscle fibre orientation. A ground electrode was placed over the left lateral malleolus. 

For TA, electrodes were positioned at 1/3 way along a line between the head of the fibula and the 

superior aspect of the medial malleolus. Participants were additionally asked to contract the target 

muscles by ankle dorsiflexion to confirm that the electrodes were located on the most prominent 

muscle bulk. EMG data were filtered (10–1000 Hz), amplified (1000×; Iso-DAM, World Precision 

Instruments, UK) and sampled at 2 kHz using a Power 1401 data acquisition system and Signal v5 

software (Cambridge Electronic Design [CED], UK) connected to a computer for subsequent offline 

analysis.  
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2.3.2 Transcranial magnetic stimulation (TMS) 

TMS was delivered to the motor cortex using a non-navigated Magstim 2002 mono-phasic stimulator 

(The Magstim Company Ltd., UK) connected to a figure-of-eight coil (wing outer diameter 10 cm), 

positioned over the approximate location of primary motor cortex at a site which elicited a maximal 

motor evoked potential (MEP) in the contralateral target muscle, the hot-spot.  

 

2.3.3 Experimental procedures 

Measurements were conducted while participants were seated in an armchair with torso supported 

by the backrest and feet strapped securely on a wood plate on the floor. Three brief (~2 s) maximum 

voluntary contractions (MVC), with at least 10 s rest between contractions, were recorded from each 

target muscle; strong verbal encouragement was provided throughout. The mean rectified EMG over 

500ms during each of the three MVCs was calculated and averaged and 10% of this value was 

displayed continuously on a screen as visual feedback for participants during all TMS measurements. 

 

2.3.4 Corticospinal excitability 

Measurements were performed on each target muscle separately and while participants maintained 

contraction levels at 10% MVC of the target muscle (Hess et al., 1987, Nicotra et al., 2013). Active 

motor threshold (AMT) was established for each target muscle, which was defined as the lowest 

intensity of TMS that evoked visible MEPs in at least three of six consecutive trials. Motor evoked 

potentials (MEPs) were elicited by TMS and a stimulus response curve of MEP amplitude was 

constructed. Stimulus intensities started at 10% below the AMT and were increased in 10% steps of 

AMT until the intensity reached to the maximal device output (or twice AMT, whichever was the 

lower). Intensities were randomised and six MEPs at each intensity were recorded. TMS pulses were 

given every 8 s with several periods of rest given to participants between trials to avoid muscle fatigue. 

 

2.3.5 M-wave and F-waves 

Measurements were conducted while participants were seated in an armchair and torso supported 

by a backrest. A maximal motor response (Mmax) and F-waves were measured following supramaximal 

stimuli via a cathode to the common peroneal nerve around the fibular head (Digitimer DS7, Digitimer 

UK, 500 -µs pulse duration). The anode was placed over the patella on the stimulated side. Five Mmax 

at the same intensity were recorded. An intensity of 120% of the intensity used to elicit Mmax was 

delivered at 1 Hz until 20 F-waves were recorded.  
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2.4 Clinical symptom questionnaires  

All patients completed questionnaires including duration of leg pain, type of pain (i.e. aching, shooting, 

stabbing), visual analogue scales for ‘typical’ and ‘worse’ pain (VAS; 0 – no pain, 10 – maximum pain), 

Hospital Anxiety and Depression Scale (HADS; 0 – no anxiety/depression, 21 – maximum 

anxiety/depression) and Oswestry Low Back Disability Questionnaire (ODI; 0, no disability; 100, 

maximum disability) and the Roland Morris Disability Questionnaire (RMDQ; 0, no disability; 24 

maximum disability).  

 

2.5 Data analysis  

2.5.1 Diffusion Tensor Imaging (DTI) 

Our previous work show that the DTI metrics derived from a healthy cohort between left and right 

sides and between vertebral levels are similar (Chiou et al., 2017). In the present study we therefore 

used the L4 nerve root (or S1 if there was evidence of compression at the L4 level) as a within-subject 

baseline measure in order to study the microstructural changes along the compressed L5 nerve root.  

The post-processing of diffusion-weighted images (DWI) and fitting of the diffusion tensor were 

performed using the FSL Diffusion Toolbox (FDT) (FSL, http://fsl.fmrib.ox.ac.uk/fsl) v.5.0.6 (Oxford, 

UK). From the estimation of the diffusion tensor at each individual voxel, voxel-wise measures of mean 

Fractional Anisotropy (FA), Mean (MD), Axial (AD) and Radial (RD) Diffusivity were derived from 

respective Regions of Interest (ROI) along an affected (i.e. L5) and unaffected (i.e. L4 or S1) nerve. All 

ROIs were manually drawn by one person (author SWH) with reference to the axial view of b=0 image 

from the diffusion acquisition overlaid onto the co-acquired axial T2-weighted image. Three binary 

ROIs were manually traced onto the image using FSLview (FSL, http://fsl.fmrib.ox.ac.uk/fsl) on either 

the L4 or S1 (unaffected) and L5 (affected) nerves at ~5mm (i.e. proximal), ~12mm (i.e. mid), and 

~25mm (i.e. distal) below the level of centre of the relevant disc. Each ROI volume was standardised 

across patients and drawn to cover the entire visible signal on the b=0 image which was clearly 

differentiable as nerve, resulting in ROIs of between 40 and 60-mm3. This size of ROI reduces the 

partial volume effect; the cross-sectional area of nerve roots in the lower lumbar region has been 

shown in a cadaveric study to be 34.48 ± 11.25mm2 (Inufusa et al., 1996). 

 

2.5.2 EMG 

The mean MEP amplitude per stimulus intensity was calculated and normalised to the M-max for each 

muscle. Mean pre-stimulus EMG was calculated in a 100-ms window from the rectified EMG traces 

for the TA and soleus at each intensity. The average rectified EMG trace from the trials in which 120% 
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AMT was delivered was used to derive the MEP latency for each muscle. The amplitude and latency 

of averaged Mmax were measured and the minimum latency of F waves was identified from the 

recorded 20 F waves. Central motor conduction time (CMCT) and peripheral motor conduction time 

(PMCT) were calculated using the following equations: 

 

PMCT	(ms) =
Mmax	latency	 + minimum	F	wave	latency − 1

2  

 

𝐶𝑀𝐶𝑇	(𝑚𝑠) = 𝑀𝐸𝑃	𝑙𝑎𝑡𝑒𝑛𝑐𝑦 −	J
𝑀max		𝑙𝑎𝑡𝑒𝑛𝑐𝑦	 + 𝑚𝑖𝑛. 𝐹	𝑤𝑎𝑣𝑒	𝑙𝑎𝑡𝑒𝑛𝑐𝑦 − 1

2 P 

 

2.6 Statistical analysis 

All data were analysed using SPSS 23 (IBM Corp., Armonk, NY, USA) and Sigmaplot 12.5 (Systat Inc, 

USA) and were normally distributed as assessed using Shapiro-Wilk test. Two-way repeated measures 

(RM) ANOVA with Holm-Sidak multiple comparison post-hoc tests were used to investigate the 

relationship of the DTI parameters between ROI (i.e. proximal, mid and distal) and nerve root (i.e. 

affected L5 and unaffected L4 or S1). For all bilateral L5 patients (n=12), the radiologically confirmed 

‘worst side’ was used in the analysis. Within-subject comparisons were made between affected and 

unaffected nerve roots. To investigate the relationship between DTI parameters and 

neurophysiological measurements, multiple linear regression analyses were performed between 

diffusion values measured along affected and unaffected nerve roots and neurophysiological 

measurements from the TA muscle. Age, gender and body height were included as covariates of no 

interest. Pearson correlation coefficient analysis were also carried out between diffusion values 

measured along affected and unaffected nerve roots and clinical symptoms. Statistical significance 

was set at p<0.05 and all data are presented as mean ± SD in the text and tables and mean ± SEM in 

the figures where appropriate. For correlation analysis, correction for multiple comparisons were 

made using false detection rate (FDR) within each of the independent conditions tested.  

 

3. Results  

3.1 Clinical characteristics  

The most common cause of nerve root compression was facet joint hypertrophy (55%) at either the 

L4-L5 or L5-S1 levels. This caused impingement of transiting or exiting L5 nerve roots in the lateral 

recess or foramen, respectively.  20% of patients had stenosis as a result of degenerative changes in 

L4-L5 or L5-S1 discs, 15% had a combination of facet joint and ligamentum flavum hypertrophy at the 
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L4-L5 level causing lateral recess stenosis and compression of the transiting L5 nerve root and 10% 

had compression of L5 nerve roots in the lateral recess at the L4-L5 level as a result of ligamentum 

flavum hypertrophy alone. The majority of patients presented with bilateral L5 nerve compression 

(60%), followed by left only (25%) and right only compression (15%). 65% of patients had intact S1 

nerve roots, 20% had intact S1 and L4 nerve roots and 15% had intact L4 nerve roots.   

3.2 Moderate to severe pain, functional impairment and mood changes in elderly patients with L5 

nerve root compression  

Self-reported leg pain symptoms showed that ‘shooting’ (30%) and ‘ache’ (30%) were the most 

common types of pain experienced (Table 1). The least common type of pain was described as ‘sharp’ 

(15%) and 25% of patients reported experiencing more than one type of pain (e.g. sharp/shooting, 

stabbing/shooting, ache/stabbing, ache/sharp, burning/sharp). The most commonly reported 

duration of leg pain was between 1-4 years (35%) with 30% experiencing leg pain for between 5-10 

years, 15% for 1 year, 15% for greater than 10 years and 5% for 6 months. The average leg pain VAS 

reported was 7.24 ± 1.47.  

3.3 Changes in microstructural integrity along compressed L5 nerve roots  

We have previously demonstrated that DTI metrics are similar between left and right sides and 

between vertebral levels in healthy, pain-free subjects (Chiou et al., 2017). Therefore, within-subject 

comparisons between radiologically confirmed affected (i.e. L5 nerve root) and unaffected (i.e. L4 or 

S1 nerve root) vertebral levels were used in the analysis. DTI showed a difference in the 

microstructural integrity along affected versus unaffected nerves (Figure 2). Two-way repeated 

measures ANOVA revealed that there was a main effect of Nerve (i.e. between affected and 

unaffected nerves: F1,19=5.34, p<0.05) and ROI (F2,38=11.03, p<0.001) on FA. The differences in FA were 

prominent in the proximal ROIs and although there was no interaction between ROI and Nerve, there 

was a statistical trend (F2,38=3.01, p=0.06).  

Figure 2B – D show the changes in MD, AD and RD were localised to the proximal segment of the 

compressed nerve root. There was an interaction between ROI and nerve (MD: F2,38=6.69, p<0.01; AD: 

F2,38=4.65, p<0.01; RD: F2,38=7.03, p<0.01) and for each of these measures, this effect was driven by 

differences in the proximal part of the affected nerve (MD: t(19)=3.12, p<0.01; AD: t(19)=2.74, p<0.01; 

RD t(19)=3.93, p<0.001), but not in the mid (MD: t(19)=0.71, p=0.48; AD: t(19)=0.23, p=0.79; RD: 

t(19)=0.42, p=0.42) or distal (MD: t(19)=0.45, p=0.65; AD: t(19)=0.42, p=0.67; RD: t(19)=0.04, p=0.9) 

segments.  
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3.4 Correlation between diffusion metrics derived along compressed nerve roots and motor 

neurophysiological responses  

The relationship between FA measured along the compressed nerve roots and the battery of 

neurophysiological tests were analysed. There were no significant correlations between FA measured 

at proximal and distal parts of the nerve and any of the neurophysiological assessments (see Table 2). 

However, significant correlations were found between FA measured at the mid part of the nerve and 

minimum F-wave latencies (r=-0.54; p<0.05; Figure 3A) and peripheral motor conduction time (PMCT: 

r=-0.43; p<0.05; Figure 3C) in the affected nerve root but not at the same position in the unaffected 

nerve root (min F-wave latencies: r = 0.09; p = 0.71; PMCT: r = 0.16; p = 0.53; Figure 3B and D).  

For MD, AD and RD metrics, there were no significant correlations between any of the diffusion values 

measured at the proximal or mid parts of the nerve, however there was a correlation between MD 

measured at the distal ROI and MEP amplitude in the affected nerve root (r=-0.61; P<0.05; Table 2).   

3.5 Correlation between diffusion metrics derived along compressed nerve roots and clinical scores  

Table 3 shows the correlations between all diffusion metrics and clinical measures. HADS depression 

score correlated with FA measured at the mid part of the affected (r = -0.66; p<0.01; Figure 4A) but 

not the unaffected (r = -0.19; p = 0.43; Figure 4B) nerve root. The average leg pain score correlated 

with FA measured at the distal part of the affected (r = -0.51; p <0.05; Figure 4C) but not the unaffected 

(r = -0.06; p = 0.79; Figure 4D) nerve root. In addition, HADS depression score correlated with AD 

measured at the proximal part of the affected (r = 0.46; p < 0.05; Table 3) but not the unaffected nerve 

root (r = 0.24; p = 0.31). There was also a significant correlation between the anxiety, average leg pain 

and the RMDQ scores and RD measured at the distal part of the affected (anxiety: r = 0.49; p <0.05; 

leg pain: r = 0.59; p <0.01; RMDQ: r = 0.47; p < 0.05; Table 3) but not the unaffected nerve roots 

(anxiety: r = -0.23; p = 0.33; leg pain: r = 0.19; p = 0.43; RMDQ: r = -0.32; p = 0.172).  

 

4. Discussion   

In this study, we have explored the use of DTI to measure microstructural integrity along compressed 

(i.e. L5) or intact (i.e. L4 or S1) nerve roots in elderly stenosis patients and investigated relationships 

to a battery of neurophysiological measures of motor function and clinical symptoms associated with 

chronic pain. We show that FA was lower in compressed L5 nerves compared to an unaffected L4 or 

S1 nerve root. The diffusion metrics MD, AD and RD were elevated at the proximal end of compressed 

nerve roots compared to an unaffected level. These results indicate that DTI can be used to quantify 

the microstructural integrity along compressed nerve roots in elderly patients with stenosis. Further, 
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we have shown that diffusion values measured along compressed L5 nerve roots appear to relate 

closely with a battery of clinical symptoms associated with chronic pain and is therefore a promising 

way to stratify treatment selection and to predict outcomes.   

Critically, we have shown that DTI can be used to objectively measure nerve root compression.  

Conventional imaging techniques such as MRI, CT and radiography can provide effective means of 

evaluating the extent of narrowing within the exit foramen (Hasegawa et al., 1995, Kirkaldy-Willis et 

al., 1982, Vanderlinden, 1984). However, these imaging techniques do not often provide enough 

evidence alone to predict who will respond to a particular treatment. We have shown that through 

using DTI it is possible to provide a detailed quantifiable evaluation of spinal nerve root entrapment. 

DTI therefore has the added benefit of being able to diagnose a neuropathy (Eguchi et al., 2016a, 

Kanamoto et al., 2016, Kitamura et al., 2012) and we have highlighted how this technique offers insight 

into the pathological processes associated with this condition.  

We have previously shown in healthy subjects that the diffusion values measured between sides and 

levels along nerve roots in the lumbar and sacral regions of the spinal cord are comparable (Chiou et 

al., 2017). In this study, we have shown that it is possible to measure pathological changes in diffusion 

parameters in compressed nerve roots that can be compared to normative values measured from an 

unaffected level, which is in line with previous reports (Balbi et al., 2011, Eguchi et al., 2016b, Eguchi 

et al., 2010). Interestingly, we found relationships between neurophysiological measures and clinical 

scores only in the affected nerve roots.  

We found relationships between the degree of L5 nerve root compression and a number of 

neurophysiological measures from the TA muscle. This not only provides insight into the relationship 

with the development of motor deficiencies but also to the underlying pathophysiology of the affected 

nerve root.  Neurophysiological assessments are typically used in nerve entrapment disorders as a 

means to detect the location and severity of the compression (Kane and Oware, 2012). The initial 

lesion is typically a focal damage to myelin sheath which is reflected in the slowing of nerve conduction 

at the site of compression (Whittaker, 2012). Here, we show that FA measured along compressed 

nerve roots correlated with neurophysiological tests of minimum F-wave latency and PMCT. A recent 

neurophysiological study assessing median nerve structural integrity and function in healthy 

volunteers suggests that FA, in part, reflects myelin sheath integrity (Heckel et al., 2015). Further, our 

previous research has demonstrated that FA is sensitive to the inherent variance observed in 

functional neurophysiological parameters that relate the spinal nerve integrity in healthy volunteers 

(Chiou et al., 2017). It is therefore feasible that FA values derived from compressed nerve roots in the 

exit foramen are sensitive to the focal damage to myelin sheath associated with the nerve 
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entrapment. Our data suggest that pathological FA values may serve as a biomarker of demyelination 

at the site of nerve compression. Therefore, using specific DTI parameters to investigate nerve root 

compression provides a novel means by which to identify neuropathy and may give insight into 

whether a nerve lesion is predominantly axonal or demyelinating.   

In this study we have shown detailed analysis of the microstructural integrity along compressed nerve 

roots through evaluating RD and AD, which refer to diffusivity parallel and perpendicular to the nerve 

fibre orientation, respectively and MD which reflects changes in both RD and AD. There were 

significant pathological changes in AD, RD and MD at the proximal end of the compressed nerve roots 

suggesting changes in axonal integrity, myelin sheath integrity and intra-neural oedema, respectively 

(Song et al., 2003, Song et al., 2002, Heckel et al., 2015, Eguchi et al., 2016b, Eguchi et al., 2016a, Khalil 

et al., 2008).  Interestingly, these changes in nerve root integrity appear to be localised to the proximal 

end of the compressed nerve root which is line with previous studies (Eguchi et al., 2016b, Eguchi et 

al., 2010) and we did not see pathological changes at mid or distal parts of the nerve. Other studies 

have shown that AD, RD and MD are less sensitive than FA for detecting microstructural changes in 

compressed nerve roots and it is therefore possible that these measures have failed to detect a change 

in nerve microstructural integrity at more distal regions of the nerve (Balbi et al., 2011, Eguchi et al., 

2010). In line with this, a recent study demonstrated that FA showed a higher accuracy than MD in 

distal regions along the nerve root (Eguchi et al., 2016b).  It is also possible that chronic nerve root 

compression may result in localised changes in the microstructural integrity within the anterior part 

of the nerve due to a series of inflammatory and degenerative changes (Kobayashi et al., 2004). 

In this study, we also found relationships between nerve compression and distinct clinical symptoms 

related to chronic pain. Structured neurological examinations are typically recommended during the 

clinical decision making process in the management of nerve compression syndromes (Kane and 

Oware, 2012). However, these measures correlate poorly with the level of disability and patients’ 

reported symptoms (Mondelli et al., 2000, Longstaff et al., 2001). In the present study, we show a 

direct relationship between diffusion metrics values measured along compressed L5 nerve roots and 

patients’ self-rated clinical symptoms. In contrast, correlations were not found with the respective 

unaffected nerve roots.  This highlights that DTI can reveal selective damage to specific nerve roots 

and how this manifests as distinct clinical symptoms. Previous research examining the relationship 

between conventional MR imaging and symptoms suggest that the relationship between spinal 

pathology and pain is unclear and that only severe pathology is associated with the development of 

clinical symptoms (Geisser et al., 2007). Others have also demonstrated that the degree of stenosis 

did not correspond to changes in clinical scores (Amundsen et al., 1995) suggesting patients’ 

symptoms may be determined by a number of other underlying factors. Using advanced 
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neuroimaging, such as that presented here, provides a means by which to measure changes in nerve 

microstructural integrity; changes which manifest as the development of chronic pain and associated 

co-morbidities. The findings from this study suggest that DTI of compressed nerve roots may serve as 

a predictor of pain severity and the development of associated affective disorders in elderly stenosis 

patients.  

The present study suggests that it may be possible to stratify elderly patients with stenosis based on 

degree of nerve root compression. It is apparent that relationships hold between the extent of nerve 

compression and pain severity as well as other co-morbidities such as anxiety, depression and 

disability rating. It is feasible that this information can be used as part of a biopsychosocial screening 

tool to stratify patients into prognostic subgroups (Bernstein et al., 2017); classification of patients 

based on anatomy, pathology, pain mechanisms or psychosocial factors has the potential to allow 

more targeted treatment based on underlying mechanisms (O'Sullivan, 2005, Vollert et al., 2016). A 

similar framework has been shown to be effective in targeting specific treatments to patients with 

chronic low back pain where there is a similarly large degree of heterogeneity in signs, symptoms and 

underlying mechanisms (O'Sullivan, 2005). Using DTI, it may be possible to use the values of diffusion 

parameters to separate patients and generate predictive models of treatment outcomes (e.g. based 

on pain scales) based on inherent patterns in the data. Such phenotype-stratification would be key in 

providing additional information for diagnosis, treatment and, importantly, predictions to be made 

about treatment outcomes.  

It should be noted that there are difficulties associated with acquisition of high-quality DTI in the 

lumbar spine, due to the close relationships of the nerves to osseous and ligamentous structures. 

However, we have mitigated against these during the development of the sequences and the 

processing pipelines used, which were built upon previous methods to image lumbar spinal nerves. 

We are confident that we have accounted for problems associated with imaging at the interface 

between bone and neural tissue as we were able to show differences in DTI metrics between 

unaffected and affected nerves, which is in accordance with previously published work using DTI in 

the lumbar spine (Eguchi et al., 2016b). 

In summary, the present study demonstrates the clinical application of DTI in the assessment of nerve 

root compression and determined relationships to clinical symptoms associated with chronic pain and 

motor deficiencies in elderly foraminal stenosis patients. We have shown that DTI can be used to 

quantify nerve microstructural integrity in compressed nerve roots which relate to chronic pain and 

comorbidities such as anxiety, depression and functional impairment. Taken together, this study 

indicates that it may be possible to use DTI to identify foraminal nerve root compression and provide 
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quantifiable information relating to the degree of nerve injury. Further, these data provide a rationale 

for the use of DTI to stratify treatment selection and to track improvements or predict outcomes 

following decompression surgery.  
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Figure legends  

Figure 1. A) Schematic showing the affected (red L5) and unaffected (green L4 or S1) nerve roots B) 

Sagittal T2-weighted MRI showing left L5 nerve compression in the intervertebral foramen C) 

schematic showing region of interest (ROI) placement along an L5 nerve root with respect to distance 

below the L4-L5 disc. Note that ROIs are shown on coronal view for clarity of position along the nerve 

root.  

Figure 2. Altered microstructural integrity along compressed L5 nerve roots. A) Reduced FA in affected 

versus unaffected nerve roots. At the proximal end of the compressed nerve root there was an 

increased in B) MD C) AD and D) RD. Affected nerves = left or right L5 based on radiological 

confirmation; unaffected nerves = left or right L4 or S1 based on radiological confirmation. Data are 

expressed as mean ± SEM; 2-way RM ANOVA with Holm-Sidak multiple comparison post-hoc tests; *- 

p<0.05; **- p<0.01; ***- p<0.001; N=20.  

Figure 3. Relationship between fractional anisotropy (FA) of affected and unaffected nerve roots and 

neurophysiological measurements obtained from the tibialis anterior (TA). Partial regression plots 

showing A) FA measured at the mid-part of the nerve correlated with minimum F-wave latency and C) 

peripheral motor conduction time (PMCT) when measured from the affected but not the unaffected 

(B and D) nerve roots.  N=20.  

Figure 4. Relationship between fractional anisotropy (FA) measured along affected and unaffected 

nerve roots and chronic pain symptoms. A) FA measured from the mid-part of the affected nerve 

correlated with HADS depression score which was not seen for the unaffected nerve root (B). FA 

measured at a distal part of the compressed nerve correlated with self-rated average pain visual 

analogue scale (VAS) score (C) which was not seen for the unaffected nerve root (D).  N=20.  
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Figure 1.  
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Figure 2.  
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Figure 3.  
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Figure 4.  
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Table 1. Patient demographics and clinical details. F: female. M: male. VAS; visual analogue scale (0, 

no pain; 10, maximum pain). HADS: hospital anxiety depression scale (0, no depression; 21, maximum 

depression). ODI: Oswestry Low Back Disability Questionnaire (0, no disability; 100, maximum 

disability). RMDQ: Roland Morris Disability Questionnaire (0, no disability; 24, maximum disability).  

  

ID Age Gender Leg pain Symptoms Pain 
duration 

Average 
leg pain 
VAS 

HADS 
depression 

HADS 
anxiety ODI (%) RMDQ 

1 66 F Ache 1 year 8.00 7 2 64 12 
2 70 F Shooting 1-4 years 7.00 15 14 48 12 
3 80 F Shooting 1 year 6.00 6 9 45 11 
4 63 F Ache 1-4 years 6.67 7 7 24 13 
5 72 F Sharp/shooting 6 months 5.67 5 9 53 18 
6 74 M Shooting >10 years 5.33 10 11 48 18 
7 63 M Sharp 1-4 years 8.00 9 11 54 16 
8 57 M Shooting 1-4 years 6.67 3 2 22 8 
9 68 F Stabbing/shooting 1-4 years 9.00 11 7 31.4 6 
10 68 F Sharp 5-10 years 7.67 11 9 46.6 17 
11 47 M Shooting 5-10 years 8.33 4 7 46 15 
12 71 M Ache 5-10 years 7.00 5 2 28.8 12 
13 77 M Ache, stabbing 5-10 years 10.00 10 12 60 23 
14 53 M Sharp 1-4 years 4.33 8 4 17.5 9 
15 68 F Ache >10 years 8.00 5 3 66.6 14 
16 66 F Ache/sharp 5-10 years 8.50 15 19 62 18 
17 53 F Ache 1-4 years 9.33 2 8 38 8 
18 64 F Burning, sharp 1 year 7.67 1 3 16 7 
19 58 F Ache 5-10 years 5.33 8 4 55.5 13 
20 64 M Shooting >10 years 6.33 6 3 14 1 
Mean (SD) 65.1 (8.3) - - - 7.2 (1.5) 7.4 (3.8) 7.3 (4.6) 42.1 (16.9) 12.6 (5.1) 
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Table 2. Relationship between FA, MD, AD and RD and the battery of neurophysiological measures. 

Results from multiple linear regression analyses between the diffusion metrics across all ROIs and 

neurophysiological responses measured at the TA muscle. AD: mean diffusivity, CMCT: central motor 

conduction time, FA, fractional anisotropy, MD: mean diffusivity, MEP: motor evoked potential, PMCT: 

peripheral motor conduction time, RD: radial diffusivity, ROI: region of interest. N=20.  * = significant 

correlation following correction for multiple comparisons using false detection rate (FDR).  

  

Diffusion metric 
ROI MEP amplitude MEP latency F-wave latency PMCT CMCT 

FA 
Proximal  
 
Mid 
 
Distal  
 

 
r = 0.15 
p = 0.65 
r = 0.41 
p = 0.90 
r = 0.21 
p = 0.51 

 
r = -0.07 
p = 0.83 
r = -0.14 
p = 0.96 
r = -0.22 
p = 0.49 

 
r = -0.36 
p = 0.16 
r = -0.55 
p = 0.02* 
r = 0.67 
p = 0.79 

 
r = -0.39 
p = 0.13 
r = -0.54 
p = 0.03* 
r = -0.02 
p = 0.93 

 
r = 0.37 
p = 0.23 
r = 0.52 
p = 0.09 
r = -0.52 
p = 0.08 

MD 
Proximal  
 
Mid 
 
Distal  
 

 
r = -0.81 
p = 0.80 
r = -0.10 
p = 0.75 
r = -0.61 
p = 0.04 

 
r = 0.10 
p = 0.76 
r = -0.13 
p = 0.70 
r = 0.21 
p = 0.52 

 
r = 0.13 
p = 0.62 
r = 0.47 
p = 0.06 
r = -0.16 
p = 0.54 

 
r = 0.15 
p = 0.56 
r = 0.35 
p = 0.17 
r = 0.08 
p = 0.75 

 
r = -0.15 
p = 0.63 
r = -0.46 
p = 0.13 
r = 0.25 
p = 0.44 

AD 
Proximal  
 
Mid 
 
Distal 
 

 
r = -0.13 
p = 0.68 
r = -0.20 
p = 0.53 
r = -0.56 
p = 0.06 

 
r = 0.17 
p = 0.59 
r = -0.03 
p = 0.92 
r = 0.36 
p = 0.25 

 
r = -0.01 
p = 0.99 
r = 0.45 
p = 0.07 
r = -0.07 
p = 0.80 

 
r = 0.06 
p = 0.83 
r = 0.35 
p = 0.17 
r = 0.18 
p = 0.48 

 
r = 0.01 
p = 0.99 
r = -0.37 
p = 0.23 
r = 0.14 
p = 0.67 

RD 
Proximal  
 
Mid 
 
Distal  
 

 
r = -0.17 
p = 0.59 
r = -0.33 
p = 0.30 
r = 0.22 
p = 0.50 

 
r = 0.13 
p = 0.68 
r = -0.02 
p = 0.96 
r = 0.55 
p = 0.06 

 
r = 0.07 
p = 0.78 
r = 0.28 
p = 0.28 
r = -0.01 
p = 0.98 

 
r = 0.11 
p = 0.67 
r = 0.19 
p = 0.46 
r = 0.14 
p = 0.59 

 
r = -0.04 
p = 0.90 
r = -0.01 
p = 0.97 
r = 0.25 
p = 0.43 
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Table 3. Relationship between FA, MD, AD and RD and the battery of clinical questionnaires. Results 

from Pearson correlation coefficient analyses between the diffusion metrics across all ROIs and clinical 

scores. AD: mean diffusivity, CMCT: central motor conduction time, FA, fractional anisotropy, ODI: 

Oswestry Low Back Disability Questionnaire, MD: mean diffusivity, RD: radial diffusivity, RMDQ: 

Roland Morris Disability Questionnaire, ROI: region of interest, VAS: visual analogue score. N=20.  * = 

significant correlation following correction for multiple comparisons using false detection rate (FDR).  

 

 

Diffusion metric 
ROI Anxiety Depression Average Leg 

Pain VAS ODI RMDQ 

FA 
Proximal  
 
Mid 
 
Distal  
 

 
r = -0.81 
p = 0.73 
r = -0.31 
p = 0.19 
r = 0.08 
p = 0.73 

 
r = -0.31 
p = 0.19 
r = -0.66 
p = 0.01* 
r = 0.06 
p = 0.79 

 
r = 0.29 
p = 0.21 
r = -0.05 
p = 0.84 
r = -0.51 
p = 0.02* 

 
r = 0.11 
p = 0.63 
r = -0.15 
p = 0.52 
r = -0.16 
p = 0.49 

 
r = -0.38 
p = 0.09 
r = -0.27 
p = 0.25 
r = -0.17 
p = 0.46 

MD 
Proximal  
 
Mid 
 
Distal  
 

 
r = 0.29 
p = 0.22 
r = 0.13 
p = 0.58 
r = 0.07 
p = 0.76 

 
r = 0.41 
p = 0.07 
r = 0.35 
p = 0.12 
r = -0.04 
p = 0.85 

 
r = 0.07 
p = 0.76 
r = -0.98 
p = 0.68 
r = 0.04 
p = 0.87 

 
r = -0.04 
p = 0.85 
r = -0.06 
p = 0.81 
r = -0.15 
p = 0.53 

 
r = 0.35 
p = 0.13 
r = 0.20 
p = 0.41 
r = -0.13 
p = 0.60 

AD 
Proximal  
 
Mid 
 
Distal  
 

 
r = 0.42 
p = 0.06 
r = 0.11 
p = 0.65 
r = 0.10 
p = 0.66 

 
r = 0.46 
p = 0.04 
r =0.25 
p = 0.30 
r = -0.06 
p = 0.80 

 
r = 0.26 
p = 0.27 
r = -0.04 
p = 0.87 
r = -0.04 
p = 0.86 

 
r = -0.02 
p = 0.94 
r = -0.19 
p = 0.42 
r = -0.27 
p = 0.25 

 
r = 0.31 
p = 0.18 
r = 0.09 
p = 0.68 
r = -0.19 
p = 0.43 

RD 
Proximal  
 
Mid 
 
Distal  
 

 
r = 0.02 
p = 0.93 
r = -0.09 
p = 0.67 
r = 0.49 
p = 0.03* 

 
r = 0.17 
p = 0.48 
r = 0.06 
p = 0.79 
r = 0.19 
p = 0.43 

 
r = -0.28 
p = 0.23 
r = -0.12 
p = 0.96 
r = 0.59 
p = 0.01* 

 
r = -0.25 
p = 0.30 
r = 0.01 
p = 0.97 
r = 0.32 
p = 0.17 

 
r = 0.03 
p = 0.89 
r = 0.04 
p = 0.86 
r = 0.47 
p = 0.04* 


