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Abstract 31 

Organic nutrients can constitute the major fractions (up to 70 %) of aquatic nitrogen (N) and 32 

phosphorus (P), but their cycling is poorly understood relative to the inorganic pools. Some 33 

phytoplankton species access P from the dissolved organic phosphorus (DOP) pool through 34 

expression of alkaline phosphatase (AP), which hydrolyses orthophosphate from organic 35 

molecules, and is thought to occur either at low concentrations of dissolved inorganic P (DIP), 36 

or elevated ratios of dissolved inorganic N (DIN) to DIP. Three algal strains native to the North-37 

East Atlantic Ocean (coccolithophore, dinoflagellate and diatom species) were grown under 38 

representative, temperate conditions, and the dissolved N and P components amended to 39 

include dissolved organic N (DON) and DOP. The activity of AP was measured to determine 40 

the rate of DOP uptake by each algal species. The addition of DON and DOP enhanced the 41 

growth of the algal species, regardless of DIN and DIP concentrations. In cultures where the 42 

total concentrations and absolute N : P ratio was unchanged but the N pool included both DON 43 

and DIN, an increase in alkaline phosphatase activity (APA) was measured. This suggested 44 

that the presence of DON triggered the selective uptake of DOP. The uptake of organic P was 45 

confirmed by detection of adenosine in DOP-amended culture media, indicating that P had 46 

been cleaved from ADP and ATP added to the media as DOP, and cellular P concentration in 47 

these cultures exceeded the calculated concentration based on uptake of DIP only. Our data 48 

demonstrates that organic nutrients can enhance and sustain marine algal productivity. The 49 

findings have implications for marine ecosystem function and health, since climate change 50 

scenarios predict variable riverine inputs to coastal areas, altered N : P ratios, and changes in 51 

the inorganic to organic balance of the nutrient pools. 52 
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Introduction 57 

As limiting nutrients for algal growth, phosphorus (P) and nitrogen (N) play an essential 58 

role in the biological productivity of aquatic ecosystems (Redfield 1958; Hecky & Kilham 59 

1988). Most nutrient cycling studies have focussed on dissolved inorganic N and P (DIN and 60 

DIP, respectively). However, recent studies show that the dissolved organic pools (DON and 61 

DOP, respectively) also merit consideration. For example, DON frequently comprises the 62 

largest part (60–69 %) of total dissolved N in rivers, estuaries and surface ocean waters (Bronk 63 

2002), while DOP was shown to account for at least 40 % of the total dissolved phosphorus 64 

pool in an estuary (McKelvie 2005; Monbet et al. 2009), and 70-90 % in oligotrophic waters 65 

(Ruttenberg & Dyhrman 2012). Although bacteria are primarily responsible for the processing 66 

of DON in aquatic environments (Berman & Bronk 2003), a variety of phytoplankton species 67 

have been shown to utilise DON to meet their N needs (Antia et al. 1991; Moschonas et al. 68 

2017). Studies of DON uptake by phytoplankton (Gobler & Boneillo 2003; Mulholland & Lee 69 

2009) demonstrated that both external hydrolysis and direct assimilation occurred, depending 70 

on molecular size, with highest rates measured in the size fraction containing the dominant 71 

phytoplankter.  72 

In marine waters, the supply of P to phytoplankton to meet their cellular demands is 73 

thought to be mainly in the form of orthophosphate (Cembella et al. 1984; Nicholson et al. 74 

2006; Mahaffey et al. 2014) rather than DOP. During times of DIP depletion, relative to other 75 

nutrients, microbial activity and phytoplankton growth are often considered to be P-limited 76 

(Karl et al. 1995; Shaked et al. 2006), even though the concentration of marine DOP can be 5–77 

10 times higher than DIP (Mather et al. 2008). However, when DIP is depleted, a number of 78 

marine organisms, including dinoflagellates (Dyhrman & Palenik 1999; Lin et al. 2012), 79 

coccolithophores (Dyhrman & Palenik 2003), diatoms (Dyhrman & Ruttenberg 2006) and 80 

bacteria (Huang & Hong 1999) are known to synthesize hydrolytic enzymes in order to access 81 



the DOP pool to derive their P requirement (Monaghan & Ruttenberg 1999; Ruttenberg & 82 

Dyhrman 2005) via expression of the alkaline phosphatase (AP) enzyme (Perry 1972; 83 

Cembella et al. 1984), which hydrolyzes orthophosphate from the DOP compound. 84 

The use of AP by phytoplankton is believed to occur at either low concentrations of 85 

DIP, or elevated ratios of dissolved inorganic N to DIP (DIN : DIP). Studies from a range of 86 

marine environments indicate variable inorganic phosphate concentration thresholds, below 87 

which alkaline phosphatase activity (APA) is induced; specifically, below 10 nM in the 88 

Sargasso Sea (Lomas et al. 2010), ∼20 nM in the subtropical Pacific (Suzumura et al. 2012) 89 

and ∼100 nM in the northwest African upwelling region (Sebastian et al. 2004). As such, APA 90 

has been used to determine phytoplankton community P status (Sebastián et al., 2004; 91 

Nicholson et al. 2006; Suzumura et al. 2012; Mahaffey et al. 2014). However, several studies 92 

have shown that P from DOP can be taken up by bacteria or phytoplankton, even in the presence 93 

of DIP, via enzymatic hydrolysis, depending on their competing strengths, substrate 94 

concentrations, saturation, storage capacity and the availability of other nutrients such as 95 

organic carbon (Cotner et al. 1997; Labry et al. 2005; Luo et al. 2011). The combination of 96 

inducible and constitutive behaviour of AP means that its relationship with phosphate may be 97 

complex when considered across a spectrum of marine environments.  98 

Climate change scenarios predict both episodic conditions of elevated rainfall and 99 

extended periods of dry conditions (Stocker et al. 2013), leading to variable riverine inputs to 100 

coastal areas, altered N : P ratios, and changes in the inorganic to organic balance of the nutrient 101 

pools. Organic nutrients can constitute up to 69 and 90 % of the N and P pools, respectively 102 

(Bronk 2002; McKelvie 2005; Monbet et al. 2009), but their cycling is still poorly understood 103 

relative to the well-characterised inorganic fractions. It is crucial, therefore, to understand the 104 

cycling of organic nutrients in coastal waters and how changes in the composition of the N and 105 

P pools could impact on marine ecosystem function and health.  106 



This study was undertaken to: 1) investigate algal growth rates using culture media 107 

containing mixtures of N and P components; 2) examine the effect of culture media 108 

macronutrient compositions on alkaline phosphatase activity; 3) Monitor uptake of P by algal 109 

species. The experimental conditions were designed to facilitate a comparison of the growth of 110 

algal species in media containing both inorganic and organic forms of N and P so that uptake 111 

was not governed by the lack of alternative forms of each macronutrient. 112 

  113 



Materials and methods 114 

CLEANING PROCEDURE 115 

Glass- and plasticware were first degreased (2% Nutracon solution, 24 h), then acid-washed 116 

(10 % HCl, 24 h) and thoroughly rinsed with high purity water (HPW; Millipore, 18.2 M 117 

cm). Cleaned items were stored in resealable plastic bags. Glass fibre filters (GF/F) were 118 

cleaned by combustion in a muffle furnace (450 oC, 6 h). Clean techniques were used 119 

throughout the study and critical handling steps were performed in a laminar flow cabinet. 120 

 121 

ALGAL CULTURING 122 

Three species of algae isolated from the English Channel were obtained from the Roscoff 123 

Culture Collection; a coccolithophore, Emiliania huxleyi (BIO 8), a dinoflagellate, 124 

Prorocentrum minimum (RCC 2563), and a diatom, Chaetoceros sp. (RCC 2565). Stock 125 

cultures of Emiliania huxleyi and Prorocentrum minimum were maintained in k/2 medium, 126 

whilst Chaetoceros sp., a diatom requiring Si, was grown in k/2 media with added Si; full 127 

details of the culture media are provided as supporting information. The N and P component 128 

of the media was adjusted to include media containing DON and DOP. The DON component 129 

comprised protein-forming amino acids and urea, while DOP was prepared using adenosine di- 130 

and tri-phosphate (ADP and ATP, respectively). ATP is a labile form of DOP, in the low 131 

molecular weight fraction (< 10 kDa); algal uptake of ATP has been studied in marine systems 132 

and it was reported to be the preferred DOP source, after DIP, in recent comparison studies 133 

(Diaz et al., 2018, Nausch et al., 2018). Details of the N and P components of the culture media 134 

are shown in Table 1.  All cultures were maintained at 15 oC under a 16 : 8 h light : dark cycle. 135 

For the first inoculation, 100 mL of culture medium was transferred to a 125 mL sterile culture 136 

flask and 5 mL of stock culture added. Cell growth was subsequently monitored visually and 137 



under a light microscope, and sub-culturing was performed every 3-7 days prior to inoculation 138 

of larger volumes of culture media. Culture volumes of 2 L were maintained over 21 days; 139 

these cultures were maintained through addition of fresh medium (25 % addition by volume) 140 

weekly over this period. Larger volume (6 L) cultures of E. huxleyi were prepared from sub-141 

cultures of established 2 L volume cultures, to provide adequate volume for the extraction and 142 

detection of organic molecules via solid phase extraction and analyses of dissolved nitrate and 143 

phosphate. The 6 L cultures were not refreshed over the experimental period.    144 

The cultures were sampled for cell counts during the culture period and when harvested; 145 

aliquots of sample were collected in a clean-air laminar-flow cabinet. Cells were enumerated 146 

using a BD Accuri™ C6 Cytometer on in vivo samples, with a typical analysis time of 1 minute 147 

at a flow rate of 35 µL min-1, and a threshold of 10000 events on the chl a fluorescence side 148 

scatter. For 6 L E. huxleyi cultures, cell counts for k/2 DON and k/2 DON+DOP were compared 149 

with those for k/2 when harvested.  150 

 151 

DISSOLVED INORGANIC NUTRIENTS 152 

Dissolved NO3
- and PO4

3- concentrations were measured in water samples (100 mL), which 153 

had been gravity-filtered through combusted GF/F filters (0.7 µm nominal pore-size) into pre-154 

cleaned polycarbonate bottles then stored frozen at -20 oC before analysis. Analyses were 155 

performed colorimetrically on an auto-analyser (AXFLOW SEAL AA3 AAHR) within one 156 

month of sampling according to the national protocol within the SOMLIT (Service 157 

d’Observation en Milieu LITtoral) based on Aminot and Kérouel (2004). Filters were 158 

immediately frozen (-20 oC) for subsequent analysis of total particulate P content. 159 

  160 



ALKALINE PHOSPHATASE ACTIVITY 161 

Kinetic assays of APA were performed using a sensitive fluorometric protocol similar to Perry 162 

(1972). The APA in culture samples was assayed as a change in fluorescence through 163 

enzymatic hydrolysis of the artificial P substrate, 4-methylumbelliferyl phosphate (MUF-P) 164 

releasing the fluorescent product methylumbelliferone (MUF). A 4 mL aliquot of unfiltered 165 

culture water was distributed into triplicate series (blank control plus 5 concentrations between 166 

12.5 and 200 nM MUF-P in 10 nM Tris buffer) in 12 mL glass tubes. These samples were 167 

incubated at 15 ºC in the dark for 1 hour and their fluorescence determined (Turner Designs 168 

Laboratory Trilogy Fluorometer) at excitation and emission wavelengths of 365 and 455 nm, 169 

respectively. The procedure was calibrated on each occasion against six MUF standards 170 

(concentration range 5-40 nM), measured in triplicate, which was sufficient to account for all 171 

samples. Kinetic data were estimated using the Lineweaver-Burk transformation of the 172 

Michaelis-Menten equation.   173 

 174 

TOTAL PHOSPHATE 175 

Frozen GF/F filters were thawed, wrapped in a double-layer of aluminium foil then combusted 176 

at 450 °C for 4.5 h and allowed to cool to room temperature (20–25 °C). Each filter was then 177 

divided (pieces were no larger than 10 x 10 mm) using acid-washed surgical scissors and placed 178 

into a pre-cleaned 20 mL glass vial. After addition of HCl (5 mL, 0.5 M), vials were placed in 179 

a sonic-bath for 60 minutes then centrifuged at 3000 rpm for 30 minutes. The supernatants 180 

were analysed for P by inductively coupled plasma optical emission spectrometry at a 181 

wavelength of 177.495 nm. A certified reference material (CRM; NIST Apple leaf) was used 182 

as the analytical control to measure recovery of P from the sample filters. Samples containing 183 

CRM were prepared according to the Hawaii Ocean Time Series protocol 184 



(http://hahana.soest.hawaii.edu/hot/protocols/chap11.html), with some adaptations. The CRM 185 

was initially freeze-dried (48 h), then weighed into glass vials to give a range of P 186 

concentrations in 10 mL HPW (0, 5, 10, 15 and 20 μM). The added CRM was suspended in 187 

solution using a vortex mixer and aliquots pipetted on to an acid-washed and combusted GF/F 188 

filter paper. Filter papers were then oven-dried at 40 °C and prepared for analysis as described 189 

for the sample filters. 190 

 191 

EXTRACTION AND DETECTION OF ORGANIC MOLECULES 192 

SOLID PHASE EXTRACTION 193 

Water was sampled from cultures (1 L samples) at harvesting after gentle mixing, and gravity-194 

filtered through GF/F filters (0.7 µm) then amended with formic acid (FA) to a final 195 

concentration of 0.1 % FA v/v. Solid phase extraction (SPE) was then performed using Strata-196 

X 33µ Polymeric Reversed Phase 500 mg/12 mL Giga Tubes, using a method adapted from 197 

Curtis-Jackson et al. (2009). The tubes were conditioned with 12 mL of a methanol (MeOH) 198 

and water mixture (50 : 50 v/v), followed by equilibration with a 12 mL mixture of  MeOH and 199 

water at 1 : 99 v/v. Once the FA-amended sample had been passed through the cartridge, a 200 

single wash step was performed with a further 3 mL of the MeOH and water mixture (1 : 99 201 

v/v). The cartridge was eluted with 3 volumes (2 mL, 2 mL, 1 mL) of a MeOH : FA mixture 202 

(99 : 1 v/v) into a glass vial.  Eluted samples were further pre-concentrated by removal of the 203 

elution solvent under a gentle flow of N2 gas then reconstituted in 100 µL HPLC-grade water 204 

for analysis by liquid chromatography tandem mass spectrometry LC-MS/MS. 205 

 206 

  207 
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LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY 208 

The aqueous samples were analysed by LC-MS/MS, on an Ultimate3000TM system 209 

(Dionex, Odense, Denmark) connected to the LTQ Orbitrap Discovery instrument (Thermo 210 

Fisher Scientific, Bremen, Germany), operating in collision induced dissociation (CID) or 211 

higher energy collisional (HCD) mode. Standard mass spectrometric conditions for all 212 

experiments were: spray voltage, 4.5 kV; capillary voltage 47, sheath gas flow 20 ; heated 213 

capillary temperature 200 °C; predictive automatic gain control (AGC) enabled. Structures 214 

were manually deduced from the resulting fragment ion spectra and compared with the spectral 215 

library for the instrument. 216 

  A 5 μL aliquot of sample was separated on a 100mm analytical column (2.1mm inner 217 

diameter) packed with 3.6 μm C18 beads (Aeris Peptide, Phenomenex). A gradient comprising 218 

0.1% acetic acid in water (A) and acetonitrile (B) was applied over a total run time of 30 219 

minutes. The following proportions of solvent B were used for elution: 0‒15 min, 0‒50 % ; 220 

15‒18 min, 50-100 % ; 18‒23 min, 100 % ; and 23‒30 min, 0 %, with a flow rate of 0.25 mL 221 

min-1. The analytes were detected at two wavelengths (206 and 280 nm).  222 

Effluent from the analytical column was directly electrosprayed into the mass 223 

spectrometer. The linear trap quadrupole (LTQ) Orbitrap instrument was operated in data-224 

dependent mode to automatically switch between full scan MS and MS/MS acquisition. 225 

Instrument control was through Tune 2.5.5 and Xcalibur 2.1. For the low-resolution collision 226 

induced dissociation method (CID-MS/MS top5), full scan MS spectra (from m/z 50 to 2000) 227 

were acquired in the Orbitrap analyzer after accumulation to a target ion count value of 5.10 228 

E5. The 5 most intense ions with charge states ≥ 2 were sequentially isolated to a target value 229 

of 30,000 and fragmented in the linear ion trap by CID with normalized collision energy of 15 230 

%, and wideband-activation enabled. The ion selection threshold was 1.10 E5 for MS/MS, and 231 

the maximum allowed ion accumulation times were 500 ms for full scans in the orbitrap, and 232 



200 ms for CID-MS/MS measurements in the LTQ. An activation of q = 0.25 and activation 233 

time of 30 ms were used.  234 

For the high-resolution HCD-MS/MS top3 method, full scan MS spectra (from m/z 50 235 

to 1000) were acquired in the orbitrap with resolution r = 30,000. The three most intense ions 236 

with charge states ≥ 2 were sequentially isolated to a target value of 3 E6 and fragmented in the 237 

HCD collision cell with normalized collision energy of 35 %. The resulting fragments were 238 

detected in the orbitrap with resolution r = 7500. The ion selection threshold was 1.10 E5 for 239 

HCD, and the maximum allowed ion accumulation times were 500 ms for full scans and 200 240 

ms for HCD.  241 

242 



Results 243 

ALGAL CULTURING 244 

Culture media were prepared to ensure that concentrations of DIN and DIP were adequate to 245 

support algal species relying on these forms of N and P throughout the experimental period. 246 

Concentrations of dissolved nitrate and phosphate remained replete throughout the 247 

experimental period and were never exhausted at the time of harvesting (Figure 1). Cell counts 248 

were made for each of the three cultures (Figure 2) reflecting the successful growth of each 249 

species though some differences were apparent. In the E. huxleyi cultures, cell numbers were 250 

highest in the k/2 medium at the time of final harvest, while those for the k/2 DON + DOP 251 

medium were highest at final harvest for P. minimum, although the maximum cell counts 252 

during the experimental period were measured in the k/2 medium on day 20. A change in cell 253 

density was measured for Chaetoceros sp, but the strain did not appear to flourish in any of the 254 

culture media, with low cell numbers generally measured throughout the culturing period. 255 

 Interestingly, at the time of harvesting the cell count of E. huxleyi in 6 L cultures was 256 

higher in the k/2 DON+DOP medium compared with k/2 (Day 7), while the k/2 medium cell 257 

count was higher than for the k/2 DON medium samples when the latter was harvested on Day 258 

11. 259 

 260 

ALKALINE PHOSPHATASE ACTIVITY 261 

Rates of APA were measured in all cultures. With respect to those species grown in the k/2 262 

media which had Vmax rates for APA of 0.03, 1.78 and 4.66  fmolP cell-1h-1 for E. huxleyi, P. 263 

minimum and Chaetoceros sp., respectively, there was an apparent increase in APA for each 264 

species in cultures containing DON, with Vmax rates of APA of 0.07, 39.7 and 80.5 fmolP cell-265 

1h-1 for E. huxleyi, P. minimum and Chaetoceros sp. respectively. (Table 2). The response in 266 



cultures containing DON+DOP varied for each group; APA for  E. huxleyi reduced by ~ 67 % 267 

whilst P. minimum and Chaetoceros sp. both increased from 1.78 to 10.8 and from 4.66 to 106 268 

fmolP cell-1h-1, respectively. Whilst these cultures were not grown axenically, they were all 269 

treated using identical clean handling procedures and, whilst a contribution to APA from 270 

bacteria is possible, the variable response between the different algal species and treatments 271 

gives confidence that these observations are dominated by the differential response to 272 

treatments by the algal cells.   273 

 274 

PARTICULATE PHOSPHORUS 275 

Particulate P was measured in cultures and used to calculate the concentration of P per algal 276 

cell in each medium according to Equation 1: 277 

                            P cell-1 = (Pf /100)/C                                                                 (1) 278 

Where Pf is the molar P concentration measured on the filter after filtration of 100 mL of 279 

medium and C is the cell count per mL. The theoretical concentration based on uptake of PO4
3- 280 

only was calculated according to Equation 2: 281 

  P cell-1 (theoretical) = ([P0-P]/1000)/C                                      (2) 282 

Where P0 is the initial dissolved PO4
3-concentration in the culture medium and P is the 283 

measured dissolved PO4
3- concentration, in moles L-1 at the time of harvesting; this allowed 284 

comparison of the amount of P in cells that could be accounted for if only DIP had been taken 285 

up to cells. A value below equal to, or below, the theoretical amount indicated that cell uptake 286 

of P could be accounted for by DIP only, consistent with induced uptake of DOP.  The data in 287 

Table 3 for E. huxleyi, shows that the measured decrease in PO4
3- concentration could account 288 

for the particulate cellular P concentrations in the k/2 and k/2 DON samples, while the P cell-1 289 



concentration in the k/2 DON+DOP samples exceeded the theoretical value (27.6 versus 22.2 290 

fmol P cell-1) at the time of harvesting. 291 

 292 

MOLECULAR UPTAKE OF DOP 293 

Samples collected from 6 L cultures of E. huxleyi in the 3 media were pre-concentrated by SPE 294 

before chromatographic separation and detection by mass spectrometry. Mass spectra were 295 

examined for evidence of direct utilisation of DOP (ATP and ADP). A peak at m/z 268.1028 296 

(Figure 4a) was prominent in the mass spectrum of k/2 DON+DOP samples, with an ion count 297 

of 7.24 x 107. The same peak in the k/2 DON samples was much weaker (ion count of 1.77 x 298 

103) and absent in k/2 samples (Table 4). The spectral library identified this ion as adenosine 299 

and its further fragmentation by MS/MS confirmed the structure. The MS/MS mass spectrum 300 

contained a base peak at m/z 136.0609, consistent with the m/z for protonated 1H-Imidazo[4,5-301 

d]pyridazin-4-amine after loss of 1,4-Anhydropentitol (Figure 4b) 302 

 303 

  304 



Discussion 305 

It is important to acknowledge that this study was not performed axenically and that there was 306 

potential for some bacterial cycling of DON and DOP within the culture media. The 307 

experimental matrix of algal species and inorganic : organic nutrient ratios was therefore 308 

designed to enable comparative interpretation of nutrient use by utilising analytical procedures 309 

to independently follow enzymatic activity, dissolved and cellular nutrient content and 310 

molecular changes in media composition. In this study, for each phytoplankton species, rates 311 

of APA in cultures amended with DON were higher than in cultures grown in unamended k/2 312 

media, even though the absolute N : P ratio was kept constant. Whilst some bacterial 313 

remineralisation of DON to DIN was likely, there was no evidence that the original DIN pool 314 

was enriched in the media where DON was added, neither was DIN significantly depleted in 315 

those cultures not receiving DON (Figure 1). Butler et al. (1979) described the seasonal balance 316 

of inorganic to organic N and P in waters of the English Channel and the succession between 317 

inorganic to organic dominance during the transition from spring to summer, so that 318 

phytoplankton were likely to rely on the DON and DOP fractions during the summertime.  A 319 

summertime survey of these waters by Davies & Smith (1988) confirmed this, where all 320 

phytoplankton communities displayed APA. They proposed that DOP could have an important 321 

role supporting phytoplankton and bacterial productivity during periods of P-stress. Rees et al. 322 

(2009) found that intense periods of summertime rainfall altered the inherent nutrient 323 

stoichiometry of coastal waters of the Western English Channel from an N-limited condition 324 

to one where microbial communities were P-stressed, invoking AP expression. Interestingly, 325 

Butler et al. (1979) measured a relatively constant total N : P ratio throughout the year (17-24, 326 

with a ratio of about 20 reflecting the overall chemical-biological balance in the system), while 327 

the NO3
- : PO4

3- ratio varied from 3-13 and for DON : DOP the ratio was 25-42. They suggested 328 

that the yearly succession of phytoplankton species occurring in these waters may be partly 329 



explained by the hypothesis that when NO3
- is exhausted there may be a change in the 330 

phytoplankton population such that species capable of utilizing DON became dominant.  331 

Constitutive uptake of DOP occurs in phosphorus-replete systems (Sebastian et al. 332 

2004; Dyhrman & Ruttenberg 2006; Sato et al. 2013); however, upregulation of AP through 333 

the presence of DON is a new finding and the data from this study suggest that expression of 334 

AP may be sensitive to the form of N available, rather than a focussed response to changes in 335 

inorganic N : P ratios. A recent study found that some dinoflagellate species maintained AP 336 

even when DIP was supplied in excess, further suggesting that APA is not necessarily an 337 

absolute indicator of phosphorus stress nor tightly controlled by ambient DIP level. It seems 338 

likely that APA activity in these species could indicate selective use of DOP, or a metabolic 339 

response to changes in P forms (Martinez Soto et al. 2015). A recent study assessed the relative 340 

lability of model P compounds representing the major bond classes of marine DOP in diatom 341 

cultures of the genus Thalassiosira, as well as coastal field sites of the western North Atlantic 342 

(Diaz et al. 2018). They found that ATP degradation rates were always suppressed under P-343 

replete culture conditions but the effect of P availability on DOP uptake was inconsistent 344 

among diatom strains.      345 

When cultures of E. huxleyi were harvested for SPE processing, the cell count for k/2 346 

DON+DOP samples was also significantly higher than k/2 samples compared on the same day 347 

(P < 0.001; Figure 3), though this was not apparent when k/2 DON samples were compared 348 

with k/2; this might be indicative of a requirement for organically-derived P to support organic 349 

N uptake. Direct uptake of DON by phytoplankton, including diatoms and dinoflagellates, has 350 

been reported in estuarine and coastal waters (Jauffrais et al. 2016; Moschonas et al. 2017; 351 

Mulholland et al. 2009; Zhang et al. 2015). Low DIN concentrations appeared to be a factor in 352 

some cases (Mulholland et al. 2009) but requirements may vary within the phytoplankton 353 

population. For example, in the Scottish fjord of Loch Creran, Moschonas et al. (2017) 354 



observed that N sources correlating with the multivariate pattern in phytoplankton community 355 

composition and abundance were, in order of statistical importance: urea, dissolved free amino 356 

acids (DFAA), total DON, and DIN. The measured drawdown of DON during the spring bloom 357 

was calculated to have contributed up to 37 % of the total measured dissolved N drawdown 358 

compared to 63 % from NO3
-, clearly showing the importance of DON for phytoplankton N 359 

nutrition. Indeed, in the smaller phytoplankton size fraction (< 10 µm), NO3
- contributed only 360 

28 % during spring and summer but generally much less, while  NH4
+ (up to 55 %), urea (up 361 

to 59 %), and DFAA (up to 38 %) contributions were considerable during spring and summer 362 

when regenerated N uptake rates were highest. These studies measured N in isolation and our 363 

study indicates that DON uptake could also be linked to the presence of DOP.   364 

Particulate P concentrations in E. huxleyi provided evidence for direct uptake of DOP 365 

by phytoplankton cells. While the k/2 and k/2 DON samples measured had particulate P 366 

concentrations consistent with DIP loss from the media, the P concentrations in the k/2 DON 367 

+ DOP samples exceeded the amount that could be accounted for by DIP uptake alone (Table 368 

3). Mass spectra confirmed utilisation of DOP by E. huxleyi, as adenosine, a fragment of ADP 369 

and ATP, which was present in the k/2 DON+DOP culture medium (Figure 4), could only have 370 

been produced through hydrolysis of the triphosphate chain on these molecules. Casey et al. 371 

(2009) used ATP to represent labile DOP in the oligotrophic North Atlantic Ocean, which was 372 

taken up directly by phytoplankton. Interestingly, while uptake of DIP increased in that study, 373 

in line with its abundance, ambient DOP concentrations had no apparent effect on whole 374 

seawater utilization of either DIP or ATP. Interestingly, although ADP and ATP are N-rich 375 

molecules (containing 5 nitrogen atoms) the presence of adenosine in the medium suggested 376 

that cells took up the P content after external hydrolysis of ADP and ATP. Direct uptake of 377 

DON by marine phytoplankton has been reported (Hu et al. 2012, Mulholland & Lee 2009), 378 

though a molecular mass limit has not been established. 379 



The ability of E. huxleyi to adjust to changes in composition of the N and P pool has 380 

recently been reported (McKew et al. 2015, Rokitta et al. 2016). McKew et al. (2015) found 381 

that acclimation of E. huxleyi to nutrient limitation led to marked increases in the abundance 382 

of proteins involved in inorganic nutrient transport and both the scavenging and internal 383 

remobilization of organic N and P, including AP. However, this was a highly targeted 384 

reorganization of the proteome towards scavenging of DON and DOP under N and P 385 

limitation, with proteins that were upregulated under these conditions accounting for only 1.7 386 

and 5.7 % of the total spectral counts, respectively. Rokitta et al. (2016) observed that E. 387 

huxleyi’s outstanding endurance under nutrient deficiency related to its versatile high-affinity 388 

uptake systems and an efficient, NAD-independent malate oxidation that was absent from 389 

most other taxa. However, the metabolic adjustments made during senescence involved 390 

conserved and ancient pathways, such as proline oxidation or the glycolytic bypass, that 391 

prolong survival but give rise to toxic messengers (e.g. reactive oxygen species or 392 

methylglyoxal) so that continued senescence promoted various processes that eventually lead 393 

to cell death. The data from our study is particularly novel as it shows that a recognised 394 

indicator of P-stress, APA, was also upregulated by a change in the DIN : DON ratio, rather 395 

than low DIP concentrations or the presence of DOP. We acknowledge that the DON and 396 

DOP pools are varied and complex, such that proxies of these fractions may not represent the 397 

cycling of both labile and refractory components. For example, the DOP pool ranges from 398 

relatively labile compounds like phosphomonoesters to more refractory molecules like 399 

phosphonates (Kolowith et al., 2001). However, ATP has been used as a proxy for the labile 400 

DOP fraction and, as phosphoesters, ADP and ATP contain a functional groups shared by the 401 

class of compounds comprising the majority of the DOP pool (Young & Ingall, 2010). 402 

Dissolved free amino acids are also labile molecules within the DON pool, but their varied 403 

functionality, acidity and solubility has facilitated their application as proxies to study DON 404 

https://aslopubs.onlinelibrary.wiley.com/doi/full/10.1002/lno.10572#lno10572-bib-0033


cycling in aquatic environments (Hedges et al., 1994; Tappin et al. 2010). Uptake of DON by 405 

phytoplankton in the upper water column is widely recognized (reviewed in Mulholland & 406 

Lomas 2008), and marine phytoplankton, including P. minimum, can take up dipeptides 407 

directly as well as dissolved free amino acids (Mulholland & Lee, 2009). 408 

There was potential for bacterial contribution to this study, though our consideration of 409 

all measurements made would indicate that this had a minor impact on our findings. Bacterial 410 

remineralisation could have proved problematic if cultures were grown on organic nutrients 411 

only. As all experiments were permanently replete in DIN and DIP any bacterial generation of 412 

inorganic nutrient did not likely contribute significantly to: 1) the enhanced algal growth 413 

observed and 2) elevated cellular P content of algal cells observed following DON and DOP 414 

amendments. Additionally the stoichiometric balance of inorganic nutrients was maintained in 415 

favour of P, so that elevations of APA observed following addition of DON were not a result 416 

of P stress from algal or bacterial communities according to canonical understanding. This 417 

study confirms the contention offered by several other authors that organic nutrients are, at 418 

times, of significance to the growth and function of several algal groups. Additionally, we argue 419 

that the expression of AP or the absence of DIP do not necessarily indicate a phosphorus-420 

stressed community, but that there are occasions when the uptake of DOP is in preference to 421 

DIP and may be enhanced by the presence of DON. These data do not allow us to indicate the 422 

mechanism by which this happens but provide three lines of evidence of this process occurring: 423 

APA, P cleaved from ATP/ADP, and elevated particulate P. Environmental conditions of 424 

coastal waters and open ocean regions are projected to change over the next few decades. These 425 

changes include  increased storminess and hence turbulence, altered freshwater delivery, 426 

elevated seawater temperatures which might lead to enhanced stratification restricting nutrient 427 

input to surface waters from depth (Rost & Riebesell 2004; Steinacher et al. 2010; Doney et 428 

al. 2012). Altered wind systems may strengthen eastern boundary upwelling, and thus enhance 429 



primary productivity (Bakun et al. 2010). Such alterations to abundances of macronutrients 430 

like N and P are expected to affect phytoplankton community composition, ecosystem 431 

functioning and, ultimately, biogeochemical cycles.  432 

While our finding that the E. huxleyi cultured in media amended with DON and DOP 433 

grew faster during the early stages of culturing than in cultures containing only DIN and DIP, 434 

this does not necessarily mean that the difference endured over the lifetime of the culture (e.g. 435 

Table 2). However, in a marine environment where P is less replete, the ability to access DOP 436 

earlier than competing species might enable E. huxleyi to better adapt to DIP limitation. 437 

Changes in algal metabolism, such as uptake of DOP, may occur as a result of more nuanced 438 

changes in the balance of the macronutrient pool rather than under conditions of N- or P-stress. 439 

As phytoplankton form the basis of the marine food web and drive the biogeochemical cycles 440 

of elements in the oceans (Field et al. 1998), understanding their functioning is a prerequisite 441 

for modelling behaviour to simulate their reactions to a changing environment. 442 
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Table 1. Details of the N and P components of the k/2 and f/2 media used in this study. The 639 

DON fraction comprised 20 proteinogenic amino acids and urea. Individual amino acids were 640 

added to a final concentration of 3.5 µM in the media, equivalent to 101 µmol-N L-1; urea was 641 

added to a final concentration of 43 µmol-N L-1. The DOP fraction comprised ADP and ATP 642 

at a combined concentration of 9 µmol-P L-1. As ADP and ATP each contain 5 atoms of N, in 643 

the form of aromatic and amino N, the DON-fraction in these media was amended to remove 644 

the equivalent amount of structurally-similar DON; specifically, histidine, tryptophan and 645 

proline were not added to media containing DOP 646 

Medium NO3
- (µM) PO4

3- (µM) DON (µM) DOP (µM) 

k/2 288 18 0 0 

k/2 (DON) 144 18 144 0 

k/2 (DON+DOP) 144 9 144 9 

f/2 288 18 0 0 

f/2 (DON) 144 18 144 0 

f/2 (DON+DOP) 144 9 144 9 

 647 

  648 



Table 2. Cell counts, DIN : DIP ratio and Vmax (the maximum activity rate achieved by the 649 

system, at saturating substrate concentration) for alkaline phosphatase, measured in cultures of 650 

algal species studied. The measurements were performed on sub-samples (n = 3) from cultures 651 

and Vmax was normalised to cell count. The DIN : DIP ratios were based on measured 652 

concentrations of NO3
- and PO4

3-; starting ratios are given in brackets of the same column. 653 

 654 
 655 
 656 
 657 
 658 
 659 
 660 

 661 
 662 

 663 
 664 
 665 
 666 

 667 
 668 
 669 

 670 
 671 

 672 
 673 
 674 

 675 

 676 
 677 

  678 

E. huxleyi Cell count 

(mL-1) 

DIN : 

DIP 

Vmax  

(nM h-1) 

Vmax  

(fmol cell-1 h-1) 

k/2 208581 18 (16) 5.5  0.03 

k/2 (DON) 244148 13 (8) 17.4  0.07 

k/2 (DON+DOP) 297310 14 (16) 4.0  0.01 

P. minimum 
  

 
 

k/2 621 24 (16) 1.1  1.78 

k/2 (DON) 307 10 (8) 12.2  39.7 

k/2 (DON+DOP) 443 8 (16) 4.8  10.8 

Chaetoceros sp. 
  

 
 

k/2 536 20 (16) 2.5  4.66 

k/2 (DON) 657 11 (8) 52.9  80.5 

k/2 (DON+DOP) 943 11 (16) 99.7  106.0 



Table 3. Particulate phosphorus per cell in the different culture media used to grow Emiliania 679 

huxleyi at the time of harvesting. The theoretical concentration per cell is based on uptake of 680 
DIP alone. 681 

 682 

Culture medium fmol P cell-1 

(theoretical) 

fmol P cell-1 

(measured) 

k/2 97.7 93.5 

k/2 (DON) 40.0 37.0 

k/2 (DON + DOP) 22.2 27.6 

 683 

  684 



Table 4. Mean ion current for peak occurring at retention time window 4.71-5.19 minutes in 685 

media sampled from Emiliania huxleyi cultures (n = 3). A full MS scan (m/z 50.00 – 2000.00) 686 
revealed a base peak at m/z 268.1028, corresponding to adenosine. 687 
 688 

Culture medium Ion current 

k/2 0 

k/2 (DON) 1773 

k/2 (DON+DOP) 27395000 

 689 

  690 



 691 

 Figure 1. Concentrations of A, dissolved nitrate; B, dissolved phosphate in 6 L cultures 692 
 of Emiliania huxleyi at the time of harvesting.  693 
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 694 
Figure 2. Measured cell counts for Emiliania huxleyi (a); Prorocentrum minimum (b); 695 
Chaetoceros sp. (c). The culture volume was 2 L and the culture vessels amended with 696 
fresh medium (0.5 L) at intervals during the culturing period.  697 

a 

b 

 

c 



 698 
 699 
Figure 3. Measured cell counts for Emiliania huxleyi cultured in 6 L volumes without 700 
replenishment in: k/2 culture medium (∆), k/2 medium containing DON (■) and k/2 medium 701 
containing DON+DOP (□). Predicted growth rates for cultures were based on cell counts at the 702 

time of sub-culturing to 6 L and assumed one cell division per day (● =  k/2predicted  , ○ = k/2 703 
DONpredicted,  ▼    = k/2 DON+DOPpredicted)704 



 705 

 Figure 4. Mass spectra for a) adenosine and b) 1H-Imidazo[4,5-d]pyridazin-4-amine detected in cultures of Emiliania huxleyi at the time  706 
of harvesting.707 



Fitzsimons et al. (2019) 708 

 709 

Supplementary information ; preparation of culture media 710 

 711 

K/2 culture medium with f/2 adaptations for Chaetoceros sp.  712 

To 992.5 mL of seawater (optional: Heat seawater to 80°C for 2 hours and leave to cool – this should 713 
kill most organisms but should not chemically modify the medium too much) add: 714 

 715 

Quantity Compound Stock solution 

(sterile) 
Final conc. in K 

medium 

0.25 mL NaNO3 48.9542 g L-1 H2O  144 µM 

1.0 mL DON (urea + 20 amino 

acids) 

(see recipe on page 2) 144.5 µM 

0.25 mL KH2PO4 4.8992 g L-1 H2O 9 µM 

1.0 mL DOP (ADP + ATP) (see recipe on page 3) 9 µM 

0.5 mL FeEDTA solution (see recipe below) (see below) 

0.5 mL Trace metal solution (see recipe below) (see below) 

1.0 mL f/2 vitamin solution (see recipe below) (see below) 

* optional 716 

FeEDTA solution 717 

To 950 mL distilled H2O add: 718 

Quantity Compound Stock solution Final conc. in K 

medium 

4.3 g (Na)FeEDTA - 5.85 µM 

Make up to 1 L with high purity water (18.2 MΩ cm resistivity) , sterilize (filter 0.22 µm) and store 719 
in fridge. 720 

Trace metal solution 721 

To 950 mL distilled H2O add: 722 

Quantity Compound Stock solution Final conc. in K 

medium 

37.22g Na2EDTA.2H2O - 50 µM 

1.0 mL CuSO4.5H2O 2.497 g L-1 H2O 0.005 µM 

1.0 mL Na2MoO4.2H2O 7.2585 g L-1 H2O 0.015 µM 

1.0 mL ZnSO4.7H2O 23.0 g L-1 H2O 0.004 µM 

1.0 mL CoSO4.7H2O 14.055 g L-1 H2O 0.025 µM 

1.0 mL MnCl2.4H2O 178.11 g L-1 H2O 0.45 µM 

1.0 mL H2SeO3 1.29 g L-1 H2O 0.005 µM 



1.0 mL NiCl2.6H20 1.49 g L-1 H2O 0.00314 µM 

Make up to 1 L with high purity water, sterilize (filter 0.22µm) and store in fridge. 723 

 f/2 Vitamin solution 724 

To 950 mL  distilled H2O add: 725 

Quantity Compound Stock solution Final conc. in K 

medium 

1.0 mL Vit. B12 (cyanocobalamin) 0.5 g L-1 H2O 0.37 nM 

1.0 mL Biotin 5.0 mg L-1 H2O 2.0 nM 

100.0 mg Thiamine HCl - 0.3 µM 

Make up to 1 litre with high purity water, filter sterilize into plastic vials and store in freezer. 726 

 727 

After addition of supplements, adjust pH of medium to 8.2 (with 0.2 M solution of NaOH) 728 
For K-ET, add 10-30 mL marine soil extract (ET) 729 

 730 

Sterilization of medium : Filter sterilize through 0.22 µm filters (e.g. Millipore Steritop units) into sterile 731 
(autoclaved) polycarbonate bottles. 732 
 733 

DON solution 734 

Prepare the DON solution by adding AAs and urea in the quantities shown below, making up to 500 735 

mL 736 

 737 

Amino    acid 

g/500 mL 

(3.5   mM) N (mM) 

GLY 0.131 3.5 

ALA 0.156 3.5 

VAL 0.205 3.5 

LEU 0.230 3.5 

ILE 0.230 3.5 

SER 0.184 3.5 

THR 0.208 3.5 

ASP 0.233 3.5 

GLU 0.257 3.5 

ASN 0.231 7 



GLN 0.256 7 

LYS 0.256 7 

HIS* 0.272 10.5 

ARG 0.305 14 

PHE 0.289 3.5 

TYR 0.317 3.5 

TRP* 0.357 7 

CYS 0.212 3.5 

MET 0.261 3.5 

PRO* 0.201 3.5 

  

80.5 

Urea 0.131 43 

 

Total 123.5 

 738 

* Not included in DON + DOP recipe due to 20 μM aromatic N added to medium from ADP and 739 

ATP. 740 

 741 

DOP Solution 742 

 743 

Prepare the DOP solution by adding ADP and ATP in the quantities shown below, making up to 100 744 

mL with high purity water (3 mM ADP and 1 mM ATP). 745 

  746 

P species g/100 mL  

ADP 0.135 

ATP 0.055 

747 



 


